My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 46KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V31"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V31 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Mesh bed leveling:
  64. * 219 M420 S from mbl.status (bool)
  65. * 220 mbl.z_offset (float)
  66. * 224 MESH_NUM_X_POINTS (uint8 as set in firmware)
  67. * 225 MESH_NUM_Y_POINTS (uint8 as set in firmware)
  68. * 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81) +288
  69. *
  70. * AUTO BED LEVELING
  71. * 262 M851 zprobe_zoffset (float)
  72. *
  73. * ABL_PLANAR (or placeholder): 36 bytes
  74. * 266 planner.bed_level_matrix (matrix_3x3 = float x9)
  75. *
  76. * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
  77. * 302 ABL_GRID_MAX_POINTS_X (uint8_t)
  78. * 303 ABL_GRID_MAX_POINTS_Y (uint8_t)
  79. * 304 bilinear_grid_spacing (int x2) from G29: (B-F)/X, (R-L)/Y
  80. * 308 G29 L F bilinear_start (int x2)
  81. * 312 bed_level_grid[][] (float x9, up to float x256) +988
  82. *
  83. * DELTA (if deltabot): 48 bytes
  84. * 348 M666 XYZ endstop_adj (float x3)
  85. * 360 M665 R delta_radius (float)
  86. * 364 M665 L delta_diagonal_rod (float)
  87. * 368 M665 S delta_segments_per_second (float)
  88. * 372 M665 A delta_diagonal_rod_trim_tower_1 (float)
  89. * 376 M665 B delta_diagonal_rod_trim_tower_2 (float)
  90. * 380 M665 C delta_diagonal_rod_trim_tower_3 (float)
  91. * 384 M665 I delta_tower_angle_trim_1 (float)
  92. * 388 M665 J delta_tower_angle_trim_2 (float)
  93. * 392 M665 K delta_tower_angle_trim_3 (float)
  94. *
  95. * Z_DUAL_ENDSTOPS (if not deltabot): 48 bytes
  96. * 348 M666 Z z_endstop_adj (float)
  97. * --- dummy data (float x11)
  98. *
  99. * ULTIPANEL: 6 bytes
  100. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  101. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  102. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  103. *
  104. * PIDTEMP: 66 bytes
  105. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  106. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  107. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  108. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  109. * 472 M301 L lpq_len (int)
  110. *
  111. * PIDTEMPBED: 12 bytes
  112. * 474 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  113. *
  114. * DOGLCD: 2 bytes
  115. * 486 M250 C lcd_contrast (int)
  116. *
  117. * FWRETRACT: 29 bytes
  118. * 488 M209 S autoretract_enabled (bool)
  119. * 489 M207 S retract_length (float)
  120. * 493 M207 W retract_length_swap (float)
  121. * 497 M207 F retract_feedrate_mm_s (float)
  122. * 501 M207 Z retract_zlift (float)
  123. * 505 M208 S retract_recover_length (float)
  124. * 509 M208 W retract_recover_length_swap (float)
  125. * 513 M208 F retract_recover_feedrate_mm_s (float)
  126. *
  127. * Volumetric Extrusion: 17 bytes
  128. * 517 M200 D volumetric_enabled (bool)
  129. * 518 M200 T D filament_size (float x4) (T0..3)
  130. *
  131. * TMC2130 Stepper Current: 20 bytes
  132. * 534 M906 X stepperX current (uint16_t)
  133. * 536 M906 Y stepperY current (uint16_t)
  134. * 538 M906 Z stepperZ current (uint16_t)
  135. * 540 M906 X2 stepperX2 current (uint16_t)
  136. * 542 M906 Y2 stepperY2 current (uint16_t)
  137. * 544 M906 Z2 stepperZ2 current (uint16_t)
  138. * 546 M906 E0 stepperE0 current (uint16_t)
  139. * 548 M906 E1 stepperE1 current (uint16_t)
  140. * 550 M906 E2 stepperE2 current (uint16_t)
  141. * 552 M906 E3 stepperE3 current (uint16_t)
  142. *
  143. * 554 Minimum end-point
  144. * 1875 (554 + 36 + 9 + 288 + 988) Maximum end-point
  145. *
  146. */
  147. #include "Marlin.h"
  148. #include "language.h"
  149. #include "endstops.h"
  150. #include "planner.h"
  151. #include "temperature.h"
  152. #include "ultralcd.h"
  153. #include "configuration_store.h"
  154. #if ENABLED(MESH_BED_LEVELING)
  155. #include "mesh_bed_leveling.h"
  156. #endif
  157. #if ENABLED(HAVE_TMC2130)
  158. #include "stepper_indirection.h"
  159. #endif
  160. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  161. extern void bed_level_virt_interpolate();
  162. #endif
  163. /**
  164. * Post-process after Retrieve or Reset
  165. */
  166. void Config_Postprocess() {
  167. // steps per s2 needs to be updated to agree with units per s2
  168. planner.reset_acceleration_rates();
  169. // Make sure delta kinematics are updated before refreshing the
  170. // planner position so the stepper counts will be set correctly.
