My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

stepper.cpp 41KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. static volatile bool endstop_z_probe_hit = false;
  65. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  66. bool abort_on_endstop_hit = false;
  67. #endif
  68. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  69. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  70. #endif
  71. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  72. static bool old_x_min_endstop = false;
  73. #endif
  74. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  75. static bool old_x_max_endstop = false;
  76. #endif
  77. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  78. static bool old_y_min_endstop = false;
  79. #endif
  80. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  81. static bool old_y_max_endstop = false;
  82. #endif
  83. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  84. static bool old_z_min_endstop = false;
  85. #endif
  86. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  87. static bool old_z_max_endstop = false;
  88. #endif
  89. #ifdef Z_DUAL_ENDSTOPS
  90. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  91. static bool old_z2_min_endstop = false;
  92. #endif
  93. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  94. static bool old_z2_max_endstop = false;
  95. #endif
  96. #endif
  97. #ifdef Z_PROBE_AND_ENDSTOP
  98. static bool old_z_probe_endstop = false;
  99. #endif
  100. static bool check_endstops = true;
  101. volatile long count_position[NUM_AXIS] = { 0 };
  102. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  103. //===========================================================================
  104. //================================ functions ================================
  105. //===========================================================================
  106. #ifdef DUAL_X_CARRIAGE
  107. #define X_APPLY_DIR(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_DIR_WRITE(v); \
  110. X2_DIR_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  114. }
  115. #define X_APPLY_STEP(v,ALWAYS) \
  116. if (extruder_duplication_enabled || ALWAYS) { \
  117. X_STEP_WRITE(v); \
  118. X2_STEP_WRITE(v); \
  119. } \
  120. else { \
  121. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  122. }
  123. #else
  124. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  125. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  126. #endif
  127. #ifdef Y_DUAL_STEPPER_DRIVERS
  128. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  129. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  130. #else
  131. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  132. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  133. #endif
  134. #ifdef Z_DUAL_STEPPER_DRIVERS
  135. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  136. #ifdef Z_DUAL_ENDSTOPS
  137. #define Z_APPLY_STEP(v,Q) \
  138. if (performing_homing) { \
  139. if (Z_HOME_DIR > 0) {\
  140. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  141. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  142. } else {\
  143. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  144. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  145. } \
  146. } else { \
  147. Z_STEP_WRITE(v); \
  148. Z2_STEP_WRITE(v); \
  149. }
  150. #else
  151. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  152. #endif
  153. #else
  154. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  155. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  156. #endif
  157. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  158. // intRes = intIn1 * intIn2 >> 16
  159. // uses:
  160. // r26 to store 0
  161. // r27 to store the byte 1 of the 24 bit result
  162. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  163. asm volatile ( \
  164. "clr r26 \n\t" \
  165. "mul %A1, %B2 \n\t" \
  166. "movw %A0, r0 \n\t" \
  167. "mul %A1, %A2 \n\t" \
  168. "add %A0, r1 \n\t" \
  169. "adc %B0, r26 \n\t" \
  170. "lsr r0 \n\t" \
  171. "adc %A0, r26 \n\t" \
  172. "adc %B0, r26 \n\t" \
  173. "clr r1 \n\t" \
  174. : \
  175. "=&r" (intRes) \
  176. : \
  177. "d" (charIn1), \
  178. "d" (intIn2) \
  179. : \
  180. "r26" \
  181. )
  182. // intRes = longIn1 * longIn2 >> 24
  183. // uses:
  184. // r26 to store 0
  185. // r27 to store the byte 1 of the 48bit result
  186. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "clr r1 \n\t" \
  218. : \
  219. "=&r" (intRes) \
  220. : \
  221. "d" (longIn1), \
  222. "d" (longIn2) \
  223. : \
  224. "r26" , "r27" \
  225. )
  226. // Some useful constants
  227. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  228. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  229. void endstops_hit_on_purpose() {
  230. endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false;
  231. }
  232. void checkHitEndstops() {
  233. if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) {
  234. SERIAL_ECHO_START;
  235. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  236. if (endstop_x_hit) {
  237. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  239. }
  240. if (endstop_y_hit) {
  241. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  242. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  243. }
  244. if (endstop_z_hit) {
  245. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  246. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  247. }
  248. if (endstop_z_probe_hit) {
  249. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  250. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  251. }
  252. SERIAL_EOL;
  253. endstops_hit_on_purpose();
  254. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  255. if (abort_on_endstop_hit) {
  256. card.sdprinting = false;
  257. card.closefile();
  258. quickStop();
  259. setTargetHotend0(0);
  260. setTargetHotend1(0);
  261. setTargetHotend2(0);
  262. setTargetHotend3(0);
  263. setTargetBed(0);
  264. }
  265. #endif
  266. }
  267. }
  268. void enable_endstops(bool check) { check_endstops = check; }
  269. // __________________________
  270. // /| |\ _________________ ^
  271. // / | | \ /| |\ |
  272. // / | | \ / | | \ s
  273. // / | | | | | \ p
  274. // / | | | | | \ e
  275. // +-----+------------------------+---+--+---------------+----+ e
  276. // | BLOCK 1 | BLOCK 2 | d
  277. //
  278. // time ----->
  279. //
  280. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  281. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  282. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  283. // The slope of acceleration is calculated with the leib ramp alghorithm.
