My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_G29.cpp 70KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "ubl.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "ultralcd.h"
  31. #include "stepper.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. extern float destination[XYZE];
  35. extern float current_position[XYZE];
  36. void lcd_return_to_status();
  37. bool lcd_clicked();
  38. void lcd_implementation_clear();
  39. void lcd_mesh_edit_setup(float initial);
  40. float lcd_mesh_edit();
  41. void lcd_z_offset_edit_setup(float);
  42. float lcd_z_offset_edit();
  43. extern float meshedit_done;
  44. extern long babysteps_done;
  45. extern float code_value_float();
  46. extern uint8_t code_value_byte();
  47. extern bool code_value_bool();
  48. extern bool code_has_value();
  49. extern float probe_pt(float x, float y, bool, int);
  50. extern bool set_probe_deployed(bool);
  51. void smart_fill_mesh();
  52. float measure_business_card_thickness(float &in_height);
  53. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  54. bool ProbeStay = true;
  55. #define SIZE_OF_LITTLE_RAISE 1
  56. #define BIG_RAISE_NOT_NEEDED 0
  57. extern void lcd_status_screen();
  58. typedef void (*screenFunc_t)();
  59. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  60. /**
  61. * G29: Unified Bed Leveling by Roxy
  62. *
  63. * Parameters understood by this leveling system:
  64. *
  65. * A Activate Activate the Unified Bed Leveling system.
  66. *
  67. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  68. * G29 P2 B. The mode of G29 P2 allows you to use a business card or recipe card
  69. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  70. * can easily feel the nozzle getting to the same height by the amount of resistance
  71. * the business card exhibits to movement. You should try to achieve the same amount
  72. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  73. * You should be very careful not to drive the nozzle into the business card with a
  74. * lot of force as it is very possible to cause damage to your printer if your are
  75. * careless. If you use the B option with G29 P2 B you can omit the numeric value
  76. * on first use to measure the business card's thickness. Subsequent usage of 'B'
  77. * will apply the previously-measured thickness as the default.
  78. * Note: A non-compressible Spark Gap feeler gauge is recommended over a Business Card.
  79. *
  80. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  81. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  82. * continue the generation of a partially constructed Mesh without invalidating what has
  83. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  84. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  85. * it indicates to use the current location instead of defaulting to the center of the print bed.
  86. *
  87. * D Disable Disable the Unified Bed Leveling system.
  88. *
  89. * E Stow_probe Stow the probe after each sampled point.
  90. *
  91. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  92. * specified height, no correction is applied and natural printer kenimatics take over. If no
  93. * number is specified for the command, 10mm is assumed to be reasonable.
  94. *
  95. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  96. * default is 5mm.
  97. *
  98. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  99. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  100. * point to the location is invalidated. The 'T' parameter is also available to produce
  101. * a map after the operation. This command is useful to invalidate a portion of the
  102. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  103. * attempting to invalidate an isolated bad point in the mesh, the 'T' option will indicate
  104. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  105. * the bed and use this feature to select the center of the area (or cell) you want to
  106. * invalidate.
  107. *
  108. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  109. * Not specifying a grid size will invoke the 3-Point leveling function.
  110. *
  111. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  112. * command literally performs a diff between two Meshes.
  113. *
  114. * L Load Load Mesh from the previously activated location in the EEPROM.
  115. *
  116. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  117. * for subsequent Load and Store operations.
  118. *
  119. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  120. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  121. * each additional Phase that processes it.
  122. *
  123. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  124. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  125. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  126. * a subsequent G or T leveling operation for backward compatibility.
  127. *
  128. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  129. * the Z-Probe. Usually the probe can not reach all areas that the nozzle can reach.
  130. * In Cartesian printers, mesh points within the X_OFFSET_FROM_EXTRUDER and Y_OFFSET_FROM_EXTRUDER
  131. * area can not be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
  132. * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
  133. *
  134. * These points will be handled in Phase 2 and Phase 3. If the Phase 1 command is given the
  135. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  136. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  137. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  138. * parameter can be given to prioritize where the command should be trying to measure points.
  139. * If the X and Y parameters are not specified the current probe position is used.
  140. * P1 accepts a 'T' (Topology) parameter so you can observe mesh generation.
  141. * P1 also watches for the LCD Panel Encoder Switch to be held down, and will suspend
  142. * generation of the Mesh in that case. (Note: This check is only done between probe points,
  143. * so you must press and hold the switch until the Phase 1 command detects it.)
  144. *
  145. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  146. * parameter to control the height between Mesh points. The default height for movement
  147. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  148. * calibration less time consuming. You will be running the nozzle down until it just barely
  149. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  150. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  151. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  152. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  153. *
  154. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  155. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  156. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  157. * area you are manually probing. Note that the command tries to start you in a corner
  158. * of the bed where movement will be predictable. You can force the location to be used in
  159. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  160. * print out a Mesh Map (G29 T) to understand where the mesh is invalidated and where
  161. * the nozzle will need to move in order to complete the command. The C parameter is
  162. * available on the Phase 2 command also and indicates the search for points to measure should
  163. * be done based on the current location of the nozzle.
  164. *
  165. * A B parameter is also available for this command and described up above. It places the
  166. * manual probe subsystem into Business Card mode where the thickness of a business card is
  167. * measured and then used to accurately set the nozzle height in all manual probing for the
  168. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  169. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  170. * better results if you use a flexible Shim that does not compress very much. That makes it
  171. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  172. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  173. * to get it to grasp the shim with the same force as when you measured the thickness of the
  174. * shim at the start of the command.
  175. *
  176. * Phase 2 allows the T (Map) parameter to be specified. This helps the user see the progression
  177. * of the Mesh being built.
  178. *
  179. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
  180. * user can go down. If the user specifies the value using the C parameter, the closest invalid
  181. * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
  182. * parameter with the C version of the command.
  183. *
  184. * A second version of the fill command is available if no C constant is specified. Not
  185. * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
  186. * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
  187. * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
  188. * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
  189. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
  190. * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
  191. * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
  192. * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
  193. * numbers. You should use some scrutiny and caution.