  171. #if ENABLED(DELTA)
  172. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  173. #endif
  174. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  175. // and init stepper.count[], planner.position[] with current_position
  176. planner.refresh_positioning();
  177. #if ENABLED(PIDTEMP)
  178. thermalManager.updatePID();
  179. #endif
  180. calculate_volumetric_multipliers();
  181. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  182. // Software endstops depend on home_offset
  183. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  184. #endif
  185. }
  186. #if ENABLED(EEPROM_SETTINGS)
  187. uint16_t eeprom_checksum;
  188. const char version[4] = EEPROM_VERSION;
  189. bool eeprom_write_error;
  190. void _EEPROM_writeData(int &pos, const uint8_t* value, uint16_t size) {
  191. if (eeprom_write_error) return;
  192. while (size--) {
  193. uint8_t * const p = (uint8_t * const)pos;
  194. const uint8_t v = *value;
  195. // EEPROM has only ~100,000 write cycles,
  196. // so only write bytes that have changed!
  197. if (v != eeprom_read_byte(p)) {
  198. eeprom_write_byte(p, v);
  199. if (eeprom_read_byte(p) != v) {
  200. SERIAL_ECHO_START;
  201. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  202. eeprom_write_error = true;
  203. return;
  204. }
  205. }
  206. eeprom_checksum += v;
  207. pos++;
  208. value++;
  209. };
  210. }
  211. bool eeprom_read_error;
  212. void _EEPROM_readData(int &pos, uint8_t* value, uint16_t size) {
  213. do {
  214. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  215. if (!eeprom_read_error) *value = c;
  216. eeprom_checksum += c;
  217. pos++;
  218. value++;
  219. } while (--size);
  220. }
  221. #define DUMMY_PID_VALUE 3000.0f
  222. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  223. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  224. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  225. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  226. #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
  227. /**
  228. * M500 - Store Configuration
  229. */
  230. void Config_StoreSettings() {
  231. float dummy = 0.0f;
  232. char ver[4] = "000";
  233. EEPROM_START();
  234. eeprom_write_error = false;
  235. EEPROM_WRITE(ver); // invalidate data first
  236. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  237. eeprom_checksum = 0; // clear before first "real data"
  238. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  239. EEPROM_WRITE(esteppers);
  240. EEPROM_WRITE(planner.axis_steps_per_mm);
  241. EEPROM_WRITE(planner.max_feedrate_mm_s);
  242. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  243. EEPROM_WRITE(planner.acceleration);
  244. EEPROM_WRITE(planner.retract_acceleration);
  245. EEPROM_WRITE(planner.travel_acceleration);
  246. EEPROM_WRITE(planner.min_feedrate_mm_s);
  247. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  248. EEPROM_WRITE(planner.min_segment_time);
  249. EEPROM_WRITE(planner.max_jerk);
  250. #if ENABLED(NO_WORKSPACE_OFFSETS)
  251. float home_offset[XYZ] = { 0 };
  252. #endif
  253. EEPROM_WRITE(home_offset);
  254. #if HOTENDS > 1
  255. // Skip hotend 0 which must be 0
  256. for (uint8_t e = 1; e < HOTENDS; e++)
  257. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  258. #endif
  259. //
  260. // Mesh Bed Leveling
  261. //
  262. #if ENABLED(MESH_BED_LEVELING)
  263. // Compile time test that sizeof(mbl.z_values) is as expected
  264. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  265. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  266. const uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS;
  267. EEPROM_WRITE(leveling_is_on);
  268. EEPROM_WRITE(mbl.z_offset);
  269. EEPROM_WRITE(mesh_num_x);
  270. EEPROM_WRITE(mesh_num_y);
  271. EEPROM_WRITE(mbl.z_values);
  272. #else
  273. // For disabled MBL write a default mesh
  274. const bool leveling_is_on = false;
  275. dummy = 0.0f;
  276. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  277. EEPROM_WRITE(leveling_is_on);
  278. EEPROM_WRITE(dummy); // z_offset
  279. EEPROM_WRITE(mesh_num_x);
  280. EEPROM_WRITE(mesh_num_y);
  281. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  282. #endif // MESH_BED_LEVELING
  283. #if !HAS_BED_PROBE
  284. float zprobe_zoffset = 0;
  285. #endif
  286. EEPROM_WRITE(zprobe_zoffset);
  287. //
  288. // Planar Bed Leveling matrix
  289. //
  290. #if ABL_PLANAR
  291. EEPROM_WRITE(planner.bed_level_matrix);
  292. #else
  293. dummy = 0.0;
  294. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  295. #endif
  296. //
  297. // Bilinear Auto Bed Leveling
  298. //
  299. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  300. // Compile time test that sizeof(bed_level_grid) is as expected
  301. typedef char c_assert[(sizeof(bed_level_grid) == (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  302. const uint8_t grid_max_x = ABL_GRID_MAX_POINTS_X, grid_max_y = ABL_GRID_MAX_POINTS_Y;
  303. EEPROM_WRITE(grid_max_x); // 1 byte
  304. EEPROM_WRITE(grid_max_y); // 1 byte
  305. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  306. EEPROM_WRITE(bilinear_start); // 2 ints
  307. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  308. #else
  309. // For disabled Bilinear Grid write an empty 3x3 grid
  310. const uint8_t grid_max_x = 3, grid_max_y = 3;
  311. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  312. dummy = 0.0f;
  313. EEPROM_WRITE(grid_max_x);
  314. EEPROM_WRITE(grid_max_y);
  315. EEPROM_WRITE(bilinear_grid_spacing);
