My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

G26_Mesh_Validation_Tool.cpp 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
  27. #include "Marlin.h"
  28. #include "Configuration.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "UBL.h"
  33. #include "ultralcd.h"
  34. #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
  35. #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
  36. #define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
  37. #define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
  38. #define LAYER_HEIGHT 0.2
  39. #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
  40. #define BED_TEMP 60.0
  41. #define HOTEND_TEMP 205.0
  42. #define OOZE_AMOUNT 0.3
  43. #define SIZE_OF_INTERSECTION_CIRCLES 5
  44. #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
  45. // less than SIZE_OR_INTERSECTION_CIRCLES
  46. /**
  47. * Roxy's G26 Mesh Validation Tool
  48. *
  49. * G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  50. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  51. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  52. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  53. * the intersections of those lines (respectively).
  54. *
  55. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  56. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  57. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  58. * focus on a particular area of the Mesh where attention is needed.
  59. *
  60. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  61. *
  62. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  63. * as the base for any distance comparison.
  64. *
  65. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  66. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  67. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  68. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  69. * it is on.
  70. *
  71. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  72. *
  73. * F # Filament Used to specify the diameter of the filament being used. If not specified
  74. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  75. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  76. * of filament that is being extruded during the printing of the various lines on the bed.
  77. *
  78. * K Keep-On Keep the heaters turned on at the end of the command.
  79. *
  80. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  81. *
  82. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  83. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  84. *
  85. * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  86. *
  87. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  88. * is over kill, but using this parameter will let you get the very first 'cicle' perfect
  89. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  90. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  91. *
  92. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  93. * given, no prime action will take place. If the parameter specifies an amount, that much
  94. * will be purged before continuing. If no amount is specified the command will start
  95. * purging filament until the user provides an LCD Click and then it will continue with
  96. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  97. * pliers while holding the LCD Click wheel in a depressed state.
  98. *
  99. * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  100. * undrawn cicle is still done. But the distance to the location for each circle has a
  101. * random number of the size specified added to it. Specifying R50 will give an interesting
  102. * deviation from the normal behaviour on a 10 x 10 Mesh.
  103. *
  104. * X # X coordinate Specify the starting location of the drawing activity.
  105. *
  106. * Y # Y coordinate Specify the starting location of the drawing activity.
  107. */
  108. extern bool ubl_has_control_of_lcd_panel;
  109. extern float feedrate;
  110. //extern bool relative_mode;
  111. extern Planner planner;
  112. //#if ENABLED(ULTRA_LCD)
  113. extern char lcd_status_message[];
  114. //#endif
  115. extern float destination[];
  116. extern void set_destination_to_current();
  117. extern void set_current_to_destination();
  118. extern float code_value_float();
  119. extern bool code_value_bool();
  120. extern bool code_has_value();
  121. extern void lcd_init();
  122. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
  123. bool prepare_move_to_destination_cartesian();
  124. void line_to_destination();
  125. void line_to_destination(float );
  126. void gcode_G28();
  127. void sync_plan_position_e();
  128. void un_retract_filament();
  129. void retract_filament();
  130. void look_for_lines_to_connect();
  131. bool parse_G26_parameters();
  132. void move_to(const float&, const float&, const float&, const float&) ;
  133. void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
  134. bool turn_on_heaters();
  135. bool prime_nozzle();
  136. void chirp_at_user();
  137. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
  138. float g26_e_axis_feedrate = 0.020,
  139. random_deviation = 0.0,
  140. layer_height = LAYER_HEIGHT;
  141. bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
  142. // is currently retracted or not. This allows us to be
  143. // less careful because mis-matched retractions and un-retractions
  144. // won't leave us in a bad state.
  145. #if ENABLED(ULTRA_LCD)
  146. void lcd_setstatus(const char* message, bool persist);
  147. #endif
  148. float valid_trig_angle(float);
  149. mesh_index_pair find_closest_circle_to_print(float, float);
  150. void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  151. //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
  152. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  153. retraction_multiplier = RETRACTION_MULTIPLIER,
  154. nozzle = NOZZLE,
  155. filament_diameter = FILAMENT,
  156. prime_length = PRIME_LENGTH,
  157. x_pos, y_pos,
  158. bed_temp = BED_TEMP,
  159. hotend_temp = HOTEND_TEMP,
  160. ooze_amount = OOZE_AMOUNT;
  161. int8_t prime_flag = 0;
  162. bool keep_heaters_on = false,
  163. g26_debug_flag = false;
  164. /**
  165. * G26: Mesh Validation Pattern generation.
