My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 117KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 - Set filament diameter
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  172. float add_homeing[3]={0,0,0};
  173. #ifdef DELTA
  174. float endstop_adj[3]={0,0,0};
  175. #endif
  176. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  177. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  178. bool axis_known_position[3] = {false, false, false};
  179. float zprobe_zoffset;
  180. // Extruder offset
  181. #if EXTRUDERS > 1
  182. #ifndef DUAL_X_CARRIAGE
  183. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  184. #else
  185. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  186. #endif
  187. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  188. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  189. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  190. #endif
  191. };
  192. #endif
  193. uint8_t active_extruder = 0;
  194. int fanSpeed=0;
  195. #ifdef SERVO_ENDSTOPS
  196. int servo_endstops[] = SERVO_ENDSTOPS;
  197. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  198. #endif
  199. #ifdef BARICUDA
  200. int ValvePressure=0;
  201. int EtoPPressure=0;
  202. #endif
  203. #ifdef FWRETRACT
  204. bool autoretract_enabled=true;
  205. bool retracted=false;
  206. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  207. float retract_recover_length=0, retract_recover_feedrate=8*60;
  208. #endif
  209. #ifdef ULTIPANEL
  210. #ifdef PS_DEFAULT_OFF
  211. bool powersupply = false;
  212. #else
  213. bool powersupply = true;
  214. #endif
  215. #endif
  216. #ifdef DELTA
  217. float delta[3] = {0.0, 0.0, 0.0};
  218. #endif
  219. //===========================================================================
  220. //=============================private variables=============================
  221. //===========================================================================
  222. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  223. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  224. static float offset[3] = {0.0, 0.0, 0.0};
  225. static bool home_all_axis = true;
  226. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  227. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  228. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  229. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  230. static bool fromsd[BUFSIZE];
  231. static int bufindr = 0;
  232. static int bufindw = 0;
  233. static int buflen = 0;
  234. //static int i = 0;
  235. static char serial_char;
  236. static int serial_count = 0;
  237. static boolean comment_mode = false;
  238. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  239. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  240. //static float tt = 0;
  241. //static float bt = 0;
  242. //Inactivity shutdown variables
  243. static unsigned long previous_millis_cmd = 0;
  244. static unsigned long max_inactive_time = 0;
  245. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  246. unsigned long starttime=0;
  247. unsigned long stoptime=0;
  248. static uint8_t tmp_extruder;
  249. bool Stopped=false;
  250. #if NUM_SERVOS > 0
  251. Servo servos[NUM_SERVOS];
  252. #endif
  253. bool CooldownNoWait = true;
  254. bool target_direction;
  255. //===========================================================================
  256. //=============================ROUTINES=============================
  257. //===========================================================================
  258. void get_arc_coordinates();
  259. bool setTargetedHotend(int code);
  260. void serial_echopair_P(const char *s_P, float v)
  261. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  262. void serial_echopair_P(const char *s_P, double v)
  263. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  264. void serial_echopair_P(const char *s_P, unsigned long v)
  265. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  266. extern "C"{
  267. extern unsigned int __bss_end;
  268. extern unsigned int __heap_start;
  269. extern void *__brkval;
  270. int freeMemory() {
  271. int free_memory;
  272. if((int)__brkval == 0)
  273. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  274. else
  275. free_memory = ((int)&free_memory) - ((int)__brkval);
  276. return free_memory;
  277. }
  278. }
  279. //adds an command to the main command buffer
  280. //thats really done in a non-safe way.
  281. //needs overworking someday
  282. void enquecommand(const char *cmd)
  283. {
  284. if(buflen < BUFSIZE)
  285. {
  286. //this is dangerous if a mixing of serial and this happsens
  287. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  288. SERIAL_ECHO_START;
  289. SERIAL_ECHOPGM("enqueing \"");
  290. SERIAL_ECHO(cmdbuffer[bufindw]);
  291. SERIAL_ECHOLNPGM("\"");
  292. bufindw= (bufindw + 1)%BUFSIZE;
  293. buflen += 1;
  294. }
  295. }
  296. void enquecommand_P(const char *cmd)
  297. {
  298. if(buflen < BUFSIZE)
  299. {
  300. //this is dangerous if a mixing of serial and this happsens
  301. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  302. SERIAL_ECHO_START;
  303. SERIAL_ECHOPGM("enqueing \"");
  304. SERIAL_ECHO(cmdbuffer[bufindw]);
  305. SERIAL_ECHOLNPGM("\"");
  306. bufindw= (bufindw + 1)%BUFSIZE;
  307. buflen += 1;
  308. }
  309. }
  310. void setup_killpin()
  311. {
  312. #if defined(KILL_PIN) && KILL_PIN > -1
  313. pinMode(KILL_PIN,INPUT);
  314. WRITE(KILL_PIN,HIGH);
  315. #endif
  316. }
  317. void setup_photpin()
  318. {
  319. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  320. SET_OUTPUT(PHOTOGRAPH_PIN);
  321. WRITE(PHOTOGRAPH_PIN, LOW);
  322. #endif
  323. }
  324. void setup_powerhold()
  325. {
  326. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  327. SET_OUTPUT(SUICIDE_PIN);
  328. WRITE(SUICIDE_PIN, HIGH);
  329. #endif
  330. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  331. SET_OUTPUT(PS_ON_PIN);
  332. #if defined(PS_DEFAULT_OFF)
  333. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  334. #else
  335. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  336. #endif
  337. #endif
  338. }
  339. void suicide()
  340. {
  341. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  342. SET_OUTPUT(SUICIDE_PIN);
  343. WRITE(SUICIDE_PIN, LOW);
  344. #endif
  345. }
  346. void servo_init()
  347. {
  348. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  349. servos[0].attach(SERVO0_PIN);
  350. #endif
  351. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  352. servos[1].attach(SERVO1_PIN);
  353. #endif
  354. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  355. servos[2].attach(SERVO2_PIN);
  356. #endif
  357. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  358. servos[3].attach(SERVO3_PIN);
  359. #endif
  360. #if (NUM_SERVOS >= 5)
  361. #error "TODO: enter initalisation code for more servos"
  362. #endif
  363. // Set position of Servo Endstops that are defined
  364. #ifdef SERVO_ENDSTOPS
  365. for(int8_t i = 0; i < 3; i++)
  366. {
  367. if(servo_endstops[i] > -1) {
  368. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  369. }
  370. }
  371. #endif
  372. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  373. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  374. servos[servo_endstops[Z_AXIS]].detach();
  375. #endif
  376. }
  377. void setup()
  378. {
  379. setup_killpin();
  380. setup_powerhold();
  381. MYSERIAL.begin(BAUDRATE);
  382. SERIAL_PROTOCOLLNPGM("start");
  383. SERIAL_ECHO_START;
  384. // Check startup - does nothing if bootloader sets MCUSR to 0
  385. byte mcu = MCUSR;
  386. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  387. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  388. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  389. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  390. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  391. MCUSR=0;
  392. SERIAL_ECHOPGM(MSG_MARLIN);
  393. SERIAL_ECHOLNPGM(VERSION_STRING);
  394. #ifdef STRING_VERSION_CONFIG_H
  395. #ifdef STRING_CONFIG_H_AUTHOR
  396. SERIAL_ECHO_START;
  397. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  398. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  399. SERIAL_ECHOPGM(MSG_AUTHOR);
  400. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  401. SERIAL_ECHOPGM("Compiled: ");
  402. SERIAL_ECHOLNPGM(__DATE__);
  403. #endif
  404. #endif
  405. SERIAL_ECHO_START;
  406. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  407. SERIAL_ECHO(freeMemory());
  408. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  409. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  410. for(int8_t i = 0; i < BUFSIZE; i++)
  411. {
  412. fromsd[i] = false;
  413. }
  414. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  415. Config_RetrieveSettings();
  416. tp_init(); // Initialize temperature loop
  417. plan_init(); // Initialize planner;
  418. watchdog_init();
  419. st_init(); // Initialize stepper, this enables interrupts!
  420. setup_photpin();
  421. servo_init();
  422. lcd_init();
  423. _delay_ms(1000); // wait 1sec to display the splash screen
  424. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  425. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  426. #endif
  427. }
  428. void loop()
  429. {
  430. if(buflen < (BUFSIZE-1))
  431. get_command();
  432. #ifdef SDSUPPORT
  433. card.checkautostart(false);
  434. #endif
  435. if(buflen)
  436. {
  437. #ifdef SDSUPPORT
  438. if(card.saving)
  439. {
  440. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  441. {
  442. card.write_command(cmdbuffer[bufindr]);
  443. if(card.logging)
  444. {
  445. process_commands();
  446. }
  447. else
  448. {
  449. SERIAL_PROTOCOLLNPGM(MSG_OK);
  450. }
  451. }
  452. else
  453. {
  454. card.closefile();
  455. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  456. }
  457. }
  458. else
  459. {
  460. process_commands();
  461. }
  462. #else
  463. process_commands();
  464. #endif //SDSUPPORT
  465. buflen = (buflen-1);
  466. bufindr = (bufindr + 1)%BUFSIZE;
  467. }
  468. //check heater every n milliseconds
  469. manage_heater();
  470. manage_inactivity();
  471. checkHitEndstops();
  472. lcd_update();
  473. }
  474. void get_command()
  475. {
  476. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  477. serial_char = MYSERIAL.read();
  478. if(serial_char == '\n' ||
  479. serial_char == '\r' ||
  480. (serial_char == ':' && comment_mode == false) ||
  481. serial_count >= (MAX_CMD_SIZE - 1) )
  482. {
  483. if(!serial_count) { //if empty line
  484. comment_mode = false; //for new command
  485. return;
  486. }
  487. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  488. if(!comment_mode){
  489. comment_mode = false; //for new command
  490. fromsd[bufindw] = false;
  491. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  492. {
  493. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  494. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  495. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  496. SERIAL_ERROR_START;
  497. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  498. SERIAL_ERRORLN(gcode_LastN);
  499. //Serial.println(gcode_N);
  500. FlushSerialRequestResend();
  501. serial_count = 0;
  502. return;
  503. }
  504. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  505. {
  506. byte checksum = 0;
  507. byte count = 0;
  508. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  509. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  510. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  511. SERIAL_ERROR_START;
  512. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  513. SERIAL_ERRORLN(gcode_LastN);
  514. FlushSerialRequestResend();
  515. serial_count = 0;
  516. return;
  517. }
  518. //if no errors, continue parsing
  519. }
  520. else
  521. {
  522. SERIAL_ERROR_START;
  523. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  524. SERIAL_ERRORLN(gcode_LastN);
  525. FlushSerialRequestResend();
  526. serial_count = 0;
  527. return;
  528. }
  529. gcode_LastN = gcode_N;
  530. //if no errors, continue parsing
  531. }
  532. else // if we don't receive 'N' but still see '*'
  533. {
  534. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  535. {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  538. SERIAL_ERRORLN(gcode_LastN);
  539. serial_count = 0;
  540. return;
  541. }
  542. }
  543. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  544. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  545. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  546. case 0:
  547. case 1:
  548. case 2:
  549. case 3:
  550. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  551. #ifdef SDSUPPORT
  552. if(card.saving)
  553. break;
  554. #endif //SDSUPPORT
  555. SERIAL_PROTOCOLLNPGM(MSG_OK);
  556. }
  557. else {
  558. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  559. LCD_MESSAGEPGM(MSG_STOPPED);
  560. }
  561. break;
  562. default:
  563. break;
  564. }
  565. }
  566. bufindw = (bufindw + 1)%BUFSIZE;
  567. buflen += 1;
  568. }
  569. serial_count = 0; //clear buffer
  570. }
  571. else
  572. {
  573. if(serial_char == ';') comment_mode = true;
  574. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  575. }
  576. }
  577. #ifdef SDSUPPORT
  578. if(!card.sdprinting || serial_count!=0){
  579. return;
  580. }
  581. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  582. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  583. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  584. static bool stop_buffering=false;
  585. if(buflen==0) stop_buffering=false;
  586. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  587. int16_t n=card.get();
  588. serial_char = (char)n;
  589. if(serial_char == '\n' ||
  590. serial_char == '\r' ||
  591. (serial_char == '#' && comment_mode == false) ||
  592. (serial_char == ':' && comment_mode == false) ||
  593. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  594. {
  595. if(card.eof()){
  596. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  597. stoptime=millis();
  598. char time[30];
  599. unsigned long t=(stoptime-starttime)/1000;
  600. int hours, minutes;
  601. minutes=(t/60)%60;
  602. hours=t/60/60;
  603. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  604. SERIAL_ECHO_START;
  605. SERIAL_ECHOLN(time);
  606. lcd_setstatus(time);
  607. card.printingHasFinished();
  608. card.checkautostart(true);
  609. }
  610. if(serial_char=='#')
  611. stop_buffering=true;
  612. if(!serial_count)
  613. {
  614. comment_mode = false; //for new command
  615. return; //if empty line
  616. }
  617. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  618. // if(!comment_mode){
  619. fromsd[bufindw] = true;
  620. buflen += 1;
  621. bufindw = (bufindw + 1)%BUFSIZE;
  622. // }
  623. comment_mode = false; //for new command
  624. serial_count = 0; //clear buffer
  625. }
  626. else