  316. EEPROM_WRITE(bilinear_start);
  317. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  318. #endif // AUTO_BED_LEVELING_BILINEAR
  319. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  320. #if ENABLED(DELTA)
  321. EEPROM_WRITE(endstop_adj); // 3 floats
  322. EEPROM_WRITE(delta_radius); // 1 float
  323. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  324. EEPROM_WRITE(delta_segments_per_second); // 1 float
  325. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  326. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  327. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  328. EEPROM_WRITE(delta_tower_angle_trim_1); // 1 float
  329. EEPROM_WRITE(delta_tower_angle_trim_2); // 1 float
  330. EEPROM_WRITE(delta_tower_angle_trim_3); // 1 float
  331. #elif ENABLED(Z_DUAL_ENDSTOPS)
  332. EEPROM_WRITE(z_endstop_adj); // 1 float
  333. dummy = 0.0f;
  334. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  335. #else
  336. dummy = 0.0f;
  337. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  338. #endif
  339. #if DISABLED(ULTIPANEL)
  340. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  341. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  342. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  343. #endif // !ULTIPANEL
  344. EEPROM_WRITE(lcd_preheat_hotend_temp);
  345. EEPROM_WRITE(lcd_preheat_bed_temp);
  346. EEPROM_WRITE(lcd_preheat_fan_speed);
  347. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  348. #if ENABLED(PIDTEMP)
  349. if (e < HOTENDS) {
  350. EEPROM_WRITE(PID_PARAM(Kp, e));
  351. EEPROM_WRITE(PID_PARAM(Ki, e));
  352. EEPROM_WRITE(PID_PARAM(Kd, e));
  353. #if ENABLED(PID_EXTRUSION_SCALING)
  354. EEPROM_WRITE(PID_PARAM(Kc, e));
  355. #else
  356. dummy = 1.0f; // 1.0 = default kc
  357. EEPROM_WRITE(dummy);
  358. #endif
  359. }
  360. else
  361. #endif // !PIDTEMP
  362. {
  363. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  364. EEPROM_WRITE(dummy); // Kp
  365. dummy = 0.0f;
  366. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  367. }
  368. } // Hotends Loop
  369. #if DISABLED(PID_EXTRUSION_SCALING)
  370. int lpq_len = 20;
  371. #endif
  372. EEPROM_WRITE(lpq_len);
  373. #if DISABLED(PIDTEMPBED)
  374. dummy = DUMMY_PID_VALUE;
  375. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  376. #else
  377. EEPROM_WRITE(thermalManager.bedKp);
  378. EEPROM_WRITE(thermalManager.bedKi);
  379. EEPROM_WRITE(thermalManager.bedKd);
  380. #endif
  381. #if !HAS_LCD_CONTRAST
  382. const int lcd_contrast = 32;
  383. #endif
  384. EEPROM_WRITE(lcd_contrast);
  385. #if ENABLED(FWRETRACT)
  386. EEPROM_WRITE(autoretract_enabled);
  387. EEPROM_WRITE(retract_length);
  388. #if EXTRUDERS > 1
  389. EEPROM_WRITE(retract_length_swap);
  390. #else
  391. dummy = 0.0f;
  392. EEPROM_WRITE(dummy);
  393. #endif
  394. EEPROM_WRITE(retract_feedrate_mm_s);
  395. EEPROM_WRITE(retract_zlift);
  396. EEPROM_WRITE(retract_recover_length);
  397. #if EXTRUDERS > 1
  398. EEPROM_WRITE(retract_recover_length_swap);
  399. #else
  400. dummy = 0.0f;
  401. EEPROM_WRITE(dummy);
  402. #endif
  403. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  404. #endif // FWRETRACT
  405. EEPROM_WRITE(volumetric_enabled);
  406. // Save filament sizes
  407. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  408. if (q < COUNT(filament_size)) dummy = filament_size[q];
  409. EEPROM_WRITE(dummy);
  410. }
  411. // Save TCM2130 Configuration, and placeholder values
  412. uint16_t val;
  413. #if ENABLED(HAVE_TMC2130)
  414. #if ENABLED(X_IS_TMC2130)
  415. val = stepperX.getCurrent();
  416. #else
  417. val = 0;
  418. #endif
  419. EEPROM_WRITE(val);
  420. #if ENABLED(Y_IS_TMC2130)
  421. val = stepperY.getCurrent();
  422. #else
  423. val = 0;
  424. #endif
  425. EEPROM_WRITE(val);
  426. #if ENABLED(Z_IS_TMC2130)
  427. val = stepperZ.getCurrent();
  428. #else
  429. val = 0;
  430. #endif
  431. EEPROM_WRITE(val);
  432. #if ENABLED(X2_IS_TMC2130)
  433. val = stepperX2.getCurrent();
  434. #else
  435. val = 0;
  436. #endif
  437. EEPROM_WRITE(val);
  438. #if ENABLED(Y2_IS_TMC2130)
  439. val = stepperY2.getCurrent();
  440. #else
  441. val = 0;
  442. #endif
  443. EEPROM_WRITE(val);
  444. #if ENABLED(Z2_IS_TMC2130)
  445. val = stepperZ2.getCurrent();
  446. #else
  447. val = 0;
  448. #endif
  449. EEPROM_WRITE(val);
  450. #if ENABLED(E0_IS_TMC2130)
  451. val = stepperE0.getCurrent();
  452. #else
  453. val = 0;
  454. #endif
  455. EEPROM_WRITE(val);
  456. #if ENABLED(E1_IS_TMC2130)
  457. val = stepperE1.getCurrent();
  458. #else
  459. val = 0;
  460. #endif
  461. EEPROM_WRITE(val);
  462. #if ENABLED(E2_IS_TMC2130)
  463. val = stepperE2.getCurrent();
  464. #else
  465. val = 0;
  466. #endif
  467. EEPROM_WRITE(val);
  468. #if ENABLED(E3_IS_TMC2130)
  469. val = stepperE3.getCurrent();
  470. #else
  471. val = 0;
  472. #endif
  473. EEPROM_WRITE(val);
  474. #else
  475. val = 0;
  476. for (uint8_t q = 0; q < 10; ++q) EEPROM_WRITE(val);
  477. #endif
  478. if (!eeprom_write_error) {
  479. const uint16_t final_checksum = eeprom_checksum,
  480. eeprom_size = eeprom_index;
  481. // Write the EEPROM header
  482. eeprom_index = EEPROM_OFFSET;
  483. EEPROM_WRITE(version);
  484. EEPROM_WRITE(final_checksum);
  485. // Report storage size
  486. SERIAL_ECHO_START;
  487. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  488. SERIAL_ECHOLNPGM(" bytes)");
  489. }
  490. }
  491. /**
  492. * M501 - Retrieve Configuration
