My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 190KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offset
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X 0
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y 0
  213. #endif
  214. #ifndef DUAL_X_CARRIAGE
  215. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  216. #else
  217. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  218. #endif
  219. #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
  220. float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #ifdef ULTIPANEL
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1=0; //index into ring buffer
  284. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist=0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  450. #if defined(PS_DEFAULT_OFF)
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time, true);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. float xoff = home_offset[X_AXIS];
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Some planner shorthand inline functions
  890. */
  891. inline void line_to_current_position() {
  892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  893. }
  894. inline void line_to_z(float zPosition) {
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. }
  897. inline void line_to_destination() {
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. }
  900. inline void sync_plan_position() {
  901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  902. }
  903. #ifdef ENABLE_AUTO_BED_LEVELING
  904. #ifdef AUTO_BED_LEVELING_GRID
  905. #ifndef DELTA
  906. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  907. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  908. planeNormal.debug("planeNormal");
  909. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  910. //bedLevel.debug("bedLevel");
  911. //plan_bed_level_matrix.debug("bed level before");
  912. //vector_3 uncorrected_position = plan_get_position_mm();
  913. //uncorrected_position.debug("position before");
  914. vector_3 corrected_position = plan_get_position();
  915. //corrected_position.debug("position after");
  916. current_position[X_AXIS] = corrected_position.x;
  917. current_position[Y_AXIS] = corrected_position.y;
  918. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  919. sync_plan_position();
  920. }
  921. #endif // !DELTA
  922. #else // !AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  924. plan_bed_level_matrix.set_to_identity();
  925. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  926. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  927. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  928. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  929. if (planeNormal.z < 0) {
  930. planeNormal.x = -planeNormal.x;
  931. planeNormal.y = -planeNormal.y;
  932. planeNormal.z = -planeNormal.z;
  933. }
  934. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  935. vector_3 corrected_position = plan_get_position();
  936. current_position[X_AXIS] = corrected_position.x;
  937. current_position[Y_AXIS] = corrected_position.y;
  938. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  939. sync_plan_position();
  940. }
  941. #endif // !AUTO_BED_LEVELING_GRID
  942. static void run_z_probe() {
  943. #ifdef DELTA
  944. float start_z = current_position[Z_AXIS];
  945. long start_steps = st_get_position(Z_AXIS);
  946. // move down slowly until you find the bed
  947. feedrate = homing_feedrate[Z_AXIS] / 4;
  948. destination[Z_AXIS] = -10;
  949. prepare_move_raw();
  950. st_synchronize();
  951. endstops_hit_on_purpose();
  952. // we have to let the planner know where we are right now as it is not where we said to go.
  953. long stop_steps = st_get_position(Z_AXIS);
  954. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  955. current_position[Z_AXIS] = mm;
  956. calculate_delta(current_position);
  957. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  958. #else // !DELTA
  959. plan_bed_level_matrix.set_to_identity();
  960. feedrate = homing_feedrate[Z_AXIS];
  961. // move down until you find the bed
  962. float zPosition = -10;
  963. line_to_z(zPosition);
  964. st_synchronize();
  965. // we have to let the planner know where we are right now as it is not where we said to go.
  966. zPosition = st_get_position_mm(Z_AXIS);
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  968. // move up the retract distance
  969. zPosition += home_retract_mm(Z_AXIS);
  970. line_to_z(zPosition);
  971. st_synchronize();
  972. endstops_hit_on_purpose();
  973. // move back down slowly to find bed
  974. if (homing_bump_divisor[Z_AXIS] >= 1)
  975. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  976. else {
  977. feedrate = homing_feedrate[Z_AXIS] / 10;
  978. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  979. }
  980. zPosition -= home_retract_mm(Z_AXIS) * 2;
  981. line_to_z(zPosition);
  982. st_synchronize();
  983. endstops_hit_on_purpose();
  984. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  985. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  986. sync_plan_position();
  987. #endif // !DELTA
  988. }
  989. static void do_blocking_move_to(float x, float y, float z) {
  990. float oldFeedRate = feedrate;
  991. #ifdef DELTA
  992. feedrate = XY_TRAVEL_SPEED;
  993. destination[X_AXIS] = x;
  994. destination[Y_AXIS] = y;
  995. destination[Z_AXIS] = z;
  996. prepare_move_raw();
  997. st_synchronize();
  998. #else
  999. feedrate = homing_feedrate[Z_AXIS];
  1000. current_position[Z_AXIS] = z;
  1001. line_to_current_position();
  1002. st_synchronize();
  1003. feedrate = xy_travel_speed;
  1004. current_position[X_AXIS] = x;
  1005. current_position[Y_AXIS] = y;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. #endif
  1009. feedrate = oldFeedRate;
  1010. }
  1011. static void setup_for_endstop_move() {
  1012. saved_feedrate = feedrate;
  1013. saved_feedmultiply = feedmultiply;
  1014. feedmultiply = 100;
  1015. previous_millis_cmd = millis();
  1016. enable_endstops(true);
  1017. }
  1018. static void clean_up_after_endstop_move() {
  1019. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1020. enable_endstops(false);
  1021. #endif
  1022. feedrate = saved_feedrate;
  1023. feedmultiply = saved_feedmultiply;
  1024. previous_millis_cmd = millis();
  1025. }
  1026. <<<<<<< HEAD
  1027. static void engage_z_probe() {
  1028. // Engage Z Servo endstop if enabled
  1029. #ifdef SERVO_ENDSTOPS
  1030. if (servo_endstops[Z_AXIS] > -1) {
  1031. #if SERVO_LEVELING
  1032. servos[servo_endstops[Z_AXIS]].attach(0);
  1033. #endif
  1034. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1035. #if SERVO_LEVELING
  1036. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1037. servos[servo_endstops[Z_AXIS]].detach();
  1038. #endif
  1039. }
  1040. #elif defined(Z_PROBE_ALLEN_KEY)
  1041. feedrate = homing_feedrate[X_AXIS];
  1042. // Move to the start position to initiate deployment
  1043. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1044. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1045. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1046. prepare_move_raw();
  1047. // Home X to touch the belt
  1048. feedrate = homing_feedrate[X_AXIS]/10;
  1049. destination[X_AXIS] = 0;
  1050. prepare_move_raw();
  1051. // Home Y for safety
  1052. feedrate = homing_feedrate[X_AXIS]/2;
  1053. destination[Y_AXIS] = 0;
  1054. prepare_move_raw();
  1055. st_synchronize();
  1056. // If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
  1057. // it's own unique entity, then the following logic will need to be modified
  1058. // so it only uses the Z_PROBE
  1059. #if defined(Z_PROBE_AND_ENDSTOP)
  1060. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1061. if (z_probe_endstop)
  1062. #else
  1063. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1064. if (z_min_endstop)
  1065. #endif
  1066. {
  1067. if (!Stopped)
  1068. {
  1069. SERIAL_ERROR_START;
  1070. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1071. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1072. =======
  1073. static void engage_z_probe() {
  1074. #ifdef SERVO_ENDSTOPS
  1075. // Engage Z Servo endstop if enabled
  1076. if (servo_endstops[Z_AXIS] >= 0) {
  1077. #if SERVO_LEVELING
  1078. servos[servo_endstops[Z_AXIS]].attach(0);
  1079. #endif
  1080. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1081. #if SERVO_LEVELING
  1082. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1083. servos[servo_endstops[Z_AXIS]].detach();
  1084. #endif
  1085. }
  1086. #elif defined(Z_PROBE_ALLEN_KEY)
  1087. feedrate = homing_feedrate[X_AXIS];
  1088. // Move to the start position to initiate deployment
  1089. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1090. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1091. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1092. prepare_move_raw();
  1093. // Home X to touch the belt
  1094. feedrate = homing_feedrate[X_AXIS]/10;
  1095. destination[X_AXIS] = 0;
  1096. prepare_move_raw();
  1097. // Home Y for safety
  1098. feedrate = homing_feedrate[X_AXIS]/2;
  1099. destination[Y_AXIS] = 0;
  1100. prepare_move_raw();
  1101. st_synchronize();
  1102. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1103. if (z_min_endstop) {
  1104. if (!Stopped) {
  1105. SERIAL_ERROR_START;
  1106. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1107. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1108. >>>>>>> MarlinFirmware/Development
  1109. }
  1110. Stop();
  1111. }
  1112. #endif // Z_PROBE_ALLEN_KEY
  1113. <<<<<<< HEAD
  1114. static void retract_z_probe() {
  1115. // Retract Z Servo endstop if enabled
  1116. #ifdef SERVO_ENDSTOPS
  1117. if (servo_endstops[Z_AXIS] > -1)
  1118. {
  1119. #if Z_RAISE_AFTER_PROBING > 0
  1120. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1121. st_synchronize();
  1122. #endif
  1123. #if SERVO_LEVELING
  1124. servos[servo_endstops[Z_AXIS]].attach(0);
  1125. #endif
  1126. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1127. #if SERVO_LEVELING
  1128. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1129. servos[servo_endstops[Z_AXIS]].detach();
  1130. #endif
  1131. }
  1132. #elif defined(Z_PROBE_ALLEN_KEY)
  1133. // Move up for safety
  1134. feedrate = homing_feedrate[X_AXIS];
  1135. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1136. prepare_move_raw();
  1137. // Move to the start position to initiate retraction
  1138. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1139. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1140. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1141. prepare_move_raw();
  1142. // Move the nozzle down to push the probe into retracted position
  1143. feedrate = homing_feedrate[Z_AXIS]/10;
  1144. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1145. prepare_move_raw();
  1146. // Move up for safety
  1147. feedrate = homing_feedrate[Z_AXIS]/2;
  1148. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1149. prepare_move_raw();
  1150. // Home XY for safety
  1151. feedrate = homing_feedrate[X_AXIS]/2;
  1152. destination[X_AXIS] = 0;
  1153. destination[Y_AXIS] = 0;
  1154. prepare_move_raw();
  1155. st_synchronize();
  1156. // If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
  1157. // it's own unique entity, then the following logic will need to be modified
  1158. // so it only uses the Z_PROBE
  1159. #if defined(Z_PROBE_AND_ENDSTOP)
  1160. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1161. if (z_probe_endstop)
  1162. #else
  1163. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1164. if (z_min_endstop)
  1165. #endif
  1166. {
  1167. if (!Stopped)
  1168. {
  1169. SERIAL_ERROR_START;
  1170. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1171. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1172. =======
  1173. }
  1174. static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) {
  1175. #ifdef SERVO_ENDSTOPS
  1176. // Retract Z Servo endstop if enabled
  1177. if (servo_endstops[Z_AXIS] >= 0) {
  1178. if (z_after > 0) {
  1179. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after);
  1180. st_synchronize();
  1181. >>>>>>> MarlinFirmware/Development
  1182. }
  1183. #if SERVO_LEVELING
  1184. servos[servo_endstops[Z_AXIS]].attach(0);
  1185. #endif
  1186. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1187. #if SERVO_LEVELING
  1188. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1189. servos[servo_endstops[Z_AXIS]].detach();
  1190. #endif
  1191. }
  1192. #elif defined(Z_PROBE_ALLEN_KEY)
  1193. // Move up for safety
  1194. feedrate = homing_feedrate[X_AXIS];
  1195. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1196. prepare_move_raw();
  1197. // Move to the start position to initiate retraction
  1198. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1199. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1200. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1201. prepare_move_raw();
  1202. // Move the nozzle down to push the probe into retracted position
  1203. feedrate = homing_feedrate[Z_AXIS]/10;
  1204. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1205. prepare_move_raw();
  1206. // Move up for safety
  1207. feedrate = homing_feedrate[Z_AXIS]/2;
  1208. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1209. prepare_move_raw();
  1210. // Home XY for safety
  1211. feedrate = homing_feedrate[X_AXIS]/2;
  1212. destination[X_AXIS] = 0;
  1213. destination[Y_AXIS] = 0;
  1214. prepare_move_raw();
  1215. st_synchronize();
  1216. // If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
  1217. // it's own unique entity, then the following logic will need to be modified
  1218. // so it only uses the Z_PROBE
  1219. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1220. if (!z_min_endstop) {
  1221. if (!Stopped) {
  1222. SERIAL_ERROR_START;
  1223. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1224. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1225. }
  1226. Stop();
  1227. }
  1228. #endif
  1229. }
  1230. enum ProbeAction {
  1231. ProbeStay = 0,
  1232. ProbeEngage = BIT(0),
  1233. ProbeRetract = BIT(1),
  1234. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1235. };
  1236. // Probe bed height at position (x,y), returns the measured z value
  1237. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1238. // move to right place
  1239. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1240. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1241. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1242. if (retract_action & ProbeEngage) engage_z_probe();
  1243. #endif
  1244. run_z_probe();
  1245. float measured_z = current_position[Z_AXIS];
  1246. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1247. if (retract_action & ProbeRetract) retract_z_probe(z_before);
  1248. #endif
  1249. if (verbose_level > 2) {
  1250. SERIAL_PROTOCOLPGM(MSG_BED);
  1251. SERIAL_PROTOCOLPGM(" X: ");
  1252. SERIAL_PROTOCOL_F(x, 3);
  1253. SERIAL_PROTOCOLPGM(" Y: ");
  1254. SERIAL_PROTOCOL_F(y, 3);
  1255. SERIAL_PROTOCOLPGM(" Z: ");
  1256. SERIAL_PROTOCOL_F(measured_z, 3);
  1257. SERIAL_EOL;
  1258. }
  1259. return measured_z;
  1260. }
  1261. #ifdef DELTA
  1262. /**
  1263. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1264. */
  1265. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1266. if (bed_level[x][y] != 0.0) {
  1267. return; // Don't overwrite good values.
  1268. }
  1269. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1270. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1271. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1272. float median = c; // Median is robust (ignores outliers).
  1273. if (a < b) {
  1274. if (b < c) median = b;
  1275. if (c < a) median = a;
  1276. } else { // b <= a
  1277. if (c < b) median = b;
  1278. if (a < c) median = a;
  1279. }
  1280. bed_level[x][y] = median;
  1281. }
  1282. // Fill in the unprobed points (corners of circular print surface)
  1283. // using linear extrapolation, away from the center.
  1284. static void extrapolate_unprobed_bed_level() {
  1285. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1286. for (int y = 0; y <= half; y++) {
  1287. for (int x = 0; x <= half; x++) {
  1288. if (x + y < 3) continue;
  1289. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1290. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1291. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1292. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1293. }
  1294. }
  1295. }
  1296. // Print calibration results for plotting or manual frame adjustment.
  1297. static void print_bed_level() {
  1298. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1299. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1300. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1301. SERIAL_PROTOCOLPGM(" ");
  1302. }
  1303. SERIAL_ECHOLN("");
  1304. }
  1305. }
  1306. // Reset calibration results to zero.