  627. {
  628. if(serial_char == ';') comment_mode = true;
  629. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  630. }
  631. }
  632. #endif //SDSUPPORT
  633. }
  634. float code_value()
  635. {
  636. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  637. }
  638. long code_value_long()
  639. {
  640. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  641. }
  642. bool code_seen(char code)
  643. {
  644. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  645. return (strchr_pointer != NULL); //Return True if a character was found
  646. }
  647. #define DEFINE_PGM_READ_ANY(type, reader) \
  648. static inline type pgm_read_any(const type *p) \
  649. { return pgm_read_##reader##_near(p); }
  650. DEFINE_PGM_READ_ANY(float, float);
  651. DEFINE_PGM_READ_ANY(signed char, byte);
  652. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  653. static const PROGMEM type array##_P[3] = \
  654. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  655. static inline type array(int axis) \
  656. { return pgm_read_any(&array##_P[axis]); }
  657. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  658. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  659. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  660. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  661. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  662. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  663. #ifdef DUAL_X_CARRIAGE
  664. #if EXTRUDERS == 1 || defined(COREXY) \
  665. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  666. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  667. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  668. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  669. #endif
  670. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  671. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  672. #endif
  673. #define DXC_FULL_CONTROL_MODE 0
  674. #define DXC_AUTO_PARK_MODE 1
  675. #define DXC_DUPLICATION_MODE 2
  676. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  677. static float x_home_pos(int extruder) {
  678. if (extruder == 0)
  679. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  680. else
  681. // In dual carriage mode the extruder offset provides an override of the
  682. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  683. // This allow soft recalibration of the second extruder offset position without firmware reflash
  684. // (through the M218 command).
  685. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  686. }
  687. static int x_home_dir(int extruder) {
  688. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  689. }
  690. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  691. static bool active_extruder_parked = false; // used in mode 1 & 2
  692. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  693. static unsigned long delayed_move_time = 0; // used in mode 1
  694. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  695. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  696. bool extruder_duplication_enabled = false; // used in mode 2
  697. #endif //DUAL_X_CARRIAGE
  698. static void axis_is_at_home(int axis) {
  699. #ifdef DUAL_X_CARRIAGE
  700. if (axis == X_AXIS) {
  701. if (active_extruder != 0) {
  702. current_position[X_AXIS] = x_home_pos(active_extruder);
  703. min_pos[X_AXIS] = X2_MIN_POS;
  704. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  705. return;
  706. }
  707. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  708. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  709. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  710. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  711. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  712. return;
  713. }
  714. }
  715. #endif
  716. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  717. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  718. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  719. }
  720. #ifdef ENABLE_AUTO_BED_LEVELING
  721. #ifdef ACCURATE_BED_LEVELING
  722. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  723. {
  724. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  725. planeNormal.debug("planeNormal");
  726. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  727. //bedLevel.debug("bedLevel");
  728. //plan_bed_level_matrix.debug("bed level before");
  729. //vector_3 uncorrected_position = plan_get_position_mm();
  730. //uncorrected_position.debug("position before");
  731. vector_3 corrected_position = plan_get_position();
  732. // corrected_position.debug("position after");
  733. current_position[X_AXIS] = corrected_position.x;
  734. current_position[Y_AXIS] = corrected_position.y;
  735. current_position[Z_AXIS] = corrected_position.z;
  736. // but the bed at 0 so we don't go below it.
  737. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  739. }
  740. #else
  741. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  742. plan_bed_level_matrix.set_to_identity();
  743. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  744. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  745. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  746. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  747. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  748. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  749. //planeNormal.debug("planeNormal");
  750. //yPositive.debug("yPositive");
  751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  752. //bedLevel.debug("bedLevel");
  753. //plan_bed_level_matrix.debug("bed level before");
  754. //vector_3 uncorrected_position = plan_get_position_mm();
  755. //uncorrected_position.debug("position before");
  756. // and set our bed level equation to do the right thing
  757. //plan_bed_level_matrix.debug("bed level after");
  758. vector_3 corrected_position = plan_get_position();
  759. //corrected_position.debug("position after");
  760. current_position[X_AXIS] = corrected_position.x;
  761. current_position[Y_AXIS] = corrected_position.y;
  762. current_position[Z_AXIS] = corrected_position.z;
  763. // but the bed at 0 so we don't go below it.
  764. current_position[Z_AXIS] = zprobe_zoffset;
  765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  766. }
  767. #endif // ACCURATE_BED_LEVELING
  768. static void run_z_probe() {
  769. plan_bed_level_matrix.set_to_identity();
  770. feedrate = homing_feedrate[Z_AXIS];
  771. // move down until you find the bed
  772. float zPosition = -10;
  773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  774. st_synchronize();
  775. // we have to let the planner know where we are right now as it is not where we said to go.
  776. zPosition = st_get_position_mm(Z_AXIS);
  777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  778. // move up the retract distance
  779. zPosition += home_retract_mm(Z_AXIS);
  780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  781. st_synchronize();
  782. // move back down slowly to find bed
  783. feedrate = homing_feedrate[Z_AXIS]/4;
  784. zPosition -= home_retract_mm(Z_AXIS) * 2;
  785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  786. st_synchronize();
  787. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  788. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  789. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  790. }
  791. static void do_blocking_move_to(float x, float y, float z) {
  792. float oldFeedRate = feedrate;
  793. feedrate = XY_TRAVEL_SPEED;
  794. current_position[X_AXIS] = x;
  795. current_position[Y_AXIS] = y;
  796. current_position[Z_AXIS] = z;
  797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  798. st_synchronize();
  799. feedrate = oldFeedRate;
  800. }
  801. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  802. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  803. }
  804. static void setup_for_endstop_move() {
  805. saved_feedrate = feedrate;
  806. saved_feedmultiply = feedmultiply;
  807. feedmultiply = 100;
  808. previous_millis_cmd = millis();
  809. enable_endstops(true);
  810. }
  811. static void clean_up_after_endstop_move() {
  812. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  813. enable_endstops(false);
  814. #endif
  815. feedrate = saved_feedrate;
  816. feedmultiply = saved_feedmultiply;
  817. previous_millis_cmd = millis();
  818. }
  819. static void engage_z_probe() {
  820. // Engage Z Servo endstop if enabled
  821. #ifdef SERVO_ENDSTOPS
  822. if (servo_endstops[Z_AXIS] > -1) {
  823. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  824. servos[servo_endstops[Z_AXIS]].attach(0);
  825. #endif
  826. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  827. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  828. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  829. servos[servo_endstops[Z_AXIS]].detach();
  830. #endif
  831. }
  832. #endif
  833. }
  834. static void retract_z_probe() {
  835. // Retract Z Servo endstop if enabled
  836. #ifdef SERVO_ENDSTOPS
  837. if (servo_endstops[Z_AXIS] > -1) {
  838. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  839. servos[servo_endstops[Z_AXIS]].attach(0);
  840. #endif
  841. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  842. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  843. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  844. servos[servo_endstops[Z_AXIS]].detach();
  845. #endif
  846. }
  847. #endif
  848. }
  849. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  850. static void homeaxis(int axis) {
  851. #define HOMEAXIS_DO(LETTER) \
  852. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  853. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  854. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  855. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  856. 0) {
  857. int axis_home_dir = home_dir(axis);
  858. #ifdef DUAL_X_CARRIAGE
  859. if (axis == X_AXIS)
  860. axis_home_dir = x_home_dir(active_extruder);
  861. #endif
  862. current_position[axis] = 0;
  863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  864. // Engage Servo endstop if enabled
  865. #ifdef SERVO_ENDSTOPS
  866. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  867. if (axis==Z_AXIS) {
  868. engage_z_probe();
  869. }
  870. else
  871. #endif
  872. if (servo_endstops[axis] > -1) {
  873. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  874. }
  875. #endif
  876. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  877. feedrate = homing_feedrate[axis];
  878. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  879. st_synchronize();
  880. current_position[axis] = 0;
  881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  882. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  883. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  884. st_synchronize();
  885. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  886. #ifdef DELTA
  887. feedrate = homing_feedrate[axis]/10;
  888. #else
  889. feedrate = homing_feedrate[axis]/2 ;
  890. #endif
  891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  892. st_synchronize();
  893. #ifdef DELTA
  894. // retrace by the amount specified in endstop_adj
  895. if (endstop_adj[axis] * axis_home_dir < 0) {
  896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  897. destination[axis] = endstop_adj[axis];
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. st_synchronize();
  900. }
  901. #endif
  902. axis_is_at_home(axis);
  903. destination[axis] = current_position[axis];
  904. feedrate = 0.0;
  905. endstops_hit_on_purpose();
  906. axis_known_position[axis] = true;
  907. // Retract Servo endstop if enabled
  908. #ifdef SERVO_ENDSTOPS
  909. if (servo_endstops[axis] > -1) {
  910. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  911. }
  912. #endif
  913. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  914. if (axis==Z_AXIS) retract_z_probe();
  915. #endif
  916. }
  917. }
  918. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  919. +void refresh_cmd_timeout(void)
  920. {
  921. previous_millis_cmd = millis();
  922. }
  923. void process_commands()
  924. {
  925. unsigned long codenum; //throw away variable
  926. char *starpos = NULL;
  927. #ifdef ENABLE_AUTO_BED_LEVELING
  928. float x_tmp, y_tmp, z_tmp, real_z;
  929. #endif
  930. if(code_seen('G'))
  931. {
  932. switch((int)code_value())
  933. {
  934. case 0: // G0 -> G1
  935. case 1: // G1
  936. if(Stopped == false) {
  937. get_coordinates(); // For X Y Z E F
  938. prepare_move();
  939. //ClearToSend();
  940. return;
  941. }
  942. //break;
  943. case 2: // G2 - CW ARC
  944. if(Stopped == false) {
  945. get_arc_coordinates();
  946. prepare_arc_move(true);
  947. return;
  948. }
  949. case 3: // G3 - CCW ARC
  950. if(Stopped == false) {
  951. get_arc_coordinates();
  952. prepare_arc_move(false);
  953. return;
  954. }
  955. case 4: // G4 dwell
  956. LCD_MESSAGEPGM(MSG_DWELL);
  957. codenum = 0;
  958. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  959. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  960. st_synchronize();
  961. codenum += millis(); // keep track of when we started waiting
  962. previous_millis_cmd = millis();
  963. while(millis() < codenum ){
  964. manage_heater();
  965. manage_inactivity();
  966. lcd_update();
  967. }
  968. break;
  969. #ifdef FWRETRACT
  970. case 10: // G10 retract
  971. if(!retracted)
  972. {
  973. destination[X_AXIS]=current_position[X_AXIS];
  974. destination[Y_AXIS]=current_position[Y_AXIS];
  975. destination[Z_AXIS]=current_position[Z_AXIS];
  976. current_position[Z_AXIS]+=-retract_zlift;
  977. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  978. feedrate=retract_feedrate;
  979. retracted=true;
  980. prepare_move();
  981. }
  982. break;
  983. case 11: // G11 retract_recover
  984. if(retracted)
  985. {
  986. destination[X_AXIS]=current_position[X_AXIS];
  987. destination[Y_AXIS]=current_position[Y_AXIS];
  988. destination[Z_AXIS]=current_position[Z_AXIS];
  989. current_position[Z_AXIS]+=retract_zlift;
  990. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  991. feedrate=retract_recover_feedrate;
  992. retracted=false;
  993. prepare_move();
  994. }
  995. break;
  996. #endif //FWRETRACT
  997. case 28: //G28 Home all Axis one at a time
  998. #ifdef ENABLE_AUTO_BED_LEVELING
  999. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1000. #endif //ENABLE_AUTO_BED_LEVELING
  1001. saved_feedrate = feedrate;
  1002. saved_feedmultiply = feedmultiply;
  1003. feedmultiply = 100;
  1004. previous_millis_cmd = millis();
  1005. enable_endstops(true);
  1006. for(int8_t i=0; i < NUM_AXIS; i++) {
  1007. destination[i] = current_position[i];
  1008. }
  1009. feedrate = 0.0;
  1010. #ifdef DELTA
  1011. // A delta can only safely home all axis at the same time
  1012. // all axis have to home at the same time
  1013. // Move all carriages up together until the first endstop is hit.