  493. */
  494. void Config_RetrieveSettings() {
  495. EEPROM_START();
  496. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  497. char stored_ver[4];
  498. EEPROM_READ(stored_ver);
  499. uint16_t stored_checksum;
  500. EEPROM_READ(stored_checksum);
  501. // Version has to match or defaults are used
  502. if (strncmp(version, stored_ver, 3) != 0) {
  503. if (stored_ver[0] != 'V') {
  504. stored_ver[0] = '?';
  505. stored_ver[1] = '\0';
  506. }
  507. SERIAL_ECHO_START;
  508. SERIAL_ECHOPGM("EEPROM version mismatch ");
  509. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  510. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  511. Config_ResetDefault();
  512. }
  513. else {
  514. float dummy = 0;
  515. eeprom_checksum = 0; // clear before reading first "real data"
  516. // Number of esteppers may change
  517. uint8_t esteppers;
  518. EEPROM_READ(esteppers);
  519. // Get only the number of E stepper parameters previously stored
  520. // Any steppers added later are set to their defaults
  521. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  522. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  523. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  524. uint32_t tmp3[XYZ + esteppers];
  525. EEPROM_READ(tmp1);
  526. EEPROM_READ(tmp2);
  527. EEPROM_READ(tmp3);
  528. LOOP_XYZE_N(i) {
  529. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  530. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  531. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  532. }
  533. EEPROM_READ(planner.acceleration);
  534. EEPROM_READ(planner.retract_acceleration);
  535. EEPROM_READ(planner.travel_acceleration);
  536. EEPROM_READ(planner.min_feedrate_mm_s);
  537. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  538. EEPROM_READ(planner.min_segment_time);
  539. EEPROM_READ(planner.max_jerk);
  540. #if ENABLED(NO_WORKSPACE_OFFSETS)
  541. float home_offset[XYZ];
  542. #endif
  543. EEPROM_READ(home_offset);
  544. #if HOTENDS > 1
  545. // Skip hotend 0 which must be 0
  546. for (uint8_t e = 1; e < HOTENDS; e++)
  547. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  548. #endif
  549. //
  550. // Mesh (Manual) Bed Leveling
  551. //
  552. bool leveling_is_on;
  553. uint8_t mesh_num_x, mesh_num_y;
  554. EEPROM_READ(leveling_is_on);
  555. EEPROM_READ(dummy);
  556. EEPROM_READ(mesh_num_x);
  557. EEPROM_READ(mesh_num_y);
  558. #if ENABLED(MESH_BED_LEVELING)
  559. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  560. mbl.z_offset = dummy;
  561. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  562. // EEPROM data fits the current mesh
  563. EEPROM_READ(mbl.z_values);
  564. }
  565. else {
  566. // EEPROM data is stale
  567. mbl.reset();
  568. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  569. }
  570. #else
  571. // MBL is disabled - skip the stored data
  572. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  573. #endif // MESH_BED_LEVELING
  574. #if !HAS_BED_PROBE
  575. float zprobe_zoffset = 0;
  576. #endif
  577. EEPROM_READ(zprobe_zoffset);
  578. //
  579. // Planar Bed Leveling matrix
  580. //
  581. #if ABL_PLANAR
  582. EEPROM_READ(planner.bed_level_matrix);
  583. #else
  584. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  585. #endif
  586. //
  587. // Bilinear Auto Bed Leveling
  588. //
  589. uint8_t grid_max_x, grid_max_y;
  590. EEPROM_READ(grid_max_x); // 1 byte
  591. EEPROM_READ(grid_max_y); // 1 byte
  592. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  593. if (grid_max_x == ABL_GRID_MAX_POINTS_X && grid_max_y == ABL_GRID_MAX_POINTS_Y) {
  594. set_bed_leveling_enabled(false);
  595. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  596. EEPROM_READ(bilinear_start); // 2 ints
  597. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  598. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  599. bed_level_virt_interpolate();
  600. #endif
  601. //set_bed_leveling_enabled(leveling_is_on);
  602. }
  603. else // EEPROM data is stale
  604. #endif // AUTO_BED_LEVELING_BILINEAR
  605. {
  606. // Skip past disabled (or stale) Bilinear Grid data
  607. int bgs[2], bs[2];
  608. EEPROM_READ(bgs);
  609. EEPROM_READ(bs);
  610. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  611. }
  612. #if ENABLED(DELTA)
  613. EEPROM_READ(endstop_adj); // 3 floats
  614. EEPROM_READ(delta_radius); // 1 float
  615. EEPROM_READ(delta_diagonal_rod); // 1 float
  616. EEPROM_READ(delta_segments_per_second); // 1 float
  617. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  618. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  619. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  620. EEPROM_READ(delta_tower_angle_trim_1); // 1 float
  621. EEPROM_READ(delta_tower_angle_trim_2); // 1 float
  622. EEPROM_READ(delta_tower_angle_trim_3); // 1 float
  623. #elif ENABLED(Z_DUAL_ENDSTOPS)
  624. EEPROM_READ(z_endstop_adj);
  625. dummy = 0.0f;
  626. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  627. #else
  628. dummy = 0.0f;
  629. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  630. #endif
  631. #if DISABLED(ULTIPANEL)
  632. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  633. #endif
  634. EEPROM_READ(lcd_preheat_hotend_temp);
  635. EEPROM_READ(lcd_preheat_bed_temp);
  636. EEPROM_READ(lcd_preheat_fan_speed);
  637. #if ENABLED(PIDTEMP)
  638. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  639. EEPROM_READ(dummy); // Kp
