My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 113KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V82"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #if ENABLED(DWIN_CREALITY_LCD)
  48. #include "../lcd/dwin/e3v2/dwin.h"
  49. #endif
  50. #include "../lcd/marlinui.h"
  51. #include "../libs/vector_3.h" // for matrix_3x3
  52. #include "../gcode/gcode.h"
  53. #include "../MarlinCore.h"
  54. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  55. #include "../HAL/shared/eeprom_api.h"
  56. #endif
  57. #include "probe.h"
  58. #if HAS_LEVELING
  59. #include "../feature/bedlevel/bedlevel.h"
  60. #endif
  61. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  62. #include "../feature/z_stepper_align.h"
  63. #endif
  64. #if ENABLED(EXTENSIBLE_UI)
  65. #include "../lcd/extui/ui_api.h"
  66. #endif
  67. #if HAS_SERVOS
  68. #include "servo.h"
  69. #endif
  70. #if HAS_SERVOS && HAS_SERVO_ANGLES
  71. #define EEPROM_NUM_SERVOS NUM_SERVOS
  72. #else
  73. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  74. #endif
  75. #include "../feature/fwretract.h"
  76. #if ENABLED(POWER_LOSS_RECOVERY)
  77. #include "../feature/powerloss.h"
  78. #endif
  79. #if HAS_POWER_MONITOR
  80. #include "../feature/power_monitor.h"
  81. #endif
  82. #include "../feature/pause.h"
  83. #if ENABLED(BACKLASH_COMPENSATION)
  84. #include "../feature/backlash.h"
  85. #endif
  86. #if HAS_FILAMENT_SENSOR
  87. #include "../feature/runout.h"
  88. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  89. #define FIL_RUNOUT_ENABLED_DEFAULT true
  90. #endif
  91. #endif
  92. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  93. extern float other_extruder_advance_K[EXTRUDERS];
  94. #endif
  95. #if HAS_MULTI_EXTRUDER
  96. #include "tool_change.h"
  97. void M217_report(const bool eeprom);
  98. #endif
  99. #if ENABLED(BLTOUCH)
  100. #include "../feature/bltouch.h"
  101. #endif
  102. #if HAS_TRINAMIC_CONFIG
  103. #include "stepper/indirection.h"
  104. #include "../feature/tmc_util.h"
  105. #endif
  106. #if ENABLED(PROBE_TEMP_COMPENSATION)
  107. #include "../feature/probe_temp_comp.h"
  108. #endif
  109. #include "../feature/controllerfan.h"
  110. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  111. void M710_report(const bool forReplay);
  112. #endif
  113. #if ENABLED(CASE_LIGHT_ENABLE)
  114. #include "../feature/caselight.h"
  115. #endif
  116. #if ENABLED(PASSWORD_FEATURE)
  117. #include "../feature/password/password.h"
  118. #endif
  119. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  120. #include "../lcd/tft_io/touch_calibration.h"
  121. #endif
  122. #if HAS_ETHERNET
  123. #include "../feature/ethernet.h"
  124. #endif
  125. #if ENABLED(SOUND_MENU_ITEM)
  126. #include "../libs/buzzer.h"
  127. #endif
  128. #pragma pack(push, 1) // No padding between variables
  129. #if HAS_ETHERNET
  130. void ETH0_report();
  131. void MAC_report();
  132. void M552_report();
  133. void M553_report();
  134. void M554_report();
  135. #endif
  136. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  137. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  138. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  139. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  140. // Limit an index to an array size
  141. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  142. // Defaults for reset / fill in on load
  143. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  144. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  145. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  146. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  147. /**
  148. * Current EEPROM Layout
  149. *
  150. * Keep this data structure up to date so
  151. * EEPROM size is known at compile time!
  152. */
  153. typedef struct SettingsDataStruct {
  154. char version[4]; // Vnn\0
  155. uint16_t crc; // Data Checksum
  156. //
  157. // DISTINCT_E_FACTORS
  158. //
  159. uint8_t esteppers; // XYZE_N - XYZ
  160. planner_settings_t planner_settings;
  161. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  162. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  163. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  164. #if HAS_HOTEND_OFFSET
  165. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  166. #endif
  167. //
  168. // FILAMENT_RUNOUT_SENSOR
  169. //
  170. bool runout_sensor_enabled; // M412 S
  171. float runout_distance_mm; // M412 D
  172. //
  173. // ENABLE_LEVELING_FADE_HEIGHT
  174. //
  175. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  176. //
  177. // MESH_BED_LEVELING
  178. //
  179. float mbl_z_offset; // mbl.z_offset
  180. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  181. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  182. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  183. //
  184. // HAS_BED_PROBE
  185. //
  186. xyz_pos_t probe_offset;
  187. //
  188. // ABL_PLANAR
  189. //
  190. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  191. //
  192. // AUTO_BED_LEVELING_BILINEAR
  193. //
  194. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  195. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  196. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  197. bed_mesh_t z_values; // G29
  198. #else
  199. float z_values[3][3];
  200. #endif
  201. //
  202. // AUTO_BED_LEVELING_UBL
  203. //
  204. bool planner_leveling_active; // M420 S planner.leveling_active
  205. int8_t ubl_storage_slot; // ubl.storage_slot
  206. //
  207. // SERVO_ANGLES
  208. //
  209. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  210. //
  211. // Temperature first layer compensation values
  212. //
  213. #if ENABLED(PROBE_TEMP_COMPENSATION)
  214. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  215. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  216. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  217. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  218. #endif
  219. ;
  220. #endif
  221. //
  222. // BLTOUCH
  223. //
  224. bool bltouch_last_written_mode;
  225. //
  226. // DELTA / [XYZ]_DUAL_ENDSTOPS
  227. //
  228. #if ENABLED(DELTA)
  229. float delta_height; // M666 H
  230. abc_float_t delta_endstop_adj; // M666 X Y Z
  231. float delta_radius, // M665 R
  232. delta_diagonal_rod, // M665 L
  233. delta_segments_per_second; // M665 S
  234. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  235. delta_diagonal_rod_trim; // M665 A B C
  236. #elif HAS_EXTRA_ENDSTOPS
  237. float x2_endstop_adj, // M666 X
  238. y2_endstop_adj, // M666 Y
  239. z2_endstop_adj, // M666 (S2) Z
  240. z3_endstop_adj, // M666 (S3) Z
  241. z4_endstop_adj; // M666 (S4) Z
  242. #endif
  243. //
  244. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  245. //
  246. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  247. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  248. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  249. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  250. #endif
  251. #endif
  252. //
  253. // Material Presets
  254. //
  255. #if PREHEAT_COUNT
  256. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  257. #endif
  258. //
  259. // PIDTEMP
  260. //
  261. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  262. int16_t lpq_len; // M301 L
  263. //
  264. // PIDTEMPBED
  265. //
  266. PID_t bedPID; // M304 PID / M303 E-1 U
  267. //
  268. // User-defined Thermistors
  269. //
  270. #if HAS_USER_THERMISTORS
  271. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  272. #endif
  273. //
  274. // Power monitor
  275. //
  276. uint8_t power_monitor_flags; // M430 I V W
  277. //
  278. // HAS_LCD_CONTRAST
  279. //
  280. int16_t lcd_contrast; // M250 C
  281. //
  282. // Controller fan settings
  283. //
  284. controllerFan_settings_t controllerFan_settings; // M710
  285. //
  286. // POWER_LOSS_RECOVERY
  287. //
  288. bool recovery_enabled; // M413 S
  289. //
  290. // FWRETRACT
  291. //
  292. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  293. bool autoretract_enabled; // M209 S
  294. //
  295. // !NO_VOLUMETRIC
  296. //
  297. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  298. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  299. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  300. //
  301. // HAS_TRINAMIC_CONFIG
  302. //
  303. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  304. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  305. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  306. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  307. //
  308. // LIN_ADVANCE
  309. //
  310. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  311. //
  312. // HAS_MOTOR_CURRENT_PWM
  313. //
  314. #ifndef MOTOR_CURRENT_COUNT
  315. #define MOTOR_CURRENT_COUNT 3
  316. #endif
  317. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  318. //
  319. // CNC_COORDINATE_SYSTEMS
  320. //
  321. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  322. //
  323. // SKEW_CORRECTION
  324. //
  325. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  326. //
  327. // ADVANCED_PAUSE_FEATURE
  328. //
  329. #if EXTRUDERS
  330. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  331. #endif
  332. //
  333. // Tool-change settings
  334. //
  335. #if HAS_MULTI_EXTRUDER
  336. toolchange_settings_t toolchange_settings; // M217 S P R
  337. #endif
  338. //
  339. // BACKLASH_COMPENSATION
  340. //
  341. xyz_float_t backlash_distance_mm; // M425 X Y Z
  342. uint8_t backlash_correction; // M425 F
  343. float backlash_smoothing_mm; // M425 S
  344. //
  345. // EXTENSIBLE_UI
  346. //
  347. #if ENABLED(EXTENSIBLE_UI)
  348. // This is a significant hardware change; don't reserve space when not present
  349. uint8_t extui_data[ExtUI::eeprom_data_size];
  350. #endif
  351. //
  352. // CASELIGHT_USES_BRIGHTNESS
  353. //
  354. #if CASELIGHT_USES_BRIGHTNESS
  355. uint8_t caselight_brightness; // M355 P
  356. #endif
  357. //
  358. // PASSWORD_FEATURE
  359. //
  360. #if ENABLED(PASSWORD_FEATURE)
  361. bool password_is_set;
  362. uint32_t password_value;
  363. #endif
  364. //
  365. // TOUCH_SCREEN_CALIBRATION
  366. //
  367. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  368. touch_calibration_t touch_calibration_data;
  369. #endif
  370. // Ethernet settings
  371. #if HAS_ETHERNET
  372. bool ethernet_hardware_enabled; // M552 S
  373. uint32_t ethernet_ip, // M552 P
  374. ethernet_dns,
  375. ethernet_gateway, // M553 P
  376. ethernet_subnet; // M554 P
  377. #endif
  378. //
  379. // Buzzer enable/disable
  380. //
  381. #if ENABLED(SOUND_MENU_ITEM)
  382. bool buzzer_enabled;
  383. #endif
  384. } SettingsData;
  385. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  386. MarlinSettings settings;
  387. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  388. /**
  389. * Post-process after Retrieve or Reset
  390. */
  391. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  392. float new_z_fade_height;
  393. #endif
  394. void MarlinSettings::postprocess() {
  395. xyze_pos_t oldpos = current_position;
  396. // steps per s2 needs to be updated to agree with units per s2
  397. planner.reset_acceleration_rates();
  398. // Make sure delta kinematics are updated before refreshing the
  399. // planner position so the stepper counts will be set correctly.