  284. void st_wake_up() {
  285. // TCNT1 = 0;
  286. ENABLE_STEPPER_DRIVER_INTERRUPT();
  287. }
  288. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  289. unsigned short timer;
  290. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  291. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  292. step_rate = (step_rate >> 2) & 0x3fff;
  293. step_loops = 4;
  294. }
  295. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  296. step_rate = (step_rate >> 1) & 0x7fff;
  297. step_loops = 2;
  298. }
  299. else {
  300. step_loops = 1;
  301. }
  302. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  303. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  304. if (step_rate >= (8 * 256)) { // higher step rate
  305. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  306. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  307. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  308. MultiU16X8toH16(timer, tmp_step_rate, gain);
  309. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  310. }
  311. else { // lower step rates
  312. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  313. table_address += ((step_rate)>>1) & 0xfffc;
  314. timer = (unsigned short)pgm_read_word_near(table_address);
  315. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  316. }
  317. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  318. return timer;
  319. }
  320. // Initializes the trapezoid generator from the current block. Called whenever a new
  321. // block begins.
  322. FORCE_INLINE void trapezoid_generator_reset() {
  323. #ifdef ADVANCE
  324. advance = current_block->initial_advance;
  325. final_advance = current_block->final_advance;
  326. // Do E steps + advance steps
  327. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  328. old_advance = advance >>8;
  329. #endif
  330. deceleration_time = 0;
  331. // step_rate to timer interval
  332. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  333. // make a note of the number of step loops required at nominal speed
  334. step_loops_nominal = step_loops;
  335. acc_step_rate = current_block->initial_rate;
  336. acceleration_time = calc_timer(acc_step_rate);
  337. OCR1A = acceleration_time;
  338. // SERIAL_ECHO_START;
  339. // SERIAL_ECHOPGM("advance :");
  340. // SERIAL_ECHO(current_block->advance/256.0);
  341. // SERIAL_ECHOPGM("advance rate :");
  342. // SERIAL_ECHO(current_block->advance_rate/256.0);
  343. // SERIAL_ECHOPGM("initial advance :");
  344. // SERIAL_ECHO(current_block->initial_advance/256.0);
  345. // SERIAL_ECHOPGM("final advance :");
  346. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  347. }
  348. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  349. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  350. ISR(TIMER1_COMPA_vect) {
  351. if(cleaning_buffer_counter)
  352. {
  353. current_block = NULL;
  354. plan_discard_current_block();
  355. #ifdef SD_FINISHED_RELEASECOMMAND
  356. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  357. #endif
  358. cleaning_buffer_counter--;
  359. OCR1A = 200;
  360. return;
  361. }
  362. // If there is no current block, attempt to pop one from the buffer
  363. if (!current_block) {
  364. // Anything in the buffer?
