My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 304KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card. (Requires SDSUPPORT)
  119. * M21 - Init SD card. (Requires SDSUPPORT)
  120. * M22 - Release SD card. (Requires SDSUPPORT)
  121. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  122. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  123. * M25 - Pause SD print. (Requires SDSUPPORT)
  124. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  125. * M27 - Report SD print status. (Requires SDSUPPORT)
  126. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  127. * M29 - Stop SD write. (Requires SDSUPPORT)
  128. * M30 - Delete file from SD: "M30 /path/file.gco"
  129. * M31 - Report time since last M109 or SD card start to serial.
  130. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  131. * Use P to run other files as sub-programs: "M32 P !filename#"
  132. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  133. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  134. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  135. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  136. * M75 - Start the print job timer.
  137. * M76 - Pause the print job timer.
  138. * M77 - Stop the print job timer.
  139. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  140. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  141. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  142. * M82 - Set E codes absolute (default).
  143. * M83 - Set E codes relative while in Absolute (G90) mode.
  144. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  145. * duration after which steppers should turn off. S0 disables the timeout.
  146. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  147. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  148. * M104 - Set extruder target temp.
  149. * M105 - Report current temperatures.
  150. * M106 - Fan on.
  151. * M107 - Fan off.
  152. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  153. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  154. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  155. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  156. * M110 - Set the current line number. (Used by host printing)
  157. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  158. * M112 - Emergency stop.
  159. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  160. * M114 - Report current position.
  161. * M115 - Report capabilities.
  162. * M117 - Display a message on the controller screen. (Requires an LCD)
  163. * M119 - Report endstops status.
  164. * M120 - Enable endstops detection.
  165. * M121 - Disable endstops detection.
  166. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  167. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  168. * M128 - EtoP Open. (Requires BARICUDA)
  169. * M129 - EtoP Closed. (Requires BARICUDA)
  170. * M140 - Set bed target temp. S<temp>
  171. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  172. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  173. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  174. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  175. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  176. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  177. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  178. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  179. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  180. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  181. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  182. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  183. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  184. * M205 - Set advanced settings. Current units apply:
  185. S<print> T<travel> minimum speeds
  186. B<minimum segment time>
  187. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  188. * M206 - Set additional homing offset.
  189. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  190. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  191. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  192. Every normal extrude-only move will be classified as retract depending on the direction.
  193. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  194. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  195. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  196. * M221 - Set Flow Percentage: "M221 S<percent>"
  197. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  198. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  199. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  200. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  201. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  202. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  203. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  204. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  205. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  206. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  207. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  208. * M400 - Finish all moves.
  209. * M401 - Lower Z probe. (Requires a probe)
  210. * M402 - Raise Z probe. (Requires a probe)
  211. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  213. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  215. * M410 - Quickstop. Abort all planned moves.
  216. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  217. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  218. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  219. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  220. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  221. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  222. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  223. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  225. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  226. * M666 - Set delta endstop adjustment. (Requires DELTA)
  227. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  228. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  229. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  230. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  231. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  232. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  233. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  234. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  235. *
  236. * ************ SCARA Specific - This can change to suit future G-code regulations
  237. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  238. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  239. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  240. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  241. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  242. * ************* SCARA End ***************
  243. *
  244. * ************ Custom codes - This can change to suit future G-code regulations
  245. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  246. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  247. * M999 - Restart after being stopped by error
  248. *
  249. * "T" Codes
  250. *
  251. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  252. *
  253. */
  254. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  255. void gcode_M100();
  256. #endif
  257. #if ENABLED(SDSUPPORT)
  258. CardReader card;
  259. #endif
  260. #if ENABLED(EXPERIMENTAL_I2CBUS)
  261. TWIBus i2c;
  262. #endif
  263. #if ENABLED(G38_PROBE_TARGET)
  264. bool G38_move = false,
  265. G38_endstop_hit = false;
  266. #endif
  267. bool Running = true;
  268. uint8_t marlin_debug_flags = DEBUG_NONE;
  269. /**
  270. * Cartesian Current Position
  271. * Used to track the logical position as moves are queued.
  272. * Used by 'line_to_current_position' to do a move after changing it.
  273. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  274. */
  275. float current_position[XYZE] = { 0.0 };
  276. /**
  277. * Cartesian Destination
  278. * A temporary position, usually applied to 'current_position'.
  279. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  280. * 'line_to_destination' sets 'current_position' to 'destination'.
  281. */
  282. static float destination[XYZE] = { 0.0 };
  283. /**
  284. * axis_homed
  285. * Flags that each linear axis was homed.
  286. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  287. *
  288. * axis_known_position
  289. * Flags that the position is known in each linear axis. Set when homed.
  290. * Cleared whenever a stepper powers off, potentially losing its position.
  291. */
  292. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  293. /**
  294. * GCode line number handling. Hosts may opt to include line numbers when
  295. * sending commands to Marlin, and lines will be checked for sequentiality.
  296. * M110 S<int> sets the current line number.
  297. */
  298. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  299. /**
  300. * GCode Command Queue
  301. * A simple ring buffer of BUFSIZE command strings.
  302. *
  303. * Commands are copied into this buffer by the command injectors
  304. * (immediate, serial, sd card) and they are processed sequentially by
  305. * the main loop. The process_next_command function parses the next
  306. * command and hands off execution to individual handler functions.
  307. */
  308. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  309. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  310. cmd_queue_index_w = 0, // Ring buffer write position
  311. commands_in_queue = 0; // Count of commands in the queue
  312. /**
  313. * Current GCode Command
  314. * When a GCode handler is running, these will be set
  315. */
  316. static char *current_command, // The command currently being executed
  317. *current_command_args, // The address where arguments begin
  318. *seen_pointer; // Set by code_seen(), used by the code_value functions
  319. /**
  320. * Next Injected Command pointer. NULL if no commands are being injected.
  321. * Used by Marlin internally to ensure that commands initiated from within
  322. * are enqueued ahead of any pending serial or sd card commands.
  323. */
  324. static const char *injected_commands_P = NULL;
  325. #if ENABLED(INCH_MODE_SUPPORT)
  326. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  327. #endif
  328. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  329. TempUnit input_temp_units = TEMPUNIT_C;
  330. #endif
  331. /**
  332. * Feed rates are often configured with mm/m
  333. * but the planner and stepper like mm/s units.
  334. */
  335. float constexpr homing_feedrate_mm_s[] = {
  336. #if ENABLED(DELTA)
  337. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  338. #else
  339. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  340. #endif
  341. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  342. };
  343. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  344. int feedrate_percentage = 100, saved_feedrate_percentage,
  345. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  346. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  347. volumetric_enabled = false;
  348. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  349. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  350. // The distance that XYZ has been offset by G92. Reset by G28.
  351. float position_shift[XYZ] = { 0 };
  352. // This offset is added to the configured home position.
  353. // Set by M206, M428, or menu item. Saved to EEPROM.
  354. float home_offset[XYZ] = { 0 };
  355. // Software Endstops are based on the configured limits.
  356. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  357. bool soft_endstops_enabled = true;
  358. #endif
  359. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  360. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  361. #if FAN_COUNT > 0
  362. int fanSpeeds[FAN_COUNT] = { 0 };
  363. #endif
  364. // The active extruder (tool). Set with T<extruder> command.
  365. uint8_t active_extruder = 0;
  366. // Relative Mode. Enable with G91, disable with G90.
  367. static bool relative_mode = false;
  368. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  369. volatile bool wait_for_heatup = true;
  370. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  371. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  372. volatile bool wait_for_user = false;
  373. #endif
  374. const char errormagic[] PROGMEM = "Error:";
  375. const char echomagic[] PROGMEM = "echo:";
  376. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  377. // Number of characters read in the current line of serial input
  378. static int serial_count = 0;
  379. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  380. // Inactivity shutdown
  381. millis_t previous_cmd_ms = 0;
  382. static millis_t max_inactive_time = 0;
  383. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  384. // Print Job Timer
  385. #if ENABLED(PRINTCOUNTER)
  386. PrintCounter print_job_timer = PrintCounter();
  387. #else
  388. Stopwatch print_job_timer = Stopwatch();
  389. #endif
  390. // Buzzer - I2C on the LCD or a BEEPER_PIN
  391. #if ENABLED(LCD_USE_I2C_BUZZER)
  392. #define BUZZ(d,f) lcd_buzz(d, f)
  393. #elif PIN_EXISTS(BEEPER)
  394. Buzzer buzzer;
  395. #define BUZZ(d,f) buzzer.tone(d, f)
  396. #else
  397. #define BUZZ(d,f) NOOP
  398. #endif
  399. static uint8_t target_extruder;
  400. #if HAS_BED_PROBE
  401. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  402. #endif
  403. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  404. #if HAS_ABL
  405. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  406. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  407. #elif defined(XY_PROBE_SPEED)
  408. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  409. #else
  410. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  411. #endif
  412. #if ENABLED(Z_DUAL_ENDSTOPS)
  413. float z_endstop_adj = 0;
  414. #endif
  415. // Extruder offsets
  416. #if HOTENDS > 1
  417. float hotend_offset[][HOTENDS] = {
  418. HOTEND_OFFSET_X,
  419. HOTEND_OFFSET_Y
  420. #ifdef HOTEND_OFFSET_Z
  421. , HOTEND_OFFSET_Z
  422. #endif
  423. };
  424. #endif
  425. #if HAS_Z_SERVO_ENDSTOP
  426. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  427. #endif
  428. #if ENABLED(BARICUDA)
  429. int baricuda_valve_pressure = 0;
  430. int baricuda_e_to_p_pressure = 0;
  431. #endif
  432. #if ENABLED(FWRETRACT)
  433. bool autoretract_enabled = false;
  434. bool retracted[EXTRUDERS] = { false };
  435. bool retracted_swap[EXTRUDERS] = { false };
  436. float retract_length = RETRACT_LENGTH;
  437. float retract_length_swap = RETRACT_LENGTH_SWAP;
  438. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  439. float retract_zlift = RETRACT_ZLIFT;
  440. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  441. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  442. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  443. #endif // FWRETRACT
  444. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  445. bool powersupply =
  446. #if ENABLED(PS_DEFAULT_OFF)
  447. false
  448. #else
  449. true
  450. #endif
  451. ;
  452. #endif
  453. #if ENABLED(DELTA)
  454. #define SIN_60 0.8660254037844386
  455. #define COS_60 0.5
  456. float delta[ABC],
  457. endstop_adj[ABC] = { 0 };
  458. // these are the default values, can be overriden with M665
  459. float delta_radius = DELTA_RADIUS,
  460. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  461. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  462. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  463. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  464. delta_tower3_x = 0, // back middle tower
  465. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  466. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  467. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  468. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  469. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  470. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  471. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  472. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  473. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  474. delta_clip_start_height = Z_MAX_POS;
  475. float delta_safe_distance_from_top();
  476. #else
  477. static bool home_all_axis = true;
  478. #endif
  479. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  480. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  481. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  482. #endif
  483. #if IS_SCARA
  484. // Float constants for SCARA calculations
  485. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  486. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  487. L2_2 = sq(float(L2));
  488. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  489. delta[ABC];
  490. #endif
  491. float cartes[XYZ] = { 0 };
  492. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  493. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  494. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  495. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  496. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  497. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  498. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  499. #endif
  500. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  501. static bool filament_ran_out = false;
  502. #endif
  503. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  504. FilamentChangeMenuResponse filament_change_menu_response;
  505. #endif
  506. #if ENABLED(MIXING_EXTRUDER)
  507. float mixing_factor[MIXING_STEPPERS];
  508. #if MIXING_VIRTUAL_TOOLS > 1
  509. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  510. #endif
  511. #endif
  512. static bool send_ok[BUFSIZE];
  513. #if HAS_SERVOS
  514. Servo servo[NUM_SERVOS];
  515. #define MOVE_SERVO(I, P) servo[I].move(P)
  516. #if HAS_Z_SERVO_ENDSTOP
  517. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  518. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  519. #endif
  520. #endif
  521. #ifdef CHDK
  522. millis_t chdkHigh = 0;
  523. boolean chdkActive = false;
  524. #endif
  525. #if ENABLED(PID_EXTRUSION_SCALING)
  526. int lpq_len = 20;
  527. #endif
  528. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  529. static MarlinBusyState busy_state = NOT_BUSY;
  530. static millis_t next_busy_signal_ms = 0;
  531. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  532. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  533. #else
  534. #define host_keepalive() ;
  535. #define KEEPALIVE_STATE(n) ;
  536. #endif // HOST_KEEPALIVE_FEATURE
  537. #define DEFINE_PGM_READ_ANY(type, reader) \
  538. static inline type pgm_read_any(const type *p) \
  539. { return pgm_read_##reader##_near(p); }
  540. DEFINE_PGM_READ_ANY(float, float);
  541. DEFINE_PGM_READ_ANY(signed char, byte);
  542. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  543. static const PROGMEM type array##_P[XYZ] = \
  544. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  545. static inline type array(int axis) \
  546. { return pgm_read_any(&array##_P[axis]); }
  547. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  548. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  549. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  550. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  551. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  552. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  553. /**
  554. * ***************************************************************************
  555. * ******************************** FUNCTIONS ********************************
  556. * ***************************************************************************
  557. */
  558. void stop();
  559. void get_available_commands();
  560. void process_next_command();
  561. void prepare_move_to_destination();
  562. void get_cartesian_from_steppers();
  563. void set_current_from_steppers_for_axis(const AxisEnum axis);
  564. #if ENABLED(ARC_SUPPORT)
  565. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  566. #endif
  567. #if ENABLED(BEZIER_CURVE_SUPPORT)
  568. void plan_cubic_move(const float offset[4]);
  569. #endif
  570. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  571. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  572. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  573. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  574. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  575. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  576. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  577. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  578. static void report_current_position();
  579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  580. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  581. serialprintPGM(prefix);
  582. SERIAL_ECHOPAIR("(", x);
  583. SERIAL_ECHOPAIR(", ", y);
  584. SERIAL_ECHOPAIR(", ", z);
  585. SERIAL_ECHOPGM(")");
  586. if (suffix) serialprintPGM(suffix);
  587. else SERIAL_EOL;
  588. }
  589. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  590. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  591. }
  592. #if HAS_ABL
  593. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  594. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  595. }
  596. #endif
  597. #define DEBUG_POS(SUFFIX,VAR) do { \
  598. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  599. #endif
  600. /**
  601. * sync_plan_position
  602. *
  603. * Set the planner/stepper positions directly from current_position with
  604. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  605. */
  606. inline void sync_plan_position() {
  607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  608. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  609. #endif
  610. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  611. }
  612. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  613. #if IS_KINEMATIC
  614. inline void sync_plan_position_kinematic() {
  615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  616. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  617. #endif
  618. inverse_kinematics(current_position);
  619. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  620. }
  621. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  622. #else
  623. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  624. #endif
  625. #if ENABLED(SDSUPPORT)
  626. #include "SdFatUtil.h"
  627. int freeMemory() { return SdFatUtil::FreeRam(); }
  628. #else
  629. extern "C" {
  630. extern unsigned int __bss_end;
  631. extern unsigned int __heap_start;
  632. extern void* __brkval;
  633. int freeMemory() {
  634. int free_memory;
  635. if ((int)__brkval == 0)
  636. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  637. else
  638. free_memory = ((int)&free_memory) - ((int)__brkval);
  639. return free_memory;
  640. }
  641. }
  642. #endif //!SDSUPPORT
  643. #if ENABLED(DIGIPOT_I2C)
  644. extern void digipot_i2c_set_current(int channel, float current);
  645. extern void digipot_i2c_init();
  646. #endif
  647. /**
  648. * Inject the next "immediate" command, when possible.
  649. * Return true if any immediate commands remain to inject.
  650. */
  651. static bool drain_injected_commands_P() {
  652. if (injected_commands_P != NULL) {
  653. size_t i = 0;
  654. char c, cmd[30];
  655. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  656. cmd[sizeof(cmd) - 1] = '\0';
  657. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  658. cmd[i] = '\0';
  659. if (enqueue_and_echo_command(cmd)) { // success?
  660. if (c) // newline char?
  661. injected_commands_P += i + 1; // advance to the next command
  662. else
  663. injected_commands_P = NULL; // nul char? no more commands
  664. }
  665. }
  666. return (injected_commands_P != NULL); // return whether any more remain
  667. }
  668. /**
  669. * Record one or many commands to run from program memory.
  670. * Aborts the current queue, if any.
  671. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  672. */
  673. void enqueue_and_echo_commands_P(const char* pgcode) {
  674. injected_commands_P = pgcode;
  675. drain_injected_commands_P(); // first command executed asap (when possible)
  676. }
  677. void clear_command_queue() {
  678. cmd_queue_index_r = cmd_queue_index_w;
  679. commands_in_queue = 0;
  680. }
  681. /**
  682. * Once a new command is in the ring buffer, call this to commit it
  683. */
  684. inline void _commit_command(bool say_ok) {
  685. send_ok[cmd_queue_index_w] = say_ok;
  686. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  687. commands_in_queue++;
  688. }
  689. /**
  690. * Copy a command directly into the main command buffer, from RAM.
  691. * Returns true if successfully adds the command
  692. */
  693. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  694. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  695. strcpy(command_queue[cmd_queue_index_w], cmd);
  696. _commit_command(say_ok);
  697. return true;
  698. }
  699. void enqueue_and_echo_command_now(const char* cmd) {
  700. while (!enqueue_and_echo_command(cmd)) idle();
  701. }
  702. /**
  703. * Enqueue with Serial Echo
  704. */
  705. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  706. if (_enqueuecommand(cmd, say_ok)) {
  707. SERIAL_ECHO_START;
  708. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  709. SERIAL_CHAR('"');
  710. SERIAL_EOL;
  711. return true;
  712. }
  713. return false;
  714. }
  715. void setup_killpin() {
  716. #if HAS_KILL
  717. SET_INPUT(KILL_PIN);
  718. WRITE(KILL_PIN, HIGH);
  719. #endif
  720. }
  721. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  722. void setup_filrunoutpin() {
  723. SET_INPUT(FIL_RUNOUT_PIN);
  724. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  725. WRITE(FIL_RUNOUT_PIN, HIGH);
  726. #endif
  727. }
  728. #endif
  729. // Set home pin
  730. void setup_homepin(void) {
  731. #if HAS_HOME
  732. SET_INPUT(HOME_PIN);
  733. WRITE(HOME_PIN, HIGH);
  734. #endif
  735. }
  736. void setup_photpin() {
  737. #if HAS_PHOTOGRAPH
  738. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  739. #endif
  740. }
  741. void setup_powerhold() {
  742. #if HAS_SUICIDE
  743. OUT_WRITE(SUICIDE_PIN, HIGH);
  744. #endif
  745. #if HAS_POWER_SWITCH
  746. #if ENABLED(PS_DEFAULT_OFF)
  747. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  748. #else
  749. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  750. #endif
  751. #endif
  752. }
  753. void suicide() {
  754. #if HAS_SUICIDE
  755. OUT_WRITE(SUICIDE_PIN, LOW);
  756. #endif
  757. }
  758. void servo_init() {
  759. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  760. servo[0].attach(SERVO0_PIN);
  761. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  762. #endif
  763. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  764. servo[1].attach(SERVO1_PIN);
  765. servo[1].detach();
  766. #endif
  767. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  768. servo[2].attach(SERVO2_PIN);
  769. servo[2].detach();
  770. #endif
  771. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  772. servo[3].attach(SERVO3_PIN);
  773. servo[3].detach();
  774. #endif
  775. #if HAS_Z_SERVO_ENDSTOP
  776. /**
  777. * Set position of Z Servo Endstop
  778. *
  779. * The servo might be deployed and positioned too low to stow
  780. * when starting up the machine or rebooting the board.
  781. * There's no way to know where the nozzle is positioned until
  782. * homing has been done - no homing with z-probe without init!
  783. *
  784. */
  785. STOW_Z_SERVO();
  786. #endif
  787. }
  788. /**
  789. * Stepper Reset (RigidBoard, et.al.)
  790. */
  791. #if HAS_STEPPER_RESET
  792. void disableStepperDrivers() {
  793. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  794. }
  795. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  796. #endif
  797. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  798. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  799. i2c.receive(bytes);
  800. }
  801. void i2c_on_request() { // just send dummy data for now
  802. i2c.reply("Hello World!\n");
  803. }
  804. #endif
  805. void gcode_line_error(const char* err, bool doFlush = true) {
  806. SERIAL_ERROR_START;
  807. serialprintPGM(err);
  808. SERIAL_ERRORLN(gcode_LastN);
  809. //Serial.println(gcode_N);
  810. if (doFlush) FlushSerialRequestResend();
  811. serial_count = 0;
  812. }
  813. inline void get_serial_commands() {
  814. static char serial_line_buffer[MAX_CMD_SIZE];
  815. static boolean serial_comment_mode = false;
  816. // If the command buffer is empty for too long,
  817. // send "wait" to indicate Marlin is still waiting.
  818. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  819. static millis_t last_command_time = 0;
  820. millis_t ms = millis();
  821. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  822. SERIAL_ECHOLNPGM(MSG_WAIT);
  823. last_command_time = ms;
  824. }
  825. #endif
  826. /**
  827. * Loop while serial characters are incoming and the queue is not full
  828. */
  829. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  830. char serial_char = MYSERIAL.read();
  831. /**
  832. * If the character ends the line
  833. */
  834. if (serial_char == '\n' || serial_char == '\r') {
  835. serial_comment_mode = false; // end of line == end of comment
  836. if (!serial_count) continue; // skip empty lines
  837. serial_line_buffer[serial_count] = 0; // terminate string
  838. serial_count = 0; //reset buffer
  839. char* command = serial_line_buffer;
  840. while (*command == ' ') command++; // skip any leading spaces
  841. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  842. char* apos = strchr(command, '*');
  843. if (npos) {
  844. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  845. if (M110) {
  846. char* n2pos = strchr(command + 4, 'N');
  847. if (n2pos) npos = n2pos;
  848. }
  849. gcode_N = strtol(npos + 1, NULL, 10);
  850. if (gcode_N != gcode_LastN + 1 && !M110) {
  851. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  852. return;
  853. }
  854. if (apos) {
  855. byte checksum = 0, count = 0;
  856. while (command[count] != '*') checksum ^= command[count++];
  857. if (strtol(apos + 1, NULL, 10) != checksum) {
  858. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  859. return;
  860. }
  861. // if no errors, continue parsing
  862. }
  863. else {
  864. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  865. return;
  866. }
  867. gcode_LastN = gcode_N;
  868. // if no errors, continue parsing
  869. }
  870. else if (apos) { // No '*' without 'N'
  871. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  872. return;
  873. }
  874. // Movement commands alert when stopped
  875. if (IsStopped()) {
  876. char* gpos = strchr(command, 'G');
  877. if (gpos) {
  878. int codenum = strtol(gpos + 1, NULL, 10);
  879. switch (codenum) {
  880. case 0:
  881. case 1:
  882. case 2:
  883. case 3:
  884. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  885. LCD_MESSAGEPGM(MSG_STOPPED);
  886. break;
  887. }
  888. }
  889. }
  890. #if DISABLED(EMERGENCY_PARSER)
  891. // If command was e-stop process now
  892. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  893. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  894. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  895. #endif
  896. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  897. last_command_time = ms;
  898. #endif
  899. // Add the command to the queue
  900. _enqueuecommand(serial_line_buffer, true);
  901. }
  902. else if (serial_count >= MAX_CMD_SIZE - 1) {
  903. // Keep fetching, but ignore normal characters beyond the max length
  904. // The command will be injected when EOL is reached
  905. }
  906. else if (serial_char == '\\') { // Handle escapes
  907. if (MYSERIAL.available() > 0) {
  908. // if we have one more character, copy it over
  909. serial_char = MYSERIAL.read();
  910. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  911. }
  912. // otherwise do nothing
  913. }
  914. else { // it's not a newline, carriage return or escape char
  915. if (serial_char == ';') serial_comment_mode = true;
  916. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  917. }
  918. } // queue has space, serial has data
  919. }
  920. #if ENABLED(SDSUPPORT)
  921. inline void get_sdcard_commands() {
  922. static bool stop_buffering = false,
  923. sd_comment_mode = false;
  924. if (!card.sdprinting) return;
  925. /**
  926. * '#' stops reading from SD to the buffer prematurely, so procedural
  927. * macro calls are possible. If it occurs, stop_buffering is triggered
  928. * and the buffer is run dry; this character _can_ occur in serial com
  929. * due to checksums, however, no checksums are used in SD printing.
  930. */
  931. if (commands_in_queue == 0) stop_buffering = false;
  932. uint16_t sd_count = 0;
  933. bool card_eof = card.eof();
  934. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  935. int16_t n = card.get();
  936. char sd_char = (char)n;
  937. card_eof = card.eof();
  938. if (card_eof || n == -1
  939. || sd_char == '\n' || sd_char == '\r'
  940. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  941. ) {
  942. if (card_eof) {
  943. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  944. card.printingHasFinished();
  945. card.checkautostart(true);
  946. }
  947. else if (n == -1) {
  948. SERIAL_ERROR_START;
  949. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  950. }
  951. if (sd_char == '#') stop_buffering = true;
  952. sd_comment_mode = false; //for new command
  953. if (!sd_count) continue; //skip empty lines
  954. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  955. sd_count = 0; //clear buffer
  956. _commit_command(false);
  957. }
  958. else if (sd_count >= MAX_CMD_SIZE - 1) {
  959. /**
  960. * Keep fetching, but ignore normal characters beyond the max length
  961. * The command will be injected when EOL is reached
  962. */
  963. }
  964. else {
  965. if (sd_char == ';') sd_comment_mode = true;
  966. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  967. }
  968. }
  969. }
  970. #endif // SDSUPPORT
  971. /**
  972. * Add to the circular command queue the next command from:
  973. * - The command-injection queue (injected_commands_P)
  974. * - The active serial input (usually USB)
  975. * - The SD card file being actively printed
  976. */
  977. void get_available_commands() {
  978. // if any immediate commands remain, don't get other commands yet
  979. if (drain_injected_commands_P()) return;
  980. get_serial_commands();
  981. #if ENABLED(SDSUPPORT)
  982. get_sdcard_commands();
  983. #endif
  984. }
  985. inline bool code_has_value() {
  986. int i = 1;
  987. char c = seen_pointer[i];
  988. while (c == ' ') c = seen_pointer[++i];
  989. if (c == '-' || c == '+') c = seen_pointer[++i];
  990. if (c == '.') c = seen_pointer[++i];
  991. return NUMERIC(c);
  992. }
  993. inline float code_value_float() {
  994. float ret;
  995. char* e = strchr(seen_pointer, 'E');
  996. if (e) {
  997. *e = 0;
  998. ret = strtod(seen_pointer + 1, NULL);
  999. *e = 'E';
  1000. }
  1001. else
  1002. ret = strtod(seen_pointer + 1, NULL);
  1003. return ret;
  1004. }
  1005. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1006. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1007. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1008. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1009. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1010. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1011. #if ENABLED(INCH_MODE_SUPPORT)
  1012. inline void set_input_linear_units(LinearUnit units) {
  1013. switch (units) {
  1014. case LINEARUNIT_INCH:
  1015. linear_unit_factor = 25.4;
  1016. break;
  1017. case LINEARUNIT_MM:
  1018. default:
  1019. linear_unit_factor = 1.0;
  1020. break;
  1021. }
  1022. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1023. }
  1024. inline float axis_unit_factor(int axis) {
  1025. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1026. }
  1027. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1028. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1029. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1030. #else
  1031. inline float code_value_linear_units() { return code_value_float(); }
  1032. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1033. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1034. #endif
  1035. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1036. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1037. float code_value_temp_abs() {
  1038. switch (input_temp_units) {
  1039. case TEMPUNIT_C:
  1040. return code_value_float();
  1041. case TEMPUNIT_F:
  1042. return (code_value_float() - 32) * 0.5555555556;
  1043. case TEMPUNIT_K:
  1044. return code_value_float() - 272.15;
  1045. default:
  1046. return code_value_float();
  1047. }
  1048. }
  1049. float code_value_temp_diff() {
  1050. switch (input_temp_units) {
  1051. case TEMPUNIT_C:
  1052. case TEMPUNIT_K:
  1053. return code_value_float();
  1054. case TEMPUNIT_F:
  1055. return code_value_float() * 0.5555555556;
  1056. default:
  1057. return code_value_float();
  1058. }
  1059. }
  1060. #else
  1061. float code_value_temp_abs() { return code_value_float(); }
  1062. float code_value_temp_diff() { return code_value_float(); }
  1063. #endif
  1064. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1065. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1066. bool code_seen(char code) {
  1067. seen_pointer = strchr(current_command_args, code);
  1068. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1069. }
  1070. /**
  1071. * Set target_extruder from the T parameter or the active_extruder
  1072. *
  1073. * Returns TRUE if the target is invalid
  1074. */
  1075. bool get_target_extruder_from_command(int code) {
  1076. if (code_seen('T')) {
  1077. if (code_value_byte() >= EXTRUDERS) {
  1078. SERIAL_ECHO_START;
  1079. SERIAL_CHAR('M');
  1080. SERIAL_ECHO(code);
  1081. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1082. return true;
  1083. }
  1084. target_extruder = code_value_byte();
  1085. }
  1086. else
  1087. target_extruder = active_extruder;
  1088. return false;
  1089. }
  1090. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1091. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1092. #endif
  1093. #if ENABLED(DUAL_X_CARRIAGE)
  1094. #define DXC_FULL_CONTROL_MODE 0
  1095. #define DXC_AUTO_PARK_MODE 1
  1096. #define DXC_DUPLICATION_MODE 2
  1097. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1098. static float x_home_pos(int extruder) {
  1099. if (extruder == 0)
  1100. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1101. else
  1102. /**
  1103. * In dual carriage mode the extruder offset provides an override of the
  1104. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1105. * This allow soft recalibration of the second extruder offset position
  1106. * without firmware reflash (through the M218 command).
  1107. */
  1108. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1109. }
  1110. static int x_home_dir(int extruder) {
  1111. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1112. }
  1113. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1114. static bool active_extruder_parked = false; // used in mode 1 & 2
  1115. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1116. static millis_t delayed_move_time = 0; // used in mode 1
  1117. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1118. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1119. #endif //DUAL_X_CARRIAGE
  1120. /**
  1121. * Software endstops can be used to monitor the open end of
  1122. * an axis that has a hardware endstop on the other end. Or
  1123. * they can prevent axes from moving past endstops and grinding.
  1124. *
  1125. * To keep doing their job as the coordinate system changes,
  1126. * the software endstop positions must be refreshed to remain
  1127. * at the same positions relative to the machine.