  1307. void reset_bed_level() {
  1308. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1309. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1310. bed_level[x][y] = 0.0;
  1311. }
  1312. }
  1313. }
  1314. #endif // DELTA
  1315. #endif // ENABLE_AUTO_BED_LEVELING
  1316. static void homeaxis(int axis) {
  1317. #define HOMEAXIS_DO(LETTER) \
  1318. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1319. if (axis == X_AXIS ? HOMEAXIS_DO(X) :
  1320. axis == Y_AXIS ? HOMEAXIS_DO(Y) :
  1321. axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1322. int axis_home_dir;
  1323. #ifdef DUAL_X_CARRIAGE
  1324. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1325. #else
  1326. axis_home_dir = home_dir(axis);
  1327. #endif
  1328. current_position[axis] = 0;
  1329. sync_plan_position();
  1330. #ifndef Z_PROBE_SLED
  1331. // Engage Servo endstop if enabled
  1332. #ifdef SERVO_ENDSTOPS
  1333. #if SERVO_LEVELING
  1334. if (axis == Z_AXIS) {
  1335. engage_z_probe();
  1336. }
  1337. else
  1338. #endif // SERVO_LEVELING
  1339. if (servo_endstops[axis] > -1)
  1340. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1341. #endif // SERVO_ENDSTOPS
  1342. #endif // Z_PROBE_SLED
  1343. <<<<<<< HEAD
  1344. #ifndef Z_PROBE_SLED
  1345. // Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
  1346. #ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
  1347. #if SERVO_LEVELING
  1348. if (axis==Z_AXIS) {
  1349. engage_z_probe();
  1350. }
  1351. else
  1352. #endif
  1353. if (servo_endstops[axis] > -1) {
  1354. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1355. }
  1356. #endif
  1357. #endif // Z_PROBE_SLED
  1358. =======
  1359. >>>>>>> MarlinFirmware/Development
  1360. #ifdef Z_DUAL_ENDSTOPS
  1361. if (axis == Z_AXIS) In_Homing_Process(true);
  1362. #endif
  1363. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1364. feedrate = homing_feedrate[axis];
  1365. line_to_destination();
  1366. st_synchronize();
  1367. current_position[axis] = 0;
  1368. sync_plan_position();
  1369. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1370. line_to_destination();
  1371. st_synchronize();
  1372. destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
  1373. if (homing_bump_divisor[axis] >= 1)
  1374. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1375. else {
  1376. feedrate = homing_feedrate[axis] / 10;
  1377. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1378. }
  1379. line_to_destination();
  1380. st_synchronize();
  1381. #ifdef Z_DUAL_ENDSTOPS
  1382. if (axis==Z_AXIS)
  1383. {
  1384. feedrate = homing_feedrate[axis];
  1385. sync_plan_position();
  1386. if (axis_home_dir > 0)
  1387. {
  1388. destination[axis] = (-1) * fabs(z_endstop_adj);
  1389. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1390. } else {
  1391. destination[axis] = fabs(z_endstop_adj);
  1392. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1393. }
  1394. line_to_destination();
  1395. st_synchronize();
  1396. Lock_z_motor(false);
  1397. Lock_z2_motor(false);
  1398. In_Homing_Process(false);
  1399. }
  1400. #endif
  1401. #ifdef DELTA
  1402. // retrace by the amount specified in endstop_adj
  1403. if (endstop_adj[axis] * axis_home_dir < 0) {
  1404. sync_plan_position();
  1405. destination[axis] = endstop_adj[axis];
  1406. line_to_destination();
  1407. st_synchronize();
  1408. }
  1409. #endif
  1410. axis_is_at_home(axis);
  1411. destination[axis] = current_position[axis];
  1412. feedrate = 0.0;
  1413. endstops_hit_on_purpose();
  1414. axis_known_position[axis] = true;
  1415. // Retract Servo endstop if enabled
  1416. #ifdef SERVO_ENDSTOPS
  1417. if (servo_endstops[axis] > -1) {
  1418. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1419. }
  1420. #endif
  1421. #if SERVO_LEVELING
  1422. #ifndef Z_PROBE_SLED
  1423. if (axis==Z_AXIS) retract_z_probe();
  1424. #endif
  1425. #endif
  1426. }
  1427. }
  1428. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1429. void refresh_cmd_timeout(void)
  1430. {
  1431. previous_millis_cmd = millis();
  1432. }
  1433. #ifdef FWRETRACT
  1434. void retract(bool retracting, bool swapretract = false) {
  1435. if(retracting && !retracted[active_extruder]) {
  1436. destination[X_AXIS]=current_position[X_AXIS];
  1437. destination[Y_AXIS]=current_position[Y_AXIS];
  1438. destination[Z_AXIS]=current_position[Z_AXIS];
  1439. destination[E_AXIS]=current_position[E_AXIS];
  1440. if (swapretract) {
  1441. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1442. } else {
  1443. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1444. }
  1445. plan_set_e_position(current_position[E_AXIS]);
  1446. float oldFeedrate = feedrate;
  1447. feedrate = retract_feedrate * 60;
  1448. retracted[active_extruder]=true;
  1449. prepare_move();
  1450. if(retract_zlift > 0.01) {
  1451. current_position[Z_AXIS]-=retract_zlift;
  1452. #ifdef DELTA
  1453. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1454. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1455. #else
  1456. sync_plan_position();
  1457. #endif
  1458. prepare_move();
  1459. }
  1460. feedrate = oldFeedrate;
  1461. } else if(!retracting && retracted[active_extruder]) {
  1462. destination[X_AXIS]=current_position[X_AXIS];
  1463. destination[Y_AXIS]=current_position[Y_AXIS];
  1464. destination[Z_AXIS]=current_position[Z_AXIS];
  1465. destination[E_AXIS]=current_position[E_AXIS];
  1466. if(retract_zlift > 0.01) {
  1467. current_position[Z_AXIS]+=retract_zlift;
  1468. #ifdef DELTA
  1469. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1470. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1471. #else
  1472. sync_plan_position();
  1473. #endif
  1474. //prepare_move();
  1475. }
  1476. if (swapretract) {
  1477. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1478. } else {
  1479. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1480. }
  1481. plan_set_e_position(current_position[E_AXIS]);
  1482. float oldFeedrate = feedrate;
  1483. feedrate = retract_recover_feedrate * 60;
  1484. retracted[active_extruder] = false;
  1485. prepare_move();
  1486. feedrate = oldFeedrate;
  1487. }
  1488. } //retract
  1489. #endif //FWRETRACT
  1490. #ifdef Z_PROBE_SLED
  1491. #ifndef SLED_DOCKING_OFFSET
  1492. #define SLED_DOCKING_OFFSET 0
  1493. #endif
  1494. //
  1495. // Method to dock/undock a sled designed by Charles Bell.
  1496. //
  1497. // dock[in] If true, move to MAX_X and engage the electromagnet
  1498. // offset[in] The additional distance to move to adjust docking location
  1499. //
  1500. static void dock_sled(bool dock, int offset=0) {
  1501. int z_loc;
  1502. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1503. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1504. SERIAL_ECHO_START;
  1505. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1506. return;
  1507. }
  1508. if (dock) {
  1509. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1510. current_position[Y_AXIS],
  1511. current_position[Z_AXIS]);
  1512. // turn off magnet
  1513. digitalWrite(SERVO0_PIN, LOW);
  1514. } else {
  1515. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1516. z_loc = Z_RAISE_BEFORE_PROBING;
  1517. else
  1518. z_loc = current_position[Z_AXIS];
  1519. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1520. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1521. // turn on magnet
  1522. digitalWrite(SERVO0_PIN, HIGH);
  1523. }
  1524. }
  1525. #endif
  1526. /**
  1527. *
  1528. * G-Code Handler functions
  1529. *
  1530. */
  1531. /**
  1532. * G0, G1: Coordinated movement of X Y Z E axes
  1533. */
  1534. inline void gcode_G0_G1() {
  1535. if (!Stopped) {
  1536. get_coordinates(); // For X Y Z E F
  1537. #ifdef FWRETRACT
  1538. if (autoretract_enabled)
  1539. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1540. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1541. // Is this move an attempt to retract or recover?
  1542. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1543. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1544. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1545. retract(!retracted[active_extruder]);
  1546. return;
  1547. }
  1548. }
  1549. #endif //FWRETRACT
  1550. prepare_move();
  1551. //ClearToSend();
  1552. }
  1553. }
  1554. /**
  1555. * G2: Clockwise Arc
  1556. * G3: Counterclockwise Arc
  1557. */
  1558. inline void gcode_G2_G3(bool clockwise) {
  1559. if (!Stopped) {
  1560. get_arc_coordinates();
  1561. prepare_arc_move(clockwise);
  1562. }
  1563. }
  1564. /**
  1565. * G4: Dwell S<seconds> or P<milliseconds>
  1566. */
  1567. inline void gcode_G4() {
  1568. unsigned long codenum=0;
  1569. LCD_MESSAGEPGM(MSG_DWELL);
  1570. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1571. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1572. st_synchronize();
  1573. previous_millis_cmd = millis();
  1574. codenum += previous_millis_cmd; // keep track of when we started waiting
  1575. while(millis() < codenum) {
  1576. manage_heater();
  1577. manage_inactivity();
  1578. lcd_update();
  1579. }
  1580. }
  1581. #ifdef FWRETRACT
  1582. /**
  1583. * G10 - Retract filament according to settings of M207
  1584. * G11 - Recover filament according to settings of M208
  1585. */
  1586. inline void gcode_G10_G11(bool doRetract=false) {
  1587. #if EXTRUDERS > 1
  1588. if (doRetract) {
  1589. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1590. }
  1591. #endif
  1592. retract(doRetract
  1593. #if EXTRUDERS > 1
  1594. , retracted_swap[active_extruder]
  1595. #endif
  1596. );
  1597. }
  1598. #endif //FWRETRACT
  1599. /**
  1600. * G28: Home all axes according to settings
  1601. *
  1602. * Parameters
  1603. *
  1604. * None Home to all axes with no parameters.
  1605. * With QUICK_HOME enabled XY will home together, then Z.
  1606. *
  1607. * Cartesian parameters
  1608. *
  1609. * X Home to the X endstop
  1610. * Y Home to the Y endstop
  1611. * Z Home to the Z endstop
  1612. *
  1613. * If numbers are included with XYZ set the position as with G92
  1614. * Currently adds the home_offset, which may be wrong and removed soon.
  1615. *
  1616. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1617. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1618. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1619. */
  1620. inline void gcode_G28() {
  1621. #ifdef ENABLE_AUTO_BED_LEVELING
  1622. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1623. #ifdef DELTA
  1624. reset_bed_level();
  1625. #endif
  1626. #endif
  1627. #if defined(MESH_BED_LEVELING)
  1628. uint8_t mbl_was_active = mbl.active;
  1629. mbl.active = 0;
  1630. #endif
  1631. saved_feedrate = feedrate;
  1632. saved_feedmultiply = feedmultiply;
  1633. feedmultiply = 100;
  1634. previous_millis_cmd = millis();
  1635. enable_endstops(true);
  1636. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1637. feedrate = 0.0;
  1638. #ifdef DELTA
  1639. // A delta can only safely home all axis at the same time
  1640. // all axis have to home at the same time
  1641. // Move all carriages up together until the first endstop is hit.
  1642. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1643. sync_plan_position();
  1644. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1645. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1646. line_to_destination();
  1647. st_synchronize();
  1648. endstops_hit_on_purpose();
  1649. // Destination reached
  1650. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1651. // take care of back off and rehome now we are all at the top
  1652. HOMEAXIS(X);
  1653. HOMEAXIS(Y);
  1654. HOMEAXIS(Z);
  1655. calculate_delta(current_position);
  1656. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1657. #else // NOT DELTA
  1658. bool homeX = code_seen(axis_codes[X_AXIS]),
  1659. homeY = code_seen(axis_codes[Y_AXIS]),
  1660. homeZ = code_seen(axis_codes[Z_AXIS]);
  1661. home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
  1662. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1663. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1664. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1665. // Raise Z before homing any other axes
  1666. if (home_all_axis || homeZ) {
  1667. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1668. feedrate = max_feedrate[Z_AXIS];
  1669. line_to_destination();
  1670. st_synchronize();
  1671. }
  1672. #endif
  1673. #ifdef QUICK_HOME
  1674. if (home_all_axis || (homeX && homeY)) { //first diagonal move
  1675. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1676. #ifdef DUAL_X_CARRIAGE
  1677. int x_axis_home_dir = x_home_dir(active_extruder);
  1678. extruder_duplication_enabled = false;
  1679. #else
  1680. int x_axis_home_dir = home_dir(X_AXIS);
  1681. #endif
  1682. sync_plan_position();
  1683. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1684. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1685. feedrate = homing_feedrate[X_AXIS];
  1686. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1687. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1688. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1689. } else {
  1690. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1691. }
  1692. line_to_destination();
  1693. st_synchronize();
  1694. axis_is_at_home(X_AXIS);
  1695. axis_is_at_home(Y_AXIS);
  1696. sync_plan_position();
  1697. destination[X_AXIS] = current_position[X_AXIS];
  1698. destination[Y_AXIS] = current_position[Y_AXIS];
  1699. line_to_destination();
  1700. feedrate = 0.0;
  1701. st_synchronize();
  1702. endstops_hit_on_purpose();
  1703. current_position[X_AXIS] = destination[X_AXIS];
  1704. current_position[Y_AXIS] = destination[Y_AXIS];
  1705. #ifndef SCARA
  1706. current_position[Z_AXIS] = destination[Z_AXIS];
  1707. #endif
  1708. }
  1709. #endif //QUICK_HOME
  1710. // Home X
  1711. if (home_all_axis || homeX) {
  1712. #ifdef DUAL_X_CARRIAGE
  1713. int tmp_extruder = active_extruder;
  1714. extruder_duplication_enabled = false;
  1715. active_extruder = !active_extruder;
  1716. HOMEAXIS(X);
  1717. inactive_extruder_x_pos = current_position[X_AXIS];
  1718. active_extruder = tmp_extruder;
  1719. HOMEAXIS(X);
  1720. // reset state used by the different modes
  1721. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1722. delayed_move_time = 0;
  1723. active_extruder_parked = true;
  1724. #else
  1725. HOMEAXIS(X);
  1726. #endif
  1727. }
  1728. // Home Y
  1729. if (home_all_axis || homeY) HOMEAXIS(Y);
  1730. // Set the X position, if included
  1731. // Adds the home_offset as well, which may be wrong
  1732. if (code_seen(axis_codes[X_AXIS])) {
  1733. float v = code_value();
  1734. if (v) current_position[X_AXIS] = v
  1735. #ifndef SCARA
  1736. + home_offset[X_AXIS]
  1737. #endif
  1738. ;
  1739. }
  1740. // Set the Y position, if included
  1741. // Adds the home_offset as well, which may be wrong
  1742. if (code_seen(axis_codes[Y_AXIS])) {
  1743. float v = code_value();
  1744. if (v) current_position[Y_AXIS] = v
  1745. #ifndef SCARA
  1746. + home_offset[Y_AXIS]
  1747. #endif
  1748. ;
  1749. }
  1750. // Home Z last if homing towards the bed
  1751. #if Z_HOME_DIR < 0
  1752. #ifndef Z_SAFE_HOMING
  1753. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1754. #else // Z_SAFE_HOMING
  1755. if (home_all_axis) {
  1756. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1757. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1758. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1759. feedrate = XY_TRAVEL_SPEED;
  1760. current_position[Z_AXIS] = 0;
  1761. sync_plan_position();
  1762. line_to_destination();
  1763. st_synchronize();
  1764. current_position[X_AXIS] = destination[X_AXIS];
  1765. current_position[Y_AXIS] = destination[Y_AXIS];
  1766. HOMEAXIS(Z);
  1767. }
  1768. // Let's see if X and Y are homed and probe is inside bed area.
  1769. if (homeZ) {
  1770. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1771. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1772. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1773. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1774. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1775. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1776. current_position[Z_AXIS] = 0;
  1777. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1778. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1779. feedrate = max_feedrate[Z_AXIS];
  1780. line_to_destination();
  1781. st_synchronize();
  1782. HOMEAXIS(Z);
  1783. }
  1784. else {
  1785. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1786. SERIAL_ECHO_START;
  1787. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1788. }
  1789. }
  1790. else {
  1791. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1792. SERIAL_ECHO_START;
  1793. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1794. }
  1795. }
  1796. #endif // Z_SAFE_HOMING
  1797. #endif // Z_HOME_DIR < 0
  1798. // Set the Z position, if included
  1799. // Adds the home_offset as well, which may be wrong
  1800. if (code_seen(axis_codes[Z_AXIS])) {
  1801. float v = code_value();
  1802. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1803. }
  1804. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1805. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1806. #endif
  1807. sync_plan_position();
  1808. #endif // else DELTA
  1809. #ifdef SCARA
  1810. calculate_delta(current_position);
  1811. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1812. #endif
  1813. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1814. enable_endstops(false);
  1815. #endif
  1816. #if defined(MESH_BED_LEVELING)
  1817. if (mbl_was_active) {
  1818. current_position[X_AXIS] = mbl.get_x(0);
  1819. current_position[Y_AXIS] = mbl.get_y(0);
  1820. destination[X_AXIS] = current_position[X_AXIS];
  1821. destination[Y_AXIS] = current_position[Y_AXIS];
  1822. destination[Z_AXIS] = current_position[Z_AXIS];
  1823. destination[E_AXIS] = current_position[E_AXIS];
  1824. feedrate = homing_feedrate[X_AXIS];
  1825. line_to_destination();
  1826. st_synchronize();
  1827. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1828. sync_plan_position();
  1829. mbl.active = 1;
  1830. }
  1831. #endif
  1832. feedrate = saved_feedrate;
  1833. feedmultiply = saved_feedmultiply;
  1834. previous_millis_cmd = millis();
  1835. endstops_hit_on_purpose();
  1836. }
  1837. #if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
  1838. // Check for known positions in X and Y
  1839. inline bool can_run_bed_leveling() {
  1840. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
  1841. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1842. SERIAL_ECHO_START;
  1843. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1844. return false;
  1845. }
  1846. #endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
  1847. #ifdef MESH_BED_LEVELING
  1848. /**
  1849. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1850. * mesh to compensate for variable bed height
  1851. *
  1852. * Parameters With MESH_BED_LEVELING:
  1853. *
  1854. * S0 Produce a mesh report
  1855. * S1 Start probing mesh points
  1856. * S2 Probe the next mesh point
  1857. *
  1858. */
  1859. inline void gcode_G29() {
  1860. // Prevent leveling without first homing in X and Y
  1861. if (!can_run_bed_leveling()) return;
  1862. static int probe_point = -1;
  1863. int state = 0;
  1864. if (code_seen('S') || code_seen('s')) {
  1865. state = code_value_long();
  1866. if (state < 0 || state > 2) {
  1867. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1868. return;
  1869. }
  1870. }
  1871. if (state == 0) { // Dump mesh_bed_leveling
  1872. if (mbl.active) {
  1873. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1874. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1875. SERIAL_PROTOCOLPGM(",");
  1876. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1877. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1878. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1879. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1880. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1881. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1882. SERIAL_PROTOCOLPGM(" ");
  1883. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1884. }
  1885. SERIAL_EOL;
  1886. }
  1887. } else {
  1888. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1889. }
  1890. } else if (state == 1) { // Begin probing mesh points
  1891. mbl.reset();
  1892. probe_point = 0;
  1893. enquecommands_P(PSTR("G28"));
  1894. enquecommands_P(PSTR("G29 S2"));
  1895. } else if (state == 2) { // Goto next point
  1896. if (probe_point < 0) {
  1897. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1898. return;
  1899. }
  1900. int ix, iy;
  1901. if (probe_point == 0) {
  1902. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1903. sync_plan_position();
  1904. } else {
  1905. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1906. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1907. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1908. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1909. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1911. st_synchronize();
  1912. }
  1913. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1914. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1915. probe_point = -1;
  1916. mbl.active = 1;
  1917. enquecommands_P(PSTR("G28"));
  1918. return;
  1919. }
  1920. ix = probe_point % MESH_NUM_X_POINTS;
  1921. iy = probe_point / MESH_NUM_X_POINTS;
  1922. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1923. current_position[X_AXIS] = mbl.get_x(ix);
  1924. current_position[Y_AXIS] = mbl.get_y(iy);
  1925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1926. st_synchronize();
  1927. probe_point++;
  1928. }
  1929. }
  1930. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1931. /**
  1932. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1933. * Will fail if the printer has not been homed with G28.