  365. current_block = plan_get_current_block();
  366. if (current_block) {
  367. current_block->busy = true;
  368. trapezoid_generator_reset();
  369. counter_x = -(current_block->step_event_count >> 1);
  370. counter_y = counter_z = counter_e = counter_x;
  371. step_events_completed = 0;
  372. #ifdef Z_LATE_ENABLE
  373. if (current_block->steps[Z_AXIS] > 0) {
  374. enable_z();
  375. OCR1A = 2000; //1ms wait
  376. return;
  377. }
  378. #endif
  379. // #ifdef ADVANCE
  380. // e_steps[current_block->active_extruder] = 0;
  381. // #endif
  382. }
  383. else {
  384. OCR1A = 2000; // 1kHz.
  385. }
  386. }
  387. if (current_block != NULL) {
  388. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  389. out_bits = current_block->direction_bits;
  390. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  391. if (TEST(out_bits, X_AXIS)) {
  392. X_APPLY_DIR(INVERT_X_DIR,0);
  393. count_direction[X_AXIS] = -1;
  394. }
  395. else {
  396. X_APPLY_DIR(!INVERT_X_DIR,0);
  397. count_direction[X_AXIS] = 1;
  398. }
  399. if (TEST(out_bits, Y_AXIS)) {
  400. Y_APPLY_DIR(INVERT_Y_DIR,0);
  401. count_direction[Y_AXIS] = -1;
  402. }
  403. else {
  404. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  405. count_direction[Y_AXIS] = 1;
  406. }
  407. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  408. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  409. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  410. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  411. endstop_## axis ##_hit = true; \
  412. step_events_completed = current_block->step_event_count; \
  413. } \
  414. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  415. // Check X and Y endstops
  416. if (check_endstops) {
  417. #ifdef COREXY
  418. // Head direction in -X axis for CoreXY bots.
  419. // If DeltaX == -DeltaY, the movement is only in Y axis
  420. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  421. if (TEST(out_bits, X_HEAD))
  422. #else
  423. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  424. #endif
  425. { // -direction
  426. #ifdef DUAL_X_CARRIAGE
  427. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  428. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  429. #endif
  430. {
  431. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  432. UPDATE_ENDSTOP(x, X, min, MIN);
  433. #endif
  434. }
  435. }
  436. else { // +direction
  437. #ifdef DUAL_X_CARRIAGE
  438. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  439. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  440. #endif
  441. {
  442. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  443. UPDATE_ENDSTOP(x, X, max, MAX);
  444. #endif
  445. }
  446. }
  447. #ifdef COREXY
  448. }
  449. // Head direction in -Y axis for CoreXY bots.
  450. // If DeltaX == DeltaY, the movement is only in X axis
  451. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  452. if (TEST(out_bits, Y_HEAD))
  453. #else
  454. if (TEST(out_bits, Y_AXIS)) // -direction
  455. #endif
  456. { // -direction
  457. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  458. UPDATE_ENDSTOP(y, Y, min, MIN);
  459. #endif
  460. }
  461. else { // +direction
  462. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  463. UPDATE_ENDSTOP(y, Y, max, MAX);
  464. #endif
  465. }
  466. #ifdef COREXY
  467. }
  468. #endif
  469. }
  470. if (TEST(out_bits, Z_AXIS)) { // -direction
  471. Z_APPLY_DIR(INVERT_Z_DIR,0);
  472. count_direction[Z_AXIS] = -1;
  473. if (check_endstops)
  474. {
  475. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  476. #ifndef Z_DUAL_ENDSTOPS
  477. UPDATE_ENDSTOP(z, Z, min, MIN);
  478. #else
  479. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  480. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
  481. bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
  482. #else
  483. bool z2_min_endstop=z_min_endstop;
  484. #endif
  485. if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
  486. {
  487. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  488. endstop_z_hit=true;
  489. if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
  490. {
  491. step_events_completed = current_block->step_event_count;
  492. }
  493. }
  494. old_z_min_endstop = z_min_endstop;
  495. old_z2_min_endstop = z2_min_endstop;
  496. #endif
  497. #endif
  498. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  499. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  500. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  501. if(z_probe_endstop && old_z_probe_endstop)
  502. {
  503. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  504. endstop_z_probe_hit=true;
  505. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  506. }
  507. old_z_probe_endstop = z_probe_endstop;
  508. #endif
  509. }
  510. }
  511. else { // +direction
  512. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  513. count_direction[Z_AXIS] = 1;
  514. if (check_endstops) {
  515. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  516. #ifndef Z_DUAL_ENDSTOPS
  517. UPDATE_ENDSTOP(z, Z, max, MAX);
  518. #else
  519. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  520. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  521. bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
  522. #else
  523. bool z2_max_endstop=z_max_endstop;
  524. #endif
  525. if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
  526. {
  527. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  528. endstop_z_hit=true;
  529. // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
  530. // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
  531. if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
  532. {
  533. step_events_completed = current_block->step_event_count;
  534. }
  535. }
  536. old_z_max_endstop = z_max_endstop;
  537. old_z2_max_endstop = z2_max_endstop;
  538. #endif
  539. #endif
  540. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  541. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  542. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  543. if(z_probe_endstop && old_z_probe_endstop)
  544. {
  545. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  546. endstop_z_probe_hit=true;
  547. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  548. }
  549. old_z_probe_endstop = z_probe_endstop;
  550. #endif
  551. }
  552. }
  553. #ifndef ADVANCE
  554. if (TEST(out_bits, E_AXIS)) { // -direction
  555. REV_E_DIR();
  556. count_direction[E_AXIS]=-1;
  557. }
  558. else { // +direction
  559. NORM_E_DIR();
  560. count_direction[E_AXIS]=1;
  561. }
  562. #endif //!ADVANCE
  563. // Take multiple steps per interrupt (For high speed moves)
  564. for (int8_t i=0; i < step_loops; i++) {
  565. #ifndef AT90USB
  566. MSerial.checkRx(); // Check for serial chars.
  567. #endif
  568. #ifdef ADVANCE
  569. counter_e += current_block->steps[E_AXIS];
  570. if (counter_e > 0) {
  571. counter_e -= current_block->step_event_count;
  572. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  573. }
  574. #endif //ADVANCE
  575. #ifdef CONFIG_STEPPERS_TOSHIBA
  576. /**
  577. * The Toshiba stepper controller require much longer pulses.
  578. * So we 'stage' decompose the pulses between high and low
  579. * instead of doing each in turn. The extra tests add enough
  580. * lag to allow it work with without needing NOPs
  581. */
  582. #define STEP_ADD(axis, AXIS) \
  583. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  584. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  585. STEP_ADD(x,X);
  586. STEP_ADD(y,Y);
  587. STEP_ADD(z,Z);
  588. #ifndef ADVANCE
  589. STEP_ADD(e,E);
  590. #endif
  591. #define STEP_IF_COUNTER(axis, AXIS) \
  592. if (counter_## axis > 0) { \
  593. counter_## axis -= current_block->step_event_count; \
  594. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  595. AXIS ##_STEP_WRITE(LOW); \
  596. }
  597. STEP_IF_COUNTER(x, X);
  598. STEP_IF_COUNTER(y, Y);
  599. STEP_IF_COUNTER(z, Z);
  600. #ifndef ADVANCE
  601. STEP_IF_COUNTER(e, E);
  602. #endif
  603. #else // !CONFIG_STEPPERS_TOSHIBA
  604. #define APPLY_MOVEMENT(axis, AXIS) \
  605. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  606. if (counter_## axis > 0) { \
  607. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  608. counter_## axis -= current_block->step_event_count; \
  609. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  610. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  611. }
  612. APPLY_MOVEMENT(x, X);
  613. APPLY_MOVEMENT(y, Y);
  614. APPLY_MOVEMENT(z, Z);
  615. #ifndef ADVANCE
  616. APPLY_MOVEMENT(e, E);
  617. #endif
  618. #endif // CONFIG_STEPPERS_TOSHIBA
  619. step_events_completed++;
  620. if (step_events_completed >= current_block->step_event_count) break;
  621. }
  622. // Calculate new timer value
  623. unsigned short timer;
  624. unsigned short step_rate;
  625. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  626. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  627. acc_step_rate += current_block->initial_rate;
  628. // upper limit
  629. if (acc_step_rate > current_block->nominal_rate)
  630. acc_step_rate = current_block->nominal_rate;
  631. // step_rate to timer interval
  632. timer = calc_timer(acc_step_rate);
  633. OCR1A = timer;
  634. acceleration_time += timer;
  635. #ifdef ADVANCE
  636. for(int8_t i=0; i < step_loops; i++) {
  637. advance += advance_rate;
  638. }
  639. //if (advance > current_block->advance) advance = current_block->advance;
  640. // Do E steps + advance steps
  641. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  642. old_advance = advance >>8;
  643. #endif
  644. }
  645. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  646. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  647. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  648. step_rate = current_block->final_rate;
  649. }
  650. else {
  651. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  652. }
  653. // lower limit
  654. if (step_rate < current_block->final_rate)
  655. step_rate = current_block->final_rate;
  656. // step_rate to timer interval
  657. timer = calc_timer(step_rate);
  658. OCR1A = timer;
  659. deceleration_time += timer;
  660. #ifdef ADVANCE
  661. for(int8_t i=0; i < step_loops; i++) {
  662. advance -= advance_rate;
  663. }
  664. if (advance < final_advance) advance = final_advance;
  665. // Do E steps + advance steps
  666. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  667. old_advance = advance >>8;
  668. #endif //ADVANCE
  669. }
  670. else {
  671. OCR1A = OCR1A_nominal;
  672. // ensure we're running at the correct step rate, even if we just came off an acceleration
  673. step_loops = step_loops_nominal;
  674. }
  675. // If current block is finished, reset pointer
  676. if (step_events_completed >= current_block->step_event_count) {
  677. current_block = NULL;
  678. plan_discard_current_block();
  679. }
  680. }
  681. }
  682. #ifdef ADVANCE
  683. unsigned char old_OCR0A;
  684. // Timer interrupt for E. e_steps is set in the main routine;
  685. // Timer 0 is shared with millies
  686. ISR(TIMER0_COMPA_vect)
  687. {
  688. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  689. OCR0A = old_OCR0A;
  690. // Set E direction (Depends on E direction + advance)
  691. for(unsigned char i=0; i<4;i++) {
  692. if (e_steps[0] != 0) {
  693. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  694. if (e_steps[0] < 0) {
  695. E0_DIR_WRITE(INVERT_E0_DIR);
  696. e_steps[0]++;
  697. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  698. }
  699. else if (e_steps[0] > 0) {
  700. E0_DIR_WRITE(!INVERT_E0_DIR);
  701. e_steps[0]--;
  702. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  703. }
  704. }
  705. #if EXTRUDERS > 1
  706. if (e_steps[1] != 0) {
  707. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  708. if (e_steps[1] < 0) {
  709. E1_DIR_WRITE(INVERT_E1_DIR);
  710. e_steps[1]++;
  711. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  712. }
  713. else if (e_steps[1] > 0) {
  714. E1_DIR_WRITE(!INVERT_E1_DIR);
  715. e_steps[1]--;
  716. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  717. }
  718. }
  719. #endif
  720. #if EXTRUDERS > 2
  721. if (e_steps[2] != 0) {
  722. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  723. if (e_steps[2] < 0) {
  724. E2_DIR_WRITE(INVERT_E2_DIR);
  725. e_steps[2]++;
  726. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  727. }
  728. else if (e_steps[2] > 0) {
  729. E2_DIR_WRITE(!INVERT_E2_DIR);
  730. e_steps[2]--;
  731. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  732. }
  733. }
  734. #endif
  735. #if EXTRUDERS > 3
  736. if (e_steps[3] != 0) {
  737. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  738. if (e_steps[3] < 0) {
  739. E3_DIR_WRITE(INVERT_E3_DIR);
  740. e_steps[3]++;
  741. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  742. }
  743. else if (e_steps[3] > 0) {
  744. E3_DIR_WRITE(!INVERT_E3_DIR);
  745. e_steps[3]--;
  746. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  747. }
  748. }
  749. #endif
  750. }
  751. }
  752. #endif // ADVANCE
  753. void st_init() {
  754. digipot_init(); //Initialize Digipot Motor Current
  755. microstep_init(); //Initialize Microstepping Pins
  756. // initialise TMC Steppers
  757. #ifdef HAVE_TMCDRIVER
  758. tmc_init();
  759. #endif
  760. // initialise L6470 Steppers
  761. #ifdef HAVE_L6470DRIVER
  762. L6470_init();
  763. #endif
  764. // Initialize Dir Pins
  765. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  766. X_DIR_INIT;
  767. #endif
  768. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  769. X2_DIR_INIT;
  770. #endif
  771. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  772. Y_DIR_INIT;
  773. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  774. Y2_DIR_INIT;
  775. #endif
  776. #endif
  777. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  778. Z_DIR_INIT;
  779. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  780. Z2_DIR_INIT;
  781. #endif
  782. #endif
  783. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  784. E0_DIR_INIT;
  785. #endif
  786. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  787. E1_DIR_INIT;
  788. #endif
  789. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  790. E2_DIR_INIT;
  791. #endif
  792. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  793. E3_DIR_INIT;
  794. #endif
  795. //Initialize Enable Pins - steppers default to disabled.