  1128. */
  1129. void update_software_endstops(AxisEnum axis) {
  1130. float offs = LOGICAL_POSITION(0, axis);
  1131. #if ENABLED(DUAL_X_CARRIAGE)
  1132. if (axis == X_AXIS) {
  1133. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1134. if (active_extruder != 0) {
  1135. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1136. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1137. return;
  1138. }
  1139. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1140. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1141. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1142. return;
  1143. }
  1144. }
  1145. else
  1146. #endif
  1147. {
  1148. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1149. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1150. }
  1151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1152. if (DEBUGGING(LEVELING)) {
  1153. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1154. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1155. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1156. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1157. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1158. }
  1159. #endif
  1160. #if ENABLED(DELTA)
  1161. if (axis == Z_AXIS)
  1162. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1163. #endif
  1164. }
  1165. /**
  1166. * Change the home offset for an axis, update the current
  1167. * position and the software endstops to retain the same
  1168. * relative distance to the new home.
  1169. *
  1170. * Since this changes the current_position, code should
  1171. * call sync_plan_position soon after this.
  1172. */
  1173. static void set_home_offset(AxisEnum axis, float v) {
  1174. current_position[axis] += v - home_offset[axis];
  1175. home_offset[axis] = v;
  1176. update_software_endstops(axis);
  1177. }
  1178. /**
  1179. * Set an axis' current position to its home position (after homing).
  1180. *
  1181. * For Core and Cartesian robots this applies one-to-one when an
  1182. * individual axis has been homed.
  1183. *
  1184. * DELTA should wait until all homing is done before setting the XYZ
  1185. * current_position to home, because homing is a single operation.
  1186. * In the case where the axis positions are already known and previously
  1187. * homed, DELTA could home to X or Y individually by moving either one
  1188. * to the center. However, homing Z always homes XY and Z.
  1189. *
  1190. * SCARA should wait until all XY homing is done before setting the XY
  1191. * current_position to home, because neither X nor Y is at home until
  1192. * both are at home. Z can however be homed individually.
  1193. *
  1194. */
  1195. static void set_axis_is_at_home(AxisEnum axis) {
  1196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1197. if (DEBUGGING(LEVELING)) {
  1198. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1199. SERIAL_CHAR(')');
  1200. SERIAL_EOL;
  1201. }
  1202. #endif
  1203. axis_known_position[axis] = axis_homed[axis] = true;
  1204. position_shift[axis] = 0;
  1205. update_software_endstops(axis);
  1206. #if ENABLED(DUAL_X_CARRIAGE)
  1207. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1208. if (active_extruder != 0)
  1209. current_position[X_AXIS] = x_home_pos(active_extruder);
  1210. else
  1211. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1212. update_software_endstops(X_AXIS);
  1213. return;
  1214. }
  1215. #endif
  1216. #if ENABLED(MORGAN_SCARA)
  1217. /**
  1218. * Morgan SCARA homes XY at the same time
  1219. */
  1220. if (axis == X_AXIS || axis == Y_AXIS) {
  1221. float homeposition[XYZ];
  1222. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1223. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1224. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1225. /**
  1226. * Get Home position SCARA arm angles using inverse kinematics,
  1227. * and calculate homing offset using forward kinematics
  1228. */
  1229. inverse_kinematics(homeposition);
  1230. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1231. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1232. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1233. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1234. /**
  1235. * SCARA home positions are based on configuration since the actual
  1236. * limits are determined by the inverse kinematic transform.
  1237. */
  1238. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1239. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1240. }
  1241. else
  1242. #endif
  1243. {
  1244. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1245. }
  1246. /**
  1247. * Z Probe Z Homing? Account for the probe's Z offset.
  1248. */
  1249. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1250. if (axis == Z_AXIS) {
  1251. #if HOMING_Z_WITH_PROBE
  1252. current_position[Z_AXIS] -= zprobe_zoffset;
  1253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1254. if (DEBUGGING(LEVELING)) {
  1255. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1256. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1257. }
  1258. #endif
  1259. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1261. #endif
  1262. }
  1263. #endif
  1264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1265. if (DEBUGGING(LEVELING)) {
  1266. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1267. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1268. DEBUG_POS("", current_position);
  1269. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1270. SERIAL_CHAR(')');
  1271. SERIAL_EOL;
  1272. }
  1273. #endif
  1274. }
  1275. /**
  1276. * Some planner shorthand inline functions
  1277. */
  1278. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1279. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1280. int hbd = homing_bump_divisor[axis];
  1281. if (hbd < 1) {
  1282. hbd = 10;
  1283. SERIAL_ECHO_START;
  1284. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1285. }
  1286. return homing_feedrate_mm_s[axis] / hbd;
  1287. }
  1288. //
  1289. // line_to_current_position
  1290. // Move the planner to the current position from wherever it last moved
  1291. // (or from wherever it has been told it is located).
  1292. //
  1293. inline void line_to_current_position() {
  1294. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1295. }
  1296. //
  1297. // line_to_destination
  1298. // Move the planner, not necessarily synced with current_position
  1299. //
  1300. inline void line_to_destination(float fr_mm_s) {
  1301. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1302. }
  1303. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1304. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1305. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1306. #if IS_KINEMATIC
  1307. /**
  1308. * Calculate delta, start a line, and set current_position to destination
  1309. */
  1310. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1313. #endif
  1314. if ( current_position[X_AXIS] == destination[X_AXIS]
  1315. && current_position[Y_AXIS] == destination[Y_AXIS]
  1316. && current_position[Z_AXIS] == destination[Z_AXIS]
  1317. && current_position[E_AXIS] == destination[E_AXIS]
  1318. ) return;
  1319. refresh_cmd_timeout();
  1320. inverse_kinematics(destination);
  1321. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1322. set_current_to_destination();
  1323. }
  1324. #endif // IS_KINEMATIC
  1325. /**
  1326. * Plan a move to (X, Y, Z) and set the current_position
  1327. * The final current_position may not be the one that was requested
  1328. */
  1329. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1330. float old_feedrate_mm_s = feedrate_mm_s;
  1331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1332. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1333. #endif
  1334. #if ENABLED(DELTA)
  1335. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1336. set_destination_to_current(); // sync destination at the start
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1339. #endif
  1340. // when in the danger zone
  1341. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1342. if (z > delta_clip_start_height) { // staying in the danger zone
  1343. destination[X_AXIS] = x; // move directly (uninterpolated)
  1344. destination[Y_AXIS] = y;
  1345. destination[Z_AXIS] = z;
  1346. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1349. #endif
  1350. return;
  1351. }
  1352. else {
  1353. destination[Z_AXIS] = delta_clip_start_height;
  1354. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1357. #endif
  1358. }
  1359. }
  1360. if (z > current_position[Z_AXIS]) { // raising?
  1361. destination[Z_AXIS] = z;
  1362. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1365. #endif
  1366. }
  1367. destination[X_AXIS] = x;
  1368. destination[Y_AXIS] = y;
  1369. prepare_move_to_destination(); // set_current_to_destination
  1370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1371. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1372. #endif
  1373. if (z < current_position[Z_AXIS]) { // lowering?
  1374. destination[Z_AXIS] = z;
  1375. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1377. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1378. #endif
  1379. }
  1380. #elif IS_SCARA
  1381. set_destination_to_current();
  1382. // If Z needs to raise, do it before moving XY
  1383. if (destination[Z_AXIS] < z) {
  1384. destination[Z_AXIS] = z;
  1385. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1386. }
  1387. destination[X_AXIS] = x;
  1388. destination[Y_AXIS] = y;
  1389. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1390. // If Z needs to lower, do it after moving XY
  1391. if (destination[Z_AXIS] > z) {
  1392. destination[Z_AXIS] = z;
  1393. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1394. }
  1395. #else
  1396. // If Z needs to raise, do it before moving XY
  1397. if (current_position[Z_AXIS] < z) {
  1398. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1399. current_position[Z_AXIS] = z;
  1400. line_to_current_position();
  1401. }
  1402. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1403. current_position[X_AXIS] = x;
  1404. current_position[Y_AXIS] = y;
  1405. line_to_current_position();
  1406. // If Z needs to lower, do it after moving XY
  1407. if (current_position[Z_AXIS] > z) {
  1408. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1409. current_position[Z_AXIS] = z;
  1410. line_to_current_position();
  1411. }
  1412. #endif
  1413. stepper.synchronize();
  1414. feedrate_mm_s = old_feedrate_mm_s;
  1415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1416. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1417. #endif
  1418. }
  1419. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1420. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1421. }
  1422. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1423. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1424. }
  1425. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1426. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1427. }
  1428. //
  1429. // Prepare to do endstop or probe moves
  1430. // with custom feedrates.
  1431. //
  1432. // - Save current feedrates
  1433. // - Reset the rate multiplier
  1434. // - Reset the command timeout
  1435. // - Enable the endstops (for endstop moves)
  1436. //
  1437. static void setup_for_endstop_or_probe_move() {
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1440. #endif
  1441. saved_feedrate_mm_s = feedrate_mm_s;
  1442. saved_feedrate_percentage = feedrate_percentage;
  1443. feedrate_percentage = 100;
  1444. refresh_cmd_timeout();
  1445. }
  1446. static void clean_up_after_endstop_or_probe_move() {
  1447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1448. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1449. #endif
  1450. feedrate_mm_s = saved_feedrate_mm_s;
  1451. feedrate_percentage = saved_feedrate_percentage;
  1452. refresh_cmd_timeout();
  1453. }
  1454. #if HAS_BED_PROBE
  1455. /**
  1456. * Raise Z to a minimum height to make room for a probe to move
  1457. */
  1458. inline void do_probe_raise(float z_raise) {
  1459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1460. if (DEBUGGING(LEVELING)) {
  1461. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1462. SERIAL_CHAR(')');
  1463. SERIAL_EOL;
  1464. }
  1465. #endif
  1466. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1467. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1468. if (z_dest > current_position[Z_AXIS])
  1469. do_blocking_move_to_z(z_dest);
  1470. }
  1471. #endif //HAS_BED_PROBE
  1472. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1473. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1474. const bool xx = x && !axis_homed[X_AXIS],
  1475. yy = y && !axis_homed[Y_AXIS],
  1476. zz = z && !axis_homed[Z_AXIS];
  1477. if (xx || yy || zz) {
  1478. SERIAL_ECHO_START;
  1479. SERIAL_ECHOPGM(MSG_HOME " ");
  1480. if (xx) SERIAL_ECHOPGM(MSG_X);
  1481. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1482. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1483. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1484. #if ENABLED(ULTRA_LCD)
  1485. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1486. strcat_P(message, PSTR(MSG_HOME " "));
  1487. if (xx) strcat_P(message, PSTR(MSG_X));
  1488. if (yy) strcat_P(message, PSTR(MSG_Y));
  1489. if (zz) strcat_P(message, PSTR(MSG_Z));
  1490. strcat_P(message, PSTR(" " MSG_FIRST));
  1491. lcd_setstatus(message);
  1492. #endif
  1493. return true;
  1494. }
  1495. return false;
  1496. }
  1497. #endif
  1498. #if ENABLED(Z_PROBE_SLED)
  1499. #ifndef SLED_DOCKING_OFFSET
  1500. #define SLED_DOCKING_OFFSET 0
  1501. #endif
  1502. /**
  1503. * Method to dock/undock a sled designed by Charles Bell.
  1504. *
  1505. * stow[in] If false, move to MAX_X and engage the solenoid
  1506. * If true, move to MAX_X and release the solenoid
  1507. */
  1508. static void dock_sled(bool stow) {
  1509. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1510. if (DEBUGGING(LEVELING)) {
  1511. SERIAL_ECHOPAIR("dock_sled(", stow);
  1512. SERIAL_CHAR(')');
  1513. SERIAL_EOL;
  1514. }
  1515. #endif
  1516. // Dock sled a bit closer to ensure proper capturing
  1517. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1518. #if PIN_EXISTS(SLED)
  1519. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1520. #endif
  1521. }
  1522. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1523. void run_deploy_moves_script() {
  1524. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1525. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1526. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1527. #endif
  1528. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1529. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1530. #endif
  1531. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1532. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1533. #endif
  1534. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1535. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1536. #endif
  1537. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1538. #endif
  1539. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1540. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1541. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1544. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1545. #endif
  1546. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1547. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1548. #endif
  1549. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1550. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1551. #endif
  1552. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1553. #endif
  1554. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1555. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1556. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1559. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1560. #endif
  1561. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1562. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1563. #endif
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1566. #endif
  1567. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1568. #endif
  1569. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1575. #endif
  1576. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1577. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1578. #endif
  1579. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1580. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1581. #endif
  1582. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1583. #endif
  1584. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1589. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1590. #endif
  1591. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1592. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1593. #endif
  1594. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1595. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1596. #endif
  1597. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1598. #endif
  1599. }
  1600. void run_stow_moves_script() {
  1601. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1602. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1603. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1606. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1609. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1612. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1613. #endif
  1614. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1615. #endif
  1616. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1617. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1618. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1621. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1624. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1627. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1628. #endif
  1629. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1630. #endif
  1631. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1632. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1633. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1636. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1639. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1642. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1643. #endif
  1644. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1645. #endif
  1646. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1648. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1651. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1654. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1657. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1658. #endif
  1659. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1660. #endif
  1661. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1663. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1666. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1669. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1672. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1673. #endif
  1674. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1675. #endif
  1676. }
  1677. #endif
  1678. #if HAS_BED_PROBE
  1679. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1680. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1681. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1682. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1683. #else
  1684. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1685. #endif
  1686. #endif
  1687. #define DEPLOY_PROBE() set_probe_deployed(true)
  1688. #define STOW_PROBE() set_probe_deployed(false)
  1689. #if ENABLED(BLTOUCH)
  1690. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1691. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1692. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1693. if (DEBUGGING(LEVELING)) {
  1694. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1695. SERIAL_CHAR(')');
  1696. SERIAL_EOL;
  1697. }
  1698. #endif
  1699. }
  1700. #endif
  1701. // returns false for ok and true for failure
  1702. static bool set_probe_deployed(bool deploy) {
  1703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1704. if (DEBUGGING(LEVELING)) {
  1705. DEBUG_POS("set_probe_deployed", current_position);
  1706. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1707. }
  1708. #endif
  1709. if (endstops.z_probe_enabled == deploy) return false;
  1710. // Make room for probe
  1711. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1712. // When deploying make sure BLTOUCH is not already triggered
  1713. #if ENABLED(BLTOUCH)
  1714. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1715. #endif
  1716. #if ENABLED(Z_PROBE_SLED)
  1717. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1718. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1719. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1720. #endif
  1721. float oldXpos = current_position[X_AXIS],
  1722. oldYpos = current_position[Y_AXIS];
  1723. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1724. // If endstop is already false, the Z probe is deployed
  1725. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1726. // Would a goto be less ugly?
  1727. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1728. // for a triggered when stowed manual probe.
  1729. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1730. // otherwise an Allen-Key probe can't be stowed.
  1731. #endif
  1732. #if ENABLED(Z_PROBE_SLED)
  1733. dock_sled(!deploy);
  1734. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1735. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1736. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1737. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1738. #endif
  1739. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1740. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1741. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1742. if (IsRunning()) {
  1743. SERIAL_ERROR_START;
  1744. SERIAL_ERRORLNPGM("Z-Probe failed");
  1745. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1746. }
  1747. stop();
  1748. return true;
  1749. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1750. #endif
  1751. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1752. endstops.enable_z_probe(deploy);
  1753. return false;
  1754. }
  1755. static void do_probe_move(float z, float fr_mm_m) {
  1756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1757. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1758. #endif
  1759. // Deploy BLTouch at the start of any probe
  1760. #if ENABLED(BLTOUCH)
  1761. set_bltouch_deployed(true);
  1762. #endif
  1763. // Move down until probe triggered
  1764. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1765. // Retract BLTouch immediately after a probe
  1766. #if ENABLED(BLTOUCH)
  1767. set_bltouch_deployed(false);
  1768. #endif
  1769. // Clear endstop flags
  1770. endstops.hit_on_purpose();
  1771. // Tell the planner where we actually are
  1772. planner.sync_from_steppers();
  1773. // Get Z where the steppers were interrupted
  1774. set_current_from_steppers_for_axis(Z_AXIS);
  1775. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1776. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1777. #endif
  1778. }
  1779. // Do a single Z probe and return with current_position[Z_AXIS]
  1780. // at the height where the probe triggered.
  1781. static float run_z_probe() {
  1782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1783. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1784. #endif
  1785. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1786. refresh_cmd_timeout();
  1787. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1788. // Do a first probe at the fast speed
  1789. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1791. float first_probe_z = current_position[Z_AXIS];
  1792. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1793. #endif
  1794. // move up by the bump distance
  1795. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1796. #else
  1797. // If the nozzle is above the travel height then
  1798. // move down quickly before doing the slow probe
  1799. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1800. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1801. if (z < current_position[Z_AXIS])
  1802. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1803. #endif
  1804. // move down slowly to find bed
  1805. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1807. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1808. #endif
  1809. // Debug: compare probe heights
  1810. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1811. if (DEBUGGING(LEVELING)) {
  1812. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1813. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1814. }
  1815. #endif
  1816. return current_position[Z_AXIS];
  1817. }
  1818. //
  1819. // - Move to the given XY
  1820. // - Deploy the probe, if not already deployed
  1821. // - Probe the bed, get the Z position
  1822. // - Depending on the 'stow' flag
  1823. // - Stow the probe, or
  1824. // - Raise to the BETWEEN height
  1825. // - Return the probed Z position
  1826. //
  1827. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. if (DEBUGGING(LEVELING)) {
  1830. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1831. SERIAL_ECHOPAIR(", ", y);
  1832. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1833. SERIAL_ECHOLNPGM("stow)");
  1834. DEBUG_POS("", current_position);
  1835. }
  1836. #endif
  1837. float old_feedrate_mm_s = feedrate_mm_s;
  1838. // Ensure a minimum height before moving the probe
  1839. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1840. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1841. // Move the probe to the given XY
  1842. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1843. if (DEPLOY_PROBE()) return NAN;
  1844. float measured_z = run_z_probe();
  1845. if (!stow)
  1846. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1847. else
  1848. if (STOW_PROBE()) return NAN;
  1849. if (verbose_level > 2) {
  1850. SERIAL_PROTOCOLPGM("Bed X: ");
  1851. SERIAL_PROTOCOL_F(x, 3);
  1852. SERIAL_PROTOCOLPGM(" Y: ");
  1853. SERIAL_PROTOCOL_F(y, 3);
  1854. SERIAL_PROTOCOLPGM(" Z: ");
  1855. SERIAL_PROTOCOL_F(measured_z, 3);
  1856. SERIAL_EOL;
  1857. }
  1858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1859. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1860. #endif
  1861. feedrate_mm_s = old_feedrate_mm_s;
  1862. return measured_z;
  1863. }
  1864. #endif // HAS_BED_PROBE
  1865. #if PLANNER_LEVELING
  1866. /**
  1867. * Turn bed leveling on or off, fixing the current
  1868. * position as-needed.
  1869. *
  1870. * Disable: Current position = physical position
  1871. * Enable: Current position = "unleveled" physical position
  1872. */
  1873. void set_bed_leveling_enabled(bool enable=true) {
  1874. #if ENABLED(MESH_BED_LEVELING)
  1875. if (!enable && mbl.active())
  1876. current_position[Z_AXIS] +=
  1877. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1878. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1879. #elif HAS_ABL
  1880. if (enable != planner.abl_enabled) {
  1881. planner.abl_enabled = !planner.abl_enabled;
  1882. if (!planner.abl_enabled)
  1883. set_current_from_steppers_for_axis(
  1884. #if ABL_PLANAR
  1885. ALL_AXES
  1886. #else
  1887. Z_AXIS
  1888. #endif
  1889. );
  1890. else
  1891. planner.unapply_leveling(current_position);
  1892. }
  1893. #endif
  1894. }
  1895. /**
  1896. * Reset calibration results to zero.
  1897. */
  1898. void reset_bed_level() {
  1899. #if ENABLED(MESH_BED_LEVELING)
  1900. if (mbl.has_mesh()) {
  1901. set_bed_leveling_enabled(false);
  1902. mbl.reset();
  1903. mbl.set_has_mesh(false);
  1904. }
  1905. #else
  1906. planner.abl_enabled = false;
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1909. #endif
  1910. #if ABL_PLANAR
  1911. planner.bed_level_matrix.set_to_identity();
  1912. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1913. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1914. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1915. bed_level_grid[x][y] = 1000.0;
  1916. #endif
  1917. #endif
  1918. }
  1919. #endif // PLANNER_LEVELING
  1920. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1921. /**
  1922. * Extrapolate a single point from its neighbors
  1923. */
  1924. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1926. if (DEBUGGING(LEVELING)) {
  1927. SERIAL_ECHOPGM("Extrapolate [");
  1928. if (x < 10) SERIAL_CHAR(' ');
  1929. SERIAL_ECHO((int)x);
  1930. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1931. SERIAL_CHAR(' ');
  1932. if (y < 10) SERIAL_CHAR(' ');
  1933. SERIAL_ECHO((int)y);
  1934. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1935. SERIAL_CHAR(']');
  1936. }
  1937. #endif
  1938. if (bed_level_grid[x][y] < 999.0) {
  1939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1940. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1941. #endif
  1942. return; // Don't overwrite good values.
  1943. }
  1944. SERIAL_EOL;
  1945. // Get X neighbors, Y neighbors, and XY neighbors
  1946. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1947. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1948. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1949. // Treat far unprobed points as zero, near as equal to far
  1950. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1951. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1952. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1953. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1954. // Take the average intstead of the median
  1955. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1956. // Median is robust (ignores outliers).
  1957. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1958. // : ((c < b) ? b : (a < c) ? a : c);
  1959. }
  1960. #define EXTRAPOLATE_FROM_EDGE
  1961. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1962. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1963. #define HALF_IN_X
  1964. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1965. #define HALF_IN_Y
  1966. #endif
  1967. #endif
  1968. /**
  1969. * Fill in the unprobed points (corners of circular print surface)
  1970. * using linear extrapolation, away from the center.
  1971. */
  1972. static void extrapolate_unprobed_bed_level() {
  1973. #ifdef HALF_IN_X
  1974. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1975. #else
  1976. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1977. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1978. xlen = ctrx1;
  1979. #endif
  1980. #ifdef HALF_IN_Y
  1981. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1982. #else
  1983. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1984. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  1985. ylen = ctry1;
  1986. #endif
  1987. for (uint8_t xo = 0; xo <= xlen; xo++)
  1988. for (uint8_t yo = 0; yo <= ylen; yo++) {
  1989. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  1990. #ifndef HALF_IN_X
  1991. uint8_t x1 = ctrx1 - xo;
  1992. #endif
  1993. #ifndef HALF_IN_Y
  1994. uint8_t y1 = ctry1 - yo;
  1995. #ifndef HALF_IN_X
  1996. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  1997. #endif
  1998. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  1999. #endif
  2000. #ifndef HALF_IN_X
  2001. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2002. #endif
  2003. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2004. }
  2005. }
  2006. /**
  2007. * Print calibration results for plotting or manual frame adjustment.
  2008. */
  2009. static void print_bed_level() {
  2010. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2011. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2012. SERIAL_PROTOCOLPGM(" ");
  2013. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2014. SERIAL_PROTOCOL((int)x);
  2015. }
  2016. SERIAL_EOL;
  2017. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2018. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  2019. SERIAL_PROTOCOL((int)y);
  2020. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2021. SERIAL_PROTOCOLCHAR(' ');
  2022. float offset = bed_level_grid[x][y];
  2023. if (offset < 999.0) {
  2024. if (offset > 0) SERIAL_CHAR('+');
  2025. SERIAL_PROTOCOL_F(offset, 2);
  2026. }
  2027. else
  2028. SERIAL_PROTOCOLPGM(" ====");
  2029. }
  2030. SERIAL_EOL;
  2031. }
  2032. SERIAL_EOL;
  2033. }
  2034. #endif // AUTO_BED_LEVELING_BILINEAR
  2035. /**
  2036. * Home an individual linear axis
  2037. */
  2038. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2039. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2040. if (DEBUGGING(LEVELING)) {
  2041. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2042. SERIAL_ECHOPAIR(", ", distance);
  2043. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2044. SERIAL_CHAR(')');
  2045. SERIAL_EOL;
  2046. }
  2047. #endif
  2048. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2049. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2050. if (deploy_bltouch) set_bltouch_deployed(true);
  2051. #endif
  2052. // Tell the planner we're at Z=0
  2053. current_position[axis] = 0;
  2054. #if IS_SCARA
  2055. SYNC_PLAN_POSITION_KINEMATIC();
  2056. current_position[axis] = distance;
  2057. inverse_kinematics(current_position);
  2058. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2059. #else
  2060. sync_plan_position();
  2061. current_position[axis] = distance;
  2062. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2063. #endif
  2064. stepper.synchronize();
  2065. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2066. if (deploy_bltouch) set_bltouch_deployed(false);
  2067. #endif
  2068. endstops.hit_on_purpose();
  2069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2070. if (DEBUGGING(LEVELING)) {
  2071. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2072. SERIAL_CHAR(')');
  2073. SERIAL_EOL;
  2074. }
  2075. #endif
  2076. }
  2077. /**
  2078. * Home an individual "raw axis" to its endstop.
  2079. * This applies to XYZ on Cartesian and Core robots, and
  2080. * to the individual ABC steppers on DELTA and SCARA.
  2081. *
  2082. * At the end of the procedure the axis is marked as
  2083. * homed and the current position of that axis is updated.
  2084. * Kinematic robots should wait till all axes are homed
  2085. * before updating the current position.
  2086. */
  2087. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2088. static void homeaxis(AxisEnum axis) {
  2089. #if IS_SCARA
  2090. // Only Z homing (with probe) is permitted
  2091. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2092. #else
  2093. #define CAN_HOME(A) \
  2094. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2095. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2096. #endif
  2097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2098. if (DEBUGGING(LEVELING)) {
  2099. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2100. SERIAL_CHAR(')');
  2101. SERIAL_EOL;
  2102. }
  2103. #endif
  2104. int axis_home_dir =
  2105. #if ENABLED(DUAL_X_CARRIAGE)
  2106. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2107. #endif
  2108. home_dir(axis);
  2109. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2110. #if HOMING_Z_WITH_PROBE
  2111. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2112. #endif
  2113. // Set a flag for Z motor locking
  2114. #if ENABLED(Z_DUAL_ENDSTOPS)
  2115. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2116. #endif
  2117. // Fast move towards endstop until triggered
  2118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2119. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2120. #endif
  2121. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2122. // When homing Z with probe respect probe clearance
  2123. const float bump = axis_home_dir * (
  2124. #if HOMING_Z_WITH_PROBE
  2125. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2126. #endif
  2127. home_bump_mm(axis)
  2128. );
  2129. // If a second homing move is configured...
  2130. if (bump) {
  2131. // Move away from the endstop by the axis HOME_BUMP_MM
  2132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2133. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2134. #endif
  2135. do_homing_move(axis, -bump);
  2136. // Slow move towards endstop until triggered
  2137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2138. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2139. #endif
  2140. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2141. }
  2142. #if ENABLED(Z_DUAL_ENDSTOPS)
  2143. if (axis == Z_AXIS) {
  2144. float adj = fabs(z_endstop_adj);
  2145. bool lockZ1;
  2146. if (axis_home_dir > 0) {
  2147. adj = -adj;
  2148. lockZ1 = (z_endstop_adj > 0);
  2149. }
  2150. else
  2151. lockZ1 = (z_endstop_adj < 0);
  2152. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2153. // Move to the adjusted endstop height
  2154. do_homing_move(axis, adj);
  2155. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2156. stepper.set_homing_flag(false);
  2157. } // Z_AXIS
  2158. #endif
  2159. #if IS_SCARA
  2160. set_axis_is_at_home(axis);
  2161. SYNC_PLAN_POSITION_KINEMATIC();
  2162. #elif ENABLED(DELTA)
  2163. // Delta has already moved all three towers up in G28
  2164. // so here it re-homes each tower in turn.
  2165. // Delta homing treats the axes as normal linear axes.
  2166. // retrace by the amount specified in endstop_adj
  2167. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2168. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2169. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2170. #endif
  2171. do_homing_move(axis, endstop_adj[axis]);
  2172. }
  2173. #else
  2174. // For cartesian/core machines,
  2175. // set the axis to its home position
  2176. set_axis_is_at_home(axis);
  2177. sync_plan_position();
  2178. destination[axis] = current_position[axis];
  2179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2180. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2181. #endif
  2182. #endif
  2183. // Put away the Z probe
  2184. #if HOMING_Z_WITH_PROBE
  2185. if (axis == Z_AXIS && STOW_PROBE()) return;
  2186. #endif
  2187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2188. if (DEBUGGING(LEVELING)) {
  2189. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2190. SERIAL_CHAR(')');
  2191. SERIAL_EOL;
  2192. }
  2193. #endif
  2194. } // homeaxis()
  2195. #if ENABLED(FWRETRACT)
  2196. void retract(bool retracting, bool swapping = false) {
  2197. if (retracting == retracted[active_extruder]) return;
  2198. float old_feedrate_mm_s = feedrate_mm_s;
  2199. set_destination_to_current();
  2200. if (retracting) {
  2201. feedrate_mm_s = retract_feedrate_mm_s;
  2202. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2203. sync_plan_position_e();
  2204. prepare_move_to_destination();
  2205. if (retract_zlift > 0.01) {
  2206. current_position[Z_AXIS] -= retract_zlift;
  2207. SYNC_PLAN_POSITION_KINEMATIC();
  2208. prepare_move_to_destination();
  2209. }
  2210. }
  2211. else {
  2212. if (retract_zlift > 0.01) {
  2213. current_position[Z_AXIS] += retract_zlift;
  2214. SYNC_PLAN_POSITION_KINEMATIC();
  2215. }
  2216. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2217. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2218. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2219. sync_plan_position_e();
  2220. prepare_move_to_destination();
  2221. }
  2222. feedrate_mm_s = old_feedrate_mm_s;
  2223. retracted[active_extruder] = retracting;
  2224. } // retract()
  2225. #endif // FWRETRACT
  2226. #if ENABLED(MIXING_EXTRUDER)
  2227. void normalize_mix() {
  2228. float mix_total = 0.0;
  2229. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2230. float v = mixing_factor[i];
  2231. if (v < 0) v = mixing_factor[i] = 0;
  2232. mix_total += v;
  2233. }
  2234. // Scale all values if they don't add up to ~1.0
  2235. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2236. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2237. float mix_scale = 1.0 / mix_total;
  2238. for (int i = 0; i < MIXING_STEPPERS; i++)
  2239. mixing_factor[i] *= mix_scale;
  2240. }
  2241. }
  2242. #if ENABLED(DIRECT_MIXING_IN_G1)
  2243. // Get mixing parameters from the GCode
  2244. // Factors that are left out are set to 0
  2245. // The total "must" be 1.0 (but it will be normalized)
  2246. void gcode_get_mix() {
  2247. const char* mixing_codes = "ABCDHI";
  2248. for (int i = 0; i < MIXING_STEPPERS; i++)
  2249. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2250. normalize_mix();
  2251. }
  2252. #endif
  2253. #endif
  2254. /**
  2255. * ***************************************************************************
  2256. * ***************************** G-CODE HANDLING *****************************
  2257. * ***************************************************************************
  2258. */
  2259. /**
  2260. * Set XYZE destination and feedrate from the current GCode command
  2261. *
  2262. * - Set destination from included axis codes
  2263. * - Set to current for missing axis codes
  2264. * - Set the feedrate, if included
  2265. */
  2266. void gcode_get_destination() {
  2267. LOOP_XYZE(i) {
  2268. if (code_seen(axis_codes[i]))
  2269. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2270. else
  2271. destination[i] = current_position[i];
  2272. }
  2273. if (code_seen('F') && code_value_linear_units() > 0.0)
  2274. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2275. #if ENABLED(PRINTCOUNTER)
  2276. if (!DEBUGGING(DRYRUN))
  2277. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2278. #endif
  2279. // Get ABCDHI mixing factors
  2280. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2281. gcode_get_mix();
  2282. #endif
  2283. }
  2284. void unknown_command_error() {
  2285. SERIAL_ECHO_START;
  2286. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2287. SERIAL_CHAR('"');
  2288. SERIAL_EOL;
  2289. }
  2290. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2291. /**
  2292. * Output a "busy" message at regular intervals
  2293. * while the machine is not accepting commands.