  194. *
  195. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
  196. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  197. * (More work and details on doing this later!)
  198. * The System will search for the closest Mesh Point to the nozzle. It will move the
  199. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  200. * so it is just barely touching the bed. When the user clicks the control, the System
  201. * will lock in that height for that point in the Mesh Compensation System.
  202. *
  203. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  204. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  205. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  206. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  207. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  208. * The command can be terminated early (or after the area of interest has been edited) by
  209. * pressing and holding the encoder wheel until the system recognizes the exit request.
  210. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  211. *
  212. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  213. * information left on the printer's bed from the G26 command it is very straight forward
  214. * and easy to fine tune the Mesh. One concept that is important to remember and that
  215. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  216. * If you have too little clearance and not much plastic was extruded in an area, you want to
  217. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  218. * RAISE the Mesh Point at that location.
  219. *
  220. *
  221. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  222. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  223. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  224. * execute a G29 P6 C <mean height>.
  225. *
  226. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  227. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  228. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  229. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  230. * 0.000 at the Z Home location.
  231. *
  232. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  233. * command is not anticipated to be of much value to the typical user. It is intended
  234. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  235. *
  236. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  237. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  238. *
  239. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  240. * current state of the Unified Bed Leveling system in the EEPROM.
  241. *
  242. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  243. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  244. * extend to a limit related to the available EEPROM storage.
  245. *
  246. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  247. * at a later date. The GCode output can be saved and later replayed by the host software
  248. * to reconstruct the current mesh on another machine.
  249. *
  250. * T Topology Display the Mesh Map Topology.
  251. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  252. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  253. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  254. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  255. *
  256. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  257. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  258. * when the entire bed doesn't need to be probed because it will be adjusted.
  259. *
  260. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  261. *
  262. * W What? Display valuable Unified Bed Leveling System data.
  263. *
  264. * X # X Location for this command
  265. *
  266. * Y # Y Location for this command
  267. *
  268. *
  269. * Release Notes:
  270. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  271. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  272. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  273. * respectively.)
  274. *
  275. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  276. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  277. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  278. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  279. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  280. * perform a small print and check out your settings quicker. You do not need to populate the
  281. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  282. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  283. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  284. *
  285. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  286. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  287. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  288. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  289. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  290. * this is going to be helpful to the users!)
  291. *
  292. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  293. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  294. * we now have the functionality and features of all three systems combined.
  295. */
  296. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  297. static int g29_verbose_level, phase_value, repetition_cnt,
  298. storage_slot = 0, map_type, grid_size;
  299. static bool repeat_flag, c_flag, x_flag, y_flag;
  300. static float x_pos, y_pos, card_thickness = 0.0, ubl_constant = 0.0;
  301. extern void lcd_setstatus(const char* message, const bool persist);
  302. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  303. void __attribute__((optimize("O0"))) gcode_G29() {
  304. if (!settings.calc_num_meshes()) {
  305. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  306. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  307. return;
  308. }
  309. // Check for commands that require the printer to be homed.
  310. if (axis_unhomed_error()) {
  311. if (code_seen('J'))
  312. home_all_axes();
  313. else if (code_seen('P')) {
  314. if (code_has_value()) {
  315. const int p_val = code_value_int();
  316. if (p_val == 1 || p_val == 2 || p_val == 4)
  317. home_all_axes();
  318. }
  319. }
  320. }
  321. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  322. // Invalidate Mesh Points. This command is a little bit asymetrical because
  323. // it directly specifies the repetition count and does not use the 'R' parameter.
  324. if (code_seen('I')) {
  325. uint8_t cnt = 0;
  326. repetition_cnt = code_has_value() ? code_value_int() : 1;
  327. while (repetition_cnt--) {
  328. if (cnt > 20) { cnt = 0; idle(); }
  329. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  330. if (location.x_index < 0) {
  331. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  332. break; // No more invalid Mesh Points to populate
  333. }
  334. ubl.z_values[location.x_index][location.y_index] = NAN;
  335. cnt++;
  336. }
  337. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  338. }
  339. if (code_seen('Q')) {
  340. const int test_pattern = code_has_value() ? code_value_int() : -99;
  341. if (!WITHIN(test_pattern, -1, 2)) {
  342. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  343. return;
  344. }
  345. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  346. switch (test_pattern) {
  347. case -1:
  348. g29_eeprom_dump();
  349. break;
  350. case 0:
  351. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  352. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  353. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  354. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  355. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  356. }
  357. }
  358. break;
  359. case 1:
  360. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  361. ubl.z_values[x][x] += 9.999;
  362. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  363. }
  364. break;
  365. case 2:
  366. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  367. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  368. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  369. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  370. break;
  371. }
  372. }
  373. if (code_seen('J')) {
  374. if (grid_size) { // if not 0 it is a normal n x n grid being probed
  375. ubl.save_ubl_active_state_and_disable();
  376. ubl.tilt_mesh_based_on_probed_grid(code_seen('T'));
  377. ubl.restore_ubl_active_state_and_leave();
  378. } else { // grid_size==0 which means a 3-Point leveling has been requested
  379. float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
  380. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
  381. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  382. if ( isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  383. SERIAL_ERROR_START;
  384. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  385. goto LEAVE;
  386. }
  387. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  388. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  389. ubl.save_ubl_active_state_and_disable();
  390. z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  391. z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  392. z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  393. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  394. ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
  395. ubl.restore_ubl_active_state_and_leave();
  396. }
  397. }
  398. if (code_seen('P')) {
  399. if (WITHIN(phase_value, 0, 1) && ubl.state.storage_slot == -1) {
  400. ubl.state.storage_slot = 0;
  401. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  402. }
  403. switch (phase_value) {
  404. case 0:
  405. //
  406. // Zero Mesh Data
  407. //
  408. ubl.reset();
  409. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  410. break;
  411. case 1:
  412. //
  413. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  414. //
  415. if (!code_seen('C')) {
  416. ubl.invalidate();
  417. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  418. }
  419. if (g29_verbose_level > 1) {
  420. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  421. SERIAL_PROTOCOLCHAR(',');
  422. SERIAL_PROTOCOL(y_pos);
  423. SERIAL_PROTOCOLLNPGM(").\n");
  424. }
  425. ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  426. code_seen('T'), code_seen('E'), code_seen('U'));
  427. break;
  428. case 2: {
  429. //
  430. // Manually Probe Mesh in areas that can't be reached by the probe
  431. //
  432. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  433. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  434. if (!x_flag && !y_flag) {
  435. /**
  436. * Use a good default location for the path.
