My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 58KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if DIGIPOTSS_PIN > -1
  35. #include <SPI.h>
  36. #endif
  37. #define VERSION_STRING "1.0.0"
  38. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  39. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. //Implemented Codes
  41. //-------------------
  42. // G0 -> G1
  43. // G1 - Coordinated Movement X Y Z E
  44. // G2 - CW ARC
  45. // G3 - CCW ARC
  46. // G4 - Dwell S<seconds> or P<milliseconds>
  47. // G10 - retract filament according to settings of M207
  48. // G11 - retract recover filament according to settings of M208
  49. // G28 - Home all Axis
  50. // G90 - Use Absolute Coordinates
  51. // G91 - Use Relative Coordinates
  52. // G92 - Set current position to cordinates given
  53. //RepRap M Codes
  54. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  55. // M1 - Same as M0
  56. // M104 - Set extruder target temp
  57. // M105 - Read current temp
  58. // M106 - Fan on
  59. // M107 - Fan off
  60. // M109 - Wait for extruder current temp to reach target temp.
  61. // M114 - Display current position
  62. //Custom M Codes
  63. // M17 - Enable/Power all stepper motors
  64. // M18 - Disable all stepper motors; same as M84
  65. // M20 - List SD card
  66. // M21 - Init SD card
  67. // M22 - Release SD card
  68. // M23 - Select SD file (M23 filename.g)
  69. // M24 - Start/resume SD print
  70. // M25 - Pause SD print
  71. // M26 - Set SD position in bytes (M26 S12345)
  72. // M27 - Report SD print status
  73. // M28 - Start SD write (M28 filename.g)
  74. // M29 - Stop SD write
  75. // M30 - Delete file from SD (M30 filename.g)
  76. // M31 - Output time since last M109 or SD card start to serial
  77. // M42 - Change pin status via gcode
  78. // M80 - Turn on Power Supply
  79. // M81 - Turn off Power Supply
  80. // M82 - Set E codes absolute (default)
  81. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  82. // M84 - Disable steppers until next move,
  83. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  84. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  85. // M92 - Set axis_steps_per_unit - same syntax as G92
  86. // M114 - Output current position to serial port
  87. // M115 - Capabilities string
  88. // M117 - display message
  89. // M119 - Output Endstop status to serial port
  90. // M140 - Set bed target temp
  91. // M190 - Wait for bed current temp to reach target temp.
  92. // M200 - Set filament diameter
  93. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  94. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  95. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  96. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  97. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  98. // M206 - set additional homeing offset
  99. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  100. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  101. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  102. // M220 S<factor in percent>- set speed factor override percentage
  103. // M221 S<factor in percent>- set extrude factor override percentage
  104. // M240 - Trigger a camera to take a photograph
  105. // M301 - Set PID parameters P I and D
  106. // M302 - Allow cold extrudes
  107. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  108. // M304 - Set bed PID parameters P I and D
  109. // M400 - Finish all moves
  110. // M500 - stores paramters in EEPROM
  111. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  112. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  113. // M503 - print the current settings (from memory not from eeprom)
  114. // M907 - Set digital trimpot motor current using axis codes.
  115. // M908 - Control digital trimpot directly.
  116. // M350 - Set microstepping mode.
  117. // M351 - Toggle MS1 MS2 pins directly.
  118. // M999 - Restart after being stopped by error
  119. //Stepper Movement Variables
  120. //===========================================================================
  121. //=============================imported variables============================
  122. //===========================================================================
  123. //===========================================================================
  124. //=============================public variables=============================
  125. //===========================================================================
  126. #ifdef SDSUPPORT
  127. CardReader card;
  128. #endif
  129. float homing_feedrate[] = HOMING_FEEDRATE;
  130. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  131. int feedmultiply=100; //100->1 200->2
  132. int saved_feedmultiply;
  133. int extrudemultiply=100; //100->1 200->2
  134. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  135. float add_homeing[3]={0,0,0};
  136. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  137. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  138. uint8_t active_extruder = 0;
  139. int fanSpeed=0;
  140. #ifdef FWRETRACT
  141. bool autoretract_enabled=true;
  142. bool retracted=false;
  143. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  144. float retract_recover_length=0, retract_recover_feedrate=8*60;
  145. #endif
  146. //===========================================================================
  147. //=============================private variables=============================
  148. //===========================================================================
  149. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  150. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  151. static float offset[3] = {0.0, 0.0, 0.0};
  152. static bool home_all_axis = true;
  153. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  154. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  155. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  156. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  157. static bool fromsd[BUFSIZE];
  158. static int bufindr = 0;
  159. static int bufindw = 0;
  160. static int buflen = 0;
  161. //static int i = 0;
  162. static char serial_char;
  163. static int serial_count = 0;
  164. static boolean comment_mode = false;
  165. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  166. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  167. //static float tt = 0;
  168. //static float bt = 0;
  169. //Inactivity shutdown variables
  170. static unsigned long previous_millis_cmd = 0;
  171. static unsigned long max_inactive_time = 0;
  172. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  173. unsigned long starttime=0;
  174. unsigned long stoptime=0;
  175. static uint8_t tmp_extruder;
  176. bool Stopped=false;
  177. //===========================================================================
  178. //=============================ROUTINES=============================
  179. //===========================================================================
  180. void get_arc_coordinates();
  181. bool setTargetedHotend(int code);
  182. void serial_echopair_P(const char *s_P, float v)
  183. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  184. void serial_echopair_P(const char *s_P, double v)
  185. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  186. void serial_echopair_P(const char *s_P, unsigned long v)
  187. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  188. extern "C"{
  189. extern unsigned int __bss_end;
  190. extern unsigned int __heap_start;
  191. extern void *__brkval;
  192. int freeMemory() {
  193. int free_memory;
  194. if((int)__brkval == 0)
  195. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  196. else
  197. free_memory = ((int)&free_memory) - ((int)__brkval);
  198. return free_memory;
  199. }
  200. }
  201. //adds an command to the main command buffer
  202. //thats really done in a non-safe way.