  166. *
  167. * Used to interactively edit UBL's Mesh by placing the
  168. * nozzle in a problem area and doing a G29 P4 R command.
  169. */
  170. void gcode_G26() {
  171. float circle_x, circle_y, x, y, xe, ye, tmp,
  172. start_angle, end_angle;
  173. int i, xi, yi, lcd_init_counter = 0;
  174. mesh_index_pair location;
  175. if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
  176. gcode_G28();
  177. if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
  178. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  179. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  180. stepper.synchronize();
  181. set_current_to_destination();
  182. }
  183. if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
  184. goto LEAVE; // has gone wrong.
  185. axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
  186. //relative_mode = false; // planner and stepper motors!
  187. current_position[E_AXIS] = 0.0;
  188. sync_plan_position_e();
  189. if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
  190. goto LEAVE;
  191. /**
  192. * Bed is preheated
  193. *
  194. * Nozzle is at temperature
  195. *
  196. * Filament is primed!
  197. *
  198. * It's "Show Time" !!!
  199. */
  200. // Clear all of the flags we need
  201. ZERO(circle_flags);
  202. ZERO(horizontal_mesh_line_flags);
  203. ZERO(vertical_mesh_line_flags);
  204. //
  205. // Move nozzle to the specified height for the first layer
  206. //
  207. set_destination_to_current();
  208. destination[Z_AXIS] = layer_height;
  209. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  210. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  211. ubl_has_control_of_lcd_panel++; // Take control of the LCD Panel!
  212. debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
  213. wait_for_user = true;
  214. do {
  215. if (!wait_for_user) { // Check if the user wants to stop the Mesh Validation
  216. strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
  217. #if ENABLED(ULTRA_LCD)
  218. lcd_setstatus("Mesh Validation Stopped.", true);
  219. lcd_quick_feedback();
  220. #endif
  221. goto LEAVE;
  222. }
  223. if (continue_with_closest)
  224. location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
  225. else
  226. location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  227. if (location.x_index >= 0 && location.y_index >= 0) {
  228. circle_x = ubl.map_x_index_to_bed_location(location.x_index);
  229. circle_y = ubl.map_y_index_to_bed_location(location.y_index);
  230. // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
  231. #ifdef DELTA
  232. if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
  233. SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
  234. goto LEAVE;
  235. }
  236. #endif
  237. if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
  238. SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
  239. goto LEAVE;
  240. }
  241. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  242. yi = location.y_index;
  243. if (g26_debug_flag) {
  244. SERIAL_ECHOPGM(" Doing circle at: (xi=");
  245. SERIAL_ECHO(xi);
  246. SERIAL_ECHOPGM(", yi=");
  247. SERIAL_ECHO(yi);
  248. SERIAL_ECHOLNPGM(")");
  249. }
  250. start_angle = 0.0; // assume it is going to be a full circle
  251. end_angle = 360.0;
  252. if (xi == 0) { // Check for bottom edge
  253. start_angle = -90.0;
  254. end_angle = 90.0;
  255. if (yi == 0) // it is an edge, check for the two left corners
  256. start_angle = 0.0;
  257. else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
  258. end_angle = 0.0;
  259. }
  260. else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
  261. start_angle = 90.0;
  262. end_angle = 270.0;
  263. if (yi == 0) // it is an edge, check for the two right corners
  264. end_angle = 180.0;
  265. else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
  266. start_angle = 180.0;
  267. }
  268. else if (yi == 0) {
  269. start_angle = 0.0; // only do the top side of the cirlce
  270. end_angle = 180.0;
  271. }
  272. else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
  273. start_angle = 180.0; // only do the bottom side of the cirlce
  274. end_angle = 360.0;
  275. }
  276. /**
  277. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  278. * the CPU load and make the arc drawing faster and more smooth
  279. */
  280. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  281. for (i = 0; i <= 360 / 30; i++) {
  282. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  283. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  284. }
  285. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  286. int tmp_div_30 = tmp / 30.0;
  287. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  288. x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