  437. * The flipped > and < operators in these comparisons is intentional.
  438. * It should cause the probed points to follow a nice path on Cartesian printers.
  439. * It may make sense to have Delta printers default to the center of the bed.
  440. * Until that is decided, this can be forced with the X and Y parameters.
  441. */
  442. #if IS_KINEMATIC
  443. x_pos = X_HOME_POS;
  444. y_pos = Y_HOME_POS;
  445. #else // cartesian
  446. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  447. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  448. #endif
  449. }
  450. if (code_seen('C')) {
  451. x_pos = current_position[X_AXIS];
  452. y_pos = current_position[Y_AXIS];
  453. }
  454. float height = Z_CLEARANCE_BETWEEN_PROBES;
  455. if (code_seen('B')) {
  456. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  457. if (fabs(card_thickness) > 1.5) {
  458. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  459. return;
  460. }
  461. }
  462. if (code_seen('H') && code_has_value()) height = code_value_float();
  463. if ( !position_is_reachable_xy( x_pos, y_pos )) {
  464. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  465. return;
  466. }
  467. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('T'));
  468. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  469. } break;
  470. case 3: {
  471. /**
  472. * Populate invalid mesh areas. Proceed with caution.
  473. * Two choices are available:
  474. * - Specify a constant with the 'C' parameter.
  475. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  476. */
  477. if (c_flag) {
  478. if (repetition_cnt >= GRID_MAX_POINTS) {
  479. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
  480. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
  481. ubl.z_values[x][y] = ubl_constant;
  482. }
  483. }
  484. }
  485. else {
  486. while (repetition_cnt--) { // this only populates reachable mesh points near
  487. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  488. if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
  489. ubl.z_values[location.x_index][location.y_index] = ubl_constant;
  490. }
  491. }
  492. } else {
  493. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  494. }
  495. break;
  496. }
  497. case 4:
  498. //
  499. // Fine Tune (i.e., Edit) the Mesh
  500. //
  501. fine_tune_mesh(x_pos, y_pos, code_seen('T'));
  502. break;
  503. case 5: ubl.find_mean_mesh_height(); break;
  504. case 6: ubl.shift_mesh_height(); break;
  505. }
  506. }
  507. //
  508. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  509. // good to have the extra information. Soon... we prune this to just a few items
  510. //
  511. if (code_seen('W')) ubl.g29_what_command();
  512. //
  513. // When we are fully debugged, this may go away. But there are some valid
  514. // use cases for the users. So we can wait and see what to do with it.
  515. //
  516. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  517. g29_compare_current_mesh_to_stored_mesh();
  518. //
  519. // Load a Mesh from the EEPROM
  520. //
  521. if (code_seen('L')) { // Load Current Mesh Data
  522. storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
  523. int16_t a = settings.calc_num_meshes();
  524. if (!a) {
  525. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  526. return;
  527. }
  528. if (!WITHIN(storage_slot, 0, a - 1)) {
  529. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  530. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  531. return;
  532. }
  533. settings.load_mesh(storage_slot);
  534. ubl.state.storage_slot = storage_slot;
  535. SERIAL_PROTOCOLLNPGM("Done.");
  536. }
  537. //
  538. // Store a Mesh in the EEPROM
  539. //
  540. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  541. storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
  542. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  543. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  544. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  545. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  546. if (!isnan(ubl.z_values[x][y])) {
  547. SERIAL_ECHOPAIR("M421 I ", x);
  548. SERIAL_ECHOPAIR(" J ", y);
  549. SERIAL_ECHOPGM(" Z ");
  550. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  551. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
  552. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
  553. SERIAL_EOL;
  554. }
  555. return;
  556. }
  557. int16_t a = settings.calc_num_meshes();
  558. if (!a) {
  559. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  560. goto LEAVE;
  561. }
  562. if (!WITHIN(storage_slot, 0, a - 1)) {
  563. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  564. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  565. goto LEAVE;
  566. }
  567. settings.store_mesh(storage_slot);
  568. ubl.state.storage_slot = storage_slot;
  569. SERIAL_PROTOCOLLNPGM("Done.");
  570. }
  571. if (code_seen('T'))
  572. ubl.display_map(code_has_value() ? code_value_int() : 0);
  573. /*
  574. * This code may not be needed... Prepare for its removal...
  575. *
  576. if (code_seen('Z')) {
  577. if (code_has_value())
  578. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  579. else {
  580. ubl.save_ubl_active_state_and_disable();
  581. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  582. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  583. measured_z = 1.5;
  584. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  585. // The user is not going to be locking in a new Z-Offset very often so
  586. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  587. lcd_implementation_clear();
  588. lcd_z_offset_edit_setup(measured_z);
  589. KEEPALIVE_STATE(PAUSED_FOR_USER);
  590. do {
  591. measured_z = lcd_z_offset_edit();
  592. idle();
  593. do_blocking_move_to_z(measured_z);
  594. } while (!ubl_lcd_clicked());
  595. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  596. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  597. // or here. So, until we are done looking for a long Encoder Wheel Press,
  598. // we need to take control of the panel
  599. KEEPALIVE_STATE(IN_HANDLER);
  600. lcd_return_to_status();
  601. const millis_t nxt = millis() + 1500UL;
  602. while (ubl_lcd_clicked()) { // debounce and watch for abort
  603. idle();
  604. if (ELAPSED(millis(), nxt)) {
  605. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  606. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  607. LCD_MESSAGEPGM("Z-Offset Stopped"); // TODO: Make translatable string
  608. ubl.restore_ubl_active_state_and_leave();
  609. goto LEAVE;
  610. }
  611. }
  612. ubl.has_control_of_lcd_panel = false;
  613. safe_delay(20); // We don't want any switch noise.