  203. //needs overworking someday
  204. void enquecommand(const char *cmd)
  205. {
  206. if(buflen < BUFSIZE)
  207. {
  208. //this is dangerous if a mixing of serial and this happsens
  209. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  210. SERIAL_ECHO_START;
  211. SERIAL_ECHOPGM("enqueing \"");
  212. SERIAL_ECHO(cmdbuffer[bufindw]);
  213. SERIAL_ECHOLNPGM("\"");
  214. bufindw= (bufindw + 1)%BUFSIZE;
  215. buflen += 1;
  216. }
  217. }
  218. void enquecommand_P(const char *cmd)
  219. {
  220. if(buflen < BUFSIZE)
  221. {
  222. //this is dangerous if a mixing of serial and this happsens
  223. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM("enqueing \"");
  226. SERIAL_ECHO(cmdbuffer[bufindw]);
  227. SERIAL_ECHOLNPGM("\"");
  228. bufindw= (bufindw + 1)%BUFSIZE;
  229. buflen += 1;
  230. }
  231. }
  232. void setup_killpin()
  233. {
  234. #if( KILL_PIN>-1 )
  235. pinMode(KILL_PIN,INPUT);
  236. WRITE(KILL_PIN,HIGH);
  237. #endif
  238. }
  239. void setup_photpin()
  240. {
  241. #ifdef PHOTOGRAPH_PIN
  242. #if (PHOTOGRAPH_PIN > -1)
  243. SET_OUTPUT(PHOTOGRAPH_PIN);
  244. WRITE(PHOTOGRAPH_PIN, LOW);
  245. #endif
  246. #endif
  247. }
  248. void setup_powerhold()
  249. {
  250. #ifdef SUICIDE_PIN
  251. #if (SUICIDE_PIN> -1)
  252. SET_OUTPUT(SUICIDE_PIN);
  253. WRITE(SUICIDE_PIN, HIGH);
  254. #endif
  255. #endif
  256. #if (PS_ON_PIN > -1)
  257. SET_OUTPUT(PS_ON_PIN);
  258. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  259. #endif
  260. }
  261. void suicide()
  262. {
  263. #ifdef SUICIDE_PIN
  264. #if (SUICIDE_PIN> -1)
  265. SET_OUTPUT(SUICIDE_PIN);
  266. WRITE(SUICIDE_PIN, LOW);
  267. #endif
  268. #endif
  269. }
  270. void setup()
  271. {
  272. setup_killpin();
  273. setup_powerhold();
  274. MYSERIAL.begin(BAUDRATE);
  275. SERIAL_PROTOCOLLNPGM("start");
  276. SERIAL_ECHO_START;
  277. // Check startup - does nothing if bootloader sets MCUSR to 0
  278. byte mcu = MCUSR;
  279. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  280. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  281. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  282. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  283. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  284. MCUSR=0;
  285. SERIAL_ECHOPGM(MSG_MARLIN);
  286. SERIAL_ECHOLNPGM(VERSION_STRING);
  287. #ifdef STRING_VERSION_CONFIG_H
  288. #ifdef STRING_CONFIG_H_AUTHOR
  289. SERIAL_ECHO_START;
  290. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  291. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  292. SERIAL_ECHOPGM(MSG_AUTHOR);
  293. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  294. SERIAL_ECHOPGM("Compiled: ");
  295. SERIAL_ECHOLNPGM(__DATE__);
  296. #endif
  297. #endif
  298. SERIAL_ECHO_START;
  299. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  300. SERIAL_ECHO(freeMemory());
  301. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  302. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  303. for(int8_t i = 0; i < BUFSIZE; i++)
  304. {
  305. fromsd[i] = false;
  306. }
  307. Config_RetrieveSettings(); // loads data from EEPROM if available
  308. for(int8_t i=0; i < NUM_AXIS; i++)
  309. {
  310. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  311. }
  312. tp_init(); // Initialize temperature loop
  313. plan_init(); // Initialize planner;
  314. watchdog_init();
  315. st_init(); // Initialize stepper, this enables interrupts!
  316. setup_photpin();
  317. lcd_init();
  318. }
  319. void loop()
  320. {
  321. if(buflen < (BUFSIZE-1))
  322. get_command();
  323. #ifdef SDSUPPORT
  324. card.checkautostart(false);
  325. #endif
  326. if(buflen)
  327. {
  328. #ifdef SDSUPPORT
  329. if(card.saving)
  330. {
  331. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  332. {
  333. card.write_command(cmdbuffer[bufindr]);
  334. SERIAL_PROTOCOLLNPGM(MSG_OK);
  335. }
  336. else
  337. {
  338. card.closefile();
  339. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  340. }
  341. }
  342. else
  343. {
  344. process_commands();
  345. }
  346. #else
  347. process_commands();
  348. #endif //SDSUPPORT
  349. buflen = (buflen-1);
  350. bufindr = (bufindr + 1)%BUFSIZE;
  351. }
  352. //check heater every n milliseconds
  353. manage_heater();
  354. manage_inactivity();
  355. checkHitEndstops();
  356. lcd_update();
  357. }
  358. void get_command()
  359. {
  360. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  361. serial_char = MYSERIAL.read();
  362. if(serial_char == '\n' ||
  363. serial_char == '\r' ||
  364. (serial_char == ':' && comment_mode == false) ||
  365. serial_count >= (MAX_CMD_SIZE - 1) )
  366. {
  367. if(!serial_count) { //if empty line
  368. comment_mode = false; //for new command
  369. return;
  370. }
  371. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  372. if(!comment_mode){
  373. comment_mode = false; //for new command
  374. fromsd[bufindw] = false;
  375. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  376. {
  377. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  378. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  379. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  380. SERIAL_ERROR_START;
  381. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  382. SERIAL_ERRORLN(gcode_LastN);
  383. //Serial.println(gcode_N);
  384. FlushSerialRequestResend();
  385. serial_count = 0;
  386. return;
  387. }
  388. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  389. {
  390. byte checksum = 0;
  391. byte count = 0;
  392. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  393. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  394. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  395. SERIAL_ERROR_START;
  396. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  397. SERIAL_ERRORLN(gcode_LastN);
  398. FlushSerialRequestResend();
  399. serial_count = 0;
  400. return;
  401. }
  402. //if no errors, continue parsing
  403. }
  404. else
  405. {
  406. SERIAL_ERROR_START;
  407. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  408. SERIAL_ERRORLN(gcode_LastN);
  409. FlushSerialRequestResend();
  410. serial_count = 0;
  411. return;
  412. }
  413. gcode_LastN = gcode_N;
  414. //if no errors, continue parsing
  415. }
  416. else // if we don't receive 'N' but still see '*'
  417. {
  418. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  419. {
  420. SERIAL_ERROR_START;
  421. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  422. SERIAL_ERRORLN(gcode_LastN);
  423. serial_count = 0;
  424. return;
  425. }
  426. }
  427. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  428. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  429. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  430. case 0:
  431. case 1:
  432. case 2:
  433. case 3:
  434. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  435. #ifdef SDSUPPORT
  436. if(card.saving)
  437. break;
  438. #endif //SDSUPPORT
  439. SERIAL_PROTOCOLLNPGM(MSG_OK);
  440. }
  441. else {
  442. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  443. LCD_MESSAGEPGM(MSG_STOPPED);
  444. }
  445. break;
  446. default:
  447. break;
  448. }
  449. }
  450. bufindw = (bufindw + 1)%BUFSIZE;
  451. buflen += 1;
  452. }
  453. serial_count = 0; //clear buffer
  454. }
  455. else
