My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 34KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V28"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V28 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Mesh bed leveling:
  64. * 219 M420 S status (uint8)
  65. * 220 z_offset (float)
  66. * 224 mesh_num_x (uint8 as set in firmware)
  67. * 225 mesh_num_y (uint8 as set in firmware)
  68. * 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  69. *
  70. * AUTO BED LEVELING
  71. * 262 M851 zprobe_zoffset (float)
  72. *
  73. * DELTA:
  74. * 266 M666 XYZ endstop_adj (float x3)
  75. * 278 M665 R delta_radius (float)
  76. * 282 M665 L delta_diagonal_rod (float)
  77. * 286 M665 S delta_segments_per_second (float)
  78. * 290 M665 A delta_diagonal_rod_trim_tower_1 (float)
  79. * 294 M665 B delta_diagonal_rod_trim_tower_2 (float)
  80. * 298 M665 C delta_diagonal_rod_trim_tower_3 (float)
  81. *
  82. * Z_DUAL_ENDSTOPS:
  83. * 302 M666 Z z_endstop_adj (float)
  84. *
  85. * ULTIPANEL:
  86. * 306 M145 S0 H lcd_preheat_hotend_temp (int x2)
  87. * 310 M145 S0 B lcd_preheat_bed_temp (int x2)
  88. * 314 M145 S0 F lcd_preheat_fan_speed (int x2)
  89. *
  90. * PIDTEMP:
  91. * 318 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  92. * 334 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  93. * 350 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  94. * 366 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  95. * 382 M301 L lpq_len (int)
  96. *
  97. * PIDTEMPBED:
  98. * 384 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  99. *
  100. * DOGLCD:
  101. * 396 M250 C lcd_contrast (int)
  102. *
  103. * FWRETRACT:
  104. * 398 M209 S autoretract_enabled (bool)
  105. * 399 M207 S retract_length (float)
  106. * 403 M207 W retract_length_swap (float)
  107. * 407 M207 F retract_feedrate_mm_s (float)
  108. * 411 M207 Z retract_zlift (float)
  109. * 415 M208 S retract_recover_length (float)
  110. * 419 M208 W retract_recover_length_swap (float)
  111. * 423 M208 F retract_recover_feedrate_mm_s (float)
  112. *
  113. * Volumetric Extrusion:
  114. * 427 M200 D volumetric_enabled (bool)
  115. * 428 M200 T D filament_size (float x4) (T0..3)
  116. *
  117. * 444 This Slot is Available!
  118. *
  119. */
  120. #include "Marlin.h"
  121. #include "language.h"
  122. #include "endstops.h"
  123. #include "planner.h"
  124. #include "temperature.h"
  125. #include "ultralcd.h"
  126. #include "configuration_store.h"
  127. #if ENABLED(MESH_BED_LEVELING)
  128. #include "mesh_bed_leveling.h"
  129. #endif
  130. /**
  131. * Post-process after Retrieve or Reset
  132. */
  133. void Config_Postprocess() {
  134. // steps per s2 needs to be updated to agree with units per s2
  135. planner.reset_acceleration_rates();
  136. // Make sure delta kinematics are updated before refreshing the
  137. // planner position so the stepper counts will be set correctly.
  138. #if ENABLED(DELTA)
  139. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  140. #endif
  141. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  142. // and init stepper.count[], planner.position[] with current_position
  143. planner.refresh_positioning();
  144. #if ENABLED(PIDTEMP)
  145. thermalManager.updatePID();
  146. #endif
  147. calculate_volumetric_multipliers();
  148. // Software endstops depend on home_offset
  149. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  150. }
  151. #if ENABLED(EEPROM_SETTINGS)
  152. uint16_t eeprom_checksum;
  153. const char version[4] = EEPROM_VERSION;
  154. bool eeprom_write_error;
  155. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  156. if (eeprom_write_error) return;
  157. while (size--) {
  158. uint8_t * const p = (uint8_t * const)pos;
  159. const uint8_t v = *value;
  160. // EEPROM has only ~100,000 write cycles,
  161. // so only write bytes that have changed!