  1014. current_position[X_AXIS] = 0;
  1015. current_position[Y_AXIS] = 0;
  1016. current_position[Z_AXIS] = 0;
  1017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1018. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1019. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1020. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1021. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1022. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1023. st_synchronize();
  1024. endstops_hit_on_purpose();
  1025. current_position[X_AXIS] = destination[X_AXIS];
  1026. current_position[Y_AXIS] = destination[Y_AXIS];
  1027. current_position[Z_AXIS] = destination[Z_AXIS];
  1028. // take care of back off and rehome now we are all at the top
  1029. HOMEAXIS(X);
  1030. HOMEAXIS(Y);
  1031. HOMEAXIS(Z);
  1032. calculate_delta(current_position);
  1033. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1034. #else // NOT DELTA
  1035. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1036. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1037. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1038. HOMEAXIS(Z);
  1039. }
  1040. #endif
  1041. #ifdef QUICK_HOME
  1042. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1043. {
  1044. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1045. #ifndef DUAL_X_CARRIAGE
  1046. int x_axis_home_dir = home_dir(X_AXIS);
  1047. #else
  1048. int x_axis_home_dir = x_home_dir(active_extruder);
  1049. extruder_duplication_enabled = false;
  1050. #endif
  1051. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1052. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1053. feedrate = homing_feedrate[X_AXIS];
  1054. if(homing_feedrate[Y_AXIS]<feedrate)
  1055. feedrate =homing_feedrate[Y_AXIS];
  1056. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1057. st_synchronize();
  1058. axis_is_at_home(X_AXIS);
  1059. axis_is_at_home(Y_AXIS);
  1060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1061. destination[X_AXIS] = current_position[X_AXIS];
  1062. destination[Y_AXIS] = current_position[Y_AXIS];
  1063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1064. feedrate = 0.0;
  1065. st_synchronize();
  1066. endstops_hit_on_purpose();
  1067. current_position[X_AXIS] = destination[X_AXIS];
  1068. current_position[Y_AXIS] = destination[Y_AXIS];
  1069. current_position[Z_AXIS] = destination[Z_AXIS];
  1070. }
  1071. #endif
  1072. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1073. {
  1074. #ifdef DUAL_X_CARRIAGE
  1075. int tmp_extruder = active_extruder;
  1076. extruder_duplication_enabled = false;
  1077. active_extruder = !active_extruder;
  1078. HOMEAXIS(X);
  1079. inactive_extruder_x_pos = current_position[X_AXIS];
  1080. active_extruder = tmp_extruder;
  1081. HOMEAXIS(X);
  1082. // reset state used by the different modes
  1083. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1084. delayed_move_time = 0;
  1085. active_extruder_parked = true;
  1086. #else
  1087. HOMEAXIS(X);
  1088. #endif
  1089. }
  1090. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1091. HOMEAXIS(Y);
  1092. }
  1093. if(code_seen(axis_codes[X_AXIS]))
  1094. {
  1095. if(code_value_long() != 0) {
  1096. current_position[X_AXIS]=code_value()+add_homeing[0];
  1097. }
  1098. }
  1099. if(code_seen(axis_codes[Y_AXIS])) {
  1100. if(code_value_long() != 0) {
  1101. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1102. }
  1103. }
  1104. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1105. #ifndef Z_SAFE_HOMING
  1106. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1107. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1108. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1109. feedrate = max_feedrate[Z_AXIS];
  1110. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1111. st_synchronize();
  1112. #endif
  1113. HOMEAXIS(Z);
  1114. }
  1115. #else // Z Safe mode activated.
  1116. if(home_all_axis) {
  1117. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1118. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1119. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1120. feedrate = XY_TRAVEL_SPEED;
  1121. current_position[Z_AXIS] = 0;
  1122. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1123. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1124. st_synchronize();
  1125. current_position[X_AXIS] = destination[X_AXIS];
  1126. current_position[Y_AXIS] = destination[Y_AXIS];
  1127. HOMEAXIS(Z);
  1128. }
  1129. // Let's see if X and Y are homed and probe is inside bed area.
  1130. if(code_seen(axis_codes[Z_AXIS])) {
  1131. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1132. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1133. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1134. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1135. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1136. current_position[Z_AXIS] = 0;
  1137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1138. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1139. feedrate = max_feedrate[Z_AXIS];
  1140. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1141. st_synchronize();
  1142. HOMEAXIS(Z);
  1143. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1144. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1145. SERIAL_ECHO_START;
  1146. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1147. } else {
  1148. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1149. SERIAL_ECHO_START;
  1150. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1151. }
  1152. }
  1153. #endif
  1154. #endif
  1155. if(code_seen(axis_codes[Z_AXIS])) {
  1156. if(code_value_long() != 0) {
  1157. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1158. }
  1159. }
  1160. #ifdef ENABLE_AUTO_BED_LEVELING
  1161. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1162. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1163. }
  1164. #endif
  1165. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1166. #endif // else DELTA
  1167. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1168. enable_endstops(false);
  1169. #endif
  1170. feedrate = saved_feedrate;
  1171. feedmultiply = saved_feedmultiply;
  1172. previous_millis_cmd = millis();
  1173. endstops_hit_on_purpose();
  1174. break;
  1175. #ifdef ENABLE_AUTO_BED_LEVELING
  1176. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1177. {
  1178. #if Z_MIN_PIN == -1
  1179. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1180. #endif
  1181. st_synchronize();
  1182. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1183. //vector_3 corrected_position = plan_get_position_mm();
  1184. //corrected_position.debug("position before G29");
  1185. plan_bed_level_matrix.set_to_identity();
  1186. vector_3 uncorrected_position = plan_get_position();
  1187. //uncorrected_position.debug("position durring G29");
  1188. current_position[X_AXIS] = uncorrected_position.x;
  1189. current_position[Y_AXIS] = uncorrected_position.y;
  1190. current_position[Z_AXIS] = uncorrected_position.z;
  1191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1192. setup_for_endstop_move();
  1193. feedrate = homing_feedrate[Z_AXIS];
  1194. #ifdef ACCURATE_BED_LEVELING
  1195. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1196. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1197. // solve the plane equation ax + by + d = z
  1198. // A is the matrix with rows [x y 1] for all the probed points
  1199. // B is the vector of the Z positions
  1200. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1201. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1202. // "A" matrix of the linear system of equations
  1203. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1204. // "B" vector of Z points
  1205. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1206. int probePointCounter = 0;
  1207. bool zig = true;
  1208. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1209. {
  1210. int xProbe, xInc;
  1211. if (zig)
  1212. {
  1213. xProbe = LEFT_PROBE_BED_POSITION;
  1214. //xEnd = RIGHT_PROBE_BED_POSITION;
  1215. xInc = xGridSpacing;
  1216. zig = false;
  1217. } else // zag
  1218. {
  1219. xProbe = RIGHT_PROBE_BED_POSITION;
  1220. //xEnd = LEFT_PROBE_BED_POSITION;
  1221. xInc = -xGridSpacing;
  1222. zig = true;
  1223. }
  1224. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1225. {
  1226. if (probePointCounter == 0)
  1227. {
  1228. // raise before probing
  1229. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1230. } else
  1231. {
  1232. // raise extruder
  1233. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1234. }
  1235. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1236. engage_z_probe(); // Engage Z Servo endstop if available
  1237. run_z_probe();
  1238. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1239. retract_z_probe();
  1240. SERIAL_PROTOCOLPGM("Bed x: ");
  1241. SERIAL_PROTOCOL(xProbe);
  1242. SERIAL_PROTOCOLPGM(" y: ");
  1243. SERIAL_PROTOCOL(yProbe);
  1244. SERIAL_PROTOCOLPGM(" z: ");
  1245. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1246. SERIAL_PROTOCOLPGM("\n");
  1247. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1248. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1249. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1250. probePointCounter++;
  1251. xProbe += xInc;
  1252. }
  1253. }
  1254. clean_up_after_endstop_move();
  1255. // solve lsq problem
  1256. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1257. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1258. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1259. SERIAL_PROTOCOLPGM(" b: ");
  1260. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1261. SERIAL_PROTOCOLPGM(" d: ");
  1262. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1263. set_bed_level_equation_lsq(plane_equation_coefficients);
  1264. free(plane_equation_coefficients);
  1265. #else // ACCURATE_BED_LEVELING not defined
  1266. // prob 1
  1267. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1268. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1269. engage_z_probe(); // Engage Z Servo endstop if available
  1270. run_z_probe();
  1271. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1272. retract_z_probe();
  1273. SERIAL_PROTOCOLPGM("Bed x: ");
  1274. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1275. SERIAL_PROTOCOLPGM(" y: ");
  1276. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1277. SERIAL_PROTOCOLPGM(" z: ");
  1278. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1279. SERIAL_PROTOCOLPGM("\n");
  1280. // prob 2
  1281. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1282. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1283. engage_z_probe(); // Engage Z Servo endstop if available
  1284. run_z_probe();
  1285. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1286. retract_z_probe();
  1287. SERIAL_PROTOCOLPGM("Bed x: ");
  1288. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1289. SERIAL_PROTOCOLPGM(" y: ");
  1290. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1291. SERIAL_PROTOCOLPGM(" z: ");
  1292. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1293. SERIAL_PROTOCOLPGM("\n");
  1294. // prob 3
  1295. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1296. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1297. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1298. engage_z_probe(); // Engage Z Servo endstop if available
  1299. run_z_probe();
  1300. float z_at_xRight_yFront = current_position[Z_AXIS];
  1301. retract_z_probe(); // Retract Z Servo endstop if available
  1302. SERIAL_PROTOCOLPGM("Bed x: ");
  1303. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1304. SERIAL_PROTOCOLPGM(" y: ");
  1305. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1306. SERIAL_PROTOCOLPGM(" z: ");
  1307. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1308. SERIAL_PROTOCOLPGM("\n");
  1309. clean_up_after_endstop_move();
  1310. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1311. #endif // ACCURATE_BED_LEVELING
  1312. st_synchronize();
  1313. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1314. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1315. // When the bed is uneven, this height must be corrected.
  1316. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1317. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1318. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1319. z_tmp = current_position[Z_AXIS];
  1320. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1321. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1322. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1323. }
  1324. break;
  1325. case 30: // G30 Single Z Probe
  1326. {
  1327. engage_z_probe(); // Engage Z Servo endstop if available
  1328. st_synchronize();
  1329. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1330. setup_for_endstop_move();
  1331. feedrate = homing_feedrate[Z_AXIS];
  1332. run_z_probe();
  1333. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1334. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1335. SERIAL_PROTOCOLPGM(" Y: ");
  1336. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1337. SERIAL_PROTOCOLPGM(" Z: ");
  1338. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1339. SERIAL_PROTOCOLPGM("\n");
  1340. clean_up_after_endstop_move();
  1341. retract_z_probe(); // Retract Z Servo endstop if available
  1342. }
  1343. break;
  1344. #endif // ENABLE_AUTO_BED_LEVELING
  1345. case 90: // G90
  1346. relative_mode = false;
  1347. break;
  1348. case 91: // G91
  1349. relative_mode = true;
  1350. break;
  1351. case 92: // G92
  1352. if(!code_seen(axis_codes[E_AXIS]))
  1353. st_synchronize();
  1354. for(int8_t i=0; i < NUM_AXIS; i++) {
  1355. if(code_seen(axis_codes[i])) {
  1356. if(i == E_AXIS) {
  1357. current_position[i] = code_value();
  1358. plan_set_e_position(current_position[E_AXIS]);
  1359. }
  1360. else {
  1361. current_position[i] = code_value()+add_homeing[i];
  1362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1363. }
  1364. }
  1365. }
  1366. break;
  1367. }
  1368. }
  1369. else if(code_seen('M'))
  1370. {
  1371. switch( (int)code_value() )
  1372. {
  1373. #ifdef ULTIPANEL
  1374. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1375. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1376. {
  1377. LCD_MESSAGEPGM(MSG_USERWAIT);
  1378. codenum = 0;
  1379. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1380. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1381. st_synchronize();
  1382. previous_millis_cmd = millis();
  1383. if (codenum > 0){
  1384. codenum += millis(); // keep track of when we started waiting
  1385. while(millis() < codenum && !lcd_clicked()){
  1386. manage_heater();
  1387. manage_inactivity();
  1388. lcd_update();
  1389. }
  1390. }else{
  1391. while(!lcd_clicked()){
  1392. manage_heater();
  1393. manage_inactivity();
  1394. lcd_update();
  1395. }
  1396. }
  1397. LCD_MESSAGEPGM(MSG_RESUMING);
  1398. }
  1399. break;
  1400. #endif
  1401. case 17:
  1402. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1403. enable_x();
  1404. enable_y();
  1405. enable_z();
  1406. enable_e0();
  1407. enable_e1();
  1408. enable_e2();
  1409. break;
  1410. #ifdef SDSUPPORT
  1411. case 20: // M20 - list SD card
  1412. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1413. card.ls();
  1414. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1415. break;
  1416. case 21: // M21 - init SD card
  1417. card.initsd();
  1418. break;
  1419. case 22: //M22 - release SD card
  1420. card.release();
  1421. break;
  1422. case 23: //M23 - Select file
  1423. starpos = (strchr(strchr_pointer + 4,'*'));
  1424. if(starpos!=NULL)
  1425. *(starpos-1)='\0';
  1426. card.openFile(strchr_pointer + 4,true);
  1427. break;
  1428. case 24: //M24 - Start SD print
  1429. card.startFileprint();
  1430. starttime=millis();
  1431. break;
  1432. case 25: //M25 - Pause SD print
  1433. card.pauseSDPrint();
  1434. break;
  1435. case 26: //M26 - Set SD index
  1436. if(card.cardOK && code_seen('S')) {
  1437. card.setIndex(code_value_long());
  1438. }
  1439. break;
  1440. case 27: //M27 - Get SD status
  1441. card.getStatus();
  1442. break;
  1443. case 28: //M28 - Start SD write
  1444. starpos = (strchr(strchr_pointer + 4,'*'));
  1445. if(starpos != NULL){
  1446. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1447. strchr_pointer = strchr(npos,' ') + 1;
  1448. *(starpos-1) = '\0';
  1449. }
  1450. card.openFile(strchr_pointer+4,false);
  1451. break;
  1452. case 29: //M29 - Stop SD write
  1453. //processed in write to file routine above
  1454. //card,saving = false;
  1455. break;
  1456. case 30: //M30 <filename> Delete File
  1457. if (card.cardOK){
  1458. card.closefile();
  1459. starpos = (strchr(strchr_pointer + 4,'*'));
  1460. if(starpos != NULL){
  1461. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1462. strchr_pointer = strchr(npos,' ') + 1;
  1463. *(starpos-1) = '\0';
  1464. }
  1465. card.removeFile(strchr_pointer + 4);
  1466. }
  1467. break;
  1468. case 32: //M32 - Select file and start SD print
  1469. {
  1470. if(card.sdprinting) {
  1471. st_synchronize();
  1472. }
  1473. starpos = (strchr(strchr_pointer + 4,'*'));
  1474. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1475. if(namestartpos==NULL)
  1476. {
  1477. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1478. }
  1479. else
  1480. namestartpos++; //to skip the '!'
  1481. if(starpos!=NULL)
  1482. *(starpos-1)='\0';
  1483. bool call_procedure=(code_seen('P'));
  1484. if(strchr_pointer>namestartpos)
  1485. call_procedure=false; //false alert, 'P' found within filename
  1486. if( card.cardOK )
  1487. {
  1488. card.openFile(namestartpos,true,!call_procedure);
  1489. if(code_seen('S'))
  1490. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1491. card.setIndex(code_value_long());
  1492. card.startFileprint();
  1493. if(!call_procedure)
  1494. starttime=millis(); //procedure calls count as normal print time.
  1495. }
  1496. } break;
  1497. case 928: //M928 - Start SD write
  1498. starpos = (strchr(strchr_pointer + 5,'*'));
  1499. if(starpos != NULL){
  1500. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1501. strchr_pointer = strchr(npos,' ') + 1;
  1502. *(starpos-1) = '\0';
  1503. }
  1504. card.openLogFile(strchr_pointer+5);
  1505. break;
  1506. #endif //SDSUPPORT
  1507. case 31: //M31 take time since the start of the SD print or an M109 command
  1508. {
  1509. stoptime=millis();
  1510. char time[30];
  1511. unsigned long t=(stoptime-starttime)/1000;
  1512. int sec,min;
  1513. min=t/60;
  1514. sec=t%60;
  1515. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1516. SERIAL_ECHO_START;
  1517. SERIAL_ECHOLN(time);
  1518. lcd_setstatus(time);
  1519. autotempShutdown();
  1520. }
  1521. break;
  1522. case 42: //M42 -Change pin status via gcode
  1523. if (code_seen('S'))
  1524. {
  1525. int pin_status = code_value();
  1526. int pin_number = LED_PIN;
  1527. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1528. pin_number = code_value();
  1529. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1530. {
  1531. if (sensitive_pins[i] == pin_number)
  1532. {
  1533. pin_number = -1;
  1534. break;
  1535. }
  1536. }
  1537. #if defined(FAN_PIN) && FAN_PIN > -1
  1538. if (pin_number == FAN_PIN)
  1539. fanSpeed = pin_status;
  1540. #endif
  1541. if (pin_number > -1)
  1542. {
  1543. pinMode(pin_number, OUTPUT);
  1544. digitalWrite(pin_number, pin_status);
  1545. analogWrite(pin_number, pin_status);
  1546. }
  1547. }
  1548. break;
  1549. case 104: // M104
  1550. if(setTargetedHotend(104)){
  1551. break;
  1552. }
  1553. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1554. #ifdef DUAL_X_CARRIAGE
  1555. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1556. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1557. #endif
  1558. setWatch();
  1559. break;
  1560. case 140: // M140 set bed temp
  1561. if (code_seen('S')) setTargetBed(code_value());
  1562. break;
  1563. case 105 : // M105
  1564. if(setTargetedHotend(105)){
  1565. break;
  1566. }
  1567. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1568. SERIAL_PROTOCOLPGM("ok T:");
  1569. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1570. SERIAL_PROTOCOLPGM(" /");
  1571. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1572. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1573. SERIAL_PROTOCOLPGM(" B:");
  1574. SERIAL_PROTOCOL_F(degBed(),1);
  1575. SERIAL_PROTOCOLPGM(" /");
  1576. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1577. #endif //TEMP_BED_PIN
  1578. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1579. SERIAL_PROTOCOLPGM(" T");
  1580. SERIAL_PROTOCOL(cur_extruder);
  1581. SERIAL_PROTOCOLPGM(":");
  1582. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1583. SERIAL_PROTOCOLPGM(" /");
  1584. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1585. }
  1586. #else
  1587. SERIAL_ERROR_START;
  1588. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1589. #endif
  1590. SERIAL_PROTOCOLPGM(" @:");
  1591. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1592. SERIAL_PROTOCOLPGM(" B@:");
  1593. SERIAL_PROTOCOL(getHeaterPower(-1));
  1594. #ifdef SHOW_TEMP_ADC_VALUES
  1595. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1596. SERIAL_PROTOCOLPGM(" ADC B:");
  1597. SERIAL_PROTOCOL_F(degBed(),1);
  1598. SERIAL_PROTOCOLPGM("C->");
  1599. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1600. #endif
  1601. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1602. SERIAL_PROTOCOLPGM(" T");
  1603. SERIAL_PROTOCOL(cur_extruder);
  1604. SERIAL_PROTOCOLPGM(":");
  1605. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1606. SERIAL_PROTOCOLPGM("C->");
  1607. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1608. }
  1609. #endif
  1610. SERIAL_PROTOCOLLN("");
  1611. return;
  1612. break;
  1613. case 109:
  1614. {// M109 - Wait for extruder heater to reach target.
  1615. if(setTargetedHotend(109)){
  1616. break;
  1617. }
  1618. LCD_MESSAGEPGM(MSG_HEATING);
  1619. #ifdef AUTOTEMP
  1620. autotemp_enabled=false;
  1621. #endif
  1622. if (code_seen('S')) {
  1623. setTargetHotend(code_value(), tmp_extruder);
  1624. #ifdef DUAL_X_CARRIAGE
  1625. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1626. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1627. #endif
  1628. CooldownNoWait = true;
  1629. } else if (code_seen('R')) {
  1630. setTargetHotend(code_value(), tmp_extruder);
  1631. #ifdef DUAL_X_CARRIAGE
  1632. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1633. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1634. #endif
  1635. CooldownNoWait = false;
  1636. }
  1637. #ifdef AUTOTEMP
  1638. if (code_seen('S')) autotemp_min=code_value();
  1639. if (code_seen('B')) autotemp_max=code_value();
  1640. if (code_seen('F'))
  1641. {
  1642. autotemp_factor=code_value();
  1643. autotemp_enabled=true;
  1644. }
  1645. #endif
  1646. setWatch();
  1647. codenum = millis();
  1648. /* See if we are heating up or cooling down */
  1649. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1650. #ifdef TEMP_RESIDENCY_TIME
  1651. long residencyStart;
  1652. residencyStart = -1;
  1653. /* continue to loop until we have reached the target temp
  1654. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1655. while((residencyStart == -1) ||
  1656. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1657. #else
  1658. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1659. #endif //TEMP_RESIDENCY_TIME
  1660. if( (millis() - codenum) > 1000UL )
  1661. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1662. SERIAL_PROTOCOLPGM("T:");
  1663. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1664. SERIAL_PROTOCOLPGM(" E:");
  1665. SERIAL_PROTOCOL((int)tmp_extruder);
  1666. #ifdef TEMP_RESIDENCY_TIME
  1667. SERIAL_PROTOCOLPGM(" W:");
  1668. if(residencyStart > -1)
  1669. {
  1670. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1671. SERIAL_PROTOCOLLN( codenum );
  1672. }
  1673. else
  1674. {
  1675. SERIAL_PROTOCOLLN( "?" );
  1676. }
  1677. #else
  1678. SERIAL_PROTOCOLLN("");
  1679. #endif
  1680. codenum = millis();
  1681. }
  1682. manage_heater();
  1683. manage_inactivity();
  1684. lcd_update();
  1685. #ifdef TEMP_RESIDENCY_TIME
  1686. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1687. or when current temp falls outside the hysteresis after target temp was reached */
  1688. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1689. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1690. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1691. {
  1692. residencyStart = millis();
  1693. }
  1694. #endif //TEMP_RESIDENCY_TIME
  1695. }
  1696. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1697. starttime=millis();
  1698. previous_millis_cmd = millis();
  1699. }
  1700. break;
  1701. case 190: // M190 - Wait for bed heater to reach target.
  1702. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1703. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1704. if (code_seen('S')) {
  1705. setTargetBed(code_value());
  1706. CooldownNoWait = true;
  1707. } else if (code_seen('R')) {
  1708. setTargetBed(code_value());
  1709. CooldownNoWait = false;
  1710. }
  1711. codenum = millis();
  1712. target_direction = isHeatingBed(); // true if heating, false if cooling
  1713. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1714. {
  1715. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1716. {
  1717. float tt=degHotend(active_extruder);
  1718. SERIAL_PROTOCOLPGM("T:");
  1719. SERIAL_PROTOCOL(tt);
  1720. SERIAL_PROTOCOLPGM(" E:");
  1721. SERIAL_PROTOCOL((int)active_extruder);
  1722. SERIAL_PROTOCOLPGM(" B:");
  1723. SERIAL_PROTOCOL_F(degBed(),1);
  1724. SERIAL_PROTOCOLLN("");
  1725. codenum = millis();
  1726. }
  1727. manage_heater();
  1728. manage_inactivity();
  1729. lcd_update();
  1730. }
  1731. LCD_MESSAGEPGM(MSG_BED_DONE);
  1732. previous_millis_cmd = millis();
  1733. #endif
  1734. break;
  1735. #if defined(FAN_PIN) && FAN_PIN > -1
  1736. case 106: //M106 Fan On
  1737. if (code_seen('S')){
  1738. fanSpeed=constrain(code_value(),0,255);
  1739. }
  1740. else {
  1741. fanSpeed=255;
  1742. }
  1743. break;
  1744. case 107: //M107 Fan Off
  1745. fanSpeed = 0;
  1746. break;
  1747. #endif //FAN_PIN
  1748. #ifdef BARICUDA
  1749. // PWM for HEATER_1_PIN
  1750. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1751. case 126: //M126 valve open
  1752. if (code_seen('S')){
  1753. ValvePressure=constrain(code_value(),0,255);
  1754. }
  1755. else {
  1756. ValvePressure=255;
  1757. }
  1758. break;
  1759. case 127: //M127 valve closed
  1760. ValvePressure = 0;
  1761. break;
  1762. #endif //HEATER_1_PIN
  1763. // PWM for HEATER_2_PIN
  1764. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1765. case 128: //M128 valve open
  1766. if (code_seen('S')){
  1767. EtoPPressure=constrain(code_value(),0,255);
  1768. }
  1769. else {
  1770. EtoPPressure=255;
  1771. }
  1772. break;
  1773. case 129: //M129 valve closed
  1774. EtoPPressure = 0;
  1775. break;
  1776. #endif //HEATER_2_PIN
  1777. #endif
  1778. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1779. case 80: // M80 - Turn on Power Supply
  1780. SET_OUTPUT(PS_ON_PIN); //GND
  1781. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1782. // If you have a switch on suicide pin, this is useful
  1783. // if you want to start another print with suicide feature after
  1784. // a print without suicide...
  1785. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1786. SET_OUTPUT(SUICIDE_PIN);
  1787. WRITE(SUICIDE_PIN, HIGH);
  1788. #endif
  1789. #ifdef ULTIPANEL
  1790. powersupply = true;
  1791. LCD_MESSAGEPGM(WELCOME_MSG);
  1792. lcd_update();
  1793. #endif
  1794. break;
  1795. #endif
  1796. case 81: // M81 - Turn off Power Supply
  1797. disable_heater();
  1798. st_synchronize();
  1799. disable_e0();
  1800. disable_e1();
  1801. disable_e2();
  1802. finishAndDisableSteppers();
  1803. fanSpeed = 0;
  1804. delay(1000); // Wait a little before to switch off
  1805. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1806. st_synchronize();
  1807. suicide();
  1808. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1809. SET_OUTPUT(PS_ON_PIN);
  1810. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1811. #endif
  1812. #ifdef ULTIPANEL
  1813. powersupply = false;
  1814. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1815. lcd_update();
  1816. #endif
  1817. break;
  1818. case 82:
  1819. axis_relative_modes[3] = false;
  1820. break;
  1821. case 83:
  1822. axis_relative_modes[3] = true;
  1823. break;
  1824. case 18: //compatibility
  1825. case 84: // M84
  1826. if(code_seen('S')){
  1827. stepper_inactive_time = code_value() * 1000;
  1828. }
  1829. else
  1830. {
  1831. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1832. if(all_axis)
  1833. {
  1834. st_synchronize();
  1835. disable_e0();
  1836. disable_e1();
  1837. disable_e2();
  1838. finishAndDisableSteppers();
  1839. }
  1840. else
  1841. {
  1842. st_synchronize();
  1843. if(code_seen('X')) disable_x();
  1844. if(code_seen('Y')) disable_y();
  1845. if(code_seen('Z')) disable_z();
  1846. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1847. if(code_seen('E')) {
  1848. disable_e0();
  1849. disable_e1();
  1850. disable_e2();
  1851. }
  1852. #endif
  1853. }
  1854. }
  1855. break;
  1856. case 85: // M85
  1857. code_seen('S');
  1858. max_inactive_time = code_value() * 1000;
  1859. break;
  1860. case 92: // M92
  1861. for(int8_t i=0; i < NUM_AXIS; i++)
  1862. {
  1863. if(code_seen(axis_codes[i]))
  1864. {
  1865. if(i == 3) { // E
  1866. float value = code_value();
  1867. if(value < 20.0) {
  1868. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1869. max_e_jerk *= factor;
  1870. max_feedrate[i] *= factor;
  1871. axis_steps_per_sqr_second[i] *= factor;
  1872. }
  1873. axis_steps_per_unit[i] = value;
  1874. }
  1875. else {
  1876. axis_steps_per_unit[i] = code_value();
  1877. }
  1878. }
  1879. }
  1880. break;
  1881. case 115: // M115
  1882. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1883. break;
  1884. case 117: // M117 display message
  1885. starpos = (strchr(strchr_pointer + 5,'*'));
  1886. if(starpos!=NULL)
  1887. *(starpos-1)='\0';
  1888. lcd_setstatus(strchr_pointer + 5);
  1889. break;
  1890. case 114: // M114
  1891. SERIAL_PROTOCOLPGM("X:");
  1892. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1893. SERIAL_PROTOCOLPGM("Y:");
  1894. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1895. SERIAL_PROTOCOLPGM("Z:");
  1896. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1897. SERIAL_PROTOCOLPGM("E:");
  1898. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1899. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1900. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1901. SERIAL_PROTOCOLPGM("Y:");
  1902. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1903. SERIAL_PROTOCOLPGM("Z:");
  1904. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1905. SERIAL_PROTOCOLLN("");
  1906. break;
  1907. case 120: // M120
  1908. enable_endstops(false) ;
  1909. break;
  1910. case 121: // M121
  1911. enable_endstops(true) ;
  1912. break;
  1913. case 119: // M119
  1914. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1915. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1916. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1917. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1918. #endif
  1919. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1920. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1921. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1922. #endif
  1923. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1924. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1925. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1926. #endif
  1927. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1928. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1929. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1930. #endif
  1931. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1932. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1933. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1934. #endif
  1935. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1936. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1937. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1938. #endif
  1939. break;
  1940. //TODO: update for all axis, use for loop
  1941. #ifdef BLINKM
  1942. case 150: // M150
  1943. {
  1944. byte red;
  1945. byte grn;
  1946. byte blu;
  1947. if(code_seen('R')) red = code_value();
  1948. if(code_seen('U')) grn = code_value();
  1949. if(code_seen('B')) blu = code_value();
  1950. SendColors(red,grn,blu);
  1951. }
  1952. break;
  1953. #endif //BLINKM
  1954. case 201: // M201
  1955. for(int8_t i=0; i < NUM_AXIS; i++)
  1956. {
  1957. if(code_seen(axis_codes[i]))
  1958. {
  1959. max_acceleration_units_per_sq_second[i] = code_value();
  1960. }
  1961. }
  1962. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1963. reset_acceleration_rates();
  1964. break;
  1965. #if 0 // Not used for Sprinter/grbl gen6
  1966. case 202: // M202
  1967. for(int8_t i=0; i < NUM_AXIS; i++) {
  1968. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1969. }
  1970. break;
  1971. #endif
  1972. case 203: // M203 max feedrate mm/sec
  1973. for(int8_t i=0; i < NUM_AXIS; i++) {
  1974. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1975. }
  1976. break;
  1977. case 204: // M204 acclereration S normal moves T filmanent only moves
  1978. {
  1979. if(code_seen('S')) acceleration = code_value() ;
  1980. if(code_seen('T')) retract_acceleration = code_value() ;
  1981. }
  1982. break;
  1983. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1984. {
  1985. if(code_seen('S')) minimumfeedrate = code_value();
  1986. if(code_seen('T')) mintravelfeedrate = code_value();
  1987. if(code_seen('B')) minsegmenttime = code_value() ;
  1988. if(code_seen('X')) max_xy_jerk = code_value() ;
  1989. if(code_seen('Z')) max_z_jerk = code_value() ;
  1990. if(code_seen('E')) max_e_jerk = code_value() ;
  1991. }
  1992. break;
  1993. case 206: // M206 additional homeing offset
  1994. for(int8_t i=0; i < 3; i++)
  1995. {
  1996. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1997. }
  1998. break;
  1999. #ifdef DELTA
  2000. case 666: // M666 set delta endstop adjustemnt
  2001. for(int8_t i=0; i < 3; i++)
  2002. {
  2003. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2004. }
  2005. break;
  2006. #endif
  2007. #ifdef FWRETRACT
  2008. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2009. {
  2010. if(code_seen('S'))
  2011. {
  2012. retract_length = code_value() ;
  2013. }
  2014. if(code_seen('F'))
  2015. {
  2016. retract_feedrate = code_value() ;
  2017. }
  2018. if(code_seen('Z'))
  2019. {
  2020. retract_zlift = code_value() ;
  2021. }
  2022. }break;
  2023. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2024. {
  2025. if(code_seen('S'))
  2026. {
  2027. retract_recover_length = code_value() ;
  2028. }
  2029. if(code_seen('F'))
  2030. {
  2031. retract_recover_feedrate = code_value() ;
  2032. }
  2033. }break;
  2034. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2035. {
  2036. if(code_seen('S'))
  2037. {
  2038. int t= code_value() ;
  2039. switch(t)
  2040. {
  2041. case 0: autoretract_enabled=false;retracted=false;break;
  2042. case 1: autoretract_enabled=true;retracted=false;break;
  2043. default:
  2044. SERIAL_ECHO_START;
  2045. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2046. SERIAL_ECHO(cmdbuffer[bufindr]);
  2047. SERIAL_ECHOLNPGM("\"");
  2048. }
  2049. }
  2050. }break;
  2051. #endif // FWRETRACT
  2052. #if EXTRUDERS > 1
  2053. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2054. {
  2055. if(setTargetedHotend(218)){
  2056. break;
  2057. }
  2058. if(code_seen('X'))
  2059. {
  2060. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2061. }
  2062. if(code_seen('Y'))
  2063. {
  2064. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2065. }
  2066. #ifdef DUAL_X_CARRIAGE
  2067. if(code_seen('Z'))
  2068. {
  2069. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2070. }
  2071. #endif
  2072. SERIAL_ECHO_START;
  2073. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2074. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2075. {
  2076. SERIAL_ECHO(" ");
  2077. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2078. SERIAL_ECHO(",");
  2079. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2080. #ifdef DUAL_X_CARRIAGE
  2081. SERIAL_ECHO(",");
  2082. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2083. #endif
  2084. }
  2085. SERIAL_ECHOLN("");
  2086. }break;
  2087. #endif
  2088. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2089. {
  2090. if(code_seen('S'))
  2091. {
  2092. feedmultiply = code_value() ;
  2093. }
  2094. }
  2095. break;
  2096. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2097. {
  2098. if(code_seen('S'))
  2099. {
  2100. extrudemultiply = code_value() ;
  2101. }
  2102. }
  2103. break;
  2104. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2105. {
  2106. if(code_seen('P')){
  2107. int pin_number = code_value(); // pin number
  2108. int pin_state = -1; // required pin state - default is inverted
  2109. if(code_seen('S')) pin_state = code_value(); // required pin state
  2110. if(pin_state >= -1 && pin_state <= 1){
  2111. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2112. {
  2113. if (sensitive_pins[i] == pin_number)
  2114. {
  2115. pin_number = -1;
  2116. break;
  2117. }
  2118. }
  2119. if (pin_number > -1)
  2120. {
  2121. st_synchronize();
  2122. pinMode(pin_number, INPUT);
  2123. int target;
  2124. switch(pin_state){
  2125. case 1:
  2126. target = HIGH;
  2127. break;
  2128. case 0:
  2129. target = LOW;
  2130. break;
  2131. case -1:
  2132. target = !digitalRead(pin_number);
  2133. break;
  2134. }
  2135. while(digitalRead(pin_number) != target){
  2136. manage_heater();
  2137. manage_inactivity();
  2138. lcd_update();
  2139. }
  2140. }
  2141. }
  2142. }
  2143. }
  2144. break;
  2145. #if NUM_SERVOS > 0
  2146. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2147. {
  2148. int servo_index = -1;
  2149. int servo_position = 0;
  2150. if (code_seen('P'))
  2151. servo_index = code_value();
  2152. if (code_seen('S')) {
  2153. servo_position = code_value();
  2154. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2155. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2156. servos[servo_index].attach(0);
  2157. #endif
  2158. servos[servo_index].write(servo_position);
  2159. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2160. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2161. servos[servo_index].detach();
  2162. #endif
  2163. }
  2164. else {
  2165. SERIAL_ECHO_START;
  2166. SERIAL_ECHO("Servo ");
  2167. SERIAL_ECHO(servo_index);
  2168. SERIAL_ECHOLN(" out of range");
  2169. }
  2170. }
  2171. else if (servo_index >= 0) {
  2172. SERIAL_PROTOCOL(MSG_OK);
  2173. SERIAL_PROTOCOL(" Servo ");
  2174. SERIAL_PROTOCOL(servo_index);
  2175. SERIAL_PROTOCOL(": ");
  2176. SERIAL_PROTOCOL(servos[servo_index].read());
  2177. SERIAL_PROTOCOLLN("");
  2178. }
  2179. }
  2180. break;
  2181. #endif // NUM_SERVOS > 0
  2182. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2183. case 300: // M300
  2184. {
  2185. int beepS = code_seen('S') ? code_value() : 110;
  2186. int beepP = code_seen('P') ? code_value() : 1000;
  2187. if (beepS > 0)
  2188. {
  2189. #if BEEPER > 0
  2190. tone(BEEPER, beepS);
  2191. delay(beepP);
  2192. noTone(BEEPER);
  2193. #elif defined(ULTRALCD)
  2194. lcd_buzz(beepS, beepP);
  2195. #endif
  2196. }
  2197. else
  2198. {
  2199. delay(beepP);
  2200. }
  2201. }
  2202. break;
  2203. #endif // M300
  2204. #ifdef PIDTEMP
  2205. case 301: // M301
  2206. {
  2207. if(code_seen('P')) Kp = code_value();
  2208. if(code_seen('I')) Ki = scalePID_i(code_value());
  2209. if(code_seen('D')) Kd = scalePID_d(code_value());
  2210. #ifdef PID_ADD_EXTRUSION_RATE
  2211. if(code_seen('C')) Kc = code_value();
  2212. #endif
  2213. updatePID();
  2214. SERIAL_PROTOCOL(MSG_OK);
  2215. SERIAL_PROTOCOL(" p:");
  2216. SERIAL_PROTOCOL(Kp);
  2217. SERIAL_PROTOCOL(" i:");
  2218. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2219. SERIAL_PROTOCOL(" d:");
  2220. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2221. #ifdef PID_ADD_EXTRUSION_RATE
  2222. SERIAL_PROTOCOL(" c:");
  2223. //Kc does not have scaling applied above, or in resetting defaults
  2224. SERIAL_PROTOCOL(Kc);
  2225. #endif
  2226. SERIAL_PROTOCOLLN("");
  2227. }
  2228. break;
  2229. #endif //PIDTEMP
  2230. #ifdef PIDTEMPBED
  2231. case 304: // M304
  2232. {
  2233. if(code_seen('P')) bedKp = code_value();
  2234. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2235. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2236. updatePID();
  2237. SERIAL_PROTOCOL(MSG_OK);
  2238. SERIAL_PROTOCOL(" p:");
  2239. SERIAL_PROTOCOL(bedKp);
  2240. SERIAL_PROTOCOL(" i:");
  2241. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2242. SERIAL_PROTOCOL(" d:");
  2243. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2244. SERIAL_PROTOCOLLN("");
  2245. }
  2246. break;
  2247. #endif //PIDTEMP
  2248. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2249. {
  2250. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2251. const uint8_t NUM_PULSES=16;
  2252. const float PULSE_LENGTH=0.01524;
  2253. for(int i=0; i < NUM_PULSES; i++) {
  2254. WRITE(PHOTOGRAPH_PIN, HIGH);
  2255. _delay_ms(PULSE_LENGTH);
  2256. WRITE(PHOTOGRAPH_PIN, LOW);
  2257. _delay_ms(PULSE_LENGTH);
  2258. }
  2259. delay(7.33);
  2260. for(int i=0; i < NUM_PULSES; i++) {
  2261. WRITE(PHOTOGRAPH_PIN, HIGH);
  2262. _delay_ms(PULSE_LENGTH);
  2263. WRITE(PHOTOGRAPH_PIN, LOW);
  2264. _delay_ms(PULSE_LENGTH);
  2265. }
  2266. #endif
  2267. }
  2268. break;
  2269. #ifdef DOGLCD
  2270. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2271. {
  2272. if (code_seen('C')) {
  2273. lcd_setcontrast( ((int)code_value())&63 );
  2274. }
  2275. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2276. SERIAL_PROTOCOL(lcd_contrast);
  2277. SERIAL_PROTOCOLLN("");
  2278. }
  2279. break;
  2280. #endif
  2281. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2282. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2283. {
  2284. float temp = .0;
  2285. if (code_seen('S')) temp=code_value();
  2286. set_extrude_min_temp(temp);
  2287. }
  2288. break;
  2289. #endif
  2290. case 303: // M303 PID autotune
  2291. {
  2292. float temp = 150.0;
  2293. int e=0;
  2294. int c=5;
  2295. if (code_seen('E')) e=code_value();
  2296. if (e<0)
  2297. temp=70;
  2298. if (code_seen('S')) temp=code_value();
  2299. if (code_seen('C')) c=code_value();
  2300. PID_autotune(temp, e, c);
  2301. }
  2302. break;
  2303. case 400: // M400 finish all moves
  2304. {
  2305. st_synchronize();
  2306. }
  2307. break;
  2308. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2309. case 401:
  2310. {
  2311. engage_z_probe(); // Engage Z Servo endstop if available
  2312. }
  2313. break;
  2314. case 402:
  2315. {
  2316. retract_z_probe(); // Retract Z Servo endstop if enabled
  2317. }
  2318. break;
  2319. #endif
  2320. case 500: // M500 Store settings in EEPROM
  2321. {
  2322. Config_StoreSettings();
  2323. }
  2324. break;
  2325. case 501: // M501 Read settings from EEPROM
  2326. {
  2327. Config_RetrieveSettings();
  2328. }
  2329. break;
  2330. case 502: // M502 Revert to default settings
  2331. {
  2332. Config_ResetDefault();
  2333. }
  2334. break;
  2335. case 503: // M503 print settings currently in memory
  2336. {
  2337. Config_PrintSettings();
  2338. }
  2339. break;
  2340. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2341. case 540:
  2342. {
  2343. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2344. }
  2345. break;
  2346. #endif
  2347. #ifdef FILAMENTCHANGEENABLE
  2348. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2349. {
  2350. float target[4];
  2351. float lastpos[4];
  2352. target[X_AXIS]=current_position[X_AXIS];
  2353. target[Y_AXIS]=current_position[Y_AXIS];
  2354. target[Z_AXIS]=current_position[Z_AXIS];
  2355. target[E_AXIS]=current_position[E_AXIS];
  2356. lastpos[X_AXIS]=current_position[X_AXIS];
  2357. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2358. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2359. lastpos[E_AXIS]=current_position[E_AXIS];
  2360. //retract by E
  2361. if(code_seen('E'))
  2362. {
  2363. target[E_AXIS]+= code_value();
  2364. }
  2365. else
  2366. {
  2367. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2368. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2369. #endif
  2370. }
  2371. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2372. //lift Z
  2373. if(code_seen('Z'))
  2374. {
  2375. target[Z_AXIS]+= code_value();
  2376. }
  2377. else
  2378. {
  2379. #ifdef FILAMENTCHANGE_ZADD
  2380. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2381. #endif
  2382. }
  2383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2384. //move xy
  2385. if(code_seen('X'))
  2386. {
  2387. target[X_AXIS]+= code_value();
  2388. }
  2389. else
  2390. {
  2391. #ifdef FILAMENTCHANGE_XPOS
  2392. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2393. #endif
  2394. }
  2395. if(code_seen('Y'))
  2396. {
  2397. target[Y_AXIS]= code_value();
  2398. }
  2399. else
  2400. {
  2401. #ifdef FILAMENTCHANGE_YPOS
  2402. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2403. #endif
  2404. }
  2405. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2406. if(code_seen('L'))
  2407. {
  2408. target[E_AXIS]+= code_value();
  2409. }
  2410. else
  2411. {
  2412. #ifdef FILAMENTCHANGE_FINALRETRACT
  2413. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2414. #endif
  2415. }
  2416. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2417. //finish moves
  2418. st_synchronize();
  2419. //disable extruder steppers so filament can be removed
  2420. disable_e0();
  2421. disable_e1();
  2422. disable_e2();
  2423. delay(100);
  2424. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2425. uint8_t cnt=0;
  2426. while(!lcd_clicked()){
  2427. cnt++;
  2428. manage_heater();
  2429. manage_inactivity();
  2430. lcd_update();
  2431. if(cnt==0)
  2432. {
  2433. #if BEEPER > 0
  2434. SET_OUTPUT(BEEPER);
  2435. WRITE(BEEPER,HIGH);
  2436. delay(3);
  2437. WRITE(BEEPER,LOW);
  2438. delay(3);
  2439. #else
  2440. lcd_buzz(1000/6,100);
  2441. #endif
  2442. }
  2443. }
  2444. //return to normal
  2445. if(code_seen('L'))
  2446. {
  2447. target[E_AXIS]+= -code_value();
  2448. }
  2449. else
  2450. {
  2451. #ifdef FILAMENTCHANGE_FINALRETRACT
  2452. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2453. #endif
  2454. }
  2455. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2456. plan_set_e_position(current_position[E_AXIS]);
  2457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2458. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2459. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2460. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2461. }
  2462. break;
  2463. #endif //FILAMENTCHANGEENABLE
  2464. #ifdef DUAL_X_CARRIAGE
  2465. case 605: // Set dual x-carriage movement mode:
  2466. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2467. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2468. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2469. // millimeters x-offset and an optional differential hotend temperature of
  2470. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2471. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2472. //
  2473. // Note: the X axis should be homed after changing dual x-carriage mode.
  2474. {
  2475. st_synchronize();
  2476. if (code_seen('S'))
  2477. dual_x_carriage_mode = code_value();
  2478. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2479. {
  2480. if (code_seen('X'))
  2481. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2482. if (code_seen('R'))
  2483. duplicate_extruder_temp_offset = code_value();
  2484. SERIAL_ECHO_START;
  2485. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2486. SERIAL_ECHO(" ");
  2487. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2488. SERIAL_ECHO(",");
  2489. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2490. SERIAL_ECHO(" ");
  2491. SERIAL_ECHO(duplicate_extruder_x_offset);
  2492. SERIAL_ECHO(",");
  2493. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2494. }
  2495. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2496. {
  2497. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2498. }
  2499. active_extruder_parked = false;
  2500. extruder_duplication_enabled = false;
  2501. delayed_move_time = 0;
  2502. }
  2503. break;
  2504. #endif //DUAL_X_CARRIAGE
  2505. case 907: // M907 Set digital trimpot motor current using axis codes.
  2506. {
  2507. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2508. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2509. if(code_seen('B')) digipot_current(4,code_value());
  2510. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2511. #endif
  2512. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2513. if(code_seen('X')) digipot_current(0, code_value());
  2514. #endif
  2515. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2516. if(code_seen('Z')) digipot_current(1, code_value());
  2517. #endif
  2518. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2519. if(code_seen('E')) digipot_current(2, code_value());
  2520. #endif
  2521. }
  2522. break;
  2523. case 908: // M908 Control digital trimpot directly.
  2524. {
  2525. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2526. uint8_t channel,current;
  2527. if(code_seen('P')) channel=code_value();
  2528. if(code_seen('S')) current=code_value();
  2529. digitalPotWrite(channel, current);
  2530. #endif
  2531. }
  2532. break;
  2533. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2534. {
  2535. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2536. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2537. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2538. if(code_seen('B')) microstep_mode(4,code_value());
  2539. microstep_readings();
  2540. #endif
  2541. }
  2542. break;
  2543. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2544. {
  2545. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2546. if(code_seen('S')) switch((int)code_value())
  2547. {
  2548. case 1:
  2549. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2550. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2551. break;
  2552. case 2:
  2553. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2554. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2555. break;
  2556. }
  2557. microstep_readings();
  2558. #endif
  2559. }
  2560. break;
  2561. case 999: // M999: Restart after being stopped
  2562. Stopped = false;
  2563. lcd_reset_alert_level();
  2564. gcode_LastN = Stopped_gcode_LastN;
  2565. FlushSerialRequestResend();
  2566. break;
  2567. }
  2568. }
  2569. else if(code_seen('T'))
  2570. {
  2571. tmp_extruder = code_value();
  2572. if(tmp_extruder >= EXTRUDERS) {
  2573. SERIAL_ECHO_START;
  2574. SERIAL_ECHO("T");
  2575. SERIAL_ECHO(tmp_extruder);
  2576. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2577. }
  2578. else {
  2579. boolean make_move = false;
  2580. if(code_seen('F')) {
  2581. make_move = true;
  2582. next_feedrate = code_value();
  2583. if(next_feedrate > 0.0) {
  2584. feedrate = next_feedrate;
  2585. }
  2586. }
  2587. #if EXTRUDERS > 1
  2588. if(tmp_extruder != active_extruder) {
  2589. // Save current position to return to after applying extruder offset
  2590. memcpy(destination, current_position, sizeof(destination));
  2591. #ifdef DUAL_X_CARRIAGE
  2592. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2593. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2594. {
  2595. // Park old head: 1) raise 2) move to park position 3) lower
  2596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2597. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2598. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2599. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2600. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2601. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2602. st_synchronize();
  2603. }
  2604. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2605. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2606. extruder_offset[Y_AXIS][active_extruder] +
  2607. extruder_offset[Y_AXIS][tmp_extruder];
  2608. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2609. extruder_offset[Z_AXIS][active_extruder] +
  2610. extruder_offset[Z_AXIS][tmp_extruder];
  2611. active_extruder = tmp_extruder;
  2612. // This function resets the max/min values - the current position may be overwritten below.
  2613. axis_is_at_home(X_AXIS);
  2614. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2615. {
  2616. current_position[X_AXIS] = inactive_extruder_x_pos;
  2617. inactive_extruder_x_pos = destination[X_AXIS];
  2618. }
  2619. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2620. {
  2621. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2622. if (active_extruder == 0 || active_extruder_parked)
  2623. current_position[X_AXIS] = inactive_extruder_x_pos;
  2624. else
  2625. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2626. inactive_extruder_x_pos = destination[X_AXIS];
  2627. extruder_duplication_enabled = false;
  2628. }
  2629. else
  2630. {
  2631. // record raised toolhead position for use by unpark
  2632. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2633. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2634. active_extruder_parked = true;
  2635. delayed_move_time = 0;
  2636. }
  2637. #else
  2638. // Offset extruder (only by XY)
  2639. int i;
  2640. for(i = 0; i < 2; i++) {
  2641. current_position[i] = current_position[i] -
  2642. extruder_offset[i][active_extruder] +
  2643. extruder_offset[i][tmp_extruder];
  2644. }
  2645. // Set the new active extruder and position
  2646. active_extruder = tmp_extruder;
  2647. #endif //else DUAL_X_CARRIAGE
  2648. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2649. // Move to the old position if 'F' was in the parameters
  2650. if(make_move && Stopped == false) {
  2651. prepare_move();
  2652. }
  2653. }
  2654. #endif
  2655. SERIAL_ECHO_START;
  2656. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2657. SERIAL_PROTOCOLLN((int)active_extruder);
  2658. }
  2659. }
  2660. else
  2661. {
  2662. SERIAL_ECHO_START;
  2663. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2664. SERIAL_ECHO(cmdbuffer[bufindr]);
  2665. SERIAL_ECHOLNPGM("\"");
  2666. }
  2667. ClearToSend();
  2668. }
  2669. void FlushSerialRequestResend()
  2670. {
  2671. //char cmdbuffer[bufindr][100]="Resend:";
  2672. MYSERIAL.flush();
  2673. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2674. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2675. ClearToSend();
  2676. }
  2677. void ClearToSend()
  2678. {
  2679. previous_millis_cmd = millis();
  2680. #ifdef SDSUPPORT
  2681. if(fromsd[bufindr])
  2682. return;
  2683. #endif //SDSUPPORT
  2684. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2685. }
  2686. void get_coordinates()
  2687. {
  2688. bool seen[4]={false,false,false,false};
  2689. for(int8_t i=0; i < NUM_AXIS; i++) {
  2690. if(code_seen(axis_codes[i]))
  2691. {
  2692. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2693. seen[i]=true;
  2694. }
  2695. else destination[i] = current_position[i]; //Are these else lines really needed?