  1934. *
  1935. * Enhanced G29 Auto Bed Leveling Probe Routine
  1936. *
  1937. * Parameters With AUTO_BED_LEVELING_GRID:
  1938. *
  1939. * P Set the size of the grid that will be probed (P x P points).
  1940. * Not supported by non-linear delta printer bed leveling.
  1941. * Example: "G29 P4"
  1942. *
  1943. * S Set the XY travel speed between probe points (in mm/min)
  1944. *
  1945. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1946. * or clean the rotation Matrix. Useful to check the topology
  1947. * after a first run of G29.
  1948. *
  1949. * V Set the verbose level (0-4). Example: "G29 V3"
  1950. *
  1951. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1952. * This is useful for manual bed leveling and finding flaws in the bed (to
  1953. * assist with part placement).
  1954. * Not supported by non-linear delta printer bed leveling.
  1955. *
  1956. * F Set the Front limit of the probing grid
  1957. * B Set the Back limit of the probing grid
  1958. * L Set the Left limit of the probing grid
  1959. * R Set the Right limit of the probing grid
  1960. *
  1961. * Global Parameters:
  1962. *
  1963. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1964. * Include "E" to engage/disengage the probe for each sample.
  1965. * There's no extra effect if you have a fixed probe.
  1966. * Usage: "G29 E" or "G29 e"
  1967. *
  1968. */
  1969. inline void gcode_G29() {
  1970. // Prevent leveling without first homing in X and Y
  1971. if (!can_run_bed_leveling()) return;
  1972. int verbose_level = 1;
  1973. if (code_seen('V') || code_seen('v')) {
  1974. verbose_level = code_value_long();
  1975. if (verbose_level < 0 || verbose_level > 4) {
  1976. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1977. return;
  1978. }
  1979. }
  1980. bool dryrun = code_seen('D') || code_seen('d');
  1981. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1982. #ifdef AUTO_BED_LEVELING_GRID
  1983. #ifndef DELTA
  1984. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1985. #endif
  1986. if (verbose_level > 0)
  1987. {
  1988. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1989. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1990. }
  1991. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1992. #ifndef DELTA
  1993. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1994. if (auto_bed_leveling_grid_points < 2) {
  1995. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1996. return;
  1997. }
  1998. #endif
  1999. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  2000. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  2001. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  2002. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  2003. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  2004. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2005. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2006. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2007. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2008. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2009. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2010. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2011. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2012. if (left_out || right_out || front_out || back_out) {
  2013. if (left_out) {
  2014. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2015. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2016. }
  2017. if (right_out) {
  2018. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2019. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2020. }
  2021. if (front_out) {
  2022. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2023. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2024. }
  2025. if (back_out) {
  2026. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2027. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2028. }
  2029. return;
  2030. }
  2031. #endif // AUTO_BED_LEVELING_GRID
  2032. #ifdef Z_PROBE_SLED
  2033. dock_sled(false); // engage (un-dock) the probe
  2034. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2035. engage_z_probe();
  2036. #endif
  2037. st_synchronize();
  2038. if (!dryrun) {
  2039. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2040. plan_bed_level_matrix.set_to_identity();
  2041. #ifdef DELTA
  2042. reset_bed_level();
  2043. #else //!DELTA
  2044. //vector_3 corrected_position = plan_get_position_mm();
  2045. //corrected_position.debug("position before G29");
  2046. vector_3 uncorrected_position = plan_get_position();
  2047. //uncorrected_position.debug("position during G29");
  2048. current_position[X_AXIS] = uncorrected_position.x;
  2049. current_position[Y_AXIS] = uncorrected_position.y;
  2050. current_position[Z_AXIS] = uncorrected_position.z;
  2051. sync_plan_position();
  2052. #endif // !DELTA
  2053. }
  2054. setup_for_endstop_move();
  2055. feedrate = homing_feedrate[Z_AXIS];
  2056. #ifdef AUTO_BED_LEVELING_GRID
  2057. // probe at the points of a lattice grid
  2058. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  2059. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  2060. #ifdef DELTA
  2061. delta_grid_spacing[0] = xGridSpacing;
  2062. delta_grid_spacing[1] = yGridSpacing;
  2063. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2064. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2065. #else // !DELTA
  2066. // solve the plane equation ax + by + d = z
  2067. // A is the matrix with rows [x y 1] for all the probed points
  2068. // B is the vector of the Z positions
  2069. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2070. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2071. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2072. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2073. eqnBVector[abl2], // "B" vector of Z points
  2074. mean = 0.0;
  2075. #endif // !DELTA
  2076. int probePointCounter = 0;
  2077. bool zig = true;
  2078. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2079. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2080. int xStart, xStop, xInc;
  2081. if (zig) {
  2082. xStart = 0;
  2083. xStop = auto_bed_leveling_grid_points;
  2084. xInc = 1;
  2085. }
  2086. else {
  2087. xStart = auto_bed_leveling_grid_points - 1;
  2088. xStop = -1;
  2089. xInc = -1;
  2090. }
  2091. #ifndef DELTA
  2092. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2093. // This gets the probe points in more readable order.
  2094. if (!do_topography_map) zig = !zig;
  2095. #endif
  2096. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2097. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2098. // raise extruder
  2099. float measured_z,
  2100. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  2101. #ifdef DELTA
  2102. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2103. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2104. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2105. #endif //DELTA
  2106. // Enhanced G29 - Do not retract servo between probes
  2107. ProbeAction act;
  2108. if (engage_probe_for_each_reading)
  2109. act = ProbeEngageAndRetract;
  2110. else if (yProbe == front_probe_bed_position && xCount == 0)
  2111. act = ProbeEngage;
  2112. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2113. act = ProbeRetract;
  2114. else
  2115. act = ProbeStay;
  2116. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2117. #ifndef DELTA
  2118. mean += measured_z;
  2119. eqnBVector[probePointCounter] = measured_z;
  2120. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2121. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2122. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2123. #else
  2124. bed_level[xCount][yCount] = measured_z + z_offset;
  2125. #endif
  2126. probePointCounter++;
  2127. manage_heater();
  2128. manage_inactivity();
  2129. lcd_update();
  2130. } //xProbe
  2131. } //yProbe
  2132. clean_up_after_endstop_move();
  2133. #ifdef DELTA
  2134. if (!dryrun) extrapolate_unprobed_bed_level();
  2135. print_bed_level();
  2136. #else // !DELTA
  2137. // solve lsq problem
  2138. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2139. mean /= abl2;
  2140. if (verbose_level) {
  2141. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2142. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2143. SERIAL_PROTOCOLPGM(" b: ");
  2144. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2145. SERIAL_PROTOCOLPGM(" d: ");
  2146. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2147. SERIAL_EOL;
  2148. if (verbose_level > 2) {
  2149. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2150. SERIAL_PROTOCOL_F(mean, 8);
  2151. SERIAL_EOL;
  2152. }
  2153. }
  2154. // Show the Topography map if enabled
  2155. if (do_topography_map) {
  2156. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2157. SERIAL_PROTOCOLPGM("+-----------+\n");
  2158. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2159. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2160. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2161. SERIAL_PROTOCOLPGM("+-----------+\n");
  2162. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2163. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2164. int ind = yy * auto_bed_leveling_grid_points + xx;
  2165. float diff = eqnBVector[ind] - mean;
  2166. if (diff >= 0.0)
  2167. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2168. else
  2169. SERIAL_PROTOCOLPGM(" ");
  2170. SERIAL_PROTOCOL_F(diff, 5);
  2171. } // xx
  2172. SERIAL_EOL;
  2173. } // yy
  2174. SERIAL_EOL;
  2175. } //do_topography_map
  2176. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2177. free(plane_equation_coefficients);
  2178. #endif //!DELTA
  2179. #else // !AUTO_BED_LEVELING_GRID
  2180. // Actions for each probe
  2181. ProbeAction p1, p2, p3;
  2182. if (engage_probe_for_each_reading)
  2183. p1 = p2 = p3 = ProbeEngageAndRetract;
  2184. else
  2185. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2186. // Probe at 3 arbitrary points
  2187. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2188. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2189. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2190. clean_up_after_endstop_move();
  2191. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2192. #endif // !AUTO_BED_LEVELING_GRID
  2193. #ifndef DELTA
  2194. if (verbose_level > 0)
  2195. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2196. if (!dryrun) {
  2197. // Correct the Z height difference from z-probe position and hotend tip position.
  2198. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2199. // When the bed is uneven, this height must be corrected.
  2200. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2201. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2202. z_tmp = current_position[Z_AXIS],
  2203. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2204. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2205. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2206. sync_plan_position();
  2207. }
  2208. #endif // !DELTA
  2209. #ifdef Z_PROBE_SLED
  2210. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2211. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2212. retract_z_probe();
  2213. #endif
  2214. #ifdef Z_PROBE_END_SCRIPT
  2215. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2216. st_synchronize();
  2217. #endif
  2218. }
  2219. #ifndef Z_PROBE_SLED
  2220. inline void gcode_G30() {
  2221. engage_z_probe(); // Engage Z Servo endstop if available
  2222. st_synchronize();
  2223. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2224. setup_for_endstop_move();
  2225. feedrate = homing_feedrate[Z_AXIS];
  2226. run_z_probe();
  2227. SERIAL_PROTOCOLPGM(MSG_BED);
  2228. SERIAL_PROTOCOLPGM(" X: ");
  2229. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2230. SERIAL_PROTOCOLPGM(" Y: ");
  2231. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2232. SERIAL_PROTOCOLPGM(" Z: ");
  2233. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2234. SERIAL_EOL;
  2235. clean_up_after_endstop_move();
  2236. retract_z_probe(); // Retract Z Servo endstop if available
  2237. }
  2238. #endif //!Z_PROBE_SLED
  2239. #endif //ENABLE_AUTO_BED_LEVELING
  2240. /**
  2241. * G92: Set current position to given X Y Z E
  2242. */
  2243. inline void gcode_G92() {
  2244. if (!code_seen(axis_codes[E_AXIS]))
  2245. st_synchronize();
  2246. bool didXYZ = false;
  2247. for (int i = 0; i < NUM_AXIS; i++) {
  2248. if (code_seen(axis_codes[i])) {
  2249. float v = current_position[i] = code_value();
  2250. if (i == E_AXIS)
  2251. plan_set_e_position(v);
  2252. else
  2253. didXYZ = true;
  2254. }
  2255. }
  2256. if (didXYZ) sync_plan_position();
  2257. }
  2258. #ifdef ULTIPANEL
  2259. /**
  2260. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2261. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2262. */
  2263. inline void gcode_M0_M1() {
  2264. char *src = strchr_pointer + 2;
  2265. unsigned long codenum = 0;
  2266. bool hasP = false, hasS = false;
  2267. if (code_seen('P')) {
  2268. codenum = code_value(); // milliseconds to wait
  2269. hasP = codenum > 0;
  2270. }
  2271. if (code_seen('S')) {
  2272. codenum = code_value() * 1000; // seconds to wait
  2273. hasS = codenum > 0;
  2274. }
  2275. char* starpos = strchr(src, '*');
  2276. if (starpos != NULL) *(starpos) = '\0';
  2277. while (*src == ' ') ++src;
  2278. if (!hasP && !hasS && *src != '\0')
  2279. lcd_setstatus(src, true);
  2280. else {
  2281. LCD_MESSAGEPGM(MSG_USERWAIT);
  2282. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2283. dontExpireStatus();
  2284. #endif
  2285. }
  2286. lcd_ignore_click();
  2287. st_synchronize();
  2288. previous_millis_cmd = millis();
  2289. if (codenum > 0) {
  2290. codenum += previous_millis_cmd; // keep track of when we started waiting
  2291. while(millis() < codenum && !lcd_clicked()) {
  2292. manage_heater();
  2293. manage_inactivity();
  2294. lcd_update();
  2295. }
  2296. lcd_ignore_click(false);
  2297. }
  2298. else {
  2299. if (!lcd_detected()) return;
  2300. while (!lcd_clicked()) {
  2301. manage_heater();
  2302. manage_inactivity();
  2303. lcd_update();
  2304. }
  2305. }
  2306. if (IS_SD_PRINTING)
  2307. LCD_MESSAGEPGM(MSG_RESUMING);
  2308. else
  2309. LCD_MESSAGEPGM(WELCOME_MSG);
  2310. }
  2311. #endif // ULTIPANEL
  2312. /**
  2313. * M17: Enable power on all stepper motors
  2314. */
  2315. inline void gcode_M17() {
  2316. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2317. enable_x();
  2318. enable_y();
  2319. enable_z();
  2320. enable_e0();
  2321. enable_e1();
  2322. enable_e2();
  2323. enable_e3();
  2324. }
  2325. #ifdef SDSUPPORT
  2326. /**
  2327. * M20: List SD card to serial output
  2328. */
  2329. inline void gcode_M20() {
  2330. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2331. card.ls();
  2332. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2333. }
  2334. /**
  2335. * M21: Init SD Card
  2336. */
  2337. inline void gcode_M21() {
  2338. card.initsd();
  2339. }
  2340. /**
  2341. * M22: Release SD Card
  2342. */
  2343. inline void gcode_M22() {
  2344. card.release();
  2345. }
  2346. /**
  2347. * M23: Select a file
  2348. */
  2349. inline void gcode_M23() {
  2350. char* codepos = strchr_pointer + 4;
  2351. char* starpos = strchr(codepos, '*');
  2352. if (starpos) *starpos = '\0';
  2353. card.openFile(codepos, true);
  2354. }
  2355. /**
  2356. * M24: Start SD Print
  2357. */
  2358. inline void gcode_M24() {
  2359. card.startFileprint();
  2360. starttime = millis();
  2361. }
  2362. /**
  2363. * M25: Pause SD Print
  2364. */
  2365. inline void gcode_M25() {
  2366. card.pauseSDPrint();
  2367. }
  2368. /**
  2369. * M26: Set SD Card file index
  2370. */
  2371. inline void gcode_M26() {
  2372. if (card.cardOK && code_seen('S'))
  2373. card.setIndex(code_value_long());
  2374. }
  2375. /**
  2376. * M27: Get SD Card status
  2377. */
  2378. inline void gcode_M27() {
  2379. card.getStatus();
  2380. }
  2381. /**
  2382. * M28: Start SD Write
  2383. */
  2384. inline void gcode_M28() {
  2385. char* codepos = strchr_pointer + 4;
  2386. char* starpos = strchr(codepos, '*');
  2387. if (starpos) {
  2388. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2389. strchr_pointer = strchr(npos, ' ') + 1;
  2390. *(starpos) = '\0';
  2391. }
  2392. card.openFile(codepos, false);
  2393. }
  2394. /**
  2395. * M29: Stop SD Write
  2396. * Processed in write to file routine above
  2397. */
  2398. inline void gcode_M29() {
  2399. // card.saving = false;
  2400. }
  2401. /**
  2402. * M30 <filename>: Delete SD Card file
  2403. */
  2404. inline void gcode_M30() {
  2405. if (card.cardOK) {
  2406. card.closefile();
  2407. char* starpos = strchr(strchr_pointer + 4, '*');
  2408. if (starpos) {
  2409. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2410. strchr_pointer = strchr(npos, ' ') + 1;
  2411. *(starpos) = '\0';
  2412. }
  2413. card.removeFile(strchr_pointer + 4);
  2414. }
  2415. }
  2416. #endif
  2417. /**
  2418. * M31: Get the time since the start of SD Print (or last M109)
  2419. */
  2420. inline void gcode_M31() {
  2421. stoptime = millis();
  2422. unsigned long t = (stoptime - starttime) / 1000;
  2423. int min = t / 60, sec = t % 60;
  2424. char time[30];
  2425. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2426. SERIAL_ECHO_START;
  2427. SERIAL_ECHOLN(time);
  2428. lcd_setstatus(time);
  2429. autotempShutdown();
  2430. }
  2431. #ifdef SDSUPPORT
  2432. /**
  2433. * M32: Select file and start SD Print
  2434. */
  2435. inline void gcode_M32() {
  2436. if (card.sdprinting)
  2437. st_synchronize();
  2438. char* codepos = strchr_pointer + 4;
  2439. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2440. if (! namestartpos)
  2441. namestartpos = codepos; //default name position, 4 letters after the M
  2442. else
  2443. namestartpos++; //to skip the '!'
  2444. char* starpos = strchr(codepos, '*');
  2445. if (starpos) *(starpos) = '\0';
  2446. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2447. if (card.cardOK) {
  2448. card.openFile(namestartpos, true, !call_procedure);
  2449. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2450. card.setIndex(code_value_long());
  2451. card.startFileprint();
  2452. if (!call_procedure)
  2453. starttime = millis(); //procedure calls count as normal print time.
  2454. }
  2455. }
  2456. /**
  2457. * M928: Start SD Write
  2458. */
  2459. inline void gcode_M928() {
  2460. char* starpos = strchr(strchr_pointer + 5, '*');
  2461. if (starpos) {
  2462. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2463. strchr_pointer = strchr(npos, ' ') + 1;
  2464. *(starpos) = '\0';
  2465. }
  2466. card.openLogFile(strchr_pointer + 5);
  2467. }
  2468. #endif // SDSUPPORT
  2469. /**
  2470. * M42: Change pin status via GCode
  2471. */
  2472. inline void gcode_M42() {
  2473. if (code_seen('S')) {
  2474. int pin_status = code_value(),
  2475. pin_number = LED_PIN;
  2476. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2477. pin_number = code_value();
  2478. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2479. if (sensitive_pins[i] == pin_number) {
  2480. pin_number = -1;
  2481. break;
  2482. }
  2483. }
  2484. #if defined(FAN_PIN) && FAN_PIN > -1
  2485. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2486. #endif
  2487. if (pin_number > -1) {
  2488. pinMode(pin_number, OUTPUT);
  2489. digitalWrite(pin_number, pin_status);
  2490. analogWrite(pin_number, pin_status);
  2491. }
  2492. } // code_seen('S')
  2493. }
  2494. // If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
  2495. // it's own unique entity, then the following logic will need to be modified
  2496. // so it only uses the Z_PROBE
  2497. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2498. #if (Z_MIN_PIN == -1) && (! defined (Z_PROBE_PIN) || Z_PROBE_PIN == -1)
  2499. #error "You must have a Z_MIN or Z_PROBE endstop in order to enable calculation of Z-Probe repeatability."
  2500. #endif
  2501. /**
  2502. * M48: Z-Probe repeatability measurement function.
  2503. *
  2504. * Usage:
  2505. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2506. * P = Number of sampled points (4-50, default 10)
  2507. * X = Sample X position
  2508. * Y = Sample Y position
  2509. * V = Verbose level (0-4, default=1)
  2510. * E = Engage probe for each reading
  2511. * L = Number of legs of movement before probe
  2512. *
  2513. * This function assumes the bed has been homed. Specifically, that a G28 command
  2514. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2515. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2516. * regenerated.
  2517. *
  2518. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2519. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2520. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2521. */
  2522. inline void gcode_M48() {
  2523. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2524. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2525. double X_current, Y_current, Z_current;
  2526. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2527. if (code_seen('V') || code_seen('v')) {
  2528. verbose_level = code_value();
  2529. if (verbose_level < 0 || verbose_level > 4 ) {
  2530. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2531. return;
  2532. }
  2533. }
  2534. if (verbose_level > 0)
  2535. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2536. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2537. n_samples = code_value();
  2538. if (n_samples < 4 || n_samples > 50) {
  2539. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2540. return;
  2541. }
  2542. }
  2543. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2544. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2545. Z_current = st_get_position_mm(Z_AXIS);
  2546. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2547. ext_position = st_get_position_mm(E_AXIS);
  2548. if (code_seen('E') || code_seen('e'))
  2549. engage_probe_for_each_reading++;
  2550. if (code_seen('X') || code_seen('x')) {
  2551. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2552. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2553. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2554. return;
  2555. }
  2556. }
  2557. if (code_seen('Y') || code_seen('y')) {
  2558. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2559. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2560. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2561. return;
  2562. }
  2563. }
  2564. if (code_seen('L') || code_seen('l')) {
  2565. n_legs = code_value();
  2566. if (n_legs == 1) n_legs = 2;
  2567. if (n_legs < 0 || n_legs > 15) {
  2568. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2569. return;
  2570. }
  2571. }
  2572. //
  2573. // Do all the preliminary setup work. First raise the probe.
  2574. //
  2575. st_synchronize();
  2576. plan_bed_level_matrix.set_to_identity();
  2577. plan_buffer_line(X_current, Y_current, Z_start_location,
  2578. ext_position,
  2579. homing_feedrate[Z_AXIS] / 60,
  2580. active_extruder);
  2581. st_synchronize();
  2582. //
  2583. // Now get everything to the specified probe point So we can safely do a probe to
  2584. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2585. // use that as a starting point for each probe.
  2586. //
  2587. if (verbose_level > 2)
  2588. SERIAL_PROTOCOL("Positioning the probe...\n");
  2589. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2590. ext_position,
  2591. homing_feedrate[X_AXIS]/60,
  2592. active_extruder);
  2593. st_synchronize();
  2594. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2595. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2596. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2597. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2598. //
  2599. // OK, do the inital probe to get us close to the bed.
  2600. // Then retrace the right amount and use that in subsequent probes
  2601. //
  2602. engage_z_probe();
  2603. setup_for_endstop_move();
  2604. run_z_probe();
  2605. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2606. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2607. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2608. ext_position,
  2609. homing_feedrate[X_AXIS]/60,
  2610. active_extruder);
  2611. st_synchronize();
  2612. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2613. if (engage_probe_for_each_reading) retract_z_probe();
  2614. for (n=0; n < n_samples; n++) {
  2615. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2616. if (n_legs) {
  2617. double radius=0.0, theta=0.0;
  2618. int l;
  2619. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2620. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2621. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2622. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2623. //SERIAL_ECHOPAIR(" theta: ",theta);
  2624. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2625. //SERIAL_EOL;
  2626. float dir = rotational_direction ? 1 : -1;
  2627. for (l = 0; l < n_legs - 1; l++) {
  2628. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2629. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2630. if (radius < 0.0) radius = -radius;
  2631. X_current = X_probe_location + cos(theta) * radius;
  2632. Y_current = Y_probe_location + sin(theta) * radius;
  2633. // Make sure our X & Y are sane
  2634. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2635. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2636. if (verbose_level > 3) {
  2637. SERIAL_ECHOPAIR("x: ", X_current);
  2638. SERIAL_ECHOPAIR("y: ", Y_current);
  2639. SERIAL_EOL;
  2640. }
  2641. do_blocking_move_to( X_current, Y_current, Z_current );
  2642. }
  2643. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2644. }
  2645. if (engage_probe_for_each_reading) {
  2646. engage_z_probe();
  2647. delay(1000);
  2648. }
  2649. setup_for_endstop_move();
  2650. run_z_probe();
  2651. sample_set[n] = current_position[Z_AXIS];
  2652. //
  2653. // Get the current mean for the data points we have so far
  2654. //
  2655. sum = 0.0;
  2656. for (j=0; j<=n; j++) sum += sample_set[j];
  2657. mean = sum / (double (n+1));
  2658. //
  2659. // Now, use that mean to calculate the standard deviation for the
  2660. // data points we have so far
  2661. //
  2662. sum = 0.0;
  2663. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2664. sigma = sqrt( sum / (double (n+1)) );
  2665. if (verbose_level > 1) {
  2666. SERIAL_PROTOCOL(n+1);
  2667. SERIAL_PROTOCOL(" of ");
  2668. SERIAL_PROTOCOL(n_samples);
  2669. SERIAL_PROTOCOLPGM(" z: ");
  2670. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2671. }
  2672. if (verbose_level > 2) {
  2673. SERIAL_PROTOCOL(" mean: ");
  2674. SERIAL_PROTOCOL_F(mean,6);
  2675. SERIAL_PROTOCOL(" sigma: ");
  2676. SERIAL_PROTOCOL_F(sigma,6);
  2677. }
  2678. if (verbose_level > 0) SERIAL_EOL;
  2679. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2680. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2681. st_synchronize();
  2682. if (engage_probe_for_each_reading) {
  2683. retract_z_probe();
  2684. delay(1000);
  2685. }
  2686. }
  2687. retract_z_probe();
  2688. delay(1000);
  2689. clean_up_after_endstop_move();
  2690. // enable_endstops(true);
  2691. if (verbose_level > 0) {
  2692. SERIAL_PROTOCOLPGM("Mean: ");
  2693. SERIAL_PROTOCOL_F(mean, 6);
  2694. SERIAL_EOL;
  2695. }
  2696. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2697. SERIAL_PROTOCOL_F(sigma, 6);
  2698. SERIAL_EOL; SERIAL_EOL;
  2699. }
  2700. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2701. /**
  2702. * M104: Set hot end temperature
  2703. */
  2704. inline void gcode_M104() {
  2705. if (setTargetedHotend(104)) return;
  2706. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2707. #ifdef DUAL_X_CARRIAGE
  2708. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2709. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2710. #endif
  2711. setWatch();
  2712. }
  2713. /**
  2714. * M105: Read hot end and bed temperature
  2715. */
  2716. inline void gcode_M105() {
  2717. if (setTargetedHotend(105)) return;
  2718. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2719. SERIAL_PROTOCOLPGM("ok T:");
  2720. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2721. SERIAL_PROTOCOLPGM(" /");
  2722. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2723. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2724. SERIAL_PROTOCOLPGM(" B:");
  2725. SERIAL_PROTOCOL_F(degBed(),1);
  2726. SERIAL_PROTOCOLPGM(" /");
  2727. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2728. #endif //TEMP_BED_PIN
  2729. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2730. SERIAL_PROTOCOLPGM(" T");
  2731. SERIAL_PROTOCOL(cur_extruder);
  2732. SERIAL_PROTOCOLPGM(":");
  2733. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2734. SERIAL_PROTOCOLPGM(" /");
  2735. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2736. }
  2737. #else
  2738. SERIAL_ERROR_START;
  2739. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2740. #endif
  2741. SERIAL_PROTOCOLPGM(" @:");
  2742. #ifdef EXTRUDER_WATTS
  2743. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2744. SERIAL_PROTOCOLPGM("W");
  2745. #else
  2746. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2747. #endif
  2748. SERIAL_PROTOCOLPGM(" B@:");
  2749. #ifdef BED_WATTS
  2750. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2751. SERIAL_PROTOCOLPGM("W");
  2752. #else
  2753. SERIAL_PROTOCOL(getHeaterPower(-1));
  2754. #endif
  2755. #ifdef SHOW_TEMP_ADC_VALUES
  2756. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2757. SERIAL_PROTOCOLPGM(" ADC B:");
  2758. SERIAL_PROTOCOL_F(degBed(),1);
  2759. SERIAL_PROTOCOLPGM("C->");
  2760. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2761. #endif
  2762. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2763. SERIAL_PROTOCOLPGM(" T");
  2764. SERIAL_PROTOCOL(cur_extruder);
  2765. SERIAL_PROTOCOLPGM(":");
  2766. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2767. SERIAL_PROTOCOLPGM("C->");
  2768. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2769. }
  2770. #endif
  2771. SERIAL_PROTOCOLLN("");
  2772. }
  2773. #if defined(FAN_PIN) && FAN_PIN > -1
  2774. /**
  2775. * M106: Set Fan Speed
  2776. */
  2777. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2778. /**
  2779. * M107: Fan Off
  2780. */
  2781. inline void gcode_M107() { fanSpeed = 0; }
  2782. #endif //FAN_PIN
  2783. /**
  2784. * M109: Wait for extruder(s) to reach temperature
  2785. */
  2786. inline void gcode_M109() {
  2787. if (setTargetedHotend(109)) return;
  2788. LCD_MESSAGEPGM(MSG_HEATING);
  2789. CooldownNoWait = code_seen('S');
  2790. if (CooldownNoWait || code_seen('R')) {
  2791. setTargetHotend(code_value(), tmp_extruder);
  2792. #ifdef DUAL_X_CARRIAGE
  2793. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2794. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2795. #endif
  2796. }
  2797. #ifdef AUTOTEMP
  2798. autotemp_enabled = code_seen('F');
  2799. if (autotemp_enabled) autotemp_factor = code_value();
  2800. if (code_seen('S')) autotemp_min = code_value();
  2801. if (code_seen('B')) autotemp_max = code_value();
  2802. #endif
  2803. setWatch();
  2804. unsigned long timetemp = millis();
  2805. /* See if we are heating up or cooling down */
  2806. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2807. cancel_heatup = false;
  2808. #ifdef TEMP_RESIDENCY_TIME
  2809. long residencyStart = -1;
  2810. /* continue to loop until we have reached the target temp
  2811. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2812. while((!cancel_heatup)&&((residencyStart == -1) ||
  2813. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2814. #else
  2815. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2816. #endif //TEMP_RESIDENCY_TIME
  2817. { // while loop
  2818. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2819. SERIAL_PROTOCOLPGM("T:");
  2820. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2821. SERIAL_PROTOCOLPGM(" E:");
  2822. SERIAL_PROTOCOL((int)tmp_extruder);
  2823. #ifdef TEMP_RESIDENCY_TIME
  2824. SERIAL_PROTOCOLPGM(" W:");
  2825. if (residencyStart > -1) {
  2826. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2827. SERIAL_PROTOCOLLN( timetemp );
  2828. }
  2829. else {
  2830. SERIAL_PROTOCOLLN( "?" );
  2831. }
  2832. #else
  2833. SERIAL_PROTOCOLLN("");
  2834. #endif
  2835. timetemp = millis();
  2836. }
  2837. manage_heater();
  2838. manage_inactivity();
  2839. lcd_update();
  2840. #ifdef TEMP_RESIDENCY_TIME
  2841. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2842. // or when current temp falls outside the hysteresis after target temp was reached
  2843. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2844. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2845. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2846. {
  2847. residencyStart = millis();
  2848. }
  2849. #endif //TEMP_RESIDENCY_TIME
  2850. }
  2851. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2852. starttime = previous_millis_cmd = millis();
  2853. }
  2854. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2855. /**
  2856. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2857. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2858. */
  2859. inline void gcode_M190() {
  2860. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2861. CooldownNoWait = code_seen('S');
  2862. if (CooldownNoWait || code_seen('R'))
  2863. setTargetBed(code_value());
  2864. unsigned long timetemp = millis();
  2865. cancel_heatup = false;
  2866. target_direction = isHeatingBed(); // true if heating, false if cooling
  2867. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2868. unsigned long ms = millis();
  2869. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2870. timetemp = ms;
  2871. float tt = degHotend(active_extruder);
  2872. SERIAL_PROTOCOLPGM("T:");
  2873. SERIAL_PROTOCOL(tt);
  2874. SERIAL_PROTOCOLPGM(" E:");
  2875. SERIAL_PROTOCOL((int)active_extruder);
  2876. SERIAL_PROTOCOLPGM(" B:");
  2877. SERIAL_PROTOCOL_F(degBed(), 1);
  2878. SERIAL_PROTOCOLLN("");
  2879. }
  2880. manage_heater();
  2881. manage_inactivity();
  2882. lcd_update();
  2883. }
  2884. LCD_MESSAGEPGM(MSG_BED_DONE);
  2885. previous_millis_cmd = millis();
  2886. }
  2887. #endif // TEMP_BED_PIN > -1
  2888. /**
  2889. * M112: Emergency Stop
  2890. */
  2891. inline void gcode_M112() {
  2892. kill();
  2893. }
  2894. #ifdef BARICUDA
  2895. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2896. /**
  2897. * M126: Heater 1 valve open
  2898. */
  2899. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2900. /**
  2901. * M127: Heater 1 valve close
  2902. */
  2903. inline void gcode_M127() { ValvePressure = 0; }
  2904. #endif
  2905. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2906. /**
  2907. * M128: Heater 2 valve open
  2908. */
  2909. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2910. /**
  2911. * M129: Heater 2 valve close
  2912. */
  2913. inline void gcode_M129() { EtoPPressure = 0; }
  2914. #endif
  2915. #endif //BARICUDA
  2916. /**
  2917. * M140: Set bed temperature
  2918. */
  2919. inline void gcode_M140() {
  2920. if (code_seen('S')) setTargetBed(code_value());
  2921. }
  2922. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2923. /**
  2924. * M80: Turn on Power Supply
  2925. */
  2926. inline void gcode_M80() {
  2927. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2928. // If you have a switch on suicide pin, this is useful
  2929. // if you want to start another print with suicide feature after
  2930. // a print without suicide...
  2931. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2932. OUT_WRITE(SUICIDE_PIN, HIGH);
  2933. #endif
  2934. #ifdef ULTIPANEL
  2935. powersupply = true;
  2936. LCD_MESSAGEPGM(WELCOME_MSG);
  2937. lcd_update();
  2938. #endif
  2939. }
  2940. #endif // PS_ON_PIN
  2941. /**
  2942. * M81: Turn off Power Supply
  2943. */
  2944. inline void gcode_M81() {
  2945. disable_heater();
  2946. st_synchronize();
  2947. disable_e0();
  2948. disable_e1();
  2949. disable_e2();
  2950. disable_e3();
  2951. finishAndDisableSteppers();
  2952. fanSpeed = 0;
  2953. delay(1000); // Wait 1 second before switching off
  2954. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2955. st_synchronize();
  2956. suicide();
  2957. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2958. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2959. #endif
  2960. #ifdef ULTIPANEL
  2961. powersupply = false;
  2962. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2963. lcd_update();
  2964. #endif
  2965. }
  2966. /**
  2967. * M82: Set E codes absolute (default)
  2968. */
  2969. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2970. /**
  2971. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2972. */
  2973. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2974. /**
  2975. * M18, M84: Disable all stepper motors
  2976. */
  2977. inline void gcode_M18_M84() {
  2978. if (code_seen('S')) {
  2979. stepper_inactive_time = code_value() * 1000;
  2980. }
  2981. else {
  2982. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2983. if (all_axis) {
  2984. st_synchronize();
  2985. disable_e0();
  2986. disable_e1();
  2987. disable_e2();
  2988. disable_e3();
  2989. finishAndDisableSteppers();
  2990. }
  2991. else {
  2992. st_synchronize();
  2993. if (code_seen('X')) disable_x();
  2994. if (code_seen('Y')) disable_y();
  2995. if (code_seen('Z')) disable_z();
  2996. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2997. if (code_seen('E')) {
  2998. disable_e0();
  2999. disable_e1();
  3000. disable_e2();
  3001. disable_e3();
  3002. }
  3003. #endif
  3004. }
  3005. }
  3006. }
  3007. /**
  3008. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3009. */
  3010. inline void gcode_M85() {
  3011. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3012. }
  3013. /**
  3014. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3015. */
  3016. inline void gcode_M92() {
  3017. for(int8_t i=0; i < NUM_AXIS; i++) {
  3018. if (code_seen(axis_codes[i])) {
  3019. if (i == E_AXIS) {
  3020. float value = code_value();
  3021. if (value < 20.0) {
  3022. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3023. max_e_jerk *= factor;
  3024. max_feedrate[i] *= factor;
  3025. axis_steps_per_sqr_second[i] *= factor;
  3026. }
  3027. axis_steps_per_unit[i] = value;
  3028. }
  3029. else {
  3030. axis_steps_per_unit[i] = code_value();
  3031. }
  3032. }
  3033. }
  3034. }
  3035. /**
  3036. * M114: Output current position to serial port
  3037. */
  3038. inline void gcode_M114() {
  3039. SERIAL_PROTOCOLPGM("X:");
  3040. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3041. SERIAL_PROTOCOLPGM(" Y:");
  3042. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3043. SERIAL_PROTOCOLPGM(" Z:");
  3044. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3045. SERIAL_PROTOCOLPGM(" E:");
  3046. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3047. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3048. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3049. SERIAL_PROTOCOLPGM(" Y:");
  3050. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3051. SERIAL_PROTOCOLPGM(" Z:");
  3052. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3053. SERIAL_PROTOCOLLN("");
  3054. #ifdef SCARA
  3055. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3056. SERIAL_PROTOCOL(delta[X_AXIS]);
  3057. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3058. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3059. SERIAL_PROTOCOLLN("");
  3060. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3061. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3062. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3063. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3064. SERIAL_PROTOCOLLN("");
  3065. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3066. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3067. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3068. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3069. SERIAL_PROTOCOLLN("");
  3070. SERIAL_PROTOCOLLN("");
  3071. #endif
  3072. }
  3073. /**
  3074. * M115: Capabilities string
  3075. */
  3076. inline void gcode_M115() {
  3077. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3078. }
  3079. /**
  3080. * M117: Set LCD Status Message
  3081. */
  3082. inline void gcode_M117() {
  3083. char* codepos = strchr_pointer + 5;
  3084. char* starpos = strchr(codepos, '*');
  3085. if (starpos) *starpos = '\0';
  3086. lcd_setstatus(codepos);
  3087. }
  3088. /**
  3089. * M119: Output endstop states to serial output
  3090. */
  3091. inline void gcode_M119() {
  3092. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3093. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3094. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3095. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3096. #endif
  3097. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3098. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3099. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3100. #endif
  3101. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3102. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3103. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3104. #endif
  3105. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3106. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3107. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3108. #endif
  3109. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3110. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3111. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3112. #endif
  3113. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3114. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3115. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3116. #endif
  3117. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  3118. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3119. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3120. #endif
  3121. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  3122. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3123. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3124. #endif
  3125. }
  3126. /**
  3127. * M120: Enable endstops
  3128. */
  3129. inline void gcode_M120() { enable_endstops(false); }
  3130. /**
  3131. * M121: Disable endstops
  3132. */
  3133. inline void gcode_M121() { enable_endstops(true); }
  3134. #ifdef BLINKM
  3135. /**
  3136. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3137. */
  3138. inline void gcode_M150() {
  3139. SendColors(
  3140. code_seen('R') ? (byte)code_value() : 0,
  3141. code_seen('U') ? (byte)code_value() : 0,
  3142. code_seen('B') ? (byte)code_value() : 0
  3143. );
  3144. }
  3145. #endif // BLINKM
  3146. /**
  3147. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3148. * T<extruder>
  3149. * D<millimeters>
  3150. */
  3151. inline void gcode_M200() {
  3152. tmp_extruder = active_extruder;
  3153. if (code_seen('T')) {
  3154. tmp_extruder = code_value();
  3155. if (tmp_extruder >= EXTRUDERS) {
  3156. SERIAL_ECHO_START;
  3157. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3158. return;
  3159. }
  3160. }
  3161. if (code_seen('D')) {
  3162. float diameter = code_value();
  3163. // setting any extruder filament size disables volumetric on the assumption that
  3164. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3165. // for all extruders
  3166. volumetric_enabled = (diameter != 0.0);
  3167. if (volumetric_enabled) {
  3168. filament_size[tmp_extruder] = diameter;
  3169. // make sure all extruders have some sane value for the filament size
  3170. for (int i=0; i<EXTRUDERS; i++)
  3171. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3172. }
  3173. }
  3174. else {
  3175. //reserved for setting filament diameter via UFID or filament measuring device
  3176. return;
  3177. }
  3178. calculate_volumetric_multipliers();
  3179. }
  3180. /**
  3181. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3182. */
  3183. inline void gcode_M201() {
  3184. for (int8_t i=0; i < NUM_AXIS; i++) {
  3185. if (code_seen(axis_codes[i])) {
  3186. max_acceleration_units_per_sq_second[i] = code_value();
  3187. }
  3188. }
  3189. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3190. reset_acceleration_rates();
  3191. }
  3192. #if 0 // Not used for Sprinter/grbl gen6
  3193. inline void gcode_M202() {
  3194. for(int8_t i=0; i < NUM_AXIS; i++) {
  3195. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3196. }
  3197. }
  3198. #endif
  3199. /**
  3200. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3201. */
  3202. inline void gcode_M203() {
  3203. for (int8_t i=0; i < NUM_AXIS; i++) {
  3204. if (code_seen(axis_codes[i])) {
  3205. max_feedrate[i] = code_value();
  3206. }
  3207. }
  3208. }
  3209. /**
  3210. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3211. *
  3212. * P = Printing moves
  3213. * R = Retract only (no X, Y, Z) moves
  3214. * T = Travel (non printing) moves
  3215. *
  3216. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3217. */
  3218. inline void gcode_M204() {
  3219. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3220. {
  3221. acceleration = code_value();
  3222. travel_acceleration = acceleration;
  3223. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3224. SERIAL_EOL;
  3225. }
  3226. if (code_seen('P'))
  3227. {
  3228. acceleration = code_value();
  3229. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3230. SERIAL_EOL;
  3231. }
  3232. if (code_seen('R'))
  3233. {
  3234. retract_acceleration = code_value();
  3235. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3236. SERIAL_EOL;
  3237. }
  3238. if (code_seen('T'))
  3239. {
  3240. travel_acceleration = code_value();
  3241. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3242. SERIAL_EOL;
  3243. }
  3244. }
  3245. /**
  3246. * M205: Set Advanced Settings
  3247. *
  3248. * S = Min Feed Rate (mm/s)
  3249. * T = Min Travel Feed Rate (mm/s)
  3250. * B = Min Segment Time (µs)
  3251. * X = Max XY Jerk (mm/s/s)
  3252. * Z = Max Z Jerk (mm/s/s)
  3253. * E = Max E Jerk (mm/s/s)
  3254. */
  3255. inline void gcode_M205() {
  3256. if (code_seen('S')) minimumfeedrate = code_value();
  3257. if (code_seen('T')) mintravelfeedrate = code_value();
  3258. if (code_seen('B')) minsegmenttime = code_value();
  3259. if (code_seen('X')) max_xy_jerk = code_value();
  3260. if (code_seen('Z')) max_z_jerk = code_value();
  3261. if (code_seen('E')) max_e_jerk = code_value();
  3262. }
  3263. /**
  3264. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3265. */
  3266. inline void gcode_M206() {
  3267. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3268. if (code_seen(axis_codes[i])) {
  3269. home_offset[i] = code_value();
  3270. }
  3271. }
  3272. #ifdef SCARA
  3273. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3274. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3275. #endif
  3276. }
  3277. #ifdef DELTA
  3278. /**
  3279. * M665: Set delta configurations
  3280. *
  3281. * L = diagonal rod
  3282. * R = delta radius
  3283. * S = segments per second
  3284. */
  3285. inline void gcode_M665() {
  3286. if (code_seen('L')) delta_diagonal_rod = code_value();
  3287. if (code_seen('R')) delta_radius = code_value();
  3288. if (code_seen('S')) delta_segments_per_second = code_value();
  3289. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3290. }
  3291. /**
  3292. * M666: Set delta endstop adjustment
  3293. */
  3294. inline void gcode_M666() {
  3295. for (int8_t i = 0; i < 3; i++) {
  3296. if (code_seen(axis_codes[i])) {
  3297. endstop_adj[i] = code_value();
  3298. }
  3299. }
  3300. }
  3301. #elif defined(Z_DUAL_ENDSTOPS)
  3302. /**
  3303. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3304. */
  3305. inline void gcode_M666() {
  3306. if (code_seen('Z')) z_endstop_adj = code_value();
  3307. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3308. SERIAL_EOL;
  3309. }
  3310. #endif // DELTA
  3311. #ifdef FWRETRACT
  3312. /**
  3313. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3314. */
  3315. inline void gcode_M207() {
  3316. if (code_seen('S')) retract_length = code_value();
  3317. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3318. if (code_seen('Z')) retract_zlift = code_value();
  3319. }
  3320. /**
  3321. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3322. */
  3323. inline void gcode_M208() {
  3324. if (code_seen('S')) retract_recover_length = code_value();
  3325. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3326. }
  3327. /**
  3328. * M209: Enable automatic retract (M209 S1)
  3329. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3330. */
  3331. inline void gcode_M209() {
  3332. if (code_seen('S')) {
  3333. int t = code_value();
  3334. switch(t) {
  3335. case 0:
  3336. autoretract_enabled = false;
  3337. break;
  3338. case 1:
  3339. autoretract_enabled = true;
  3340. break;
  3341. default:
  3342. SERIAL_ECHO_START;
  3343. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3344. SERIAL_ECHO(cmdbuffer[bufindr]);
  3345. SERIAL_ECHOLNPGM("\"");
  3346. return;
  3347. }
  3348. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3349. }
  3350. }
  3351. #endif // FWRETRACT
  3352. #if EXTRUDERS > 1
  3353. /**
  3354. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3355. */
  3356. inline void gcode_M218() {
  3357. if (setTargetedHotend(218)) return;
  3358. if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
  3359. if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
  3360. #ifdef DUAL_X_CARRIAGE
  3361. if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
  3362. #endif
  3363. SERIAL_ECHO_START;
  3364. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3365. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3366. SERIAL_ECHO(" ");
  3367. SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
  3368. SERIAL_ECHO(",");
  3369. SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
  3370. #ifdef DUAL_X_CARRIAGE
  3371. SERIAL_ECHO(",");
  3372. SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
  3373. #endif
  3374. }
  3375. SERIAL_EOL;
  3376. }
  3377. #endif // EXTRUDERS > 1
  3378. /**
  3379. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3380. */
  3381. inline void gcode_M220() {
  3382. if (code_seen('S')) feedmultiply = code_value();
  3383. }
  3384. /**
  3385. * M221: Set extrusion percentage (M221 T0 S95)
  3386. */
  3387. inline void gcode_M221() {
  3388. if (code_seen('S')) {
  3389. int sval = code_value();
  3390. if (code_seen('T')) {
  3391. if (setTargetedHotend(221)) return;
  3392. extruder_multiply[tmp_extruder] = sval;
  3393. }
  3394. else {
  3395. extruder_multiply[active_extruder] = sval;
  3396. }
  3397. }
  3398. }
  3399. /**
  3400. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3401. */
  3402. inline void gcode_M226() {
  3403. if (code_seen('P')) {
  3404. int pin_number = code_value();
  3405. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3406. if (pin_state >= -1 && pin_state <= 1) {
  3407. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3408. if (sensitive_pins[i] == pin_number) {
  3409. pin_number = -1;
  3410. break;
  3411. }
  3412. }
  3413. if (pin_number > -1) {
  3414. int target = LOW;
  3415. st_synchronize();
  3416. pinMode(pin_number, INPUT);
  3417. switch(pin_state){
  3418. case 1:
  3419. target = HIGH;
  3420. break;
  3421. case 0:
  3422. target = LOW;
  3423. break;
  3424. case -1:
  3425. target = !digitalRead(pin_number);
  3426. break;
  3427. }
  3428. while(digitalRead(pin_number) != target) {
  3429. manage_heater();
  3430. manage_inactivity();
  3431. lcd_update();
  3432. }
  3433. } // pin_number > -1
  3434. } // pin_state -1 0 1
  3435. } // code_seen('P')
  3436. }
  3437. #if NUM_SERVOS > 0
  3438. /**
  3439. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3440. */
  3441. inline void gcode_M280() {
  3442. int servo_index = code_seen('P') ? code_value() : -1;
  3443. int servo_position = 0;
  3444. if (code_seen('S')) {
  3445. servo_position = code_value();
  3446. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3447. #if SERVO_LEVELING
  3448. servos[servo_index].attach(0);
  3449. #endif
  3450. servos[servo_index].write(servo_position);
  3451. #if SERVO_LEVELING
  3452. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3453. servos[servo_index].detach();
  3454. #endif
  3455. }
  3456. else {
  3457. SERIAL_ECHO_START;
  3458. SERIAL_ECHO("Servo ");
  3459. SERIAL_ECHO(servo_index);
  3460. SERIAL_ECHOLN(" out of range");
  3461. }
  3462. }
  3463. else if (servo_index >= 0) {
  3464. SERIAL_PROTOCOL(MSG_OK);
  3465. SERIAL_PROTOCOL(" Servo ");
  3466. SERIAL_PROTOCOL(servo_index);
  3467. SERIAL_PROTOCOL(": ");
  3468. SERIAL_PROTOCOL(servos[servo_index].read());
  3469. SERIAL_PROTOCOLLN("");
  3470. }
  3471. }
  3472. #endif // NUM_SERVOS > 0
  3473. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3474. /**
  3475. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3476. */
  3477. inline void gcode_M300() {
  3478. int beepS = code_seen('S') ? code_value() : 110;
  3479. int beepP = code_seen('P') ? code_value() : 1000;
  3480. if (beepS > 0) {
  3481. #if BEEPER > 0
  3482. tone(BEEPER, beepS);
  3483. delay(beepP);
  3484. noTone(BEEPER);
  3485. #elif defined(ULTRALCD)
  3486. lcd_buzz(beepS, beepP);
  3487. #elif defined(LCD_USE_I2C_BUZZER)
  3488. lcd_buzz(beepP, beepS);
  3489. #endif
  3490. }
  3491. else {
  3492. delay(beepP);
  3493. }
  3494. }
  3495. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3496. #ifdef PIDTEMP
  3497. /**
  3498. * M301: Set PID parameters P I D (and optionally C)
  3499. */
  3500. inline void gcode_M301() {
  3501. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3502. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3503. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3504. if (e < EXTRUDERS) { // catch bad input value
  3505. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3506. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3507. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3508. #ifdef PID_ADD_EXTRUSION_RATE
  3509. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3510. #endif
  3511. updatePID();
  3512. SERIAL_PROTOCOL(MSG_OK);
  3513. #ifdef PID_PARAMS_PER_EXTRUDER
  3514. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3515. SERIAL_PROTOCOL(e);
  3516. #endif // PID_PARAMS_PER_EXTRUDER
  3517. SERIAL_PROTOCOL(" p:");
  3518. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3519. SERIAL_PROTOCOL(" i:");
  3520. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3521. SERIAL_PROTOCOL(" d:");
  3522. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3523. #ifdef PID_ADD_EXTRUSION_RATE
  3524. SERIAL_PROTOCOL(" c:");
  3525. //Kc does not have scaling applied above, or in resetting defaults