  400. TERN_(DELTA, recalc_delta_settings());
  401. TERN_(PIDTEMP, thermalManager.updatePID());
  402. #if DISABLED(NO_VOLUMETRICS)
  403. planner.calculate_volumetric_multipliers();
  404. #elif EXTRUDERS
  405. for (uint8_t i = COUNT(planner.e_factor); i--;)
  406. planner.refresh_e_factor(i);
  407. #endif
  408. // Software endstops depend on home_offset
  409. LOOP_XYZ(i) {
  410. update_workspace_offset((AxisEnum)i);
  411. update_software_endstops((AxisEnum)i);
  412. }
  413. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  414. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  415. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  416. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  417. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  418. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  419. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  420. // and init stepper.count[], planner.position[] with current_position
  421. planner.refresh_positioning();
  422. // Various factors can change the current position
  423. if (oldpos != current_position)
  424. report_current_position();
  425. }
  426. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  427. #include "printcounter.h"
  428. static_assert(
  429. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  430. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  431. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  432. );
  433. #endif
  434. #if ENABLED(SD_FIRMWARE_UPDATE)
  435. #if ENABLED(EEPROM_SETTINGS)
  436. static_assert(
  437. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  438. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  439. );
  440. #endif
  441. bool MarlinSettings::sd_update_status() {
  442. uint8_t val;
  443. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  444. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  445. }
  446. bool MarlinSettings::set_sd_update_status(const bool enable) {
  447. if (enable != sd_update_status())
  448. persistentStore.write_data(
  449. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  450. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  451. );
  452. return true;
  453. }
  454. #endif // SD_FIRMWARE_UPDATE
  455. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  456. static_assert(
  457. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  458. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  459. );
  460. #endif
  461. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  462. #include "../core/debug_out.h"
  463. #if ENABLED(EEPROM_SETTINGS)
  464. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  465. int eeprom_index = EEPROM_OFFSET
  466. #define EEPROM_FINISH() persistentStore.access_finish()
  467. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  468. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  469. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  470. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  471. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  472. #if ENABLED(DEBUG_EEPROM_READWRITE)
  473. #define _FIELD_TEST(FIELD) \
  474. EEPROM_ASSERT( \
  475. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  476. "Field " STRINGIFY(FIELD) " mismatch." \
  477. )
  478. #else
  479. #define _FIELD_TEST(FIELD) NOOP
  480. #endif
  481. const char version[4] = EEPROM_VERSION;
  482. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  483. bool MarlinSettings::size_error(const uint16_t size) {
  484. if (size != datasize()) {
  485. DEBUG_ERROR_MSG("EEPROM datasize error.");
  486. return true;
  487. }
  488. return false;
  489. }
  490. /**
  491. * M500 - Store Configuration
  492. */
  493. bool MarlinSettings::save() {
  494. float dummyf = 0;
  495. char ver[4] = "ERR";
  496. uint16_t working_crc = 0;
  497. EEPROM_START();
  498. eeprom_error = false;
  499. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  500. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  501. EEPROM_SKIP(working_crc); // Skip the checksum slot
  502. working_crc = 0; // clear before first "real data"
  503. _FIELD_TEST(esteppers);
  504. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  505. EEPROM_WRITE(esteppers);
  506. //
  507. // Planner Motion
  508. //
  509. {
  510. EEPROM_WRITE(planner.settings);
  511. #if HAS_CLASSIC_JERK
  512. EEPROM_WRITE(planner.max_jerk);
  513. #if HAS_LINEAR_E_JERK
  514. dummyf = float(DEFAULT_EJERK);
  515. EEPROM_WRITE(dummyf);
  516. #endif
  517. #else
  518. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  519. EEPROM_WRITE(planner_max_jerk);
  520. #endif
  521. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  522. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  523. }
  524. //
  525. // Home Offset
  526. //
  527. {
  528. _FIELD_TEST(home_offset);
  529. #if HAS_SCARA_OFFSET
  530. EEPROM_WRITE(scara_home_offset);
  531. #else
  532. #if !HAS_HOME_OFFSET
  533. const xyz_pos_t home_offset{0};
  534. #endif
  535. EEPROM_WRITE(home_offset);
  536. #endif
  537. }
  538. //
  539. // Hotend Offsets, if any
  540. //
  541. {
  542. #if HAS_HOTEND_OFFSET
  543. // Skip hotend 0 which must be 0
  544. LOOP_S_L_N(e, 1, HOTENDS)
  545. EEPROM_WRITE(hotend_offset[e]);
  546. #endif
  547. }
  548. //
  549. // Filament Runout Sensor
  550. //
  551. {
  552. #if HAS_FILAMENT_SENSOR
  553. const bool &runout_sensor_enabled = runout.enabled;
  554. #else
  555. constexpr int8_t runout_sensor_enabled = -1;
  556. #endif
  557. _FIELD_TEST(runout_sensor_enabled);
  558. EEPROM_WRITE(runout_sensor_enabled);
  559. #if HAS_FILAMENT_RUNOUT_DISTANCE
  560. const float &runout_distance_mm = runout.runout_distance();
  561. #else
  562. constexpr float runout_distance_mm = 0;
  563. #endif
  564. EEPROM_WRITE(runout_distance_mm);
  565. }
  566. //
  567. // Global Leveling
  568. //
  569. {
  570. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  571. EEPROM_WRITE(zfh);
  572. }
  573. //
  574. // Mesh Bed Leveling
  575. //
  576. {
  577. #if ENABLED(MESH_BED_LEVELING)
  578. static_assert(
  579. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  580. "MBL Z array is the wrong size."
  581. );
  582. #else
  583. dummyf = 0;
  584. #endif
  585. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  586. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  587. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  588. EEPROM_WRITE(mesh_num_x);
  589. EEPROM_WRITE(mesh_num_y);
  590. #if ENABLED(MESH_BED_LEVELING)
  591. EEPROM_WRITE(mbl.z_values);
  592. #else
  593. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  594. #endif
  595. }
  596. //
  597. // Probe XYZ Offsets
  598. //
  599. {
  600. _FIELD_TEST(probe_offset);
  601. #if HAS_BED_PROBE
  602. const xyz_pos_t &zpo = probe.offset;
  603. #else
  604. constexpr xyz_pos_t zpo{0};
  605. #endif
  606. EEPROM_WRITE(zpo);
  607. }
  608. //
  609. // Planar Bed Leveling matrix
  610. //
  611. {
  612. #if ABL_PLANAR
  613. EEPROM_WRITE(planner.bed_level_matrix);
  614. #else
  615. dummyf = 0;
  616. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  617. #endif
  618. }
  619. //
  620. // Bilinear Auto Bed Leveling
  621. //
  622. {
  623. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  624. static_assert(
  625. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  626. "Bilinear Z array is the wrong size."
  627. );
  628. #else
  629. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  630. #endif
  631. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  632. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  633. EEPROM_WRITE(grid_max_x);
  634. EEPROM_WRITE(grid_max_y);
  635. EEPROM_WRITE(bilinear_grid_spacing);
  636. EEPROM_WRITE(bilinear_start);
  637. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  638. EEPROM_WRITE(z_values); // 9-256 floats
  639. #else
  640. dummyf = 0;
  641. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  642. #endif
  643. }
  644. //
  645. // Unified Bed Leveling
  646. //
  647. {
  648. _FIELD_TEST(planner_leveling_active);
  649. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  650. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  651. EEPROM_WRITE(ubl_active);
  652. EEPROM_WRITE(storage_slot);
  653. }
  654. //
  655. // Servo Angles
  656. //
  657. {
  658. _FIELD_TEST(servo_angles);
  659. #if !HAS_SERVO_ANGLES
  660. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  661. #endif
  662. EEPROM_WRITE(servo_angles);
  663. }
  664. //
  665. // Thermal first layer compensation values
  666. //
  667. #if ENABLED(PROBE_TEMP_COMPENSATION)
  668. EEPROM_WRITE(temp_comp.z_offsets_probe);
  669. EEPROM_WRITE(temp_comp.z_offsets_bed);
  670. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  671. EEPROM_WRITE(temp_comp.z_offsets_ext);
  672. #endif
  673. #else
  674. // No placeholder data for this feature
  675. #endif
  676. //
  677. // BLTOUCH
  678. //
  679. {
  680. _FIELD_TEST(bltouch_last_written_mode);
  681. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  682. EEPROM_WRITE(bltouch_last_written_mode);
  683. }
  684. //
  685. // DELTA Geometry or Dual Endstops offsets
  686. //
  687. {
  688. #if ENABLED(DELTA)
  689. _FIELD_TEST(delta_height);
  690. EEPROM_WRITE(delta_height); // 1 float
  691. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  692. EEPROM_WRITE(delta_radius); // 1 float
  693. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  694. EEPROM_WRITE(delta_segments_per_second); // 1 float
  695. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  696. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  697. #elif HAS_EXTRA_ENDSTOPS
  698. _FIELD_TEST(x2_endstop_adj);
  699. // Write dual endstops in X, Y, Z order. Unused = 0.0
  700. dummyf = 0;
  701. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  702. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  703. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  704. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  705. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  706. #else
  707. EEPROM_WRITE(dummyf);
  708. #endif
  709. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  710. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  711. #else
  712. EEPROM_WRITE(dummyf);
  713. #endif
  714. #endif
  715. }
  716. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  717. EEPROM_WRITE(z_stepper_align.xy);
  718. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  719. EEPROM_WRITE(z_stepper_align.stepper_xy);
  720. #endif
  721. #endif
  722. //
  723. // LCD Preheat settings
  724. //
  725. #if PREHEAT_COUNT
  726. _FIELD_TEST(ui_material_preset);
  727. EEPROM_WRITE(ui.material_preset);
  728. #endif
  729. //
  730. // PIDTEMP
  731. //
  732. {
  733. _FIELD_TEST(hotendPID);
  734. HOTEND_LOOP() {
  735. PIDCF_t pidcf = {
  736. #if DISABLED(PIDTEMP)
  737. NAN, NAN, NAN,
  738. NAN, NAN
  739. #else
  740. PID_PARAM(Kp, e),
  741. unscalePID_i(PID_PARAM(Ki, e)),
  742. unscalePID_d(PID_PARAM(Kd, e)),
  743. PID_PARAM(Kc, e),
  744. PID_PARAM(Kf, e)
  745. #endif
  746. };
  747. EEPROM_WRITE(pidcf);
  748. }
  749. _FIELD_TEST(lpq_len);
  750. #if DISABLED(PID_EXTRUSION_SCALING)
  751. const int16_t lpq_len = 20;
  752. #endif
  753. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  754. }
  755. //
  756. // PIDTEMPBED
  757. //
  758. {
  759. _FIELD_TEST(bedPID);
  760. const PID_t bed_pid = {
  761. #if DISABLED(PIDTEMPBED)
  762. NAN, NAN, NAN
  763. #else
  764. // Store the unscaled PID values
  765. thermalManager.temp_bed.pid.Kp,
  766. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  767. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  768. #endif
  769. };
  770. EEPROM_WRITE(bed_pid);
  771. }
  772. //
  773. // User-defined Thermistors
  774. //
  775. #if HAS_USER_THERMISTORS
  776. {
  777. _FIELD_TEST(user_thermistor);
  778. EEPROM_WRITE(thermalManager.user_thermistor);
  779. }
  780. #endif
  781. //
  782. // Power monitor
  783. //
  784. {
  785. #if HAS_POWER_MONITOR
  786. const uint8_t &power_monitor_flags = power_monitor.flags;
  787. #else
  788. constexpr uint8_t power_monitor_flags = 0x00;
  789. #endif
  790. _FIELD_TEST(power_monitor_flags);
  791. EEPROM_WRITE(power_monitor_flags);
  792. }
  793. //
  794. // LCD Contrast
  795. //
  796. {
  797. _FIELD_TEST(lcd_contrast);
  798. const int16_t lcd_contrast =
  799. #if HAS_LCD_CONTRAST
  800. ui.contrast
  801. #else
  802. 127
  803. #endif
  804. ;
  805. EEPROM_WRITE(lcd_contrast);
  806. }
  807. //
  808. // Controller Fan
  809. //
  810. {
  811. _FIELD_TEST(controllerFan_settings);
  812. #if ENABLED(USE_CONTROLLER_FAN)
  813. const controllerFan_settings_t &cfs = controllerFan.settings;
  814. #else
  815. controllerFan_settings_t cfs = controllerFan_defaults;
  816. #endif
  817. EEPROM_WRITE(cfs);
  818. }
  819. //
  820. // Power-Loss Recovery
  821. //
  822. {
  823. _FIELD_TEST(recovery_enabled);
  824. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  825. EEPROM_WRITE(recovery_enabled);
  826. }
  827. //
  828. // Firmware Retraction
  829. //
  830. {
  831. _FIELD_TEST(fwretract_settings);
  832. #if DISABLED(FWRETRACT)
  833. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  834. #endif
  835. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  836. #if DISABLED(FWRETRACT_AUTORETRACT)
  837. const bool autoretract_enabled = false;
  838. #endif
  839. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  840. }
  841. //
  842. // Volumetric & Filament Size
  843. //
  844. {
  845. _FIELD_TEST(parser_volumetric_enabled);
  846. #if DISABLED(NO_VOLUMETRICS)
  847. EEPROM_WRITE(parser.volumetric_enabled);
  848. EEPROM_WRITE(planner.filament_size);
  849. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  850. EEPROM_WRITE(planner.volumetric_extruder_limit);
  851. #else
  852. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  853. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  854. #endif