  640. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  641. // do not need to scale PID values as the values in EEPROM are already scaled
  642. PID_PARAM(Kp, e) = dummy;
  643. EEPROM_READ(PID_PARAM(Ki, e));
  644. EEPROM_READ(PID_PARAM(Kd, e));
  645. #if ENABLED(PID_EXTRUSION_SCALING)
  646. EEPROM_READ(PID_PARAM(Kc, e));
  647. #else
  648. EEPROM_READ(dummy);
  649. #endif
  650. }
  651. else {
  652. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  653. }
  654. }
  655. #else // !PIDTEMP
  656. // 4 x 4 = 16 slots for PID parameters
  657. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  658. #endif // !PIDTEMP
  659. #if DISABLED(PID_EXTRUSION_SCALING)
  660. int lpq_len;
  661. #endif
  662. EEPROM_READ(lpq_len);
  663. #if ENABLED(PIDTEMPBED)
  664. EEPROM_READ(dummy); // bedKp
  665. if (dummy != DUMMY_PID_VALUE) {
  666. thermalManager.bedKp = dummy;
  667. EEPROM_READ(thermalManager.bedKi);
  668. EEPROM_READ(thermalManager.bedKd);
  669. }
  670. #else
  671. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  672. #endif
  673. #if !HAS_LCD_CONTRAST
  674. int lcd_contrast;
  675. #endif
  676. EEPROM_READ(lcd_contrast);
  677. #if ENABLED(FWRETRACT)
  678. EEPROM_READ(autoretract_enabled);
  679. EEPROM_READ(retract_length);
  680. #if EXTRUDERS > 1
  681. EEPROM_READ(retract_length_swap);
  682. #else
  683. EEPROM_READ(dummy);
  684. #endif
  685. EEPROM_READ(retract_feedrate_mm_s);
  686. EEPROM_READ(retract_zlift);
  687. EEPROM_READ(retract_recover_length);
  688. #if EXTRUDERS > 1
  689. EEPROM_READ(retract_recover_length_swap);
  690. #else
  691. EEPROM_READ(dummy);
  692. #endif
  693. EEPROM_READ(retract_recover_feedrate_mm_s);
  694. #endif // FWRETRACT
  695. EEPROM_READ(volumetric_enabled);
  696. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  697. EEPROM_READ(dummy);
  698. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  699. }
  700. uint16_t val;
  701. #if ENABLED(HAVE_TMC2130)
  702. EEPROM_READ(val);
  703. #if ENABLED(X_IS_TMC2130)
  704. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  705. #endif
  706. EEPROM_READ(val);
  707. #if ENABLED(Y_IS_TMC2130)
  708. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  709. #endif
  710. EEPROM_READ(val);
  711. #if ENABLED(Z_IS_TMC2130)
  712. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  713. #endif
  714. EEPROM_READ(val);
  715. #if ENABLED(X2_IS_TMC2130)
  716. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  717. #endif
  718. EEPROM_READ(val);
  719. #if ENABLED(Y2_IS_TMC2130)
  720. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  721. #endif
  722. EEPROM_READ(val);
  723. #if ENABLED(Z2_IS_TMC2130)
  724. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  725. #endif
  726. EEPROM_READ(val);
  727. #if ENABLED(E0_IS_TMC2130)
  728. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  729. #endif
  730. EEPROM_READ(val);
  731. #if ENABLED(E1_IS_TMC2130)
  732. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  733. #endif
  734. EEPROM_READ(val);
  735. #if ENABLED(E2_IS_TMC2130)
  736. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  737. #endif
  738. EEPROM_READ(val);
  739. #if ENABLED(E3_IS_TMC2130)
  740. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  741. #endif
  742. #else
  743. for (uint8_t q = 0; q < 10; q++) EEPROM_READ(val);
  744. #endif
  745. if (eeprom_checksum == stored_checksum) {
  746. if (eeprom_read_error)
  747. Config_ResetDefault();
  748. else {
  749. Config_Postprocess();
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHO(version);
  752. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  753. SERIAL_ECHOLNPGM(" bytes)");
  754. }
  755. }
  756. else {
  757. SERIAL_ERROR_START;
  758. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  759. Config_ResetDefault();
  760. }
  761. }
  762. #if ENABLED(EEPROM_CHITCHAT)
  763. Config_PrintSettings();
  764. #endif
  765. }
  766. #else // !EEPROM_SETTINGS
  767. void Config_StoreSettings() {
  768. SERIAL_ERROR_START;
  769. SERIAL_ERRORLNPGM("EEPROM disabled");
  770. }
  771. #endif // !EEPROM_SETTINGS
  772. /**
  773. * M502 - Reset Configuration
  774. */
  775. void Config_ResetDefault() {
  776. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  777. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  778. LOOP_XYZE_N(i) {
  779. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  780. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  781. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  782. }
  783. planner.acceleration = DEFAULT_ACCELERATION;
  784. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  785. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  786. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  787. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  788. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  789. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  790. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  791. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  792. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  793. #if DISABLED(NO_WORKSPACE_OFFSETS)
  794. ZERO(home_offset);
  795. #endif
  796. #if HOTENDS > 1
  797. constexpr float tmp4[XYZ][HOTENDS] = {
  798. HOTEND_OFFSET_X,
  799. HOTEND_OFFSET_Y
  800. #ifdef HOTEND_OFFSET_Z
  801. , HOTEND_OFFSET_Z
  802. #else
  803. , { 0 }
  804. #endif
  805. };
  806. static_assert(
  807. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  808. "Offsets for the first hotend must be 0.0."