  3526. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3527. #endif
  3528. SERIAL_PROTOCOLLN("");
  3529. }
  3530. else {
  3531. SERIAL_ECHO_START;
  3532. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3533. }
  3534. }
  3535. #endif // PIDTEMP
  3536. #ifdef PIDTEMPBED
  3537. inline void gcode_M304() {
  3538. if (code_seen('P')) bedKp = code_value();
  3539. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3540. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3541. updatePID();
  3542. SERIAL_PROTOCOL(MSG_OK);
  3543. SERIAL_PROTOCOL(" p:");
  3544. SERIAL_PROTOCOL(bedKp);
  3545. SERIAL_PROTOCOL(" i:");
  3546. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3547. SERIAL_PROTOCOL(" d:");
  3548. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3549. SERIAL_PROTOCOLLN("");
  3550. }
  3551. #endif // PIDTEMPBED
  3552. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3553. /**
  3554. * M240: Trigger a camera by emulating a Canon RC-1
  3555. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3556. */
  3557. inline void gcode_M240() {
  3558. #ifdef CHDK
  3559. OUT_WRITE(CHDK, HIGH);
  3560. chdkHigh = millis();
  3561. chdkActive = true;
  3562. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3563. const uint8_t NUM_PULSES = 16;
  3564. const float PULSE_LENGTH = 0.01524;
  3565. for (int i = 0; i < NUM_PULSES; i++) {
  3566. WRITE(PHOTOGRAPH_PIN, HIGH);
  3567. _delay_ms(PULSE_LENGTH);
  3568. WRITE(PHOTOGRAPH_PIN, LOW);
  3569. _delay_ms(PULSE_LENGTH);
  3570. }
  3571. delay(7.33);
  3572. for (int i = 0; i < NUM_PULSES; i++) {
  3573. WRITE(PHOTOGRAPH_PIN, HIGH);
  3574. _delay_ms(PULSE_LENGTH);
  3575. WRITE(PHOTOGRAPH_PIN, LOW);
  3576. _delay_ms(PULSE_LENGTH);
  3577. }
  3578. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3579. }
  3580. #endif // CHDK || PHOTOGRAPH_PIN
  3581. #ifdef DOGLCD
  3582. /**
  3583. * M250: Read and optionally set the LCD contrast
  3584. */
  3585. inline void gcode_M250() {
  3586. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3587. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3588. SERIAL_PROTOCOL(lcd_contrast);
  3589. SERIAL_PROTOCOLLN("");
  3590. }
  3591. #endif // DOGLCD
  3592. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3593. /**
  3594. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3595. */
  3596. inline void gcode_M302() {
  3597. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3598. }
  3599. #endif // PREVENT_DANGEROUS_EXTRUDE
  3600. /**
  3601. * M303: PID relay autotune
  3602. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3603. * E<extruder> (-1 for the bed)
  3604. * C<cycles>
  3605. */
  3606. inline void gcode_M303() {
  3607. int e = code_seen('E') ? code_value_long() : 0;
  3608. int c = code_seen('C') ? code_value_long() : 5;
  3609. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3610. PID_autotune(temp, e, c);
  3611. }
  3612. #ifdef SCARA
  3613. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3614. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3615. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3616. if (! Stopped) {
  3617. //get_coordinates(); // For X Y Z E F
  3618. delta[X_AXIS] = delta_x;
  3619. delta[Y_AXIS] = delta_y;
  3620. calculate_SCARA_forward_Transform(delta);
  3621. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3622. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3623. prepare_move();
  3624. //ClearToSend();
  3625. return true;
  3626. }
  3627. return false;
  3628. }
  3629. /**
  3630. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3631. */
  3632. inline bool gcode_M360() {
  3633. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3634. return SCARA_move_to_cal(0, 120);
  3635. }
  3636. /**
  3637. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3638. */
  3639. inline bool gcode_M361() {
  3640. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3641. return SCARA_move_to_cal(90, 130);
  3642. }
  3643. /**
  3644. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3645. */
  3646. inline bool gcode_M362() {
  3647. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3648. return SCARA_move_to_cal(60, 180);
  3649. }
  3650. /**
  3651. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3652. */
  3653. inline bool gcode_M363() {
  3654. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3655. return SCARA_move_to_cal(50, 90);
  3656. }
  3657. /**
  3658. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3659. */
  3660. inline bool gcode_M364() {
  3661. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3662. return SCARA_move_to_cal(45, 135);
  3663. }
  3664. /**
  3665. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3666. */
  3667. inline void gcode_M365() {
  3668. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3669. if (code_seen(axis_codes[i])) {
  3670. axis_scaling[i] = code_value();
  3671. }
  3672. }
  3673. }
  3674. #endif // SCARA
  3675. #ifdef EXT_SOLENOID
  3676. void enable_solenoid(uint8_t num) {
  3677. switch(num) {
  3678. case 0:
  3679. OUT_WRITE(SOL0_PIN, HIGH);
  3680. break;
  3681. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3682. case 1:
  3683. OUT_WRITE(SOL1_PIN, HIGH);
  3684. break;
  3685. #endif
  3686. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3687. case 2:
  3688. OUT_WRITE(SOL2_PIN, HIGH);
  3689. break;
  3690. #endif
  3691. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3692. case 3:
  3693. OUT_WRITE(SOL3_PIN, HIGH);
  3694. break;
  3695. #endif
  3696. default:
  3697. SERIAL_ECHO_START;
  3698. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3699. break;
  3700. }
  3701. }
  3702. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3703. void disable_all_solenoids() {
  3704. OUT_WRITE(SOL0_PIN, LOW);
  3705. OUT_WRITE(SOL1_PIN, LOW);
  3706. OUT_WRITE(SOL2_PIN, LOW);
  3707. OUT_WRITE(SOL3_PIN, LOW);
  3708. }
  3709. /**
  3710. * M380: Enable solenoid on the active extruder
  3711. */
  3712. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3713. /**
  3714. * M381: Disable all solenoids
  3715. */
  3716. inline void gcode_M381() { disable_all_solenoids(); }
  3717. #endif // EXT_SOLENOID
  3718. /**
  3719. * M400: Finish all moves
  3720. */
  3721. inline void gcode_M400() { st_synchronize(); }
  3722. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3723. /**
  3724. * M401: Engage Z Servo endstop if available
  3725. */
  3726. inline void gcode_M401() { engage_z_probe(); }
  3727. /**
  3728. * M402: Retract Z Servo endstop if enabled
  3729. */
  3730. inline void gcode_M402() { retract_z_probe(); }
  3731. #endif
  3732. #ifdef FILAMENT_SENSOR
  3733. /**
  3734. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3735. */
  3736. inline void gcode_M404() {
  3737. #if FILWIDTH_PIN > -1
  3738. if (code_seen('W')) {
  3739. filament_width_nominal = code_value();
  3740. }
  3741. else {
  3742. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3743. SERIAL_PROTOCOLLN(filament_width_nominal);
  3744. }
  3745. #endif
  3746. }
  3747. /**
  3748. * M405: Turn on filament sensor for control
  3749. */
  3750. inline void gcode_M405() {
  3751. if (code_seen('D')) meas_delay_cm = code_value();
  3752. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3753. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3754. int temp_ratio = widthFil_to_size_ratio();
  3755. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3756. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3757. delay_index1 = delay_index2 = 0;
  3758. }
  3759. filament_sensor = true;
  3760. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3761. //SERIAL_PROTOCOL(filament_width_meas);
  3762. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3763. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3764. }
  3765. /**
  3766. * M406: Turn off filament sensor for control
  3767. */
  3768. inline void gcode_M406() { filament_sensor = false; }
  3769. /**
  3770. * M407: Get measured filament diameter on serial output
  3771. */
  3772. inline void gcode_M407() {
  3773. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3774. SERIAL_PROTOCOLLN(filament_width_meas);
  3775. }
  3776. #endif // FILAMENT_SENSOR
  3777. /**
  3778. * M500: Store settings in EEPROM
  3779. */
  3780. inline void gcode_M500() {
  3781. Config_StoreSettings();
  3782. }
  3783. /**
  3784. * M501: Read settings from EEPROM
  3785. */
  3786. inline void gcode_M501() {
  3787. Config_RetrieveSettings();
  3788. }
  3789. /**
  3790. * M502: Revert to default settings
  3791. */
  3792. inline void gcode_M502() {
  3793. Config_ResetDefault();
  3794. }
  3795. /**
  3796. * M503: print settings currently in memory
  3797. */
  3798. inline void gcode_M503() {
  3799. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3800. }
  3801. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3802. /**
  3803. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3804. */
  3805. inline void gcode_M540() {
  3806. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3807. }
  3808. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3809. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3810. inline void gcode_SET_Z_PROBE_OFFSET() {
  3811. float value;
  3812. if (code_seen('Z')) {
  3813. value = code_value();
  3814. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3815. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3816. SERIAL_ECHO_START;
  3817. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3818. SERIAL_PROTOCOLLN("");
  3819. }
  3820. else {
  3821. SERIAL_ECHO_START;
  3822. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3823. SERIAL_ECHOPGM(MSG_Z_MIN);
  3824. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3825. SERIAL_ECHOPGM(MSG_Z_MAX);
  3826. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3827. SERIAL_PROTOCOLLN("");
  3828. }
  3829. }
  3830. else {
  3831. SERIAL_ECHO_START;
  3832. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3833. SERIAL_ECHO(-zprobe_zoffset);
  3834. SERIAL_PROTOCOLLN("");
  3835. }
  3836. }
  3837. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3838. #ifdef FILAMENTCHANGEENABLE
  3839. /**
  3840. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3841. */
  3842. inline void gcode_M600() {
  3843. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3844. for (int i=0; i<NUM_AXIS; i++)
  3845. target[i] = lastpos[i] = current_position[i];
  3846. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3847. #ifdef DELTA
  3848. #define RUNPLAN calculate_delta(target); BASICPLAN
  3849. #else
  3850. #define RUNPLAN BASICPLAN
  3851. #endif
  3852. //retract by E
  3853. if (code_seen('E')) target[E_AXIS] += code_value();
  3854. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3855. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3856. #endif
  3857. RUNPLAN;
  3858. //lift Z
  3859. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3860. #ifdef FILAMENTCHANGE_ZADD
  3861. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3862. #endif
  3863. RUNPLAN;
  3864. //move xy
  3865. if (code_seen('X')) target[X_AXIS] = code_value();
  3866. #ifdef FILAMENTCHANGE_XPOS
  3867. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3868. #endif
  3869. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3870. #ifdef FILAMENTCHANGE_YPOS
  3871. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3872. #endif
  3873. RUNPLAN;
  3874. if (code_seen('L')) target[E_AXIS] += code_value();
  3875. #ifdef FILAMENTCHANGE_FINALRETRACT
  3876. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3877. #endif
  3878. RUNPLAN;
  3879. //finish moves
  3880. st_synchronize();
  3881. //disable extruder steppers so filament can be removed
  3882. disable_e0();
  3883. disable_e1();
  3884. disable_e2();
  3885. disable_e3();
  3886. delay(100);
  3887. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3888. uint8_t cnt = 0;
  3889. while (!lcd_clicked()) {
  3890. cnt++;
  3891. manage_heater();
  3892. manage_inactivity(true);
  3893. lcd_update();
  3894. if (cnt == 0) {
  3895. #if BEEPER > 0
  3896. OUT_WRITE(BEEPER,HIGH);
  3897. delay(3);
  3898. WRITE(BEEPER,LOW);
  3899. delay(3);
  3900. #else
  3901. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3902. lcd_buzz(1000/6, 100);
  3903. #else
  3904. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3905. #endif
  3906. #endif
  3907. }
  3908. } // while(!lcd_clicked)
  3909. //return to normal
  3910. if (code_seen('L')) target[E_AXIS] -= code_value();
  3911. #ifdef FILAMENTCHANGE_FINALRETRACT
  3912. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3913. #endif
  3914. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3915. plan_set_e_position(current_position[E_AXIS]);
  3916. RUNPLAN; //should do nothing
  3917. lcd_reset_alert_level();
  3918. #ifdef DELTA
  3919. calculate_delta(lastpos);
  3920. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3921. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3922. #else
  3923. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3924. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3925. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3926. #endif
  3927. #ifdef FILAMENT_RUNOUT_SENSOR
  3928. filrunoutEnqued = false;
  3929. #endif
  3930. }
  3931. #endif // FILAMENTCHANGEENABLE
  3932. #ifdef DUAL_X_CARRIAGE
  3933. /**
  3934. * M605: Set dual x-carriage movement mode
  3935. *
  3936. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3937. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3938. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3939. * millimeters x-offset and an optional differential hotend temperature of
  3940. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3941. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3942. *
  3943. * Note: the X axis should be homed after changing dual x-carriage mode.
  3944. */
  3945. inline void gcode_M605() {
  3946. st_synchronize();
  3947. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3948. switch(dual_x_carriage_mode) {
  3949. case DXC_DUPLICATION_MODE:
  3950. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3951. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3952. SERIAL_ECHO_START;
  3953. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3954. SERIAL_ECHO(" ");
  3955. SERIAL_ECHO(extruder_offset[0][X_AXIS]);
  3956. SERIAL_ECHO(",");
  3957. SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
  3958. SERIAL_ECHO(" ");
  3959. SERIAL_ECHO(duplicate_extruder_x_offset);
  3960. SERIAL_ECHO(",");
  3961. SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
  3962. break;
  3963. case DXC_FULL_CONTROL_MODE:
  3964. case DXC_AUTO_PARK_MODE:
  3965. break;
  3966. default:
  3967. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3968. break;
  3969. }
  3970. active_extruder_parked = false;
  3971. extruder_duplication_enabled = false;
  3972. delayed_move_time = 0;
  3973. }
  3974. #endif // DUAL_X_CARRIAGE
  3975. /**
  3976. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3977. */
  3978. inline void gcode_M907() {
  3979. #if HAS_DIGIPOTSS
  3980. for (int i=0;i<NUM_AXIS;i++)
  3981. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3982. if (code_seen('B')) digipot_current(4, code_value());
  3983. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3984. #endif
  3985. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3986. if (code_seen('X')) digipot_current(0, code_value());
  3987. #endif
  3988. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3989. if (code_seen('Z')) digipot_current(1, code_value());
  3990. #endif
  3991. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3992. if (code_seen('E')) digipot_current(2, code_value());
  3993. #endif
  3994. #ifdef DIGIPOT_I2C
  3995. // this one uses actual amps in floating point
  3996. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3997. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3998. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3999. #endif
  4000. }
  4001. #if HAS_DIGIPOTSS
  4002. /**
  4003. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4004. */
  4005. inline void gcode_M908() {
  4006. digitalPotWrite(
  4007. code_seen('P') ? code_value() : 0,
  4008. code_seen('S') ? code_value() : 0
  4009. );
  4010. }
  4011. #endif // HAS_DIGIPOTSS
  4012. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4013. inline void gcode_M350() {
  4014. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4015. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4016. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4017. if(code_seen('B')) microstep_mode(4,code_value());
  4018. microstep_readings();
  4019. #endif
  4020. }
  4021. /**
  4022. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4023. * S# determines MS1 or MS2, X# sets the pin high/low.
  4024. */
  4025. inline void gcode_M351() {
  4026. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4027. if (code_seen('S')) switch(code_value_long()) {
  4028. case 1:
  4029. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4030. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4031. break;
  4032. case 2:
  4033. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4034. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4035. break;
  4036. }
  4037. microstep_readings();
  4038. #endif
  4039. }
  4040. /**
  4041. * M999: Restart after being stopped
  4042. */
  4043. inline void gcode_M999() {
  4044. Stopped = false;
  4045. lcd_reset_alert_level();
  4046. gcode_LastN = Stopped_gcode_LastN;
  4047. FlushSerialRequestResend();
  4048. }
  4049. inline void gcode_T() {
  4050. tmp_extruder = code_value();
  4051. if (tmp_extruder >= EXTRUDERS) {
  4052. SERIAL_ECHO_START;
  4053. SERIAL_ECHO("T");
  4054. SERIAL_ECHO(tmp_extruder);
  4055. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4056. }
  4057. else {
  4058. #if EXTRUDERS > 1
  4059. bool make_move = false;
  4060. #endif
  4061. if (code_seen('F')) {
  4062. #if EXTRUDERS > 1
  4063. make_move = true;
  4064. #endif
  4065. next_feedrate = code_value();
  4066. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4067. }
  4068. #if EXTRUDERS > 1
  4069. if (tmp_extruder != active_extruder) {
  4070. // Save current position to return to after applying extruder offset
  4071. memcpy(destination, current_position, sizeof(destination));
  4072. #ifdef DUAL_X_CARRIAGE
  4073. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  4074. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4075. // Park old head: 1) raise 2) move to park position 3) lower
  4076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4077. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4078. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4079. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4080. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4081. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4082. st_synchronize();
  4083. }
  4084. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4085. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4086. extruder_offset[active_extruder][Y_AXIS] +
  4087. extruder_offset[tmp_extruder][Y_AXIS];
  4088. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4089. extruder_offset[active_extruder][Z_AXIS] +
  4090. extruder_offset[tmp_extruder][Z_AXIS];
  4091. active_extruder = tmp_extruder;
  4092. // This function resets the max/min values - the current position may be overwritten below.