  855. #else
  856. const bool volumetric_enabled = false;
  857. EEPROM_WRITE(volumetric_enabled);
  858. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  859. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  860. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  861. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  862. #endif
  863. }
  864. //
  865. // TMC Configuration
  866. //
  867. {
  868. _FIELD_TEST(tmc_stepper_current);
  869. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  870. #if HAS_TRINAMIC_CONFIG
  871. #if AXIS_IS_TMC(X)
  872. tmc_stepper_current.X = stepperX.getMilliamps();
  873. #endif
  874. #if AXIS_IS_TMC(Y)
  875. tmc_stepper_current.Y = stepperY.getMilliamps();
  876. #endif
  877. #if AXIS_IS_TMC(Z)
  878. tmc_stepper_current.Z = stepperZ.getMilliamps();
  879. #endif
  880. #if AXIS_IS_TMC(X2)
  881. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  882. #endif
  883. #if AXIS_IS_TMC(Y2)
  884. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  885. #endif
  886. #if AXIS_IS_TMC(Z2)
  887. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  888. #endif
  889. #if AXIS_IS_TMC(Z3)
  890. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  891. #endif
  892. #if AXIS_IS_TMC(Z4)
  893. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  894. #endif
  895. #if AXIS_IS_TMC(E0)
  896. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  897. #endif
  898. #if AXIS_IS_TMC(E1)
  899. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  900. #endif
  901. #if AXIS_IS_TMC(E2)
  902. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  903. #endif
  904. #if AXIS_IS_TMC(E3)
  905. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  906. #endif
  907. #if AXIS_IS_TMC(E4)
  908. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  909. #endif
  910. #if AXIS_IS_TMC(E5)
  911. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  912. #endif
  913. #if AXIS_IS_TMC(E6)
  914. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  915. #endif
  916. #if AXIS_IS_TMC(E7)
  917. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  918. #endif
  919. #endif
  920. EEPROM_WRITE(tmc_stepper_current);
  921. }
  922. //
  923. // TMC Hybrid Threshold, and placeholder values
  924. //
  925. {
  926. _FIELD_TEST(tmc_hybrid_threshold);
  927. #if ENABLED(HYBRID_THRESHOLD)
  928. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  929. #if AXIS_HAS_STEALTHCHOP(X)
  930. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  931. #endif
  932. #if AXIS_HAS_STEALTHCHOP(Y)
  933. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  934. #endif
  935. #if AXIS_HAS_STEALTHCHOP(Z)
  936. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  937. #endif
  938. #if AXIS_HAS_STEALTHCHOP(X2)
  939. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  940. #endif
  941. #if AXIS_HAS_STEALTHCHOP(Y2)
  942. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  943. #endif
  944. #if AXIS_HAS_STEALTHCHOP(Z2)
  945. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  946. #endif
  947. #if AXIS_HAS_STEALTHCHOP(Z3)
  948. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  949. #endif
  950. #if AXIS_HAS_STEALTHCHOP(Z4)
  951. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  952. #endif
  953. #if AXIS_HAS_STEALTHCHOP(E0)
  954. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  955. #endif
  956. #if AXIS_HAS_STEALTHCHOP(E1)
  957. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  958. #endif
  959. #if AXIS_HAS_STEALTHCHOP(E2)
  960. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  961. #endif
  962. #if AXIS_HAS_STEALTHCHOP(E3)
  963. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  964. #endif
  965. #if AXIS_HAS_STEALTHCHOP(E4)
  966. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  967. #endif
  968. #if AXIS_HAS_STEALTHCHOP(E5)
  969. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  970. #endif
  971. #if AXIS_HAS_STEALTHCHOP(E6)
  972. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  973. #endif
  974. #if AXIS_HAS_STEALTHCHOP(E7)
  975. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  976. #endif
  977. #else
  978. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  979. .X = 100, .Y = 100, .Z = 3,
  980. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  981. .E0 = 30, .E1 = 30, .E2 = 30,
  982. .E3 = 30, .E4 = 30, .E5 = 30
  983. };
  984. #endif
  985. EEPROM_WRITE(tmc_hybrid_threshold);
  986. }
  987. //
  988. // TMC StallGuard threshold
  989. //
  990. {
  991. tmc_sgt_t tmc_sgt{0};
  992. #if USE_SENSORLESS
  993. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  994. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  995. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  996. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  997. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  998. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  999. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1000. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1001. #endif
  1002. EEPROM_WRITE(tmc_sgt);
  1003. }
  1004. //
  1005. // TMC stepping mode
  1006. //
  1007. {
  1008. _FIELD_TEST(tmc_stealth_enabled);
  1009. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1010. #if AXIS_HAS_STEALTHCHOP(X)
  1011. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
  1012. #endif
  1013. #if AXIS_HAS_STEALTHCHOP(Y)
  1014. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
  1015. #endif
  1016. #if AXIS_HAS_STEALTHCHOP(Z)
  1017. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
  1018. #endif
  1019. #if AXIS_HAS_STEALTHCHOP(X2)
  1020. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
  1021. #endif
  1022. #if AXIS_HAS_STEALTHCHOP(Y2)
  1023. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
  1024. #endif
  1025. #if AXIS_HAS_STEALTHCHOP(Z2)
  1026. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
  1027. #endif
  1028. #if AXIS_HAS_STEALTHCHOP(Z3)
  1029. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
  1030. #endif
  1031. #if AXIS_HAS_STEALTHCHOP(Z4)
  1032. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
  1033. #endif
  1034. #if AXIS_HAS_STEALTHCHOP(E0)
  1035. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
  1036. #endif
  1037. #if AXIS_HAS_STEALTHCHOP(E1)
  1038. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
  1039. #endif
  1040. #if AXIS_HAS_STEALTHCHOP(E2)
  1041. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
  1042. #endif
  1043. #if AXIS_HAS_STEALTHCHOP(E3)
  1044. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
  1045. #endif
  1046. #if AXIS_HAS_STEALTHCHOP(E4)
  1047. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
  1048. #endif
  1049. #if AXIS_HAS_STEALTHCHOP(E5)
  1050. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
  1051. #endif
  1052. #if AXIS_HAS_STEALTHCHOP(E6)
  1053. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
  1054. #endif
  1055. #if AXIS_HAS_STEALTHCHOP(E7)
  1056. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
  1057. #endif
  1058. EEPROM_WRITE(tmc_stealth_enabled);
  1059. }
  1060. //
  1061. // Linear Advance
  1062. //
  1063. {
  1064. _FIELD_TEST(planner_extruder_advance_K);
  1065. #if ENABLED(LIN_ADVANCE)
  1066. EEPROM_WRITE(planner.extruder_advance_K);
  1067. #else
  1068. dummyf = 0;
  1069. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1070. #endif
  1071. }
  1072. //
  1073. // Motor Current PWM
  1074. //
  1075. {
  1076. _FIELD_TEST(motor_current_setting);
  1077. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1078. EEPROM_WRITE(stepper.motor_current_setting);
  1079. #else
  1080. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1081. EEPROM_WRITE(no_current);
  1082. #endif
  1083. }
  1084. //
  1085. // CNC Coordinate Systems
  1086. //
  1087. _FIELD_TEST(coordinate_system);
  1088. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1089. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1090. #endif
  1091. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1092. //
  1093. // Skew correction factors
  1094. //
  1095. _FIELD_TEST(planner_skew_factor);
  1096. EEPROM_WRITE(planner.skew_factor);
  1097. //
  1098. // Advanced Pause filament load & unload lengths
  1099. //
  1100. #if EXTRUDERS
  1101. {
  1102. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1103. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1104. #endif
  1105. _FIELD_TEST(fc_settings);
  1106. EEPROM_WRITE(fc_settings);
  1107. }
  1108. #endif
  1109. //
  1110. // Multiple Extruders
  1111. //
  1112. #if HAS_MULTI_EXTRUDER
  1113. _FIELD_TEST(toolchange_settings);
  1114. EEPROM_WRITE(toolchange_settings);
  1115. #endif
  1116. //
  1117. // Backlash Compensation
  1118. //
  1119. {
  1120. #if ENABLED(BACKLASH_GCODE)
  1121. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1122. const uint8_t &backlash_correction = backlash.correction;
  1123. #else
  1124. const xyz_float_t backlash_distance_mm{0};
  1125. const uint8_t backlash_correction = 0;
  1126. #endif
  1127. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1128. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1129. #else
  1130. const float backlash_smoothing_mm = 3;
  1131. #endif
  1132. _FIELD_TEST(backlash_distance_mm);
  1133. EEPROM_WRITE(backlash_distance_mm);
  1134. EEPROM_WRITE(backlash_correction);
  1135. EEPROM_WRITE(backlash_smoothing_mm);
  1136. }
  1137. //
  1138. // Extensible UI User Data
  1139. //
  1140. #if ENABLED(EXTENSIBLE_UI)
  1141. {
  1142. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1143. ExtUI::onStoreSettings(extui_data);
  1144. _FIELD_TEST(extui_data);
  1145. EEPROM_WRITE(extui_data);
  1146. }
  1147. #endif
  1148. //
  1149. // Case Light Brightness
  1150. //
  1151. #if CASELIGHT_USES_BRIGHTNESS
  1152. EEPROM_WRITE(caselight.brightness);
  1153. #endif
  1154. //
  1155. // Password feature
  1156. //
  1157. #if ENABLED(PASSWORD_FEATURE)
  1158. EEPROM_WRITE(password.is_set);
  1159. EEPROM_WRITE(password.value);
  1160. #endif
  1161. //
  1162. // TOUCH_SCREEN_CALIBRATION
  1163. //
  1164. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1165. EEPROM_WRITE(touch_calibration.calibration);
  1166. #endif
  1167. //
  1168. // Ethernet network info
  1169. //
  1170. #if HAS_ETHERNET
  1171. {
  1172. _FIELD_TEST(ethernet_hardware_enabled);
  1173. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1174. const uint32_t ethernet_ip = ethernet.ip,
  1175. ethernet_dns = ethernet.myDns,
  1176. ethernet_gateway = ethernet.gateway,
  1177. ethernet_subnet = ethernet.subnet;
  1178. EEPROM_WRITE(ethernet_hardware_enabled);
  1179. EEPROM_WRITE(ethernet_ip);
  1180. EEPROM_WRITE(ethernet_dns);
  1181. EEPROM_WRITE(ethernet_gateway);
  1182. EEPROM_WRITE(ethernet_subnet);
  1183. }
  1184. #endif
  1185. //
  1186. // Buzzer enable/disable
  1187. //
  1188. #if ENABLED(SOUND_MENU_ITEM)
  1189. EEPROM_WRITE(ui.buzzer_enabled);
  1190. #endif
  1191. //
  1192. // Report final CRC and Data Size
  1193. //
  1194. if (!eeprom_error) {
  1195. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1196. final_crc = working_crc;
  1197. // Write the EEPROM header
  1198. eeprom_index = EEPROM_OFFSET;
  1199. EEPROM_WRITE(version);
  1200. EEPROM_WRITE(final_crc);
  1201. // Report storage size
  1202. DEBUG_ECHO_START();
  1203. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1204. eeprom_error |= size_error(eeprom_size);
  1205. }
  1206. EEPROM_FINISH();
  1207. //
  1208. // UBL Mesh
  1209. //
  1210. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1211. if (ubl.storage_slot >= 0)
  1212. store_mesh(ubl.storage_slot);
  1213. #endif
  1214. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1215. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1216. return !eeprom_error;
  1217. }
  1218. /**
  1219. * M501 - Retrieve Configuration
  1220. */
  1221. bool MarlinSettings::_load() {
  1222. uint16_t working_crc = 0;
  1223. EEPROM_START();
  1224. char stored_ver[4];
  1225. EEPROM_READ_ALWAYS(stored_ver);
  1226. uint16_t stored_crc;
  1227. EEPROM_READ_ALWAYS(stored_crc);
  1228. // Version has to match or defaults are used
  1229. if (strncmp(version, stored_ver, 3) != 0) {
  1230. if (stored_ver[3] != '\0') {
  1231. stored_ver[0] = '?';
  1232. stored_ver[1] = '\0';
  1233. }
  1234. DEBUG_ECHO_START();
  1235. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1236. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1237. eeprom_error = true;
  1238. }
  1239. else {
  1240. float dummyf = 0;
  1241. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1242. _FIELD_TEST(esteppers);
  1243. // Number of esteppers may change
  1244. uint8_t esteppers;
  1245. EEPROM_READ_ALWAYS(esteppers);
  1246. //
  1247. // Planner Motion
  1248. //
  1249. {
  1250. // Get only the number of E stepper parameters previously stored
  1251. // Any steppers added later are set to their defaults
  1252. uint32_t tmp1[XYZ + esteppers];
  1253. float tmp2[XYZ + esteppers];
  1254. feedRate_t tmp3[XYZ + esteppers];
  1255. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1256. EEPROM_READ(planner.settings.min_segment_time_us);
  1257. EEPROM_READ(tmp2); // axis_steps_per_mm
  1258. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1259. if (!validating) LOOP_XYZE_N(i) {
  1260. const bool in = (i < esteppers + XYZ);
  1261. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1262. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1263. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1264. }
  1265. EEPROM_READ(planner.settings.acceleration);
  1266. EEPROM_READ(planner.settings.retract_acceleration);
  1267. EEPROM_READ(planner.settings.travel_acceleration);
  1268. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1269. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1270. #if HAS_CLASSIC_JERK
  1271. EEPROM_READ(planner.max_jerk);
  1272. #if HAS_LINEAR_E_JERK
  1273. EEPROM_READ(dummyf);
  1274. #endif