  2294. */
  2295. void host_keepalive() {
  2296. millis_t ms = millis();
  2297. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2298. if (PENDING(ms, next_busy_signal_ms)) return;
  2299. switch (busy_state) {
  2300. case IN_HANDLER:
  2301. case IN_PROCESS:
  2302. SERIAL_ECHO_START;
  2303. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2304. break;
  2305. case PAUSED_FOR_USER:
  2306. SERIAL_ECHO_START;
  2307. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2308. break;
  2309. case PAUSED_FOR_INPUT:
  2310. SERIAL_ECHO_START;
  2311. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2312. break;
  2313. default:
  2314. break;
  2315. }
  2316. }
  2317. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2318. }
  2319. #endif //HOST_KEEPALIVE_FEATURE
  2320. bool position_is_reachable(float target[XYZ]
  2321. #if HAS_BED_PROBE
  2322. , bool by_probe=false
  2323. #endif
  2324. ) {
  2325. float dx = RAW_X_POSITION(target[X_AXIS]),
  2326. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2327. #if HAS_BED_PROBE
  2328. if (by_probe) {
  2329. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2330. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2331. }
  2332. #endif
  2333. #if IS_SCARA
  2334. #if MIDDLE_DEAD_ZONE_R > 0
  2335. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2336. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2337. #else
  2338. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2339. #endif
  2340. #elif ENABLED(DELTA)
  2341. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2342. #else
  2343. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2344. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2345. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2346. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2347. #endif
  2348. }
  2349. /**************************************************
  2350. ***************** GCode Handlers *****************
  2351. **************************************************/
  2352. /**
  2353. * G0, G1: Coordinated movement of X Y Z E axes
  2354. */
  2355. inline void gcode_G0_G1(
  2356. #if IS_SCARA
  2357. bool fast_move=false
  2358. #endif
  2359. ) {
  2360. if (IsRunning()) {
  2361. gcode_get_destination(); // For X Y Z E F
  2362. #if ENABLED(FWRETRACT)
  2363. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2364. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2365. // Is this move an attempt to retract or recover?
  2366. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2367. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2368. sync_plan_position_e(); // AND from the planner
  2369. retract(!retracted[active_extruder]);
  2370. return;
  2371. }
  2372. }
  2373. #endif //FWRETRACT
  2374. #if IS_SCARA
  2375. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2376. #else
  2377. prepare_move_to_destination();
  2378. #endif
  2379. }
  2380. }
  2381. /**
  2382. * G2: Clockwise Arc
  2383. * G3: Counterclockwise Arc
  2384. *
  2385. * This command has two forms: IJ-form and R-form.
  2386. *
  2387. * - I specifies an X offset. J specifies a Y offset.
  2388. * At least one of the IJ parameters is required.
  2389. * X and Y can be omitted to do a complete circle.
  2390. * The given XY is not error-checked. The arc ends
  2391. * based on the angle of the destination.
  2392. * Mixing I or J with R will throw an error.
  2393. *
  2394. * - R specifies the radius. X or Y is required.
  2395. * Omitting both X and Y will throw an error.
  2396. * X or Y must differ from the current XY.
  2397. * Mixing R with I or J will throw an error.
  2398. *
  2399. * Examples:
  2400. *
  2401. * G2 I10 ; CW circle centered at X+10
  2402. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2403. */
  2404. #if ENABLED(ARC_SUPPORT)
  2405. inline void gcode_G2_G3(bool clockwise) {
  2406. if (IsRunning()) {
  2407. #if ENABLED(SF_ARC_FIX)
  2408. bool relative_mode_backup = relative_mode;
  2409. relative_mode = true;
  2410. #endif
  2411. gcode_get_destination();
  2412. #if ENABLED(SF_ARC_FIX)
  2413. relative_mode = relative_mode_backup;
  2414. #endif
  2415. float arc_offset[2] = { 0.0, 0.0 };
  2416. if (code_seen('R')) {
  2417. const float r = code_value_axis_units(X_AXIS),
  2418. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2419. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2420. if (r && (x2 != x1 || y2 != y1)) {
  2421. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2422. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2423. d = HYPOT(dx, dy), // Linear distance between the points
  2424. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2425. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2426. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2427. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2428. arc_offset[X_AXIS] = cx - x1;
  2429. arc_offset[Y_AXIS] = cy - y1;
  2430. }
  2431. }
  2432. else {
  2433. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2434. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2435. }
  2436. if (arc_offset[0] || arc_offset[1]) {
  2437. // Send an arc to the planner
  2438. plan_arc(destination, arc_offset, clockwise);
  2439. refresh_cmd_timeout();
  2440. }
  2441. else {
  2442. // Bad arguments
  2443. SERIAL_ERROR_START;
  2444. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2445. }
  2446. }
  2447. }
  2448. #endif
  2449. /**
  2450. * G4: Dwell S<seconds> or P<milliseconds>
  2451. */
  2452. inline void gcode_G4() {
  2453. millis_t dwell_ms = 0;
  2454. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2455. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2456. stepper.synchronize();
  2457. refresh_cmd_timeout();
  2458. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2459. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2460. while (PENDING(millis(), dwell_ms)) idle();
  2461. }
  2462. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2463. /**
  2464. * Parameters interpreted according to:
  2465. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2466. * However I, J omission is not supported at this point; all
  2467. * parameters can be omitted and default to zero.
  2468. */
  2469. /**
  2470. * G5: Cubic B-spline
  2471. */
  2472. inline void gcode_G5() {
  2473. if (IsRunning()) {
  2474. gcode_get_destination();
  2475. float offset[] = {
  2476. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2477. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2478. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2479. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2480. };
  2481. plan_cubic_move(offset);
  2482. }
  2483. }
  2484. #endif // BEZIER_CURVE_SUPPORT
  2485. #if ENABLED(FWRETRACT)
  2486. /**
  2487. * G10 - Retract filament according to settings of M207
  2488. * G11 - Recover filament according to settings of M208
  2489. */
  2490. inline void gcode_G10_G11(bool doRetract=false) {
  2491. #if EXTRUDERS > 1
  2492. if (doRetract) {
  2493. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2494. }
  2495. #endif
  2496. retract(doRetract
  2497. #if EXTRUDERS > 1
  2498. , retracted_swap[active_extruder]
  2499. #endif
  2500. );
  2501. }
  2502. #endif //FWRETRACT
  2503. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2504. /**
  2505. * G12: Clean the nozzle
  2506. */
  2507. inline void gcode_G12() {
  2508. // Don't allow nozzle cleaning without homing first
  2509. if (axis_unhomed_error(true, true, true)) { return; }
  2510. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2511. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2512. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2513. Nozzle::clean(pattern, strokes, objects);
  2514. }
  2515. #endif
  2516. #if ENABLED(INCH_MODE_SUPPORT)
  2517. /**
  2518. * G20: Set input mode to inches
  2519. */
  2520. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2521. /**
  2522. * G21: Set input mode to millimeters
  2523. */
  2524. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2525. #endif
  2526. #if ENABLED(NOZZLE_PARK_FEATURE)
  2527. /**
  2528. * G27: Park the nozzle
  2529. */
  2530. inline void gcode_G27() {
  2531. // Don't allow nozzle parking without homing first
  2532. if (axis_unhomed_error(true, true, true)) { return; }
  2533. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2534. Nozzle::park(z_action);
  2535. }
  2536. #endif // NOZZLE_PARK_FEATURE
  2537. #if ENABLED(QUICK_HOME)
  2538. static void quick_home_xy() {
  2539. // Pretend the current position is 0,0
  2540. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2541. sync_plan_position();
  2542. int x_axis_home_dir =
  2543. #if ENABLED(DUAL_X_CARRIAGE)
  2544. x_home_dir(active_extruder)
  2545. #else
  2546. home_dir(X_AXIS)
  2547. #endif
  2548. ;
  2549. float mlx = max_length(X_AXIS),
  2550. mly = max_length(Y_AXIS),
  2551. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2552. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2553. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2554. endstops.hit_on_purpose(); // clear endstop hit flags
  2555. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2556. }
  2557. #endif // QUICK_HOME
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. void log_machine_info() {
  2560. SERIAL_ECHOPGM("Machine Type: ");
  2561. #if ENABLED(DELTA)
  2562. SERIAL_ECHOLNPGM("Delta");
  2563. #elif IS_SCARA
  2564. SERIAL_ECHOLNPGM("SCARA");
  2565. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2566. SERIAL_ECHOLNPGM("Core");
  2567. #else
  2568. SERIAL_ECHOLNPGM("Cartesian");
  2569. #endif
  2570. SERIAL_ECHOPGM("Probe: ");
  2571. #if ENABLED(FIX_MOUNTED_PROBE)
  2572. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2573. #elif ENABLED(BLTOUCH)
  2574. SERIAL_ECHOLNPGM("BLTOUCH");
  2575. #elif HAS_Z_SERVO_ENDSTOP
  2576. SERIAL_ECHOLNPGM("SERVO PROBE");
  2577. #elif ENABLED(Z_PROBE_SLED)
  2578. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2579. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2580. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2581. #else
  2582. SERIAL_ECHOLNPGM("NONE");
  2583. #endif
  2584. #if HAS_BED_PROBE
  2585. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2586. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2587. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2588. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2589. SERIAL_ECHOPGM(" (Right");
  2590. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2591. SERIAL_ECHOPGM(" (Left");
  2592. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2593. SERIAL_ECHOPGM(" (Middle");
  2594. #else
  2595. SERIAL_ECHOPGM(" (Aligned With");
  2596. #endif
  2597. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2598. SERIAL_ECHOPGM("-Back");
  2599. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2600. SERIAL_ECHOPGM("-Front");
  2601. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2602. SERIAL_ECHOPGM("-Center");
  2603. #endif
  2604. if (zprobe_zoffset < 0)
  2605. SERIAL_ECHOPGM(" & Below");
  2606. else if (zprobe_zoffset > 0)
  2607. SERIAL_ECHOPGM(" & Above");
  2608. else
  2609. SERIAL_ECHOPGM(" & Same Z as");
  2610. SERIAL_ECHOLNPGM(" Nozzle)");
  2611. #endif
  2612. #if HAS_ABL
  2613. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2614. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2615. SERIAL_ECHOPGM("LINEAR");
  2616. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2617. SERIAL_ECHOPGM("BILINEAR");
  2618. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2619. SERIAL_ECHOPGM("3POINT");
  2620. #endif
  2621. if (planner.abl_enabled) {
  2622. SERIAL_ECHOLNPGM(" (enabled)");
  2623. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2624. float diff[XYZ] = {
  2625. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2626. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2627. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2628. };
  2629. SERIAL_ECHOPGM("ABL Adjustment X");
  2630. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2631. SERIAL_ECHO(diff[X_AXIS]);
  2632. SERIAL_ECHOPGM(" Y");
  2633. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2634. SERIAL_ECHO(diff[Y_AXIS]);
  2635. SERIAL_ECHOPGM(" Z");
  2636. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2637. SERIAL_ECHO(diff[Z_AXIS]);
  2638. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2639. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2640. #endif
  2641. }
  2642. SERIAL_EOL;
  2643. #elif ENABLED(MESH_BED_LEVELING)
  2644. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2645. if (mbl.active()) {
  2646. SERIAL_ECHOLNPGM(" (enabled)");
  2647. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2648. }
  2649. SERIAL_EOL;
  2650. #endif
  2651. }
  2652. #endif // DEBUG_LEVELING_FEATURE
  2653. #if ENABLED(DELTA)
  2654. /**
  2655. * A delta can only safely home all axes at the same time
  2656. * This is like quick_home_xy() but for 3 towers.
  2657. */
  2658. inline void home_delta() {
  2659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2660. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2661. #endif
  2662. // Init the current position of all carriages to 0,0,0
  2663. memset(current_position, 0, sizeof(current_position));
  2664. sync_plan_position();
  2665. // Move all carriages together linearly until an endstop is hit.
  2666. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2667. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2668. line_to_current_position();
  2669. stepper.synchronize();
  2670. endstops.hit_on_purpose(); // clear endstop hit flags
  2671. // At least one carriage has reached the top.
  2672. // Now re-home each carriage separately.
  2673. HOMEAXIS(A);
  2674. HOMEAXIS(B);
  2675. HOMEAXIS(C);
  2676. // Set all carriages to their home positions
  2677. // Do this here all at once for Delta, because
  2678. // XYZ isn't ABC. Applying this per-tower would
  2679. // give the impression that they are the same.
  2680. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2681. SYNC_PLAN_POSITION_KINEMATIC();
  2682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2683. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2684. #endif
  2685. }
  2686. #endif // DELTA
  2687. #if ENABLED(Z_SAFE_HOMING)
  2688. inline void home_z_safely() {
  2689. // Disallow Z homing if X or Y are unknown
  2690. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2691. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2692. SERIAL_ECHO_START;
  2693. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2694. return;
  2695. }
  2696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2697. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2698. #endif
  2699. SYNC_PLAN_POSITION_KINEMATIC();
  2700. /**
  2701. * Move the Z probe (or just the nozzle) to the safe homing point
  2702. */
  2703. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2704. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2705. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2706. if (position_is_reachable(
  2707. destination
  2708. #if HOMING_Z_WITH_PROBE
  2709. , true
  2710. #endif
  2711. )
  2712. ) {
  2713. #if HOMING_Z_WITH_PROBE
  2714. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2715. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2716. #endif
  2717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2718. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2719. #endif
  2720. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2721. HOMEAXIS(Z);
  2722. }
  2723. else {
  2724. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2725. SERIAL_ECHO_START;
  2726. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2727. }
  2728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2729. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2730. #endif
  2731. }
  2732. #endif // Z_SAFE_HOMING
  2733. /**
  2734. * G28: Home all axes according to settings
  2735. *
  2736. * Parameters
  2737. *
  2738. * None Home to all axes with no parameters.
  2739. * With QUICK_HOME enabled XY will home together, then Z.
  2740. *
  2741. * Cartesian parameters
  2742. *
  2743. * X Home to the X endstop
  2744. * Y Home to the Y endstop
  2745. * Z Home to the Z endstop
  2746. *
  2747. */
  2748. inline void gcode_G28() {
  2749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2750. if (DEBUGGING(LEVELING)) {
  2751. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2752. log_machine_info();
  2753. }
  2754. #endif
  2755. // Wait for planner moves to finish!
  2756. stepper.synchronize();
  2757. // For auto bed leveling, clear the level matrix
  2758. #if HAS_ABL
  2759. reset_bed_level();
  2760. #endif
  2761. // Always home with tool 0 active
  2762. #if HOTENDS > 1
  2763. uint8_t old_tool_index = active_extruder;
  2764. tool_change(0, 0, true);
  2765. #endif
  2766. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2767. extruder_duplication_enabled = false;
  2768. #endif
  2769. /**
  2770. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2771. * on again when homing all axis
  2772. */
  2773. #if ENABLED(MESH_BED_LEVELING)
  2774. float pre_home_z = MESH_HOME_SEARCH_Z;
  2775. if (mbl.active()) {
  2776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2777. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2778. #endif
  2779. // Save known Z position if already homed
  2780. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2781. pre_home_z = current_position[Z_AXIS];
  2782. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2783. }
  2784. mbl.set_active(false);
  2785. current_position[Z_AXIS] = pre_home_z;
  2786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2787. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2788. #endif
  2789. }
  2790. #endif
  2791. setup_for_endstop_or_probe_move();
  2792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2793. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2794. #endif
  2795. endstops.enable(true); // Enable endstops for next homing move
  2796. #if ENABLED(DELTA)
  2797. home_delta();
  2798. #else // NOT DELTA
  2799. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2800. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2801. set_destination_to_current();
  2802. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2803. if (home_all_axis || homeZ) {
  2804. HOMEAXIS(Z);
  2805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2806. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2807. #endif
  2808. }
  2809. #else
  2810. if (home_all_axis || homeX || homeY) {
  2811. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2812. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2813. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2815. if (DEBUGGING(LEVELING))
  2816. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2817. #endif
  2818. do_blocking_move_to_z(destination[Z_AXIS]);
  2819. }
  2820. }
  2821. #endif
  2822. #if ENABLED(QUICK_HOME)
  2823. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2824. #endif
  2825. #if ENABLED(HOME_Y_BEFORE_X)
  2826. // Home Y
  2827. if (home_all_axis || homeY) {
  2828. HOMEAXIS(Y);
  2829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2830. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2831. #endif
  2832. }
  2833. #endif
  2834. // Home X
  2835. if (home_all_axis || homeX) {
  2836. #if ENABLED(DUAL_X_CARRIAGE)
  2837. int tmp_extruder = active_extruder;
  2838. active_extruder = !active_extruder;
  2839. HOMEAXIS(X);
  2840. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2841. active_extruder = tmp_extruder;
  2842. HOMEAXIS(X);
  2843. // reset state used by the different modes
  2844. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2845. delayed_move_time = 0;
  2846. active_extruder_parked = true;
  2847. #else
  2848. HOMEAXIS(X);
  2849. #endif
  2850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2851. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2852. #endif
  2853. }
  2854. #if DISABLED(HOME_Y_BEFORE_X)
  2855. // Home Y
  2856. if (home_all_axis || homeY) {
  2857. HOMEAXIS(Y);
  2858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2859. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2860. #endif
  2861. }
  2862. #endif
  2863. // Home Z last if homing towards the bed
  2864. #if Z_HOME_DIR < 0
  2865. if (home_all_axis || homeZ) {
  2866. #if ENABLED(Z_SAFE_HOMING)
  2867. home_z_safely();
  2868. #else
  2869. HOMEAXIS(Z);
  2870. #endif
  2871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2872. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2873. #endif
  2874. } // home_all_axis || homeZ
  2875. #endif // Z_HOME_DIR < 0
  2876. SYNC_PLAN_POSITION_KINEMATIC();
  2877. #endif // !DELTA (gcode_G28)
  2878. endstops.not_homing();
  2879. #if ENABLED(DELTA)
  2880. // move to a height where we can use the full xy-area
  2881. do_blocking_move_to_z(delta_clip_start_height);
  2882. #endif
  2883. // Enable mesh leveling again
  2884. #if ENABLED(MESH_BED_LEVELING)
  2885. if (mbl.has_mesh()) {
  2886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2887. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2888. #endif
  2889. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2891. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2892. #endif
  2893. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2894. #if Z_HOME_DIR > 0
  2895. + Z_MAX_POS
  2896. #endif
  2897. ;
  2898. SYNC_PLAN_POSITION_KINEMATIC();
  2899. mbl.set_active(true);
  2900. #if ENABLED(MESH_G28_REST_ORIGIN)
  2901. current_position[Z_AXIS] = 0.0;
  2902. set_destination_to_current();
  2903. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2904. stepper.synchronize();
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2906. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2907. #endif
  2908. #else
  2909. planner.unapply_leveling(current_position);
  2910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2911. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2912. #endif
  2913. #endif
  2914. }
  2915. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2916. current_position[Z_AXIS] = pre_home_z;
  2917. SYNC_PLAN_POSITION_KINEMATIC();
  2918. mbl.set_active(true);
  2919. planner.unapply_leveling(current_position);
  2920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2921. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2922. #endif
  2923. }
  2924. }
  2925. #endif
  2926. clean_up_after_endstop_or_probe_move();
  2927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2928. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2929. #endif
  2930. // Restore the active tool after homing
  2931. #if HOTENDS > 1
  2932. tool_change(old_tool_index, 0, true);
  2933. #endif
  2934. report_current_position();
  2935. }
  2936. #if HAS_PROBING_PROCEDURE
  2937. void out_of_range_error(const char* p_edge) {
  2938. SERIAL_PROTOCOLPGM("?Probe ");
  2939. serialprintPGM(p_edge);
  2940. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2941. }
  2942. #endif
  2943. #if ENABLED(MESH_BED_LEVELING)
  2944. inline void _mbl_goto_xy(float x, float y) {
  2945. float old_feedrate_mm_s = feedrate_mm_s;
  2946. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2947. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2948. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2949. + Z_CLEARANCE_BETWEEN_PROBES
  2950. #elif Z_HOMING_HEIGHT > 0
  2951. + Z_HOMING_HEIGHT
  2952. #endif
  2953. ;
  2954. line_to_current_position();
  2955. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2956. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2957. line_to_current_position();
  2958. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2959. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2960. line_to_current_position();
  2961. #endif
  2962. feedrate_mm_s = old_feedrate_mm_s;
  2963. stepper.synchronize();
  2964. }
  2965. /**
  2966. * G29: Mesh-based Z probe, probes a grid and produces a
  2967. * mesh to compensate for variable bed height
  2968. *
  2969. * Parameters With MESH_BED_LEVELING:
  2970. *
  2971. * S0 Produce a mesh report
  2972. * S1 Start probing mesh points
  2973. * S2 Probe the next mesh point
  2974. * S3 Xn Yn Zn.nn Manually modify a single point
  2975. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2976. * S5 Reset and disable mesh
  2977. *
  2978. * The S0 report the points as below
  2979. *
  2980. * +----> X-axis 1-n
  2981. * |
  2982. * |
  2983. * v Y-axis 1-n
  2984. *
  2985. */
  2986. inline void gcode_G29() {
  2987. static int probe_point = -1;
  2988. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2989. if (state < 0 || state > 5) {
  2990. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2991. return;
  2992. }
  2993. int8_t px, py;
  2994. switch (state) {
  2995. case MeshReport:
  2996. if (mbl.has_mesh()) {
  2997. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2998. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2999. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3000. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3001. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3002. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3003. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3004. SERIAL_PROTOCOLPGM(" ");
  3005. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3006. }
  3007. SERIAL_EOL;
  3008. }
  3009. }
  3010. else
  3011. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3012. break;
  3013. case MeshStart:
  3014. mbl.reset();
  3015. probe_point = 0;
  3016. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3017. break;
  3018. case MeshNext:
  3019. if (probe_point < 0) {
  3020. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3021. return;
  3022. }
  3023. // For each G29 S2...
  3024. if (probe_point == 0) {
  3025. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3026. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3027. #if Z_HOME_DIR > 0
  3028. + Z_MAX_POS
  3029. #endif
  3030. ;
  3031. SYNC_PLAN_POSITION_KINEMATIC();
  3032. }
  3033. else {
  3034. // For G29 S2 after adjusting Z.
  3035. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3036. }
  3037. // If there's another point to sample, move there with optional lift.
  3038. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3039. mbl.zigzag(probe_point, px, py);
  3040. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3041. probe_point++;
  3042. }
  3043. else {
  3044. // One last "return to the bed" (as originally coded) at completion
  3045. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3046. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3047. + Z_CLEARANCE_BETWEEN_PROBES
  3048. #elif Z_HOMING_HEIGHT > 0
  3049. + Z_HOMING_HEIGHT
  3050. #endif
  3051. ;
  3052. line_to_current_position();
  3053. stepper.synchronize();
  3054. // After recording the last point, activate the mbl and home
  3055. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3056. probe_point = -1;
  3057. mbl.set_has_mesh(true);
  3058. enqueue_and_echo_commands_P(PSTR("G28"));
  3059. }
  3060. break;
  3061. case MeshSet:
  3062. if (code_seen('X')) {
  3063. px = code_value_int() - 1;
  3064. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3065. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3066. return;
  3067. }
  3068. }
  3069. else {
  3070. SERIAL_PROTOCOLLNPGM("X not entered.");
  3071. return;
  3072. }
  3073. if (code_seen('Y')) {
  3074. py = code_value_int() - 1;
  3075. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3076. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3077. return;
  3078. }
  3079. }
  3080. else {
  3081. SERIAL_PROTOCOLLNPGM("Y not entered.");
  3082. return;
  3083. }
  3084. if (code_seen('Z')) {
  3085. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3086. }
  3087. else {
  3088. SERIAL_PROTOCOLLNPGM("Z not entered.");
  3089. return;
  3090. }
  3091. break;
  3092. case MeshSetZOffset:
  3093. if (code_seen('Z')) {
  3094. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3095. }
  3096. else {
  3097. SERIAL_PROTOCOLLNPGM("Z not entered.");
  3098. return;
  3099. }
  3100. break;
  3101. case MeshReset:
  3102. if (mbl.active()) {
  3103. current_position[Z_AXIS] +=
  3104. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3105. mbl.reset();
  3106. SYNC_PLAN_POSITION_KINEMATIC();
  3107. }
  3108. else
  3109. mbl.reset();
  3110. } // switch(state)
  3111. report_current_position();
  3112. }
  3113. #elif HAS_ABL
  3114. /**
  3115. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3116. * Will fail if the printer has not been homed with G28.
  3117. *
  3118. * Enhanced G29 Auto Bed Leveling Probe Routine
  3119. *
  3120. * Parameters With ABL_GRID:
  3121. *
  3122. * P Set the size of the grid that will be probed (P x P points).
  3123. * Not supported by non-linear delta printer bed leveling.
  3124. * Example: "G29 P4"
  3125. *
  3126. * S Set the XY travel speed between probe points (in units/min)
  3127. *
  3128. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3129. * or clean the rotation Matrix. Useful to check the topology
  3130. * after a first run of G29.
  3131. *
  3132. * V Set the verbose level (0-4). Example: "G29 V3"
  3133. *
  3134. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3135. * This is useful for manual bed leveling and finding flaws in the bed (to
  3136. * assist with part placement).
  3137. * Not supported by non-linear delta printer bed leveling.
  3138. *
  3139. * F Set the Front limit of the probing grid
  3140. * B Set the Back limit of the probing grid
  3141. * L Set the Left limit of the probing grid
  3142. * R Set the Right limit of the probing grid
  3143. *
  3144. * Global Parameters:
  3145. *
  3146. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3147. * Include "E" to engage/disengage the Z probe for each sample.
  3148. * There's no extra effect if you have a fixed Z probe.
  3149. * Usage: "G29 E" or "G29 e"
  3150. *
  3151. */
  3152. inline void gcode_G29() {
  3153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3154. bool query = code_seen('Q');
  3155. uint8_t old_debug_flags = marlin_debug_flags;
  3156. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3157. if (DEBUGGING(LEVELING)) {
  3158. DEBUG_POS(">>> gcode_G29", current_position);
  3159. log_machine_info();
  3160. }
  3161. marlin_debug_flags = old_debug_flags;
  3162. if (query) return;
  3163. #endif
  3164. // Don't allow auto-leveling without homing first
  3165. if (axis_unhomed_error(true, true, true)) return;
  3166. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3167. if (verbose_level < 0 || verbose_level > 4) {
  3168. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3169. return;
  3170. }
  3171. bool dryrun = code_seen('D'),
  3172. stow_probe_after_each = code_seen('E');
  3173. #if ABL_GRID
  3174. if (verbose_level > 0) {
  3175. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3176. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3177. }
  3178. #if ABL_PLANAR
  3179. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3180. // X and Y specify points in each direction, overriding the default
  3181. // These values may be saved with the completed mesh
  3182. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3183. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3184. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3185. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3186. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3187. return;
  3188. }
  3189. #else
  3190. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3191. #endif
  3192. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3193. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3194. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3195. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3196. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3197. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3198. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3199. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3200. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3201. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3202. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3203. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3204. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3205. if (left_out || right_out || front_out || back_out) {
  3206. if (left_out) {
  3207. out_of_range_error(PSTR("(L)eft"));
  3208. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3209. }
  3210. if (right_out) {
  3211. out_of_range_error(PSTR("(R)ight"));
  3212. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3213. }
  3214. if (front_out) {
  3215. out_of_range_error(PSTR("(F)ront"));
  3216. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3217. }
  3218. if (back_out) {
  3219. out_of_range_error(PSTR("(B)ack"));
  3220. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3221. }
  3222. return;
  3223. }
  3224. #endif // ABL_GRID
  3225. stepper.synchronize();
  3226. // Disable auto bed leveling during G29
  3227. bool abl_should_enable = planner.abl_enabled;
  3228. planner.abl_enabled = false;
  3229. if (!dryrun) {
  3230. // Re-orient the current position without leveling
  3231. // based on where the steppers are positioned.
  3232. set_current_from_steppers_for_axis(ALL_AXES);
  3233. // Sync the planner to where the steppers stopped
  3234. planner.sync_from_steppers();
  3235. }
  3236. setup_for_endstop_or_probe_move();
  3237. // Deploy the probe. Probe will raise if needed.
  3238. if (DEPLOY_PROBE()) {
  3239. planner.abl_enabled = abl_should_enable;
  3240. return;
  3241. }
  3242. float xProbe = 0, yProbe = 0, measured_z = 0;
  3243. #if ABL_GRID
  3244. // probe at the points of a lattice grid
  3245. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3246. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3247. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3248. float zoffset = zprobe_zoffset;
  3249. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3250. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3251. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3252. || left_probe_bed_position != bilinear_start[X_AXIS]
  3253. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3254. ) {
  3255. reset_bed_level();
  3256. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3257. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3258. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3259. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3260. // Can't re-enable (on error) until the new grid is written
  3261. abl_should_enable = false;
  3262. }
  3263. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3264. /**
  3265. * solve the plane equation ax + by + d = z
  3266. * A is the matrix with rows [x y 1] for all the probed points
  3267. * B is the vector of the Z positions
  3268. * the normal vector to the plane is formed by the coefficients of the
  3269. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3270. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3271. */
  3272. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3273. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3274. probePointCounter = -1;
  3275. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3276. eqnBVector[abl2], // "B" vector of Z points
  3277. mean = 0.0;
  3278. #endif // AUTO_BED_LEVELING_LINEAR
  3279. #if ENABLED(PROBE_Y_FIRST)
  3280. #define PR_OUTER_VAR xCount
  3281. #define PR_OUTER_END abl_grid_points_x
  3282. #define PR_INNER_VAR yCount
  3283. #define PR_INNER_END abl_grid_points_y
  3284. #else
  3285. #define PR_OUTER_VAR yCount
  3286. #define PR_OUTER_END abl_grid_points_y
  3287. #define PR_INNER_VAR xCount
  3288. #define PR_INNER_END abl_grid_points_x
  3289. #endif
  3290. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3291. // Outer loop is Y with PROBE_Y_FIRST disabled
  3292. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3293. int8_t inStart, inStop, inInc;
  3294. if (zig) { // away from origin
  3295. inStart = 0;
  3296. inStop = PR_INNER_END;
  3297. inInc = 1;
  3298. }
  3299. else { // towards origin
  3300. inStart = PR_INNER_END - 1;
  3301. inStop = -1;
  3302. inInc = -1;
  3303. }
  3304. zig = !zig; // zag
  3305. // Inner loop is Y with PROBE_Y_FIRST enabled
  3306. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3307. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3308. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3309. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3310. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3311. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3312. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3313. #endif
  3314. #if IS_KINEMATIC
  3315. // Avoid probing outside the round or hexagonal area
  3316. float pos[XYZ] = { xProbe, yProbe, 0 };
  3317. if (!position_is_reachable(pos, true)) continue;
  3318. #endif
  3319. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3320. if (measured_z == NAN) {
  3321. planner.abl_enabled = abl_should_enable;
  3322. return;
  3323. }
  3324. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3325. mean += measured_z;
  3326. eqnBVector[probePointCounter] = measured_z;
  3327. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3328. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3329. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3330. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3331. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3332. #endif
  3333. idle();
  3334. } //xProbe
  3335. } //yProbe
  3336. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3338. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3339. #endif
  3340. // Probe at 3 arbitrary points
  3341. vector_3 points[3] = {
  3342. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3343. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3344. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3345. };
  3346. for (uint8_t i = 0; i < 3; ++i) {
  3347. // Retain the last probe position
  3348. xProbe = LOGICAL_X_POSITION(points[i].x);
  3349. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3350. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3351. }
  3352. if (measured_z == NAN) {
  3353. planner.abl_enabled = abl_should_enable;
  3354. return;
  3355. }
  3356. if (!dryrun) {
  3357. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3358. if (planeNormal.z < 0) {
  3359. planeNormal.x *= -1;
  3360. planeNormal.y *= -1;
  3361. planeNormal.z *= -1;
  3362. }
  3363. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3364. // Can't re-enable (on error) until the new grid is written
  3365. abl_should_enable = false;
  3366. }
  3367. #endif // AUTO_BED_LEVELING_3POINT
  3368. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3369. if (STOW_PROBE()) {
  3370. planner.abl_enabled = abl_should_enable;
  3371. return;
  3372. }
  3373. //
  3374. // Unless this is a dry run, auto bed leveling will
  3375. // definitely be enabled after this point
  3376. //
  3377. // Restore state after probing
  3378. clean_up_after_endstop_or_probe_move();
  3379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3380. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3381. #endif
  3382. // Calculate leveling, print reports, correct the position
  3383. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3384. if (!dryrun) extrapolate_unprobed_bed_level();
  3385. print_bed_level();
  3386. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3387. // For LINEAR leveling calculate matrix, print reports, correct the position
  3388. // solve lsq problem
  3389. float plane_equation_coefficients[3];
  3390. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3391. mean /= abl2;
  3392. if (verbose_level) {
  3393. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3394. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3395. SERIAL_PROTOCOLPGM(" b: ");
  3396. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3397. SERIAL_PROTOCOLPGM(" d: ");
  3398. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3399. SERIAL_EOL;
  3400. if (verbose_level > 2) {
  3401. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3402. SERIAL_PROTOCOL_F(mean, 8);
  3403. SERIAL_EOL;
  3404. }
  3405. }
  3406. // Create the matrix but don't correct the position yet
  3407. if (!dryrun) {
  3408. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3409. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3410. );
  3411. }
  3412. // Show the Topography map if enabled
  3413. if (do_topography_map) {
  3414. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3415. " +--- BACK --+\n"
  3416. " | |\n"
  3417. " L | (+) | R\n"
  3418. " E | | I\n"
  3419. " F | (-) N (+) | G\n"
  3420. " T | | H\n"
  3421. " | (-) | T\n"
  3422. " | |\n"
  3423. " O-- FRONT --+\n"
  3424. " (0,0)");
  3425. float min_diff = 999;
  3426. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3427. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3428. int ind = indexIntoAB[xx][yy];
  3429. float diff = eqnBVector[ind] - mean,
  3430. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3431. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3432. z_tmp = 0;
  3433. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3434. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3435. if (diff >= 0.0)
  3436. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3437. else
  3438. SERIAL_PROTOCOLCHAR(' ');
  3439. SERIAL_PROTOCOL_F(diff, 5);
  3440. } // xx
  3441. SERIAL_EOL;
  3442. } // yy
  3443. SERIAL_EOL;
  3444. if (verbose_level > 3) {
  3445. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3446. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3447. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3448. int ind = indexIntoAB[xx][yy];
  3449. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3450. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3451. z_tmp = 0;
  3452. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3453. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3454. if (diff >= 0.0)
  3455. SERIAL_PROTOCOLPGM(" +");
  3456. // Include + for column alignment
  3457. else
  3458. SERIAL_PROTOCOLCHAR(' ');
  3459. SERIAL_PROTOCOL_F(diff, 5);
  3460. } // xx
  3461. SERIAL_EOL;
  3462. } // yy
  3463. SERIAL_EOL;
  3464. }
  3465. } //do_topography_map
  3466. #endif // AUTO_BED_LEVELING_LINEAR
  3467. #if ABL_PLANAR
  3468. // For LINEAR and 3POINT leveling correct the current position
  3469. if (verbose_level > 0)
  3470. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3471. if (!dryrun) {
  3472. //
  3473. // Correct the current XYZ position based on the tilted plane.
  3474. //
  3475. // 1. Get the distance from the current position to the reference point.
  3476. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3477. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3478. z_real = current_position[Z_AXIS],
  3479. z_zero = 0;
  3480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3481. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3482. #endif
  3483. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3484. // 2. Apply the inverse matrix to the distance
  3485. // from the reference point to X, Y, and zero.
  3486. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3487. // 3. Get the matrix-based corrected Z.
  3488. // (Even if not used, get it for comparison.)
  3489. float new_z = z_real + z_zero;
  3490. // 4. Use the last measured distance to the bed, if possible
  3491. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3492. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3493. ) {
  3494. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3496. if (DEBUGGING(LEVELING)) {
  3497. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3498. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3499. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3500. }
  3501. #endif
  3502. new_z = simple_z;
  3503. }
  3504. // 5. The rotated XY and corrected Z are now current_position
  3505. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3506. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3507. current_position[Z_AXIS] = new_z;
  3508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3509. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3510. #endif
  3511. }
  3512. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3513. if (!dryrun) {
  3514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3515. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3516. #endif
  3517. // Unapply the offset because it is going to be immediately applied
  3518. // and cause compensation movement in Z
  3519. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3521. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3522. #endif
  3523. }
  3524. #endif // ABL_PLANAR
  3525. #ifdef Z_PROBE_END_SCRIPT
  3526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3527. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3528. #endif
  3529. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3530. stepper.synchronize();
  3531. #endif
  3532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3533. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3534. #endif
  3535. report_current_position();
  3536. KEEPALIVE_STATE(IN_HANDLER);
  3537. // Auto Bed Leveling is complete! Enable if possible.
  3538. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3539. if (planner.abl_enabled)
  3540. SYNC_PLAN_POSITION_KINEMATIC();
  3541. }
  3542. #endif // HAS_ABL
  3543. #if HAS_BED_PROBE
  3544. /**
  3545. * G30: Do a single Z probe at the current XY
  3546. */
  3547. inline void gcode_G30() {
  3548. // Disable leveling so the planner won't mess with us
  3549. #if PLANNER_LEVELING
  3550. set_bed_leveling_enabled(false);
  3551. #endif
  3552. setup_for_endstop_or_probe_move();
  3553. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3554. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3555. true, 1);
  3556. SERIAL_PROTOCOLPGM("Bed X: ");
  3557. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3558. SERIAL_PROTOCOLPGM(" Y: ");
  3559. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3560. SERIAL_PROTOCOLPGM(" Z: ");
  3561. SERIAL_PROTOCOL(measured_z + 0.0001);
  3562. SERIAL_EOL;
  3563. clean_up_after_endstop_or_probe_move();
  3564. report_current_position();
  3565. }
  3566. #if ENABLED(Z_PROBE_SLED)
  3567. /**
  3568. * G31: Deploy the Z probe
  3569. */
  3570. inline void gcode_G31() { DEPLOY_PROBE(); }
  3571. /**
  3572. * G32: Stow the Z probe
  3573. */
  3574. inline void gcode_G32() { STOW_PROBE(); }
  3575. #endif // Z_PROBE_SLED
  3576. #endif // HAS_BED_PROBE
  3577. #if ENABLED(G38_PROBE_TARGET)
  3578. static bool G38_run_probe() {
  3579. bool G38_pass_fail = false;
  3580. // Get direction of move and retract
  3581. float retract_mm[XYZ];
  3582. LOOP_XYZ(i) {
  3583. float dist = destination[i] - current_position[i];
  3584. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm(i) * (dist > 0 ? -1 : 1);
  3585. }
  3586. stepper.synchronize(); // wait until the machine is idle
  3587. // Move until destination reached or target hit
  3588. endstops.enable(true);
  3589. G38_move = true;
  3590. G38_endstop_hit = false;
  3591. prepare_move_to_destination();
  3592. stepper.synchronize();
  3593. G38_move = false;
  3594. endstops.hit_on_purpose();
  3595. set_current_from_steppers_for_axis(ALL_AXES);
  3596. SYNC_PLAN_POSITION_KINEMATIC();
  3597. // Only do remaining moves if target was hit
  3598. if (G38_endstop_hit) {
  3599. G38_pass_fail = true;
  3600. // Move away by the retract distance
  3601. set_destination_to_current();
  3602. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3603. endstops.enable(false);
  3604. prepare_move_to_destination();
  3605. stepper.synchronize();
  3606. feedrate_mm_s /= 4;
  3607. // Bump the target more slowly
  3608. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3609. endstops.enable(true);
  3610. G38_move = true;
  3611. prepare_move_to_destination();
  3612. stepper.synchronize();
  3613. G38_move = false;
  3614. set_current_from_steppers_for_axis(ALL_AXES);
  3615. SYNC_PLAN_POSITION_KINEMATIC();
  3616. }
  3617. endstops.hit_on_purpose();
  3618. endstops.not_homing();
  3619. return G38_pass_fail;
  3620. }
  3621. /**
  3622. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3623. * G38.3 - probe toward workpiece, stop on contact
  3624. *
  3625. * Like G28 except uses Z min endstop for all axes
  3626. */
  3627. inline void gcode_G38(bool is_38_2) {
  3628. // Get X Y Z E F
  3629. gcode_get_destination();
  3630. setup_for_endstop_or_probe_move();
  3631. // If any axis has enough movement, do the move
  3632. LOOP_XYZ(i)
  3633. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3634. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3635. // If G38.2 fails throw an error
  3636. if (!G38_run_probe() && is_38_2) {
  3637. SERIAL_ERROR_START;
  3638. SERIAL_ERRORLNPGM("Failed to reach target");
  3639. }
  3640. break;
  3641. }
  3642. clean_up_after_endstop_or_probe_move();
  3643. }
  3644. #endif // G38_PROBE_TARGET
  3645. /**
  3646. * G92: Set current position to given X Y Z E
  3647. */
  3648. inline void gcode_G92() {
  3649. bool didXYZ = false,
  3650. didE = code_seen('E');
  3651. if (!didE) stepper.synchronize();
  3652. LOOP_XYZE(i) {
  3653. if (code_seen(axis_codes[i])) {
  3654. #if IS_SCARA
  3655. current_position[i] = code_value_axis_units(i);
  3656. if (i != E_AXIS) didXYZ = true;
  3657. #else
  3658. float p = current_position[i],
  3659. v = code_value_axis_units(i);
  3660. current_position[i] = v;
  3661. if (i != E_AXIS) {
  3662. didXYZ = true;
  3663. position_shift[i] += v - p; // Offset the coordinate space
  3664. update_software_endstops((AxisEnum)i);
  3665. }
  3666. #endif
  3667. }
  3668. }
  3669. if (didXYZ)
  3670. SYNC_PLAN_POSITION_KINEMATIC();
  3671. else if (didE)
  3672. sync_plan_position_e();
  3673. report_current_position();
  3674. }
  3675. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3676. /**
  3677. * M0: Unconditional stop - Wait for user button press on LCD
  3678. * M1: Conditional stop - Wait for user button press on LCD
  3679. */
  3680. inline void gcode_M0_M1() {
  3681. char* args = current_command_args;
  3682. millis_t codenum = 0;
  3683. bool hasP = false, hasS = false;
  3684. if (code_seen('P')) {
  3685. codenum = code_value_millis(); // milliseconds to wait
  3686. hasP = codenum > 0;
  3687. }
  3688. if (code_seen('S')) {
  3689. codenum = code_value_millis_from_seconds(); // seconds to wait
  3690. hasS = codenum > 0;
  3691. }
  3692. #if ENABLED(ULTIPANEL)
  3693. if (!hasP && !hasS && *args != '\0')
  3694. lcd_setstatus(args, true);
  3695. else {
  3696. LCD_MESSAGEPGM(MSG_USERWAIT);
  3697. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3698. dontExpireStatus();
  3699. #endif
  3700. }
  3701. lcd_ignore_click();
  3702. #else
  3703. if (!hasP && !hasS && *args != '\0') {
  3704. SERIAL_ECHO_START;
  3705. SERIAL_ECHOLN(args);
  3706. }
  3707. #endif
  3708. stepper.synchronize();
  3709. refresh_cmd_timeout();
  3710. #if ENABLED(ULTIPANEL)
  3711. if (codenum > 0) {
  3712. codenum += previous_cmd_ms; // wait until this time for a click
  3713. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3714. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3715. lcd_ignore_click(false);
  3716. }
  3717. else if (lcd_detected()) {
  3718. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3719. while (!lcd_clicked()) idle();
  3720. }
  3721. else return;
  3722. if (IS_SD_PRINTING)
  3723. LCD_MESSAGEPGM(MSG_RESUMING);
  3724. else
  3725. LCD_MESSAGEPGM(WELCOME_MSG);
  3726. #else
  3727. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3728. wait_for_user = true;
  3729. if (codenum > 0) {
  3730. codenum += previous_cmd_ms; // wait until this time for an M108
  3731. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3732. }
  3733. else while (wait_for_user) idle();
  3734. wait_for_user = false;
  3735. #endif
  3736. KEEPALIVE_STATE(IN_HANDLER);
  3737. }
  3738. #endif // ULTIPANEL || EMERGENCY_PARSER
  3739. /**
  3740. * M17: Enable power on all stepper motors
  3741. */
  3742. inline void gcode_M17() {
  3743. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3744. enable_all_steppers();
  3745. }
  3746. #if ENABLED(SDSUPPORT)
  3747. /**
  3748. * M20: List SD card to serial output
  3749. */
  3750. inline void gcode_M20() {
  3751. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3752. card.ls();
  3753. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3754. }
  3755. /**
  3756. * M21: Init SD Card
  3757. */
  3758. inline void gcode_M21() { card.initsd(); }
  3759. /**
  3760. * M22: Release SD Card
  3761. */
  3762. inline void gcode_M22() { card.release(); }
  3763. /**
  3764. * M23: Open a file
  3765. */
  3766. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3767. /**
  3768. * M24: Start SD Print
  3769. */
  3770. inline void gcode_M24() {
  3771. card.startFileprint();
  3772. print_job_timer.start();
  3773. }
  3774. /**
  3775. * M25: Pause SD Print
  3776. */
  3777. inline void gcode_M25() { card.pauseSDPrint(); }
  3778. /**
  3779. * M26: Set SD Card file index
  3780. */
  3781. inline void gcode_M26() {
  3782. if (card.cardOK && code_seen('S'))
  3783. card.setIndex(code_value_long());
  3784. }
  3785. /**
  3786. * M27: Get SD Card status
  3787. */
  3788. inline void gcode_M27() { card.getStatus(); }
  3789. /**
  3790. * M28: Start SD Write
  3791. */
  3792. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3793. /**
  3794. * M29: Stop SD Write
  3795. * Processed in write to file routine above
  3796. */
  3797. inline void gcode_M29() {
  3798. // card.saving = false;
  3799. }
  3800. /**
  3801. * M30 <filename>: Delete SD Card file
  3802. */
  3803. inline void gcode_M30() {
  3804. if (card.cardOK) {
  3805. card.closefile();
  3806. card.removeFile(current_command_args);
  3807. }
  3808. }
  3809. #endif // SDSUPPORT
  3810. /**
  3811. * M31: Get the time since the start of SD Print (or last M109)
  3812. */
  3813. inline void gcode_M31() {
  3814. char buffer[21];
  3815. duration_t elapsed = print_job_timer.duration();
  3816. elapsed.toString(buffer);
  3817. lcd_setstatus(buffer);
  3818. SERIAL_ECHO_START;
  3819. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3820. thermalManager.autotempShutdown();
  3821. }
  3822. #if ENABLED(SDSUPPORT)
  3823. /**
  3824. * M32: Select file and start SD Print
  3825. */
  3826. inline void gcode_M32() {
  3827. if (card.sdprinting)
  3828. stepper.synchronize();
  3829. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3830. if (!namestartpos)
  3831. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3832. else
  3833. namestartpos++; //to skip the '!'
  3834. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3835. if (card.cardOK) {
  3836. card.openFile(namestartpos, true, call_procedure);
  3837. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3838. card.setIndex(code_value_long());
  3839. card.startFileprint();
  3840. // Procedure calls count as normal print time.
  3841. if (!call_procedure) print_job_timer.start();
  3842. }
  3843. }
  3844. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3845. /**
  3846. * M33: Get the long full path of a file or folder
  3847. *
  3848. * Parameters:
  3849. * <dospath> Case-insensitive DOS-style path to a file or folder
  3850. *
  3851. * Example:
  3852. * M33 miscel~1/armchair/armcha~1.gco
  3853. *
  3854. * Output:
  3855. * /Miscellaneous/Armchair/Armchair.gcode
  3856. */
  3857. inline void gcode_M33() {
  3858. card.printLongPath(current_command_args);
  3859. }
  3860. #endif
  3861. /**
  3862. * M928: Start SD Write
  3863. */
  3864. inline void gcode_M928() {
  3865. card.openLogFile(current_command_args);
  3866. }
  3867. #endif // SDSUPPORT
  3868. /**
  3869. * M42: Change pin status via GCode
  3870. *
  3871. * P<pin> Pin number (LED if omitted)
  3872. * S<byte> Pin status from 0 - 255
  3873. */
  3874. inline void gcode_M42() {
  3875. if (!code_seen('S')) return;
  3876. int pin_status = code_value_int();
  3877. if (pin_status < 0 || pin_status > 255) return;
  3878. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3879. if (pin_number < 0) return;
  3880. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3881. if (pin_number == sensitive_pins[i]) {
  3882. SERIAL_ERROR_START;
  3883. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3884. return;
  3885. }
  3886. pinMode(pin_number, OUTPUT);
  3887. digitalWrite(pin_number, pin_status);
  3888. analogWrite(pin_number, pin_status);
  3889. #if FAN_COUNT > 0
  3890. switch (pin_number) {
  3891. #if HAS_FAN0
  3892. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3893. #endif
  3894. #if HAS_FAN1
  3895. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3896. #endif
  3897. #if HAS_FAN2
  3898. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3899. #endif
  3900. }
  3901. #endif
  3902. }
  3903. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3904. /**
  3905. * M48: Z probe repeatability measurement function.
  3906. *
  3907. * Usage:
  3908. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3909. * P = Number of sampled points (4-50, default 10)
  3910. * X = Sample X position
  3911. * Y = Sample Y position
  3912. * V = Verbose level (0-4, default=1)
  3913. * E = Engage Z probe for each reading
  3914. * L = Number of legs of movement before probe
  3915. * S = Schizoid (Or Star if you prefer)
  3916. *
  3917. * This function assumes the bed has been homed. Specifically, that a G28 command
  3918. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3919. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3920. * regenerated.
  3921. */
  3922. inline void gcode_M48() {
  3923. if (axis_unhomed_error(true, true, true)) return;
  3924. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3925. if (verbose_level < 0 || verbose_level > 4) {
  3926. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3927. return;
  3928. }
  3929. if (verbose_level > 0)
  3930. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  3931. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3932. if (n_samples < 4 || n_samples > 50) {
  3933. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3934. return;
  3935. }
  3936. float X_current = current_position[X_AXIS],
  3937. Y_current = current_position[Y_AXIS];
  3938. bool stow_probe_after_each = code_seen('E');
  3939. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3940. #if DISABLED(DELTA)
  3941. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3942. out_of_range_error(PSTR("X"));
  3943. return;
  3944. }
  3945. #endif
  3946. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3947. #if DISABLED(DELTA)
  3948. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3949. out_of_range_error(PSTR("Y"));
  3950. return;
  3951. }
  3952. #else
  3953. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3954. if (!position_is_reachable(pos, true)) {
  3955. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3956. return;
  3957. }
  3958. #endif
  3959. bool seen_L = code_seen('L');
  3960. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3961. if (n_legs > 15) {
  3962. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3963. return;
  3964. }
  3965. if (n_legs == 1) n_legs = 2;
  3966. bool schizoid_flag = code_seen('S');
  3967. if (schizoid_flag && !seen_L) n_legs = 7;
  3968. /**
  3969. * Now get everything to the specified probe point So we can safely do a
  3970. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3971. * we don't want to use that as a starting point for each probe.
  3972. */
  3973. if (verbose_level > 2)
  3974. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3975. // Disable bed level correction in M48 because we want the raw data when we probe
  3976. #if HAS_ABL
  3977. reset_bed_level();
  3978. #endif
  3979. setup_for_endstop_or_probe_move();
  3980. // Move to the first point, deploy, and probe
  3981. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3982. randomSeed(millis());
  3983. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  3984. for (uint8_t n = 0; n < n_samples; n++) {
  3985. if (n_legs) {
  3986. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3987. float angle = random(0.0, 360.0),
  3988. radius = random(
  3989. #if ENABLED(DELTA)
  3990. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3991. #else
  3992. 5, X_MAX_LENGTH / 8
  3993. #endif
  3994. );
  3995. if (verbose_level > 3) {
  3996. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3997. SERIAL_ECHOPAIR(" angle: ", angle);
  3998. SERIAL_ECHOPGM(" Direction: ");
  3999. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4000. SERIAL_ECHOLNPGM("Clockwise");
  4001. }
  4002. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4003. double delta_angle;
  4004. if (schizoid_flag)
  4005. // The points of a 5 point star are 72 degrees apart. We need to
  4006. // skip a point and go to the next one on the star.
  4007. delta_angle = dir * 2.0 * 72.0;
  4008. else
  4009. // If we do this line, we are just trying to move further
  4010. // around the circle.
  4011. delta_angle = dir * (float) random(25, 45);
  4012. angle += delta_angle;
  4013. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4014. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4015. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4016. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4017. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4018. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4019. #if DISABLED(DELTA)
  4020. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4021. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4022. #else
  4023. // If we have gone out too far, we can do a simple fix and scale the numbers
  4024. // back in closer to the origin.
  4025. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4026. X_current /= 1.25;
  4027. Y_current /= 1.25;
  4028. if (verbose_level > 3) {
  4029. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4030. SERIAL_ECHOLNPAIR(", ", Y_current);
  4031. }
  4032. }
  4033. #endif
  4034. if (verbose_level > 3) {
  4035. SERIAL_PROTOCOLPGM("Going to:");
  4036. SERIAL_ECHOPAIR(" X", X_current);
  4037. SERIAL_ECHOPAIR(" Y", Y_current);
  4038. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4039. }
  4040. do_blocking_move_to_xy(X_current, Y_current);
  4041. } // n_legs loop
  4042. } // n_legs
  4043. // Probe a single point
  4044. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4045. /**
  4046. * Get the current mean for the data points we have so far
  4047. */
  4048. double sum = 0.0;
  4049. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4050. mean = sum / (n + 1);
  4051. if(sample_set[n] < min) min = sample_set[n];
  4052. if(sample_set[n] > max) max = sample_set[n];
  4053. /**
  4054. * Now, use that mean to calculate the standard deviation for the
  4055. * data points we have so far
  4056. */
  4057. sum = 0.0;
  4058. for (uint8_t j = 0; j <= n; j++)
  4059. sum += sq(sample_set[j] - mean);
  4060. sigma = sqrt(sum / (n + 1));
  4061. if (verbose_level > 0) {
  4062. if (verbose_level > 1) {
  4063. SERIAL_PROTOCOL(n + 1);
  4064. SERIAL_PROTOCOLPGM(" of ");
  4065. SERIAL_PROTOCOL((int)n_samples);
  4066. SERIAL_PROTOCOLPGM(": z: ");
  4067. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4068. if (verbose_level > 2) {
  4069. SERIAL_PROTOCOLPGM(" mean: ");
  4070. SERIAL_PROTOCOL_F(mean, 4);
  4071. SERIAL_PROTOCOLPGM(" sigma: ");
  4072. SERIAL_PROTOCOL_F(sigma, 6);
  4073. SERIAL_PROTOCOLPGM(" min: ");
  4074. SERIAL_PROTOCOL_F(min, 3);
  4075. SERIAL_PROTOCOLPGM(" max: ");
  4076. SERIAL_PROTOCOL_F(max, 3);
  4077. SERIAL_PROTOCOLPGM(" range: ");
  4078. SERIAL_PROTOCOL_F(max-min, 3);
  4079. }
  4080. }
  4081. SERIAL_EOL;
  4082. }
  4083. } // End of probe loop
  4084. if (STOW_PROBE()) return;
  4085. SERIAL_PROTOCOLPGM("Finished!");
  4086. SERIAL_EOL;
  4087. if (verbose_level > 0) {
  4088. SERIAL_PROTOCOLPGM("Mean: ");
  4089. SERIAL_PROTOCOL_F(mean, 6);
  4090. SERIAL_PROTOCOLPGM(" Min: ");
  4091. SERIAL_PROTOCOL_F(min, 3);
  4092. SERIAL_PROTOCOLPGM(" Max: ");
  4093. SERIAL_PROTOCOL_F(max, 3);
  4094. SERIAL_PROTOCOLPGM(" Range: ");
  4095. SERIAL_PROTOCOL_F(max-min, 3);
  4096. SERIAL_EOL;
  4097. }
  4098. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4099. SERIAL_PROTOCOL_F(sigma, 6);
  4100. SERIAL_EOL;
  4101. SERIAL_EOL;
  4102. clean_up_after_endstop_or_probe_move();
  4103. report_current_position();
  4104. }
  4105. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4106. /**
  4107. * M75: Start print timer
  4108. */
  4109. inline void gcode_M75() { print_job_timer.start(); }
  4110. /**
  4111. * M76: Pause print timer
  4112. */
  4113. inline void gcode_M76() { print_job_timer.pause(); }
  4114. /**
  4115. * M77: Stop print timer
  4116. */
  4117. inline void gcode_M77() { print_job_timer.stop(); }
  4118. #if ENABLED(PRINTCOUNTER)
  4119. /**
  4120. * M78: Show print statistics
  4121. */
  4122. inline void gcode_M78() {
  4123. // "M78 S78" will reset the statistics
  4124. if (code_seen('S') && code_value_int() == 78)
  4125. print_job_timer.initStats();
  4126. else
  4127. print_job_timer.showStats();
  4128. }
  4129. #endif
  4130. /**
  4131. * M104: Set hot end temperature
  4132. */
  4133. inline void gcode_M104() {
  4134. if (get_target_extruder_from_command(104)) return;
  4135. if (DEBUGGING(DRYRUN)) return;
  4136. #if ENABLED(SINGLENOZZLE)
  4137. if (target_extruder != active_extruder) return;
  4138. #endif
  4139. if (code_seen('S')) {
  4140. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4141. #if ENABLED(DUAL_X_CARRIAGE)
  4142. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4143. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4144. #endif
  4145. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4146. /**
  4147. * Stop the timer at the end of print, starting is managed by
  4148. * 'heat and wait' M109.
  4149. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4150. * stand by mode, for instance in a dual extruder setup, without affecting
  4151. * the running print timer.
  4152. */
  4153. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4154. print_job_timer.stop();
  4155. LCD_MESSAGEPGM(WELCOME_MSG);
  4156. }
  4157. #endif
  4158. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4159. }
  4160. }
  4161. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4162. void print_heaterstates() {
  4163. #if HAS_TEMP_HOTEND
  4164. SERIAL_PROTOCOLPGM(" T:");
  4165. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4166. SERIAL_PROTOCOLPGM(" /");
  4167. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4168. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4169. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4170. SERIAL_CHAR(')');
  4171. #endif
  4172. #endif
  4173. #if HAS_TEMP_BED
  4174. SERIAL_PROTOCOLPGM(" B:");
  4175. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4176. SERIAL_PROTOCOLPGM(" /");
  4177. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4178. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4179. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4180. SERIAL_CHAR(')');
  4181. #endif
  4182. #endif
  4183. #if HOTENDS > 1
  4184. HOTEND_LOOP() {
  4185. SERIAL_PROTOCOLPAIR(" T", e);
  4186. SERIAL_PROTOCOLCHAR(':');
  4187. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4188. SERIAL_PROTOCOLPGM(" /");
  4189. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4190. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4191. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4192. SERIAL_CHAR(')');
  4193. #endif
  4194. }
  4195. #endif
  4196. SERIAL_PROTOCOLPGM(" @:");
  4197. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4198. #if HAS_TEMP_BED
  4199. SERIAL_PROTOCOLPGM(" B@:");
  4200. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4201. #endif
  4202. #if HOTENDS > 1
  4203. HOTEND_LOOP() {
  4204. SERIAL_PROTOCOLPAIR(" @", e);
  4205. SERIAL_PROTOCOLCHAR(':');
  4206. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4207. }
  4208. #endif
  4209. }
  4210. #endif
  4211. /**
  4212. * M105: Read hot end and bed temperature
  4213. */
  4214. inline void gcode_M105() {
  4215. if (get_target_extruder_from_command(105)) return;
  4216. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4217. SERIAL_PROTOCOLPGM(MSG_OK);
  4218. print_heaterstates();
  4219. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4220. SERIAL_ERROR_START;
  4221. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4222. #endif
  4223. SERIAL_EOL;
  4224. }
  4225. #if FAN_COUNT > 0
  4226. /**
  4227. * M106: Set Fan Speed
  4228. *
  4229. * S<int> Speed between 0-255
  4230. * P<index> Fan index, if more than one fan
  4231. */
  4232. inline void gcode_M106() {
  4233. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4234. p = code_seen('P') ? code_value_ushort() : 0;
  4235. NOMORE(s, 255);
  4236. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4237. }
  4238. /**
  4239. * M107: Fan Off
  4240. */
  4241. inline void gcode_M107() {
  4242. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4243. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4244. }
  4245. #endif // FAN_COUNT > 0
  4246. #if DISABLED(EMERGENCY_PARSER)
  4247. /**
  4248. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4249. */
  4250. inline void gcode_M108() { wait_for_heatup = false; }
  4251. /**
  4252. * M112: Emergency Stop
  4253. */
  4254. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4255. /**
  4256. * M410: Quickstop - Abort all planned moves
  4257. *
  4258. * This will stop the carriages mid-move, so most likely they
  4259. * will be out of sync with the stepper position after this.