  456. {
  457. if(serial_char == ';') comment_mode = true;
  458. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  459. }
  460. }
  461. #ifdef SDSUPPORT
  462. if(!card.sdprinting || serial_count!=0){
  463. return;
  464. }
  465. while( !card.eof() && buflen < BUFSIZE) {
  466. int16_t n=card.get();
  467. serial_char = (char)n;
  468. if(serial_char == '\n' ||
  469. serial_char == '\r' ||
  470. (serial_char == ':' && comment_mode == false) ||
  471. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  472. {
  473. if(card.eof()){
  474. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  475. stoptime=millis();
  476. char time[30];
  477. unsigned long t=(stoptime-starttime)/1000;
  478. int hours, minutes;
  479. minutes=(t/60)%60;
  480. hours=t/60/60;
  481. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  482. SERIAL_ECHO_START;
  483. SERIAL_ECHOLN(time);
  484. lcd_setstatus(time);
  485. card.printingHasFinished();
  486. card.checkautostart(true);
  487. }
  488. if(!serial_count)
  489. {
  490. comment_mode = false; //for new command
  491. return; //if empty line
  492. }
  493. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  494. // if(!comment_mode){
  495. fromsd[bufindw] = true;
  496. buflen += 1;
  497. bufindw = (bufindw + 1)%BUFSIZE;
  498. // }
  499. comment_mode = false; //for new command
  500. serial_count = 0; //clear buffer
  501. }
  502. else
  503. {
  504. if(serial_char == ';') comment_mode = true;
  505. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  506. }
  507. }
  508. #endif //SDSUPPORT
  509. }
  510. float code_value()
  511. {
  512. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  513. }
  514. long code_value_long()
  515. {
  516. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  517. }
  518. bool code_seen(char code)
  519. {
  520. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  521. return (strchr_pointer != NULL); //Return True if a character was found
  522. }
  523. #define DEFINE_PGM_READ_ANY(type, reader) \
  524. static inline type pgm_read_any(const type *p) \
  525. { return pgm_read_##reader##_near(p); }
  526. DEFINE_PGM_READ_ANY(float, float);
  527. DEFINE_PGM_READ_ANY(signed char, byte);
  528. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  529. static const PROGMEM type array##_P[3] = \
  530. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  531. static inline type array(int axis) \
  532. { return pgm_read_any(&array##_P[axis]); }
  533. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  534. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  535. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  536. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  537. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  538. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  539. static void axis_is_at_home(int axis) {
  540. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  541. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  542. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  543. }
  544. static void homeaxis(int axis) {
  545. #define HOMEAXIS_DO(LETTER) \
  546. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  547. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  548. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  549. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  550. 0) {
  551. current_position[axis] = 0;
  552. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  553. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  554. feedrate = homing_feedrate[axis];
  555. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  556. st_synchronize();
  557. current_position[axis] = 0;
  558. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  559. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  561. st_synchronize();
  562. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  563. feedrate = homing_feedrate[axis]/2 ;
  564. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  565. st_synchronize();
  566. axis_is_at_home(axis);
  567. destination[axis] = current_position[axis];
  568. feedrate = 0.0;
  569. endstops_hit_on_purpose();
  570. }
  571. }
  572. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  573. void process_commands()
  574. {
  575. unsigned long codenum; //throw away variable
  576. char *starpos = NULL;
  577. if(code_seen('G'))
  578. {
  579. switch((int)code_value())
  580. {
  581. case 0: // G0 -> G1
  582. case 1: // G1
  583. if(Stopped == false) {
  584. get_coordinates(); // For X Y Z E F
  585. prepare_move();
  586. //ClearToSend();
  587. return;
  588. }
  589. //break;
  590. case 2: // G2 - CW ARC
  591. if(Stopped == false) {
  592. get_arc_coordinates();
  593. prepare_arc_move(true);
  594. return;
  595. }
  596. case 3: // G3 - CCW ARC
  597. if(Stopped == false) {
  598. get_arc_coordinates();
  599. prepare_arc_move(false);
  600. return;
  601. }
  602. case 4: // G4 dwell
  603. LCD_MESSAGEPGM(MSG_DWELL);
  604. codenum = 0;
  605. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  606. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  607. st_synchronize();
  608. codenum += millis(); // keep track of when we started waiting
  609. previous_millis_cmd = millis();
  610. while(millis() < codenum ){
  611. manage_heater();
  612. manage_inactivity();
  613. lcd_update();
  614. }
  615. break;
  616. #ifdef FWRETRACT
  617. case 10: // G10 retract
  618. if(!retracted)
  619. {
  620. destination[X_AXIS]=current_position[X_AXIS];
  621. destination[Y_AXIS]=current_position[Y_AXIS];
  622. destination[Z_AXIS]=current_position[Z_AXIS];
  623. current_position[Z_AXIS]+=-retract_zlift;
  624. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  625. feedrate=retract_feedrate;
  626. retracted=true;
  627. prepare_move();
  628. }
  629. break;
  630. case 11: // G10 retract_recover
  631. if(!retracted)
  632. {
  633. destination[X_AXIS]=current_position[X_AXIS];
  634. destination[Y_AXIS]=current_position[Y_AXIS];
  635. destination[Z_AXIS]=current_position[Z_AXIS];
  636. current_position[Z_AXIS]+=retract_zlift;
  637. current_position[E_AXIS]+=-retract_recover_length;
  638. feedrate=retract_recover_feedrate;
  639. retracted=false;
  640. prepare_move();
  641. }
  642. break;
  643. #endif //FWRETRACT
  644. case 28: //G28 Home all Axis one at a time
  645. saved_feedrate = feedrate;
  646. saved_feedmultiply = feedmultiply;
  647. feedmultiply = 100;
  648. previous_millis_cmd = millis();
  649. enable_endstops(true);
  650. for(int8_t i=0; i < NUM_AXIS; i++) {
  651. destination[i] = current_position[i];
  652. }
  653. feedrate = 0.0;
  654. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  655. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  656. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  657. HOMEAXIS(Z);
  658. }
  659. #endif
  660. #ifdef QUICK_HOME
  661. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  662. {
  663. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  664. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  665. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  666. feedrate = homing_feedrate[X_AXIS];
  667. if(homing_feedrate[Y_AXIS]<feedrate)
  668. feedrate =homing_feedrate[Y_AXIS];
  669. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  670. st_synchronize();