  1275. #else
  1276. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1277. #endif
  1278. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1279. }
  1280. //
  1281. // Home Offset (M206 / M665)
  1282. //
  1283. {
  1284. _FIELD_TEST(home_offset);
  1285. #if HAS_SCARA_OFFSET
  1286. EEPROM_READ(scara_home_offset);
  1287. #else
  1288. #if !HAS_HOME_OFFSET
  1289. xyz_pos_t home_offset;
  1290. #endif
  1291. EEPROM_READ(home_offset);
  1292. #endif
  1293. }
  1294. //
  1295. // Hotend Offsets, if any
  1296. //
  1297. {
  1298. #if HAS_HOTEND_OFFSET
  1299. // Skip hotend 0 which must be 0
  1300. LOOP_S_L_N(e, 1, HOTENDS)
  1301. EEPROM_READ(hotend_offset[e]);
  1302. #endif
  1303. }
  1304. //
  1305. // Filament Runout Sensor
  1306. //
  1307. {
  1308. int8_t runout_sensor_enabled;
  1309. _FIELD_TEST(runout_sensor_enabled);
  1310. EEPROM_READ(runout_sensor_enabled);
  1311. #if HAS_FILAMENT_SENSOR
  1312. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1313. #endif
  1314. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1315. float runout_distance_mm;
  1316. EEPROM_READ(runout_distance_mm);
  1317. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1318. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1319. #endif
  1320. }
  1321. //
  1322. // Global Leveling
  1323. //
  1324. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1325. //
  1326. // Mesh (Manual) Bed Leveling
  1327. //
  1328. {
  1329. uint8_t mesh_num_x, mesh_num_y;
  1330. EEPROM_READ(dummyf);
  1331. EEPROM_READ_ALWAYS(mesh_num_x);
  1332. EEPROM_READ_ALWAYS(mesh_num_y);
  1333. #if ENABLED(MESH_BED_LEVELING)
  1334. if (!validating) mbl.z_offset = dummyf;
  1335. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1336. // EEPROM data fits the current mesh
  1337. EEPROM_READ(mbl.z_values);
  1338. }
  1339. else {
  1340. // EEPROM data is stale
  1341. if (!validating) mbl.reset();
  1342. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1343. }
  1344. #else
  1345. // MBL is disabled - skip the stored data
  1346. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1347. #endif // MESH_BED_LEVELING
  1348. }
  1349. //
  1350. // Probe Z Offset
  1351. //
  1352. {
  1353. _FIELD_TEST(probe_offset);
  1354. #if HAS_BED_PROBE
  1355. const xyz_pos_t &zpo = probe.offset;
  1356. #else
  1357. xyz_pos_t zpo;
  1358. #endif
  1359. EEPROM_READ(zpo);
  1360. }
  1361. //
  1362. // Planar Bed Leveling matrix
  1363. //
  1364. {
  1365. #if ABL_PLANAR
  1366. EEPROM_READ(planner.bed_level_matrix);
  1367. #else
  1368. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1369. #endif
  1370. }
  1371. //
  1372. // Bilinear Auto Bed Leveling
  1373. //
  1374. {
  1375. uint8_t grid_max_x, grid_max_y;
  1376. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1377. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1378. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1379. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1380. if (!validating) set_bed_leveling_enabled(false);
  1381. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1382. EEPROM_READ(bilinear_start); // 2 ints
  1383. EEPROM_READ(z_values); // 9 to 256 floats
  1384. }
  1385. else // EEPROM data is stale
  1386. #endif // AUTO_BED_LEVELING_BILINEAR
  1387. {
  1388. // Skip past disabled (or stale) Bilinear Grid data
  1389. xy_pos_t bgs, bs;
  1390. EEPROM_READ(bgs);
  1391. EEPROM_READ(bs);
  1392. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1393. }
  1394. }
  1395. //
  1396. // Unified Bed Leveling active state
  1397. //
  1398. {
  1399. _FIELD_TEST(planner_leveling_active);
  1400. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1401. const bool &planner_leveling_active = planner.leveling_active;
  1402. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1403. #else
  1404. bool planner_leveling_active;
  1405. int8_t ubl_storage_slot;
  1406. #endif
  1407. EEPROM_READ(planner_leveling_active);
  1408. EEPROM_READ(ubl_storage_slot);
  1409. }
  1410. //
  1411. // SERVO_ANGLES
  1412. //
  1413. {
  1414. _FIELD_TEST(servo_angles);
  1415. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1416. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1417. #else
  1418. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1419. #endif
  1420. EEPROM_READ(servo_angles_arr);
  1421. }
  1422. //
  1423. // Thermal first layer compensation values
  1424. //
  1425. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1426. EEPROM_READ(temp_comp.z_offsets_probe);
  1427. EEPROM_READ(temp_comp.z_offsets_bed);
  1428. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1429. EEPROM_READ(temp_comp.z_offsets_ext);
  1430. #endif
  1431. temp_comp.reset_index();
  1432. #else
  1433. // No placeholder data for this feature
  1434. #endif
  1435. //
  1436. // BLTOUCH
  1437. //
  1438. {
  1439. _FIELD_TEST(bltouch_last_written_mode);
  1440. #if ENABLED(BLTOUCH)
  1441. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1442. #else
  1443. bool bltouch_last_written_mode;
  1444. #endif
  1445. EEPROM_READ(bltouch_last_written_mode);
  1446. }
  1447. //
  1448. // DELTA Geometry or Dual Endstops offsets
  1449. //
  1450. {
  1451. #if ENABLED(DELTA)
  1452. _FIELD_TEST(delta_height);
  1453. EEPROM_READ(delta_height); // 1 float
  1454. EEPROM_READ(delta_endstop_adj); // 3 floats
  1455. EEPROM_READ(delta_radius); // 1 float
  1456. EEPROM_READ(delta_diagonal_rod); // 1 float
  1457. EEPROM_READ(delta_segments_per_second); // 1 float
  1458. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1459. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1460. #elif HAS_EXTRA_ENDSTOPS
  1461. _FIELD_TEST(x2_endstop_adj);
  1462. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1463. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1464. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1465. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1466. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1467. #else
  1468. EEPROM_READ(dummyf);
  1469. #endif
  1470. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1471. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1472. #else
  1473. EEPROM_READ(dummyf);
  1474. #endif
  1475. #endif
  1476. }
  1477. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1478. EEPROM_READ(z_stepper_align.xy);
  1479. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1480. EEPROM_READ(z_stepper_align.stepper_xy);
  1481. #endif
  1482. #endif
  1483. //
  1484. // LCD Preheat settings
  1485. //
  1486. #if PREHEAT_COUNT
  1487. _FIELD_TEST(ui_material_preset);
  1488. EEPROM_READ(ui.material_preset);
  1489. #endif
  1490. //
  1491. // Hotend PID
  1492. //
  1493. {
  1494. HOTEND_LOOP() {
  1495. PIDCF_t pidcf;
  1496. EEPROM_READ(pidcf);
  1497. #if ENABLED(PIDTEMP)
  1498. if (!validating && !isnan(pidcf.Kp)) {
  1499. // Scale PID values since EEPROM values are unscaled
  1500. PID_PARAM(Kp, e) = pidcf.Kp;
  1501. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1502. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1503. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1504. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1505. }
  1506. #endif
  1507. }
  1508. }
  1509. //
  1510. // PID Extrusion Scaling
  1511. //
  1512. {
  1513. _FIELD_TEST(lpq_len);
  1514. #if ENABLED(PID_EXTRUSION_SCALING)
  1515. const int16_t &lpq_len = thermalManager.lpq_len;
  1516. #else
  1517. int16_t lpq_len;
  1518. #endif
  1519. EEPROM_READ(lpq_len);
  1520. }
  1521. //
  1522. // Heated Bed PID
  1523. //
  1524. {
  1525. PID_t pid;
  1526. EEPROM_READ(pid);
  1527. #if ENABLED(PIDTEMPBED)
  1528. if (!validating && !isnan(pid.Kp)) {
  1529. // Scale PID values since EEPROM values are unscaled
  1530. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1531. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1532. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1533. }
  1534. #endif
  1535. }
  1536. //
  1537. // User-defined Thermistors
  1538. //
  1539. #if HAS_USER_THERMISTORS
  1540. {
  1541. _FIELD_TEST(user_thermistor);
  1542. EEPROM_READ(thermalManager.user_thermistor);
  1543. }
  1544. #endif
  1545. //
  1546. // Power monitor
  1547. //
  1548. {
  1549. #if HAS_POWER_MONITOR
  1550. uint8_t &power_monitor_flags = power_monitor.flags;
  1551. #else
  1552. uint8_t power_monitor_flags;
  1553. #endif
  1554. _FIELD_TEST(power_monitor_flags);
  1555. EEPROM_READ(power_monitor_flags);
  1556. }
  1557. //
  1558. // LCD Contrast
  1559. //
  1560. {
  1561. _FIELD_TEST(lcd_contrast);
  1562. int16_t lcd_contrast;
  1563. EEPROM_READ(lcd_contrast);
  1564. if (!validating) {
  1565. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1566. }
  1567. }
  1568. //
  1569. // Controller Fan
  1570. //
  1571. {
  1572. _FIELD_TEST(controllerFan_settings);
  1573. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1574. const controllerFan_settings_t &cfs = controllerFan.settings;
  1575. #else
  1576. controllerFan_settings_t cfs = { 0 };
  1577. #endif
  1578. EEPROM_READ(cfs);
  1579. }
  1580. //
  1581. // Power-Loss Recovery
  1582. //
  1583. {
  1584. _FIELD_TEST(recovery_enabled);
  1585. #if ENABLED(POWER_LOSS_RECOVERY)
  1586. const bool &recovery_enabled = recovery.enabled;
  1587. #else
  1588. bool recovery_enabled;
  1589. #endif
  1590. EEPROM_READ(recovery_enabled);
  1591. }
  1592. //
  1593. // Firmware Retraction
  1594. //
  1595. {
  1596. _FIELD_TEST(fwretract_settings);
  1597. #if ENABLED(FWRETRACT)
  1598. EEPROM_READ(fwretract.settings);
  1599. #else
  1600. fwretract_settings_t fwretract_settings;
  1601. EEPROM_READ(fwretract_settings);
  1602. #endif
  1603. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1604. EEPROM_READ(fwretract.autoretract_enabled);
  1605. #else
  1606. bool autoretract_enabled;
  1607. EEPROM_READ(autoretract_enabled);
  1608. #endif
  1609. }
  1610. //
  1611. // Volumetric & Filament Size
  1612. //
  1613. {
  1614. struct {
  1615. bool volumetric_enabled;
  1616. float filament_size[EXTRUDERS];
  1617. float volumetric_extruder_limit[EXTRUDERS];
  1618. } storage;
  1619. _FIELD_TEST(parser_volumetric_enabled);
  1620. EEPROM_READ(storage);
  1621. #if DISABLED(NO_VOLUMETRICS)
  1622. if (!validating) {
  1623. parser.volumetric_enabled = storage.volumetric_enabled;
  1624. COPY(planner.filament_size, storage.filament_size);
  1625. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1626. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1627. #endif
  1628. }
  1629. #endif
  1630. }
  1631. //
  1632. // TMC Stepper Settings
  1633. //
  1634. if (!validating) reset_stepper_drivers();
  1635. // TMC Stepper Current
  1636. {
  1637. _FIELD_TEST(tmc_stepper_current);
  1638. tmc_stepper_current_t currents;
  1639. EEPROM_READ(currents);
  1640. #if HAS_TRINAMIC_CONFIG
  1641. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1642. if (!validating) {
  1643. #if AXIS_IS_TMC(X)
  1644. SET_CURR(X);
  1645. #endif
  1646. #if AXIS_IS_TMC(Y)
  1647. SET_CURR(Y);
  1648. #endif
  1649. #if AXIS_IS_TMC(Z)
  1650. SET_CURR(Z);
  1651. #endif
  1652. #if AXIS_IS_TMC(X2)
  1653. SET_CURR(X2);
  1654. #endif
  1655. #if AXIS_IS_TMC(Y2)
  1656. SET_CURR(Y2);
  1657. #endif
  1658. #if AXIS_IS_TMC(Z2)
  1659. SET_CURR(Z2);
  1660. #endif
  1661. #if AXIS_IS_TMC(Z3)
  1662. SET_CURR(Z3);
  1663. #endif
  1664. #if AXIS_IS_TMC(Z4)
  1665. SET_CURR(Z4);
  1666. #endif
  1667. #if AXIS_IS_TMC(E0)
  1668. SET_CURR(E0);
  1669. #endif
  1670. #if AXIS_IS_TMC(E1)
  1671. SET_CURR(E1);
  1672. #endif
  1673. #if AXIS_IS_TMC(E2)
  1674. SET_CURR(E2);
  1675. #endif
  1676. #if AXIS_IS_TMC(E3)
  1677. SET_CURR(E3);
  1678. #endif
  1679. #if AXIS_IS_TMC(E4)
  1680. SET_CURR(E4);
  1681. #endif
  1682. #if AXIS_IS_TMC(E5)
  1683. SET_CURR(E5);
  1684. #endif
  1685. #if AXIS_IS_TMC(E6)
  1686. SET_CURR(E6);
  1687. #endif
  1688. #if AXIS_IS_TMC(E7)
  1689. SET_CURR(E7);
  1690. #endif
  1691. }
  1692. #endif
  1693. }
  1694. // TMC Hybrid Threshold
  1695. {
  1696. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1697. _FIELD_TEST(tmc_hybrid_threshold);
  1698. EEPROM_READ(tmc_hybrid_threshold);
  1699. #if ENABLED(HYBRID_THRESHOLD)
  1700. if (!validating) {
  1701. #if AXIS_HAS_STEALTHCHOP(X)
  1702. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1703. #endif
  1704. #if AXIS_HAS_STEALTHCHOP(Y)
  1705. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1706. #endif
  1707. #if AXIS_HAS_STEALTHCHOP(Z)
  1708. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1709. #endif
  1710. #if AXIS_HAS_STEALTHCHOP(X2)
  1711. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1712. #endif
  1713. #if AXIS_HAS_STEALTHCHOP(Y2)
  1714. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1715. #endif
  1716. #if AXIS_HAS_STEALTHCHOP(Z2)
  1717. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1718. #endif
  1719. #if AXIS_HAS_STEALTHCHOP(Z3)
  1720. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1721. #endif
  1722. #if AXIS_HAS_STEALTHCHOP(Z4)
  1723. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1724. #endif
  1725. #if AXIS_HAS_STEALTHCHOP(E0)
  1726. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1727. #endif
  1728. #if AXIS_HAS_STEALTHCHOP(E1)
  1729. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1730. #endif
  1731. #if AXIS_HAS_STEALTHCHOP(E2)
  1732. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1733. #endif
  1734. #if AXIS_HAS_STEALTHCHOP(E3)
  1735. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1736. #endif
  1737. #if AXIS_HAS_STEALTHCHOP(E4)
  1738. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1739. #endif
  1740. #if AXIS_HAS_STEALTHCHOP(E5)
  1741. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(E6)
  1744. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(E7)
  1747. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1748. #endif
  1749. }
  1750. #endif
  1751. }
  1752. //
  1753. // TMC StallGuard threshold.