  162. if (v != eeprom_read_byte(p)) {
  163. eeprom_write_byte(p, v);
  164. if (eeprom_read_byte(p) != v) {
  165. SERIAL_ECHO_START;
  166. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  167. eeprom_write_error = true;
  168. return;
  169. }
  170. }
  171. eeprom_checksum += v;
  172. pos++;
  173. value++;
  174. };
  175. }
  176. bool eeprom_read_error;
  177. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  178. do {
  179. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  180. if (!eeprom_read_error) *value = c;
  181. eeprom_checksum += c;
  182. pos++;
  183. value++;
  184. } while (--size);
  185. }
  186. #define DUMMY_PID_VALUE 3000.0f
  187. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  188. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  189. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  190. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  191. #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
  192. /**
  193. * M500 - Store Configuration
  194. */
  195. void Config_StoreSettings() {
  196. float dummy = 0.0f;
  197. char ver[4] = "000";
  198. EEPROM_START();
  199. eeprom_write_error = false;
  200. EEPROM_WRITE(ver); // invalidate data first
  201. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  202. eeprom_checksum = 0; // clear before first "real data"
  203. const uint8_t esteppers = E_STEPPERS;
  204. EEPROM_WRITE(esteppers);
  205. EEPROM_WRITE(planner.axis_steps_per_mm);
  206. EEPROM_WRITE(planner.max_feedrate_mm_s);
  207. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  208. EEPROM_WRITE(planner.acceleration);
  209. EEPROM_WRITE(planner.retract_acceleration);
  210. EEPROM_WRITE(planner.travel_acceleration);
  211. EEPROM_WRITE(planner.min_feedrate_mm_s);
  212. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  213. EEPROM_WRITE(planner.min_segment_time);
  214. EEPROM_WRITE(planner.max_jerk);
  215. EEPROM_WRITE(home_offset);
  216. #if HOTENDS > 1
  217. // Skip hotend 0 which must be 0
  218. for (uint8_t e = 1; e < HOTENDS; e++)
  219. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  220. #endif
  221. #if ENABLED(MESH_BED_LEVELING)
  222. // Compile time test that sizeof(mbl.z_values) is as expected
  223. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  224. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  225. mesh_num_y = MESH_NUM_Y_POINTS,
  226. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  227. EEPROM_WRITE(dummy_uint8);
  228. EEPROM_WRITE(mbl.z_offset);
  229. EEPROM_WRITE(mesh_num_x);
  230. EEPROM_WRITE(mesh_num_y);
  231. EEPROM_WRITE(mbl.z_values);
  232. #else
  233. // For disabled MBL write a default mesh
  234. uint8_t mesh_num_x = 3,
  235. mesh_num_y = 3,
  236. dummy_uint8 = 0;
  237. dummy = 0.0f;
  238. EEPROM_WRITE(dummy_uint8);
  239. EEPROM_WRITE(dummy);
  240. EEPROM_WRITE(mesh_num_x);
  241. EEPROM_WRITE(mesh_num_y);
  242. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
  243. #endif // MESH_BED_LEVELING
  244. #if !HAS_BED_PROBE
  245. float zprobe_zoffset = 0;
  246. #endif
  247. EEPROM_WRITE(zprobe_zoffset);
  248. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  249. #if ENABLED(DELTA)
  250. EEPROM_WRITE(endstop_adj); // 3 floats
  251. EEPROM_WRITE(delta_radius); // 1 float
  252. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  253. EEPROM_WRITE(delta_segments_per_second); // 1 float
  254. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  255. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  256. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  257. #elif ENABLED(Z_DUAL_ENDSTOPS)
  258. EEPROM_WRITE(z_endstop_adj); // 1 float
  259. dummy = 0.0f;
  260. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  261. #else
  262. dummy = 0.0f;
  263. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  264. #endif
  265. #if DISABLED(ULTIPANEL)
  266. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  267. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  268. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  269. #endif // !ULTIPANEL
  270. EEPROM_WRITE(lcd_preheat_hotend_temp);
  271. EEPROM_WRITE(lcd_preheat_bed_temp);
  272. EEPROM_WRITE(lcd_preheat_fan_speed);
  273. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  274. #if ENABLED(PIDTEMP)
  275. if (e < HOTENDS) {
  276. EEPROM_WRITE(PID_PARAM(Kp, e));
  277. EEPROM_WRITE(PID_PARAM(Ki, e));
  278. EEPROM_WRITE(PID_PARAM(Kd, e));
  279. #if ENABLED(PID_EXTRUSION_SCALING)
  280. EEPROM_WRITE(PID_PARAM(Kc, e));
  281. #else
  282. dummy = 1.0f; // 1.0 = default kc
  283. EEPROM_WRITE(dummy);
  284. #endif
  285. }
  286. else
  287. #endif // !PIDTEMP
  288. {