  671. axis_is_at_home(X_AXIS);
  672. axis_is_at_home(Y_AXIS);
  673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  674. destination[X_AXIS] = current_position[X_AXIS];
  675. destination[Y_AXIS] = current_position[Y_AXIS];
  676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  677. feedrate = 0.0;
  678. st_synchronize();
  679. endstops_hit_on_purpose();
  680. }
  681. #endif
  682. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  683. {
  684. HOMEAXIS(X);
  685. }
  686. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  687. HOMEAXIS(Y);
  688. }
  689. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  690. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  691. HOMEAXIS(Z);
  692. }
  693. #endif
  694. if(code_seen(axis_codes[X_AXIS]))
  695. {
  696. if(code_value_long() != 0) {
  697. current_position[X_AXIS]=code_value()+add_homeing[0];
  698. }
  699. }
  700. if(code_seen(axis_codes[Y_AXIS])) {
  701. if(code_value_long() != 0) {
  702. current_position[Y_AXIS]=code_value()+add_homeing[1];
  703. }
  704. }
  705. if(code_seen(axis_codes[Z_AXIS])) {
  706. if(code_value_long() != 0) {
  707. current_position[Z_AXIS]=code_value()+add_homeing[2];
  708. }
  709. }
  710. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  711. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  712. enable_endstops(false);
  713. #endif
  714. feedrate = saved_feedrate;
  715. feedmultiply = saved_feedmultiply;
  716. previous_millis_cmd = millis();
  717. endstops_hit_on_purpose();
  718. break;
  719. case 90: // G90
  720. relative_mode = false;
  721. break;
  722. case 91: // G91
  723. relative_mode = true;
  724. break;
  725. case 92: // G92
  726. if(!code_seen(axis_codes[E_AXIS]))
  727. st_synchronize();
  728. for(int8_t i=0; i < NUM_AXIS; i++) {
  729. if(code_seen(axis_codes[i])) {
  730. if(i == E_AXIS) {
  731. current_position[i] = code_value();
  732. plan_set_e_position(current_position[E_AXIS]);
  733. }
  734. else {
  735. current_position[i] = code_value()+add_homeing[i];
  736. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  737. }
  738. }
  739. }
  740. break;
  741. }
  742. }
  743. else if(code_seen('M'))
  744. {
  745. switch( (int)code_value() )
  746. {
  747. #ifdef ULTIPANEL
  748. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  749. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  750. {
  751. LCD_MESSAGEPGM(MSG_USERWAIT);
  752. codenum = 0;
  753. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  754. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  755. st_synchronize();
  756. previous_millis_cmd = millis();
  757. if (codenum > 0){
  758. codenum += millis(); // keep track of when we started waiting
  759. while(millis() < codenum && !LCD_CLICKED){
  760. manage_heater();
  761. manage_inactivity();
  762. lcd_update();
  763. }
  764. }else{
  765. while(!LCD_CLICKED){
  766. manage_heater();
  767. manage_inactivity();
  768. lcd_update();
  769. }
  770. }
  771. LCD_MESSAGEPGM(MSG_RESUMING);
  772. }
  773. break;
  774. #endif
  775. case 17:
  776. LCD_MESSAGEPGM(MSG_NO_MOVE);
  777. enable_x();
  778. enable_y();
  779. enable_z();
  780. enable_e0();
  781. enable_e1();
  782. enable_e2();
  783. break;
  784. #ifdef SDSUPPORT
  785. case 20: // M20 - list SD card
  786. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  787. card.ls();
  788. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  789. break;
  790. case 21: // M21 - init SD card
  791. card.initsd();
  792. break;
  793. case 22: //M22 - release SD card
  794. card.release();
  795. break;
  796. case 23: //M23 - Select file
  797. starpos = (strchr(strchr_pointer + 4,'*'));
  798. if(starpos!=NULL)
  799. *(starpos-1)='\0';
  800. card.openFile(strchr_pointer + 4,true);
  801. break;
  802. case 24: //M24 - Start SD print
  803. card.startFileprint();
  804. starttime=millis();
  805. break;
  806. case 25: //M25 - Pause SD print
  807. card.pauseSDPrint();
  808. break;
  809. case 26: //M26 - Set SD index
  810. if(card.cardOK && code_seen('S')) {
  811. card.setIndex(code_value_long());
  812. }
  813. break;
  814. case 27: //M27 - Get SD status
  815. card.getStatus();
  816. break;
  817. case 28: //M28 - Start SD write
  818. starpos = (strchr(strchr_pointer + 4,'*'));
  819. if(starpos != NULL){
  820. char* npos = strchr(cmdbuffer[bufindr], 'N');
  821. strchr_pointer = strchr(npos,' ') + 1;
  822. *(starpos-1) = '\0';
  823. }
  824. card.openFile(strchr_pointer+4,false);
  825. break;
  826. case 29: //M29 - Stop SD write
  827. //processed in write to file routine above
  828. //card,saving = false;
  829. break;
  830. case 30: //M30 <filename> Delete File
  831. if (card.cardOK){
  832. card.closefile();
  833. starpos = (strchr(strchr_pointer + 4,'*'));
  834. if(starpos != NULL){
  835. char* npos = strchr(cmdbuffer[bufindr], 'N');
  836. strchr_pointer = strchr(npos,' ') + 1;
  837. *(starpos-1) = '\0';
  838. }
  839. card.removeFile(strchr_pointer + 4);
  840. }
  841. break;
  842. #endif //SDSUPPORT
  843. case 31: //M31 take time since the start of the SD print or an M109 command
  844. {
  845. stoptime=millis();
  846. char time[30];
  847. unsigned long t=(stoptime-starttime)/1000;
  848. int sec,min;
  849. min=t/60;
  850. sec=t%60;
  851. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  852. SERIAL_ECHO_START;
  853. SERIAL_ECHOLN(time);
  854. lcd_setstatus(time);
  855. autotempShutdown();
  856. }
  857. break;
  858. case 42: //M42 -Change pin status via gcode
  859. if (code_seen('S'))
  860. {
  861. int pin_status = code_value();
  862. int pin_number = LED_PIN;
  863. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  864. pin_number = code_value();
  865. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  866. {
  867. if (sensitive_pins[i] == pin_number)
  868. {
  869. pin_number = -1;
  870. break;
  871. }
  872. }
  873. if (pin_number > -1)
  874. {
  875. pinMode(pin_number, OUTPUT);
  876. digitalWrite(pin_number, pin_status);
  877. analogWrite(pin_number, pin_status);
  878. }
  879. }
  880. break;
  881. case 104: // M104
  882. if(setTargetedHotend(104)){
  883. break;
  884. }
  885. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  886. setWatch();
  887. break;
  888. case 140: // M140 set bed temp
  889. if (code_seen('S')) setTargetBed(code_value());
  890. break;
  891. case 105 : // M105
  892. if(setTargetedHotend(105)){
  893. break;
  894. }
  895. #if (TEMP_0_PIN > -1)
  896. SERIAL_PROTOCOLPGM("ok T:");
  897. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  898. SERIAL_PROTOCOLPGM(" /");
  899. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  900. #if TEMP_BED_PIN > -1
  901. SERIAL_PROTOCOLPGM(" B:");
  902. SERIAL_PROTOCOL_F(degBed(),1);
  903. SERIAL_PROTOCOLPGM(" /");
  904. SERIAL_PROTOCOL_F(degTargetBed(),1);
  905. #endif //TEMP_BED_PIN
  906. #else
  907. SERIAL_ERROR_START;
  908. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  909. #endif
  910. SERIAL_PROTOCOLPGM(" @:");
  911. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  912. SERIAL_PROTOCOLPGM(" B@:");
  913. SERIAL_PROTOCOL(getHeaterPower(-1));
  914. SERIAL_PROTOCOLLN("");
  915. return;
  916. break;
  917. case 109:
  918. {// M109 - Wait for extruder heater to reach target.