  289. y = circle_y + sin_table[tmp_div_30];
  290. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  291. xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
  292. ye = circle_y + sin_table[tmp_div_30 + 1];
  293. #ifdef DELTA
  294. if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
  295. continue; // the 'circle' is on the bed. If
  296. #else // not, we need to skip
  297. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  298. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  299. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  300. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  301. #endif
  302. if (g26_debug_flag) {
  303. char ccc, *cptr, seg_msg[50], seg_num[10];
  304. strcpy(seg_msg, " segment: ");
  305. strcpy(seg_num, " \n");
  306. cptr = (char*) "01234567890ABCDEF????????";
  307. ccc = cptr[tmp_div_30];
  308. seg_num[1] = ccc;
  309. strcat(seg_msg, seg_num);
  310. debug_current_and_destination(seg_msg);
  311. }
  312. print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
  313. }
  314. lcd_init_counter++;
  315. if (lcd_init_counter > 10) {
  316. lcd_init_counter = 0;
  317. lcd_init(); // Some people's LCD Displays are locking up. This might help them
  318. }
  319. debug_current_and_destination((char*)"Looking for lines to connect.");
  320. look_for_lines_to_connect();
  321. debug_current_and_destination((char*)"Done with line connect.");
  322. }
  323. debug_current_and_destination((char*)"Done with current circle.");
  324. }
  325. while (location.x_index >= 0 && location.y_index >= 0);
  326. LEAVE:
  327. wait_for_user = false;
  328. retract_filament();
  329. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
  330. debug_current_and_destination((char*)"ready to do Z-Raise.");
  331. move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  332. debug_current_and_destination((char*)"done doing Z-Raise.");
  333. destination[X_AXIS] = x_pos; // Move back to the starting position
  334. destination[Y_AXIS] = y_pos;
  335. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  336. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  337. debug_current_and_destination((char*)"done doing X/Y move.");
  338. ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  339. if (!keep_heaters_on) {
  340. #if HAS_TEMP_BED
  341. thermalManager.setTargetBed(0.0);
  342. #endif
  343. thermalManager.setTargetHotend(0.0, 0);
  344. }
  345. lcd_init(); // Some people's LCD Displays are locking up. This might help them
  346. }
  347. float valid_trig_angle(float d) {
  348. while (d > 360.0) d -= 360.0;
  349. while (d < 0.0) d += 360.0;
  350. return d;
  351. }
  352. mesh_index_pair find_closest_circle_to_print( float X, float Y) {
  353. float f, mx, my, dx, dy, closest = 99999.99;
  354. mesh_index_pair return_val;
  355. return_val.x_index = return_val.y_index = -1;
  356. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  357. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  358. if (!is_bit_set(circle_flags, i, j)) {
  359. mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
  360. my = ubl.map_y_index_to_bed_location(j);
  361. dx = X - mx; // Get the distance to this intersection
  362. dy = Y - my;
  363. f = HYPOT(dx, dy);
  364. dx = x_pos - mx; // It is possible that we are being called with the values
  365. dy = y_pos - my; // to let us find the closest circle to the start position.
  366. f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
  367. // we are going to add in a small
  368. // weighting to the distance calculation to help it choose
  369. // a better place to continue.
  370. if (random_deviation > 1.0)
  371. f += random(0.0, random_deviation); // Add in the specified amount of Random Noise to our search
  372. if (f < closest) {
  373. closest = f; // We found a closer location that is still
  374. return_val.x_index = i; // un-printed --- save the data for it
  375. return_val.y_index = j;
  376. return_val.distance= closest;
  377. }
  378. }
  379. }
  380. }
  381. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  382. return return_val;
  383. }
  384. void look_for_lines_to_connect() {
  385. float sx, sy, ex, ey;
  386. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  387. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  388. if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
  389. // This is already a half circle because we are at the edge of the bed.
  390. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  391. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  392. //
  393. // We found two circles that need a horizontal line to connect them
  394. // Print it!