  289. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  290. EEPROM_WRITE(dummy); // Kp
  291. dummy = 0.0f;
  292. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  293. }
  294. } // Hotends Loop
  295. #if DISABLED(PID_EXTRUSION_SCALING)
  296. int lpq_len = 20;
  297. #endif
  298. EEPROM_WRITE(lpq_len);
  299. #if DISABLED(PIDTEMPBED)
  300. dummy = DUMMY_PID_VALUE;
  301. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  302. #else
  303. EEPROM_WRITE(thermalManager.bedKp);
  304. EEPROM_WRITE(thermalManager.bedKi);
  305. EEPROM_WRITE(thermalManager.bedKd);
  306. #endif
  307. #if !HAS_LCD_CONTRAST
  308. const int lcd_contrast = 32;
  309. #endif
  310. EEPROM_WRITE(lcd_contrast);
  311. #if ENABLED(FWRETRACT)
  312. EEPROM_WRITE(autoretract_enabled);
  313. EEPROM_WRITE(retract_length);
  314. #if EXTRUDERS > 1
  315. EEPROM_WRITE(retract_length_swap);
  316. #else
  317. dummy = 0.0f;
  318. EEPROM_WRITE(dummy);
  319. #endif
  320. EEPROM_WRITE(retract_feedrate_mm_s);
  321. EEPROM_WRITE(retract_zlift);
  322. EEPROM_WRITE(retract_recover_length);
  323. #if EXTRUDERS > 1
  324. EEPROM_WRITE(retract_recover_length_swap);
  325. #else
  326. dummy = 0.0f;
  327. EEPROM_WRITE(dummy);
  328. #endif
  329. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  330. #endif // FWRETRACT
  331. EEPROM_WRITE(volumetric_enabled);
  332. // Save filament sizes
  333. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  334. if (q < COUNT(filament_size)) dummy = filament_size[q];
  335. EEPROM_WRITE(dummy);
  336. }
  337. if (!eeprom_write_error) {
  338. uint16_t final_checksum = eeprom_checksum,
  339. eeprom_size = eeprom_index;
  340. // Write the EEPROM header
  341. eeprom_index = EEPROM_OFFSET;
  342. EEPROM_WRITE(version);
  343. EEPROM_WRITE(final_checksum);
  344. // Report storage size
  345. SERIAL_ECHO_START;
  346. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  347. SERIAL_ECHOLNPGM(" bytes)");
  348. }
  349. }
  350. /**
  351. * M501 - Retrieve Configuration
  352. */
  353. void Config_RetrieveSettings() {
  354. EEPROM_START();
  355. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  356. char stored_ver[4];
  357. EEPROM_READ(stored_ver);
  358. uint16_t stored_checksum;
  359. EEPROM_READ(stored_checksum);
  360. // SERIAL_ECHOPAIR("Version: [", ver);
  361. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  362. // SERIAL_CHAR(']');
  363. // SERIAL_EOL;
  364. // Version has to match or defaults are used
  365. if (strncmp(version, stored_ver, 3) != 0) {
  366. Config_ResetDefault();
  367. }
  368. else {
  369. float dummy = 0;
  370. eeprom_checksum = 0; // clear before reading first "real data"
  371. // Number of esteppers may change
  372. uint8_t esteppers;
  373. EEPROM_READ(esteppers);
  374. // Get only the number of E stepper parameters previously stored
  375. // Any steppers added later are set to their defaults
  376. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  377. const long def3[] = DEFAULT_MAX_ACCELERATION;
  378. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  379. long tmp3[XYZ + esteppers];
  380. EEPROM_READ(tmp1);
  381. EEPROM_READ(tmp2);
  382. EEPROM_READ(tmp3);
  383. LOOP_XYZE_N(i) {
  384. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  385. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  386. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  387. }
  388. EEPROM_READ(planner.acceleration);
  389. EEPROM_READ(planner.retract_acceleration);
  390. EEPROM_READ(planner.travel_acceleration);
  391. EEPROM_READ(planner.min_feedrate_mm_s);
  392. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  393. EEPROM_READ(planner.min_segment_time);
  394. EEPROM_READ(planner.max_jerk);
  395. EEPROM_READ(home_offset);
  396. #if HOTENDS > 1
  397. // Skip hotend 0 which must be 0
  398. for (uint8_t e = 1; e < HOTENDS; e++)
  399. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  400. #endif
  401. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  402. EEPROM_READ(dummy_uint8);
  403. EEPROM_READ(dummy);
  404. EEPROM_READ(mesh_num_x);
  405. EEPROM_READ(mesh_num_y);
  406. #if ENABLED(MESH_BED_LEVELING)
  407. mbl.status = dummy_uint8;
  408. mbl.z_offset = dummy;
  409. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  410. // EEPROM data fits the current mesh
  411. EEPROM_READ(mbl.z_values);
  412. }
  413. else {
  414. // EEPROM data is stale
  415. mbl.reset();
  416. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  417. }
  418. #else
  419. // MBL is disabled - skip the stored data
  420. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  421. #endif // MESH_BED_LEVELING
  422. #if !HAS_BED_PROBE