  919. if(setTargetedHotend(109)){
  920. break;
  921. }
  922. LCD_MESSAGEPGM(MSG_HEATING);
  923. #ifdef AUTOTEMP
  924. autotemp_enabled=false;
  925. #endif
  926. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  927. #ifdef AUTOTEMP
  928. if (code_seen('S')) autotemp_min=code_value();
  929. if (code_seen('B')) autotemp_max=code_value();
  930. if (code_seen('F'))
  931. {
  932. autotemp_factor=code_value();
  933. autotemp_enabled=true;
  934. }
  935. #endif
  936. setWatch();
  937. codenum = millis();
  938. /* See if we are heating up or cooling down */
  939. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  940. #ifdef TEMP_RESIDENCY_TIME
  941. long residencyStart;
  942. residencyStart = -1;
  943. /* continue to loop until we have reached the target temp
  944. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  945. while((residencyStart == -1) ||
  946. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  947. #else
  948. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  949. #endif //TEMP_RESIDENCY_TIME
  950. if( (millis() - codenum) > 1000UL )
  951. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  952. SERIAL_PROTOCOLPGM("T:");
  953. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  954. SERIAL_PROTOCOLPGM(" E:");
  955. SERIAL_PROTOCOL((int)tmp_extruder);
  956. #ifdef TEMP_RESIDENCY_TIME
  957. SERIAL_PROTOCOLPGM(" W:");
  958. if(residencyStart > -1)
  959. {
  960. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  961. SERIAL_PROTOCOLLN( codenum );
  962. }
  963. else
  964. {
  965. SERIAL_PROTOCOLLN( "?" );
  966. }
  967. #else
  968. SERIAL_PROTOCOLLN("");
  969. #endif
  970. codenum = millis();
  971. }
  972. manage_heater();
  973. manage_inactivity();
  974. lcd_update();
  975. #ifdef TEMP_RESIDENCY_TIME
  976. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  977. or when current temp falls outside the hysteresis after target temp was reached */
  978. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  979. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  980. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  981. {
  982. residencyStart = millis();
  983. }
  984. #endif //TEMP_RESIDENCY_TIME
  985. }
  986. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  987. starttime=millis();
  988. previous_millis_cmd = millis();
  989. }
  990. break;
  991. case 190: // M190 - Wait for bed heater to reach target.
  992. #if TEMP_BED_PIN > -1
  993. LCD_MESSAGEPGM(MSG_BED_HEATING);
  994. if (code_seen('S')) setTargetBed(code_value());
  995. codenum = millis();
  996. while(isHeatingBed())
  997. {
  998. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  999. {
  1000. float tt=degHotend(active_extruder);
  1001. SERIAL_PROTOCOLPGM("T:");
  1002. SERIAL_PROTOCOL(tt);
  1003. SERIAL_PROTOCOLPGM(" E:");
  1004. SERIAL_PROTOCOL((int)active_extruder);
  1005. SERIAL_PROTOCOLPGM(" B:");
  1006. SERIAL_PROTOCOL_F(degBed(),1);
  1007. SERIAL_PROTOCOLLN("");
  1008. codenum = millis();
  1009. }
  1010. manage_heater();
  1011. manage_inactivity();
  1012. lcd_update();
  1013. }
  1014. LCD_MESSAGEPGM(MSG_BED_DONE);
  1015. previous_millis_cmd = millis();
  1016. #endif
  1017. break;
  1018. #if FAN_PIN > -1
  1019. case 106: //M106 Fan On
  1020. if (code_seen('S')){
  1021. fanSpeed=constrain(code_value(),0,255);
  1022. }
  1023. else {
  1024. fanSpeed=255;
  1025. }
  1026. break;
  1027. case 107: //M107 Fan Off
  1028. fanSpeed = 0;
  1029. break;
  1030. #endif //FAN_PIN
  1031. #if (PS_ON_PIN > -1)
  1032. case 80: // M80 - ATX Power On
  1033. SET_OUTPUT(PS_ON_PIN); //GND
  1034. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1035. break;
  1036. #endif
  1037. case 81: // M81 - ATX Power Off
  1038. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1039. st_synchronize();
  1040. suicide();
  1041. #elif (PS_ON_PIN > -1)
  1042. SET_OUTPUT(PS_ON_PIN);
  1043. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1044. #endif
  1045. break;
  1046. case 82:
  1047. axis_relative_modes[3] = false;
  1048. break;
  1049. case 83:
  1050. axis_relative_modes[3] = true;
  1051. break;
  1052. case 18: //compatibility
  1053. case 84: // M84
  1054. if(code_seen('S')){
  1055. stepper_inactive_time = code_value() * 1000;
  1056. }
  1057. else
  1058. {
  1059. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1060. if(all_axis)
  1061. {
  1062. st_synchronize();
  1063. disable_e0();
  1064. disable_e1();
  1065. disable_e2();
  1066. finishAndDisableSteppers();
  1067. }
  1068. else
  1069. {
  1070. st_synchronize();
  1071. if(code_seen('X')) disable_x();
  1072. if(code_seen('Y')) disable_y();
  1073. if(code_seen('Z')) disable_z();
  1074. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1075. if(code_seen('E')) {
  1076. disable_e0();
  1077. disable_e1();
  1078. disable_e2();
  1079. }
  1080. #endif
  1081. }
  1082. }
  1083. break;
  1084. case 85: // M85
  1085. code_seen('S');
  1086. max_inactive_time = code_value() * 1000;
  1087. break;
  1088. case 92: // M92
  1089. for(int8_t i=0; i < NUM_AXIS; i++)
  1090. {
  1091. if(code_seen(axis_codes[i]))
  1092. {
  1093. if(i == 3) { // E
  1094. float value = code_value();
  1095. if(value < 20.0) {
  1096. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1097. max_e_jerk *= factor;
  1098. max_feedrate[i] *= factor;
  1099. axis_steps_per_sqr_second[i] *= factor;
  1100. }
  1101. axis_steps_per_unit[i] = value;
  1102. }
  1103. else {
  1104. axis_steps_per_unit[i] = code_value();
  1105. }
  1106. }
  1107. }
  1108. break;
  1109. case 115: // M115
  1110. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1111. break;
  1112. case 117: // M117 display message