  1754. //
  1755. {
  1756. tmc_sgt_t tmc_sgt;
  1757. _FIELD_TEST(tmc_sgt);
  1758. EEPROM_READ(tmc_sgt);
  1759. #if USE_SENSORLESS
  1760. if (!validating) {
  1761. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1762. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1763. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1764. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1765. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1766. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1767. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1768. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1769. }
  1770. #endif
  1771. }
  1772. // TMC stepping mode
  1773. {
  1774. _FIELD_TEST(tmc_stealth_enabled);
  1775. tmc_stealth_enabled_t tmc_stealth_enabled;
  1776. EEPROM_READ(tmc_stealth_enabled);
  1777. #if HAS_TRINAMIC_CONFIG
  1778. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1779. if (!validating) {
  1780. #if AXIS_HAS_STEALTHCHOP(X)
  1781. SET_STEPPING_MODE(X);
  1782. #endif
  1783. #if AXIS_HAS_STEALTHCHOP(Y)
  1784. SET_STEPPING_MODE(Y);
  1785. #endif
  1786. #if AXIS_HAS_STEALTHCHOP(Z)
  1787. SET_STEPPING_MODE(Z);
  1788. #endif
  1789. #if AXIS_HAS_STEALTHCHOP(X2)
  1790. SET_STEPPING_MODE(X2);
  1791. #endif
  1792. #if AXIS_HAS_STEALTHCHOP(Y2)
  1793. SET_STEPPING_MODE(Y2);
  1794. #endif
  1795. #if AXIS_HAS_STEALTHCHOP(Z2)
  1796. SET_STEPPING_MODE(Z2);
  1797. #endif
  1798. #if AXIS_HAS_STEALTHCHOP(Z3)
  1799. SET_STEPPING_MODE(Z3);
  1800. #endif
  1801. #if AXIS_HAS_STEALTHCHOP(Z4)
  1802. SET_STEPPING_MODE(Z4);
  1803. #endif
  1804. #if AXIS_HAS_STEALTHCHOP(E0)
  1805. SET_STEPPING_MODE(E0);
  1806. #endif
  1807. #if AXIS_HAS_STEALTHCHOP(E1)
  1808. SET_STEPPING_MODE(E1);
  1809. #endif
  1810. #if AXIS_HAS_STEALTHCHOP(E2)
  1811. SET_STEPPING_MODE(E2);
  1812. #endif
  1813. #if AXIS_HAS_STEALTHCHOP(E3)
  1814. SET_STEPPING_MODE(E3);
  1815. #endif
  1816. #if AXIS_HAS_STEALTHCHOP(E4)
  1817. SET_STEPPING_MODE(E4);
  1818. #endif
  1819. #if AXIS_HAS_STEALTHCHOP(E5)
  1820. SET_STEPPING_MODE(E5);
  1821. #endif
  1822. #if AXIS_HAS_STEALTHCHOP(E6)
  1823. SET_STEPPING_MODE(E6);
  1824. #endif
  1825. #if AXIS_HAS_STEALTHCHOP(E7)
  1826. SET_STEPPING_MODE(E7);
  1827. #endif
  1828. }
  1829. #endif
  1830. }
  1831. //
  1832. // Linear Advance
  1833. //
  1834. {
  1835. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1836. _FIELD_TEST(planner_extruder_advance_K);
  1837. EEPROM_READ(extruder_advance_K);
  1838. #if ENABLED(LIN_ADVANCE)
  1839. if (!validating)
  1840. COPY(planner.extruder_advance_K, extruder_advance_K);
  1841. #endif
  1842. }
  1843. //
  1844. // Motor Current PWM
  1845. //
  1846. {
  1847. _FIELD_TEST(motor_current_setting);
  1848. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1849. #if HAS_MOTOR_CURRENT_SPI
  1850. = DIGIPOT_MOTOR_CURRENT
  1851. #endif
  1852. ;
  1853. DEBUG_ECHOLNPGM("DIGIPOTS Loading");
  1854. EEPROM_READ(motor_current_setting);
  1855. DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
  1856. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1857. if (!validating)
  1858. COPY(stepper.motor_current_setting, motor_current_setting);
  1859. #endif
  1860. }
  1861. //
  1862. // CNC Coordinate System
  1863. //
  1864. {
  1865. _FIELD_TEST(coordinate_system);
  1866. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1867. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1868. EEPROM_READ(gcode.coordinate_system);
  1869. #else
  1870. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1871. EEPROM_READ(coordinate_system);
  1872. #endif
  1873. }
  1874. //
  1875. // Skew correction factors
  1876. //
  1877. {
  1878. skew_factor_t skew_factor;
  1879. _FIELD_TEST(planner_skew_factor);
  1880. EEPROM_READ(skew_factor);
  1881. #if ENABLED(SKEW_CORRECTION_GCODE)
  1882. if (!validating) {
  1883. planner.skew_factor.xy = skew_factor.xy;
  1884. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1885. planner.skew_factor.xz = skew_factor.xz;
  1886. planner.skew_factor.yz = skew_factor.yz;
  1887. #endif
  1888. }
  1889. #endif
  1890. }
  1891. //
  1892. // Advanced Pause filament load & unload lengths
  1893. //
  1894. #if EXTRUDERS
  1895. {
  1896. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1897. fil_change_settings_t fc_settings[EXTRUDERS];
  1898. #endif
  1899. _FIELD_TEST(fc_settings);
  1900. EEPROM_READ(fc_settings);
  1901. }
  1902. #endif
  1903. //
  1904. // Tool-change settings
  1905. //
  1906. #if HAS_MULTI_EXTRUDER
  1907. _FIELD_TEST(toolchange_settings);
  1908. EEPROM_READ(toolchange_settings);
  1909. #endif
  1910. //
  1911. // Backlash Compensation
  1912. //
  1913. {
  1914. #if ENABLED(BACKLASH_GCODE)
  1915. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1916. const uint8_t &backlash_correction = backlash.correction;
  1917. #else
  1918. float backlash_distance_mm[XYZ];
  1919. uint8_t backlash_correction;
  1920. #endif
  1921. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1922. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1923. #else
  1924. float backlash_smoothing_mm;
  1925. #endif
  1926. _FIELD_TEST(backlash_distance_mm);
  1927. EEPROM_READ(backlash_distance_mm);
  1928. EEPROM_READ(backlash_correction);
  1929. EEPROM_READ(backlash_smoothing_mm);
  1930. }
  1931. //
  1932. // Extensible UI User Data
  1933. //
  1934. #if ENABLED(EXTENSIBLE_UI)
  1935. // This is a significant hardware change; don't reserve EEPROM space when not present
  1936. {
  1937. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1938. _FIELD_TEST(extui_data);
  1939. EEPROM_READ(extui_data);
  1940. if (!validating) ExtUI::onLoadSettings(extui_data);
  1941. }
  1942. #endif
  1943. //
  1944. // Case Light Brightness
  1945. //
  1946. #if CASELIGHT_USES_BRIGHTNESS
  1947. _FIELD_TEST(caselight_brightness);
  1948. EEPROM_READ(caselight.brightness);
  1949. #endif
  1950. //
  1951. // Password feature
  1952. //
  1953. #if ENABLED(PASSWORD_FEATURE)
  1954. _FIELD_TEST(password_is_set);
  1955. EEPROM_READ(password.is_set);
  1956. EEPROM_READ(password.value);
  1957. #endif
  1958. //
  1959. // TOUCH_SCREEN_CALIBRATION
  1960. //
  1961. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1962. _FIELD_TEST(touch_calibration_data);
  1963. EEPROM_READ(touch_calibration.calibration);
  1964. #endif
  1965. //
  1966. // Ethernet network info
  1967. //
  1968. #if HAS_ETHERNET
  1969. _FIELD_TEST(ethernet_hardware_enabled);
  1970. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  1971. EEPROM_READ(ethernet.hardware_enabled);
  1972. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  1973. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  1974. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  1975. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  1976. #endif
  1977. //
  1978. // Buzzer enable/disable
  1979. //
  1980. #if ENABLED(SOUND_MENU_ITEM)
  1981. _FIELD_TEST(buzzer_enabled);
  1982. EEPROM_READ(ui.buzzer_enabled);
  1983. #endif
  1984. //
  1985. // Validate Final Size and CRC
  1986. //
  1987. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1988. if (eeprom_error) {
  1989. DEBUG_ECHO_START();
  1990. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1991. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  1992. }
  1993. else if (working_crc != stored_crc) {
  1994. eeprom_error = true;
  1995. DEBUG_ERROR_START();
  1996. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1997. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  1998. }
  1999. else if (!validating) {
  2000. DEBUG_ECHO_START();
  2001. DEBUG_ECHO(version);
  2002. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2003. }
  2004. if (!validating && !eeprom_error) postprocess();
  2005. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2006. if (!validating) {
  2007. ubl.report_state();
  2008. if (!ubl.sanity_check()) {
  2009. SERIAL_EOL();
  2010. #if ENABLED(EEPROM_CHITCHAT)
  2011. ubl.echo_name();
  2012. DEBUG_ECHOLNPGM(" initialized.\n");
  2013. #endif
  2014. }
  2015. else {
  2016. eeprom_error = true;
  2017. #if ENABLED(EEPROM_CHITCHAT)
  2018. DEBUG_ECHOPGM("?Can't enable ");
  2019. ubl.echo_name();
  2020. DEBUG_ECHOLNPGM(".");
  2021. #endif
  2022. ubl.reset();
  2023. }
  2024. if (ubl.storage_slot >= 0) {
  2025. load_mesh(ubl.storage_slot);
  2026. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2027. }
  2028. else {
  2029. ubl.reset();
  2030. DEBUG_ECHOLNPGM("UBL reset");
  2031. }
  2032. }
  2033. #endif
  2034. }
  2035. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2036. // Report the EEPROM settings
  2037. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2038. #endif
  2039. EEPROM_FINISH();
  2040. return !eeprom_error;
  2041. }
  2042. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2043. extern bool restoreEEPROM();
  2044. #endif
  2045. bool MarlinSettings::validate() {
  2046. validating = true;
  2047. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2048. bool success = _load();
  2049. if (!success && restoreEEPROM()) {
  2050. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2051. success = _load();
  2052. }
  2053. #else
  2054. const bool success = _load();
  2055. #endif
  2056. validating = false;
  2057. return success;
  2058. }
  2059. bool MarlinSettings::load() {
  2060. if (validate()) {
  2061. const bool success = _load();
  2062. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2063. return success;
  2064. }
  2065. reset();
  2066. #if ENABLED(EEPROM_AUTO_INIT)
  2067. (void)save();
  2068. SERIAL_ECHO_MSG("EEPROM Initialized");
  2069. #endif
  2070. return false;
  2071. }
  2072. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2073. inline void ubl_invalid_slot(const int s) {
  2074. #if ENABLED(EEPROM_CHITCHAT)
  2075. DEBUG_ECHOLNPGM("?Invalid slot.");
  2076. DEBUG_ECHO(s);
  2077. DEBUG_ECHOLNPGM(" mesh slots available.");
  2078. #else
  2079. UNUSED(s);
  2080. #endif
  2081. }
  2082. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2083. // is a placeholder for the size of the MAT; the MAT will always
  2084. // live at the very end of the eeprom
  2085. uint16_t MarlinSettings::meshes_start_index() {
  2086. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2087. // or down a little bit without disrupting the mesh data
  2088. }
  2089. uint16_t MarlinSettings::calc_num_meshes() {
  2090. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2091. }
  2092. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2093. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2094. }
  2095. void MarlinSettings::store_mesh(const int8_t slot) {
  2096. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2097. const int16_t a = calc_num_meshes();
  2098. if (!WITHIN(slot, 0, a - 1)) {
  2099. ubl_invalid_slot(a);
  2100. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2101. DEBUG_EOL();
  2102. return;
  2103. }
  2104. int pos = mesh_slot_offset(slot);
  2105. uint16_t crc = 0;
  2106. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2107. persistentStore.access_start();
  2108. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2109. persistentStore.access_finish();
  2110. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2111. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2112. #else
  2113. // Other mesh types
  2114. #endif
  2115. }
  2116. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2117. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2118. const int16_t a = settings.calc_num_meshes();
  2119. if (!WITHIN(slot, 0, a - 1)) {
  2120. ubl_invalid_slot(a);
  2121. return;
  2122. }
  2123. int pos = mesh_slot_offset(slot);
  2124. uint16_t crc = 0;
  2125. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2126. persistentStore.access_start();
  2127. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2128. persistentStore.access_finish();
  2129. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2130. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2131. EEPROM_FINISH();
  2132. #else
  2133. // Other mesh types
  2134. #endif
  2135. }
  2136. //void MarlinSettings::delete_mesh() { return; }
  2137. //void MarlinSettings::defrag_meshes() { return; }
  2138. #endif // AUTO_BED_LEVELING_UBL
  2139. #else // !EEPROM_SETTINGS
  2140. bool MarlinSettings::save() {
  2141. DEBUG_ERROR_MSG("EEPROM disabled");
  2142. return false;
  2143. }
  2144. #endif // !EEPROM_SETTINGS
  2145. /**
  2146. * M502 - Reset Configuration
  2147. */
  2148. void MarlinSettings::reset() {
  2149. LOOP_XYZE_N(i) {
  2150. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2151. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2152. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2153. }
  2154. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2155. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2156. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2157. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2158. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2159. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2160. #if HAS_CLASSIC_JERK
  2161. #ifndef DEFAULT_XJERK
  2162. #define DEFAULT_XJERK 0
  2163. #endif
  2164. #ifndef DEFAULT_YJERK
  2165. #define DEFAULT_YJERK 0
  2166. #endif
  2167. #ifndef DEFAULT_ZJERK
  2168. #define DEFAULT_ZJERK 0
  2169. #endif