  796. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  797. X_ENABLE_INIT;
  798. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  799. #endif
  800. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  801. X2_ENABLE_INIT;
  802. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  803. #endif
  804. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  805. Y_ENABLE_INIT;
  806. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  807. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  808. Y2_ENABLE_INIT;
  809. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  810. #endif
  811. #endif
  812. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  813. Z_ENABLE_INIT;
  814. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  815. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  816. Z2_ENABLE_INIT;
  817. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  818. #endif
  819. #endif
  820. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  821. E0_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  825. E1_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  827. #endif
  828. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  829. E2_ENABLE_INIT;
  830. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  831. #endif
  832. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  833. E3_ENABLE_INIT;
  834. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  835. #endif
  836. //endstops and pullups
  837. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  838. SET_INPUT(X_MIN_PIN);
  839. #ifdef ENDSTOPPULLUP_XMIN
  840. WRITE(X_MIN_PIN,HIGH);
  841. #endif
  842. #endif
  843. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  844. SET_INPUT(Y_MIN_PIN);
  845. #ifdef ENDSTOPPULLUP_YMIN
  846. WRITE(Y_MIN_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  850. SET_INPUT(Z_MIN_PIN);
  851. #ifdef ENDSTOPPULLUP_ZMIN
  852. WRITE(Z_MIN_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  856. SET_INPUT(X_MAX_PIN);
  857. #ifdef ENDSTOPPULLUP_XMAX
  858. WRITE(X_MAX_PIN,HIGH);
  859. #endif
  860. #endif
  861. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  862. SET_INPUT(Y_MAX_PIN);
  863. #ifdef ENDSTOPPULLUP_YMAX
  864. WRITE(Y_MAX_PIN,HIGH);
  865. #endif
  866. #endif
  867. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  868. SET_INPUT(Z_MAX_PIN);
  869. #ifdef ENDSTOPPULLUP_ZMAX
  870. WRITE(Z_MAX_PIN,HIGH);
  871. #endif
  872. #endif
  873. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  874. SET_INPUT(Z2_MAX_PIN);
  875. #ifdef ENDSTOPPULLUP_ZMAX
  876. WRITE(Z2_MAX_PIN,HIGH);
  877. #endif
  878. #endif
  879. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0
  880. SET_INPUT(Z_PROBE_PIN);
  881. #ifdef ENDSTOPPULLUP_ZPROBE
  882. WRITE(Z_PROBE_PIN,HIGH);
  883. #endif
  884. #endif
  885. #define AXIS_INIT(axis, AXIS, PIN) \
  886. AXIS ##_STEP_INIT; \
  887. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  888. disable_## axis()
  889. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  890. // Initialize Step Pins
  891. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  892. AXIS_INIT(x, X, X);
  893. #endif
  894. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  895. AXIS_INIT(x, X2, X);
  896. #endif
  897. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  898. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  899. Y2_STEP_INIT;
  900. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  901. #endif
  902. AXIS_INIT(y, Y, Y);
  903. #endif
  904. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  905. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  906. Z2_STEP_INIT;
  907. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  908. #endif
  909. AXIS_INIT(z, Z, Z);
  910. #endif
  911. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  912. E_AXIS_INIT(0);
  913. #endif
  914. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  915. E_AXIS_INIT(1);
  916. #endif
  917. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  918. E_AXIS_INIT(2);
  919. #endif
  920. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  921. E_AXIS_INIT(3);
  922. #endif
  923. // waveform generation = 0100 = CTC
  924. TCCR1B &= ~BIT(WGM13);
  925. TCCR1B |= BIT(WGM12);