  1113. starpos = (strchr(strchr_pointer + 5,'*'));
  1114. if(starpos!=NULL)
  1115. *(starpos-1)='\0';
  1116. lcd_setstatus(strchr_pointer + 5);
  1117. break;
  1118. case 114: // M114
  1119. SERIAL_PROTOCOLPGM("X:");
  1120. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1121. SERIAL_PROTOCOLPGM("Y:");
  1122. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1123. SERIAL_PROTOCOLPGM("Z:");
  1124. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1125. SERIAL_PROTOCOLPGM("E:");
  1126. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1127. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1128. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1129. SERIAL_PROTOCOLPGM("Y:");
  1130. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1131. SERIAL_PROTOCOLPGM("Z:");
  1132. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1133. SERIAL_PROTOCOLLN("");
  1134. break;
  1135. case 120: // M120
  1136. enable_endstops(false) ;
  1137. break;
  1138. case 121: // M121
  1139. enable_endstops(true) ;
  1140. break;
  1141. case 119: // M119
  1142. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1143. #if (X_MIN_PIN > -1)
  1144. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1145. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1146. #endif
  1147. #if (X_MAX_PIN > -1)
  1148. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1149. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1150. #endif
  1151. #if (Y_MIN_PIN > -1)
  1152. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1153. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1154. #endif
  1155. #if (Y_MAX_PIN > -1)
  1156. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1157. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1158. #endif
  1159. #if (Z_MIN_PIN > -1)
  1160. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1161. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1162. #endif
  1163. #if (Z_MAX_PIN > -1)
  1164. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1165. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1166. #endif
  1167. break;
  1168. //TODO: update for all axis, use for loop
  1169. case 201: // M201
  1170. for(int8_t i=0; i < NUM_AXIS; i++)
  1171. {
  1172. if(code_seen(axis_codes[i]))
  1173. {
  1174. max_acceleration_units_per_sq_second[i] = code_value();
  1175. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1176. }
  1177. }
  1178. break;
  1179. #if 0 // Not used for Sprinter/grbl gen6
  1180. case 202: // M202
  1181. for(int8_t i=0; i < NUM_AXIS; i++) {
  1182. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1183. }
  1184. break;
  1185. #endif
  1186. case 203: // M203 max feedrate mm/sec
  1187. for(int8_t i=0; i < NUM_AXIS; i++) {
  1188. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1189. }
  1190. break;
  1191. case 204: // M204 acclereration S normal moves T filmanent only moves
  1192. {
  1193. if(code_seen('S')) acceleration = code_value() ;
  1194. if(code_seen('T')) retract_acceleration = code_value() ;
  1195. }
  1196. break;
  1197. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1198. {
  1199. if(code_seen('S')) minimumfeedrate = code_value();
  1200. if(code_seen('T')) mintravelfeedrate = code_value();
  1201. if(code_seen('B')) minsegmenttime = code_value() ;
  1202. if(code_seen('X')) max_xy_jerk = code_value() ;
  1203. if(code_seen('Z')) max_z_jerk = code_value() ;
  1204. if(code_seen('E')) max_e_jerk = code_value() ;
  1205. }
  1206. break;
  1207. case 206: // M206 additional homeing offset
  1208. for(int8_t i=0; i < 3; i++)
  1209. {
  1210. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1211. }
  1212. break;
  1213. #ifdef FWRETRACT
  1214. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1215. {
  1216. if(code_seen('S'))
  1217. {
  1218. retract_length = code_value() ;
  1219. }
  1220. if(code_seen('F'))
  1221. {
  1222. retract_feedrate = code_value() ;
  1223. }
  1224. if(code_seen('Z'))
  1225. {
  1226. retract_zlift = code_value() ;
  1227. }
  1228. }break;
  1229. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1230. {
  1231. if(code_seen('S'))
  1232. {
  1233. retract_recover_length = code_value() ;
  1234. }
  1235. if(code_seen('F'))
  1236. {
  1237. retract_recover_feedrate = code_value() ;
  1238. }
  1239. }break;
  1240. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1241. {
  1242. if(code_seen('S'))
  1243. {
  1244. int t= code_value() ;
  1245. switch(t)
  1246. {
  1247. case 0: autoretract_enabled=false;retracted=false;break;
  1248. case 1: autoretract_enabled=true;retracted=false;break;
  1249. default:
  1250. SERIAL_ECHO_START;
  1251. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1252. SERIAL_ECHO(cmdbuffer[bufindr]);
  1253. SERIAL_ECHOLNPGM("\"");
  1254. }
  1255. }
  1256. }break;
  1257. #endif
  1258. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1259. {
  1260. if(code_seen('S'))
  1261. {
  1262. feedmultiply = code_value() ;
  1263. }
  1264. }
  1265. break;
  1266. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1267. {
  1268. if(code_seen('S'))
  1269. {
  1270. extrudemultiply = code_value() ;
  1271. }
  1272. }
  1273. break;
  1274. #ifdef PIDTEMP
  1275. case 301: // M301
  1276. {
  1277. if(code_seen('P')) Kp = code_value();
  1278. if(code_seen('I')) Ki = code_value()*PID_dT;
  1279. if(code_seen('D')) Kd = code_value()/PID_dT;
  1280. #ifdef PID_ADD_EXTRUSION_RATE
  1281. if(code_seen('C')) Kc = code_value();
  1282. #endif
  1283. updatePID();
  1284. SERIAL_PROTOCOL(MSG_OK);
  1285. SERIAL_PROTOCOL(" p:");
  1286. SERIAL_PROTOCOL(Kp);
  1287. SERIAL_PROTOCOL(" i:");
  1288. SERIAL_PROTOCOL(Ki/PID_dT);
  1289. SERIAL_PROTOCOL(" d:");
  1290. SERIAL_PROTOCOL(Kd*PID_dT);
  1291. #ifdef PID_ADD_EXTRUSION_RATE
  1292. SERIAL_PROTOCOL(" c:");
  1293. SERIAL_PROTOCOL(Kc*PID_dT);
  1294. #endif
  1295. SERIAL_PROTOCOLLN("");
  1296. }
  1297. break;
  1298. #endif //PIDTEMP
  1299. #ifdef PIDTEMPBED
  1300. case 304: // M304
  1301. {
  1302. if(code_seen('P')) bedKp = code_value();
  1303. if(code_seen('I')) bedKi = code_value()*PID_dT;
  1304. if(code_seen('D')) bedKd = code_value()/PID_dT;
  1305. updatePID();
  1306. SERIAL_PROTOCOL(MSG_OK);
  1307. SERIAL_PROTOCOL(" p:");
  1308. SERIAL_PROTOCOL(bedKp);
  1309. SERIAL_PROTOCOL(" i:");
  1310. SERIAL_PROTOCOL(bedKi/PID_dT);
  1311. SERIAL_PROTOCOL(" d:");
  1312. SERIAL_PROTOCOL(bedKd*PID_dT);
  1313. SERIAL_PROTOCOLLN("");
  1314. }
  1315. break;
  1316. #endif //PIDTEMP
  1317. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1318. {
  1319. #ifdef PHOTOGRAPH_PIN
  1320. #if (PHOTOGRAPH_PIN > -1)
  1321. const uint8_t NUM_PULSES=16;
  1322. const float PULSE_LENGTH=0.01524;
  1323. for(int i=0; i < NUM_PULSES; i++) {
  1324. WRITE(PHOTOGRAPH_PIN, HIGH);
  1325. _delay_ms(PULSE_LENGTH);
  1326. WRITE(PHOTOGRAPH_PIN, LOW);
  1327. _delay_ms(PULSE_LENGTH);
  1328. }
  1329. delay(7.33);
  1330. for(int i=0; i < NUM_PULSES; i++) {
  1331. WRITE(PHOTOGRAPH_PIN, HIGH);
  1332. _delay_ms(PULSE_LENGTH);
  1333. WRITE(PHOTOGRAPH_PIN, LOW);
  1334. _delay_ms(PULSE_LENGTH);
  1335. }
  1336. #endif
  1337. #endif
  1338. }
  1339. break;
  1340. case 302: // allow cold extrudes
  1341. {
  1342. allow_cold_extrudes(true);
  1343. }
  1344. break;
  1345. case 303: // M303 PID autotune
  1346. {
  1347. float temp = 150.0;
  1348. int e=0;
  1349. int c=5;
  1350. if (code_seen('E')) e=code_value();
  1351. if (e<0)
  1352. temp=70;
  1353. if (code_seen('S')) temp=code_value();
  1354. if (code_seen('C')) c=code_value();
  1355. PID_autotune(temp, e, c);
  1356. }
  1357. break;
  1358. case 400: // M400 finish all moves
  1359. {
  1360. st_synchronize();
  1361. }
  1362. break;
  1363. case 500: // M500 Store settings in EEPROM
  1364. {
  1365. Config_StoreSettings();
  1366. }
  1367. break;
  1368. case 501: // M501 Read settings from EEPROM
  1369. {
  1370. Config_RetrieveSettings();
  1371. }
  1372. break;
  1373. case 502: // M502 Revert to default settings
  1374. {
  1375. Config_ResetDefault();
  1376. }
  1377. break;
  1378. case 503: // M503 print settings currently in memory
  1379. {
  1380. Config_PrintSettings();
  1381. }
  1382. break;
  1383. case 907: // M907 Set digital trimpot motor current using axis codes.
  1384. {
  1385. #if DIGIPOTSS_PIN > -1
  1386. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1387. if(code_seen('B')) digipot_current(4,code_value());
  1388. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1389. #endif
  1390. }
  1391. case 908: // M908 Control digital trimpot directly.
  1392. {
  1393. #if DIGIPOTSS_PIN > -1
  1394. uint8_t channel,current;
  1395. if(code_seen('P')) channel=code_value();
  1396. if(code_seen('S')) current=code_value();
  1397. digitalPotWrite(channel, current);
  1398. #endif
  1399. }
  1400. break;
  1401. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1402. {
  1403. #if X_MS1_PIN > -1
  1404. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1405. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1406. if(code_seen('B')) microstep_mode(4,code_value());
  1407. microstep_readings();
  1408. #endif
  1409. }
  1410. break;
  1411. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1412. {
  1413. #if X_MS1_PIN > -1
  1414. if(code_seen('S')) switch((int)code_value())
  1415. {
  1416. case 1:
  1417. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1418. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1419. break;
  1420. case 2:
  1421. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1422. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1423. break;
  1424. }
  1425. microstep_readings();
  1426. #endif
  1427. }
  1428. break;
  1429. case 999: // M999: Restart after being stopped
  1430. Stopped = false;
  1431. lcd_reset_alert_level();
  1432. gcode_LastN = Stopped_gcode_LastN;
  1433. FlushSerialRequestResend();
  1434. break;
  1435. }
  1436. }
  1437. else if(code_seen('T'))
  1438. {
  1439. tmp_extruder = code_value();
  1440. if(tmp_extruder >= EXTRUDERS) {
  1441. SERIAL_ECHO_START;
  1442. SERIAL_ECHO("T");
  1443. SERIAL_ECHO(tmp_extruder);
  1444. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1445. }
  1446. else {
  1447. active_extruder = tmp_extruder;
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1450. SERIAL_PROTOCOLLN((int)active_extruder);
  1451. }
  1452. }
  1453. else
  1454. {
  1455. SERIAL_ECHO_START;
  1456. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1457. SERIAL_ECHO(cmdbuffer[bufindr]);
  1458. SERIAL_ECHOLNPGM("\"");
  1459. }
  1460. ClearToSend();
  1461. }
  1462. void FlushSerialRequestResend()
  1463. {
  1464. //char cmdbuffer[bufindr][100]="Resend:";
  1465. MYSERIAL.flush();
  1466. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1467. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1468. ClearToSend();
  1469. }
  1470. void ClearToSend()
  1471. {
  1472. previous_millis_cmd = millis();
  1473. #ifdef SDSUPPORT
  1474. if(fromsd[bufindr])
  1475. return;
  1476. #endif //SDSUPPORT
  1477. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1478. }
  1479. void get_coordinates()
  1480. {
  1481. bool seen[4]={false,false,false,false};
  1482. for(int8_t i=0; i < NUM_AXIS; i++) {
  1483. if(code_seen(axis_codes[i]))
  1484. {
  1485. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1486. seen[i]=true;
  1487. }
  1488. else destination[i] = current_position[i]; //Are these else lines really needed?
  1489. }
  1490. if(code_seen('F')) {
  1491. next_feedrate = code_value();
  1492. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1493. }
  1494. #ifdef FWRETRACT
  1495. if(autoretract_enabled)
  1496. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1497. {
  1498. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1499. if(echange<-MIN_RETRACT) //retract
  1500. {
  1501. if(!retracted)
  1502. {
  1503. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1504. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1505. float correctede=-echange-retract_length;
  1506. //to generate the additional steps, not the destination is changed, but inversely the current position
  1507. current_position[E_AXIS]+=-correctede;
  1508. feedrate=retract_feedrate;
  1509. retracted=true;
  1510. }
  1511. }
  1512. else
  1513. if(echange>MIN_RETRACT) //retract_recover
  1514. {
  1515. if(retracted)
  1516. {
  1517. //current_position[Z_AXIS]+=-retract_zlift;
  1518. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1519. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1520. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1521. feedrate=retract_recover_feedrate;
  1522. retracted=false;
  1523. }
  1524. }
  1525. }
  1526. #endif //FWRETRACT
  1527. }
  1528. void get_arc_coordinates()
  1529. {
  1530. #ifdef SF_ARC_FIX
  1531. bool relative_mode_backup = relative_mode;
  1532. relative_mode = true;
  1533. #endif
  1534. get_coordinates();
  1535. #ifdef SF_ARC_FIX
  1536. relative_mode=relative_mode_backup;
  1537. #endif
  1538. if(code_seen('I')) {
  1539. offset[0] = code_value();
  1540. }
  1541. else {
  1542. offset[0] = 0.0;
  1543. }
  1544. if(code_seen('J')) {
  1545. offset[1] = code_value();
  1546. }
  1547. else {
  1548. offset[1] = 0.0;
  1549. }
  1550. }
  1551. void clamp_to_software_endstops(float target[3])
  1552. {
  1553. if (min_software_endstops) {
  1554. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1555. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1556. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1557. }
  1558. if (max_software_endstops) {
  1559. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1560. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1561. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1562. }
  1563. }
  1564. void prepare_move()
  1565. {
  1566. clamp_to_software_endstops(destination);
  1567. previous_millis_cmd = millis();
  1568. // Do not use feedmultiply for E or Z only moves
  1569. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1570. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1571. }
  1572. else {
  1573. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1574. }
  1575. for(int8_t i=0; i < NUM_AXIS; i++) {
  1576. current_position[i] = destination[i];
  1577. }
  1578. }
  1579. void prepare_arc_move(char isclockwise) {
  1580. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1581. // Trace the arc
  1582. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1583. // As far as the parser is concerned, the position is now == target. In reality the
  1584. // motion control system might still be processing the action and the real tool position
  1585. // in any intermediate location.
  1586. for(int8_t i=0; i < NUM_AXIS; i++) {
  1587. current_position[i] = destination[i];
  1588. }
  1589. previous_millis_cmd = millis();
  1590. }
  1591. #ifdef CONTROLLERFAN_PIN
  1592. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1593. unsigned long lastMotorCheck = 0;
  1594. void controllerFan()
  1595. {
  1596. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1597. {
  1598. lastMotorCheck = millis();
  1599. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1600. #if EXTRUDERS > 2
  1601. || !READ(E2_ENABLE_PIN)
  1602. #endif
  1603. #if EXTRUDER > 1
  1604. || !READ(E2_ENABLE_PIN)
  1605. #endif
  1606. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1607. {
  1608. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1609. }
  1610. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1611. {
  1612. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1613. }
  1614. else
  1615. {
  1616. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1617. }
  1618. }
  1619. }
  1620. #endif
  1621. void manage_inactivity()
  1622. {
  1623. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1624. if(max_inactive_time)
  1625. kill();
  1626. if(stepper_inactive_time) {
  1627. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1628. {
  1629. if(blocks_queued() == false) {
  1630. disable_x();
  1631. disable_y();
  1632. disable_z();
  1633. disable_e0();
  1634. disable_e1();
  1635. disable_e2();
  1636. }
  1637. }
  1638. }
  1639. #if( KILL_PIN>-1 )
  1640. if( 0 == READ(KILL_PIN) )
  1641. kill();
  1642. #endif
  1643. #ifdef CONTROLLERFAN_PIN
  1644. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1645. #endif
  1646. #ifdef EXTRUDER_RUNOUT_PREVENT
  1647. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1648. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1649. {
  1650. bool oldstatus=READ(E0_ENABLE_PIN);
  1651. enable_e0();
  1652. float oldepos=current_position[E_AXIS];
  1653. float oldedes=destination[E_AXIS];
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1655. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1656. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1657. current_position[E_AXIS]=oldepos;
  1658. destination[E_AXIS]=oldedes;
  1659. plan_set_e_position(oldepos);
  1660. previous_millis_cmd=millis();
  1661. st_synchronize();
  1662. WRITE(E0_ENABLE_PIN,oldstatus);
  1663. }
  1664. #endif
  1665. check_axes_activity();
  1666. }
  1667. void kill()
  1668. {
  1669. cli(); // Stop interrupts
  1670. disable_heater();
  1671. disable_x();
  1672. disable_y();
  1673. disable_z();
  1674. disable_e0();
  1675. disable_e1();
  1676. disable_e2();
  1677. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1678. SERIAL_ERROR_START;
  1679. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1680. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  1681. suicide();
  1682. while(1) { /* Intentionally left empty */ } // Wait for reset
  1683. }
  1684. void Stop()
  1685. {
  1686. disable_heater();
  1687. if(Stopped == false) {
  1688. Stopped = true;
  1689. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1690. SERIAL_ERROR_START;
  1691. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1692. LCD_MESSAGEPGM(MSG_STOPPED);
  1693. }
  1694. }
  1695. bool IsStopped() { return Stopped; };
  1696. #ifdef FAST_PWM_FAN
  1697. void setPwmFrequency(uint8_t pin, int val)
  1698. {
  1699. val &= 0x07;
  1700. switch(digitalPinToTimer(pin))
  1701. {
  1702. #if defined(TCCR0A)
  1703. case TIMER0A:
  1704. case TIMER0B:
  1705. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  1706. // TCCR0B |= val;
  1707. break;
  1708. #endif
  1709. #if defined(TCCR1A)
  1710. case TIMER1A:
  1711. case TIMER1B:
  1712. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  1713. // TCCR1B |= val;
  1714. break;
  1715. #endif
  1716. #if defined(TCCR2)
  1717. case TIMER2:
  1718. case TIMER2:
  1719. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  1720. TCCR2 |= val;
  1721. break;
  1722. #endif
  1723. #if defined(TCCR2A)
  1724. case TIMER2A:
  1725. case TIMER2B:
  1726. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  1727. TCCR2B |= val;
  1728. break;
  1729. #endif
  1730. #if defined(TCCR3A)
  1731. case TIMER3A:
  1732. case TIMER3B:
  1733. case TIMER3C:
  1734. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  1735. TCCR3B |= val;
  1736. break;
  1737. #endif
  1738. #if defined(TCCR4A)
  1739. case TIMER4A:
  1740. case TIMER4B:
  1741. case TIMER4C:
  1742. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  1743. TCCR4B |= val;
  1744. break;
  1745. #endif
  1746. #if defined(TCCR5A)
  1747. case TIMER5A:
  1748. case TIMER5B:
  1749. case TIMER5C:
  1750. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  1751. TCCR5B |= val;
  1752. break;
  1753. #endif
  1754. }
  1755. }
  1756. #endif //FAST_PWM_FAN
  1757. bool setTargetedHotend(int code){
  1758. tmp_extruder = active_extruder;
  1759. if(code_seen('T')) {
  1760. tmp_extruder = code_value();
  1761. if(tmp_extruder >= EXTRUDERS) {
  1762. SERIAL_ECHO_START;
  1763. switch(code){
  1764. case 104:
  1765. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  1766. break;
  1767. case 105:
  1768. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  1769. break;
  1770. case 109:
  1771. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  1772. break;
  1773. }
  1774. SERIAL_ECHOLN(tmp_extruder);
  1775. return true;
  1776. }
  1777. }
  1778. return false;
  1779. }