  395. //
  396. sx = ubl.map_x_index_to_bed_location(i);
  397. sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
  398. sy = ubl.map_y_index_to_bed_location(j);
  399. ex = ubl.map_x_index_to_bed_location(i + 1);
  400. ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
  401. ey = sy;
  402. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  403. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  404. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  405. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  406. if (g26_debug_flag) {
  407. SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
  408. SERIAL_ECHO(sx);
  409. SERIAL_ECHOPGM(", sy=");
  410. SERIAL_ECHO(sy);
  411. SERIAL_ECHOPGM(") -> (ex=");
  412. SERIAL_ECHO(ex);
  413. SERIAL_ECHOPGM(", ey=");
  414. SERIAL_ECHO(ey);
  415. SERIAL_ECHOLNPGM(")");
  416. debug_current_and_destination((char*)"Connecting horizontal line.");
  417. }
  418. print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
  419. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  420. }
  421. }
  422. if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
  423. // This is already a half circle because we are at the edge of the bed.
  424. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  425. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  426. //
  427. // We found two circles that need a vertical line to connect them
  428. // Print it!
  429. //
  430. sx = ubl.map_x_index_to_bed_location(i);
  431. sy = ubl.map_y_index_to_bed_location(j);
  432. sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
  433. ex = sx;
  434. ey = ubl.map_y_index_to_bed_location(j + 1);
  435. ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
  436. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  437. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  438. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  439. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  440. if (g26_debug_flag) {
  441. SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
  442. SERIAL_ECHO(sx);
  443. SERIAL_ECHOPGM(", sy=");
  444. SERIAL_ECHO(sy);
  445. SERIAL_ECHOPGM(") -> (ex=");
  446. SERIAL_ECHO(ex);
  447. SERIAL_ECHOPGM(", ey=");
  448. SERIAL_ECHO(ey);
  449. SERIAL_ECHOLNPGM(")");
  450. debug_current_and_destination((char*)"Connecting vertical line.");
  451. }
  452. print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
  453. bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  454. }
  455. }
  456. }
  457. }
  458. }
  459. }
  460. }
  461. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  462. float feed_value;
  463. static float last_z = -999.99;
  464. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  465. if (g26_debug_flag) {
  466. SERIAL_ECHOPAIR("in move_to() has_xy_component:", (int)has_xy_component);
  467. SERIAL_EOL;
  468. }
  469. if (z != last_z) {
  470. if (g26_debug_flag) {
  471. SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
  472. SERIAL_EOL;
  473. }
  474. last_z = z;
  475. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  476. destination[X_AXIS] = current_position[X_AXIS];
  477. destination[Y_AXIS] = current_position[Y_AXIS];
  478. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  479. destination[E_AXIS] = current_position[E_AXIS];
  480. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
  481. stepper.synchronize();
  482. set_destination_to_current();
  483. if (g26_debug_flag)
  484. debug_current_and_destination((char*)" in move_to() done with Z move");
  485. }
  486. // Check if X or Y is involved in the movement.
  487. // Yes: a 'normal' movement. No: a retract() or un_retract()
  488. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  489. if (g26_debug_flag) {
  490. SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
  491. SERIAL_EOL;
  492. }
  493. destination[X_AXIS] = x;
  494. destination[Y_AXIS] = y;
  495. destination[E_AXIS] += e_delta;
  496. if (g26_debug_flag)
  497. debug_current_and_destination((char*)" in move_to() doing last move");
  498. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
  499. if (g26_debug_flag)
  500. debug_current_and_destination((char*)" in move_to() after last move");
  501. stepper.synchronize();
  502. set_destination_to_current();
  503. }
  504. void retract_filament() {
  505. if (!g26_retracted) { // Only retract if we are not already retracted!
  506. g26_retracted = true;
  507. if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
  508. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
  509. if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
  510. }
  511. }
  512. void un_retract_filament() {
  513. if (g26_retracted) { // Only un-retract if we are retracted.
  514. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
  515. g26_retracted = false;
  516. if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
  517. }
  518. }
  519. /**
  520. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  521. * to the other. But there are really three sets of coordinates involved. The first coordinate
  522. * is the present location of the nozzle. We don't necessarily want to print from this location.
  523. * We first need to move the nozzle to the start of line segment where we want to print. Once
  524. * there, we can use the two coordinates supplied to draw the line.
  525. *
  526. * Note: Although we assume the first set of coordinates is the start of the line and the second
  527. * set of coordinates is the end of the line, it does not always work out that way. This function
  528. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  529. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  530. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  531. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  532. * cases where the optimization comes into play.