  2696. }
  2697. if(code_seen('F')) {
  2698. next_feedrate = code_value();
  2699. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2700. }
  2701. #ifdef FWRETRACT
  2702. if(autoretract_enabled)
  2703. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2704. {
  2705. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2706. if(echange<-MIN_RETRACT) //retract
  2707. {
  2708. if(!retracted)
  2709. {
  2710. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2711. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2712. float correctede=-echange-retract_length;
  2713. //to generate the additional steps, not the destination is changed, but inversely the current position
  2714. current_position[E_AXIS]+=-correctede;
  2715. feedrate=retract_feedrate;
  2716. retracted=true;
  2717. }
  2718. }
  2719. else
  2720. if(echange>MIN_RETRACT) //retract_recover
  2721. {
  2722. if(retracted)
  2723. {
  2724. //current_position[Z_AXIS]+=-retract_zlift;
  2725. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2726. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2727. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2728. feedrate=retract_recover_feedrate;
  2729. retracted=false;
  2730. }
  2731. }
  2732. }
  2733. #endif //FWRETRACT
  2734. }
  2735. void get_arc_coordinates()
  2736. {
  2737. #ifdef SF_ARC_FIX
  2738. bool relative_mode_backup = relative_mode;
  2739. relative_mode = true;
  2740. #endif
  2741. get_coordinates();
  2742. #ifdef SF_ARC_FIX
  2743. relative_mode=relative_mode_backup;
  2744. #endif
  2745. if(code_seen('I')) {
  2746. offset[0] = code_value();
  2747. }
  2748. else {
  2749. offset[0] = 0.0;
  2750. }
  2751. if(code_seen('J')) {
  2752. offset[1] = code_value();
  2753. }
  2754. else {
  2755. offset[1] = 0.0;
  2756. }
  2757. }
  2758. void clamp_to_software_endstops(float target[3])
  2759. {
  2760. if (min_software_endstops) {
  2761. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2762. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2763. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2764. }
  2765. if (max_software_endstops) {
  2766. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2767. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2768. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2769. }
  2770. }
  2771. #ifdef DELTA
  2772. void calculate_delta(float cartesian[3])
  2773. {
  2774. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2775. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2776. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2777. ) + cartesian[Z_AXIS];
  2778. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2779. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2780. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2781. ) + cartesian[Z_AXIS];
  2782. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2783. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2784. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2785. ) + cartesian[Z_AXIS];
  2786. /*
  2787. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2788. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2789. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2790. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2791. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2792. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2793. */
  2794. }
  2795. #endif
  2796. void prepare_move()
  2797. {
  2798. clamp_to_software_endstops(destination);
  2799. previous_millis_cmd = millis();
  2800. #ifdef DELTA
  2801. float difference[NUM_AXIS];
  2802. for (int8_t i=0; i < NUM_AXIS; i++) {
  2803. difference[i] = destination[i] - current_position[i];
  2804. }
  2805. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2806. sq(difference[Y_AXIS]) +
  2807. sq(difference[Z_AXIS]));
  2808. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2809. if (cartesian_mm < 0.000001) { return; }
  2810. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2811. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2812. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2813. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2814. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2815. for (int s = 1; s <= steps; s++) {
  2816. float fraction = float(s) / float(steps);
  2817. for(int8_t i=0; i < NUM_AXIS; i++) {
  2818. destination[i] = current_position[i] + difference[i] * fraction;
  2819. }
  2820. calculate_delta(destination);
  2821. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2822. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2823. active_extruder);
  2824. }
  2825. #else
  2826. #ifdef DUAL_X_CARRIAGE
  2827. if (active_extruder_parked)
  2828. {
  2829. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2830. {
  2831. // move duplicate extruder into correct duplication position.
  2832. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2833. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2834. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2835. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2836. st_synchronize();
  2837. extruder_duplication_enabled = true;
  2838. active_extruder_parked = false;
  2839. }
  2840. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2841. {
  2842. if (current_position[E_AXIS] == destination[E_AXIS])
  2843. {
  2844. // this is a travel move - skit it but keep track of current position (so that it can later
  2845. // be used as start of first non-travel move)
  2846. if (delayed_move_time != 0xFFFFFFFFUL)
  2847. {
  2848. memcpy(current_position, destination, sizeof(current_position));
  2849. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2850. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2851. delayed_move_time = millis();
  2852. return;
  2853. }
  2854. }
  2855. delayed_move_time = 0;
  2856. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2857. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2859. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2861. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2862. active_extruder_parked = false;
  2863. }
  2864. }
  2865. #endif //DUAL_X_CARRIAGE
  2866. // Do not use feedmultiply for E or Z only moves
  2867. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2868. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2869. }
  2870. else {
  2871. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2872. }
  2873. #endif //else DELTA
  2874. for(int8_t i=0; i < NUM_AXIS; i++) {
  2875. current_position[i] = destination[i];
  2876. }
  2877. }
  2878. void prepare_arc_move(char isclockwise) {
  2879. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2880. // Trace the arc
  2881. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2882. // As far as the parser is concerned, the position is now == target. In reality the
  2883. // motion control system might still be processing the action and the real tool position
  2884. // in any intermediate location.
  2885. for(int8_t i=0; i < NUM_AXIS; i++) {
  2886. current_position[i] = destination[i];
  2887. }
  2888. previous_millis_cmd = millis();
  2889. }
  2890. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2891. #if defined(FAN_PIN)
  2892. #if CONTROLLERFAN_PIN == FAN_PIN
  2893. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2894. #endif
  2895. #endif
  2896. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2897. unsigned long lastMotorCheck = 0;
  2898. void controllerFan()
  2899. {
  2900. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2901. {
  2902. lastMotorCheck = millis();
  2903. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2904. #if EXTRUDERS > 2
  2905. || !READ(E2_ENABLE_PIN)
  2906. #endif
  2907. #if EXTRUDER > 1
  2908. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2909. || !READ(X2_ENABLE_PIN)
  2910. #endif
  2911. || !READ(E1_ENABLE_PIN)
  2912. #endif
  2913. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2914. {
  2915. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2916. }
  2917. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2918. {
  2919. digitalWrite(CONTROLLERFAN_PIN, 0);
  2920. analogWrite(CONTROLLERFAN_PIN, 0);
  2921. }
  2922. else
  2923. {
  2924. // allows digital or PWM fan output to be used (see M42 handling)
  2925. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2926. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2927. }
  2928. }
  2929. }
  2930. #endif
  2931. #ifdef TEMP_STAT_LEDS
  2932. static bool blue_led = false;
  2933. static bool red_led = false;
  2934. static uint32_t stat_update = 0;
  2935. void handle_status_leds(void) {
  2936. float max_temp = 0.0;
  2937. if(millis() > stat_update) {
  2938. stat_update += 500; // Update every 0.5s
  2939. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2940. max_temp = max(max_temp, degHotend(cur_extruder));
  2941. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2942. }
  2943. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2944. max_temp = max(max_temp, degTargetBed());
  2945. max_temp = max(max_temp, degBed());
  2946. #endif
  2947. if((max_temp > 55.0) && (red_led == false)) {
  2948. digitalWrite(STAT_LED_RED, 1);
  2949. digitalWrite(STAT_LED_BLUE, 0);
  2950. red_led = true;
  2951. blue_led = false;
  2952. }
  2953. if((max_temp < 54.0) && (blue_led == false)) {
  2954. digitalWrite(STAT_LED_RED, 0);
  2955. digitalWrite(STAT_LED_BLUE, 1);
  2956. red_led = false;
  2957. blue_led = true;
  2958. }
  2959. }
  2960. }
  2961. #endif
  2962. void manage_inactivity()
  2963. {
  2964. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2965. if(max_inactive_time)
  2966. kill();
  2967. if(stepper_inactive_time) {
  2968. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2969. {
  2970. if(blocks_queued() == false) {
  2971. disable_x();
  2972. disable_y();
  2973. disable_z();
  2974. disable_e0();
  2975. disable_e1();
  2976. disable_e2();
  2977. }
  2978. }
  2979. }
  2980. #if defined(KILL_PIN) && KILL_PIN > -1
  2981. if( 0 == READ(KILL_PIN) )
  2982. kill();
  2983. #endif
  2984. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2985. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2986. #endif
  2987. #ifdef EXTRUDER_RUNOUT_PREVENT
  2988. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2989. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2990. {
  2991. bool oldstatus=READ(E0_ENABLE_PIN);
  2992. enable_e0();
  2993. float oldepos=current_position[E_AXIS];
  2994. float oldedes=destination[E_AXIS];
  2995. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  2996. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2997. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2998. current_position[E_AXIS]=oldepos;
  2999. destination[E_AXIS]=oldedes;
  3000. plan_set_e_position(oldepos);
  3001. previous_millis_cmd=millis();
  3002. st_synchronize();
  3003. WRITE(E0_ENABLE_PIN,oldstatus);
  3004. }
  3005. #endif
  3006. #if defined(DUAL_X_CARRIAGE)
  3007. // handle delayed move timeout
  3008. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3009. {
  3010. // travel moves have been received so enact them
  3011. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3012. memcpy(destination,current_position,sizeof(destination));
  3013. prepare_move();
  3014. }
  3015. #endif
  3016. #ifdef TEMP_STAT_LEDS
  3017. handle_status_leds();
  3018. #endif
  3019. check_axes_activity();
  3020. }
  3021. void kill()
  3022. {
  3023. cli(); // Stop interrupts
  3024. disable_heater();
  3025. disable_x();
  3026. disable_y();
  3027. disable_z();
  3028. disable_e0();
  3029. disable_e1();
  3030. disable_e2();
  3031. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3032. pinMode(PS_ON_PIN,INPUT);
  3033. #endif
  3034. SERIAL_ERROR_START;
  3035. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3036. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3037. suicide();
  3038. while(1) { /* Intentionally left empty */ } // Wait for reset
  3039. }
  3040. void Stop()
  3041. {
  3042. disable_heater();
  3043. if(Stopped == false) {
  3044. Stopped = true;
  3045. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3046. SERIAL_ERROR_START;
  3047. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3048. LCD_MESSAGEPGM(MSG_STOPPED);
  3049. }
  3050. }
  3051. bool IsStopped() { return Stopped; };
  3052. #ifdef FAST_PWM_FAN
  3053. void setPwmFrequency(uint8_t pin, int val)
  3054. {
  3055. val &= 0x07;
  3056. switch(digitalPinToTimer(pin))
  3057. {
  3058. #if defined(TCCR0A)
  3059. case TIMER0A:
  3060. case TIMER0B:
  3061. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3062. // TCCR0B |= val;
  3063. break;
  3064. #endif
  3065. #if defined(TCCR1A)
  3066. case TIMER1A:
  3067. case TIMER1B:
  3068. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3069. // TCCR1B |= val;
  3070. break;
  3071. #endif
  3072. #if defined(TCCR2)
  3073. case TIMER2:
  3074. case TIMER2:
  3075. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3076. TCCR2 |= val;
  3077. break;
  3078. #endif
  3079. #if defined(TCCR2A)
  3080. case TIMER2A:
  3081. case TIMER2B:
  3082. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3083. TCCR2B |= val;
  3084. break;
  3085. #endif
  3086. #if defined(TCCR3A)
  3087. case TIMER3A:
  3088. case TIMER3B:
  3089. case TIMER3C:
  3090. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3091. TCCR3B |= val;
  3092. break;
  3093. #endif
  3094. #if defined(TCCR4A)
  3095. case TIMER4A:
  3096. case TIMER4B:
  3097. case TIMER4C:
  3098. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3099. TCCR4B |= val;
  3100. break;
  3101. #endif
  3102. #if defined(TCCR5A)
  3103. case TIMER5A:
  3104. case TIMER5B:
  3105. case TIMER5C:
  3106. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3107. TCCR5B |= val;
  3108. break;
  3109. #endif
  3110. }
  3111. }
  3112. #endif //FAST_PWM_FAN
  3113. bool setTargetedHotend(int code){
  3114. tmp_extruder = active_extruder;
  3115. if(code_seen('T')) {
  3116. tmp_extruder = code_value();
  3117. if(tmp_extruder >= EXTRUDERS) {
  3118. SERIAL_ECHO_START;
  3119. switch(code){
  3120. case 104:
  3121. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3122. break;
  3123. case 105:
  3124. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3125. break;
  3126. case 109:
  3127. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3128. break;
  3129. case 218:
  3130. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3131. break;
  3132. }
  3133. SERIAL_ECHOLN(tmp_extruder);
  3134. return true;
  3135. }
  3136. }
  3137. return false;
  3138. }