  4260. */
  4261. inline void gcode_M410() { quickstop_stepper(); }
  4262. #endif
  4263. #ifndef MIN_COOLING_SLOPE_DEG
  4264. #define MIN_COOLING_SLOPE_DEG 1.50
  4265. #endif
  4266. #ifndef MIN_COOLING_SLOPE_TIME
  4267. #define MIN_COOLING_SLOPE_TIME 60
  4268. #endif
  4269. /**
  4270. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4271. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4272. */
  4273. inline void gcode_M109() {
  4274. if (get_target_extruder_from_command(109)) return;
  4275. if (DEBUGGING(DRYRUN)) return;
  4276. #if ENABLED(SINGLENOZZLE)
  4277. if (target_extruder != active_extruder) return;
  4278. #endif
  4279. bool no_wait_for_cooling = code_seen('S');
  4280. if (no_wait_for_cooling || code_seen('R')) {
  4281. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4282. #if ENABLED(DUAL_X_CARRIAGE)
  4283. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4284. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4285. #endif
  4286. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4287. /**
  4288. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4289. * stand by mode, for instance in a dual extruder setup, without affecting
  4290. * the running print timer.
  4291. */
  4292. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4293. print_job_timer.stop();
  4294. LCD_MESSAGEPGM(WELCOME_MSG);
  4295. }
  4296. /**
  4297. * We do not check if the timer is already running because this check will
  4298. * be done for us inside the Stopwatch::start() method thus a running timer
  4299. * will not restart.
  4300. */
  4301. else print_job_timer.start();
  4302. #endif
  4303. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4304. }
  4305. #if ENABLED(AUTOTEMP)
  4306. planner.autotemp_M109();
  4307. #endif
  4308. #if TEMP_RESIDENCY_TIME > 0
  4309. millis_t residency_start_ms = 0;
  4310. // Loop until the temperature has stabilized
  4311. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4312. #else
  4313. // Loop until the temperature is very close target
  4314. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4315. #endif //TEMP_RESIDENCY_TIME > 0
  4316. float theTarget = -1.0, old_temp = 9999.0;
  4317. bool wants_to_cool = false;
  4318. wait_for_heatup = true;
  4319. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4320. KEEPALIVE_STATE(NOT_BUSY);
  4321. do {
  4322. // Target temperature might be changed during the loop
  4323. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4324. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4325. theTarget = thermalManager.degTargetHotend(target_extruder);
  4326. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4327. if (no_wait_for_cooling && wants_to_cool) break;
  4328. }
  4329. now = millis();
  4330. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4331. next_temp_ms = now + 1000UL;
  4332. print_heaterstates();
  4333. #if TEMP_RESIDENCY_TIME > 0
  4334. SERIAL_PROTOCOLPGM(" W:");
  4335. if (residency_start_ms) {
  4336. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4337. SERIAL_PROTOCOLLN(rem);
  4338. }
  4339. else {
  4340. SERIAL_PROTOCOLLNPGM("?");
  4341. }
  4342. #else
  4343. SERIAL_EOL;
  4344. #endif
  4345. }
  4346. idle();
  4347. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4348. float temp = thermalManager.degHotend(target_extruder);
  4349. #if TEMP_RESIDENCY_TIME > 0
  4350. float temp_diff = fabs(theTarget - temp);
  4351. if (!residency_start_ms) {
  4352. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4353. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4354. }
  4355. else if (temp_diff > TEMP_HYSTERESIS) {
  4356. // Restart the timer whenever the temperature falls outside the hysteresis.
  4357. residency_start_ms = now;
  4358. }
  4359. #endif //TEMP_RESIDENCY_TIME > 0
  4360. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4361. if (wants_to_cool) {
  4362. // break after MIN_COOLING_SLOPE_TIME seconds
  4363. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4364. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4365. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4366. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4367. old_temp = temp;
  4368. }
  4369. }
  4370. } while (wait_for_heatup && TEMP_CONDITIONS);
  4371. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4372. KEEPALIVE_STATE(IN_HANDLER);
  4373. }
  4374. #if HAS_TEMP_BED
  4375. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4376. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4377. #endif
  4378. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4379. #define MIN_COOLING_SLOPE_TIME_BED 60
  4380. #endif
  4381. /**
  4382. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4383. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4384. */
  4385. inline void gcode_M190() {
  4386. if (DEBUGGING(DRYRUN)) return;
  4387. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4388. bool no_wait_for_cooling = code_seen('S');
  4389. if (no_wait_for_cooling || code_seen('R')) {
  4390. thermalManager.setTargetBed(code_value_temp_abs());
  4391. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4392. if (code_value_temp_abs() > BED_MINTEMP) {
  4393. /**
  4394. * We start the timer when 'heating and waiting' command arrives, LCD
  4395. * functions never wait. Cooling down managed by extruders.
  4396. *
  4397. * We do not check if the timer is already running because this check will
  4398. * be done for us inside the Stopwatch::start() method thus a running timer
  4399. * will not restart.
  4400. */
  4401. print_job_timer.start();
  4402. }
  4403. #endif
  4404. }
  4405. #if TEMP_BED_RESIDENCY_TIME > 0
  4406. millis_t residency_start_ms = 0;
  4407. // Loop until the temperature has stabilized
  4408. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4409. #else
  4410. // Loop until the temperature is very close target
  4411. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4412. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4413. float theTarget = -1.0, old_temp = 9999.0;
  4414. bool wants_to_cool = false;
  4415. wait_for_heatup = true;
  4416. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4417. KEEPALIVE_STATE(NOT_BUSY);
  4418. target_extruder = active_extruder; // for print_heaterstates
  4419. do {
  4420. // Target temperature might be changed during the loop
  4421. if (theTarget != thermalManager.degTargetBed()) {
  4422. wants_to_cool = thermalManager.isCoolingBed();
  4423. theTarget = thermalManager.degTargetBed();
  4424. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4425. if (no_wait_for_cooling && wants_to_cool) break;
  4426. }
  4427. now = millis();
  4428. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4429. next_temp_ms = now + 1000UL;
  4430. print_heaterstates();
  4431. #if TEMP_BED_RESIDENCY_TIME > 0
  4432. SERIAL_PROTOCOLPGM(" W:");
  4433. if (residency_start_ms) {
  4434. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4435. SERIAL_PROTOCOLLN(rem);
  4436. }
  4437. else {
  4438. SERIAL_PROTOCOLLNPGM("?");
  4439. }
  4440. #else
  4441. SERIAL_EOL;
  4442. #endif
  4443. }
  4444. idle();
  4445. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4446. float temp = thermalManager.degBed();
  4447. #if TEMP_BED_RESIDENCY_TIME > 0
  4448. float temp_diff = fabs(theTarget - temp);
  4449. if (!residency_start_ms) {
  4450. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4451. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4452. }
  4453. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4454. // Restart the timer whenever the temperature falls outside the hysteresis.
  4455. residency_start_ms = now;
  4456. }
  4457. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4458. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4459. if (wants_to_cool) {
  4460. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4461. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4462. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4463. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4464. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4465. old_temp = temp;
  4466. }
  4467. }
  4468. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4469. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4470. KEEPALIVE_STATE(IN_HANDLER);
  4471. }
  4472. #endif // HAS_TEMP_BED
  4473. /**
  4474. * M110: Set Current Line Number
  4475. */
  4476. inline void gcode_M110() {
  4477. if (code_seen('N')) gcode_N = code_value_long();
  4478. }
  4479. /**
  4480. * M111: Set the debug level
  4481. */
  4482. inline void gcode_M111() {
  4483. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4484. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4485. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4486. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4487. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4488. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4490. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4491. #endif
  4492. const static char* const debug_strings[] PROGMEM = {
  4493. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4495. str_debug_32
  4496. #endif
  4497. };
  4498. SERIAL_ECHO_START;
  4499. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4500. if (marlin_debug_flags) {
  4501. uint8_t comma = 0;
  4502. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4503. if (TEST(marlin_debug_flags, i)) {
  4504. if (comma++) SERIAL_CHAR(',');
  4505. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4506. }
  4507. }
  4508. }
  4509. else {
  4510. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4511. }
  4512. SERIAL_EOL;
  4513. }
  4514. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4515. /**
  4516. * M113: Get or set Host Keepalive interval (0 to disable)
  4517. *
  4518. * S<seconds> Optional. Set the keepalive interval.
  4519. */
  4520. inline void gcode_M113() {
  4521. if (code_seen('S')) {
  4522. host_keepalive_interval = code_value_byte();
  4523. NOMORE(host_keepalive_interval, 60);
  4524. }
  4525. else {
  4526. SERIAL_ECHO_START;
  4527. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4528. }
  4529. }
  4530. #endif
  4531. #if ENABLED(BARICUDA)
  4532. #if HAS_HEATER_1
  4533. /**
  4534. * M126: Heater 1 valve open
  4535. */
  4536. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4537. /**
  4538. * M127: Heater 1 valve close
  4539. */
  4540. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4541. #endif
  4542. #if HAS_HEATER_2
  4543. /**
  4544. * M128: Heater 2 valve open
  4545. */
  4546. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4547. /**
  4548. * M129: Heater 2 valve close
  4549. */
  4550. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4551. #endif
  4552. #endif //BARICUDA
  4553. /**
  4554. * M140: Set bed temperature
  4555. */
  4556. inline void gcode_M140() {
  4557. if (DEBUGGING(DRYRUN)) return;
  4558. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4559. }
  4560. #if ENABLED(ULTIPANEL)
  4561. /**
  4562. * M145: Set the heatup state for a material in the LCD menu
  4563. * S<material> (0=PLA, 1=ABS)
  4564. * H<hotend temp>
  4565. * B<bed temp>
  4566. * F<fan speed>
  4567. */
  4568. inline void gcode_M145() {
  4569. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4570. if (material < 0 || material > 1) {
  4571. SERIAL_ERROR_START;
  4572. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4573. }
  4574. else {
  4575. int v;
  4576. switch (material) {
  4577. case 0:
  4578. if (code_seen('H')) {
  4579. v = code_value_int();
  4580. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4581. }
  4582. if (code_seen('F')) {
  4583. v = code_value_int();
  4584. preheatFanSpeed1 = constrain(v, 0, 255);
  4585. }
  4586. #if TEMP_SENSOR_BED != 0
  4587. if (code_seen('B')) {
  4588. v = code_value_int();
  4589. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4590. }
  4591. #endif
  4592. break;
  4593. case 1:
  4594. if (code_seen('H')) {
  4595. v = code_value_int();
  4596. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4597. }
  4598. if (code_seen('F')) {
  4599. v = code_value_int();
  4600. preheatFanSpeed2 = constrain(v, 0, 255);
  4601. }
  4602. #if TEMP_SENSOR_BED != 0
  4603. if (code_seen('B')) {
  4604. v = code_value_int();
  4605. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4606. }
  4607. #endif
  4608. break;
  4609. }
  4610. }
  4611. }
  4612. #endif // ULTIPANEL
  4613. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4614. /**
  4615. * M149: Set temperature units
  4616. */
  4617. inline void gcode_M149() {
  4618. if (code_seen('C')) {
  4619. set_input_temp_units(TEMPUNIT_C);
  4620. } else if (code_seen('K')) {
  4621. set_input_temp_units(TEMPUNIT_K);
  4622. } else if (code_seen('F')) {
  4623. set_input_temp_units(TEMPUNIT_F);
  4624. }
  4625. }
  4626. #endif
  4627. #if HAS_POWER_SWITCH
  4628. /**
  4629. * M80: Turn on Power Supply
  4630. */
  4631. inline void gcode_M80() {
  4632. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4633. /**
  4634. * If you have a switch on suicide pin, this is useful
  4635. * if you want to start another print with suicide feature after
  4636. * a print without suicide...
  4637. */
  4638. #if HAS_SUICIDE
  4639. OUT_WRITE(SUICIDE_PIN, HIGH);
  4640. #endif
  4641. #if ENABLED(ULTIPANEL)
  4642. powersupply = true;
  4643. LCD_MESSAGEPGM(WELCOME_MSG);
  4644. lcd_update();
  4645. #endif
  4646. }
  4647. #endif // HAS_POWER_SWITCH
  4648. /**
  4649. * M81: Turn off Power, including Power Supply, if there is one.
  4650. *
  4651. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4652. */
  4653. inline void gcode_M81() {
  4654. thermalManager.disable_all_heaters();
  4655. stepper.finish_and_disable();
  4656. #if FAN_COUNT > 0
  4657. #if FAN_COUNT > 1
  4658. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4659. #else
  4660. fanSpeeds[0] = 0;
  4661. #endif
  4662. #endif
  4663. delay(1000); // Wait 1 second before switching off
  4664. #if HAS_SUICIDE
  4665. stepper.synchronize();
  4666. suicide();
  4667. #elif HAS_POWER_SWITCH
  4668. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4669. #endif
  4670. #if ENABLED(ULTIPANEL)
  4671. #if HAS_POWER_SWITCH
  4672. powersupply = false;
  4673. #endif
  4674. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4675. lcd_update();
  4676. #endif
  4677. }
  4678. /**
  4679. * M82: Set E codes absolute (default)
  4680. */
  4681. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4682. /**
  4683. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4684. */
  4685. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4686. /**
  4687. * M18, M84: Disable all stepper motors
  4688. */
  4689. inline void gcode_M18_M84() {
  4690. if (code_seen('S')) {
  4691. stepper_inactive_time = code_value_millis_from_seconds();
  4692. }
  4693. else {
  4694. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4695. if (all_axis) {
  4696. stepper.finish_and_disable();
  4697. }
  4698. else {
  4699. stepper.synchronize();
  4700. if (code_seen('X')) disable_x();
  4701. if (code_seen('Y')) disable_y();
  4702. if (code_seen('Z')) disable_z();
  4703. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4704. if (code_seen('E')) {
  4705. disable_e0();
  4706. disable_e1();
  4707. disable_e2();
  4708. disable_e3();
  4709. }
  4710. #endif
  4711. }
  4712. }
  4713. }
  4714. /**
  4715. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4716. */
  4717. inline void gcode_M85() {
  4718. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4719. }
  4720. /**
  4721. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4722. * (Follows the same syntax as G92)
  4723. */
  4724. inline void gcode_M92() {
  4725. LOOP_XYZE(i) {
  4726. if (code_seen(axis_codes[i])) {
  4727. if (i == E_AXIS) {
  4728. float value = code_value_per_axis_unit(i);
  4729. if (value < 20.0) {
  4730. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4731. planner.max_jerk[E_AXIS] *= factor;
  4732. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4733. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4734. }
  4735. planner.axis_steps_per_mm[E_AXIS] = value;
  4736. }
  4737. else {
  4738. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4739. }
  4740. }
  4741. }
  4742. planner.refresh_positioning();
  4743. }
  4744. /**
  4745. * Output the current position to serial
  4746. */
  4747. static void report_current_position() {
  4748. SERIAL_PROTOCOLPGM("X:");
  4749. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4750. SERIAL_PROTOCOLPGM(" Y:");
  4751. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4752. SERIAL_PROTOCOLPGM(" Z:");
  4753. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4754. SERIAL_PROTOCOLPGM(" E:");
  4755. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4756. stepper.report_positions();
  4757. #if IS_SCARA
  4758. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4759. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4760. SERIAL_EOL;
  4761. #endif
  4762. }
  4763. /**
  4764. * M114: Output current position to serial port
  4765. */
  4766. inline void gcode_M114() { report_current_position(); }
  4767. /**
  4768. * M115: Capabilities string
  4769. */
  4770. inline void gcode_M115() {
  4771. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4772. }
  4773. /**
  4774. * M117: Set LCD Status Message
  4775. */
  4776. inline void gcode_M117() {
  4777. lcd_setstatus(current_command_args);
  4778. }
  4779. /**
  4780. * M119: Output endstop states to serial output
  4781. */
  4782. inline void gcode_M119() { endstops.M119(); }
  4783. /**
  4784. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4785. */
  4786. inline void gcode_M120() { endstops.enable_globally(true); }
  4787. /**
  4788. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4789. */
  4790. inline void gcode_M121() { endstops.enable_globally(false); }
  4791. #if ENABLED(BLINKM)
  4792. /**
  4793. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4794. */
  4795. inline void gcode_M150() {
  4796. SendColors(
  4797. code_seen('R') ? code_value_byte() : 0,
  4798. code_seen('U') ? code_value_byte() : 0,
  4799. code_seen('B') ? code_value_byte() : 0
  4800. );
  4801. }
  4802. #endif // BLINKM
  4803. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4804. /**
  4805. * M155: Send data to a I2C slave device
  4806. *
  4807. * This is a PoC, the formating and arguments for the GCODE will
  4808. * change to be more compatible, the current proposal is:
  4809. *
  4810. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4811. *
  4812. * M155 B<byte-1 value in base 10>
  4813. * M155 B<byte-2 value in base 10>
  4814. * M155 B<byte-3 value in base 10>
  4815. *
  4816. * M155 S1 ; Send the buffered data and reset the buffer
  4817. * M155 R1 ; Reset the buffer without sending data
  4818. *
  4819. */
  4820. inline void gcode_M155() {
  4821. // Set the target address
  4822. if (code_seen('A')) i2c.address(code_value_byte());
  4823. // Add a new byte to the buffer
  4824. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4825. // Flush the buffer to the bus
  4826. if (code_seen('S')) i2c.send();
  4827. // Reset and rewind the buffer
  4828. else if (code_seen('R')) i2c.reset();
  4829. }
  4830. /**
  4831. * M156: Request X bytes from I2C slave device
  4832. *
  4833. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4834. */
  4835. inline void gcode_M156() {
  4836. if (code_seen('A')) i2c.address(code_value_byte());
  4837. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4838. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4839. i2c.relay(bytes);
  4840. }
  4841. else {
  4842. SERIAL_ERROR_START;
  4843. SERIAL_ERRORLN("Bad i2c request");
  4844. }
  4845. }
  4846. #endif // EXPERIMENTAL_I2CBUS
  4847. /**
  4848. * M200: Set filament diameter and set E axis units to cubic units
  4849. *
  4850. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4851. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4852. */
  4853. inline void gcode_M200() {
  4854. if (get_target_extruder_from_command(200)) return;
  4855. if (code_seen('D')) {
  4856. // setting any extruder filament size disables volumetric on the assumption that
  4857. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4858. // for all extruders
  4859. volumetric_enabled = (code_value_linear_units() != 0.0);
  4860. if (volumetric_enabled) {
  4861. filament_size[target_extruder] = code_value_linear_units();
  4862. // make sure all extruders have some sane value for the filament size
  4863. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4864. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4865. }
  4866. }
  4867. else {
  4868. //reserved for setting filament diameter via UFID or filament measuring device
  4869. return;
  4870. }
  4871. calculate_volumetric_multipliers();
  4872. }
  4873. /**
  4874. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4875. */
  4876. inline void gcode_M201() {
  4877. LOOP_XYZE(i) {
  4878. if (code_seen(axis_codes[i])) {
  4879. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4880. }
  4881. }
  4882. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4883. planner.reset_acceleration_rates();
  4884. }
  4885. #if 0 // Not used for Sprinter/grbl gen6
  4886. inline void gcode_M202() {
  4887. LOOP_XYZE(i) {
  4888. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4889. }
  4890. }
  4891. #endif
  4892. /**
  4893. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4894. */
  4895. inline void gcode_M203() {
  4896. LOOP_XYZE(i)
  4897. if (code_seen(axis_codes[i]))
  4898. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4899. }
  4900. /**
  4901. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4902. *
  4903. * P = Printing moves
  4904. * R = Retract only (no X, Y, Z) moves
  4905. * T = Travel (non printing) moves
  4906. *
  4907. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4908. */
  4909. inline void gcode_M204() {
  4910. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4911. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4912. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4913. }
  4914. if (code_seen('P')) {
  4915. planner.acceleration = code_value_linear_units();
  4916. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4917. }
  4918. if (code_seen('R')) {
  4919. planner.retract_acceleration = code_value_linear_units();
  4920. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4921. }
  4922. if (code_seen('T')) {
  4923. planner.travel_acceleration = code_value_linear_units();
  4924. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4925. }
  4926. }
  4927. /**
  4928. * M205: Set Advanced Settings
  4929. *
  4930. * S = Min Feed Rate (units/s)
  4931. * T = Min Travel Feed Rate (units/s)
  4932. * B = Min Segment Time (µs)
  4933. * X = Max X Jerk (units/sec^2)
  4934. * Y = Max Y Jerk (units/sec^2)
  4935. * Z = Max Z Jerk (units/sec^2)
  4936. * E = Max E Jerk (units/sec^2)
  4937. */
  4938. inline void gcode_M205() {
  4939. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4940. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4941. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4942. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  4943. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  4944. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  4945. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  4946. }
  4947. /**
  4948. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4949. */
  4950. inline void gcode_M206() {
  4951. LOOP_XYZ(i)
  4952. if (code_seen(axis_codes[i]))
  4953. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4954. #if ENABLED(MORGAN_SCARA)
  4955. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4956. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4957. #endif
  4958. SYNC_PLAN_POSITION_KINEMATIC();
  4959. report_current_position();
  4960. }
  4961. #if ENABLED(DELTA)
  4962. /**
  4963. * M665: Set delta configurations
  4964. *
  4965. * L = diagonal rod
  4966. * R = delta radius
  4967. * S = segments per second
  4968. * A = Alpha (Tower 1) diagonal rod trim
  4969. * B = Beta (Tower 2) diagonal rod trim
  4970. * C = Gamma (Tower 3) diagonal rod trim
  4971. */
  4972. inline void gcode_M665() {
  4973. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4974. if (code_seen('R')) delta_radius = code_value_linear_units();
  4975. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4976. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4977. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4978. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4979. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4980. }
  4981. /**
  4982. * M666: Set delta endstop adjustment
  4983. */
  4984. inline void gcode_M666() {
  4985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4986. if (DEBUGGING(LEVELING)) {
  4987. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4988. }
  4989. #endif
  4990. LOOP_XYZ(i) {
  4991. if (code_seen(axis_codes[i])) {
  4992. endstop_adj[i] = code_value_axis_units(i);
  4993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4994. if (DEBUGGING(LEVELING)) {
  4995. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4996. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4997. }
  4998. #endif
  4999. }
  5000. }
  5001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5002. if (DEBUGGING(LEVELING)) {
  5003. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5004. }
  5005. #endif
  5006. }
  5007. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5008. /**
  5009. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5010. */
  5011. inline void gcode_M666() {
  5012. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5013. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5014. }
  5015. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5016. #if ENABLED(FWRETRACT)
  5017. /**
  5018. * M207: Set firmware retraction values
  5019. *
  5020. * S[+units] retract_length
  5021. * W[+units] retract_length_swap (multi-extruder)
  5022. * F[units/min] retract_feedrate_mm_s
  5023. * Z[units] retract_zlift
  5024. */
  5025. inline void gcode_M207() {
  5026. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5027. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5028. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5029. #if EXTRUDERS > 1
  5030. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5031. #endif
  5032. }
  5033. /**
  5034. * M208: Set firmware un-retraction values
  5035. *
  5036. * S[+units] retract_recover_length (in addition to M207 S*)
  5037. * W[+units] retract_recover_length_swap (multi-extruder)
  5038. * F[units/min] retract_recover_feedrate_mm_s
  5039. */
  5040. inline void gcode_M208() {
  5041. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5042. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5043. #if EXTRUDERS > 1
  5044. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5045. #endif
  5046. }
  5047. /**
  5048. * M209: Enable automatic retract (M209 S1)
  5049. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5050. */
  5051. inline void gcode_M209() {
  5052. if (code_seen('S')) {
  5053. autoretract_enabled = code_value_bool();
  5054. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5055. }
  5056. }
  5057. #endif // FWRETRACT
  5058. /**
  5059. * M211: Enable, Disable, and/or Report software endstops
  5060. *
  5061. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5062. */
  5063. inline void gcode_M211() {
  5064. SERIAL_ECHO_START;
  5065. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5066. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5067. #endif
  5068. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5069. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5070. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5071. #else
  5072. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5073. SERIAL_ECHOPGM(MSG_OFF);
  5074. #endif
  5075. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5076. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5077. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5078. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5079. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5080. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5081. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5082. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5083. }
  5084. #if HOTENDS > 1
  5085. /**
  5086. * M218 - set hotend offset (in linear units)
  5087. *
  5088. * T<tool>
  5089. * X<xoffset>
  5090. * Y<yoffset>
  5091. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5092. */
  5093. inline void gcode_M218() {
  5094. if (get_target_extruder_from_command(218)) return;
  5095. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5096. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5097. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5098. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5099. #endif
  5100. SERIAL_ECHO_START;
  5101. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5102. HOTEND_LOOP() {
  5103. SERIAL_CHAR(' ');
  5104. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5105. SERIAL_CHAR(',');
  5106. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5107. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5108. SERIAL_CHAR(',');
  5109. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5110. #endif
  5111. }
  5112. SERIAL_EOL;
  5113. }
  5114. #endif // HOTENDS > 1
  5115. /**
  5116. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5117. */
  5118. inline void gcode_M220() {
  5119. if (code_seen('S')) feedrate_percentage = code_value_int();
  5120. }
  5121. /**
  5122. * M221: Set extrusion percentage (M221 T0 S95)
  5123. */
  5124. inline void gcode_M221() {
  5125. if (get_target_extruder_from_command(221)) return;
  5126. if (code_seen('S'))
  5127. flow_percentage[target_extruder] = code_value_int();
  5128. }
  5129. /**
  5130. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5131. */
  5132. inline void gcode_M226() {
  5133. if (code_seen('P')) {
  5134. int pin_number = code_value_int();
  5135. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5136. if (pin_state >= -1 && pin_state <= 1) {
  5137. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  5138. if (sensitive_pins[i] == pin_number) {
  5139. pin_number = -1;
  5140. break;
  5141. }
  5142. }
  5143. if (pin_number > -1) {
  5144. int target = LOW;
  5145. stepper.synchronize();
  5146. pinMode(pin_number, INPUT);
  5147. switch (pin_state) {
  5148. case 1:
  5149. target = HIGH;
  5150. break;
  5151. case 0:
  5152. target = LOW;
  5153. break;
  5154. case -1:
  5155. target = !digitalRead(pin_number);
  5156. break;
  5157. }
  5158. while (digitalRead(pin_number) != target) idle();
  5159. } // pin_number > -1
  5160. } // pin_state -1 0 1
  5161. } // code_seen('P')
  5162. }
  5163. #if HAS_SERVOS
  5164. /**
  5165. * M280: Get or set servo position. P<index> [S<angle>]
  5166. */
  5167. inline void gcode_M280() {
  5168. if (!code_seen('P')) return;
  5169. int servo_index = code_value_int();
  5170. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5171. if (code_seen('S'))
  5172. MOVE_SERVO(servo_index, code_value_int());
  5173. else {
  5174. SERIAL_ECHO_START;
  5175. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5176. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5177. }
  5178. }
  5179. else {
  5180. SERIAL_ERROR_START;
  5181. SERIAL_ECHOPAIR("Servo ", servo_index);
  5182. SERIAL_ECHOLNPGM(" out of range");
  5183. }
  5184. }
  5185. #endif // HAS_SERVOS
  5186. #if HAS_BUZZER
  5187. /**
  5188. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5189. */
  5190. inline void gcode_M300() {
  5191. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5192. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5193. // Limits the tone duration to 0-5 seconds.