  809. );
  810. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  811. #endif
  812. // Applies to all MBL and ABL
  813. #if PLANNER_LEVELING
  814. reset_bed_level();
  815. #endif
  816. #if HAS_BED_PROBE
  817. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  818. #endif
  819. #if ENABLED(DELTA)
  820. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  821. endstop_adj[A_AXIS] = adj[A_AXIS];
  822. endstop_adj[B_AXIS] = adj[B_AXIS];
  823. endstop_adj[C_AXIS] = adj[C_AXIS];
  824. delta_radius = DELTA_RADIUS;
  825. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  826. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  827. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  828. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  829. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  830. delta_tower_angle_trim_1 = DELTA_TOWER_ANGLE_TRIM_1;
  831. delta_tower_angle_trim_2 = DELTA_TOWER_ANGLE_TRIM_2;
  832. delta_tower_angle_trim_3 = DELTA_TOWER_ANGLE_TRIM_3;
  833. #elif ENABLED(Z_DUAL_ENDSTOPS)
  834. z_endstop_adj = 0;
  835. #endif
  836. #if ENABLED(ULTIPANEL)
  837. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  838. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  839. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  840. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  841. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  842. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  843. #endif
  844. #if HAS_LCD_CONTRAST
  845. lcd_contrast = DEFAULT_LCD_CONTRAST;
  846. #endif
  847. #if ENABLED(PIDTEMP)
  848. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  849. HOTEND_LOOP()
  850. #endif
  851. {
  852. PID_PARAM(Kp, e) = DEFAULT_Kp;
  853. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  854. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  855. #if ENABLED(PID_EXTRUSION_SCALING)
  856. PID_PARAM(Kc, e) = DEFAULT_Kc;
  857. #endif
  858. }
  859. #if ENABLED(PID_EXTRUSION_SCALING)
  860. lpq_len = 20; // default last-position-queue size
  861. #endif
  862. #endif // PIDTEMP
  863. #if ENABLED(PIDTEMPBED)
  864. thermalManager.bedKp = DEFAULT_bedKp;
  865. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  866. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  867. #endif
  868. #if ENABLED(FWRETRACT)
  869. autoretract_enabled = false;
  870. retract_length = RETRACT_LENGTH;
  871. #if EXTRUDERS > 1
  872. retract_length_swap = RETRACT_LENGTH_SWAP;
  873. #endif
  874. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  875. retract_zlift = RETRACT_ZLIFT;
  876. retract_recover_length = RETRACT_RECOVER_LENGTH;
  877. #if EXTRUDERS > 1
  878. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  879. #endif
  880. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  881. #endif
  882. volumetric_enabled =
  883. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  884. true
  885. #else
  886. false
  887. #endif
  888. ;
  889. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  890. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  891. endstops.enable_globally(
  892. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  893. (true)
  894. #else
  895. (false)
  896. #endif
  897. );
  898. #if ENABLED(HAVE_TMC2130)
  899. #if ENABLED(X_IS_TMC2130)
  900. stepperX.setCurrent(X_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  901. #endif
  902. #if ENABLED(Y_IS_TMC2130)
  903. stepperY.setCurrent(Y_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  904. #endif
  905. #if ENABLED(Z_IS_TMC2130)
  906. stepperZ.setCurrent(Z_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  907. #endif
  908. #if ENABLED(X2_IS_TMC2130)
  909. stepperX2.setCurrent(X2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  910. #endif
  911. #if ENABLED(Y2_IS_TMC2130)
  912. stepperY2.setCurrent(Y2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  913. #endif
  914. #if ENABLED(Z2_IS_TMC2130)
  915. stepperZ2.setCurrent(Z2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  916. #endif
  917. #if ENABLED(E0_IS_TMC2130)
  918. stepperE0.setCurrent(E0_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  919. #endif
  920. #if ENABLED(E1_IS_TMC2130)
  921. stepperE1.setCurrent(E1_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  922. #endif
  923. #if ENABLED(E2_IS_TMC2130)
  924. stepperE2.setCurrent(E2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  925. #endif
  926. #if ENABLED(E3_IS_TMC2130)
  927. stepperE3.setCurrent(E3_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  928. #endif
  929. #endif
  930. Config_Postprocess();
  931. SERIAL_ECHO_START;
  932. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  933. }
  934. #if DISABLED(DISABLE_M503)
  935. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  936. /**
  937. * M503 - Print Configuration
  938. */
  939. void Config_PrintSettings(bool forReplay) {
  940. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  941. CONFIG_ECHO_START;
  942. if (!forReplay) {
  943. SERIAL_ECHOLNPGM("Steps per unit:");
  944. CONFIG_ECHO_START;
  945. }
  946. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  947. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  948. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  949. #if DISABLED(DISTINCT_E_FACTORS)
  950. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  951. #endif
  952. SERIAL_EOL;
  953. #if ENABLED(DISTINCT_E_FACTORS)
  954. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  955. SERIAL_ECHOPAIR(" M92 T", (int)i);
  956. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  957. }
  958. #endif
  959. CONFIG_ECHO_START;
  960. if (!forReplay) {
  961. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  962. CONFIG_ECHO_START;