  423. float zprobe_zoffset = 0;
  424. #endif
  425. EEPROM_READ(zprobe_zoffset);
  426. #if ENABLED(DELTA)
  427. EEPROM_READ(endstop_adj); // 3 floats
  428. EEPROM_READ(delta_radius); // 1 float
  429. EEPROM_READ(delta_diagonal_rod); // 1 float
  430. EEPROM_READ(delta_segments_per_second); // 1 float
  431. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  432. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  433. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  434. #elif ENABLED(Z_DUAL_ENDSTOPS)
  435. EEPROM_READ(z_endstop_adj);
  436. dummy = 0.0f;
  437. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  438. #else
  439. dummy = 0.0f;
  440. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  441. #endif
  442. #if DISABLED(ULTIPANEL)
  443. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  444. #endif
  445. EEPROM_READ(lcd_preheat_hotend_temp);
  446. EEPROM_READ(lcd_preheat_bed_temp);
  447. EEPROM_READ(lcd_preheat_fan_speed);
  448. #if ENABLED(PIDTEMP)
  449. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  450. EEPROM_READ(dummy); // Kp
  451. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  452. // do not need to scale PID values as the values in EEPROM are already scaled
  453. PID_PARAM(Kp, e) = dummy;
  454. EEPROM_READ(PID_PARAM(Ki, e));
  455. EEPROM_READ(PID_PARAM(Kd, e));
  456. #if ENABLED(PID_EXTRUSION_SCALING)
  457. EEPROM_READ(PID_PARAM(Kc, e));
  458. #else
  459. EEPROM_READ(dummy);
  460. #endif
  461. }
  462. else {
  463. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  464. }
  465. }
  466. #else // !PIDTEMP
  467. // 4 x 4 = 16 slots for PID parameters
  468. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  469. #endif // !PIDTEMP
  470. #if DISABLED(PID_EXTRUSION_SCALING)
  471. int lpq_len;
  472. #endif
  473. EEPROM_READ(lpq_len);
  474. #if ENABLED(PIDTEMPBED)
  475. EEPROM_READ(dummy); // bedKp
  476. if (dummy != DUMMY_PID_VALUE) {
  477. thermalManager.bedKp = dummy;
  478. EEPROM_READ(thermalManager.bedKi);
  479. EEPROM_READ(thermalManager.bedKd);
  480. }
  481. #else
  482. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  483. #endif
  484. #if !HAS_LCD_CONTRAST
  485. int lcd_contrast;
  486. #endif
  487. EEPROM_READ(lcd_contrast);
  488. #if ENABLED(FWRETRACT)
  489. EEPROM_READ(autoretract_enabled);
  490. EEPROM_READ(retract_length);
  491. #if EXTRUDERS > 1
  492. EEPROM_READ(retract_length_swap);
  493. #else
  494. EEPROM_READ(dummy);
  495. #endif
  496. EEPROM_READ(retract_feedrate_mm_s);
  497. EEPROM_READ(retract_zlift);
  498. EEPROM_READ(retract_recover_length);
  499. #if EXTRUDERS > 1
  500. EEPROM_READ(retract_recover_length_swap);
  501. #else
  502. EEPROM_READ(dummy);
  503. #endif
  504. EEPROM_READ(retract_recover_feedrate_mm_s);
  505. #endif // FWRETRACT
  506. EEPROM_READ(volumetric_enabled);
  507. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  508. EEPROM_READ(dummy);
  509. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  510. }
  511. if (eeprom_checksum == stored_checksum) {
  512. if (eeprom_read_error)
  513. Config_ResetDefault();
  514. else {
  515. Config_Postprocess();
  516. SERIAL_ECHO_START;
  517. SERIAL_ECHO(version);
  518. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  519. SERIAL_ECHOLNPGM(" bytes)");
  520. }
  521. }
  522. else {
  523. SERIAL_ERROR_START;
  524. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  525. Config_ResetDefault();
  526. }
  527. }
  528. #if ENABLED(EEPROM_CHITCHAT)
  529. Config_PrintSettings();
  530. #endif
  531. }
  532. #else // !EEPROM_SETTINGS
  533. void Config_StoreSettings() {
  534. SERIAL_ERROR_START;
  535. SERIAL_ERRORLNPGM("EEPROM disabled");
  536. }
  537. #endif // !EEPROM_SETTINGS
  538. /**
  539. * M502 - Reset Configuration
  540. */
  541. void Config_ResetDefault() {
  542. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  543. const long tmp3[] = DEFAULT_MAX_ACCELERATION;
  544. LOOP_XYZE_N(i) {
  545. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  546. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  547. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  548. }
  549. planner.acceleration = DEFAULT_ACCELERATION;
  550. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  551. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  552. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  553. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  554. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  555. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  556. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  557. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  558. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  559. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  560. #if HOTENDS > 1
  561. constexpr float tmp4[XYZ][HOTENDS] = {
  562. HOTEND_OFFSET_X,
  563. HOTEND_OFFSET_Y
  564. #ifdef HOTEND_OFFSET_Z
  565. , HOTEND_OFFSET_Z
  566. #else
  567. , { 0 }
  568. #endif
  569. };
  570. static_assert(
  571. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  572. "Offsets for the first hotend must be 0.0."
  573. );
  574. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  575. #endif
  576. #if ENABLED(MESH_BED_LEVELING)
  577. mbl.reset();
  578. #endif
  579. #if HAS_BED_PROBE
  580. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  581. #endif
  582. #if ENABLED(DELTA)
  583. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  584. endstop_adj[A_AXIS] = adj[A_AXIS];
  585. endstop_adj[B_AXIS] = adj[B_AXIS];
  586. endstop_adj[C_AXIS] = adj[C_AXIS];
  587. delta_radius = DELTA_RADIUS;
  588. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  589. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  590. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  591. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  592. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  593. #elif ENABLED(Z_DUAL_ENDSTOPS)
  594. z_endstop_adj = 0;
  595. #endif
  596. #if ENABLED(ULTIPANEL)
  597. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  598. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  599. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  600. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  601. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  602. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  603. #endif
  604. #if HAS_LCD_CONTRAST
  605. lcd_contrast = DEFAULT_LCD_CONTRAST;
  606. #endif
  607. #if ENABLED(PIDTEMP)
  608. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  609. HOTEND_LOOP()
  610. #else
  611. int e = 0; UNUSED(e); // only need to write once
  612. #endif
  613. {
  614. PID_PARAM(Kp, e) = DEFAULT_Kp;
  615. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  616. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  617. #if ENABLED(PID_EXTRUSION_SCALING)
  618. PID_PARAM(Kc, e) = DEFAULT_Kc;
  619. #endif
  620. }
  621. #if ENABLED(PID_EXTRUSION_SCALING)
  622. lpq_len = 20; // default last-position-queue size
  623. #endif
  624. #endif // PIDTEMP
  625. #if ENABLED(PIDTEMPBED)
  626. thermalManager.bedKp = DEFAULT_bedKp;
  627. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  628. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  629. #endif
  630. #if ENABLED(FWRETRACT)
  631. autoretract_enabled = false;
  632. retract_length = RETRACT_LENGTH;
  633. #if EXTRUDERS > 1
  634. retract_length_swap = RETRACT_LENGTH_SWAP;
  635. #endif
  636. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  637. retract_zlift = RETRACT_ZLIFT;
  638. retract_recover_length = RETRACT_RECOVER_LENGTH;
  639. #if EXTRUDERS > 1
  640. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  641. #endif
  642. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  643. #endif
  644. volumetric_enabled = false;
  645. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  646. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  647. endstops.enable_globally(
  648. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  649. (true)
  650. #else
  651. (false)
  652. #endif
  653. );
  654. Config_Postprocess();
  655. SERIAL_ECHO_START;
  656. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  657. }
  658. #if DISABLED(DISABLE_M503)
  659. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  660. /**
  661. * M503 - Print Configuration
  662. */
  663. void Config_PrintSettings(bool forReplay) {
  664. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  665. CONFIG_ECHO_START;
  666. if (!forReplay) {
  667. SERIAL_ECHOLNPGM("Steps per unit:");
  668. CONFIG_ECHO_START;
  669. }
  670. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  671. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  672. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  673. #if DISABLED(DISTINCT_E_FACTORS)
  674. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  675. #endif
  676. SERIAL_EOL;
  677. #if ENABLED(DISTINCT_E_FACTORS)
  678. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  679. SERIAL_ECHOPAIR(" M92 T", (int)i);
  680. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  681. }
  682. #endif
  683. CONFIG_ECHO_START;
  684. if (!forReplay) {
  685. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  686. CONFIG_ECHO_START;
  687. }
  688. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  689. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  690. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  691. #if DISABLED(DISTINCT_E_FACTORS)
  692. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  693. #endif
  694. SERIAL_EOL;
  695. #if ENABLED(DISTINCT_E_FACTORS)
  696. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  697. SERIAL_ECHOPAIR(" M203 T", (int)i);
  698. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  699. }
  700. #endif
  701. CONFIG_ECHO_START;
  702. if (!forReplay) {
  703. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  704. CONFIG_ECHO_START;
  705. }
  706. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  707. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  708. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  709. #if DISABLED(DISTINCT_E_FACTORS)
  710. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  711. #endif
  712. SERIAL_EOL;
  713. #if ENABLED(DISTINCT_E_FACTORS)
  714. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  715. SERIAL_ECHOPAIR(" M201 T", (int)i);
  716. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  717. }
  718. #endif
  719. CONFIG_ECHO_START;
  720. if (!forReplay) {
  721. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  722. CONFIG_ECHO_START;
  723. }
  724. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  725. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  726. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  727. SERIAL_EOL;
  728. CONFIG_ECHO_START;
  729. if (!forReplay) {
  730. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  731. CONFIG_ECHO_START;
  732. }
  733. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  734. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  735. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  736. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  737. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  738. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  739. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  740. SERIAL_EOL;
  741. CONFIG_ECHO_START;
  742. if (!forReplay) {
  743. SERIAL_ECHOLNPGM("Home offset (mm)");
  744. CONFIG_ECHO_START;
  745. }
  746. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  747. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  748. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  749. SERIAL_EOL;
  750. #if HOTENDS > 1
  751. CONFIG_ECHO_START;
  752. if (!forReplay) {
  753. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  754. CONFIG_ECHO_START;
  755. }
  756. for (uint8_t e = 1; e < HOTENDS; e++) {
  757. SERIAL_ECHOPAIR(" M218 T", (int)e);
  758. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  759. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  760. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  761. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  762. #endif
  763. SERIAL_EOL;
  764. }
  765. #endif
  766. #if ENABLED(MESH_BED_LEVELING)
  767. if (!forReplay) {
  768. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  769. CONFIG_ECHO_START;
  770. }
  771. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  772. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  773. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  774. SERIAL_EOL;
  775. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  776. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  777. CONFIG_ECHO_START;
  778. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  779. SERIAL_ECHOPAIR(" Y", (int)py);
  780. SERIAL_ECHOPGM(" Z");
  781. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  782. SERIAL_EOL;
  783. }
  784. }
  785. #endif
  786. #if ENABLED(DELTA)
  787. CONFIG_ECHO_START;
  788. if (!forReplay) {
  789. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  790. CONFIG_ECHO_START;
  791. }
  792. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  793. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  794. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  795. SERIAL_EOL;
  796. CONFIG_ECHO_START;
  797. if (!forReplay) {
  798. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  799. CONFIG_ECHO_START;
  800. }
  801. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  802. SERIAL_ECHOPAIR(" R", delta_radius);
  803. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  804. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  805. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  806. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  807. SERIAL_EOL;
  808. #elif ENABLED(Z_DUAL_ENDSTOPS)
  809. CONFIG_ECHO_START;
  810. if (!forReplay) {
  811. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  812. CONFIG_ECHO_START;
  813. }
  814. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  815. SERIAL_EOL;
  816. #endif // DELTA
  817. #if ENABLED(ULTIPANEL)
  818. CONFIG_ECHO_START;
  819. if (!forReplay) {
  820. SERIAL_ECHOLNPGM("Material heatup parameters:");
  821. CONFIG_ECHO_START;
  822. }
  823. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  824. SERIAL_ECHOPAIR(" M145 S", (int)i);
  825. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  826. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  827. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  828. SERIAL_EOL;
  829. }
  830. #endif // ULTIPANEL
  831. #if HAS_PID_HEATING
  832. CONFIG_ECHO_START;
  833. if (!forReplay) {
  834. SERIAL_ECHOLNPGM("PID settings:");
  835. }
  836. #if ENABLED(PIDTEMP)
  837. #if HOTENDS > 1
  838. if (forReplay) {
  839. HOTEND_LOOP() {
  840. CONFIG_ECHO_START;
  841. SERIAL_ECHOPAIR(" M301 E", e);
  842. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  843. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  844. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  845. #if ENABLED(PID_EXTRUSION_SCALING)
  846. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  847. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  848. #endif
  849. SERIAL_EOL;
  850. }
  851. }
  852. else
  853. #endif // HOTENDS > 1
  854. // !forReplay || HOTENDS == 1
  855. {
  856. CONFIG_ECHO_START;
  857. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  858. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  859. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  860. #if ENABLED(PID_EXTRUSION_SCALING)
  861. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  862. SERIAL_ECHOPAIR(" L", lpq_len);
  863. #endif
  864. SERIAL_EOL;
  865. }
  866. #endif // PIDTEMP
  867. #if ENABLED(PIDTEMPBED)
  868. CONFIG_ECHO_START;
  869. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  870. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  871. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  872. SERIAL_EOL;
  873. #endif
  874. #endif // PIDTEMP || PIDTEMPBED
  875. #if HAS_LCD_CONTRAST
  876. CONFIG_ECHO_START;
  877. if (!forReplay) {
  878. SERIAL_ECHOLNPGM("LCD Contrast:");
  879. CONFIG_ECHO_START;
  880. }
  881. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  882. SERIAL_EOL;
  883. #endif
  884. #if ENABLED(FWRETRACT)
  885. CONFIG_ECHO_START;
  886. if (!forReplay) {
  887. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  888. CONFIG_ECHO_START;
  889. }
  890. SERIAL_ECHOPAIR(" M207 S", retract_length);
  891. #if EXTRUDERS > 1
  892. SERIAL_ECHOPAIR(" W", retract_length_swap);
  893. #endif
  894. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  895. SERIAL_ECHOPAIR(" Z", retract_zlift);
  896. SERIAL_EOL;
  897. CONFIG_ECHO_START;
  898. if (!forReplay) {
  899. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  900. CONFIG_ECHO_START;
  901. }
  902. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  903. #if EXTRUDERS > 1
  904. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  905. #endif
  906. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  907. SERIAL_EOL;
  908. CONFIG_ECHO_START;
  909. if (!forReplay) {
  910. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  911. CONFIG_ECHO_START;
  912. }
  913. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  914. SERIAL_EOL;
  915. #endif // FWRETRACT
  916. /**
  917. * Volumetric extrusion M200
  918. */
  919. if (!forReplay) {
  920. CONFIG_ECHO_START;
  921. SERIAL_ECHOPGM("Filament settings:");
  922. if (volumetric_enabled)
  923. SERIAL_EOL;
  924. else
  925. SERIAL_ECHOLNPGM(" Disabled");
  926. }
  927. CONFIG_ECHO_START;
  928. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  929. SERIAL_EOL;
  930. #if EXTRUDERS > 1
  931. CONFIG_ECHO_START;
  932. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  933. SERIAL_EOL;
  934. #if EXTRUDERS > 2
  935. CONFIG_ECHO_START;
  936. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  937. SERIAL_EOL;
  938. #if EXTRUDERS > 3
  939. CONFIG_ECHO_START;
  940. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  941. SERIAL_EOL;
  942. #endif
  943. #endif
  944. #endif
  945. if (!volumetric_enabled) {
  946. CONFIG_ECHO_START;
  947. SERIAL_ECHOLNPGM(" M200 D0");
  948. }
  949. /**
  950. * Auto Bed Leveling
  951. */
  952. #if HAS_BED_PROBE
  953. if (!forReplay) {
  954. CONFIG_ECHO_START;
  955. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  956. }
  957. CONFIG_ECHO_START;
  958. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  959. SERIAL_EOL;
  960. #endif
  961. }
  962. #endif // !DISABLE_M503