  926. TCCR1A &= ~BIT(WGM11);
  927. TCCR1A &= ~BIT(WGM10);
  928. // output mode = 00 (disconnected)
  929. TCCR1A &= ~(3<<COM1A0);
  930. TCCR1A &= ~(3<<COM1B0);
  931. // Set the timer pre-scaler
  932. // Generally we use a divider of 8, resulting in a 2MHz timer
  933. // frequency on a 16MHz MCU. If you are going to change this, be
  934. // sure to regenerate speed_lookuptable.h with
  935. // create_speed_lookuptable.py
  936. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  937. OCR1A = 0x4000;
  938. TCNT1 = 0;
  939. ENABLE_STEPPER_DRIVER_INTERRUPT();
  940. #ifdef ADVANCE
  941. #if defined(TCCR0A) && defined(WGM01)
  942. TCCR0A &= ~BIT(WGM01);
  943. TCCR0A &= ~BIT(WGM00);
  944. #endif
  945. e_steps[0] = 0;
  946. e_steps[1] = 0;
  947. e_steps[2] = 0;
  948. e_steps[3] = 0;
  949. TIMSK0 |= BIT(OCIE0A);
  950. #endif //ADVANCE
  951. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  952. sei();
  953. }
  954. // Block until all buffered steps are executed
  955. void st_synchronize() {
  956. while (blocks_queued()) {
  957. manage_heater();
  958. manage_inactivity();
  959. lcd_update();
  960. }
  961. }
  962. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  963. CRITICAL_SECTION_START;
  964. count_position[X_AXIS] = x;
  965. count_position[Y_AXIS] = y;
  966. count_position[Z_AXIS] = z;
  967. count_position[E_AXIS] = e;
  968. CRITICAL_SECTION_END;
  969. }
  970. void st_set_e_position(const long &e) {
  971. CRITICAL_SECTION_START;
  972. count_position[E_AXIS] = e;
  973. CRITICAL_SECTION_END;
  974. }
  975. long st_get_position(uint8_t axis) {
  976. long count_pos;
  977. CRITICAL_SECTION_START;
  978. count_pos = count_position[axis];
  979. CRITICAL_SECTION_END;
  980. return count_pos;
  981. }
  982. #ifdef ENABLE_AUTO_BED_LEVELING
  983. float st_get_position_mm(uint8_t axis) {
  984. float steper_position_in_steps = st_get_position(axis);
  985. return steper_position_in_steps / axis_steps_per_unit[axis];
  986. }
  987. #endif // ENABLE_AUTO_BED_LEVELING
  988. void finishAndDisableSteppers() {
  989. st_synchronize();
  990. disable_x();
  991. disable_y();
  992. disable_z();
  993. disable_e0();
  994. disable_e1();
  995. disable_e2();
  996. disable_e3();
  997. }
  998. void quickStop() {
  999. cleaning_buffer_counter = 5000;
  1000. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1001. while (blocks_queued()) plan_discard_current_block();
  1002. current_block = NULL;
  1003. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1004. }
  1005. #ifdef BABYSTEPPING
  1006. // MUST ONLY BE CALLED BY AN ISR,
  1007. // No other ISR should ever interrupt this!
  1008. void babystep(const uint8_t axis, const bool direction) {
  1009. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1010. enable_## axis(); \
  1011. uint8_t old_pin = AXIS ##_DIR_READ; \
  1012. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  1013. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  1014. _delay_us(1U); \
  1015. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  1016. AXIS ##_APPLY_DIR(old_pin, true); \
  1017. }
  1018. switch(axis) {
  1019. case X_AXIS:
  1020. BABYSTEP_AXIS(x, X, false);
  1021. break;
  1022. case Y_AXIS:
  1023. BABYSTEP_AXIS(y, Y, false);
  1024. break;
  1025. case Z_AXIS: {
  1026. #ifndef DELTA
  1027. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1028. #else // DELTA
  1029. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1030. enable_x();
  1031. enable_y();
  1032. enable_z();
  1033. uint8_t old_x_dir_pin = X_DIR_READ,
  1034. old_y_dir_pin = Y_DIR_READ,
  1035. old_z_dir_pin = Z_DIR_READ;
  1036. //setup new step
  1037. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1038. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1039. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1040. //perform step
  1041. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1042. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1043. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1044. _delay_us(1U);
  1045. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1046. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1047. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1048. //get old pin state back.