  963. }
  964. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  965. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  966. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  967. #if DISABLED(DISTINCT_E_FACTORS)
  968. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  969. #endif
  970. SERIAL_EOL;
  971. #if ENABLED(DISTINCT_E_FACTORS)
  972. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  973. SERIAL_ECHOPAIR(" M203 T", (int)i);
  974. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  975. }
  976. #endif
  977. CONFIG_ECHO_START;
  978. if (!forReplay) {
  979. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  980. CONFIG_ECHO_START;
  981. }
  982. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  983. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  984. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  985. #if DISABLED(DISTINCT_E_FACTORS)
  986. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  987. #endif
  988. SERIAL_EOL;
  989. #if ENABLED(DISTINCT_E_FACTORS)
  990. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  991. SERIAL_ECHOPAIR(" M201 T", (int)i);
  992. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  993. }
  994. #endif
  995. CONFIG_ECHO_START;
  996. if (!forReplay) {
  997. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  998. CONFIG_ECHO_START;
  999. }
  1000. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  1001. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  1002. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  1003. SERIAL_EOL;
  1004. CONFIG_ECHO_START;
  1005. if (!forReplay) {
  1006. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  1007. CONFIG_ECHO_START;
  1008. }
  1009. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  1010. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  1011. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1012. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  1013. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  1014. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  1015. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  1016. SERIAL_EOL;
  1017. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1018. CONFIG_ECHO_START;
  1019. if (!forReplay) {
  1020. SERIAL_ECHOLNPGM("Home offset (mm)");
  1021. CONFIG_ECHO_START;
  1022. }
  1023. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  1024. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  1025. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  1026. SERIAL_EOL;
  1027. #endif
  1028. #if HOTENDS > 1
  1029. CONFIG_ECHO_START;
  1030. if (!forReplay) {
  1031. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  1032. CONFIG_ECHO_START;
  1033. }
  1034. for (uint8_t e = 1; e < HOTENDS; e++) {
  1035. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1036. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  1037. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  1038. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  1039. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  1040. #endif
  1041. SERIAL_EOL;
  1042. }
  1043. #endif
  1044. #if ENABLED(MESH_BED_LEVELING)
  1045. if (!forReplay) {
  1046. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1047. CONFIG_ECHO_START;
  1048. }
  1049. SERIAL_ECHOLNPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  1050. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  1051. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  1052. CONFIG_ECHO_START;
  1053. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  1054. SERIAL_ECHOPAIR(" Y", (int)py);
  1055. SERIAL_ECHOPGM(" Z");
  1056. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  1057. SERIAL_EOL;
  1058. }
  1059. }
  1060. #elif HAS_ABL
  1061. if (!forReplay) {
  1062. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1063. CONFIG_ECHO_START;
  1064. }
  1065. SERIAL_ECHOLNPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  1066. #endif
  1067. #if ENABLED(DELTA)
  1068. CONFIG_ECHO_START;
  1069. if (!forReplay) {
  1070. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  1071. CONFIG_ECHO_START;
  1072. }
  1073. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  1074. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  1075. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  1076. SERIAL_EOL;
  1077. CONFIG_ECHO_START;
  1078. if (!forReplay) {
  1079. SERIAL_ECHOLNPGM("Delta settings: L=diagonal rod, R=radius, S=segments-per-second, ABC=diagonal rod trim, IJK=tower angle trim");
  1080. CONFIG_ECHO_START;
  1081. }
  1082. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  1083. SERIAL_ECHOPAIR(" R", delta_radius);
  1084. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1085. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  1086. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  1087. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  1088. SERIAL_ECHOPAIR(" I", delta_tower_angle_trim_1);
  1089. SERIAL_ECHOPAIR(" J", delta_tower_angle_trim_2);
  1090. SERIAL_ECHOPAIR(" K", delta_tower_angle_trim_3);
  1091. SERIAL_EOL;
  1092. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1093. CONFIG_ECHO_START;
  1094. if (!forReplay) {
  1095. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  1096. CONFIG_ECHO_START;
  1097. }
  1098. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  1099. SERIAL_EOL;
  1100. #endif // DELTA
  1101. #if ENABLED(ULTIPANEL)
  1102. CONFIG_ECHO_START;
  1103. if (!forReplay) {
  1104. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1105. CONFIG_ECHO_START;
  1106. }