  2170. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2171. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2172. #endif
  2173. #if HAS_JUNCTION_DEVIATION
  2174. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2175. #endif
  2176. #if HAS_SCARA_OFFSET
  2177. scara_home_offset.reset();
  2178. #elif HAS_HOME_OFFSET
  2179. home_offset.reset();
  2180. #endif
  2181. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2182. //
  2183. // Filament Runout Sensor
  2184. //
  2185. #if HAS_FILAMENT_SENSOR
  2186. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2187. runout.reset();
  2188. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2189. #endif
  2190. //
  2191. // Tool-change Settings
  2192. //
  2193. #if HAS_MULTI_EXTRUDER
  2194. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2195. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2196. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2197. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2198. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2199. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2200. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2201. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2202. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2203. #endif
  2204. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2205. enable_first_prime = false;
  2206. #endif
  2207. #if ENABLED(TOOLCHANGE_PARK)
  2208. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2209. toolchange_settings.enable_park = true;
  2210. toolchange_settings.change_point = tpxy;
  2211. #endif
  2212. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2213. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2214. migration = migration_defaults;
  2215. #endif
  2216. #endif
  2217. #if ENABLED(BACKLASH_GCODE)
  2218. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2219. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2220. backlash.distance_mm = tmp;
  2221. #ifdef BACKLASH_SMOOTHING_MM
  2222. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2223. #endif
  2224. #endif
  2225. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2226. //
  2227. // Case Light Brightness
  2228. //
  2229. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2230. //
  2231. // TOUCH_SCREEN_CALIBRATION
  2232. //
  2233. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2234. //
  2235. // Buzzer enable/disable
  2236. //
  2237. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2238. //
  2239. // Magnetic Parking Extruder
  2240. //
  2241. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2242. //
  2243. // Global Leveling
  2244. //
  2245. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2246. TERN_(HAS_LEVELING, reset_bed_level());
  2247. #if HAS_BED_PROBE
  2248. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2249. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2250. #if HAS_PROBE_XY_OFFSET
  2251. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2252. #else
  2253. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2254. #endif
  2255. #endif
  2256. //
  2257. // Z Stepper Auto-alignment points
  2258. //
  2259. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2260. //
  2261. // Servo Angles
  2262. //
  2263. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2264. //
  2265. // BLTOUCH
  2266. //
  2267. //#if ENABLED(BLTOUCH)
  2268. // bltouch.last_written_mode;
  2269. //#endif
  2270. //
  2271. // Endstop Adjustments
  2272. //
  2273. #if ENABLED(DELTA)
  2274. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2275. delta_height = DELTA_HEIGHT;
  2276. delta_endstop_adj = adj;
  2277. delta_radius = DELTA_RADIUS;
  2278. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2279. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2280. delta_tower_angle_trim = dta;
  2281. delta_diagonal_rod_trim = ddr;
  2282. #endif
  2283. #if ENABLED(X_DUAL_ENDSTOPS)
  2284. #ifndef X2_ENDSTOP_ADJUSTMENT
  2285. #define X2_ENDSTOP_ADJUSTMENT 0
  2286. #endif
  2287. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2288. #endif
  2289. #if ENABLED(Y_DUAL_ENDSTOPS)
  2290. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2291. #define Y2_ENDSTOP_ADJUSTMENT 0
  2292. #endif
  2293. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2294. #endif
  2295. #if ENABLED(Z_MULTI_ENDSTOPS)
  2296. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2297. #define Z2_ENDSTOP_ADJUSTMENT 0
  2298. #endif
  2299. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2300. #if NUM_Z_STEPPER_DRIVERS >= 3
  2301. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2302. #define Z3_ENDSTOP_ADJUSTMENT 0
  2303. #endif
  2304. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2305. #endif
  2306. #if NUM_Z_STEPPER_DRIVERS >= 4
  2307. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2308. #define Z4_ENDSTOP_ADJUSTMENT 0
  2309. #endif
  2310. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2311. #endif
  2312. #endif
  2313. //
  2314. // Preheat parameters
  2315. //
  2316. #if PREHEAT_COUNT
  2317. #if HAS_HOTEND
  2318. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2319. #endif
  2320. #if HAS_HEATED_BED
  2321. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2322. #endif
  2323. #if HAS_FAN
  2324. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2325. #endif
  2326. LOOP_L_N(i, PREHEAT_COUNT) {
  2327. #if HAS_HOTEND
  2328. ui.material_preset[i].hotend_temp = hpre[i];
  2329. #endif
  2330. #if HAS_HEATED_BED
  2331. ui.material_preset[i].bed_temp = bpre[i];
  2332. #endif
  2333. #if HAS_FAN
  2334. ui.material_preset[i].fan_speed = fpre[i];
  2335. #endif
  2336. }
  2337. #endif
  2338. //
  2339. // Hotend PID
  2340. //
  2341. #if ENABLED(PIDTEMP)
  2342. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2343. constexpr float defKp[] =
  2344. #ifdef DEFAULT_Kp_LIST
  2345. DEFAULT_Kp_LIST
  2346. #else
  2347. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2348. #endif
  2349. , defKi[] =
  2350. #ifdef DEFAULT_Ki_LIST
  2351. DEFAULT_Ki_LIST
  2352. #else
  2353. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2354. #endif
  2355. , defKd[] =
  2356. #ifdef DEFAULT_Kd_LIST
  2357. DEFAULT_Kd_LIST
  2358. #else
  2359. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2360. #endif
  2361. ;
  2362. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2363. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2364. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2365. #if ENABLED(PID_EXTRUSION_SCALING)
  2366. constexpr float defKc[] =
  2367. #ifdef DEFAULT_Kc_LIST
  2368. DEFAULT_Kc_LIST
  2369. #else
  2370. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2371. #endif
  2372. ;
  2373. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2374. #endif
  2375. #if ENABLED(PID_FAN_SCALING)
  2376. constexpr float defKf[] =
  2377. #ifdef DEFAULT_Kf_LIST
  2378. DEFAULT_Kf_LIST
  2379. #else
  2380. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2381. #endif
  2382. ;
  2383. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2384. #endif
  2385. #define PID_DEFAULT(N,E) def##N[E]
  2386. #else
  2387. #define PID_DEFAULT(N,E) DEFAULT_##N
  2388. #endif
  2389. HOTEND_LOOP() {
  2390. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2391. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2392. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2393. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2394. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2395. }
  2396. #endif
  2397. //
  2398. // PID Extrusion Scaling
  2399. //
  2400. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2401. //
  2402. // Heated Bed PID
  2403. //
  2404. #if ENABLED(PIDTEMPBED)
  2405. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2406. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2407. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2408. #endif
  2409. //
  2410. // User-Defined Thermistors
  2411. //
  2412. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2413. //
  2414. // Power Monitor
  2415. //
  2416. TERN_(POWER_MONITOR, power_monitor.reset());
  2417. //
  2418. // LCD Contrast
  2419. //
  2420. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2421. //
  2422. // Controller Fan
  2423. //
  2424. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2425. //
  2426. // Power-Loss Recovery
  2427. //
  2428. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2429. //
  2430. // Firmware Retraction
  2431. //
  2432. TERN_(FWRETRACT, fwretract.reset());
  2433. //
  2434. // Volumetric & Filament Size
  2435. //
  2436. #if DISABLED(NO_VOLUMETRICS)
  2437. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2438. LOOP_L_N(q, COUNT(planner.filament_size))
  2439. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2440. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2441. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2442. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2443. #endif
  2444. #endif
  2445. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2446. reset_stepper_drivers();
  2447. //
  2448. // Linear Advance
  2449. //
  2450. #if ENABLED(LIN_ADVANCE)
  2451. LOOP_L_N(i, EXTRUDERS) {
  2452. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2453. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2454. }
  2455. #endif
  2456. //
  2457. // Motor Current PWM
  2458. //
  2459. #if HAS_MOTOR_CURRENT_PWM
  2460. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2461. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2462. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2463. #endif
  2464. //
  2465. // DIGIPOTS
  2466. //
  2467. #if HAS_MOTOR_CURRENT_SPI
  2468. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2469. DEBUG_ECHOLNPGM("Writing Digipot");
  2470. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2471. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2472. DEBUG_ECHOLNPGM("Digipot Written");
  2473. #endif
  2474. //
  2475. // CNC Coordinate System
  2476. //
  2477. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2478. //
  2479. // Skew Correction
  2480. //
  2481. #if ENABLED(SKEW_CORRECTION_GCODE)
  2482. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2483. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2484. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2485. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2486. #endif
  2487. #endif
  2488. //
  2489. // Advanced Pause filament load & unload lengths
  2490. //
  2491. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2492. LOOP_L_N(e, EXTRUDERS) {
  2493. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2494. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2495. }
  2496. #endif
  2497. #if ENABLED(PASSWORD_FEATURE)
  2498. #ifdef PASSWORD_DEFAULT_VALUE
  2499. password.is_set = true;
  2500. password.value = PASSWORD_DEFAULT_VALUE;
  2501. #else
  2502. password.is_set = false;
  2503. #endif
  2504. #endif
  2505. postprocess();
  2506. DEBUG_ECHO_START();
  2507. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2508. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2509. }
  2510. #if DISABLED(DISABLE_M503)
  2511. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2512. if (!repl) {
  2513. SERIAL_ECHO_START();
  2514. SERIAL_ECHOPGM("; ");
  2515. serialprintPGM(pstr);
  2516. if (eol) SERIAL_EOL();
  2517. }
  2518. }
  2519. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2520. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2521. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2522. #if HAS_TRINAMIC_CONFIG
  2523. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2524. #if HAS_STEALTHCHOP
  2525. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2526. CONFIG_ECHO_START();
  2527. SERIAL_ECHOPGM(" M569 S1");
  2528. if (etc) {
  2529. SERIAL_CHAR(' ');
  2530. serialprintPGM(etc);
  2531. }
  2532. if (newLine) SERIAL_EOL();
  2533. }
  2534. #endif
  2535. #if ENABLED(HYBRID_THRESHOLD)
  2536. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2537. #endif
  2538. #if USE_SENSORLESS
  2539. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2540. #endif
  2541. #endif
  2542. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2543. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2544. #endif
  2545. inline void say_units(const bool colon) {
  2546. serialprintPGM(
  2547. #if ENABLED(INCH_MODE_SUPPORT)
  2548. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2549. #endif
  2550. PSTR(" (mm)")
  2551. );
  2552. if (colon) SERIAL_ECHOLNPGM(":");
  2553. }
  2554. void report_M92(const bool echo=true, const int8_t e=-1);
  2555. /**
  2556. * M503 - Report current settings in RAM
  2557. *
  2558. * Unless specifically disabled, M503 is available even without EEPROM
  2559. */
  2560. void MarlinSettings::report(const bool forReplay) {
  2561. /**
  2562. * Announce current units, in case inches are being displayed
  2563. */
  2564. CONFIG_ECHO_START();
  2565. #if ENABLED(INCH_MODE_SUPPORT)
  2566. SERIAL_ECHOPGM(" G2");
  2567. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2568. SERIAL_ECHOPGM(" ;");
  2569. say_units(false);
  2570. #else
  2571. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2572. say_units(false);
  2573. #endif
  2574. SERIAL_EOL();
  2575. #if HAS_LCD_MENU
  2576. // Temperature units - for Ultipanel temperature options
  2577. CONFIG_ECHO_START();