  4093. axis_is_at_home(X_AXIS);
  4094. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4095. current_position[X_AXIS] = inactive_extruder_x_pos;
  4096. inactive_extruder_x_pos = destination[X_AXIS];
  4097. }
  4098. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4099. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4100. if (active_extruder == 0 || active_extruder_parked)
  4101. current_position[X_AXIS] = inactive_extruder_x_pos;
  4102. else
  4103. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4104. inactive_extruder_x_pos = destination[X_AXIS];
  4105. extruder_duplication_enabled = false;
  4106. }
  4107. else {
  4108. // record raised toolhead position for use by unpark
  4109. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4110. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4111. active_extruder_parked = true;
  4112. delayed_move_time = 0;
  4113. }
  4114. #else // !DUAL_X_CARRIAGE
  4115. // Offset extruder (only by XY)
  4116. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4117. current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
  4118. // Set the new active extruder and position
  4119. active_extruder = tmp_extruder;
  4120. #endif // !DUAL_X_CARRIAGE
  4121. #ifdef DELTA
  4122. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4123. //sent position to plan_set_position();
  4124. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4125. #else
  4126. sync_plan_position();
  4127. #endif
  4128. // Move to the old position if 'F' was in the parameters
  4129. if (make_move && !Stopped) prepare_move();
  4130. }
  4131. #ifdef EXT_SOLENOID
  4132. st_synchronize();
  4133. disable_all_solenoids();
  4134. enable_solenoid_on_active_extruder();
  4135. #endif // EXT_SOLENOID
  4136. #endif // EXTRUDERS > 1
  4137. SERIAL_ECHO_START;
  4138. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4139. SERIAL_PROTOCOLLN((int)active_extruder);
  4140. }
  4141. }
  4142. /**
  4143. * Process Commands and dispatch them to handlers
  4144. */
  4145. void process_commands() {
  4146. if (code_seen('G')) {
  4147. int gCode = code_value_long();
  4148. switch(gCode) {
  4149. // G0, G1
  4150. case 0:
  4151. case 1:
  4152. gcode_G0_G1();
  4153. break;
  4154. // G2, G3
  4155. #ifndef SCARA
  4156. case 2: // G2 - CW ARC
  4157. case 3: // G3 - CCW ARC
  4158. gcode_G2_G3(gCode == 2);
  4159. break;
  4160. #endif
  4161. // G4 Dwell
  4162. case 4:
  4163. gcode_G4();
  4164. break;
  4165. #ifdef FWRETRACT
  4166. case 10: // G10: retract
  4167. case 11: // G11: retract_recover
  4168. gcode_G10_G11(gCode == 10);
  4169. break;
  4170. #endif //FWRETRACT
  4171. case 28: // G28: Home all axes, one at a time
  4172. gcode_G28();
  4173. break;
  4174. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4175. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4176. gcode_G29();
  4177. break;
  4178. #endif
  4179. #ifdef ENABLE_AUTO_BED_LEVELING
  4180. #ifndef Z_PROBE_SLED
  4181. case 30: // G30 Single Z Probe
  4182. gcode_G30();
  4183. break;
  4184. #else // Z_PROBE_SLED
  4185. case 31: // G31: dock the sled
  4186. case 32: // G32: undock the sled
  4187. dock_sled(gCode == 31);
  4188. break;
  4189. #endif // Z_PROBE_SLED
  4190. #endif // ENABLE_AUTO_BED_LEVELING
  4191. case 90: // G90
  4192. relative_mode = false;
  4193. break;
  4194. case 91: // G91
  4195. relative_mode = true;
  4196. break;
  4197. case 92: // G92
  4198. gcode_G92();
  4199. break;
  4200. }
  4201. }
  4202. else if (code_seen('M')) {
  4203. switch( code_value_long() ) {
  4204. #ifdef ULTIPANEL
  4205. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4206. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4207. gcode_M0_M1();
  4208. break;
  4209. #endif // ULTIPANEL
  4210. case 17:
  4211. gcode_M17();
  4212. break;
  4213. #ifdef SDSUPPORT
  4214. case 20: // M20 - list SD card
  4215. gcode_M20(); break;
  4216. case 21: // M21 - init SD card
  4217. gcode_M21(); break;
  4218. case 22: //M22 - release SD card
  4219. gcode_M22(); break;
  4220. case 23: //M23 - Select file
  4221. gcode_M23(); break;
  4222. case 24: //M24 - Start SD print
  4223. gcode_M24(); break;
  4224. case 25: //M25 - Pause SD print
  4225. gcode_M25(); break;
  4226. case 26: //M26 - Set SD index
  4227. gcode_M26(); break;
  4228. case 27: //M27 - Get SD status
  4229. gcode_M27(); break;
  4230. case 28: //M28 - Start SD write
  4231. gcode_M28(); break;
  4232. case 29: //M29 - Stop SD write
  4233. gcode_M29(); break;
  4234. case 30: //M30 <filename> Delete File
  4235. gcode_M30(); break;
  4236. case 32: //M32 - Select file and start SD print
  4237. gcode_M32(); break;
  4238. case 928: //M928 - Start SD write
  4239. gcode_M928(); break;
  4240. #endif //SDSUPPORT
  4241. case 31: //M31 take time since the start of the SD print or an M109 command
  4242. gcode_M31();
  4243. break;
  4244. case 42: //M42 -Change pin status via gcode
  4245. gcode_M42();
  4246. break;
  4247. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4248. case 48: // M48 Z-Probe repeatability
  4249. gcode_M48();
  4250. break;
  4251. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4252. case 104: // M104
  4253. gcode_M104();
  4254. break;
  4255. case 112: // M112 Emergency Stop
  4256. gcode_M112();
  4257. break;
  4258. case 140: // M140 Set bed temp
  4259. gcode_M140();
  4260. break;
  4261. case 105: // M105 Read current temperature
  4262. gcode_M105();
  4263. return;
  4264. break;
  4265. case 109: // M109 Wait for temperature
  4266. gcode_M109();
  4267. break;
  4268. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4269. case 190: // M190 - Wait for bed heater to reach target.
  4270. gcode_M190();
  4271. break;
  4272. #endif //TEMP_BED_PIN
  4273. #if defined(FAN_PIN) && FAN_PIN > -1
  4274. case 106: //M106 Fan On
  4275. gcode_M106();
  4276. break;
  4277. case 107: //M107 Fan Off
  4278. gcode_M107();
  4279. break;
  4280. #endif //FAN_PIN
  4281. #ifdef BARICUDA
  4282. // PWM for HEATER_1_PIN
  4283. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4284. case 126: // M126 valve open
  4285. gcode_M126();
  4286. break;
  4287. case 127: // M127 valve closed
  4288. gcode_M127();
  4289. break;
  4290. #endif //HEATER_1_PIN
  4291. // PWM for HEATER_2_PIN
  4292. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4293. case 128: // M128 valve open
  4294. gcode_M128();
  4295. break;
  4296. case 129: // M129 valve closed
  4297. gcode_M129();
  4298. break;
  4299. #endif //HEATER_2_PIN
  4300. #endif //BARICUDA
  4301. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4302. case 80: // M80 - Turn on Power Supply
  4303. gcode_M80();
  4304. break;
  4305. #endif // PS_ON_PIN
  4306. case 81: // M81 - Turn off Power Supply
  4307. gcode_M81();
  4308. break;
  4309. case 82:
  4310. gcode_M82();
  4311. break;
  4312. case 83:
  4313. gcode_M83();
  4314. break;
  4315. case 18: //compatibility
  4316. case 84: // M84
  4317. gcode_M18_M84();
  4318. break;
  4319. case 85: // M85
  4320. gcode_M85();
  4321. break;
  4322. case 92: // M92
  4323. gcode_M92();
  4324. break;
  4325. case 115: // M115
  4326. gcode_M115();
  4327. break;
  4328. case 117: // M117 display message
  4329. gcode_M117();
  4330. break;
  4331. case 114: // M114
  4332. gcode_M114();
  4333. break;
  4334. case 120: // M120
  4335. gcode_M120();
  4336. break;
  4337. case 121: // M121
  4338. gcode_M121();
  4339. break;
  4340. case 119: // M119
  4341. gcode_M119();
  4342. break;
  4343. //TODO: update for all axis, use for loop
  4344. #ifdef BLINKM
  4345. case 150: // M150
  4346. gcode_M150();
  4347. break;
  4348. #endif //BLINKM
  4349. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4350. gcode_M200();
  4351. break;
  4352. case 201: // M201
  4353. gcode_M201();
  4354. break;
  4355. #if 0 // Not used for Sprinter/grbl gen6
  4356. case 202: // M202
  4357. gcode_M202();
  4358. break;
  4359. #endif
  4360. case 203: // M203 max feedrate mm/sec
  4361. gcode_M203();
  4362. break;
  4363. case 204: // M204 acclereration S normal moves T filmanent only moves
  4364. gcode_M204();
  4365. break;
  4366. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4367. gcode_M205();
  4368. break;
  4369. case 206: // M206 additional homing offset
  4370. gcode_M206();
  4371. break;
  4372. #ifdef DELTA
  4373. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4374. gcode_M665();
  4375. break;
  4376. #endif
  4377. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4378. case 666: // M666 set delta / dual endstop adjustment
  4379. gcode_M666();
  4380. break;
  4381. #endif
  4382. #ifdef FWRETRACT
  4383. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4384. gcode_M207();
  4385. break;
  4386. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4387. gcode_M208();
  4388. break;
  4389. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4390. gcode_M209();
  4391. break;
  4392. #endif // FWRETRACT
  4393. #if EXTRUDERS > 1
  4394. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4395. gcode_M218();
  4396. break;
  4397. #endif
  4398. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4399. gcode_M220();
  4400. break;
  4401. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4402. gcode_M221();
  4403. break;
  4404. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4405. gcode_M226();
  4406. break;
  4407. #if NUM_SERVOS > 0
  4408. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4409. gcode_M280();
  4410. break;
  4411. #endif // NUM_SERVOS > 0
  4412. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4413. case 300: // M300 - Play beep tone
  4414. gcode_M300();
  4415. break;
  4416. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4417. #ifdef PIDTEMP
  4418. case 301: // M301
  4419. gcode_M301();
  4420. break;
  4421. #endif // PIDTEMP
  4422. #ifdef PIDTEMPBED
  4423. case 304: // M304
  4424. gcode_M304();
  4425. break;
  4426. #endif // PIDTEMPBED
  4427. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4428. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4429. gcode_M240();
  4430. break;
  4431. #endif // CHDK || PHOTOGRAPH_PIN
  4432. #ifdef DOGLCD
  4433. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4434. gcode_M250();
  4435. break;
  4436. #endif // DOGLCD
  4437. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4438. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4439. gcode_M302();
  4440. break;
  4441. #endif // PREVENT_DANGEROUS_EXTRUDE
  4442. case 303: // M303 PID autotune
  4443. gcode_M303();
  4444. break;
  4445. #ifdef SCARA
  4446. case 360: // M360 SCARA Theta pos1
  4447. if (gcode_M360()) return;
  4448. break;
  4449. case 361: // M361 SCARA Theta pos2
  4450. if (gcode_M361()) return;
  4451. break;
  4452. case 362: // M362 SCARA Psi pos1
  4453. if (gcode_M362()) return;
  4454. break;
  4455. case 363: // M363 SCARA Psi pos2
  4456. if (gcode_M363()) return;
  4457. break;
  4458. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4459. if (gcode_M364()) return;
  4460. break;
  4461. case 365: // M365 Set SCARA scaling for X Y Z
  4462. gcode_M365();
  4463. break;
  4464. #endif // SCARA
  4465. case 400: // M400 finish all moves
  4466. gcode_M400();
  4467. break;
  4468. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4469. case 401:
  4470. gcode_M401();
  4471. break;
  4472. case 402:
  4473. gcode_M402();
  4474. break;
  4475. #endif
  4476. #ifdef FILAMENT_SENSOR
  4477. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4478. gcode_M404();
  4479. break;
  4480. case 405: //M405 Turn on filament sensor for control
  4481. gcode_M405();
  4482. break;
  4483. case 406: //M406 Turn off filament sensor for control
  4484. gcode_M406();
  4485. break;
  4486. case 407: //M407 Display measured filament diameter
  4487. gcode_M407();
  4488. break;
  4489. #endif // FILAMENT_SENSOR
  4490. case 500: // M500 Store settings in EEPROM
  4491. gcode_M500();
  4492. break;
  4493. case 501: // M501 Read settings from EEPROM
  4494. gcode_M501();
  4495. break;
  4496. case 502: // M502 Revert to default settings
  4497. gcode_M502();
  4498. break;
  4499. case 503: // M503 print settings currently in memory
  4500. gcode_M503();
  4501. break;
  4502. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4503. case 540:
  4504. gcode_M540();
  4505. break;
  4506. #endif
  4507. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4508. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4509. gcode_SET_Z_PROBE_OFFSET();
  4510. break;
  4511. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4512. #ifdef FILAMENTCHANGEENABLE
  4513. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4514. gcode_M600();
  4515. break;
  4516. #endif // FILAMENTCHANGEENABLE
  4517. #ifdef DUAL_X_CARRIAGE
  4518. case 605:
  4519. gcode_M605();
  4520. break;
  4521. #endif // DUAL_X_CARRIAGE
  4522. case 907: // M907 Set digital trimpot motor current using axis codes.
  4523. gcode_M907();
  4524. break;
  4525. #if HAS_DIGIPOTSS
  4526. case 908: // M908 Control digital trimpot directly.
  4527. gcode_M908();
  4528. break;
  4529. #endif // HAS_DIGIPOTSS
  4530. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4531. gcode_M350();
  4532. break;
  4533. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4534. gcode_M351();
  4535. break;
  4536. case 999: // M999: Restart after being Stopped
  4537. gcode_M999();
  4538. break;
  4539. }
  4540. }
  4541. else if (code_seen('T')) {
  4542. gcode_T();
  4543. }
  4544. else {
  4545. SERIAL_ECHO_START;
  4546. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4547. SERIAL_ECHO(cmdbuffer[bufindr]);
  4548. SERIAL_ECHOLNPGM("\"");
  4549. }
  4550. ClearToSend();
  4551. }
  4552. void FlushSerialRequestResend()
  4553. {
  4554. //char cmdbuffer[bufindr][100]="Resend:";
  4555. MYSERIAL.flush();
  4556. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4557. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4558. ClearToSend();
  4559. }
  4560. void ClearToSend()
  4561. {
  4562. previous_millis_cmd = millis();
  4563. #ifdef SDSUPPORT
  4564. if(fromsd[bufindr])
  4565. return;
  4566. #endif //SDSUPPORT
  4567. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4568. }
  4569. void get_coordinates() {
  4570. for (int i = 0; i < NUM_AXIS; i++) {
  4571. if (code_seen(axis_codes[i]))
  4572. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4573. else
  4574. destination[i] = current_position[i];
  4575. }
  4576. if (code_seen('F')) {
  4577. next_feedrate = code_value();
  4578. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4579. }
  4580. }
  4581. void get_arc_coordinates()
  4582. {
  4583. #ifdef SF_ARC_FIX
  4584. bool relative_mode_backup = relative_mode;
  4585. relative_mode = true;
  4586. #endif
  4587. get_coordinates();
  4588. #ifdef SF_ARC_FIX
  4589. relative_mode=relative_mode_backup;
  4590. #endif
  4591. if(code_seen('I')) {
  4592. offset[0] = code_value();
  4593. }
  4594. else {
  4595. offset[0] = 0.0;
  4596. }
  4597. if(code_seen('J')) {
  4598. offset[1] = code_value();
  4599. }
  4600. else {
  4601. offset[1] = 0.0;
  4602. }
  4603. }
  4604. void clamp_to_software_endstops(float target[3])
  4605. {
  4606. if (min_software_endstops) {
  4607. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4608. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4609. float negative_z_offset = 0;
  4610. #ifdef ENABLE_AUTO_BED_LEVELING
  4611. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4612. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4613. #endif
  4614. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4615. }
  4616. if (max_software_endstops) {
  4617. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4618. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4619. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4620. }
  4621. }
  4622. #ifdef DELTA
  4623. void recalc_delta_settings(float radius, float diagonal_rod)
  4624. {
  4625. delta_tower1_x= -SIN_60*radius; // front left tower
  4626. delta_tower1_y= -COS_60*radius;
  4627. delta_tower2_x= SIN_60*radius; // front right tower
  4628. delta_tower2_y= -COS_60*radius;
  4629. delta_tower3_x= 0.0; // back middle tower
  4630. delta_tower3_y= radius;
  4631. delta_diagonal_rod_2= sq(diagonal_rod);
  4632. }
  4633. void calculate_delta(float cartesian[3])
  4634. {
  4635. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4636. - sq(delta_tower1_x-cartesian[X_AXIS])
  4637. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4638. ) + cartesian[Z_AXIS];
  4639. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4640. - sq(delta_tower2_x-cartesian[X_AXIS])
  4641. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4642. ) + cartesian[Z_AXIS];
  4643. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4644. - sq(delta_tower3_x-cartesian[X_AXIS])
  4645. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4646. ) + cartesian[Z_AXIS];
  4647. /*
  4648. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4649. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4650. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4651. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4652. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4653. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4654. */
  4655. }
  4656. #ifdef ENABLE_AUTO_BED_LEVELING
  4657. // Adjust print surface height by linear interpolation over the bed_level array.