  1107. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1108. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1109. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  1110. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  1111. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  1112. SERIAL_EOL;
  1113. }
  1114. #endif // ULTIPANEL
  1115. #if HAS_PID_HEATING
  1116. CONFIG_ECHO_START;
  1117. if (!forReplay) {
  1118. SERIAL_ECHOLNPGM("PID settings:");
  1119. }
  1120. #if ENABLED(PIDTEMP)
  1121. #if HOTENDS > 1
  1122. if (forReplay) {
  1123. HOTEND_LOOP() {
  1124. CONFIG_ECHO_START;
  1125. SERIAL_ECHOPAIR(" M301 E", e);
  1126. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1127. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1128. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1129. #if ENABLED(PID_EXTRUSION_SCALING)
  1130. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1131. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1132. #endif
  1133. SERIAL_EOL;
  1134. }
  1135. }
  1136. else
  1137. #endif // HOTENDS > 1
  1138. // !forReplay || HOTENDS == 1
  1139. {
  1140. CONFIG_ECHO_START;
  1141. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1142. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1143. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1144. #if ENABLED(PID_EXTRUSION_SCALING)
  1145. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1146. SERIAL_ECHOPAIR(" L", lpq_len);
  1147. #endif
  1148. SERIAL_EOL;
  1149. }
  1150. #endif // PIDTEMP
  1151. #if ENABLED(PIDTEMPBED)
  1152. CONFIG_ECHO_START;
  1153. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1154. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1155. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1156. SERIAL_EOL;
  1157. #endif
  1158. #endif // PIDTEMP || PIDTEMPBED
  1159. #if HAS_LCD_CONTRAST
  1160. CONFIG_ECHO_START;
  1161. if (!forReplay) {
  1162. SERIAL_ECHOLNPGM("LCD Contrast:");
  1163. CONFIG_ECHO_START;
  1164. }
  1165. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  1166. SERIAL_EOL;
  1167. #endif
  1168. #if ENABLED(FWRETRACT)
  1169. CONFIG_ECHO_START;
  1170. if (!forReplay) {
  1171. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  1172. CONFIG_ECHO_START;
  1173. }
  1174. SERIAL_ECHOPAIR(" M207 S", retract_length);
  1175. #if EXTRUDERS > 1
  1176. SERIAL_ECHOPAIR(" W", retract_length_swap);
  1177. #endif
  1178. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  1179. SERIAL_ECHOPAIR(" Z", retract_zlift);
  1180. SERIAL_EOL;
  1181. CONFIG_ECHO_START;
  1182. if (!forReplay) {
  1183. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  1184. CONFIG_ECHO_START;
  1185. }
  1186. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  1187. #if EXTRUDERS > 1
  1188. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  1189. #endif
  1190. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  1191. SERIAL_EOL;
  1192. CONFIG_ECHO_START;
  1193. if (!forReplay) {
  1194. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1195. CONFIG_ECHO_START;
  1196. }
  1197. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1198. SERIAL_EOL;
  1199. #endif // FWRETRACT
  1200. /**
  1201. * Volumetric extrusion M200
  1202. */
  1203. if (!forReplay) {
  1204. CONFIG_ECHO_START;
  1205. SERIAL_ECHOPGM("Filament settings:");
  1206. if (volumetric_enabled)
  1207. SERIAL_EOL;
  1208. else
  1209. SERIAL_ECHOLNPGM(" Disabled");
  1210. }
  1211. CONFIG_ECHO_START;
  1212. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1213. SERIAL_EOL;
  1214. #if EXTRUDERS > 1
  1215. CONFIG_ECHO_START;
  1216. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1217. SERIAL_EOL;
  1218. #if EXTRUDERS > 2
  1219. CONFIG_ECHO_START;
  1220. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1221. SERIAL_EOL;
  1222. #if EXTRUDERS > 3
  1223. CONFIG_ECHO_START;
  1224. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1225. SERIAL_EOL;
  1226. #endif
  1227. #endif
  1228. #endif
  1229. if (!volumetric_enabled) {
  1230. CONFIG_ECHO_START;
  1231. SERIAL_ECHOLNPGM(" M200 D0");
  1232. }
  1233. /**
  1234. * Auto Bed Leveling
  1235. */
  1236. #if HAS_BED_PROBE
  1237. CONFIG_ECHO_START;
  1238. if (!forReplay) {
  1239. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1240. CONFIG_ECHO_START;
  1241. }
  1242. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  1243. SERIAL_EOL;
  1244. #endif
  1245. /**
  1246. * TMC2130 stepper driver current
  1247. */
  1248. #if ENABLED(HAVE_TMC2130)
  1249. CONFIG_ECHO_START;
  1250. if (!forReplay) {
  1251. SERIAL_ECHOLNPGM("Stepper driver current:");
  1252. CONFIG_ECHO_START;
  1253. }
  1254. SERIAL_ECHO(" M906");
  1255. #if ENABLED(X_IS_TMC2130)
  1256. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1257. #endif
  1258. #if ENABLED(Y_IS_TMC2130)
  1259. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1260. #endif
  1261. #if ENABLED(Z_IS_TMC2130)
  1262. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1263. #endif
  1264. #if ENABLED(X2_IS_TMC2130)
  1265. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1266. #endif
  1267. #if ENABLED(Y2_IS_TMC2130)
  1268. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1269. #endif
  1270. #if ENABLED(Z2_IS_TMC2130)
  1271. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1272. #endif
  1273. #if ENABLED(E0_IS_TMC2130)
  1274. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1275. #endif
  1276. #if ENABLED(E1_IS_TMC2130)
  1277. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1278. #endif
  1279. #if ENABLED(E2_IS_TMC2130)
  1280. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1281. #endif
  1282. #if ENABLED(E3_IS_TMC2130)
  1283. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1284. #endif
  1285. SERIAL_EOL;
  1286. #endif
  1287. }
  1288. #endif // !DISABLE_M503