  533. */
  534. void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
  535. float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
  536. dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment
  537. dy_s = current_position[Y_AXIS] - sy;
  538. dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
  539. // to save computation time
  540. dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment
  541. dy_e = current_position[Y_AXIS] - ey;
  542. dist_end = HYPOT2(dx_e, dy_e);
  543. dx = ex - sx;
  544. dy = ey - sy;
  545. Line_Length = HYPOT(dx, dy);
  546. // If the end point of the line is closer to the nozzle, we are going to
  547. // flip the direction of this line. We will print it from the end to the start.
  548. // On very small lines we don't do the optimization because it just isn't worth it.
  549. //
  550. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
  551. if (g26_debug_flag)
  552. SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
  553. print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  554. return;
  555. }
  556. // Now decide if we should retract.
  557. if (dist_start > 2.0) {
  558. retract_filament();
  559. if (g26_debug_flag)
  560. SERIAL_ECHOLNPGM(" filament retracted.");
  561. }
  562. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
  563. float e_pos_delta = Line_Length * g26_e_axis_feedrate * extrusion_multiplier;
  564. un_retract_filament();
  565. if (g26_debug_flag) {
  566. SERIAL_ECHOLNPGM(" doing printing move.");
  567. debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
  568. }
  569. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  570. }
  571. /**
  572. * This function used to be inline code in G26. But there are so many
  573. * parameters it made sense to turn them into static globals and get
  574. * this code out of sight of the main routine.
  575. */
  576. bool parse_G26_parameters() {
  577. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  578. retraction_multiplier = RETRACTION_MULTIPLIER;
  579. nozzle = NOZZLE;
  580. filament_diameter = FILAMENT;
  581. layer_height = LAYER_HEIGHT;
  582. prime_length = PRIME_LENGTH;
  583. bed_temp = BED_TEMP;
  584. hotend_temp = HOTEND_TEMP;
  585. ooze_amount = OOZE_AMOUNT;
  586. prime_flag = 0;
  587. keep_heaters_on = false;
  588. if (code_seen('B')) {
  589. bed_temp = code_value_float();
  590. if (bed_temp < 15.0 || bed_temp > 140.0) {
  591. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  592. return UBL_ERR;
  593. }
  594. }
  595. if (code_seen('C')) continue_with_closest++;
  596. if (code_seen('L')) {
  597. layer_height = code_value_float();
  598. if (layer_height < 0.0 || layer_height > 2.0) {
  599. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  600. return UBL_ERR;
  601. }
  602. }
  603. if (code_seen('Q')) {
  604. if (code_has_value()) {
  605. retraction_multiplier = code_value_float();
  606. if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) {
  607. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  608. return UBL_ERR;
  609. }
  610. }
  611. else {
  612. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  613. return UBL_ERR;
  614. }
  615. }
  616. if (code_seen('N')) {
  617. nozzle = code_value_float();
  618. if (nozzle < 0.1 || nozzle > 1.0) {
  619. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  620. return UBL_ERR;
  621. }
  622. }
  623. if (code_seen('K')) keep_heaters_on++;
  624. if (code_seen('O') && code_has_value())
  625. ooze_amount = code_value_float();
  626. if (code_seen('P')) {
  627. if (!code_has_value())
  628. prime_flag = -1;
  629. else {
  630. prime_flag++;
  631. prime_length = code_value_float();
  632. if (prime_length < 0.0 || prime_length > 25.0) {
  633. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  634. return UBL_ERR;
  635. }
  636. }
  637. }
  638. if (code_seen('F')) {
  639. filament_diameter = code_value_float();
  640. if (filament_diameter < 1.0 || filament_diameter > 4.0) {
  641. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  642. return UBL_ERR;
  643. }
  644. }
  645. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  646. // scale up or down the length needed to get the
  647. // same volume of filament
  648. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  649. if (code_seen('H')) {
  650. hotend_temp = code_value_float();
  651. if (hotend_temp < 165.0 || hotend_temp > 280.0) {
  652. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  653. return UBL_ERR;
  654. }
  655. }
  656. if (code_seen('R')) {
  657. randomSeed(millis());
  658. random_deviation = code_has_value() ? code_value_float() : 50.0;
  659. }
  660. x_pos = current_position[X_AXIS];
  661. y_pos = current_position[Y_AXIS];
  662. if (code_seen('X')) {
  663. x_pos = code_value_float();
  664. if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
  665. SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
  666. return UBL_ERR;
  667. }
  668. }
  669. else
  670. if (code_seen('Y')) {
  671. y_pos = code_value_float();
  672. if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
  673. SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
  674. return UBL_ERR;
  675. }
  676. }
  677. /**
  678. * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
  679. * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
  680. * alter the system's status. We wait until we know everything is correct before altering the state
  681. * of the system.