  5194. NOMORE(duration, 5000);
  5195. BUZZ(duration, frequency);
  5196. }
  5197. #endif // HAS_BUZZER
  5198. #if ENABLED(PIDTEMP)
  5199. /**
  5200. * M301: Set PID parameters P I D (and optionally C, L)
  5201. *
  5202. * P[float] Kp term
  5203. * I[float] Ki term (unscaled)
  5204. * D[float] Kd term (unscaled)
  5205. *
  5206. * With PID_EXTRUSION_SCALING:
  5207. *
  5208. * C[float] Kc term
  5209. * L[float] LPQ length
  5210. */
  5211. inline void gcode_M301() {
  5212. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5213. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5214. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5215. if (e < HOTENDS) { // catch bad input value
  5216. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5217. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5218. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5219. #if ENABLED(PID_EXTRUSION_SCALING)
  5220. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5221. if (code_seen('L')) lpq_len = code_value_float();
  5222. NOMORE(lpq_len, LPQ_MAX_LEN);
  5223. #endif
  5224. thermalManager.updatePID();
  5225. SERIAL_ECHO_START;
  5226. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5227. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5228. #endif // PID_PARAMS_PER_HOTEND
  5229. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5230. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5231. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5232. #if ENABLED(PID_EXTRUSION_SCALING)
  5233. //Kc does not have scaling applied above, or in resetting defaults
  5234. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5235. #endif
  5236. SERIAL_EOL;
  5237. }
  5238. else {
  5239. SERIAL_ERROR_START;
  5240. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5241. }
  5242. }
  5243. #endif // PIDTEMP
  5244. #if ENABLED(PIDTEMPBED)
  5245. inline void gcode_M304() {
  5246. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5247. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5248. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5249. thermalManager.updatePID();
  5250. SERIAL_ECHO_START;
  5251. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5252. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5253. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5254. }
  5255. #endif // PIDTEMPBED
  5256. #if defined(CHDK) || HAS_PHOTOGRAPH
  5257. /**
  5258. * M240: Trigger a camera by emulating a Canon RC-1
  5259. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5260. */
  5261. inline void gcode_M240() {
  5262. #ifdef CHDK
  5263. OUT_WRITE(CHDK, HIGH);
  5264. chdkHigh = millis();
  5265. chdkActive = true;
  5266. #elif HAS_PHOTOGRAPH
  5267. const uint8_t NUM_PULSES = 16;
  5268. const float PULSE_LENGTH = 0.01524;
  5269. for (int i = 0; i < NUM_PULSES; i++) {
  5270. WRITE(PHOTOGRAPH_PIN, HIGH);
  5271. _delay_ms(PULSE_LENGTH);
  5272. WRITE(PHOTOGRAPH_PIN, LOW);
  5273. _delay_ms(PULSE_LENGTH);
  5274. }
  5275. delay(7.33);
  5276. for (int i = 0; i < NUM_PULSES; i++) {
  5277. WRITE(PHOTOGRAPH_PIN, HIGH);
  5278. _delay_ms(PULSE_LENGTH);
  5279. WRITE(PHOTOGRAPH_PIN, LOW);
  5280. _delay_ms(PULSE_LENGTH);
  5281. }
  5282. #endif // !CHDK && HAS_PHOTOGRAPH
  5283. }
  5284. #endif // CHDK || PHOTOGRAPH_PIN
  5285. #if HAS_LCD_CONTRAST
  5286. /**
  5287. * M250: Read and optionally set the LCD contrast
  5288. */
  5289. inline void gcode_M250() {
  5290. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5291. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5292. SERIAL_PROTOCOL(lcd_contrast);
  5293. SERIAL_EOL;
  5294. }
  5295. #endif // HAS_LCD_CONTRAST
  5296. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5297. /**
  5298. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5299. *
  5300. * S<temperature> sets the minimum extrude temperature
  5301. * P<bool> enables (1) or disables (0) cold extrusion
  5302. *
  5303. * Examples:
  5304. *
  5305. * M302 ; report current cold extrusion state
  5306. * M302 P0 ; enable cold extrusion checking
  5307. * M302 P1 ; disables cold extrusion checking
  5308. * M302 S0 ; always allow extrusion (disables checking)
  5309. * M302 S170 ; only allow extrusion above 170
  5310. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5311. */
  5312. inline void gcode_M302() {
  5313. bool seen_S = code_seen('S');
  5314. if (seen_S) {
  5315. thermalManager.extrude_min_temp = code_value_temp_abs();
  5316. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5317. }
  5318. if (code_seen('P'))
  5319. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5320. else if (!seen_S) {
  5321. // Report current state
  5322. SERIAL_ECHO_START;
  5323. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5324. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5325. SERIAL_ECHOLNPGM("C)");
  5326. }
  5327. }
  5328. #endif // PREVENT_COLD_EXTRUSION
  5329. /**
  5330. * M303: PID relay autotune
  5331. *
  5332. * S<temperature> sets the target temperature. (default 150C)
  5333. * E<extruder> (-1 for the bed) (default 0)
  5334. * C<cycles>
  5335. * U<bool> with a non-zero value will apply the result to current settings
  5336. */
  5337. inline void gcode_M303() {
  5338. #if HAS_PID_HEATING
  5339. int e = code_seen('E') ? code_value_int() : 0;
  5340. int c = code_seen('C') ? code_value_int() : 5;
  5341. bool u = code_seen('U') && code_value_bool();
  5342. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5343. if (e >= 0 && e < HOTENDS)
  5344. target_extruder = e;
  5345. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5346. thermalManager.PID_autotune(temp, e, c, u);
  5347. KEEPALIVE_STATE(IN_HANDLER);
  5348. #else
  5349. SERIAL_ERROR_START;
  5350. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5351. #endif
  5352. }
  5353. #if ENABLED(MORGAN_SCARA)
  5354. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5355. if (IsRunning()) {
  5356. forward_kinematics_SCARA(delta_a, delta_b);
  5357. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5358. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5359. destination[Z_AXIS] = current_position[Z_AXIS];
  5360. prepare_move_to_destination();
  5361. return true;
  5362. }
  5363. return false;
  5364. }
  5365. /**
  5366. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5367. */
  5368. inline bool gcode_M360() {
  5369. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5370. return SCARA_move_to_cal(0, 120);
  5371. }
  5372. /**
  5373. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5374. */
  5375. inline bool gcode_M361() {
  5376. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5377. return SCARA_move_to_cal(90, 130);
  5378. }
  5379. /**
  5380. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5381. */
  5382. inline bool gcode_M362() {
  5383. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5384. return SCARA_move_to_cal(60, 180);
  5385. }
  5386. /**
  5387. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5388. */
  5389. inline bool gcode_M363() {
  5390. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5391. return SCARA_move_to_cal(50, 90);
  5392. }
  5393. /**
  5394. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5395. */
  5396. inline bool gcode_M364() {
  5397. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5398. return SCARA_move_to_cal(45, 135);
  5399. }
  5400. #endif // SCARA
  5401. #if ENABLED(EXT_SOLENOID)
  5402. void enable_solenoid(uint8_t num) {
  5403. switch (num) {
  5404. case 0:
  5405. OUT_WRITE(SOL0_PIN, HIGH);
  5406. break;
  5407. #if HAS_SOLENOID_1
  5408. case 1:
  5409. OUT_WRITE(SOL1_PIN, HIGH);
  5410. break;
  5411. #endif
  5412. #if HAS_SOLENOID_2
  5413. case 2:
  5414. OUT_WRITE(SOL2_PIN, HIGH);
  5415. break;
  5416. #endif
  5417. #if HAS_SOLENOID_3
  5418. case 3:
  5419. OUT_WRITE(SOL3_PIN, HIGH);
  5420. break;
  5421. #endif
  5422. default:
  5423. SERIAL_ECHO_START;
  5424. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5425. break;
  5426. }
  5427. }
  5428. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5429. void disable_all_solenoids() {
  5430. OUT_WRITE(SOL0_PIN, LOW);
  5431. OUT_WRITE(SOL1_PIN, LOW);
  5432. OUT_WRITE(SOL2_PIN, LOW);
  5433. OUT_WRITE(SOL3_PIN, LOW);
  5434. }
  5435. /**
  5436. * M380: Enable solenoid on the active extruder
  5437. */
  5438. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5439. /**
  5440. * M381: Disable all solenoids
  5441. */
  5442. inline void gcode_M381() { disable_all_solenoids(); }
  5443. #endif // EXT_SOLENOID
  5444. /**
  5445. * M400: Finish all moves
  5446. */
  5447. inline void gcode_M400() { stepper.synchronize(); }
  5448. #if HAS_BED_PROBE
  5449. /**
  5450. * M401: Engage Z Servo endstop if available
  5451. */
  5452. inline void gcode_M401() { DEPLOY_PROBE(); }
  5453. /**
  5454. * M402: Retract Z Servo endstop if enabled
  5455. */
  5456. inline void gcode_M402() { STOW_PROBE(); }
  5457. #endif // HAS_BED_PROBE
  5458. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5459. /**
  5460. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5461. */
  5462. inline void gcode_M404() {
  5463. if (code_seen('W')) {
  5464. filament_width_nominal = code_value_linear_units();
  5465. }
  5466. else {
  5467. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5468. SERIAL_PROTOCOLLN(filament_width_nominal);
  5469. }
  5470. }
  5471. /**
  5472. * M405: Turn on filament sensor for control
  5473. */
  5474. inline void gcode_M405() {
  5475. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5476. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5477. if (code_seen('D')) meas_delay_cm = code_value_int();
  5478. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5479. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5480. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5481. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5482. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5483. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5484. }
  5485. filament_sensor = true;
  5486. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5487. //SERIAL_PROTOCOL(filament_width_meas);
  5488. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5489. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5490. }
  5491. /**
  5492. * M406: Turn off filament sensor for control
  5493. */
  5494. inline void gcode_M406() { filament_sensor = false; }
  5495. /**
  5496. * M407: Get measured filament diameter on serial output
  5497. */
  5498. inline void gcode_M407() {
  5499. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5500. SERIAL_PROTOCOLLN(filament_width_meas);
  5501. }
  5502. #endif // FILAMENT_WIDTH_SENSOR
  5503. void quickstop_stepper() {
  5504. stepper.quick_stop();
  5505. stepper.synchronize();
  5506. set_current_from_steppers_for_axis(ALL_AXES);
  5507. SYNC_PLAN_POSITION_KINEMATIC();
  5508. }
  5509. #if PLANNER_LEVELING
  5510. /**
  5511. * M420: Enable/Disable Bed Leveling
  5512. */
  5513. inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
  5514. #endif
  5515. #if ENABLED(MESH_BED_LEVELING)
  5516. /**
  5517. * M421: Set a single Mesh Bed Leveling Z coordinate
  5518. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5519. */
  5520. inline void gcode_M421() {
  5521. int8_t px = 0, py = 0;
  5522. float z = 0;
  5523. bool hasX, hasY, hasZ, hasI, hasJ;
  5524. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5525. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5526. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5527. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5528. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5529. if (hasX && hasY && hasZ) {
  5530. if (px >= 0 && py >= 0)
  5531. mbl.set_z(px, py, z);
  5532. else {
  5533. SERIAL_ERROR_START;
  5534. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5535. }
  5536. }
  5537. else if (hasI && hasJ && hasZ) {
  5538. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5539. mbl.set_z(px, py, z);
  5540. else {
  5541. SERIAL_ERROR_START;
  5542. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5543. }
  5544. }
  5545. else {
  5546. SERIAL_ERROR_START;
  5547. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5548. }
  5549. }
  5550. #endif
  5551. /**
  5552. * M428: Set home_offset based on the distance between the
  5553. * current_position and the nearest "reference point."
  5554. * If an axis is past center its endstop position
  5555. * is the reference-point. Otherwise it uses 0. This allows
  5556. * the Z offset to be set near the bed when using a max endstop.
  5557. *
  5558. * M428 can't be used more than 2cm away from 0 or an endstop.
  5559. *
  5560. * Use M206 to set these values directly.
  5561. */
  5562. inline void gcode_M428() {
  5563. bool err = false;
  5564. LOOP_XYZ(i) {
  5565. if (axis_homed[i]) {
  5566. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5567. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5568. if (diff > -20 && diff < 20) {
  5569. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5570. }
  5571. else {
  5572. SERIAL_ERROR_START;
  5573. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5574. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5575. BUZZ(200, 40);
  5576. err = true;
  5577. break;
  5578. }
  5579. }
  5580. }
  5581. if (!err) {
  5582. SYNC_PLAN_POSITION_KINEMATIC();
  5583. report_current_position();
  5584. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5585. BUZZ(200, 659);
  5586. BUZZ(200, 698);
  5587. }
  5588. }
  5589. /**
  5590. * M500: Store settings in EEPROM
  5591. */
  5592. inline void gcode_M500() {
  5593. Config_StoreSettings();
  5594. }
  5595. /**
  5596. * M501: Read settings from EEPROM
  5597. */
  5598. inline void gcode_M501() {
  5599. Config_RetrieveSettings();
  5600. }
  5601. /**
  5602. * M502: Revert to default settings
  5603. */
  5604. inline void gcode_M502() {
  5605. Config_ResetDefault();
  5606. }
  5607. /**
  5608. * M503: print settings currently in memory
  5609. */
  5610. inline void gcode_M503() {
  5611. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5612. }
  5613. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5614. /**
  5615. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5616. */
  5617. inline void gcode_M540() {
  5618. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5619. }
  5620. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5621. #if HAS_BED_PROBE
  5622. inline void gcode_M851() {
  5623. SERIAL_ECHO_START;
  5624. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5625. SERIAL_CHAR(' ');
  5626. if (code_seen('Z')) {
  5627. float value = code_value_axis_units(Z_AXIS);
  5628. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5629. zprobe_zoffset = value;
  5630. SERIAL_ECHO(zprobe_zoffset);
  5631. }
  5632. else {
  5633. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5634. SERIAL_CHAR(' ');
  5635. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5636. }
  5637. }
  5638. else {
  5639. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5640. }
  5641. SERIAL_EOL;
  5642. }
  5643. #endif // HAS_BED_PROBE
  5644. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5645. /**
  5646. * M600: Pause for filament change
  5647. *
  5648. * E[distance] - Retract the filament this far (negative value)
  5649. * Z[distance] - Move the Z axis by this distance
  5650. * X[position] - Move to this X position, with Y
  5651. * Y[position] - Move to this Y position, with X
  5652. * L[distance] - Retract distance for removal (manual reload)
  5653. *
  5654. * Default values are used for omitted arguments.
  5655. *
  5656. */
  5657. inline void gcode_M600() {
  5658. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5659. SERIAL_ERROR_START;
  5660. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5661. return;
  5662. }
  5663. // Show initial message and wait for synchronize steppers
  5664. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5665. stepper.synchronize();
  5666. float lastpos[NUM_AXIS];
  5667. // Save current position of all axes
  5668. LOOP_XYZE(i)
  5669. lastpos[i] = destination[i] = current_position[i];
  5670. // Define runplan for move axes
  5671. #if IS_KINEMATIC
  5672. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5673. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5674. #else
  5675. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5676. #endif
  5677. KEEPALIVE_STATE(IN_HANDLER);
  5678. // Initial retract before move to filament change position
  5679. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5680. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5681. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5682. #endif
  5683. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5684. // Lift Z axis
  5685. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5686. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5687. FILAMENT_CHANGE_Z_ADD
  5688. #else
  5689. 0
  5690. #endif
  5691. ;
  5692. if (z_lift > 0) {
  5693. destination[Z_AXIS] += z_lift;
  5694. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5695. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5696. }
  5697. // Move XY axes to filament exchange position
  5698. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5699. #ifdef FILAMENT_CHANGE_X_POS
  5700. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5701. #endif
  5702. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5703. #ifdef FILAMENT_CHANGE_Y_POS
  5704. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5705. #endif
  5706. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5707. stepper.synchronize();
  5708. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5709. // Unload filament
  5710. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5711. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5712. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5713. #endif
  5714. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5715. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5716. stepper.synchronize();
  5717. disable_e0();
  5718. disable_e1();
  5719. disable_e2();
  5720. disable_e3();
  5721. delay(100);
  5722. #if HAS_BUZZER
  5723. millis_t next_buzz = 0;
  5724. #endif
  5725. // Wait for filament insert by user and press button
  5726. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5727. while (!lcd_clicked()) {
  5728. #if HAS_BUZZER
  5729. millis_t ms = millis();
  5730. if (ms >= next_buzz) {
  5731. BUZZ(300, 2000);
  5732. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5733. }
  5734. #endif
  5735. idle(true);
  5736. }
  5737. delay(100);
  5738. while (lcd_clicked()) idle(true);
  5739. delay(100);
  5740. // Show load message
  5741. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5742. // Load filament
  5743. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5744. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5745. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5746. #endif
  5747. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5748. stepper.synchronize();
  5749. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5750. do {
  5751. // Extrude filament to get into hotend
  5752. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5753. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5754. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5755. stepper.synchronize();
  5756. // Ask user if more filament should be extruded
  5757. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5758. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5759. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5760. KEEPALIVE_STATE(IN_HANDLER);
  5761. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5762. #endif
  5763. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5764. KEEPALIVE_STATE(IN_HANDLER);
  5765. // Set extruder to saved position
  5766. current_position[E_AXIS] = lastpos[E_AXIS];
  5767. destination[E_AXIS] = lastpos[E_AXIS];
  5768. planner.set_e_position_mm(current_position[E_AXIS]);
  5769. #if IS_KINEMATIC
  5770. // Move XYZ to starting position, then E
  5771. inverse_kinematics(lastpos);
  5772. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5773. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5774. #else
  5775. // Move XY to starting position, then Z, then E
  5776. destination[X_AXIS] = lastpos[X_AXIS];
  5777. destination[Y_AXIS] = lastpos[Y_AXIS];
  5778. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5779. destination[Z_AXIS] = lastpos[Z_AXIS];
  5780. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5781. #endif
  5782. stepper.synchronize();
  5783. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5784. filament_ran_out = false;
  5785. #endif
  5786. // Show status screen
  5787. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5788. }
  5789. #endif // FILAMENT_CHANGE_FEATURE
  5790. #if ENABLED(DUAL_X_CARRIAGE)
  5791. /**
  5792. * M605: Set dual x-carriage movement mode
  5793. *
  5794. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5795. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5796. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5797. * units x-offset and an optional differential hotend temperature of
  5798. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5799. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5800. *
  5801. * Note: the X axis should be homed after changing dual x-carriage mode.
  5802. */
  5803. inline void gcode_M605() {
  5804. stepper.synchronize();
  5805. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5806. switch (dual_x_carriage_mode) {
  5807. case DXC_DUPLICATION_MODE:
  5808. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5809. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5810. SERIAL_ECHO_START;
  5811. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5812. SERIAL_CHAR(' ');
  5813. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5814. SERIAL_CHAR(',');
  5815. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5816. SERIAL_CHAR(' ');
  5817. SERIAL_ECHO(duplicate_extruder_x_offset);
  5818. SERIAL_CHAR(',');
  5819. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5820. break;
  5821. case DXC_FULL_CONTROL_MODE:
  5822. case DXC_AUTO_PARK_MODE:
  5823. break;
  5824. default:
  5825. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5826. break;
  5827. }
  5828. active_extruder_parked = false;
  5829. extruder_duplication_enabled = false;
  5830. delayed_move_time = 0;
  5831. }
  5832. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5833. inline void gcode_M605() {
  5834. stepper.synchronize();
  5835. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5836. SERIAL_ECHO_START;
  5837. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5838. }
  5839. #endif // M605
  5840. #if ENABLED(LIN_ADVANCE)
  5841. /**
  5842. * M905: Set advance factor
  5843. */
  5844. inline void gcode_M905() {
  5845. stepper.synchronize();
  5846. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5847. }
  5848. #endif
  5849. /**
  5850. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5851. */
  5852. inline void gcode_M907() {
  5853. #if HAS_DIGIPOTSS
  5854. LOOP_XYZE(i)
  5855. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5856. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5857. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5858. #elif HAS_MOTOR_CURRENT_PWM
  5859. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5860. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5861. #endif
  5862. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5863. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5864. #endif
  5865. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5866. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5867. #endif
  5868. #endif
  5869. #if ENABLED(DIGIPOT_I2C)
  5870. // this one uses actual amps in floating point
  5871. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5872. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5873. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5874. #endif
  5875. #if ENABLED(DAC_STEPPER_CURRENT)
  5876. if (code_seen('S')) {
  5877. float dac_percent = code_value_float();
  5878. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5879. }
  5880. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5881. #endif
  5882. }
  5883. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5884. /**
  5885. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5886. */
  5887. inline void gcode_M908() {
  5888. #if HAS_DIGIPOTSS
  5889. stepper.digitalPotWrite(
  5890. code_seen('P') ? code_value_int() : 0,
  5891. code_seen('S') ? code_value_int() : 0
  5892. );
  5893. #endif
  5894. #ifdef DAC_STEPPER_CURRENT
  5895. dac_current_raw(
  5896. code_seen('P') ? code_value_byte() : -1,
  5897. code_seen('S') ? code_value_ushort() : 0
  5898. );
  5899. #endif
  5900. }
  5901. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5902. inline void gcode_M909() { dac_print_values(); }
  5903. inline void gcode_M910() { dac_commit_eeprom(); }
  5904. #endif
  5905. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5906. #if HAS_MICROSTEPS
  5907. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5908. inline void gcode_M350() {
  5909. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5910. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5911. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5912. stepper.microstep_readings();
  5913. }
  5914. /**
  5915. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5916. * S# determines MS1 or MS2, X# sets the pin high/low.
  5917. */
  5918. inline void gcode_M351() {
  5919. if (code_seen('S')) switch (code_value_byte()) {
  5920. case 1:
  5921. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5922. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5923. break;
  5924. case 2:
  5925. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5926. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5927. break;
  5928. }
  5929. stepper.microstep_readings();
  5930. }
  5931. #endif // HAS_MICROSTEPS
  5932. #if ENABLED(MIXING_EXTRUDER)
  5933. /**
  5934. * M163: Set a single mix factor for a mixing extruder
  5935. * This is called "weight" by some systems.
  5936. *
  5937. * S[index] The channel index to set
  5938. * P[float] The mix value
  5939. *
  5940. */
  5941. inline void gcode_M163() {
  5942. int mix_index = code_seen('S') ? code_value_int() : 0;
  5943. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5944. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5945. }
  5946. #if MIXING_VIRTUAL_TOOLS > 1
  5947. /**
  5948. * M164: Store the current mix factors as a virtual tool.
  5949. *
  5950. * S[index] The virtual tool to store
  5951. *
  5952. */
  5953. inline void gcode_M164() {
  5954. int tool_index = code_seen('S') ? code_value_int() : 0;
  5955. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5956. normalize_mix();
  5957. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5958. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5959. }
  5960. }
  5961. #endif
  5962. #if ENABLED(DIRECT_MIXING_IN_G1)
  5963. /**
  5964. * M165: Set multiple mix factors for a mixing extruder.
  5965. * Factors that are left out will be set to 0.
  5966. * All factors together must add up to 1.0.
  5967. *
  5968. * A[factor] Mix factor for extruder stepper 1
  5969. * B[factor] Mix factor for extruder stepper 2
  5970. * C[factor] Mix factor for extruder stepper 3
  5971. * D[factor] Mix factor for extruder stepper 4
  5972. * H[factor] Mix factor for extruder stepper 5
  5973. * I[factor] Mix factor for extruder stepper 6
  5974. *
  5975. */
  5976. inline void gcode_M165() { gcode_get_mix(); }
  5977. #endif
  5978. #endif // MIXING_EXTRUDER
  5979. /**
  5980. * M999: Restart after being stopped
  5981. *
  5982. * Default behaviour is to flush the serial buffer and request
  5983. * a resend to the host starting on the last N line received.
  5984. *
  5985. * Sending "M999 S1" will resume printing without flushing the
  5986. * existing command buffer.
  5987. *
  5988. */
  5989. inline void gcode_M999() {
  5990. Running = true;
  5991. lcd_reset_alert_level();
  5992. if (code_seen('S') && code_value_bool()) return;
  5993. // gcode_LastN = Stopped_gcode_LastN;
  5994. FlushSerialRequestResend();
  5995. }
  5996. #if ENABLED(SWITCHING_EXTRUDER)
  5997. inline void move_extruder_servo(uint8_t e) {
  5998. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5999. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6000. }
  6001. #endif
  6002. inline void invalid_extruder_error(const uint8_t &e) {
  6003. SERIAL_ECHO_START;
  6004. SERIAL_CHAR('T');
  6005. SERIAL_PROTOCOL_F(e, DEC);
  6006. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6007. }
  6008. /**
  6009. * Perform a tool-change, which may result in moving the
  6010. * previous tool out of the way and the new tool into place.
  6011. */
  6012. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6013. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6014. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6015. invalid_extruder_error(tmp_extruder);
  6016. return;
  6017. }
  6018. // T0-Tnnn: Switch virtual tool by changing the mix
  6019. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6020. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6021. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6022. #if HOTENDS > 1
  6023. if (tmp_extruder >= EXTRUDERS) {
  6024. invalid_extruder_error(tmp_extruder);
  6025. return;
  6026. }
  6027. float old_feedrate_mm_s = feedrate_mm_s;
  6028. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6029. if (tmp_extruder != active_extruder) {
  6030. if (!no_move && axis_unhomed_error(true, true, true)) {
  6031. SERIAL_ECHOLNPGM("No move on toolchange");
  6032. no_move = true;
  6033. }
  6034. // Save current position to destination, for use later
  6035. set_destination_to_current();
  6036. #if ENABLED(DUAL_X_CARRIAGE)
  6037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6038. if (DEBUGGING(LEVELING)) {
  6039. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6040. switch (dual_x_carriage_mode) {
  6041. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6042. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6043. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6044. }
  6045. }
  6046. #endif
  6047. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6048. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6049. ) {
  6050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6051. if (DEBUGGING(LEVELING)) {
  6052. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6053. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6054. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6055. }
  6056. #endif
  6057. // Park old head: 1) raise 2) move to park position 3) lower
  6058. for (uint8_t i = 0; i < 3; i++)
  6059. planner.buffer_line(
  6060. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6061. current_position[Y_AXIS],
  6062. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6063. current_position[E_AXIS],
  6064. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6065. active_extruder
  6066. );
  6067. stepper.synchronize();
  6068. }
  6069. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6070. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6071. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6072. active_extruder = tmp_extruder;
  6073. // This function resets the max/min values - the current position may be overwritten below.
  6074. set_axis_is_at_home(X_AXIS);
  6075. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6076. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6077. #endif
  6078. switch (dual_x_carriage_mode) {
  6079. case DXC_FULL_CONTROL_MODE:
  6080. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6081. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6082. break;
  6083. case DXC_DUPLICATION_MODE:
  6084. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6085. if (active_extruder_parked)
  6086. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6087. else
  6088. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6089. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6090. extruder_duplication_enabled = false;
  6091. break;
  6092. default:
  6093. // record raised toolhead position for use by unpark
  6094. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6095. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6096. active_extruder_parked = true;
  6097. delayed_move_time = 0;
  6098. break;
  6099. }
  6100. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6101. if (DEBUGGING(LEVELING)) {
  6102. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6103. DEBUG_POS("New extruder (parked)", current_position);
  6104. }
  6105. #endif
  6106. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6107. #else // !DUAL_X_CARRIAGE
  6108. #if ENABLED(SWITCHING_EXTRUDER)
  6109. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6110. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6111. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6112. // Always raise by some amount
  6113. planner.buffer_line(
  6114. current_position[X_AXIS],
  6115. current_position[Y_AXIS],
  6116. current_position[Z_AXIS] + z_raise,
  6117. current_position[E_AXIS],
  6118. planner.max_feedrate_mm_s[Z_AXIS],
  6119. active_extruder
  6120. );
  6121. stepper.synchronize();
  6122. move_extruder_servo(active_extruder);
  6123. delay(500);
  6124. // Move back down, if needed
  6125. if (z_raise != z_diff) {
  6126. planner.buffer_line(
  6127. current_position[X_AXIS],
  6128. current_position[Y_AXIS],
  6129. current_position[Z_AXIS] + z_diff,
  6130. current_position[E_AXIS],
  6131. planner.max_feedrate_mm_s[Z_AXIS],
  6132. active_extruder
  6133. );
  6134. stepper.synchronize();
  6135. }
  6136. #endif
  6137. /**
  6138. * Set current_position to the position of the new nozzle.
  6139. * Offsets are based on linear distance, so we need to get
  6140. * the resulting position in coordinate space.
  6141. *
  6142. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6143. * - With mesh leveling, update Z for the new position
  6144. * - Otherwise, just use the raw linear distance
  6145. *
  6146. * Software endstops are altered here too. Consider a case where:
  6147. * E0 at X=0 ... E1 at X=10
  6148. * When we switch to E1 now X=10, but E1 can't move left.
  6149. * To express this we apply the change in XY to the software endstops.
  6150. * E1 can move farther right than E0, so the right limit is extended.
  6151. *
  6152. * Note that we don't adjust the Z software endstops. Why not?
  6153. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6154. * because the bed is 1mm lower at the new position. As long as
  6155. * the first nozzle is out of the way, the carriage should be
  6156. * allowed to move 1mm lower. This technically "breaks" the
  6157. * Z software endstop. But this is technically correct (and
  6158. * there is no viable alternative).
  6159. */
  6160. #if ABL_PLANAR
  6161. // Offset extruder, make sure to apply the bed level rotation matrix
  6162. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6163. hotend_offset[Y_AXIS][tmp_extruder],
  6164. 0),
  6165. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6166. hotend_offset[Y_AXIS][active_extruder],
  6167. 0),
  6168. offset_vec = tmp_offset_vec - act_offset_vec;
  6169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6170. if (DEBUGGING(LEVELING)) {
  6171. tmp_offset_vec.debug("tmp_offset_vec");
  6172. act_offset_vec.debug("act_offset_vec");
  6173. offset_vec.debug("offset_vec (BEFORE)");
  6174. }
  6175. #endif
  6176. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6178. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6179. #endif
  6180. // Adjustments to the current position
  6181. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6182. current_position[Z_AXIS] += offset_vec.z;
  6183. #else // !ABL_PLANAR
  6184. float xydiff[2] = {
  6185. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6186. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6187. };
  6188. #if ENABLED(MESH_BED_LEVELING)
  6189. if (mbl.active()) {
  6190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6191. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6192. #endif
  6193. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6194. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6195. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6197. if (DEBUGGING(LEVELING))
  6198. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6199. #endif
  6200. }
  6201. #endif // MESH_BED_LEVELING
  6202. #endif // !HAS_ABL
  6203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6204. if (DEBUGGING(LEVELING)) {
  6205. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6206. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6207. SERIAL_ECHOLNPGM(" }");
  6208. }
  6209. #endif
  6210. // The newly-selected extruder XY is actually at...
  6211. current_position[X_AXIS] += xydiff[X_AXIS];
  6212. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6213. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6214. position_shift[i] += xydiff[i];
  6215. update_software_endstops((AxisEnum)i);
  6216. }
  6217. // Set the new active extruder
  6218. active_extruder = tmp_extruder;
  6219. #endif // !DUAL_X_CARRIAGE
  6220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6221. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6222. #endif
  6223. // Tell the planner the new "current position"
  6224. SYNC_PLAN_POSITION_KINEMATIC();
  6225. // Move to the "old position" (move the extruder into place)
  6226. if (!no_move && IsRunning()) {
  6227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6228. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6229. #endif
  6230. prepare_move_to_destination();
  6231. }
  6232. } // (tmp_extruder != active_extruder)
  6233. stepper.synchronize();
  6234. #if ENABLED(EXT_SOLENOID)
  6235. disable_all_solenoids();
  6236. enable_solenoid_on_active_extruder();
  6237. #endif // EXT_SOLENOID
  6238. feedrate_mm_s = old_feedrate_mm_s;
  6239. #else // HOTENDS <= 1
  6240. // Set the new active extruder
  6241. active_extruder = tmp_extruder;
  6242. UNUSED(fr_mm_s);
  6243. UNUSED(no_move);
  6244. #endif // HOTENDS <= 1
  6245. SERIAL_ECHO_START;
  6246. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6247. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6248. }
  6249. /**
  6250. * T0-T3: Switch tool, usually switching extruders
  6251. *
  6252. * F[units/min] Set the movement feedrate
  6253. * S1 Don't move the tool in XY after change
  6254. */
  6255. inline void gcode_T(uint8_t tmp_extruder) {
  6256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6257. if (DEBUGGING(LEVELING)) {
  6258. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6259. SERIAL_CHAR(')');
  6260. SERIAL_EOL;
  6261. DEBUG_POS("BEFORE", current_position);
  6262. }
  6263. #endif
  6264. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6265. tool_change(tmp_extruder);
  6266. #elif HOTENDS > 1
  6267. tool_change(
  6268. tmp_extruder,
  6269. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6270. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6271. );
  6272. #endif
  6273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6274. if (DEBUGGING(LEVELING)) {
  6275. DEBUG_POS("AFTER", current_position);
  6276. SERIAL_ECHOLNPGM("<<< gcode_T");
  6277. }
  6278. #endif
  6279. }
  6280. /**
  6281. * Process a single command and dispatch it to its handler
  6282. * This is called from the main loop()
  6283. */
  6284. void process_next_command() {
  6285. current_command = command_queue[cmd_queue_index_r];
  6286. if (DEBUGGING(ECHO)) {
  6287. SERIAL_ECHO_START;
  6288. SERIAL_ECHOLN(current_command);
  6289. }
  6290. // Sanitize the current command:
  6291. // - Skip leading spaces
  6292. // - Bypass N[-0-9][0-9]*[ ]*
  6293. // - Overwrite * with nul to mark the end
  6294. while (*current_command == ' ') ++current_command;
  6295. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6296. current_command += 2; // skip N[-0-9]
  6297. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6298. while (*current_command == ' ') ++current_command; // skip [ ]*
  6299. }
  6300. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6301. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6302. char *cmd_ptr = current_command;
  6303. // Get the command code, which must be G, M, or T
  6304. char command_code = *cmd_ptr++;
  6305. // Skip spaces to get the numeric part
  6306. while (*cmd_ptr == ' ') cmd_ptr++;
  6307. // Allow for decimal point in command
  6308. #if ENABLED(G38_PROBE_TARGET)
  6309. uint8_t subcode = 0;
  6310. #endif
  6311. uint16_t codenum = 0; // define ahead of goto
  6312. // Bail early if there's no code
  6313. bool code_is_good = NUMERIC(*cmd_ptr);
  6314. if (!code_is_good) goto ExitUnknownCommand;
  6315. // Get and skip the code number
  6316. do {
  6317. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6318. cmd_ptr++;
  6319. } while (NUMERIC(*cmd_ptr));
  6320. // Allow for decimal point in command
  6321. #if ENABLED(G38_PROBE_TARGET)
  6322. if (*cmd_ptr == '.') {
  6323. cmd_ptr++;
  6324. while (NUMERIC(*cmd_ptr))
  6325. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6326. }
  6327. #endif
  6328. // Skip all spaces to get to the first argument, or nul
  6329. while (*cmd_ptr == ' ') cmd_ptr++;
  6330. // The command's arguments (if any) start here, for sure!
  6331. current_command_args = cmd_ptr;
  6332. KEEPALIVE_STATE(IN_HANDLER);
  6333. // Handle a known G, M, or T
  6334. switch (command_code) {
  6335. case 'G': switch (codenum) {
  6336. // G0, G1
  6337. case 0:
  6338. case 1:
  6339. #if IS_SCARA
  6340. gcode_G0_G1(codenum == 0);
  6341. #else
  6342. gcode_G0_G1();
  6343. #endif
  6344. break;
  6345. // G2, G3
  6346. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6347. case 2: // G2 - CW ARC
  6348. case 3: // G3 - CCW ARC
  6349. gcode_G2_G3(codenum == 2);
  6350. break;
  6351. #endif
  6352. // G4 Dwell
  6353. case 4:
  6354. gcode_G4();
  6355. break;
  6356. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6357. // G5
  6358. case 5: // G5 - Cubic B_spline
  6359. gcode_G5();
  6360. break;
  6361. #endif // BEZIER_CURVE_SUPPORT
  6362. #if ENABLED(FWRETRACT)
  6363. case 10: // G10: retract
  6364. case 11: // G11: retract_recover
  6365. gcode_G10_G11(codenum == 10);
  6366. break;
  6367. #endif // FWRETRACT
  6368. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6369. case 12:
  6370. gcode_G12(); // G12: Nozzle Clean
  6371. break;
  6372. #endif // NOZZLE_CLEAN_FEATURE
  6373. #if ENABLED(INCH_MODE_SUPPORT)
  6374. case 20: //G20: Inch Mode
  6375. gcode_G20();
  6376. break;
  6377. case 21: //G21: MM Mode
  6378. gcode_G21();
  6379. break;
  6380. #endif // INCH_MODE_SUPPORT
  6381. #if ENABLED(NOZZLE_PARK_FEATURE)
  6382. case 27: // G27: Nozzle Park
  6383. gcode_G27();
  6384. break;
  6385. #endif // NOZZLE_PARK_FEATURE
  6386. case 28: // G28: Home all axes, one at a time
  6387. gcode_G28();
  6388. break;
  6389. #if PLANNER_LEVELING
  6390. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6391. gcode_G29();
  6392. break;
  6393. #endif // PLANNER_LEVELING
  6394. #if HAS_BED_PROBE
  6395. case 30: // G30 Single Z probe
  6396. gcode_G30();
  6397. break;
  6398. #if ENABLED(Z_PROBE_SLED)
  6399. case 31: // G31: dock the sled
  6400. gcode_G31();
  6401. break;
  6402. case 32: // G32: undock the sled
  6403. gcode_G32();
  6404. break;
  6405. #endif // Z_PROBE_SLED
  6406. #endif // HAS_BED_PROBE
  6407. #if ENABLED(G38_PROBE_TARGET)
  6408. case 38: // G38.2 & G38.3
  6409. if (subcode == 2 || subcode == 3)
  6410. gcode_G38(subcode == 2);
  6411. break;
  6412. #endif
  6413. case 90: // G90
  6414. relative_mode = false;
  6415. break;
  6416. case 91: // G91
  6417. relative_mode = true;
  6418. break;
  6419. case 92: // G92
  6420. gcode_G92();
  6421. break;
  6422. }
  6423. break;
  6424. case 'M': switch (codenum) {
  6425. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6426. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6427. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6428. gcode_M0_M1();
  6429. break;
  6430. #endif // ULTIPANEL
  6431. case 17:
  6432. gcode_M17();
  6433. break;
  6434. #if ENABLED(SDSUPPORT)
  6435. case 20: // M20 - list SD card
  6436. gcode_M20(); break;
  6437. case 21: // M21 - init SD card
  6438. gcode_M21(); break;
  6439. case 22: //M22 - release SD card
  6440. gcode_M22(); break;
  6441. case 23: //M23 - Select file
  6442. gcode_M23(); break;
  6443. case 24: //M24 - Start SD print
  6444. gcode_M24(); break;
  6445. case 25: //M25 - Pause SD print
  6446. gcode_M25(); break;
  6447. case 26: //M26 - Set SD index
  6448. gcode_M26(); break;
  6449. case 27: //M27 - Get SD status
  6450. gcode_M27(); break;
  6451. case 28: //M28 - Start SD write
  6452. gcode_M28(); break;
  6453. case 29: //M29 - Stop SD write
  6454. gcode_M29(); break;
  6455. case 30: //M30 <filename> Delete File
  6456. gcode_M30(); break;
  6457. case 32: //M32 - Select file and start SD print
  6458. gcode_M32(); break;
  6459. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6460. case 33: //M33 - Get the long full path to a file or folder
  6461. gcode_M33(); break;
  6462. #endif // LONG_FILENAME_HOST_SUPPORT
  6463. case 928: //M928 - Start SD write
  6464. gcode_M928(); break;
  6465. #endif //SDSUPPORT
  6466. case 31: //M31 take time since the start of the SD print or an M109 command
  6467. gcode_M31();
  6468. break;
  6469. case 42: //M42 -Change pin status via gcode
  6470. gcode_M42();
  6471. break;
  6472. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6473. case 48: // M48 Z probe repeatability
  6474. gcode_M48();
  6475. break;
  6476. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6477. case 75: // Start print timer
  6478. gcode_M75();
  6479. break;
  6480. case 76: // Pause print timer
  6481. gcode_M76();
  6482. break;
  6483. case 77: // Stop print timer
  6484. gcode_M77();
  6485. break;
  6486. #if ENABLED(PRINTCOUNTER)
  6487. case 78: // Show print statistics
  6488. gcode_M78();
  6489. break;
  6490. #endif
  6491. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6492. case 100:
  6493. gcode_M100();
  6494. break;
  6495. #endif
  6496. case 104: // M104
  6497. gcode_M104();
  6498. break;
  6499. case 110: // M110: Set Current Line Number
  6500. gcode_M110();
  6501. break;
  6502. case 111: // M111: Set debug level
  6503. gcode_M111();
  6504. break;
  6505. #if DISABLED(EMERGENCY_PARSER)
  6506. case 108: // M108: Cancel Waiting
  6507. gcode_M108();
  6508. break;
  6509. case 112: // M112: Emergency Stop
  6510. gcode_M112();
  6511. break;
  6512. case 410: // M410 quickstop - Abort all the planned moves.
  6513. gcode_M410();
  6514. break;
  6515. #endif
  6516. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6517. case 113: // M113: Set Host Keepalive interval
  6518. gcode_M113();
  6519. break;
  6520. #endif
  6521. case 140: // M140: Set bed temp
  6522. gcode_M140();
  6523. break;
  6524. case 105: // M105: Read current temperature
  6525. gcode_M105();
  6526. KEEPALIVE_STATE(NOT_BUSY);
  6527. return; // "ok" already printed
  6528. case 109: // M109: Wait for temperature
  6529. gcode_M109();
  6530. break;
  6531. #if HAS_TEMP_BED
  6532. case 190: // M190: Wait for bed heater to reach target
  6533. gcode_M190();
  6534. break;
  6535. #endif // HAS_TEMP_BED
  6536. #if FAN_COUNT > 0
  6537. case 106: // M106: Fan On
  6538. gcode_M106();
  6539. break;
  6540. case 107: // M107: Fan Off
  6541. gcode_M107();
  6542. break;
  6543. #endif // FAN_COUNT > 0
  6544. #if ENABLED(BARICUDA)
  6545. // PWM for HEATER_1_PIN
  6546. #if HAS_HEATER_1
  6547. case 126: // M126: valve open
  6548. gcode_M126();
  6549. break;
  6550. case 127: // M127: valve closed
  6551. gcode_M127();
  6552. break;
  6553. #endif // HAS_HEATER_1
  6554. // PWM for HEATER_2_PIN
  6555. #if HAS_HEATER_2
  6556. case 128: // M128: valve open
  6557. gcode_M128();
  6558. break;
  6559. case 129: // M129: valve closed
  6560. gcode_M129();
  6561. break;
  6562. #endif // HAS_HEATER_2
  6563. #endif // BARICUDA
  6564. #if HAS_POWER_SWITCH
  6565. case 80: // M80: Turn on Power Supply
  6566. gcode_M80();
  6567. break;
  6568. #endif // HAS_POWER_SWITCH
  6569. case 81: // M81: Turn off Power, including Power Supply, if possible
  6570. gcode_M81();
  6571. break;
  6572. case 82:
  6573. gcode_M82();
  6574. break;
  6575. case 83:
  6576. gcode_M83();
  6577. break;
  6578. case 18: // (for compatibility)
  6579. case 84: // M84
  6580. gcode_M18_M84();
  6581. break;
  6582. case 85: // M85
  6583. gcode_M85();
  6584. break;
  6585. case 92: // M92: Set the steps-per-unit for one or more axes
  6586. gcode_M92();
  6587. break;
  6588. case 115: // M115: Report capabilities
  6589. gcode_M115();
  6590. break;
  6591. case 117: // M117: Set LCD message text, if possible
  6592. gcode_M117();
  6593. break;
  6594. case 114: // M114: Report current position
  6595. gcode_M114();
  6596. break;
  6597. case 120: // M120: Enable endstops
  6598. gcode_M120();
  6599. break;
  6600. case 121: // M121: Disable endstops
  6601. gcode_M121();
  6602. break;
  6603. case 119: // M119: Report endstop states
  6604. gcode_M119();
  6605. break;
  6606. #if ENABLED(ULTIPANEL)
  6607. case 145: // M145: Set material heatup parameters
  6608. gcode_M145();
  6609. break;
  6610. #endif
  6611. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6612. case 149:
  6613. gcode_M149();
  6614. break;
  6615. #endif
  6616. #if ENABLED(BLINKM)
  6617. case 150: // M150
  6618. gcode_M150();
  6619. break;
  6620. #endif //BLINKM
  6621. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6622. case 155:
  6623. gcode_M155();
  6624. break;
  6625. case 156:
  6626. gcode_M156();
  6627. break;
  6628. #endif //EXPERIMENTAL_I2CBUS
  6629. #if ENABLED(MIXING_EXTRUDER)
  6630. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6631. gcode_M163();
  6632. break;
  6633. #if MIXING_VIRTUAL_TOOLS > 1
  6634. case 164: // M164 S<int> save current mix as a virtual extruder
  6635. gcode_M164();
  6636. break;
  6637. #endif
  6638. #if ENABLED(DIRECT_MIXING_IN_G1)
  6639. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6640. gcode_M165();
  6641. break;
  6642. #endif
  6643. #endif
  6644. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6645. gcode_M200();
  6646. break;
  6647. case 201: // M201
  6648. gcode_M201();
  6649. break;
  6650. #if 0 // Not used for Sprinter/grbl gen6
  6651. case 202: // M202
  6652. gcode_M202();
  6653. break;
  6654. #endif
  6655. case 203: // M203 max feedrate units/sec
  6656. gcode_M203();
  6657. break;
  6658. case 204: // M204 acclereration S normal moves T filmanent only moves
  6659. gcode_M204();
  6660. break;
  6661. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6662. gcode_M205();
  6663. break;
  6664. case 206: // M206 additional homing offset
  6665. gcode_M206();
  6666. break;
  6667. #if ENABLED(DELTA)
  6668. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6669. gcode_M665();
  6670. break;
  6671. #endif
  6672. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6673. case 666: // M666 set delta / dual endstop adjustment
  6674. gcode_M666();
  6675. break;
  6676. #endif
  6677. #if ENABLED(FWRETRACT)
  6678. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6679. gcode_M207();
  6680. break;
  6681. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6682. gcode_M208();
  6683. break;
  6684. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6685. gcode_M209();
  6686. break;
  6687. #endif // FWRETRACT
  6688. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6689. gcode_M211();
  6690. break;
  6691. #if HOTENDS > 1
  6692. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6693. gcode_M218();
  6694. break;
  6695. #endif
  6696. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6697. gcode_M220();
  6698. break;
  6699. case 221: // M221 - Set Flow Percentage: S<percent>
  6700. gcode_M221();
  6701. break;
  6702. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6703. gcode_M226();
  6704. break;
  6705. #if HAS_SERVOS
  6706. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6707. gcode_M280();
  6708. break;
  6709. #endif // HAS_SERVOS
  6710. #if HAS_BUZZER
  6711. case 300: // M300 - Play beep tone
  6712. gcode_M300();
  6713. break;
  6714. #endif // HAS_BUZZER
  6715. #if ENABLED(PIDTEMP)
  6716. case 301: // M301
  6717. gcode_M301();
  6718. break;
  6719. #endif // PIDTEMP
  6720. #if ENABLED(PIDTEMPBED)
  6721. case 304: // M304
  6722. gcode_M304();
  6723. break;
  6724. #endif // PIDTEMPBED
  6725. #if defined(CHDK) || HAS_PHOTOGRAPH
  6726. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6727. gcode_M240();
  6728. break;
  6729. #endif // CHDK || PHOTOGRAPH_PIN
  6730. #if HAS_LCD_CONTRAST
  6731. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6732. gcode_M250();
  6733. break;
  6734. #endif // HAS_LCD_CONTRAST
  6735. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6736. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6737. gcode_M302();
  6738. break;
  6739. #endif // PREVENT_COLD_EXTRUSION
  6740. case 303: // M303 PID autotune
  6741. gcode_M303();
  6742. break;
  6743. #if ENABLED(MORGAN_SCARA)
  6744. case 360: // M360 SCARA Theta pos1
  6745. if (gcode_M360()) return;
  6746. break;
  6747. case 361: // M361 SCARA Theta pos2
  6748. if (gcode_M361()) return;
  6749. break;
  6750. case 362: // M362 SCARA Psi pos1
  6751. if (gcode_M362()) return;
  6752. break;
  6753. case 363: // M363 SCARA Psi pos2
  6754. if (gcode_M363()) return;
  6755. break;
  6756. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6757. if (gcode_M364()) return;
  6758. break;
  6759. #endif // SCARA
  6760. case 400: // M400 finish all moves
  6761. gcode_M400();
  6762. break;
  6763. #if HAS_BED_PROBE
  6764. case 401:
  6765. gcode_M401();
  6766. break;
  6767. case 402:
  6768. gcode_M402();
  6769. break;
  6770. #endif // HAS_BED_PROBE
  6771. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6772. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6773. gcode_M404();
  6774. break;
  6775. case 405: //M405 Turn on filament sensor for control
  6776. gcode_M405();
  6777. break;
  6778. case 406: //M406 Turn off filament sensor for control
  6779. gcode_M406();
  6780. break;
  6781. case 407: //M407 Display measured filament diameter
  6782. gcode_M407();
  6783. break;
  6784. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6785. #if ENABLED(MESH_BED_LEVELING)
  6786. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6787. gcode_M420();
  6788. break;
  6789. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6790. gcode_M421();
  6791. break;
  6792. #endif
  6793. case 428: // M428 Apply current_position to home_offset
  6794. gcode_M428();
  6795. break;
  6796. case 500: // M500 Store settings in EEPROM
  6797. gcode_M500();
  6798. break;
  6799. case 501: // M501 Read settings from EEPROM
  6800. gcode_M501();
  6801. break;
  6802. case 502: // M502 Revert to default settings
  6803. gcode_M502();
  6804. break;
  6805. case 503: // M503 print settings currently in memory
  6806. gcode_M503();
  6807. break;
  6808. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6809. case 540:
  6810. gcode_M540();
  6811. break;
  6812. #endif
  6813. #if HAS_BED_PROBE
  6814. case 851: // Set Z Probe Z Offset
  6815. gcode_M851();
  6816. break;
  6817. #endif // HAS_BED_PROBE
  6818. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6819. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6820. gcode_M600();
  6821. break;
  6822. #endif // FILAMENT_CHANGE_FEATURE
  6823. #if ENABLED(DUAL_X_CARRIAGE)
  6824. case 605:
  6825. gcode_M605();
  6826. break;
  6827. #endif // DUAL_X_CARRIAGE
  6828. #if ENABLED(LIN_ADVANCE)
  6829. case 905: // M905 Set advance factor.
  6830. gcode_M905();
  6831. break;
  6832. #endif
  6833. case 907: // M907 Set digital trimpot motor current using axis codes.
  6834. gcode_M907();
  6835. break;
  6836. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6837. case 908: // M908 Control digital trimpot directly.
  6838. gcode_M908();
  6839. break;
  6840. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6841. case 909: // M909 Print digipot/DAC current value
  6842. gcode_M909();
  6843. break;
  6844. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6845. gcode_M910();
  6846. break;
  6847. #endif
  6848. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6849. #if HAS_MICROSTEPS
  6850. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6851. gcode_M350();
  6852. break;
  6853. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6854. gcode_M351();
  6855. break;
  6856. #endif // HAS_MICROSTEPS
  6857. case 999: // M999: Restart after being Stopped
  6858. gcode_M999();
  6859. break;
  6860. }
  6861. break;
  6862. case 'T':
  6863. gcode_T(codenum);
  6864. break;
  6865. default: code_is_good = false;
  6866. }
  6867. KEEPALIVE_STATE(NOT_BUSY);
  6868. ExitUnknownCommand:
  6869. // Still unknown command? Throw an error
  6870. if (!code_is_good) unknown_command_error();
  6871. ok_to_send();
  6872. }
  6873. /**
  6874. * Send a "Resend: nnn" message to the host to
  6875. * indicate that a command needs to be re-sent.
  6876. */
  6877. void FlushSerialRequestResend() {
  6878. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6879. MYSERIAL.flush();
  6880. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6881. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6882. ok_to_send();
  6883. }
  6884. /**
  6885. * Send an "ok" message to the host, indicating
  6886. * that a command was successfully processed.
  6887. *
  6888. * If ADVANCED_OK is enabled also include:
  6889. * N<int> Line number of the command, if any
  6890. * P<int> Planner space remaining
  6891. * B<int> Block queue space remaining
  6892. */
  6893. void ok_to_send() {
  6894. refresh_cmd_timeout();
  6895. if (!send_ok[cmd_queue_index_r]) return;
  6896. SERIAL_PROTOCOLPGM(MSG_OK);
  6897. #if ENABLED(ADVANCED_OK)
  6898. char* p = command_queue[cmd_queue_index_r];
  6899. if (*p == 'N') {
  6900. SERIAL_PROTOCOL(' ');
  6901. SERIAL_ECHO(*p++);
  6902. while (NUMERIC_SIGNED(*p))
  6903. SERIAL_ECHO(*p++);
  6904. }
  6905. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6906. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6907. #endif
  6908. SERIAL_EOL;
  6909. }
  6910. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6911. /**
  6912. * Constrain the given coordinates to the software endstops.
  6913. */
  6914. void clamp_to_software_endstops(float target[XYZ]) {
  6915. #if ENABLED(min_software_endstops)
  6916. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6917. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6918. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6919. #endif
  6920. #if ENABLED(max_software_endstops)
  6921. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6922. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6923. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6924. #endif
  6925. }
  6926. #endif
  6927. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6928. // Get the Z adjustment for non-linear bed leveling
  6929. float bilinear_z_offset(float cartesian[XYZ]) {
  6930. // XY relative to the probed area
  6931. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  6932. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  6933. // Convert to grid box units
  6934. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  6935. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  6936. // Whole unit is the grid box index
  6937. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 2),
  6938. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 2),
  6939. nextx = gridx + (x < PROBE_BED_WIDTH ? 1 : 0),
  6940. nexty = gridy + (y < PROBE_BED_HEIGHT ? 1 : 0);
  6941. // Subtract whole to get the ratio within the grid box
  6942. ratio_x = constrain(ratio_x - gridx, 0.0, 1.0);
  6943. ratio_y = constrain(ratio_y - gridy, 0.0, 1.0);
  6944. // Z at the box corners
  6945. const float z1 = bed_level_grid[gridx][gridy], // left-front
  6946. z2 = bed_level_grid[gridx][nexty], // left-back
  6947. z3 = bed_level_grid[nextx][gridy], // right-front
  6948. z4 = bed_level_grid[nextx][nexty], // right-back
  6949. // Bilinear interpolate
  6950. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  6951. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  6952. offset = L + ratio_x * (R - L);
  6953. /*
  6954. static float last_offset = 0;
  6955. if (fabs(last_offset - offset) > 0.2) {
  6956. SERIAL_ECHOPGM("Sudden Shift at ");
  6957. SERIAL_ECHOPAIR("x=", x);
  6958. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  6959. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  6960. SERIAL_ECHOPAIR(" y=", y);
  6961. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  6962. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  6963. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6964. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  6965. SERIAL_ECHOPAIR(" z1=", z1);
  6966. SERIAL_ECHOPAIR(" z2=", z2);
  6967. SERIAL_ECHOPAIR(" z3=", z3);
  6968. SERIAL_ECHOLNPAIR(" z4=", z4);
  6969. SERIAL_ECHOPAIR(" L=", L);
  6970. SERIAL_ECHOPAIR(" R=", R);
  6971. SERIAL_ECHOLNPAIR(" offset=", offset);
  6972. }
  6973. last_offset = offset;
  6974. //*/
  6975. return offset;
  6976. }
  6977. #endif // AUTO_BED_LEVELING_BILINEAR
  6978. #if ENABLED(DELTA)
  6979. /**
  6980. * Recalculate factors used for delta kinematics whenever
  6981. * settings have been changed (e.g., by M665).
  6982. */
  6983. void recalc_delta_settings(float radius, float diagonal_rod) {
  6984. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6985. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6986. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6987. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6988. delta_tower3_x = 0.0; // back middle tower
  6989. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6990. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6991. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6992. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6993. }
  6994. #if ENABLED(DELTA_FAST_SQRT)
  6995. /**
  6996. * Fast inverse sqrt from Quake III Arena
  6997. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6998. */
  6999. float Q_rsqrt(float number) {
  7000. long i;
  7001. float x2, y;
  7002. const float threehalfs = 1.5f;
  7003. x2 = number * 0.5f;
  7004. y = number;
  7005. i = * ( long * ) &y; // evil floating point bit level hacking
  7006. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7007. y = * ( float * ) &i;
  7008. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7009. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7010. return y;
  7011. }
  7012. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7013. #else
  7014. #define _SQRT(n) sqrt(n)
  7015. #endif
  7016. /**
  7017. * Delta Inverse Kinematics
  7018. *
  7019. * Calculate the tower positions for a given logical
  7020. * position, storing the result in the delta[] array.
  7021. *
  7022. * This is an expensive calculation, requiring 3 square
  7023. * roots per segmented linear move, and strains the limits
  7024. * of a Mega2560 with a Graphical Display.
  7025. *
  7026. * Suggested optimizations include:
  7027. *
  7028. * - Disable the home_offset (M206) and/or position_shift (G92)
  7029. * features to remove up to 12 float additions.
  7030. *
  7031. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7032. * (see above)
  7033. */
  7034. // Macro to obtain the Z position of an individual tower
  7035. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7036. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7037. delta_tower##T##_x - raw[X_AXIS], \
  7038. delta_tower##T##_y - raw[Y_AXIS] \
  7039. ) \
  7040. )
  7041. #define DELTA_RAW_IK() do { \
  7042. delta[A_AXIS] = DELTA_Z(1); \
  7043. delta[B_AXIS] = DELTA_Z(2); \
  7044. delta[C_AXIS] = DELTA_Z(3); \
  7045. } while(0)
  7046. #define DELTA_LOGICAL_IK() do { \
  7047. const float raw[XYZ] = { \
  7048. RAW_X_POSITION(logical[X_AXIS]), \
  7049. RAW_Y_POSITION(logical[Y_AXIS]), \
  7050. RAW_Z_POSITION(logical[Z_AXIS]) \
  7051. }; \
  7052. DELTA_RAW_IK(); \
  7053. } while(0)
  7054. #define DELTA_DEBUG() do { \
  7055. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7056. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7057. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7058. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7059. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7060. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7061. } while(0)
  7062. void inverse_kinematics(const float logical[XYZ]) {
  7063. DELTA_LOGICAL_IK();
  7064. // DELTA_DEBUG();
  7065. }
  7066. /**
  7067. * Calculate the highest Z position where the
  7068. * effector has the full range of XY motion.
  7069. */
  7070. float delta_safe_distance_from_top() {
  7071. float cartesian[XYZ] = {
  7072. LOGICAL_X_POSITION(0),
  7073. LOGICAL_Y_POSITION(0),
  7074. LOGICAL_Z_POSITION(0)
  7075. };
  7076. inverse_kinematics(cartesian);
  7077. float distance = delta[A_AXIS];
  7078. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7079. inverse_kinematics(cartesian);
  7080. return abs(distance - delta[A_AXIS]);
  7081. }
  7082. /**
  7083. * Delta Forward Kinematics
  7084. *
  7085. * See the Wikipedia article "Trilateration"
  7086. * https://en.wikipedia.org/wiki/Trilateration
  7087. *
  7088. * Establish a new coordinate system in the plane of the
  7089. * three carriage points. This system has its origin at
  7090. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7091. * plane with a Z component of zero.
  7092. * We will define unit vectors in this coordinate system
  7093. * in our original coordinate system. Then when we calculate
  7094. * the Xnew, Ynew and Znew values, we can translate back into
  7095. * the original system by moving along those unit vectors
  7096. * by the corresponding values.
  7097. *
  7098. * Variable names matched to Marlin, c-version, and avoid the
  7099. * use of any vector library.
  7100. *
  7101. * by Andreas Hardtung 2016-06-07
  7102. * based on a Java function from "Delta Robot Kinematics V3"
  7103. * by Steve Graves
  7104. *
  7105. * The result is stored in the cartes[] array.
  7106. */
  7107. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7108. // Create a vector in old coordinates along x axis of new coordinate
  7109. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7110. // Get the Magnitude of vector.
  7111. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7112. // Create unit vector by dividing by magnitude.
  7113. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7114. // Get the vector from the origin of the new system to the third point.
  7115. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7116. // Use the dot product to find the component of this vector on the X axis.
  7117. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7118. // Create a vector along the x axis that represents the x component of p13.
  7119. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7120. // Subtract the X component from the original vector leaving only Y. We use the
  7121. // variable that will be the unit vector after we scale it.
  7122. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7123. // The magnitude of Y component
  7124. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7125. // Convert to a unit vector
  7126. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7127. // The cross product of the unit x and y is the unit z
  7128. // float[] ez = vectorCrossProd(ex, ey);
  7129. float ez[3] = {
  7130. ex[1] * ey[2] - ex[2] * ey[1],
  7131. ex[2] * ey[0] - ex[0] * ey[2],
  7132. ex[0] * ey[1] - ex[1] * ey[0]
  7133. };
  7134. // We now have the d, i and j values defined in Wikipedia.
  7135. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7136. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7137. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7138. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7139. // Start from the origin of the old coordinates and add vectors in the
  7140. // old coords that represent the Xnew, Ynew and Znew to find the point
  7141. // in the old system.
  7142. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7143. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7144. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7145. };
  7146. void forward_kinematics_DELTA(float point[ABC]) {
  7147. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7148. }
  7149. #endif // DELTA
  7150. /**
  7151. * Get the stepper positions in the cartes[] array.
  7152. * Forward kinematics are applied for DELTA and SCARA.
  7153. *
  7154. * The result is in the current coordinate space with
  7155. * leveling applied. The coordinates need to be run through
  7156. * unapply_leveling to obtain the "ideal" coordinates
  7157. * suitable for current_position, etc.
  7158. */
  7159. void get_cartesian_from_steppers() {
  7160. #if ENABLED(DELTA)
  7161. forward_kinematics_DELTA(
  7162. stepper.get_axis_position_mm(A_AXIS),
  7163. stepper.get_axis_position_mm(B_AXIS),
  7164. stepper.get_axis_position_mm(C_AXIS)
  7165. );
  7166. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7167. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7168. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7169. #elif IS_SCARA
  7170. forward_kinematics_SCARA(
  7171. stepper.get_axis_position_degrees(A_AXIS),
  7172. stepper.get_axis_position_degrees(B_AXIS)
  7173. );
  7174. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7175. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7176. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7177. #else
  7178. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7179. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7180. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7181. #endif
  7182. }
  7183. /**
  7184. * Set the current_position for an axis based on
  7185. * the stepper positions, removing any leveling that
  7186. * may have been applied.
  7187. */
  7188. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7189. get_cartesian_from_steppers();
  7190. #if PLANNER_LEVELING
  7191. planner.unapply_leveling(cartes);
  7192. #endif
  7193. if (axis == ALL_AXES)
  7194. memcpy(current_position, cartes, sizeof(cartes));
  7195. else
  7196. current_position[axis] = cartes[axis];
  7197. }
  7198. #if ENABLED(MESH_BED_LEVELING)
  7199. /**
  7200. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7201. * splitting the move where it crosses mesh borders.
  7202. */
  7203. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7204. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7205. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7206. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7207. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7208. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7209. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7210. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7211. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7212. if (cx1 == cx2 && cy1 == cy2) {
  7213. // Start and end on same mesh square
  7214. line_to_destination(fr_mm_s);
  7215. set_current_to_destination();
  7216. return;
  7217. }
  7218. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7219. float normalized_dist, end[NUM_AXIS];
  7220. // Split at the left/front border of the right/top square
  7221. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7222. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7223. memcpy(end, destination, sizeof(end));
  7224. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7225. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7226. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7227. CBI(x_splits, gcx);
  7228. }
  7229. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7230. memcpy(end, destination, sizeof(end));
  7231. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7232. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7233. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7234. CBI(y_splits, gcy);
  7235. }
  7236. else {
  7237. // Already split on a border
  7238. line_to_destination(fr_mm_s);
  7239. set_current_to_destination();
  7240. return;
  7241. }
  7242. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7243. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7244. // Do the split and look for more borders
  7245. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7246. // Restore destination from stack
  7247. memcpy(destination, end, sizeof(end));
  7248. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7249. }
  7250. #endif // MESH_BED_LEVELING
  7251. #if IS_KINEMATIC
  7252. /**
  7253. * Prepare a linear move in a DELTA or SCARA setup.
  7254. *
  7255. * This calls planner.buffer_line several times, adding
  7256. * small incremental moves for DELTA or SCARA.
  7257. */
  7258. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7259. // Get the top feedrate of the move in the XY plane
  7260. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7261. // If the move is only in Z/E don't split up the move
  7262. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7263. inverse_kinematics(ltarget);
  7264. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7265. return true;
  7266. }
  7267. // Get the cartesian distances moved in XYZE
  7268. float difference[NUM_AXIS];
  7269. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7270. // Get the linear distance in XYZ
  7271. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7272. // If the move is very short, check the E move distance
  7273. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7274. // No E move either? Game over.
  7275. if (UNEAR_ZERO(cartesian_mm)) return false;
  7276. // Minimum number of seconds to move the given distance
  7277. float seconds = cartesian_mm / _feedrate_mm_s;
  7278. // The number of segments-per-second times the duration
  7279. // gives the number of segments
  7280. uint16_t segments = delta_segments_per_second * seconds;
  7281. // For SCARA minimum segment size is 0.5mm
  7282. #if IS_SCARA
  7283. NOMORE(segments, cartesian_mm * 2);
  7284. #endif
  7285. // At least one segment is required
  7286. NOLESS(segments, 1);
  7287. // The approximate length of each segment
  7288. float segment_distance[XYZE] = {
  7289. difference[X_AXIS] / segments,
  7290. difference[Y_AXIS] / segments,
  7291. difference[Z_AXIS] / segments,
  7292. difference[E_AXIS] / segments
  7293. };
  7294. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7295. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7296. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7297. // Drop one segment so the last move is to the exact target.
  7298. // If there's only 1 segment, loops will be skipped entirely.
  7299. --segments;
  7300. // Using "raw" coordinates saves 6 float subtractions
  7301. // per segment, saving valuable CPU cycles
  7302. #if ENABLED(USE_RAW_KINEMATICS)
  7303. // Get the raw current position as starting point
  7304. float raw[XYZE] = {
  7305. RAW_CURRENT_POSITION(X_AXIS),
  7306. RAW_CURRENT_POSITION(Y_AXIS),
  7307. RAW_CURRENT_POSITION(Z_AXIS),
  7308. current_position[E_AXIS]
  7309. };
  7310. #define DELTA_VAR raw
  7311. // Delta can inline its kinematics
  7312. #if ENABLED(DELTA)
  7313. #define DELTA_IK() DELTA_RAW_IK()
  7314. #else
  7315. #define DELTA_IK() inverse_kinematics(raw)
  7316. #endif
  7317. #else
  7318. // Get the logical current position as starting point
  7319. float logical[XYZE];
  7320. memcpy(logical, current_position, sizeof(logical));
  7321. #define DELTA_VAR logical
  7322. // Delta can inline its kinematics
  7323. #if ENABLED(DELTA)
  7324. #define DELTA_IK() DELTA_LOGICAL_IK()
  7325. #else
  7326. #define DELTA_IK() inverse_kinematics(logical)
  7327. #endif
  7328. #endif
  7329. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7330. // Only interpolate XYZ. Advance E normally.
  7331. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7332. // Get the starting delta if interpolation is possible
  7333. if (segments >= 2) DELTA_IK();
  7334. // Loop using decrement
  7335. for (uint16_t s = segments + 1; --s;) {
  7336. // Are there at least 2 moves left?
  7337. if (s >= 2) {
  7338. // Save the previous delta for interpolation
  7339. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7340. // Get the delta 2 segments ahead (rather than the next)
  7341. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7342. // Advance E normally
  7343. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7344. // Get the exact delta for the move after this
  7345. DELTA_IK();
  7346. // Move to the interpolated delta position first
  7347. planner.buffer_line(
  7348. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7349. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7350. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7351. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7352. );
  7353. // Advance E once more for the next move
  7354. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7355. // Do an extra decrement of the loop
  7356. --s;
  7357. }
  7358. else {
  7359. // Get the last segment delta. (Used when segments is odd)
  7360. DELTA_NEXT(segment_distance[i]);
  7361. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7362. DELTA_IK();
  7363. }
  7364. // Move to the non-interpolated position
  7365. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7366. }
  7367. #else
  7368. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7369. // For non-interpolated delta calculate every segment
  7370. for (uint16_t s = segments + 1; --s;) {
  7371. DELTA_NEXT(segment_distance[i]);
  7372. DELTA_IK();
  7373. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7374. }
  7375. #endif
  7376. // Since segment_distance is only approximate,
  7377. // the final move must be to the exact destination.
  7378. inverse_kinematics(ltarget);
  7379. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7380. return true;
  7381. }
  7382. #else
  7383. /**
  7384. * Prepare a linear move in a Cartesian setup.
  7385. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7386. */
  7387. inline bool prepare_move_to_destination_cartesian() {
  7388. // Do not use feedrate_percentage for E or Z only moves
  7389. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7390. line_to_destination();
  7391. }
  7392. else {
  7393. #if ENABLED(MESH_BED_LEVELING)
  7394. if (mbl.active()) {
  7395. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7396. return false;
  7397. }
  7398. else
  7399. #endif
  7400. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7401. }
  7402. return true;
  7403. }
  7404. #endif // !IS_KINEMATIC
  7405. #if ENABLED(DUAL_X_CARRIAGE)
  7406. /**
  7407. * Prepare a linear move in a dual X axis setup
  7408. */
  7409. inline bool prepare_move_to_destination_dualx() {
  7410. if (active_extruder_parked) {
  7411. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7412. // move duplicate extruder into correct duplication position.
  7413. planner.set_position_mm(
  7414. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7415. current_position[Y_AXIS],
  7416. current_position[Z_AXIS],
  7417. current_position[E_AXIS]
  7418. );
  7419. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7420. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7421. SYNC_PLAN_POSITION_KINEMATIC();
  7422. stepper.synchronize();
  7423. extruder_duplication_enabled = true;
  7424. active_extruder_parked = false;
  7425. }
  7426. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7427. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7428. // This is a travel move (with no extrusion)
  7429. // Skip it, but keep track of the current position
  7430. // (so it can be used as the start of the next non-travel move)
  7431. if (delayed_move_time != 0xFFFFFFFFUL) {
  7432. set_current_to_destination();
  7433. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7434. delayed_move_time = millis();
  7435. return false;
  7436. }
  7437. }
  7438. delayed_move_time = 0;
  7439. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7440. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7441. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7442. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7443. active_extruder_parked = false;
  7444. }
  7445. }
  7446. return true;
  7447. }
  7448. #endif // DUAL_X_CARRIAGE
  7449. /**
  7450. * Prepare a single move and get ready for the next one
  7451. *
  7452. * This may result in several calls to planner.buffer_line to
  7453. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7454. */
  7455. void prepare_move_to_destination() {
  7456. clamp_to_software_endstops(destination);
  7457. refresh_cmd_timeout();
  7458. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7459. if (!DEBUGGING(DRYRUN)) {
  7460. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7461. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7462. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7463. SERIAL_ECHO_START;
  7464. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7465. }
  7466. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7467. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7468. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7469. SERIAL_ECHO_START;
  7470. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7471. }
  7472. #endif
  7473. }
  7474. }
  7475. #endif
  7476. #if IS_KINEMATIC
  7477. if (!prepare_kinematic_move_to(destination)) return;
  7478. #else
  7479. #if ENABLED(DUAL_X_CARRIAGE)
  7480. if (!prepare_move_to_destination_dualx()) return;
  7481. #endif
  7482. if (!prepare_move_to_destination_cartesian()) return;
  7483. #endif
  7484. set_current_to_destination();
  7485. }
  7486. #if ENABLED(ARC_SUPPORT)
  7487. /**
  7488. * Plan an arc in 2 dimensions
  7489. *
  7490. * The arc is approximated by generating many small linear segments.
  7491. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7492. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7493. * larger segments will tend to be more efficient. Your slicer should have
  7494. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7495. */
  7496. void plan_arc(
  7497. float logical[NUM_AXIS], // Destination position
  7498. float* offset, // Center of rotation relative to current_position
  7499. uint8_t clockwise // Clockwise?
  7500. ) {
  7501. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7502. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7503. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7504. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7505. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7506. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7507. r_Y = -offset[Y_AXIS],
  7508. rt_X = logical[X_AXIS] - center_X,
  7509. rt_Y = logical[Y_AXIS] - center_Y;
  7510. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7511. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7512. if (angular_travel < 0) angular_travel += RADIANS(360);
  7513. if (clockwise) angular_travel -= RADIANS(360);
  7514. // Make a circle if the angular rotation is 0
  7515. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7516. angular_travel += RADIANS(360);
  7517. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7518. if (mm_of_travel < 0.001) return;
  7519. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7520. if (segments == 0) segments = 1;
  7521. /**
  7522. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7523. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7524. * r_T = [cos(phi) -sin(phi);
  7525. * sin(phi) cos(phi)] * r ;
  7526. *
  7527. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7528. * defined from the circle center to the initial position. Each line segment is formed by successive
  7529. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7530. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7531. * all double numbers are single precision on the Arduino. (True double precision will not have
  7532. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7533. * tool precision in some cases. Therefore, arc path correction is implemented.
  7534. *
  7535. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7536. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7537. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7538. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7539. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7540. * issue for CNC machines with the single precision Arduino calculations.
  7541. *
  7542. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7543. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7544. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7545. * This is important when there are successive arc motions.
  7546. */
  7547. // Vector rotation matrix values
  7548. float arc_target[XYZE],
  7549. theta_per_segment = angular_travel / segments,
  7550. linear_per_segment = linear_travel / segments,
  7551. extruder_per_segment = extruder_travel / segments,
  7552. sin_T = theta_per_segment,
  7553. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7554. // Initialize the linear axis
  7555. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7556. // Initialize the extruder axis
  7557. arc_target[E_AXIS] = current_position[E_AXIS];
  7558. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7559. millis_t next_idle_ms = millis() + 200UL;
  7560. int8_t count = 0;
  7561. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7562. thermalManager.manage_heater();
  7563. if (ELAPSED(millis(), next_idle_ms)) {
  7564. next_idle_ms = millis() + 200UL;
  7565. idle();
  7566. }
  7567. if (++count < N_ARC_CORRECTION) {
  7568. // Apply vector rotation matrix to previous r_X / 1
  7569. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7570. r_X = r_X * cos_T - r_Y * sin_T;
  7571. r_Y = r_new_Y;
  7572. }
  7573. else {
  7574. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7575. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7576. // To reduce stuttering, the sin and cos could be computed at different times.
  7577. // For now, compute both at the same time.
  7578. float cos_Ti = cos(i * theta_per_segment),
  7579. sin_Ti = sin(i * theta_per_segment);
  7580. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7581. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7582. count = 0;
  7583. }
  7584. // Update arc_target location
  7585. arc_target[X_AXIS] = center_X + r_X;
  7586. arc_target[Y_AXIS] = center_Y + r_Y;
  7587. arc_target[Z_AXIS] += linear_per_segment;
  7588. arc_target[E_AXIS] += extruder_per_segment;
  7589. clamp_to_software_endstops(arc_target);
  7590. #if IS_KINEMATIC
  7591. inverse_kinematics(arc_target);
  7592. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7593. #else
  7594. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7595. #endif
  7596. }
  7597. // Ensure last segment arrives at target location.
  7598. #if IS_KINEMATIC
  7599. inverse_kinematics(logical);
  7600. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7601. #else
  7602. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7603. #endif
  7604. // As far as the parser is concerned, the position is now == target. In reality the
  7605. // motion control system might still be processing the action and the real tool position
  7606. // in any intermediate location.
  7607. set_current_to_destination();
  7608. }
  7609. #endif
  7610. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7611. void plan_cubic_move(const float offset[4]) {
  7612. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7613. // As far as the parser is concerned, the position is now == destination. In reality the
  7614. // motion control system might still be processing the action and the real tool position
  7615. // in any intermediate location.
  7616. set_current_to_destination();
  7617. }
  7618. #endif // BEZIER_CURVE_SUPPORT
  7619. #if HAS_CONTROLLERFAN
  7620. void controllerFan() {
  7621. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7622. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7623. millis_t ms = millis();
  7624. if (ELAPSED(ms, nextMotorCheck)) {
  7625. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7626. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7627. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7628. #if E_STEPPERS > 1
  7629. || E1_ENABLE_READ == E_ENABLE_ON
  7630. #if HAS_X2_ENABLE
  7631. || X2_ENABLE_READ == X_ENABLE_ON
  7632. #endif
  7633. #if E_STEPPERS > 2
  7634. || E2_ENABLE_READ == E_ENABLE_ON
  7635. #if E_STEPPERS > 3
  7636. || E3_ENABLE_READ == E_ENABLE_ON
  7637. #endif
  7638. #endif
  7639. #endif
  7640. ) {
  7641. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7642. }
  7643. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7644. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7645. // allows digital or PWM fan output to be used (see M42 handling)
  7646. digitalWrite(CONTROLLERFAN_PIN, speed);
  7647. analogWrite(CONTROLLERFAN_PIN, speed);
  7648. }
  7649. }
  7650. #endif // HAS_CONTROLLERFAN
  7651. #if ENABLED(MORGAN_SCARA)
  7652. /**
  7653. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7654. * Maths and first version by QHARLEY.
  7655. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7656. */
  7657. void forward_kinematics_SCARA(const float &a, const float &b) {
  7658. float a_sin = sin(RADIANS(a)) * L1,
  7659. a_cos = cos(RADIANS(a)) * L1,
  7660. b_sin = sin(RADIANS(b)) * L2,
  7661. b_cos = cos(RADIANS(b)) * L2;
  7662. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7663. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7664. /*
  7665. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7666. SERIAL_ECHOPAIR(" b=", b);
  7667. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7668. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7669. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7670. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7671. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7672. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7673. //*/
  7674. }
  7675. /**
  7676. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7677. *
  7678. * See http://forums.reprap.org/read.php?185,283327
  7679. *
  7680. * Maths and first version by QHARLEY.
  7681. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7682. */
  7683. void inverse_kinematics(const float logical[XYZ]) {
  7684. static float C2, S2, SK1, SK2, THETA, PSI;
  7685. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7686. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7687. if (L1 == L2)
  7688. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7689. else
  7690. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7691. S2 = sqrt(sq(C2) - 1);
  7692. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7693. SK1 = L1 + L2 * C2;
  7694. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7695. SK2 = L2 * S2;
  7696. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7697. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7698. // Angle of Arm2
  7699. PSI = atan2(S2, C2);
  7700. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7701. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7702. delta[C_AXIS] = logical[Z_AXIS];
  7703. /*
  7704. DEBUG_POS("SCARA IK", logical);
  7705. DEBUG_POS("SCARA IK", delta);
  7706. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7707. SERIAL_ECHOPAIR(",", sy);
  7708. SERIAL_ECHOPAIR(" C2=", C2);
  7709. SERIAL_ECHOPAIR(" S2=", S2);
  7710. SERIAL_ECHOPAIR(" Theta=", THETA);
  7711. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7712. //*/
  7713. }
  7714. #endif // MORGAN_SCARA
  7715. #if ENABLED(TEMP_STAT_LEDS)
  7716. static bool red_led = false;
  7717. static millis_t next_status_led_update_ms = 0;
  7718. void handle_status_leds(void) {
  7719. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7720. next_status_led_update_ms += 500; // Update every 0.5s
  7721. float max_temp = 0.0;
  7722. #if HAS_TEMP_BED
  7723. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7724. #endif
  7725. HOTEND_LOOP() {
  7726. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7727. }
  7728. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7729. if (new_led != red_led) {
  7730. red_led = new_led;
  7731. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7732. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7733. }
  7734. }
  7735. }
  7736. #endif
  7737. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7738. void handle_filament_runout() {
  7739. if (!filament_ran_out) {
  7740. filament_ran_out = true;
  7741. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7742. stepper.synchronize();
  7743. }
  7744. }
  7745. #endif // FILAMENT_RUNOUT_SENSOR
  7746. #if ENABLED(FAST_PWM_FAN)
  7747. void setPwmFrequency(uint8_t pin, int val) {
  7748. val &= 0x07;
  7749. switch (digitalPinToTimer(pin)) {
  7750. #if defined(TCCR0A)
  7751. case TIMER0A:
  7752. case TIMER0B:
  7753. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7754. // TCCR0B |= val;
  7755. break;
  7756. #endif
  7757. #if defined(TCCR1A)
  7758. case TIMER1A:
  7759. case TIMER1B:
  7760. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7761. // TCCR1B |= val;
  7762. break;
  7763. #endif
  7764. #if defined(TCCR2)
  7765. case TIMER2:
  7766. case TIMER2:
  7767. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7768. TCCR2 |= val;
  7769. break;
  7770. #endif
  7771. #if defined(TCCR2A)
  7772. case TIMER2A:
  7773. case TIMER2B:
  7774. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7775. TCCR2B |= val;
  7776. break;
  7777. #endif
  7778. #if defined(TCCR3A)
  7779. case TIMER3A:
  7780. case TIMER3B:
  7781. case TIMER3C:
  7782. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7783. TCCR3B |= val;
  7784. break;
  7785. #endif
  7786. #if defined(TCCR4A)
  7787. case TIMER4A:
  7788. case TIMER4B:
  7789. case TIMER4C:
  7790. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7791. TCCR4B |= val;
  7792. break;
  7793. #endif
  7794. #if defined(TCCR5A)
  7795. case TIMER5A:
  7796. case TIMER5B:
  7797. case TIMER5C:
  7798. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7799. TCCR5B |= val;
  7800. break;
  7801. #endif
  7802. }
  7803. }
  7804. #endif // FAST_PWM_FAN
  7805. float calculate_volumetric_multiplier(float diameter) {
  7806. if (!volumetric_enabled || diameter == 0) return 1.0;
  7807. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  7808. }
  7809. void calculate_volumetric_multipliers() {
  7810. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7811. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7812. }
  7813. void enable_all_steppers() {
  7814. enable_x();
  7815. enable_y();
  7816. enable_z();
  7817. enable_e0();
  7818. enable_e1();
  7819. enable_e2();
  7820. enable_e3();
  7821. }
  7822. void disable_all_steppers() {
  7823. disable_x();
  7824. disable_y();
  7825. disable_z();
  7826. disable_e0();
  7827. disable_e1();
  7828. disable_e2();
  7829. disable_e3();
  7830. }
  7831. /**
  7832. * Manage several activities:
  7833. * - Check for Filament Runout
  7834. * - Keep the command buffer full
  7835. * - Check for maximum inactive time between commands
  7836. * - Check for maximum inactive time between stepper commands
  7837. * - Check if pin CHDK needs to go LOW
  7838. * - Check for KILL button held down
  7839. * - Check for HOME button held down
  7840. * - Check if cooling fan needs to be switched on
  7841. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7842. */
  7843. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7844. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7845. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7846. handle_filament_runout();
  7847. #endif
  7848. if (commands_in_queue < BUFSIZE) get_available_commands();
  7849. millis_t ms = millis();
  7850. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7851. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7852. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7853. #if ENABLED(DISABLE_INACTIVE_X)
  7854. disable_x();
  7855. #endif
  7856. #if ENABLED(DISABLE_INACTIVE_Y)
  7857. disable_y();
  7858. #endif
  7859. #if ENABLED(DISABLE_INACTIVE_Z)
  7860. disable_z();
  7861. #endif
  7862. #if ENABLED(DISABLE_INACTIVE_E)
  7863. disable_e0();
  7864. disable_e1();
  7865. disable_e2();
  7866. disable_e3();
  7867. #endif
  7868. }
  7869. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7870. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7871. chdkActive = false;
  7872. WRITE(CHDK, LOW);
  7873. }
  7874. #endif
  7875. #if HAS_KILL
  7876. // Check if the kill button was pressed and wait just in case it was an accidental
  7877. // key kill key press
  7878. // -------------------------------------------------------------------------------
  7879. static int killCount = 0; // make the inactivity button a bit less responsive
  7880. const int KILL_DELAY = 750;
  7881. if (!READ(KILL_PIN))
  7882. killCount++;
  7883. else if (killCount > 0)
  7884. killCount--;
  7885. // Exceeded threshold and we can confirm that it was not accidental
  7886. // KILL the machine
  7887. // ----------------------------------------------------------------
  7888. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7889. #endif
  7890. #if HAS_HOME
  7891. // Check to see if we have to home, use poor man's debouncer
  7892. // ---------------------------------------------------------
  7893. static int homeDebounceCount = 0; // poor man's debouncing count
  7894. const int HOME_DEBOUNCE_DELAY = 2500;
  7895. if (!READ(HOME_PIN)) {
  7896. if (!homeDebounceCount) {
  7897. enqueue_and_echo_commands_P(PSTR("G28"));
  7898. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7899. }
  7900. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7901. homeDebounceCount++;
  7902. else
  7903. homeDebounceCount = 0;
  7904. }
  7905. #endif
  7906. #if HAS_CONTROLLERFAN
  7907. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7908. #endif
  7909. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7910. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7911. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7912. bool oldstatus;
  7913. #if ENABLED(SWITCHING_EXTRUDER)
  7914. oldstatus = E0_ENABLE_READ;
  7915. enable_e0();
  7916. #else // !SWITCHING_EXTRUDER
  7917. switch (active_extruder) {
  7918. case 0:
  7919. oldstatus = E0_ENABLE_READ;
  7920. enable_e0();
  7921. break;
  7922. #if E_STEPPERS > 1
  7923. case 1:
  7924. oldstatus = E1_ENABLE_READ;
  7925. enable_e1();
  7926. break;
  7927. #if E_STEPPERS > 2
  7928. case 2:
  7929. oldstatus = E2_ENABLE_READ;
  7930. enable_e2();
  7931. break;
  7932. #if E_STEPPERS > 3
  7933. case 3:
  7934. oldstatus = E3_ENABLE_READ;
  7935. enable_e3();
  7936. break;
  7937. #endif
  7938. #endif
  7939. #endif
  7940. }
  7941. #endif // !SWITCHING_EXTRUDER
  7942. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7943. planner.buffer_line(
  7944. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7945. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7946. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7947. );
  7948. stepper.synchronize();
  7949. planner.set_e_position_mm(current_position[E_AXIS]);
  7950. #if ENABLED(SWITCHING_EXTRUDER)
  7951. E0_ENABLE_WRITE(oldstatus);
  7952. #else
  7953. switch (active_extruder) {
  7954. case 0:
  7955. E0_ENABLE_WRITE(oldstatus);
  7956. break;
  7957. #if E_STEPPERS > 1
  7958. case 1:
  7959. E1_ENABLE_WRITE(oldstatus);
  7960. break;
  7961. #if E_STEPPERS > 2
  7962. case 2:
  7963. E2_ENABLE_WRITE(oldstatus);
  7964. break;
  7965. #if E_STEPPERS > 3
  7966. case 3:
  7967. E3_ENABLE_WRITE(oldstatus);
  7968. break;
  7969. #endif
  7970. #endif
  7971. #endif
  7972. }
  7973. #endif // !SWITCHING_EXTRUDER
  7974. }
  7975. #endif // EXTRUDER_RUNOUT_PREVENT
  7976. #if ENABLED(DUAL_X_CARRIAGE)
  7977. // handle delayed move timeout
  7978. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7979. // travel moves have been received so enact them
  7980. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7981. set_destination_to_current();
  7982. prepare_move_to_destination();
  7983. }
  7984. #endif
  7985. #if ENABLED(TEMP_STAT_LEDS)
  7986. handle_status_leds();
  7987. #endif
  7988. planner.check_axes_activity();
  7989. }
  7990. /**
  7991. * Standard idle routine keeps the machine alive
  7992. */
  7993. void idle(
  7994. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7995. bool no_stepper_sleep/*=false*/
  7996. #endif
  7997. ) {
  7998. lcd_update();
  7999. host_keepalive();
  8000. manage_inactivity(
  8001. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8002. no_stepper_sleep
  8003. #endif
  8004. );
  8005. thermalManager.manage_heater();
  8006. #if ENABLED(PRINTCOUNTER)
  8007. print_job_timer.tick();
  8008. #endif
  8009. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8010. buzzer.tick();
  8011. #endif
  8012. }
  8013. /**
  8014. * Kill all activity and lock the machine.
  8015. * After this the machine will need to be reset.
  8016. */
  8017. void kill(const char* lcd_msg) {
  8018. SERIAL_ERROR_START;
  8019. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8020. #if ENABLED(ULTRA_LCD)
  8021. kill_screen(lcd_msg);
  8022. #else
  8023. UNUSED(lcd_msg);
  8024. #endif
  8025. delay(500); // Wait a short time
  8026. cli(); // Stop interrupts
  8027. thermalManager.disable_all_heaters();
  8028. disable_all_steppers();
  8029. #if HAS_POWER_SWITCH
  8030. pinMode(PS_ON_PIN, INPUT);
  8031. #endif
  8032. suicide();
  8033. while (1) {
  8034. #if ENABLED(USE_WATCHDOG)
  8035. watchdog_reset();
  8036. #endif
  8037. } // Wait for reset
  8038. }
  8039. /**
  8040. * Turn off heaters and stop the print in progress
  8041. * After a stop the machine may be resumed with M999
  8042. */
  8043. void stop() {
  8044. thermalManager.disable_all_heaters();
  8045. if (IsRunning()) {
  8046. Running = false;
  8047. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8048. SERIAL_ERROR_START;
  8049. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8050. LCD_MESSAGEPGM(MSG_STOPPED);
  8051. }
  8052. }
  8053. /**
  8054. * Marlin entry-point: Set up before the program loop
  8055. * - Set up the kill pin, filament runout, power hold
  8056. * - Start the serial port
  8057. * - Print startup messages and diagnostics
  8058. * - Get EEPROM or default settings
  8059. * - Initialize managers for:
  8060. * • temperature
  8061. * • planner
  8062. * • watchdog
  8063. * • stepper
  8064. * • photo pin
  8065. * • servos
  8066. * • LCD controller
  8067. * • Digipot I2C
  8068. * • Z probe sled
  8069. * • status LEDs
  8070. */
  8071. void setup() {
  8072. #ifdef DISABLE_JTAG
  8073. // Disable JTAG on AT90USB chips to free up pins for IO
  8074. MCUCR = 0x80;
  8075. MCUCR = 0x80;
  8076. #endif
  8077. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8078. setup_filrunoutpin();
  8079. #endif
  8080. setup_killpin();
  8081. setup_powerhold();
  8082. #if HAS_STEPPER_RESET
  8083. disableStepperDrivers();
  8084. #endif
  8085. MYSERIAL.begin(BAUDRATE);
  8086. SERIAL_PROTOCOLLNPGM("start");
  8087. SERIAL_ECHO_START;
  8088. // Check startup - does nothing if bootloader sets MCUSR to 0
  8089. byte mcu = MCUSR;
  8090. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8091. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8092. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8093. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8094. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8095. MCUSR = 0;
  8096. SERIAL_ECHOPGM(MSG_MARLIN);
  8097. SERIAL_CHAR(' ');
  8098. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8099. SERIAL_EOL;
  8100. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8101. SERIAL_ECHO_START;
  8102. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8103. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8104. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8105. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8106. #endif
  8107. SERIAL_ECHO_START;
  8108. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8109. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8110. // Send "ok" after commands by default
  8111. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8112. // Load data from EEPROM if available (or use defaults)
  8113. // This also updates variables in the planner, elsewhere
  8114. Config_RetrieveSettings();
  8115. // Initialize current position based on home_offset
  8116. memcpy(current_position, home_offset, sizeof(home_offset));
  8117. // Vital to init stepper/planner equivalent for current_position
  8118. SYNC_PLAN_POSITION_KINEMATIC();
  8119. thermalManager.init(); // Initialize temperature loop
  8120. #if ENABLED(USE_WATCHDOG)
  8121. watchdog_init();
  8122. #endif
  8123. stepper.init(); // Initialize stepper, this enables interrupts!
  8124. setup_photpin();
  8125. servo_init();
  8126. #if HAS_BED_PROBE
  8127. endstops.enable_z_probe(false);
  8128. #endif
  8129. #if HAS_CONTROLLERFAN
  8130. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8131. #endif
  8132. #if HAS_STEPPER_RESET
  8133. enableStepperDrivers();
  8134. #endif
  8135. #if ENABLED(DIGIPOT_I2C)
  8136. digipot_i2c_init();
  8137. #endif
  8138. #if ENABLED(DAC_STEPPER_CURRENT)
  8139. dac_init();
  8140. #endif
  8141. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8142. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8143. #endif // Z_PROBE_SLED
  8144. setup_homepin();
  8145. #if PIN_EXISTS(STAT_LED_RED)
  8146. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8147. #endif
  8148. #if PIN_EXISTS(STAT_LED_BLUE)
  8149. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8150. #endif
  8151. lcd_init();
  8152. #if ENABLED(SHOW_BOOTSCREEN)
  8153. #if ENABLED(DOGLCD)
  8154. safe_delay(BOOTSCREEN_TIMEOUT);
  8155. #elif ENABLED(ULTRA_LCD)
  8156. bootscreen();
  8157. lcd_init();
  8158. #endif
  8159. #endif
  8160. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8161. // Initialize mixing to 100% color 1
  8162. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8163. mixing_factor[i] = (i == 0) ? 1 : 0;
  8164. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8165. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8166. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8167. #endif
  8168. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8169. i2c.onReceive(i2c_on_receive);
  8170. i2c.onRequest(i2c_on_request);
  8171. #endif
  8172. }
  8173. /**
  8174. * The main Marlin program loop
  8175. *
  8176. * - Save or log commands to SD
  8177. * - Process available commands (if not saving)
  8178. * - Call heater manager
  8179. * - Call inactivity manager
  8180. * - Call endstop manager
  8181. * - Call LCD update
  8182. */
  8183. void loop() {
  8184. if (commands_in_queue < BUFSIZE) get_available_commands();
  8185. #if ENABLED(SDSUPPORT)
  8186. card.checkautostart(false);
  8187. #endif
  8188. if (commands_in_queue) {
  8189. #if ENABLED(SDSUPPORT)
  8190. if (card.saving) {
  8191. char* command = command_queue[cmd_queue_index_r];
  8192. if (strstr_P(command, PSTR("M29"))) {
  8193. // M29 closes the file
  8194. card.closefile();
  8195. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8196. ok_to_send();
  8197. }
  8198. else {
  8199. // Write the string from the read buffer to SD
  8200. card.write_command(command);
  8201. if (card.logging)
  8202. process_next_command(); // The card is saving because it's logging
  8203. else
  8204. ok_to_send();
  8205. }
  8206. }
  8207. else
  8208. process_next_command();
  8209. #else
  8210. process_next_command();
  8211. #endif // SDSUPPORT
  8212. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8213. if (commands_in_queue) {
  8214. --commands_in_queue;
  8215. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8216. }
  8217. }
  8218. endstops.report_state();
  8219. idle();
  8220. }