  1049. X_DIR_WRITE(old_x_dir_pin);
  1050. Y_DIR_WRITE(old_y_dir_pin);
  1051. Z_DIR_WRITE(old_z_dir_pin);
  1052. #endif
  1053. } break;
  1054. default: break;
  1055. }
  1056. }
  1057. #endif //BABYSTEPPING
  1058. // From Arduino DigitalPotControl example
  1059. void digitalPotWrite(int address, int value) {
  1060. #if HAS_DIGIPOTSS
  1061. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1062. SPI.transfer(address); // send in the address and value via SPI:
  1063. SPI.transfer(value);
  1064. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1065. //delay(10);
  1066. #endif
  1067. }
  1068. // Initialize Digipot Motor Current
  1069. void digipot_init() {
  1070. #if HAS_DIGIPOTSS
  1071. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1072. SPI.begin();
  1073. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1074. for (int i = 0; i <= 4; i++) {
  1075. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1076. digipot_current(i,digipot_motor_current[i]);
  1077. }
  1078. #endif
  1079. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1080. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1081. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1082. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1083. digipot_current(0, motor_current_setting[0]);
  1084. digipot_current(1, motor_current_setting[1]);
  1085. digipot_current(2, motor_current_setting[2]);
  1086. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1087. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1088. #endif
  1089. }
  1090. void digipot_current(uint8_t driver, int current) {
  1091. #if HAS_DIGIPOTSS
  1092. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1093. digitalPotWrite(digipot_ch[driver], current);
  1094. #endif
  1095. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1096. switch(driver) {
  1097. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1098. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1099. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1100. }
  1101. #endif
  1102. }
  1103. void microstep_init() {
  1104. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1105. pinMode(E1_MS1_PIN,OUTPUT);
  1106. pinMode(E1_MS2_PIN,OUTPUT);
  1107. #endif
  1108. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1109. pinMode(X_MS1_PIN,OUTPUT);
  1110. pinMode(X_MS2_PIN,OUTPUT);
  1111. pinMode(Y_MS1_PIN,OUTPUT);
  1112. pinMode(Y_MS2_PIN,OUTPUT);
  1113. pinMode(Z_MS1_PIN,OUTPUT);
  1114. pinMode(Z_MS2_PIN,OUTPUT);
  1115. pinMode(E0_MS1_PIN,OUTPUT);
  1116. pinMode(E0_MS2_PIN,OUTPUT);
  1117. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1118. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1119. microstep_mode(i, microstep_modes[i]);
  1120. #endif
  1121. }
  1122. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1123. if (ms1 >= 0) switch(driver) {
  1124. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1125. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1126. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1127. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1128. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1129. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1130. #endif
  1131. }
  1132. if (ms2 >= 0) switch(driver) {
  1133. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1134. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1135. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1136. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1137. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1138. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1139. #endif
  1140. }
  1141. }
  1142. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1143. switch(stepping_mode) {
  1144. case 1: microstep_ms(driver,MICROSTEP1); break;
  1145. case 2: microstep_ms(driver,MICROSTEP2); break;
  1146. case 4: microstep_ms(driver,MICROSTEP4); break;
  1147. case 8: microstep_ms(driver,MICROSTEP8); break;
  1148. case 16: microstep_ms(driver,MICROSTEP16); break;
  1149. }
  1150. }
  1151. void microstep_readings() {
  1152. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1153. SERIAL_PROTOCOLPGM("X: ");
  1154. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1155. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1156. SERIAL_PROTOCOLPGM("Y: ");
  1157. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1158. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1159. SERIAL_PROTOCOLPGM("Z: ");
  1160. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1161. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1162. SERIAL_PROTOCOLPGM("E0: ");
  1163. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1164. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1165. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1166. SERIAL_PROTOCOLPGM("E1: ");
  1167. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1168. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1169. #endif
  1170. }
  1171. #ifdef Z_DUAL_ENDSTOPS
  1172. void In_Homing_Process(bool state) { performing_homing = state; }
  1173. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1174. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1175. #endif