  614. ubl.state.z_offset = measured_z;
  615. lcd_implementation_clear();
  616. ubl.restore_ubl_active_state_and_leave();
  617. }
  618. }
  619. */
  620. LEAVE:
  621. lcd_reset_alert_level();
  622. LCD_MESSAGEPGM("");
  623. lcd_quick_feedback();
  624. ubl.has_control_of_lcd_panel = false;
  625. }
  626. void unified_bed_leveling::find_mean_mesh_height() {
  627. float sum = 0.0;
  628. int n = 0;
  629. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  630. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  631. if (!isnan(ubl.z_values[x][y])) {
  632. sum += ubl.z_values[x][y];
  633. n++;
  634. }
  635. const float mean = sum / n;
  636. //
  637. // Now do the sumation of the squares of difference from mean
  638. //
  639. float sum_of_diff_squared = 0.0;
  640. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  641. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  642. if (!isnan(ubl.z_values[x][y]))
  643. sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
  644. SERIAL_ECHOLNPAIR("# of samples: ", n);
  645. SERIAL_ECHOPGM("Mean Mesh Height: ");
  646. SERIAL_ECHO_F(mean, 6);
  647. SERIAL_EOL;
  648. const float sigma = sqrt(sum_of_diff_squared / (n + 1));
  649. SERIAL_ECHOPGM("Standard Deviation: ");
  650. SERIAL_ECHO_F(sigma, 6);
  651. SERIAL_EOL;
  652. if (c_flag)
  653. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  654. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  655. if (!isnan(ubl.z_values[x][y]))
  656. ubl.z_values[x][y] -= mean + ubl_constant;
  657. }
  658. void unified_bed_leveling::shift_mesh_height() {
  659. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  660. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  661. if (!isnan(ubl.z_values[x][y]))
  662. ubl.z_values[x][y] += ubl_constant;
  663. }
  664. /**
  665. * Probe all invalidated locations of the mesh that can be reached by the probe.
  666. * This attempts to fill in locations closest to the nozzle's start location first.
  667. */
  668. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
  669. mesh_index_pair location;
  670. ubl.has_control_of_lcd_panel = true;
  671. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  672. DEPLOY_PROBE();
  673. uint16_t max_iterations = GRID_MAX_POINTS;
  674. do {
  675. if (ubl_lcd_clicked()) {
  676. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  677. lcd_quick_feedback();
  678. STOW_PROBE();
  679. while (ubl_lcd_clicked()) idle();
  680. ubl.has_control_of_lcd_panel = false;
  681. ubl.restore_ubl_active_state_and_leave();
  682. safe_delay(50); // Debounce the Encoder wheel
  683. return;
  684. }
  685. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
  686. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  687. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  688. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  689. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  690. ubl.z_values[location.x_index][location.y_index] = measured_z;
  691. }
  692. if (do_ubl_mesh_map) ubl.display_map(map_type);
  693. } while ((location.x_index >= 0) && (--max_iterations));
  694. STOW_PROBE();
  695. ubl.restore_ubl_active_state_and_leave();
  696. do_blocking_move_to_xy(
  697. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  698. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  699. );
  700. }
  701. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  702. matrix_3x3 rotation;
  703. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  704. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  705. (z1 - z2) ),
  706. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  707. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  708. (z3 - z2) ),
  709. normal = vector_3::cross(v1, v2);
  710. normal = normal.get_normal();
  711. /**
  712. * This vector is normal to the tilted plane.
  713. * However, we don't know its direction. We need it to point up. So if
  714. * Z is negative, we need to invert the sign of all components of the vector
  715. */
  716. if (normal.z < 0.0) {
  717. normal.x = -normal.x;
  718. normal.y = -normal.y;
  719. normal.z = -normal.z;
  720. }
  721. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  722. if (g29_verbose_level > 2) {
  723. SERIAL_ECHOPGM("bed plane normal = [");
  724. SERIAL_PROTOCOL_F(normal.x, 7);
  725. SERIAL_PROTOCOLCHAR(',');
  726. SERIAL_PROTOCOL_F(normal.y, 7);
  727. SERIAL_PROTOCOLCHAR(',');
  728. SERIAL_PROTOCOL_F(normal.z, 7);
  729. SERIAL_ECHOLNPGM("]");
  730. rotation.debug(PSTR("rotation matrix:"));
  731. }
  732. //
  733. // All of 3 of these points should give us the same d constant
  734. //
  735. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  736. d = t + normal.z * z1;
  737. if (g29_verbose_level>2) {
  738. SERIAL_ECHOPGM("D constant: ");
  739. SERIAL_PROTOCOL_F(d, 7);
  740. SERIAL_ECHOLNPGM(" ");
  741. }
  742. #if ENABLED(DEBUG_LEVELING_FEATURE)
  743. if (DEBUGGING(LEVELING)) {
  744. SERIAL_ECHOPGM("d from 1st point: ");
  745. SERIAL_ECHO_F(d, 6);
  746. SERIAL_EOL;
  747. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  748. d = t + normal.z * z2;
  749. SERIAL_ECHOPGM("d from 2nd point: ");
  750. SERIAL_ECHO_F(d, 6);
  751. SERIAL_EOL;
  752. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  753. d = t + normal.z * z3;
  754. SERIAL_ECHOPGM("d from 3rd point: ");
  755. SERIAL_ECHO_F(d, 6);
  756. SERIAL_EOL;
  757. }
  758. #endif
  759. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  760. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  761. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  762. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  763. z_tmp = ubl.z_values[i][j];
  764. #if ENABLED(DEBUG_LEVELING_FEATURE)
  765. if (DEBUGGING(LEVELING)) {
  766. SERIAL_ECHOPGM("before rotation = [");
  767. SERIAL_PROTOCOL_F(x_tmp, 7);
  768. SERIAL_PROTOCOLCHAR(',');
  769. SERIAL_PROTOCOL_F(y_tmp, 7);
  770. SERIAL_PROTOCOLCHAR(',');
  771. SERIAL_PROTOCOL_F(z_tmp, 7);
  772. SERIAL_ECHOPGM("] ---> ");
  773. safe_delay(20);
  774. }
  775. #endif
  776. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  778. if (DEBUGGING(LEVELING)) {
  779. SERIAL_ECHOPGM("after rotation = [");
  780. SERIAL_PROTOCOL_F(x_tmp, 7);
  781. SERIAL_PROTOCOLCHAR(',');
  782. SERIAL_PROTOCOL_F(y_tmp, 7);
  783. SERIAL_PROTOCOLCHAR(',');
  784. SERIAL_PROTOCOL_F(z_tmp, 7);