  2578. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2579. SERIAL_ECHOPGM(" M149 ");
  2580. SERIAL_CHAR(parser.temp_units_code());
  2581. SERIAL_ECHOPGM(" ; Units in ");
  2582. serialprintPGM(parser.temp_units_name());
  2583. #else
  2584. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2585. #endif
  2586. #endif
  2587. SERIAL_EOL();
  2588. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2589. /**
  2590. * Volumetric extrusion M200
  2591. */
  2592. if (!forReplay) {
  2593. config_heading(forReplay, PSTR("Filament settings:"), false);
  2594. if (parser.volumetric_enabled)
  2595. SERIAL_EOL();
  2596. else
  2597. SERIAL_ECHOLNPGM(" Disabled");
  2598. }
  2599. #if EXTRUDERS == 1
  2600. CONFIG_ECHO_START();
  2601. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
  2602. , " D", LINEAR_UNIT(planner.filament_size[0])
  2603. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2604. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2605. #endif
  2606. );
  2607. #else
  2608. LOOP_L_N(i, EXTRUDERS) {
  2609. CONFIG_ECHO_START();
  2610. SERIAL_ECHOLNPAIR(" M200 T", int(i)
  2611. , " D", LINEAR_UNIT(planner.filament_size[i])
  2612. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2613. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2614. #endif
  2615. );
  2616. }
  2617. CONFIG_ECHO_START();
  2618. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
  2619. #endif
  2620. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2621. CONFIG_ECHO_HEADING("Steps per unit:");
  2622. report_M92(!forReplay);
  2623. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2624. CONFIG_ECHO_START();
  2625. SERIAL_ECHOLNPAIR_P(
  2626. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2627. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2628. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2629. #if DISABLED(DISTINCT_E_FACTORS)
  2630. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2631. #endif
  2632. );
  2633. #if ENABLED(DISTINCT_E_FACTORS)
  2634. LOOP_L_N(i, E_STEPPERS) {
  2635. CONFIG_ECHO_START();
  2636. SERIAL_ECHOLNPAIR_P(
  2637. PSTR(" M203 T"), (int)i
  2638. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2639. );
  2640. }
  2641. #endif
  2642. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2643. CONFIG_ECHO_START();
  2644. SERIAL_ECHOLNPAIR_P(
  2645. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2646. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2647. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2648. #if DISABLED(DISTINCT_E_FACTORS)
  2649. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2650. #endif
  2651. );
  2652. #if ENABLED(DISTINCT_E_FACTORS)
  2653. LOOP_L_N(i, E_STEPPERS) {
  2654. CONFIG_ECHO_START();
  2655. SERIAL_ECHOLNPAIR_P(
  2656. PSTR(" M201 T"), (int)i
  2657. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2658. );
  2659. }
  2660. #endif
  2661. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2662. CONFIG_ECHO_START();
  2663. SERIAL_ECHOLNPAIR_P(
  2664. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2665. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2666. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2667. );
  2668. CONFIG_ECHO_HEADING(
  2669. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2670. #if HAS_JUNCTION_DEVIATION
  2671. " J<junc_dev>"
  2672. #endif
  2673. #if HAS_CLASSIC_JERK
  2674. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2675. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2676. #endif
  2677. );
  2678. CONFIG_ECHO_START();
  2679. SERIAL_ECHOLNPAIR_P(
  2680. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2681. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2682. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2683. #if HAS_JUNCTION_DEVIATION
  2684. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2685. #endif
  2686. #if HAS_CLASSIC_JERK
  2687. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2688. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2689. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2690. #if HAS_CLASSIC_E_JERK
  2691. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2692. #endif
  2693. #endif
  2694. );
  2695. #if HAS_M206_COMMAND
  2696. CONFIG_ECHO_HEADING("Home offset:");
  2697. CONFIG_ECHO_START();
  2698. SERIAL_ECHOLNPAIR_P(
  2699. #if IS_CARTESIAN
  2700. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2701. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2702. , SP_Z_STR
  2703. #else
  2704. PSTR(" M206 Z")
  2705. #endif
  2706. , LINEAR_UNIT(home_offset.z)
  2707. );
  2708. #endif
  2709. #if HAS_HOTEND_OFFSET
  2710. CONFIG_ECHO_HEADING("Hotend offsets:");
  2711. CONFIG_ECHO_START();
  2712. LOOP_S_L_N(e, 1, HOTENDS) {
  2713. SERIAL_ECHOPAIR_P(
  2714. PSTR(" M218 T"), (int)e,
  2715. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2716. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2717. );
  2718. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2719. }
  2720. #endif
  2721. /**
  2722. * Bed Leveling
  2723. */
  2724. #if HAS_LEVELING
  2725. #if ENABLED(MESH_BED_LEVELING)
  2726. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2727. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2728. config_heading(forReplay, PSTR(""), false);
  2729. if (!forReplay) {
  2730. ubl.echo_name();
  2731. SERIAL_CHAR(':');
  2732. SERIAL_EOL();
  2733. }
  2734. #elif HAS_ABL_OR_UBL
  2735. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2736. #endif
  2737. CONFIG_ECHO_START();
  2738. SERIAL_ECHOLNPAIR_P(
  2739. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2740. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2741. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2742. #endif
  2743. );
  2744. #if ENABLED(MESH_BED_LEVELING)
  2745. if (leveling_is_valid()) {
  2746. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2747. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2748. CONFIG_ECHO_START();
  2749. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2750. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2751. }
  2752. }
  2753. CONFIG_ECHO_START();
  2754. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2755. }
  2756. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2757. if (!forReplay) {
  2758. SERIAL_EOL();
  2759. ubl.report_state();
  2760. SERIAL_EOL();
  2761. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2762. SERIAL_ECHOLN(ubl.storage_slot);
  2763. config_heading(false, PSTR("EEPROM can hold "), false);
  2764. SERIAL_ECHO(calc_num_meshes());
  2765. SERIAL_ECHOLNPGM(" meshes.\n");
  2766. }
  2767. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2768. // solution needs to be found.
  2769. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2770. if (leveling_is_valid()) {
  2771. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2772. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2773. CONFIG_ECHO_START();
  2774. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2775. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2776. }
  2777. }
  2778. }
  2779. #endif
  2780. #endif // HAS_LEVELING
  2781. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2782. CONFIG_ECHO_HEADING("Servo Angles:");
  2783. LOOP_L_N(i, NUM_SERVOS) {
  2784. switch (i) {
  2785. #if ENABLED(SWITCHING_EXTRUDER)
  2786. case SWITCHING_EXTRUDER_SERVO_NR:
  2787. #if EXTRUDERS > 3
  2788. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2789. #endif
  2790. #elif ENABLED(SWITCHING_NOZZLE)
  2791. case SWITCHING_NOZZLE_SERVO_NR:
  2792. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2793. case Z_PROBE_SERVO_NR:
  2794. #endif
  2795. CONFIG_ECHO_START();
  2796. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2797. default: break;
  2798. }
  2799. }
  2800. #endif // EDITABLE_SERVO_ANGLES
  2801. #if HAS_SCARA_OFFSET
  2802. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2803. CONFIG_ECHO_START();
  2804. SERIAL_ECHOLNPAIR_P(
  2805. PSTR(" M665 S"), delta_segments_per_second
  2806. , SP_P_STR, scara_home_offset.a
  2807. , SP_T_STR, scara_home_offset.b
  2808. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2809. );
  2810. #elif ENABLED(DELTA)
  2811. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2812. CONFIG_ECHO_START();
  2813. SERIAL_ECHOLNPAIR_P(
  2814. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2815. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2816. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2817. );
  2818. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2819. CONFIG_ECHO_START();
  2820. SERIAL_ECHOLNPAIR_P(
  2821. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2822. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2823. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2824. , PSTR(" S"), delta_segments_per_second
  2825. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2826. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2827. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2828. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2829. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2830. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2831. );
  2832. #elif HAS_EXTRA_ENDSTOPS
  2833. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2834. CONFIG_ECHO_START();
  2835. SERIAL_ECHOPGM(" M666");
  2836. #if ENABLED(X_DUAL_ENDSTOPS)
  2837. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2838. #endif
  2839. #if ENABLED(Y_DUAL_ENDSTOPS)
  2840. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2841. #endif
  2842. #if ENABLED(Z_MULTI_ENDSTOPS)
  2843. #if NUM_Z_STEPPER_DRIVERS >= 3
  2844. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2845. CONFIG_ECHO_START();
  2846. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2847. #if NUM_Z_STEPPER_DRIVERS >= 4
  2848. CONFIG_ECHO_START();
  2849. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2850. #endif
  2851. #else
  2852. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2853. #endif
  2854. #endif
  2855. #endif // [XYZ]_DUAL_ENDSTOPS
  2856. #if PREHEAT_COUNT
  2857. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2858. LOOP_L_N(i, PREHEAT_COUNT) {
  2859. CONFIG_ECHO_START();
  2860. SERIAL_ECHOLNPAIR_P(
  2861. PSTR(" M145 S"), (int)i
  2862. #if HAS_HOTEND
  2863. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2864. #endif
  2865. #if HAS_HEATED_BED
  2866. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2867. #endif
  2868. #if HAS_FAN
  2869. , PSTR(" F"), ui.material_preset[i].fan_speed
  2870. #endif
  2871. );
  2872. }
  2873. #endif
  2874. #if HAS_PID_HEATING
  2875. CONFIG_ECHO_HEADING("PID settings:");
  2876. #if ENABLED(PIDTEMP)
  2877. HOTEND_LOOP() {
  2878. CONFIG_ECHO_START();
  2879. SERIAL_ECHOPAIR_P(
  2880. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2881. PSTR(" M301 E"), e,
  2882. SP_P_STR
  2883. #else
  2884. PSTR(" M301 P")
  2885. #endif
  2886. , PID_PARAM(Kp, e)
  2887. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2888. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2889. );
  2890. #if ENABLED(PID_EXTRUSION_SCALING)
  2891. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2892. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2893. #endif
  2894. #if ENABLED(PID_FAN_SCALING)
  2895. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2896. #endif
  2897. SERIAL_EOL();
  2898. }
  2899. #endif // PIDTEMP
  2900. #if ENABLED(PIDTEMPBED)
  2901. CONFIG_ECHO_START();
  2902. SERIAL_ECHOLNPAIR(
  2903. " M304 P", thermalManager.temp_bed.pid.Kp
  2904. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2905. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2906. );
  2907. #endif
  2908. #endif // PIDTEMP || PIDTEMPBED
  2909. #if HAS_USER_THERMISTORS
  2910. CONFIG_ECHO_HEADING("User thermistors:");
  2911. LOOP_L_N(i, USER_THERMISTORS)
  2912. thermalManager.log_user_thermistor(i, true);
  2913. #endif
  2914. #if HAS_LCD_CONTRAST
  2915. CONFIG_ECHO_HEADING("LCD Contrast:");
  2916. CONFIG_ECHO_START();
  2917. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2918. #endif
  2919. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2920. #if ENABLED(POWER_LOSS_RECOVERY)
  2921. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2922. CONFIG_ECHO_START();
  2923. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2924. #endif
  2925. #if ENABLED(FWRETRACT)
  2926. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2927. CONFIG_ECHO_START();
  2928. SERIAL_ECHOLNPAIR_P(
  2929. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2930. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2931. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2932. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2933. );
  2934. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2935. CONFIG_ECHO_START();
  2936. SERIAL_ECHOLNPAIR(
  2937. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2938. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2939. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2940. );
  2941. #if ENABLED(FWRETRACT_AUTORETRACT)
  2942. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2943. CONFIG_ECHO_START();
  2944. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2945. #endif // FWRETRACT_AUTORETRACT
  2946. #endif // FWRETRACT
  2947. /**
  2948. * Probe Offset
  2949. */
  2950. #if HAS_BED_PROBE
  2951. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2952. if (!forReplay) say_units(true);
  2953. CONFIG_ECHO_START();
  2954. SERIAL_ECHOLNPAIR_P(
  2955. #if HAS_PROBE_XY_OFFSET
  2956. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2957. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2958. SP_Z_STR
  2959. #else
  2960. PSTR(" M851 X0 Y0 Z")
  2961. #endif
  2962. , LINEAR_UNIT(probe.offset.z)
  2963. );
  2964. #endif
  2965. /**
  2966. * Bed Skew Correction
  2967. */
  2968. #if ENABLED(SKEW_CORRECTION_GCODE)
  2969. CONFIG_ECHO_HEADING("Skew Factor: ");
  2970. CONFIG_ECHO_START();
  2971. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2972. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2973. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2974. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2975. #else
  2976. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2977. #endif
  2978. #endif
  2979. #if HAS_TRINAMIC_CONFIG
  2980. /**
  2981. * TMC stepper driver current
  2982. */
  2983. CONFIG_ECHO_HEADING("Stepper driver current:");
  2984. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2985. say_M906(forReplay);
  2986. #if AXIS_IS_TMC(X)
  2987. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2988. #endif
  2989. #if AXIS_IS_TMC(Y)
  2990. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2991. #endif
  2992. #if AXIS_IS_TMC(Z)
  2993. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2994. #endif
  2995. SERIAL_EOL();
  2996. #endif
  2997. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2998. say_M906(forReplay);
  2999. SERIAL_ECHOPGM(" I1");
  3000. #if AXIS_IS_TMC(X2)
  3001. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3002. #endif
  3003. #if AXIS_IS_TMC(Y2)
  3004. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3005. #endif
  3006. #if AXIS_IS_TMC(Z2)
  3007. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3008. #endif
  3009. SERIAL_EOL();
  3010. #endif
  3011. #if AXIS_IS_TMC(Z3)
  3012. say_M906(forReplay);
  3013. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3014. #endif
  3015. #if AXIS_IS_TMC(Z4)
  3016. say_M906(forReplay);
  3017. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3018. #endif
  3019. #if AXIS_IS_TMC(E0)
  3020. say_M906(forReplay);
  3021. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3022. #endif
  3023. #if AXIS_IS_TMC(E1)
  3024. say_M906(forReplay);
  3025. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3026. #endif
  3027. #if AXIS_IS_TMC(E2)
  3028. say_M906(forReplay);
  3029. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3030. #endif
  3031. #if AXIS_IS_TMC(E3)
  3032. say_M906(forReplay);
  3033. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3034. #endif
  3035. #if AXIS_IS_TMC(E4)
  3036. say_M906(forReplay);
  3037. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3038. #endif
  3039. #if AXIS_IS_TMC(E5)
  3040. say_M906(forReplay);
  3041. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3042. #endif
  3043. #if AXIS_IS_TMC(E6)
  3044. say_M906(forReplay);
  3045. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3046. #endif
  3047. #if AXIS_IS_TMC(E7)
  3048. say_M906(forReplay);
  3049. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3050. #endif
  3051. SERIAL_EOL();
  3052. /**
  3053. * TMC Hybrid Threshold
  3054. */
  3055. #if ENABLED(HYBRID_THRESHOLD)
  3056. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3057. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3058. say_M913(forReplay);
  3059. #if AXIS_HAS_STEALTHCHOP(X)
  3060. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3061. #endif
  3062. #if AXIS_HAS_STEALTHCHOP(Y)
  3063. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3064. #endif
  3065. #if AXIS_HAS_STEALTHCHOP(Z)
  3066. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3067. #endif
  3068. SERIAL_EOL();
  3069. #endif
  3070. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3071. say_M913(forReplay);
  3072. SERIAL_ECHOPGM(" I1");
  3073. #if AXIS_HAS_STEALTHCHOP(X2)
  3074. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3075. #endif
  3076. #if AXIS_HAS_STEALTHCHOP(Y2)
  3077. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3078. #endif
  3079. #if AXIS_HAS_STEALTHCHOP(Z2)
  3080. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3081. #endif
  3082. SERIAL_EOL();
  3083. #endif
  3084. #if AXIS_HAS_STEALTHCHOP(Z3)
  3085. say_M913(forReplay);
  3086. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3087. #endif
  3088. #if AXIS_HAS_STEALTHCHOP(Z4)
  3089. say_M913(forReplay);
  3090. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3091. #endif
  3092. #if AXIS_HAS_STEALTHCHOP(E0)
  3093. say_M913(forReplay);
  3094. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3095. #endif
  3096. #if AXIS_HAS_STEALTHCHOP(E1)
  3097. say_M913(forReplay);
  3098. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3099. #endif
  3100. #if AXIS_HAS_STEALTHCHOP(E2)
  3101. say_M913(forReplay);
  3102. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3103. #endif
  3104. #if AXIS_HAS_STEALTHCHOP(E3)
  3105. say_M913(forReplay);
  3106. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3107. #endif
  3108. #if AXIS_HAS_STEALTHCHOP(E4)
  3109. say_M913(forReplay);
  3110. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3111. #endif
  3112. #if AXIS_HAS_STEALTHCHOP(E5)
  3113. say_M913(forReplay);
  3114. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3115. #endif
  3116. #if AXIS_HAS_STEALTHCHOP(E6)
  3117. say_M913(forReplay);
  3118. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3119. #endif
  3120. #if AXIS_HAS_STEALTHCHOP(E7)
  3121. say_M913(forReplay);
  3122. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3123. #endif
  3124. SERIAL_EOL();
  3125. #endif // HYBRID_THRESHOLD
  3126. /**
  3127. * TMC Sensorless homing thresholds
  3128. */
  3129. #if USE_SENSORLESS
  3130. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3131. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3132. CONFIG_ECHO_START();
  3133. say_M914();
  3134. #if X_SENSORLESS
  3135. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3136. #endif
  3137. #if Y_SENSORLESS
  3138. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3139. #endif
  3140. #if Z_SENSORLESS
  3141. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3142. #endif
  3143. SERIAL_EOL();
  3144. #endif
  3145. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3146. CONFIG_ECHO_START();
  3147. say_M914();
  3148. SERIAL_ECHOPGM(" I1");
  3149. #if X2_SENSORLESS
  3150. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3151. #endif
  3152. #if Y2_SENSORLESS
  3153. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3154. #endif
  3155. #if Z2_SENSORLESS
  3156. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3157. #endif
  3158. SERIAL_EOL();
  3159. #endif
  3160. #if Z3_SENSORLESS
  3161. CONFIG_ECHO_START();
  3162. say_M914();
  3163. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3164. #endif
  3165. #if Z4_SENSORLESS
  3166. CONFIG_ECHO_START();
  3167. say_M914();
  3168. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3169. #endif
  3170. #endif // USE_SENSORLESS
  3171. /**
  3172. * TMC stepping mode
  3173. */
  3174. #if HAS_STEALTHCHOP
  3175. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3176. #if AXIS_HAS_STEALTHCHOP(X)
  3177. const bool chop_x = stepperX.get_stored_stealthChop();
  3178. #else
  3179. constexpr bool chop_x = false;
  3180. #endif
  3181. #if AXIS_HAS_STEALTHCHOP(Y)
  3182. const bool chop_y = stepperY.get_stored_stealthChop();
  3183. #else
  3184. constexpr bool chop_y = false;
  3185. #endif
  3186. #if AXIS_HAS_STEALTHCHOP(Z)
  3187. const bool chop_z = stepperZ.get_stored_stealthChop();
  3188. #else
  3189. constexpr bool chop_z = false;
  3190. #endif
  3191. if (chop_x || chop_y || chop_z) {
  3192. say_M569(forReplay);
  3193. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3194. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3195. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3196. SERIAL_EOL();
  3197. }
  3198. #if AXIS_HAS_STEALTHCHOP(X2)
  3199. const bool chop_x2 = stepperX2.get_stored_stealthChop();
  3200. #else
  3201. constexpr bool chop_x2 = false;
  3202. #endif
  3203. #if AXIS_HAS_STEALTHCHOP(Y2)
  3204. const bool chop_y2 = stepperY2.get_stored_stealthChop();
  3205. #else
  3206. constexpr bool chop_y2 = false;
  3207. #endif
  3208. #if AXIS_HAS_STEALTHCHOP(Z2)
  3209. const bool chop_z2 = stepperZ2.get_stored_stealthChop();
  3210. #else
  3211. constexpr bool chop_z2 = false;
  3212. #endif
  3213. if (chop_x2 || chop_y2 || chop_z2) {
  3214. say_M569(forReplay, PSTR("I1"));
  3215. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3216. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3217. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3218. SERIAL_EOL();
  3219. }
  3220. #if AXIS_HAS_STEALTHCHOP(Z3)
  3221. if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3222. #endif
  3223. #if AXIS_HAS_STEALTHCHOP(Z4)
  3224. if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3225. #endif
  3226. #if AXIS_HAS_STEALTHCHOP(E0)
  3227. if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3228. #endif
  3229. #if AXIS_HAS_STEALTHCHOP(E1)
  3230. if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3231. #endif
  3232. #if AXIS_HAS_STEALTHCHOP(E2)
  3233. if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3234. #endif
  3235. #if AXIS_HAS_STEALTHCHOP(E3)
  3236. if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3237. #endif
  3238. #if AXIS_HAS_STEALTHCHOP(E4)
  3239. if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3240. #endif
  3241. #if AXIS_HAS_STEALTHCHOP(E5)
  3242. if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3243. #endif
  3244. #if AXIS_HAS_STEALTHCHOP(E6)
  3245. if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3246. #endif
  3247. #if AXIS_HAS_STEALTHCHOP(E7)
  3248. if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3249. #endif
  3250. #endif // HAS_STEALTHCHOP
  3251. #endif // HAS_TRINAMIC_CONFIG
  3252. /**
  3253. * Linear Advance
  3254. */
  3255. #if ENABLED(LIN_ADVANCE)
  3256. CONFIG_ECHO_HEADING("Linear Advance:");
  3257. #if EXTRUDERS < 2
  3258. CONFIG_ECHO_START();
  3259. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3260. #else
  3261. LOOP_L_N(i, EXTRUDERS) {
  3262. CONFIG_ECHO_START();
  3263. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3264. }
  3265. #endif
  3266. #endif
  3267. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3268. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3269. CONFIG_ECHO_START();
  3270. #if HAS_MOTOR_CURRENT_PWM
  3271. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3272. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3273. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3274. , SP_E_STR, stepper.motor_current_setting[2] // E
  3275. );
  3276. #elif HAS_MOTOR_CURRENT_SPI
  3277. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3278. LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
  3279. SERIAL_CHAR(' ', axis_codes[q]);
  3280. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3281. }
  3282. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3283. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3284. #endif
  3285. #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values
  3286. // Values sent over i2c are not stored.
  3287. // Indexes map directly to drivers, not axes.
  3288. #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E
  3289. // Values sent over i2c are not stored. Uses indirect mapping.
  3290. #endif
  3291. /**
  3292. * Advanced Pause filament load & unload lengths
  3293. */
  3294. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3295. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3296. #if EXTRUDERS == 1
  3297. say_M603(forReplay);
  3298. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3299. #else
  3300. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3301. REPEAT(EXTRUDERS, _ECHO_603)
  3302. #endif
  3303. #endif
  3304. #if HAS_MULTI_EXTRUDER
  3305. CONFIG_ECHO_HEADING("Tool-changing:");
  3306. CONFIG_ECHO_START();
  3307. M217_report(true);
  3308. #endif
  3309. #if ENABLED(BACKLASH_GCODE)
  3310. CONFIG_ECHO_HEADING("Backlash compensation:");
  3311. CONFIG_ECHO_START();
  3312. SERIAL_ECHOLNPAIR_P(
  3313. PSTR(" M425 F"), backlash.get_correction()
  3314. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3315. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3316. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3317. #ifdef BACKLASH_SMOOTHING_MM
  3318. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3319. #endif
  3320. );
  3321. #endif
  3322. #if HAS_FILAMENT_SENSOR
  3323. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3324. CONFIG_ECHO_START();
  3325. SERIAL_ECHOLNPAIR(
  3326. " M412 S", int(runout.enabled)
  3327. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3328. , " D", LINEAR_UNIT(runout.runout_distance())
  3329. #endif
  3330. );
  3331. #endif
  3332. #if HAS_ETHERNET
  3333. CONFIG_ECHO_HEADING("Ethernet:");
  3334. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3335. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3336. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3337. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3338. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3339. #endif
  3340. }
  3341. #endif // !DISABLE_M503
  3342. #pragma pack(pop)