  4658. int delta_grid_spacing[2] = { 0, 0 };
  4659. void adjust_delta(float cartesian[3])
  4660. {
  4661. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4662. return; // G29 not done
  4663. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4664. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4665. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4666. int floor_x = floor(grid_x);
  4667. int floor_y = floor(grid_y);
  4668. float ratio_x = grid_x - floor_x;
  4669. float ratio_y = grid_y - floor_y;
  4670. float z1 = bed_level[floor_x+half][floor_y+half];
  4671. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4672. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4673. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4674. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4675. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4676. float offset = (1-ratio_x)*left + ratio_x*right;
  4677. delta[X_AXIS] += offset;
  4678. delta[Y_AXIS] += offset;
  4679. delta[Z_AXIS] += offset;
  4680. /*
  4681. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4682. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4683. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4684. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4685. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4686. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4687. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4688. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4689. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4690. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4691. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4692. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4693. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4694. */
  4695. }
  4696. #endif //ENABLE_AUTO_BED_LEVELING
  4697. void prepare_move_raw()
  4698. {
  4699. previous_millis_cmd = millis();
  4700. calculate_delta(destination);
  4701. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4702. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4703. active_extruder);
  4704. for(int8_t i=0; i < NUM_AXIS; i++) {
  4705. current_position[i] = destination[i];
  4706. }
  4707. }
  4708. #endif //DELTA
  4709. #if defined(MESH_BED_LEVELING)
  4710. #if !defined(MIN)
  4711. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4712. #endif // ! MIN
  4713. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4714. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4715. {
  4716. if (!mbl.active) {
  4717. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4718. for(int8_t i=0; i < NUM_AXIS; i++) {
  4719. current_position[i] = destination[i];
  4720. }
  4721. return;
  4722. }
  4723. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4724. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4725. int ix = mbl.select_x_index(x);
  4726. int iy = mbl.select_y_index(y);
  4727. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4728. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4729. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4730. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4731. if (pix == ix && piy == iy) {
  4732. // Start and end on same mesh square
  4733. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4734. for(int8_t i=0; i < NUM_AXIS; i++) {
  4735. current_position[i] = destination[i];
  4736. }
  4737. return;
  4738. }
  4739. float nx, ny, ne, normalized_dist;
  4740. if (ix > pix && (x_splits) & BIT(ix)) {
  4741. nx = mbl.get_x(ix);
  4742. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4743. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4744. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4745. x_splits ^= BIT(ix);
  4746. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4747. nx = mbl.get_x(pix);
  4748. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4749. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4750. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4751. x_splits ^= BIT(pix);
  4752. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4753. ny = mbl.get_y(iy);
  4754. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4755. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4756. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4757. y_splits ^= BIT(iy);
  4758. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4759. ny = mbl.get_y(piy);
  4760. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4761. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4762. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4763. y_splits ^= BIT(piy);
  4764. } else {
  4765. // Already split on a border
  4766. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4767. for(int8_t i=0; i < NUM_AXIS; i++) {
  4768. current_position[i] = destination[i];
  4769. }
  4770. return;
  4771. }
  4772. // Do the split and look for more borders
  4773. destination[X_AXIS] = nx;
  4774. destination[Y_AXIS] = ny;
  4775. destination[E_AXIS] = ne;
  4776. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4777. destination[X_AXIS] = x;
  4778. destination[Y_AXIS] = y;
  4779. destination[E_AXIS] = e;
  4780. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4781. }
  4782. #endif // MESH_BED_LEVELING
  4783. void prepare_move()
  4784. {
  4785. clamp_to_software_endstops(destination);
  4786. previous_millis_cmd = millis();
  4787. #ifdef SCARA //for now same as delta-code
  4788. float difference[NUM_AXIS];
  4789. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4790. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4791. sq(difference[Y_AXIS]) +
  4792. sq(difference[Z_AXIS]));
  4793. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4794. if (cartesian_mm < 0.000001) { return; }
  4795. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4796. int steps = max(1, int(scara_segments_per_second * seconds));
  4797. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4798. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4799. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4800. for (int s = 1; s <= steps; s++) {
  4801. float fraction = float(s) / float(steps);
  4802. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4803. destination[i] = current_position[i] + difference[i] * fraction;
  4804. }
  4805. calculate_delta(destination);
  4806. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4807. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4808. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4809. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4810. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4811. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4812. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4813. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4814. active_extruder);
  4815. }
  4816. #endif // SCARA
  4817. #ifdef DELTA
  4818. float difference[NUM_AXIS];
  4819. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4820. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4821. sq(difference[Y_AXIS]) +
  4822. sq(difference[Z_AXIS]));
  4823. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4824. if (cartesian_mm < 0.000001) return;
  4825. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4826. int steps = max(1, int(delta_segments_per_second * seconds));
  4827. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4828. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4829. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4830. for (int s = 1; s <= steps; s++) {
  4831. float fraction = float(s) / float(steps);
  4832. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4833. calculate_delta(destination);
  4834. #ifdef ENABLE_AUTO_BED_LEVELING
  4835. adjust_delta(destination);
  4836. #endif
  4837. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4838. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4839. active_extruder);
  4840. }
  4841. #endif // DELTA
  4842. #ifdef DUAL_X_CARRIAGE
  4843. if (active_extruder_parked)
  4844. {
  4845. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4846. {
  4847. // move duplicate extruder into correct duplication position.
  4848. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4849. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4850. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4851. sync_plan_position();
  4852. st_synchronize();
  4853. extruder_duplication_enabled = true;
  4854. active_extruder_parked = false;
  4855. }
  4856. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4857. {
  4858. if (current_position[E_AXIS] == destination[E_AXIS])
  4859. {
  4860. // this is a travel move - skit it but keep track of current position (so that it can later
  4861. // be used as start of first non-travel move)
  4862. if (delayed_move_time != 0xFFFFFFFFUL)
  4863. {
  4864. memcpy(current_position, destination, sizeof(current_position));
  4865. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4866. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4867. delayed_move_time = millis();
  4868. return;
  4869. }
  4870. }
  4871. delayed_move_time = 0;
  4872. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4873. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4875. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4877. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4878. active_extruder_parked = false;
  4879. }
  4880. }
  4881. #endif //DUAL_X_CARRIAGE
  4882. #if ! (defined DELTA || defined SCARA)
  4883. // Do not use feedmultiply for E or Z only moves
  4884. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4885. line_to_destination();
  4886. } else {
  4887. #if defined(MESH_BED_LEVELING)
  4888. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4889. return;
  4890. #else
  4891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4892. #endif // MESH_BED_LEVELING
  4893. }
  4894. #endif // !(DELTA || SCARA)
  4895. for(int8_t i=0; i < NUM_AXIS; i++) {
  4896. current_position[i] = destination[i];
  4897. }
  4898. }
  4899. void prepare_arc_move(char isclockwise) {
  4900. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4901. // Trace the arc
  4902. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4903. // As far as the parser is concerned, the position is now == target. In reality the
  4904. // motion control system might still be processing the action and the real tool position
  4905. // in any intermediate location.
  4906. for(int8_t i=0; i < NUM_AXIS; i++) {
  4907. current_position[i] = destination[i];
  4908. }
  4909. previous_millis_cmd = millis();
  4910. }
  4911. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4912. #if defined(FAN_PIN)
  4913. #if CONTROLLERFAN_PIN == FAN_PIN
  4914. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4915. #endif
  4916. #endif
  4917. unsigned long lastMotor = 0; // Last time a motor was turned on
  4918. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4919. void controllerFan() {
  4920. uint32_t ms = millis();
  4921. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4922. lastMotorCheck = ms;
  4923. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4924. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4925. #if EXTRUDERS > 1
  4926. || E1_ENABLE_READ == E_ENABLE_ON
  4927. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4928. || X2_ENABLE_READ == X_ENABLE_ON
  4929. #endif
  4930. #if EXTRUDERS > 2
  4931. || E2_ENABLE_READ == E_ENABLE_ON
  4932. #if EXTRUDERS > 3
  4933. || E3_ENABLE_READ == E_ENABLE_ON
  4934. #endif
  4935. #endif
  4936. #endif
  4937. ) {
  4938. lastMotor = ms; //... set time to NOW so the fan will turn on
  4939. }
  4940. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4941. // allows digital or PWM fan output to be used (see M42 handling)
  4942. digitalWrite(CONTROLLERFAN_PIN, speed);
  4943. analogWrite(CONTROLLERFAN_PIN, speed);
  4944. }
  4945. }
  4946. #endif
  4947. #ifdef SCARA
  4948. void calculate_SCARA_forward_Transform(float f_scara[3])
  4949. {
  4950. // Perform forward kinematics, and place results in delta[3]
  4951. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4952. float x_sin, x_cos, y_sin, y_cos;
  4953. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4954. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4955. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4956. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4957. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4958. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4959. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4960. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4961. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4962. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4963. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4964. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4965. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4966. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4967. }
  4968. void calculate_delta(float cartesian[3]){
  4969. //reverse kinematics.
  4970. // Perform reversed kinematics, and place results in delta[3]
  4971. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4972. float SCARA_pos[2];
  4973. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4974. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4975. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4976. #if (Linkage_1 == Linkage_2)
  4977. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4978. #else
  4979. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4980. #endif
  4981. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4982. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4983. SCARA_K2 = Linkage_2 * SCARA_S2;
  4984. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4985. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4986. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4987. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4988. delta[Z_AXIS] = cartesian[Z_AXIS];
  4989. /*
  4990. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4991. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4992. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4993. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4994. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4995. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4996. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4997. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4998. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4999. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5000. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5001. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5002. SERIAL_ECHOLN(" ");*/
  5003. }
  5004. #endif
  5005. #ifdef TEMP_STAT_LEDS
  5006. static bool blue_led = false;
  5007. static bool red_led = false;
  5008. static uint32_t stat_update = 0;
  5009. void handle_status_leds(void) {
  5010. float max_temp = 0.0;
  5011. if(millis() > stat_update) {
  5012. stat_update += 500; // Update every 0.5s
  5013. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5014. max_temp = max(max_temp, degHotend(cur_extruder));
  5015. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5016. }
  5017. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5018. max_temp = max(max_temp, degTargetBed());
  5019. max_temp = max(max_temp, degBed());
  5020. #endif
  5021. if((max_temp > 55.0) && (red_led == false)) {
  5022. digitalWrite(STAT_LED_RED, 1);
  5023. digitalWrite(STAT_LED_BLUE, 0);
  5024. red_led = true;
  5025. blue_led = false;
  5026. }
  5027. if((max_temp < 54.0) && (blue_led == false)) {
  5028. digitalWrite(STAT_LED_RED, 0);
  5029. digitalWrite(STAT_LED_BLUE, 1);
  5030. red_led = false;
  5031. blue_led = true;
  5032. }
  5033. }
  5034. }
  5035. #endif
  5036. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5037. {
  5038. #if defined(KILL_PIN) && KILL_PIN > -1
  5039. static int killCount = 0; // make the inactivity button a bit less responsive
  5040. const int KILL_DELAY = 750;
  5041. #endif
  5042. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  5043. if(card.sdprinting) {
  5044. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  5045. filrunout(); }
  5046. #endif
  5047. #if defined(HOME_PIN) && HOME_PIN > -1
  5048. static int homeDebounceCount = 0; // poor man's debouncing count
  5049. const int HOME_DEBOUNCE_DELAY = 750;
  5050. #endif
  5051. if(buflen < (BUFSIZE-1))
  5052. get_command();
  5053. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5054. if(max_inactive_time)
  5055. kill();
  5056. if(stepper_inactive_time) {
  5057. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5058. {
  5059. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5060. disable_x();
  5061. disable_y();
  5062. disable_z();
  5063. disable_e0();
  5064. disable_e1();
  5065. disable_e2();
  5066. disable_e3();
  5067. }
  5068. }
  5069. }
  5070. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5071. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5072. {
  5073. chdkActive = false;
  5074. WRITE(CHDK, LOW);
  5075. }
  5076. #endif
  5077. #if defined(KILL_PIN) && KILL_PIN > -1
  5078. // Check if the kill button was pressed and wait just in case it was an accidental
  5079. // key kill key press
  5080. // -------------------------------------------------------------------------------
  5081. if( 0 == READ(KILL_PIN) )
  5082. {
  5083. killCount++;
  5084. }
  5085. else if (killCount > 0)
  5086. {
  5087. killCount--;
  5088. }
  5089. // Exceeded threshold and we can confirm that it was not accidental
  5090. // KILL the machine
  5091. // ----------------------------------------------------------------
  5092. if ( killCount >= KILL_DELAY)
  5093. {
  5094. kill();
  5095. }
  5096. #endif
  5097. #if defined(HOME_PIN) && HOME_PIN > -1
  5098. // Check to see if we have to home, use poor man's debouncer
  5099. // ---------------------------------------------------------
  5100. if ( 0 == READ(HOME_PIN) )
  5101. {
  5102. if (homeDebounceCount == 0)
  5103. {
  5104. enquecommands_P((PSTR("G28")));
  5105. homeDebounceCount++;
  5106. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5107. }
  5108. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5109. {
  5110. homeDebounceCount++;
  5111. }
  5112. else
  5113. {
  5114. homeDebounceCount = 0;
  5115. }
  5116. }
  5117. #endif
  5118. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5119. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5120. #endif
  5121. #ifdef EXTRUDER_RUNOUT_PREVENT
  5122. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5123. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5124. {
  5125. bool oldstatus=E0_ENABLE_READ;
  5126. enable_e0();
  5127. float oldepos=current_position[E_AXIS];
  5128. float oldedes=destination[E_AXIS];
  5129. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5130. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5131. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5132. current_position[E_AXIS]=oldepos;
  5133. destination[E_AXIS]=oldedes;
  5134. plan_set_e_position(oldepos);
  5135. previous_millis_cmd=millis();
  5136. st_synchronize();
  5137. E0_ENABLE_WRITE(oldstatus);
  5138. }
  5139. #endif
  5140. #if defined(DUAL_X_CARRIAGE)
  5141. // handle delayed move timeout
  5142. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5143. {
  5144. // travel moves have been received so enact them
  5145. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5146. memcpy(destination,current_position,sizeof(destination));
  5147. prepare_move();
  5148. }
  5149. #endif
  5150. #ifdef TEMP_STAT_LEDS
  5151. handle_status_leds();
  5152. #endif
  5153. check_axes_activity();
  5154. }
  5155. void kill()
  5156. {
  5157. cli(); // Stop interrupts
  5158. disable_heater();
  5159. disable_x();
  5160. disable_y();
  5161. disable_z();
  5162. disable_e0();
  5163. disable_e1();
  5164. disable_e2();
  5165. disable_e3();
  5166. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5167. pinMode(PS_ON_PIN,INPUT);
  5168. #endif
  5169. SERIAL_ERROR_START;
  5170. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5171. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5172. // FMC small patch to update the LCD before ending
  5173. sei(); // enable interrupts
  5174. for ( int i=5; i--; lcd_update())
  5175. {
  5176. delay(200);
  5177. }
  5178. cli(); // disable interrupts
  5179. suicide();
  5180. while(1) { /* Intentionally left empty */ } // Wait for reset
  5181. }
  5182. #ifdef FILAMENT_RUNOUT_SENSOR
  5183. void filrunout()
  5184. {
  5185. if filrunoutEnqued == false {
  5186. filrunoutEnqued = true;
  5187. enquecommand("M600");
  5188. }
  5189. }
  5190. #endif
  5191. void Stop()
  5192. {
  5193. disable_heater();
  5194. if(Stopped == false) {
  5195. Stopped = true;
  5196. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5197. SERIAL_ERROR_START;
  5198. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5199. LCD_MESSAGEPGM(MSG_STOPPED);
  5200. }
  5201. }
  5202. bool IsStopped() { return Stopped; };
  5203. #ifdef FAST_PWM_FAN
  5204. void setPwmFrequency(uint8_t pin, int val)
  5205. {
  5206. val &= 0x07;
  5207. switch(digitalPinToTimer(pin))
  5208. {
  5209. #if defined(TCCR0A)
  5210. case TIMER0A:
  5211. case TIMER0B:
  5212. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5213. // TCCR0B |= val;
  5214. break;
  5215. #endif
  5216. #if defined(TCCR1A)
  5217. case TIMER1A:
  5218. case TIMER1B:
  5219. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5220. // TCCR1B |= val;
  5221. break;
  5222. #endif
  5223. #if defined(TCCR2)
  5224. case TIMER2:
  5225. case TIMER2:
  5226. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5227. TCCR2 |= val;
  5228. break;
  5229. #endif
  5230. #if defined(TCCR2A)
  5231. case TIMER2A:
  5232. case TIMER2B:
  5233. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5234. TCCR2B |= val;
  5235. break;
  5236. #endif
  5237. #if defined(TCCR3A)
  5238. case TIMER3A:
  5239. case TIMER3B:
  5240. case TIMER3C:
  5241. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5242. TCCR3B |= val;
  5243. break;
  5244. #endif
  5245. #if defined(TCCR4A)
  5246. case TIMER4A:
  5247. case TIMER4B:
  5248. case TIMER4C:
  5249. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5250. TCCR4B |= val;
  5251. break;
  5252. #endif
  5253. #if defined(TCCR5A)
  5254. case TIMER5A:
  5255. case TIMER5B:
  5256. case TIMER5C:
  5257. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5258. TCCR5B |= val;
  5259. break;
  5260. #endif
  5261. }
  5262. }
  5263. #endif //FAST_PWM_FAN
  5264. bool setTargetedHotend(int code){
  5265. tmp_extruder = active_extruder;
  5266. if(code_seen('T')) {
  5267. tmp_extruder = code_value();
  5268. if(tmp_extruder >= EXTRUDERS) {
  5269. SERIAL_ECHO_START;
  5270. switch(code){
  5271. case 104:
  5272. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5273. break;
  5274. case 105:
  5275. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5276. break;
  5277. case 109:
  5278. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5279. break;
  5280. case 218:
  5281. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5282. break;
  5283. case 221:
  5284. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5285. break;
  5286. }
  5287. SERIAL_ECHOLN(tmp_extruder);
  5288. return true;
  5289. }
  5290. }
  5291. return false;
  5292. }
  5293. float calculate_volumetric_multiplier(float diameter) {
  5294. if (!volumetric_enabled || diameter == 0) return 1.0;
  5295. float d2 = diameter * 0.5;
  5296. return 1.0 / (M_PI * d2 * d2);
  5297. }
  5298. void calculate_volumetric_multipliers() {
  5299. for (int i=0; i<EXTRUDERS; i++)
  5300. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5301. }