  785. SERIAL_ECHOLNPGM("]");
  786. safe_delay(55);
  787. }
  788. #endif
  789. ubl.z_values[i][j] += z_tmp - d;
  790. }
  791. }
  792. }
  793. float use_encoder_wheel_to_measure_point() {
  794. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  795. delay(50); // debounce
  796. KEEPALIVE_STATE(PAUSED_FOR_USER);
  797. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  798. idle();
  799. if (ubl.encoder_diff) {
  800. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  801. ubl.encoder_diff = 0;
  802. }
  803. }
  804. KEEPALIVE_STATE(IN_HANDLER);
  805. return current_position[Z_AXIS];
  806. }
  807. static void echo_and_take_a_measurement() {
  808. SERIAL_PROTOCOLLNPGM(" and take a measurement.");
  809. }
  810. float measure_business_card_thickness(float &in_height) {
  811. ubl.has_control_of_lcd_panel = true;
  812. ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  813. do_blocking_move_to_z(in_height);
  814. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  815. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  816. stepper.synchronize();
  817. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  818. LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
  819. lcd_goto_screen(lcd_status_screen);
  820. echo_and_take_a_measurement();
  821. const float z1 = use_encoder_wheel_to_measure_point();
  822. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  823. stepper.synchronize();
  824. SERIAL_PROTOCOLPGM("Remove shim");
  825. LCD_MESSAGEPGM("Remove & measure bed"); // TODO: Make translatable string
  826. echo_and_take_a_measurement();
  827. const float z2 = use_encoder_wheel_to_measure_point();
  828. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  829. const float thickness = abs(z1 - z2);
  830. if (g29_verbose_level > 1) {
  831. SERIAL_PROTOCOLPGM("Business Card is ");
  832. SERIAL_PROTOCOL_F(thickness, 4);
  833. SERIAL_PROTOCOLLNPGM("mm thick.");
  834. }
  835. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  836. ubl.has_control_of_lcd_panel = false;
  837. ubl.restore_ubl_active_state_and_leave();
  838. return thickness;
  839. }
  840. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  841. ubl.has_control_of_lcd_panel = true;
  842. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  843. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  844. do_blocking_move_to_xy(lx, ly);
  845. lcd_goto_screen(lcd_status_screen);
  846. mesh_index_pair location;
  847. do {
  848. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  849. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  850. if (location.x_index < 0 && location.y_index < 0) continue;
  851. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  852. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]),
  853. xProbe = LOGICAL_X_POSITION(rawx),
  854. yProbe = LOGICAL_Y_POSITION(rawy);
  855. if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  856. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  857. LCD_MESSAGEPGM("Moving to next"); // TODO: Make translatable string
  858. do_blocking_move_to_xy(xProbe, yProbe);
  859. do_blocking_move_to_z(z_clearance);
  860. KEEPALIVE_STATE(PAUSED_FOR_USER);
  861. ubl.has_control_of_lcd_panel = true;
  862. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  863. if (code_seen('B'))
  864. LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
  865. else
  866. LCD_MESSAGEPGM("Measure"); // TODO: Make translatable string
  867. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  868. delay(50); // debounce
  869. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  870. idle();
  871. if (ubl.encoder_diff) {
  872. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  873. ubl.encoder_diff = 0;
  874. }
  875. }
  876. const millis_t nxt = millis() + 1500L;
  877. while (ubl_lcd_clicked()) { // debounce and watch for abort
  878. idle();
  879. if (ELAPSED(millis(), nxt)) {
  880. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  881. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  882. lcd_quick_feedback();
  883. while (ubl_lcd_clicked()) idle();
  884. ubl.has_control_of_lcd_panel = false;
  885. KEEPALIVE_STATE(IN_HANDLER);
  886. ubl.restore_ubl_active_state_and_leave();
  887. return;
  888. }
  889. }
  890. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  891. if (g29_verbose_level > 2) {
  892. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  893. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  894. SERIAL_EOL;
  895. }
  896. } while (location.x_index >= 0 && location.y_index >= 0);
  897. if (do_ubl_mesh_map) ubl.display_map(map_type);
  898. ubl.restore_ubl_active_state_and_leave();
  899. KEEPALIVE_STATE(IN_HANDLER);
  900. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  901. do_blocking_move_to_xy(lx, ly);
  902. }
  903. bool g29_parameter_parsing() {
  904. bool err_flag = false;
  905. LCD_MESSAGEPGM("Doing G29 UBL!"); // TODO: Make translatable string
  906. lcd_quick_feedback();
  907. ubl_constant = 0.0;
  908. repetition_cnt = 0;
  909. x_flag = code_seen('X') && code_has_value();
  910. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  911. y_flag = code_seen('Y') && code_has_value();
  912. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  913. repeat_flag = code_seen('R');
  914. if (repeat_flag) {
  915. repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
  916. NOMORE(repetition_cnt, GRID_MAX_POINTS);
  917. if (repetition_cnt < 1) {
  918. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  919. return UBL_ERR;
  920. }
  921. }
  922. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  923. if (!WITHIN(g29_verbose_level, 0, 4)) {
  924. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  925. err_flag = true;
  926. }
  927. if (code_seen('P')) {
  928. phase_value = code_value_int();
  929. if (!WITHIN(phase_value, 0, 6)) {
  930. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  931. err_flag = true;
  932. }
  933. }
  934. if (code_seen('J')) {
  935. grid_size = code_has_value() ? code_value_int() : 0;
  936. if (grid_size!=0 && !WITHIN(grid_size, 2, 9)) {
  937. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  938. err_flag = true;
  939. }
  940. }
  941. if (x_flag != y_flag) {
  942. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  943. err_flag = true;
  944. }
  945. if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
  946. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  947. err_flag = true;
  948. }
  949. if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
  950. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  951. err_flag = true;
  952. }
  953. if (err_flag) return UBL_ERR;
  954. // Activate or deactivate UBL
  955. if (code_seen('A')) {
  956. if (code_seen('D')) {
  957. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  958. return UBL_ERR;
  959. }
  960. ubl.state.active = true;
  961. ubl.report_state();
  962. }
  963. else if (code_seen('D')) {
  964. ubl.state.active = false;
  965. ubl.report_state();
  966. }
  967. // Set global 'C' flag and its value
  968. if ((c_flag = code_seen('C')))
  969. ubl_constant = code_value_float();
  970. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  971. if (code_seen('F') && code_has_value()) {
  972. const float fh = code_value_float();
  973. if (!WITHIN(fh, 0.0, 100.0)) {
  974. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  975. return UBL_ERR;
  976. }
  977. set_z_fade_height(fh);
  978. }
  979. #endif
  980. map_type = code_seen('T') && code_has_value() ? code_value_int() : 0;
  981. if (!WITHIN(map_type, 0, 1)) {
  982. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  983. return UBL_ERR;
  984. }
  985. return UBL_OK;
  986. }
  987. static int ubl_state_at_invocation = 0,
  988. ubl_state_recursion_chk = 0;
  989. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  990. ubl_state_recursion_chk++;
  991. if (ubl_state_recursion_chk != 1) {
  992. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  993. LCD_MESSAGEPGM("save_UBL_active() error"); // TODO: Make translatable string
  994. lcd_quick_feedback();
  995. return;
  996. }
  997. ubl_state_at_invocation = ubl.state.active;
  998. ubl.state.active = 0;
  999. }
  1000. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1001. if (--ubl_state_recursion_chk) {
  1002. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1003. LCD_MESSAGEPGM("restore_UBL_active() error"); // TODO: Make translatable string
  1004. lcd_quick_feedback();
  1005. return;
  1006. }
  1007. ubl.state.active = ubl_state_at_invocation;
  1008. }
  1009. /**
  1010. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1011. * good to have the extra information. Soon... we prune this to just a few items
  1012. */
  1013. void unified_bed_leveling::g29_what_command() {
  1014. report_state();
  1015. if (state.storage_slot == -1)
  1016. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1017. else {
  1018. SERIAL_PROTOCOLPAIR("Mesh ", state.storage_slot);
  1019. SERIAL_PROTOCOLPGM(" Loaded.");
  1020. }
  1021. SERIAL_EOL;
  1022. safe_delay(50);
  1023. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1024. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1025. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1026. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1027. SERIAL_EOL;
  1028. #endif
  1029. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1030. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1031. SERIAL_EOL;
  1032. SERIAL_ECHOLNPAIR("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X) "=", UBL_MESH_MIN_X);
  1033. SERIAL_ECHOLNPAIR("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y) "=", UBL_MESH_MIN_Y);
  1034. safe_delay(25);
  1035. SERIAL_ECHOLNPAIR("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X) "=", UBL_MESH_MAX_X);
  1036. SERIAL_ECHOLNPAIR("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y) "=", UBL_MESH_MAX_Y);
  1037. safe_delay(25);
  1038. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1039. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1040. safe_delay(25);
  1041. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1042. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1043. safe_delay(25);
  1044. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1045. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1046. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&mesh_index_to_xpos[i])), 3);
  1047. SERIAL_PROTOCOLPGM(" ");
  1048. safe_delay(25);
  1049. }
  1050. SERIAL_EOL;
  1051. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1052. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1053. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&mesh_index_to_ypos[i])), 3);
  1054. SERIAL_PROTOCOLPGM(" ");
  1055. safe_delay(25);
  1056. }
  1057. SERIAL_EOL;
  1058. #if HAS_KILL
  1059. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1060. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1061. #endif
  1062. SERIAL_EOL;
  1063. safe_delay(50);
  1064. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1065. SERIAL_EOL;
  1066. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1067. SERIAL_EOL;
  1068. safe_delay(50);
  1069. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
  1070. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
  1071. safe_delay(50);
  1072. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1073. SERIAL_EOL;
  1074. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1075. SERIAL_EOL;
  1076. safe_delay(25);
  1077. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
  1078. safe_delay(50);
  1079. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  1080. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1081. safe_delay(25);
  1082. if (!sanity_check()) {
  1083. echo_name();
  1084. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  1085. }
  1086. }
  1087. /**
  1088. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1089. * right now, it is good to have the extra information. Soon... we prune this.
  1090. */
  1091. void g29_eeprom_dump() {
  1092. unsigned char cccc;
  1093. uint16_t kkkk;
  1094. SERIAL_ECHO_START;
  1095. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1096. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1097. if (!(i & 0x3)) idle();
  1098. print_hex_word(i);
  1099. SERIAL_ECHOPGM(": ");
  1100. for (uint16_t j = 0; j < 16; j++) {
  1101. kkkk = i + j;
  1102. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1103. print_hex_byte(cccc);
  1104. SERIAL_ECHO(' ');
  1105. }
  1106. SERIAL_EOL;
  1107. }
  1108. SERIAL_EOL;
  1109. }
  1110. /**
  1111. * When we are fully debugged, this may go away. But there are some valid
  1112. * use cases for the users. So we can wait and see what to do with it.
  1113. */
  1114. void g29_compare_current_mesh_to_stored_mesh() {
  1115. int16_t a = settings.calc_num_meshes();
  1116. if (!a) {
  1117. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1118. return;
  1119. }
  1120. if (!code_has_value()) {
  1121. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1122. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1123. return;
  1124. }
  1125. storage_slot = code_value_int();
  1126. if (!WITHIN(storage_slot, 0, a - 1)) {
  1127. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1128. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1129. return;
  1130. }
  1131. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1132. settings.load_mesh(storage_slot, &tmp_z_values);
  1133. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", storage_slot);
  1134. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1135. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1136. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1137. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1138. }
  1139. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1140. mesh_index_pair out_mesh;
  1141. out_mesh.x_index = out_mesh.y_index = -1;
  1142. // Get our reference position. Either the nozzle or probe location.
  1143. const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1144. py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1145. raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
  1146. float closest = far_flag ? -99999.99 : 99999.99;
  1147. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1148. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1149. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1150. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1151. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1152. ) {
  1153. // We only get here if we found a Mesh Point of the specified type
  1154. const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
  1155. my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  1156. // If using the probe as the reference there are some unreachable locations.
  1157. // Also for round beds, there are grid points outside the bed that nozzle can't reach.
  1158. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1159. if ( ! (probe_as_reference ? position_is_reachable_by_probe_raw_xy(mx, my) : position_is_reachable_raw_xy(mx, my)) )
  1160. continue;
  1161. // Reachable. Check if it's the closest location to the nozzle.
  1162. // Add in a weighting factor that considers the current location of the nozzle.
  1163. float distance = HYPOT(px - mx, py - my) + HYPOT(raw_x - mx, raw_y - my) * 0.1;
  1164. /**
  1165. * If doing the far_flag action, we want to be as far as possible
  1166. * from the starting point and from any other probed points. We
  1167. * want the next point spread out and filling in any blank spaces
  1168. * in the mesh. So we add in some of the distance to every probed
  1169. * point we can find.
  1170. */
  1171. if (far_flag) {
  1172. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1173. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1174. if (!isnan(ubl.z_values[k][l])) {
  1175. distance += sq(i - k) * (MESH_X_DIST) * .05
  1176. + sq(j - l) * (MESH_Y_DIST) * .05;
  1177. }
  1178. }
  1179. }
  1180. }
  1181. // if far_flag, look for farthest point
  1182. if (far_flag == (distance > closest) && distance != closest) {
  1183. closest = distance; // We found a closer/farther location with
  1184. out_mesh.x_index = i; // the specified type of mesh value.
  1185. out_mesh.y_index = j;
  1186. out_mesh.distance = closest;
  1187. }
  1188. }
  1189. } // for j
  1190. } // for i
  1191. return out_mesh;
  1192. }
  1193. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1194. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
  1195. repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
  1196. mesh_index_pair location;
  1197. uint16_t not_done[16];
  1198. int32_t round_off;
  1199. if ( ! position_is_reachable_xy( lx, ly )) {
  1200. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1201. return;
  1202. }
  1203. ubl.save_ubl_active_state_and_disable();
  1204. memset(not_done, 0xFF, sizeof(not_done));
  1205. LCD_MESSAGEPGM("Fine Tuning Mesh"); // TODO: Make translatable string
  1206. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1207. do_blocking_move_to_xy(lx, ly);
  1208. do {
  1209. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1210. if (location.x_index < 0 ) break; // stop when we can't find any more reachable points.
  1211. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1212. // different location the next time through the loop
  1213. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  1214. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  1215. if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1216. break;
  1217. }
  1218. float new_z = ubl.z_values[location.x_index][location.y_index];
  1219. if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
  1220. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1221. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1222. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1223. new_z = float(round_off) / 1000.0;
  1224. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1225. ubl.has_control_of_lcd_panel = true;
  1226. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1227. lcd_implementation_clear();
  1228. lcd_mesh_edit_setup(new_z);
  1229. do {
  1230. new_z = lcd_mesh_edit();
  1231. idle();
  1232. } while (!ubl_lcd_clicked());
  1233. lcd_return_to_status();
  1234. // There is a race condition for the Encoder Wheel getting clicked.
  1235. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1236. // or here.
  1237. ubl.has_control_of_lcd_panel = true;
  1238. }
  1239. const millis_t nxt = millis() + 1500UL;
  1240. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1241. idle();
  1242. if (ELAPSED(millis(), nxt)) {
  1243. lcd_return_to_status();
  1244. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1245. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1246. LCD_MESSAGEPGM("Mesh Editing Stopped"); // TODO: Make translatable string
  1247. while (ubl_lcd_clicked()) idle();
  1248. goto FINE_TUNE_EXIT;
  1249. }
  1250. }
  1251. safe_delay(20); // We don't want any switch noise.
  1252. ubl.z_values[location.x_index][location.y_index] = new_z;
  1253. lcd_implementation_clear();
  1254. } while (( location.x_index >= 0 ) && (--repetition_cnt>0));
  1255. FINE_TUNE_EXIT:
  1256. ubl.has_control_of_lcd_panel = false;
  1257. KEEPALIVE_STATE(IN_HANDLER);
  1258. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1259. ubl.restore_ubl_active_state_and_leave();
  1260. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1261. do_blocking_move_to_xy(lx, ly);
  1262. LCD_MESSAGEPGM("Done Editing Mesh"); // TODO: Make translatable string
  1263. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1264. }
  1265. /**
  1266. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1267. * If an invalid location is found, use the next two points (if valid) to
  1268. * calculate a 'reasonable' value for the unprobed mesh point.
  1269. */
  1270. bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1271. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1272. y1 = y + ydir, y2 = y1 + ydir;
  1273. // A NAN next to a pair of real values?
  1274. if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
  1275. if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
  1276. ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1277. else
  1278. ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
  1279. return true;
  1280. }
  1281. return false;
  1282. }
  1283. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1284. void smart_fill_mesh() {
  1285. const smart_fill_info info[] = {
  1286. { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1287. { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1288. { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1289. { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
  1290. };
  1291. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1292. const smart_fill_info &f = info[i];
  1293. if (f.yfirst) {
  1294. const int8_t dir = f.ex > f.sx ? 1 : -1;
  1295. for (uint8_t y = f.sy; y != f.ey; ++y)
  1296. for (uint8_t x = f.sx; x != f.ex; x += dir)
  1297. if (smart_fill_one(x, y, dir, 0)) break;
  1298. }
  1299. else {
  1300. const int8_t dir = f.ey > f.sy ? 1 : -1;
  1301. for (uint8_t x = f.sx; x != f.ex; ++x)
  1302. for (uint8_t y = f.sy; y != f.ey; y += dir)
  1303. if (smart_fill_one(x, y, 0, dir)) break;
  1304. }
  1305. }
  1306. }
  1307. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1308. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1309. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1310. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1311. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1312. const float dx = float(x_max - x_min) / (grid_size - 1.0),
  1313. dy = float(y_max - y_min) / (grid_size - 1.0);
  1314. struct linear_fit_data lsf_results;
  1315. incremental_LSF_reset(&lsf_results);
  1316. bool zig_zag = false;
  1317. for (uint8_t ix = 0; ix < grid_size; ix++) {
  1318. const float x = float(x_min) + ix * dx;
  1319. for (int8_t iy = 0; iy < grid_size; iy++) {
  1320. const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
  1321. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) {
  1324. SERIAL_CHAR('(');
  1325. SERIAL_PROTOCOL_F(x, 7);
  1326. SERIAL_CHAR(',');
  1327. SERIAL_PROTOCOL_F(y, 7);
  1328. SERIAL_ECHOPGM(") logical: ");
  1329. SERIAL_CHAR('(');
  1330. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1331. SERIAL_CHAR(',');
  1332. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1333. SERIAL_ECHOPGM(") measured: ");
  1334. SERIAL_PROTOCOL_F(measured_z, 7);
  1335. SERIAL_ECHOPGM(" correction: ");
  1336. SERIAL_PROTOCOL_F(get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1337. }
  1338. #endif
  1339. measured_z -= get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1341. if (DEBUGGING(LEVELING)) {
  1342. SERIAL_ECHOPGM(" final >>>---> ");
  1343. SERIAL_PROTOCOL_F(measured_z, 7);
  1344. SERIAL_EOL;
  1345. }
  1346. #endif
  1347. incremental_LSF(&lsf_results, x, y, measured_z);
  1348. }
  1349. zig_zag ^= true;
  1350. }
  1351. if (finish_incremental_LSF(&lsf_results)) {
  1352. SERIAL_ECHOPGM("Could not complete LSF!");
  1353. return;
  1354. }
  1355. if (g29_verbose_level > 3) {
  1356. SERIAL_ECHOPGM("LSF Results A=");
  1357. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1358. SERIAL_ECHOPGM(" B=");
  1359. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1360. SERIAL_ECHOPGM(" D=");
  1361. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1362. SERIAL_EOL;
  1363. }
  1364. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1365. if (g29_verbose_level > 2) {
  1366. SERIAL_ECHOPGM("bed plane normal = [");
  1367. SERIAL_PROTOCOL_F(normal.x, 7);
  1368. SERIAL_PROTOCOLCHAR(',');
  1369. SERIAL_PROTOCOL_F(normal.y, 7);
  1370. SERIAL_PROTOCOLCHAR(',');
  1371. SERIAL_PROTOCOL_F(normal.z, 7);
  1372. SERIAL_ECHOLNPGM("]");
  1373. }
  1374. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1375. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1376. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1377. float x_tmp = pgm_read_float(&mesh_index_to_xpos[i]),
  1378. y_tmp = pgm_read_float(&mesh_index_to_ypos[j]),
  1379. z_tmp = z_values[i][j];
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) {
  1382. SERIAL_ECHOPGM("before rotation = [");
  1383. SERIAL_PROTOCOL_F(x_tmp, 7);
  1384. SERIAL_PROTOCOLCHAR(',');
  1385. SERIAL_PROTOCOL_F(y_tmp, 7);
  1386. SERIAL_PROTOCOLCHAR(',');
  1387. SERIAL_PROTOCOL_F(z_tmp, 7);
  1388. SERIAL_ECHOPGM("] ---> ");
  1389. safe_delay(20);
  1390. }
  1391. #endif
  1392. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) {
  1395. SERIAL_ECHOPGM("after rotation = [");
  1396. SERIAL_PROTOCOL_F(x_tmp, 7);
  1397. SERIAL_PROTOCOLCHAR(',');
  1398. SERIAL_PROTOCOL_F(y_tmp, 7);
  1399. SERIAL_PROTOCOLCHAR(',');
  1400. SERIAL_PROTOCOL_F(z_tmp, 7);
  1401. SERIAL_ECHOLNPGM("]");
  1402. safe_delay(55);
  1403. }
  1404. #endif
  1405. z_values[i][j] += z_tmp - lsf_results.D;
  1406. }
  1407. }
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) {
  1410. rotation.debug(PSTR("rotation matrix:"));
  1411. SERIAL_ECHOPGM("LSF Results A=");
  1412. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1413. SERIAL_ECHOPGM(" B=");
  1414. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1415. SERIAL_ECHOPGM(" D=");
  1416. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1417. SERIAL_EOL;
  1418. safe_delay(55);
  1419. SERIAL_ECHOPGM("bed plane normal = [");
  1420. SERIAL_PROTOCOL_F(normal.x, 7);
  1421. SERIAL_PROTOCOLCHAR(',');
  1422. SERIAL_PROTOCOL_F(normal.y, 7);
  1423. SERIAL_PROTOCOLCHAR(',');
  1424. SERIAL_PROTOCOL_F(normal.z, 7);
  1425. SERIAL_ECHOPGM("]\n");
  1426. SERIAL_EOL;
  1427. }
  1428. #endif
  1429. }
  1430. #endif // AUTO_BED_LEVELING_UBL