  682. */
  683. ubl.state.active = !code_seen('D');
  684. return UBL_OK;
  685. }
  686. /**
  687. * Turn on the bed and nozzle heat and
  688. * wait for them to get up to temperature.
  689. */
  690. bool turn_on_heaters() {
  691. #if HAS_TEMP_BED
  692. #if ENABLED(ULTRA_LCD)
  693. if (bed_temp > 25) {
  694. lcd_setstatus("G26 Heating Bed.", true);
  695. lcd_quick_feedback();
  696. #endif
  697. ubl_has_control_of_lcd_panel++;
  698. thermalManager.setTargetBed(bed_temp);
  699. wait_for_user = true;
  700. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  701. if (!wait_for_user) {
  702. strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  703. lcd_setstatus("Leaving G26", true); // Now we do it right.
  704. return UBL_ERR;
  705. }
  706. idle();
  707. }
  708. wait_for_user = false;
  709. #if ENABLED(ULTRA_LCD)
  710. }
  711. lcd_setstatus("G26 Heating Nozzle.", true);
  712. lcd_quick_feedback();
  713. #endif
  714. #endif
  715. // Start heating the nozzle and wait for it to reach temperature.
  716. thermalManager.setTargetHotend(hotend_temp, 0);
  717. wait_for_user = true;
  718. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  719. if (!wait_for_user) {
  720. strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  721. lcd_setstatus("Leaving G26", true); // Now we do it right.
  722. return UBL_ERR;
  723. }
  724. idle();
  725. }
  726. wait_for_user = false;
  727. #if ENABLED(ULTRA_LCD)
  728. lcd_setstatus("", true);
  729. lcd_quick_feedback();
  730. #endif
  731. return UBL_OK;
  732. }
  733. /**
  734. * Prime the nozzle if needed. Return true on error.
  735. */
  736. bool prime_nozzle() {
  737. float Total_Prime = 0.0;
  738. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  739. lcd_setstatus("User-Controlled Prime", true);
  740. chirp_at_user();
  741. set_destination_to_current();
  742. un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
  743. // retracted(). We are here because we want to prime the nozzle.
  744. // So let's just unretract just to be sure.
  745. wait_for_user = true;
  746. while (wait_for_user) {
  747. chirp_at_user();
  748. destination[E_AXIS] += 0.25;
  749. #ifdef PREVENT_LENGTHY_EXTRUDE
  750. Total_Prime += 0.25;
  751. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  752. #endif
  753. ubl_line_to_destination(
  754. destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  755. //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
  756. planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
  757. );
  758. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  759. // but because the planner has a buffer, we won't be able
  760. // to stop as quickly. So we put up with the less smooth
  761. // action to give the user a more responsive 'Stop'.
  762. set_destination_to_current();
  763. idle();
  764. }
  765. strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
  766. // So... We cheat to get a message up.
  767. #if ENABLED(ULTRA_LCD)
  768. ubl_has_control_of_lcd_panel = false;
  769. lcd_setstatus("Done Priming", true); // Now we do it right.
  770. lcd_quick_feedback();
  771. #endif
  772. }
  773. else {
  774. #if ENABLED(ULTRA_LCD)
  775. lcd_setstatus("Fixed Length Prime.", true);
  776. lcd_quick_feedback();
  777. #endif
  778. set_destination_to_current();
  779. destination[E_AXIS] += prime_length;
  780. ubl_line_to_destination(
  781. destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  782. //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
  783. planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
  784. );
  785. stepper.synchronize();
  786. set_destination_to_current();
  787. retract_filament();
  788. }
  789. return UBL_OK;
  790. }
  791. #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED