My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 272KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card
  118. * M21 - Init SD card
  119. * M22 - Release SD card
  120. * M23 - Select SD file (M23 filename.g)
  121. * M24 - Start/resume SD print
  122. * M25 - Pause SD print
  123. * M26 - Set SD position in bytes (M26 S12345)
  124. * M27 - Report SD print status
  125. * M28 - Start SD write (M28 filename.g)
  126. * M29 - Stop SD write
  127. * M30 - Delete file from SD (M30 filename.g)
  128. * M31 - Output time since last M109 or SD card start to serial
  129. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  130. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  131. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  132. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  133. * M33 - Get the longname version of a path
  134. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  136. * M75 - Start the print job timer
  137. * M76 - Pause the print job timer
  138. * M77 - Stop the print job timer
  139. * M78 - Show statistical information about the print jobs
  140. * M80 - Turn on Power Supply
  141. * M81 - Turn off Power Supply
  142. * M82 - Set E codes absolute (default)
  143. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  144. * M84 - Disable steppers until next move,
  145. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  146. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  147. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  148. * M104 - Set extruder target temp
  149. * M105 - Read current temp
  150. * M106 - Fan on
  151. * M107 - Fan off
  152. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  153. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  154. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  155. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  156. * M110 - Set the current line number
  157. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  158. * M112 - Emergency stop
  159. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  160. * M114 - Output current position to serial port
  161. * M115 - Capabilities string
  162. * M117 - Display a message on the controller screen
  163. * M119 - Output Endstop status to serial port
  164. * M120 - Enable endstop detection
  165. * M121 - Disable endstop detection
  166. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  167. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  168. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  169. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M140 - Set bed target temp
  171. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  172. * M149 - Set temperature units
  173. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  174. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  175. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  176. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  177. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  178. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  179. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  180. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  181. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  182. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  183. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  184. * M205 - Set advanced settings. Current units apply:
  185. S<print> T<travel> minimum speeds
  186. B<minimum segment time>
  187. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  188. * M206 - Set additional homing offset
  189. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  190. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  191. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  192. Every normal extrude-only move will be classified as retract depending on the direction.
  193. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  194. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  195. * M221 - Set Flow Percentage: S<percent>
  196. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  197. * M240 - Trigger a camera to take a photograph
  198. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  199. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  204. * M304 - Set bed PID parameters P I and D
  205. * M380 - Activate solenoid on active extruder
  206. * M381 - Disable all solenoids
  207. * M400 - Finish all moves
  208. * M401 - Lower Z probe if present
  209. * M402 - Raise Z probe if present
  210. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  211. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  212. * M406 - Disable Filament Sensor extrusion control
  213. * M407 - Display measured filament diameter in millimeters
  214. * M410 - Quickstop. Abort all the planned moves
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  217. * M428 - Set the home_offset logically based on the current_position
  218. * M500 - Store parameters in EEPROM
  219. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  222. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  224. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  225. * M666 - Set delta endstop adjustment
  226. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes.
  229. * M908 - Control digital trimpot directly.
  230. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  231. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  232. * M350 - Set microstepping mode.
  233. * M351 - Toggle MS1 MS2 pins directly.
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  242. * ************* SCARA End ***************
  243. *
  244. * ************ Custom codes - This can change to suit future G-code regulations
  245. * M100 - Watch Free Memory (For Debugging Only)
  246. * M928 - Start SD logging (M928 filename.g) - ended by M29
  247. * M999 - Restart after being stopped by error
  248. *
  249. * "T" Codes
  250. *
  251. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  252. *
  253. */
  254. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  255. void gcode_M100();
  256. #endif
  257. #if ENABLED(SDSUPPORT)
  258. CardReader card;
  259. #endif
  260. #if ENABLED(EXPERIMENTAL_I2CBUS)
  261. TWIBus i2c;
  262. #endif
  263. bool Running = true;
  264. uint8_t marlin_debug_flags = DEBUG_NONE;
  265. float current_position[NUM_AXIS] = { 0.0 };
  266. static float destination[NUM_AXIS] = { 0.0 };
  267. bool axis_known_position[3] = { false };
  268. bool axis_homed[3] = { false };
  269. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  270. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  271. static char* current_command, *current_command_args;
  272. static uint8_t cmd_queue_index_r = 0,
  273. cmd_queue_index_w = 0,
  274. commands_in_queue = 0;
  275. #if ENABLED(INCH_MODE_SUPPORT)
  276. float linear_unit_factor = 1.0;
  277. float volumetric_unit_factor = 1.0;
  278. #endif
  279. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  280. TempUnit input_temp_units = TEMPUNIT_C;
  281. #endif
  282. /**
  283. * Feed rates are often configured with mm/m
  284. * but the planner and stepper like mm/s units.
  285. */
  286. const float homing_feedrate_mm_m[] = HOMING_FEEDRATE;
  287. static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
  288. int feedrate_percentage = 100, saved_feedrate_percentage;
  289. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  290. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  291. bool volumetric_enabled = false;
  292. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  293. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  294. // The distance that XYZ has been offset by G92. Reset by G28.
  295. float position_shift[3] = { 0 };
  296. // This offset is added to the configured home position.
  297. // Set by M206, M428, or menu item. Saved to EEPROM.
  298. float home_offset[3] = { 0 };
  299. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  300. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  301. // Software Endstops. Default to configured limits.
  302. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  303. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  304. #if ENABLED(DELTA)
  305. float delta_clip_start_height = Z_MAX_POS;
  306. #endif
  307. #if FAN_COUNT > 0
  308. int fanSpeeds[FAN_COUNT] = { 0 };
  309. #endif
  310. // The active extruder (tool). Set with T<extruder> command.
  311. uint8_t active_extruder = 0;
  312. // Relative Mode. Enable with G91, disable with G90.
  313. static bool relative_mode = false;
  314. volatile bool wait_for_heatup = true;
  315. const char errormagic[] PROGMEM = "Error:";
  316. const char echomagic[] PROGMEM = "echo:";
  317. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  318. static int serial_count = 0;
  319. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  320. static char* seen_pointer;
  321. // Next Immediate GCode Command pointer. NULL if none.
  322. const char* queued_commands_P = NULL;
  323. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  324. // Inactivity shutdown
  325. millis_t previous_cmd_ms = 0;
  326. static millis_t max_inactive_time = 0;
  327. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  328. // Print Job Timer
  329. #if ENABLED(PRINTCOUNTER)
  330. PrintCounter print_job_timer = PrintCounter();
  331. #else
  332. Stopwatch print_job_timer = Stopwatch();
  333. #endif
  334. // Buzzer
  335. #if HAS_BUZZER
  336. #if ENABLED(SPEAKER)
  337. Speaker buzzer;
  338. #else
  339. Buzzer buzzer;
  340. #endif
  341. #endif
  342. static uint8_t target_extruder;
  343. #if HAS_BED_PROBE
  344. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  345. #endif
  346. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  347. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  348. int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
  349. bool bed_leveling_in_progress = false;
  350. #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
  351. #elif defined(XY_PROBE_SPEED)
  352. #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
  353. #else
  354. #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
  355. #endif
  356. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  357. float z_endstop_adj = 0;
  358. #endif
  359. // Extruder offsets
  360. #if HOTENDS > 1
  361. float hotend_offset[][HOTENDS] = {
  362. HOTEND_OFFSET_X,
  363. HOTEND_OFFSET_Y
  364. #ifdef HOTEND_OFFSET_Z
  365. , HOTEND_OFFSET_Z
  366. #endif
  367. };
  368. #endif
  369. #if HAS_Z_SERVO_ENDSTOP
  370. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  371. #endif
  372. #if ENABLED(BARICUDA)
  373. int baricuda_valve_pressure = 0;
  374. int baricuda_e_to_p_pressure = 0;
  375. #endif
  376. #if ENABLED(FWRETRACT)
  377. bool autoretract_enabled = false;
  378. bool retracted[EXTRUDERS] = { false };
  379. bool retracted_swap[EXTRUDERS] = { false };
  380. float retract_length = RETRACT_LENGTH;
  381. float retract_length_swap = RETRACT_LENGTH_SWAP;
  382. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  383. float retract_zlift = RETRACT_ZLIFT;
  384. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  385. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  386. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  387. #endif // FWRETRACT
  388. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  389. bool powersupply =
  390. #if ENABLED(PS_DEFAULT_OFF)
  391. false
  392. #else
  393. true
  394. #endif
  395. ;
  396. #endif
  397. #if ENABLED(DELTA)
  398. #define TOWER_1 X_AXIS
  399. #define TOWER_2 Y_AXIS
  400. #define TOWER_3 Z_AXIS
  401. float delta[3] = { 0 };
  402. #define SIN_60 0.8660254037844386
  403. #define COS_60 0.5
  404. float endstop_adj[3] = { 0 };
  405. // these are the default values, can be overriden with M665
  406. float delta_radius = DELTA_RADIUS;
  407. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  408. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  409. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  410. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  411. float delta_tower3_x = 0; // back middle tower
  412. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  413. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  414. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  415. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  416. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  417. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  418. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  419. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  420. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  421. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  422. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  423. int delta_grid_spacing[2] = { 0, 0 };
  424. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  425. #endif
  426. #else
  427. static bool home_all_axis = true;
  428. #endif
  429. #if ENABLED(SCARA)
  430. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  431. static float delta[3] = { 0 };
  432. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  433. #endif
  434. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  435. //Variables for Filament Sensor input
  436. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  437. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  438. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  439. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  440. int filwidth_delay_index1 = 0; //index into ring buffer
  441. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  442. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  443. #endif
  444. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  445. static bool filament_ran_out = false;
  446. #endif
  447. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  448. FilamentChangeMenuResponse filament_change_menu_response;
  449. #endif
  450. #if ENABLED(MIXING_EXTRUDER)
  451. float mixing_factor[MIXING_STEPPERS];
  452. #if MIXING_VIRTUAL_TOOLS > 1
  453. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  454. #endif
  455. #endif
  456. static bool send_ok[BUFSIZE];
  457. #if HAS_SERVOS
  458. Servo servo[NUM_SERVOS];
  459. #define MOVE_SERVO(I, P) servo[I].move(P)
  460. #if HAS_Z_SERVO_ENDSTOP
  461. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  462. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  463. #endif
  464. #endif
  465. #ifdef CHDK
  466. millis_t chdkHigh = 0;
  467. boolean chdkActive = false;
  468. #endif
  469. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  470. int lpq_len = 20;
  471. #endif
  472. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  473. static MarlinBusyState busy_state = NOT_BUSY;
  474. static millis_t next_busy_signal_ms = 0;
  475. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  476. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  477. #else
  478. #define host_keepalive() ;
  479. #define KEEPALIVE_STATE(n) ;
  480. #endif // HOST_KEEPALIVE_FEATURE
  481. /**
  482. * ***************************************************************************
  483. * ******************************** FUNCTIONS ********************************
  484. * ***************************************************************************
  485. */
  486. void stop();
  487. void get_available_commands();
  488. void process_next_command();
  489. void prepare_move_to_destination();
  490. #if ENABLED(ARC_SUPPORT)
  491. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  492. #endif
  493. #if ENABLED(BEZIER_CURVE_SUPPORT)
  494. void plan_cubic_move(const float offset[4]);
  495. #endif
  496. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  497. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  500. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  501. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  502. static void report_current_position();
  503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  504. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  505. serialprintPGM(prefix);
  506. SERIAL_ECHOPAIR("(", x);
  507. SERIAL_ECHOPAIR(", ", y);
  508. SERIAL_ECHOPAIR(", ", z);
  509. SERIAL_ECHOPGM(")");
  510. if (suffix) serialprintPGM(suffix);
  511. else SERIAL_EOL;
  512. }
  513. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  514. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  515. }
  516. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  517. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  518. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  519. }
  520. #endif
  521. #define DEBUG_POS(SUFFIX,VAR) do { \
  522. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  523. #endif
  524. #if ENABLED(DELTA) || ENABLED(SCARA)
  525. inline void sync_plan_position_delta() {
  526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  527. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  528. #endif
  529. calculate_delta(current_position);
  530. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  531. }
  532. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  533. #else
  534. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  535. #endif
  536. #if ENABLED(SDSUPPORT)
  537. #include "SdFatUtil.h"
  538. int freeMemory() { return SdFatUtil::FreeRam(); }
  539. #else
  540. extern "C" {
  541. extern unsigned int __bss_end;
  542. extern unsigned int __heap_start;
  543. extern void* __brkval;
  544. int freeMemory() {
  545. int free_memory;
  546. if ((int)__brkval == 0)
  547. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  548. else
  549. free_memory = ((int)&free_memory) - ((int)__brkval);
  550. return free_memory;
  551. }
  552. }
  553. #endif //!SDSUPPORT
  554. #if ENABLED(DIGIPOT_I2C)
  555. extern void digipot_i2c_set_current(int channel, float current);
  556. extern void digipot_i2c_init();
  557. #endif
  558. /**
  559. * Inject the next "immediate" command, when possible.
  560. * Return true if any immediate commands remain to inject.
  561. */
  562. static bool drain_queued_commands_P() {
  563. if (queued_commands_P != NULL) {
  564. size_t i = 0;
  565. char c, cmd[30];
  566. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  567. cmd[sizeof(cmd) - 1] = '\0';
  568. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  569. cmd[i] = '\0';
  570. if (enqueue_and_echo_command(cmd)) { // success?
  571. if (c) // newline char?
  572. queued_commands_P += i + 1; // advance to the next command
  573. else
  574. queued_commands_P = NULL; // nul char? no more commands
  575. }
  576. }
  577. return (queued_commands_P != NULL); // return whether any more remain
  578. }
  579. /**
  580. * Record one or many commands to run from program memory.
  581. * Aborts the current queue, if any.
  582. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  583. */
  584. void enqueue_and_echo_commands_P(const char* pgcode) {
  585. queued_commands_P = pgcode;
  586. drain_queued_commands_P(); // first command executed asap (when possible)
  587. }
  588. void clear_command_queue() {
  589. cmd_queue_index_r = cmd_queue_index_w;
  590. commands_in_queue = 0;
  591. }
  592. /**
  593. * Once a new command is in the ring buffer, call this to commit it
  594. */
  595. inline void _commit_command(bool say_ok) {
  596. send_ok[cmd_queue_index_w] = say_ok;
  597. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  598. commands_in_queue++;
  599. }
  600. /**
  601. * Copy a command directly into the main command buffer, from RAM.
  602. * Returns true if successfully adds the command
  603. */
  604. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  605. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  606. strcpy(command_queue[cmd_queue_index_w], cmd);
  607. _commit_command(say_ok);
  608. return true;
  609. }
  610. void enqueue_and_echo_command_now(const char* cmd) {
  611. while (!enqueue_and_echo_command(cmd)) idle();
  612. }
  613. /**
  614. * Enqueue with Serial Echo
  615. */
  616. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  617. if (_enqueuecommand(cmd, say_ok)) {
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHOPGM(MSG_Enqueueing);
  620. SERIAL_ECHO(cmd);
  621. SERIAL_ECHOLNPGM("\"");
  622. return true;
  623. }
  624. return false;
  625. }
  626. void setup_killpin() {
  627. #if HAS_KILL
  628. SET_INPUT(KILL_PIN);
  629. WRITE(KILL_PIN, HIGH);
  630. #endif
  631. }
  632. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  633. void setup_filrunoutpin() {
  634. pinMode(FIL_RUNOUT_PIN, INPUT);
  635. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  636. WRITE(FIL_RUNOUT_PIN, HIGH);
  637. #endif
  638. }
  639. #endif
  640. // Set home pin
  641. void setup_homepin(void) {
  642. #if HAS_HOME
  643. SET_INPUT(HOME_PIN);
  644. WRITE(HOME_PIN, HIGH);
  645. #endif
  646. }
  647. void setup_photpin() {
  648. #if HAS_PHOTOGRAPH
  649. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  650. #endif
  651. }
  652. void setup_powerhold() {
  653. #if HAS_SUICIDE
  654. OUT_WRITE(SUICIDE_PIN, HIGH);
  655. #endif
  656. #if HAS_POWER_SWITCH
  657. #if ENABLED(PS_DEFAULT_OFF)
  658. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  659. #else
  660. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  661. #endif
  662. #endif
  663. }
  664. void suicide() {
  665. #if HAS_SUICIDE
  666. OUT_WRITE(SUICIDE_PIN, LOW);
  667. #endif
  668. }
  669. void servo_init() {
  670. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  671. servo[0].attach(SERVO0_PIN);
  672. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  673. #endif
  674. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  675. servo[1].attach(SERVO1_PIN);
  676. servo[1].detach();
  677. #endif
  678. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  679. servo[2].attach(SERVO2_PIN);
  680. servo[2].detach();
  681. #endif
  682. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  683. servo[3].attach(SERVO3_PIN);
  684. servo[3].detach();
  685. #endif
  686. #if HAS_Z_SERVO_ENDSTOP
  687. /**
  688. * Set position of Z Servo Endstop
  689. *
  690. * The servo might be deployed and positioned too low to stow
  691. * when starting up the machine or rebooting the board.
  692. * There's no way to know where the nozzle is positioned until
  693. * homing has been done - no homing with z-probe without init!
  694. *
  695. */
  696. STOW_Z_SERVO();
  697. #endif
  698. #if HAS_BED_PROBE
  699. endstops.enable_z_probe(false);
  700. #endif
  701. }
  702. /**
  703. * Stepper Reset (RigidBoard, et.al.)
  704. */
  705. #if HAS_STEPPER_RESET
  706. void disableStepperDrivers() {
  707. pinMode(STEPPER_RESET_PIN, OUTPUT);
  708. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  709. }
  710. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  711. #endif
  712. /**
  713. * Marlin entry-point: Set up before the program loop
  714. * - Set up the kill pin, filament runout, power hold
  715. * - Start the serial port
  716. * - Print startup messages and diagnostics
  717. * - Get EEPROM or default settings
  718. * - Initialize managers for:
  719. * • temperature
  720. * • planner
  721. * • watchdog
  722. * • stepper
  723. * • photo pin
  724. * • servos
  725. * • LCD controller
  726. * • Digipot I2C
  727. * • Z probe sled
  728. * • status LEDs
  729. */
  730. void setup() {
  731. #ifdef DISABLE_JTAG
  732. // Disable JTAG on AT90USB chips to free up pins for IO
  733. MCUCR = 0x80;
  734. MCUCR = 0x80;
  735. #endif
  736. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  737. setup_filrunoutpin();
  738. #endif
  739. setup_killpin();
  740. setup_powerhold();
  741. #if HAS_STEPPER_RESET
  742. disableStepperDrivers();
  743. #endif
  744. MYSERIAL.begin(BAUDRATE);
  745. SERIAL_PROTOCOLLNPGM("start");
  746. SERIAL_ECHO_START;
  747. // Check startup - does nothing if bootloader sets MCUSR to 0
  748. byte mcu = MCUSR;
  749. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  750. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  751. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  752. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  753. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  754. MCUSR = 0;
  755. SERIAL_ECHOPGM(MSG_MARLIN);
  756. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  757. #ifdef STRING_DISTRIBUTION_DATE
  758. #ifdef STRING_CONFIG_H_AUTHOR
  759. SERIAL_ECHO_START;
  760. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  761. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  762. SERIAL_ECHOPGM(MSG_AUTHOR);
  763. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  764. SERIAL_ECHOPGM("Compiled: ");
  765. SERIAL_ECHOLNPGM(__DATE__);
  766. #endif // STRING_CONFIG_H_AUTHOR
  767. #endif // STRING_DISTRIBUTION_DATE
  768. SERIAL_ECHO_START;
  769. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  770. SERIAL_ECHO(freeMemory());
  771. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  772. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  773. // Send "ok" after commands by default
  774. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  775. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  776. Config_RetrieveSettings();
  777. // Initialize current position based on home_offset
  778. memcpy(current_position, home_offset, sizeof(home_offset));
  779. #if ENABLED(DELTA) || ENABLED(SCARA)
  780. // Vital to init kinematic equivalent for X0 Y0 Z0
  781. SYNC_PLAN_POSITION_KINEMATIC();
  782. #endif
  783. thermalManager.init(); // Initialize temperature loop
  784. #if ENABLED(USE_WATCHDOG)
  785. watchdog_init();
  786. #endif
  787. stepper.init(); // Initialize stepper, this enables interrupts!
  788. setup_photpin();
  789. servo_init();
  790. #if HAS_CONTROLLERFAN
  791. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  792. #endif
  793. #if HAS_STEPPER_RESET
  794. enableStepperDrivers();
  795. #endif
  796. #if ENABLED(DIGIPOT_I2C)
  797. digipot_i2c_init();
  798. #endif
  799. #if ENABLED(DAC_STEPPER_CURRENT)
  800. dac_init();
  801. #endif
  802. #if ENABLED(Z_PROBE_SLED)
  803. pinMode(SLED_PIN, OUTPUT);
  804. digitalWrite(SLED_PIN, LOW); // turn it off
  805. #endif // Z_PROBE_SLED
  806. setup_homepin();
  807. #ifdef STAT_LED_RED
  808. pinMode(STAT_LED_RED, OUTPUT);
  809. digitalWrite(STAT_LED_RED, LOW); // turn it off
  810. #endif
  811. #ifdef STAT_LED_BLUE
  812. pinMode(STAT_LED_BLUE, OUTPUT);
  813. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  814. #endif
  815. lcd_init();
  816. #if ENABLED(SHOW_BOOTSCREEN)
  817. #if ENABLED(DOGLCD)
  818. safe_delay(BOOTSCREEN_TIMEOUT);
  819. #elif ENABLED(ULTRA_LCD)
  820. bootscreen();
  821. lcd_init();
  822. #endif
  823. #endif
  824. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  825. // Initialize mixing to 100% color 1
  826. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  827. mixing_factor[i] = (i == 0) ? 1 : 0;
  828. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  829. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  830. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  831. #endif
  832. }
  833. /**
  834. * The main Marlin program loop
  835. *
  836. * - Save or log commands to SD
  837. * - Process available commands (if not saving)
  838. * - Call heater manager
  839. * - Call inactivity manager
  840. * - Call endstop manager
  841. * - Call LCD update
  842. */
  843. void loop() {
  844. if (commands_in_queue < BUFSIZE) get_available_commands();
  845. #if ENABLED(SDSUPPORT)
  846. card.checkautostart(false);
  847. #endif
  848. if (commands_in_queue) {
  849. #if ENABLED(SDSUPPORT)
  850. if (card.saving) {
  851. char* command = command_queue[cmd_queue_index_r];
  852. if (strstr_P(command, PSTR("M29"))) {
  853. // M29 closes the file
  854. card.closefile();
  855. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  856. ok_to_send();
  857. }
  858. else {
  859. // Write the string from the read buffer to SD
  860. card.write_command(command);
  861. if (card.logging)
  862. process_next_command(); // The card is saving because it's logging
  863. else
  864. ok_to_send();
  865. }
  866. }
  867. else
  868. process_next_command();
  869. #else
  870. process_next_command();
  871. #endif // SDSUPPORT
  872. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  873. if (commands_in_queue) {
  874. --commands_in_queue;
  875. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  876. }
  877. }
  878. endstops.report_state();
  879. idle();
  880. }
  881. void gcode_line_error(const char* err, bool doFlush = true) {
  882. SERIAL_ERROR_START;
  883. serialprintPGM(err);
  884. SERIAL_ERRORLN(gcode_LastN);
  885. //Serial.println(gcode_N);
  886. if (doFlush) FlushSerialRequestResend();
  887. serial_count = 0;
  888. }
  889. inline void get_serial_commands() {
  890. static char serial_line_buffer[MAX_CMD_SIZE];
  891. static boolean serial_comment_mode = false;
  892. // If the command buffer is empty for too long,
  893. // send "wait" to indicate Marlin is still waiting.
  894. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  895. static millis_t last_command_time = 0;
  896. millis_t ms = millis();
  897. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  898. SERIAL_ECHOLNPGM(MSG_WAIT);
  899. last_command_time = ms;
  900. }
  901. #endif
  902. /**
  903. * Loop while serial characters are incoming and the queue is not full
  904. */
  905. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  906. char serial_char = MYSERIAL.read();
  907. /**
  908. * If the character ends the line
  909. */
  910. if (serial_char == '\n' || serial_char == '\r') {
  911. serial_comment_mode = false; // end of line == end of comment
  912. if (!serial_count) continue; // skip empty lines
  913. serial_line_buffer[serial_count] = 0; // terminate string
  914. serial_count = 0; //reset buffer
  915. char* command = serial_line_buffer;
  916. while (*command == ' ') command++; // skip any leading spaces
  917. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  918. char* apos = strchr(command, '*');
  919. if (npos) {
  920. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  921. if (M110) {
  922. char* n2pos = strchr(command + 4, 'N');
  923. if (n2pos) npos = n2pos;
  924. }
  925. gcode_N = strtol(npos + 1, NULL, 10);
  926. if (gcode_N != gcode_LastN + 1 && !M110) {
  927. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  928. return;
  929. }
  930. if (apos) {
  931. byte checksum = 0, count = 0;
  932. while (command[count] != '*') checksum ^= command[count++];
  933. if (strtol(apos + 1, NULL, 10) != checksum) {
  934. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  935. return;
  936. }
  937. // if no errors, continue parsing
  938. }
  939. else {
  940. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  941. return;
  942. }
  943. gcode_LastN = gcode_N;
  944. // if no errors, continue parsing
  945. }
  946. else if (apos) { // No '*' without 'N'
  947. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  948. return;
  949. }
  950. // Movement commands alert when stopped
  951. if (IsStopped()) {
  952. char* gpos = strchr(command, 'G');
  953. if (gpos) {
  954. int codenum = strtol(gpos + 1, NULL, 10);
  955. switch (codenum) {
  956. case 0:
  957. case 1:
  958. case 2:
  959. case 3:
  960. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  961. LCD_MESSAGEPGM(MSG_STOPPED);
  962. break;
  963. }
  964. }
  965. }
  966. #if DISABLED(EMERGENCY_PARSER)
  967. // If command was e-stop process now
  968. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  969. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  970. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  971. #endif
  972. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  973. last_command_time = ms;
  974. #endif
  975. // Add the command to the queue
  976. _enqueuecommand(serial_line_buffer, true);
  977. }
  978. else if (serial_count >= MAX_CMD_SIZE - 1) {
  979. // Keep fetching, but ignore normal characters beyond the max length
  980. // The command will be injected when EOL is reached
  981. }
  982. else if (serial_char == '\\') { // Handle escapes
  983. if (MYSERIAL.available() > 0) {
  984. // if we have one more character, copy it over
  985. serial_char = MYSERIAL.read();
  986. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  987. }
  988. // otherwise do nothing
  989. }
  990. else { // it's not a newline, carriage return or escape char
  991. if (serial_char == ';') serial_comment_mode = true;
  992. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  993. }
  994. } // queue has space, serial has data
  995. }
  996. #if ENABLED(SDSUPPORT)
  997. inline void get_sdcard_commands() {
  998. static bool stop_buffering = false,
  999. sd_comment_mode = false;
  1000. if (!card.sdprinting) return;
  1001. /**
  1002. * '#' stops reading from SD to the buffer prematurely, so procedural
  1003. * macro calls are possible. If it occurs, stop_buffering is triggered
  1004. * and the buffer is run dry; this character _can_ occur in serial com
  1005. * due to checksums, however, no checksums are used in SD printing.
  1006. */
  1007. if (commands_in_queue == 0) stop_buffering = false;
  1008. uint16_t sd_count = 0;
  1009. bool card_eof = card.eof();
  1010. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1011. int16_t n = card.get();
  1012. char sd_char = (char)n;
  1013. card_eof = card.eof();
  1014. if (card_eof || n == -1
  1015. || sd_char == '\n' || sd_char == '\r'
  1016. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1017. ) {
  1018. if (card_eof) {
  1019. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1020. card.printingHasFinished();
  1021. card.checkautostart(true);
  1022. }
  1023. else if (n == -1) {
  1024. SERIAL_ERROR_START;
  1025. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1026. }
  1027. if (sd_char == '#') stop_buffering = true;
  1028. sd_comment_mode = false; //for new command
  1029. if (!sd_count) continue; //skip empty lines
  1030. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1031. sd_count = 0; //clear buffer
  1032. _commit_command(false);
  1033. }
  1034. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1035. /**
  1036. * Keep fetching, but ignore normal characters beyond the max length
  1037. * The command will be injected when EOL is reached
  1038. */
  1039. }
  1040. else {
  1041. if (sd_char == ';') sd_comment_mode = true;
  1042. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1043. }
  1044. }
  1045. }
  1046. #endif // SDSUPPORT
  1047. /**
  1048. * Add to the circular command queue the next command from:
  1049. * - The command-injection queue (queued_commands_P)
  1050. * - The active serial input (usually USB)
  1051. * - The SD card file being actively printed
  1052. */
  1053. void get_available_commands() {
  1054. // if any immediate commands remain, don't get other commands yet
  1055. if (drain_queued_commands_P()) return;
  1056. get_serial_commands();
  1057. #if ENABLED(SDSUPPORT)
  1058. get_sdcard_commands();
  1059. #endif
  1060. }
  1061. inline bool code_has_value() {
  1062. int i = 1;
  1063. char c = seen_pointer[i];
  1064. while (c == ' ') c = seen_pointer[++i];
  1065. if (c == '-' || c == '+') c = seen_pointer[++i];
  1066. if (c == '.') c = seen_pointer[++i];
  1067. return NUMERIC(c);
  1068. }
  1069. inline float code_value_float() {
  1070. float ret;
  1071. char* e = strchr(seen_pointer, 'E');
  1072. if (e) {
  1073. *e = 0;
  1074. ret = strtod(seen_pointer + 1, NULL);
  1075. *e = 'E';
  1076. }
  1077. else
  1078. ret = strtod(seen_pointer + 1, NULL);
  1079. return ret;
  1080. }
  1081. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1082. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1083. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1084. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1085. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1086. inline bool code_value_bool() { return code_value_byte() > 0; }
  1087. #if ENABLED(INCH_MODE_SUPPORT)
  1088. inline void set_input_linear_units(LinearUnit units) {
  1089. switch (units) {
  1090. case LINEARUNIT_INCH:
  1091. linear_unit_factor = 25.4;
  1092. break;
  1093. case LINEARUNIT_MM:
  1094. default:
  1095. linear_unit_factor = 1.0;
  1096. break;
  1097. }
  1098. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1099. }
  1100. inline float axis_unit_factor(int axis) {
  1101. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1102. }
  1103. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1104. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1105. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1106. #else
  1107. inline float code_value_linear_units() { return code_value_float(); }
  1108. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1109. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1110. #endif
  1111. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1112. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1113. float code_value_temp_abs() {
  1114. switch (input_temp_units) {
  1115. case TEMPUNIT_C:
  1116. return code_value_float();
  1117. case TEMPUNIT_F:
  1118. return (code_value_float() - 32) / 1.8;
  1119. case TEMPUNIT_K:
  1120. return code_value_float() - 272.15;
  1121. default:
  1122. return code_value_float();
  1123. }
  1124. }
  1125. float code_value_temp_diff() {
  1126. switch (input_temp_units) {
  1127. case TEMPUNIT_C:
  1128. case TEMPUNIT_K:
  1129. return code_value_float();
  1130. case TEMPUNIT_F:
  1131. return code_value_float() / 1.8;
  1132. default:
  1133. return code_value_float();
  1134. }
  1135. }
  1136. #else
  1137. float code_value_temp_abs() { return code_value_float(); }
  1138. float code_value_temp_diff() { return code_value_float(); }
  1139. #endif
  1140. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1141. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1142. bool code_seen(char code) {
  1143. seen_pointer = strchr(current_command_args, code);
  1144. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1145. }
  1146. /**
  1147. * Set target_extruder from the T parameter or the active_extruder
  1148. *
  1149. * Returns TRUE if the target is invalid
  1150. */
  1151. bool get_target_extruder_from_command(int code) {
  1152. if (code_seen('T')) {
  1153. if (code_value_byte() >= EXTRUDERS) {
  1154. SERIAL_ECHO_START;
  1155. SERIAL_CHAR('M');
  1156. SERIAL_ECHO(code);
  1157. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1158. SERIAL_EOL;
  1159. return true;
  1160. }
  1161. target_extruder = code_value_byte();
  1162. }
  1163. else
  1164. target_extruder = active_extruder;
  1165. return false;
  1166. }
  1167. #define DEFINE_PGM_READ_ANY(type, reader) \
  1168. static inline type pgm_read_any(const type *p) \
  1169. { return pgm_read_##reader##_near(p); }
  1170. DEFINE_PGM_READ_ANY(float, float);
  1171. DEFINE_PGM_READ_ANY(signed char, byte);
  1172. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1173. static const PROGMEM type array##_P[3] = \
  1174. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1175. static inline type array(int axis) \
  1176. { return pgm_read_any(&array##_P[axis]); }
  1177. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1178. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1179. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1180. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1181. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1182. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1183. #if ENABLED(DUAL_X_CARRIAGE)
  1184. #define DXC_FULL_CONTROL_MODE 0
  1185. #define DXC_AUTO_PARK_MODE 1
  1186. #define DXC_DUPLICATION_MODE 2
  1187. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1188. static float x_home_pos(int extruder) {
  1189. if (extruder == 0)
  1190. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1191. else
  1192. /**
  1193. * In dual carriage mode the extruder offset provides an override of the
  1194. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1195. * This allow soft recalibration of the second extruder offset position
  1196. * without firmware reflash (through the M218 command).
  1197. */
  1198. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1199. }
  1200. static int x_home_dir(int extruder) {
  1201. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1202. }
  1203. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1204. static bool active_extruder_parked = false; // used in mode 1 & 2
  1205. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1206. static millis_t delayed_move_time = 0; // used in mode 1
  1207. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1208. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1209. bool extruder_duplication_enabled = false; // used in mode 2
  1210. #endif //DUAL_X_CARRIAGE
  1211. /**
  1212. * Software endstops can be used to monitor the open end of
  1213. * an axis that has a hardware endstop on the other end. Or
  1214. * they can prevent axes from moving past endstops and grinding.
  1215. *
  1216. * To keep doing their job as the coordinate system changes,
  1217. * the software endstop positions must be refreshed to remain
  1218. * at the same positions relative to the machine.
  1219. */
  1220. static void update_software_endstops(AxisEnum axis) {
  1221. float offs = home_offset[axis] + position_shift[axis];
  1222. #if ENABLED(DUAL_X_CARRIAGE)
  1223. if (axis == X_AXIS) {
  1224. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1225. if (active_extruder != 0) {
  1226. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1227. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1228. return;
  1229. }
  1230. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1231. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1232. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1233. return;
  1234. }
  1235. }
  1236. else
  1237. #endif
  1238. {
  1239. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1240. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1241. }
  1242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1243. if (DEBUGGING(LEVELING)) {
  1244. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1245. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1246. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1247. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1248. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1249. SERIAL_EOL;
  1250. }
  1251. #endif
  1252. #if ENABLED(DELTA)
  1253. if (axis == Z_AXIS) {
  1254. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1255. }
  1256. #endif
  1257. }
  1258. /**
  1259. * Change the home offset for an axis, update the current
  1260. * position and the software endstops to retain the same
  1261. * relative distance to the new home.
  1262. *
  1263. * Since this changes the current_position, code should
  1264. * call sync_plan_position soon after this.
  1265. */
  1266. static void set_home_offset(AxisEnum axis, float v) {
  1267. current_position[axis] += v - home_offset[axis];
  1268. home_offset[axis] = v;
  1269. update_software_endstops(axis);
  1270. }
  1271. static void set_axis_is_at_home(AxisEnum axis) {
  1272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1273. if (DEBUGGING(LEVELING)) {
  1274. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1275. SERIAL_ECHOLNPGM(")");
  1276. }
  1277. #endif
  1278. position_shift[axis] = 0;
  1279. #if ENABLED(DUAL_X_CARRIAGE)
  1280. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1281. if (active_extruder != 0)
  1282. current_position[X_AXIS] = x_home_pos(active_extruder);
  1283. else
  1284. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1285. update_software_endstops(X_AXIS);
  1286. return;
  1287. }
  1288. #endif
  1289. #if ENABLED(SCARA)
  1290. if (axis == X_AXIS || axis == Y_AXIS) {
  1291. float homeposition[3];
  1292. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1293. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1294. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1295. /**
  1296. * Works out real Homeposition angles using inverse kinematics,
  1297. * and calculates homing offset using forward kinematics
  1298. */
  1299. calculate_delta(homeposition);
  1300. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1301. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1302. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1303. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1304. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1305. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1306. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1307. calculate_SCARA_forward_Transform(delta);
  1308. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1309. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1310. current_position[axis] = delta[axis];
  1311. /**
  1312. * SCARA home positions are based on configuration since the actual
  1313. * limits are determined by the inverse kinematic transform.
  1314. */
  1315. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1316. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1317. }
  1318. else
  1319. #endif
  1320. {
  1321. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1322. update_software_endstops(axis);
  1323. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1324. if (axis == Z_AXIS) {
  1325. current_position[Z_AXIS] -= zprobe_zoffset;
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) {
  1328. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1329. SERIAL_EOL;
  1330. }
  1331. #endif
  1332. }
  1333. #endif
  1334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1335. if (DEBUGGING(LEVELING)) {
  1336. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1337. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1338. SERIAL_EOL;
  1339. DEBUG_POS("", current_position);
  1340. }
  1341. #endif
  1342. }
  1343. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1344. if (DEBUGGING(LEVELING)) {
  1345. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1346. SERIAL_ECHOLNPGM(")");
  1347. }
  1348. #endif
  1349. }
  1350. /**
  1351. * Some planner shorthand inline functions
  1352. */
  1353. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1354. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1355. int hbd = homing_bump_divisor[axis];
  1356. if (hbd < 1) {
  1357. hbd = 10;
  1358. SERIAL_ECHO_START;
  1359. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1360. }
  1361. return homing_feedrate_mm_m[axis] / hbd;
  1362. }
  1363. //
  1364. // line_to_current_position
  1365. // Move the planner to the current position from wherever it last moved
  1366. // (or from wherever it has been told it is located).
  1367. //
  1368. inline void line_to_current_position() {
  1369. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1370. }
  1371. inline void line_to_z(float zPosition) {
  1372. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1373. }
  1374. inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
  1375. float old_feedrate_mm_m = feedrate_mm_m;
  1376. current_position[axis] = where;
  1377. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis];
  1378. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1379. stepper.synchronize();
  1380. feedrate_mm_m = old_feedrate_mm_m;
  1381. }
  1382. //
  1383. // line_to_destination
  1384. // Move the planner, not necessarily synced with current_position
  1385. //
  1386. inline void line_to_destination(float fr_mm_m) {
  1387. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
  1388. }
  1389. inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
  1390. /**
  1391. * sync_plan_position
  1392. * Set planner / stepper positions to the cartesian current_position.
  1393. * The stepper code translates these coordinates into step units.
  1394. * Allows translation between steps and millimeters for cartesian & core robots
  1395. */
  1396. inline void sync_plan_position() {
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1399. #endif
  1400. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1401. }
  1402. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1403. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1404. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1405. #if ENABLED(DELTA)
  1406. /**
  1407. * Calculate delta, start a line, and set current_position to destination
  1408. */
  1409. void prepare_move_to_destination_raw() {
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1412. #endif
  1413. refresh_cmd_timeout();
  1414. calculate_delta(destination);
  1415. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  1416. set_current_to_destination();
  1417. }
  1418. #endif
  1419. /**
  1420. * Plan a move to (X, Y, Z) and set the current_position
  1421. * The final current_position may not be the one that was requested
  1422. */
  1423. void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
  1424. float old_feedrate_mm_m = feedrate_mm_m;
  1425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1426. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
  1427. #endif
  1428. #if ENABLED(DELTA)
  1429. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1430. destination[X_AXIS] = x;
  1431. destination[Y_AXIS] = y;
  1432. destination[Z_AXIS] = z;
  1433. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1434. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1435. else
  1436. prepare_move_to_destination(); // this will also set_current_to_destination
  1437. #else
  1438. // If Z needs to raise, do it before moving XY
  1439. if (current_position[Z_AXIS] < z) {
  1440. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1441. current_position[Z_AXIS] = z;
  1442. line_to_current_position();
  1443. }
  1444. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1445. current_position[X_AXIS] = x;
  1446. current_position[Y_AXIS] = y;
  1447. line_to_current_position();
  1448. // If Z needs to lower, do it after moving XY
  1449. if (current_position[Z_AXIS] > z) {
  1450. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1451. current_position[Z_AXIS] = z;
  1452. line_to_current_position();
  1453. }
  1454. #endif
  1455. stepper.synchronize();
  1456. feedrate_mm_m = old_feedrate_mm_m;
  1457. }
  1458. void do_blocking_move_to_axis_pos(AxisEnum axis, float where, float fr_mm_m/*=0.0*/) {
  1459. current_position[axis] = where;
  1460. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
  1461. }
  1462. void do_blocking_move_to_x(float x, float fr_mm_m/*=0.0*/) { do_blocking_move_to_axis_pos(X_AXIS, x, fr_mm_m); }
  1463. void do_blocking_move_to_y(float y) { do_blocking_move_to_axis_pos(Y_AXIS, y); }
  1464. void do_blocking_move_to_z(float z, float fr_mm_m/*=0.0*/) { do_blocking_move_to_axis_pos(Z_AXIS, z, fr_mm_m); }
  1465. void do_blocking_move_to_xy(float x, float y, float fr_mm_m/*=0.0*/) { do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m); }
  1466. //
  1467. // Prepare to do endstop or probe moves
  1468. // with custom feedrates.
  1469. //
  1470. // - Save current feedrates
  1471. // - Reset the rate multiplier
  1472. // - Reset the command timeout
  1473. // - Enable the endstops (for endstop moves)
  1474. //
  1475. static void setup_for_endstop_or_probe_move() {
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1478. #endif
  1479. saved_feedrate_mm_m = feedrate_mm_m;
  1480. saved_feedrate_percentage = feedrate_percentage;
  1481. feedrate_percentage = 100;
  1482. refresh_cmd_timeout();
  1483. }
  1484. static void clean_up_after_endstop_or_probe_move() {
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1487. #endif
  1488. feedrate_mm_m = saved_feedrate_mm_m;
  1489. feedrate_percentage = saved_feedrate_percentage;
  1490. refresh_cmd_timeout();
  1491. }
  1492. #if HAS_BED_PROBE
  1493. /**
  1494. * Raise Z to a minimum height to make room for a probe to move
  1495. */
  1496. inline void do_probe_raise(float z_raise) {
  1497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1498. if (DEBUGGING(LEVELING)) {
  1499. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1500. SERIAL_ECHOLNPGM(")");
  1501. }
  1502. #endif
  1503. float z_dest = home_offset[Z_AXIS] + z_raise;
  1504. if (zprobe_zoffset < 0)
  1505. z_dest -= zprobe_zoffset;
  1506. if (z_dest > current_position[Z_AXIS])
  1507. do_blocking_move_to_z(z_dest);
  1508. }
  1509. #endif //HAS_BED_PROBE
  1510. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1511. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1512. const bool xx = x && !axis_homed[X_AXIS],
  1513. yy = y && !axis_homed[Y_AXIS],
  1514. zz = z && !axis_homed[Z_AXIS];
  1515. if (xx || yy || zz) {
  1516. SERIAL_ECHO_START;
  1517. SERIAL_ECHOPGM(MSG_HOME " ");
  1518. if (xx) SERIAL_ECHOPGM(MSG_X);
  1519. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1520. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1521. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1522. #if ENABLED(ULTRA_LCD)
  1523. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1524. strcat_P(message, PSTR(MSG_HOME " "));
  1525. if (xx) strcat_P(message, PSTR(MSG_X));
  1526. if (yy) strcat_P(message, PSTR(MSG_Y));
  1527. if (zz) strcat_P(message, PSTR(MSG_Z));
  1528. strcat_P(message, PSTR(" " MSG_FIRST));
  1529. lcd_setstatus(message);
  1530. #endif
  1531. return true;
  1532. }
  1533. return false;
  1534. }
  1535. #endif
  1536. #if ENABLED(Z_PROBE_SLED)
  1537. #ifndef SLED_DOCKING_OFFSET
  1538. #define SLED_DOCKING_OFFSET 0
  1539. #endif
  1540. /**
  1541. * Method to dock/undock a sled designed by Charles Bell.
  1542. *
  1543. * stow[in] If false, move to MAX_X and engage the solenoid
  1544. * If true, move to MAX_X and release the solenoid
  1545. */
  1546. static void dock_sled(bool stow) {
  1547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1548. if (DEBUGGING(LEVELING)) {
  1549. SERIAL_ECHOPAIR("dock_sled(", stow);
  1550. SERIAL_ECHOLNPGM(")");
  1551. }
  1552. #endif
  1553. // Dock sled a bit closer to ensure proper capturing
  1554. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1555. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1556. }
  1557. #endif // Z_PROBE_SLED
  1558. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1559. void run_deploy_moves_script() {
  1560. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1561. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1562. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1563. #endif
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1572. #endif
  1573. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1574. #endif
  1575. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1576. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1577. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1578. #endif
  1579. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1580. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1583. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1587. #endif
  1588. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1589. #endif
  1590. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1591. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1592. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1593. #endif
  1594. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1595. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1598. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1601. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1602. #endif
  1603. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1604. #endif
  1605. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1606. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1607. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1608. #endif
  1609. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1610. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1616. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1617. #endif
  1618. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1619. #endif
  1620. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1631. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1632. #endif
  1633. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1634. #endif
  1635. }
  1636. void run_stow_moves_script() {
  1637. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1638. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1639. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1642. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1645. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1648. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1649. #endif
  1650. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1651. #endif
  1652. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1653. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1654. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1657. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1660. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1663. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1664. #endif
  1665. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1669. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1672. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1675. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1679. #endif
  1680. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1681. #endif
  1682. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1683. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1684. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1687. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1690. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1693. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1694. #endif
  1695. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1696. #endif
  1697. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1699. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1702. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1705. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1708. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1709. #endif
  1710. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1711. #endif
  1712. }
  1713. #endif
  1714. #if HAS_BED_PROBE
  1715. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1716. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1717. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1718. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1719. #else
  1720. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1721. #endif
  1722. #endif
  1723. #define DEPLOY_PROBE() set_probe_deployed( true )
  1724. #define STOW_PROBE() set_probe_deployed( false )
  1725. // returns false for ok and true for failure
  1726. static bool set_probe_deployed(bool deploy) {
  1727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1728. if (DEBUGGING(LEVELING)) {
  1729. DEBUG_POS("set_probe_deployed", current_position);
  1730. SERIAL_ECHOPAIR("deploy: ", deploy);
  1731. SERIAL_EOL;
  1732. }
  1733. #endif
  1734. if (endstops.z_probe_enabled == deploy) return false;
  1735. // Make room for probe
  1736. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1737. #if ENABLED(Z_PROBE_SLED)
  1738. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1739. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1740. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1741. #endif
  1742. float oldXpos = current_position[X_AXIS]; // save x position
  1743. float oldYpos = current_position[Y_AXIS]; // save y position
  1744. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1745. // If endstop is already false, the Z probe is deployed
  1746. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1747. // Would a goto be less ugly?
  1748. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1749. // for a triggered when stowed manual probe.
  1750. #endif
  1751. #if ENABLED(Z_PROBE_SLED)
  1752. dock_sled(!deploy);
  1753. #elif HAS_Z_SERVO_ENDSTOP
  1754. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1755. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1756. if (!deploy) run_stow_moves_script();
  1757. else run_deploy_moves_script();
  1758. #else
  1759. // Nothing to be done. Just enable_z_probe below...
  1760. #endif
  1761. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1762. }; // opened before the probe specific actions
  1763. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1764. if (IsRunning()) {
  1765. SERIAL_ERROR_START;
  1766. SERIAL_ERRORLNPGM("Z-Probe failed");
  1767. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1768. }
  1769. stop();
  1770. return true;
  1771. }
  1772. #endif
  1773. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1774. endstops.enable_z_probe( deploy );
  1775. return false;
  1776. }
  1777. // Do a single Z probe and return with current_position[Z_AXIS]
  1778. // at the height where the probe triggered.
  1779. static float run_z_probe() {
  1780. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1781. refresh_cmd_timeout();
  1782. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1783. planner.bed_level_matrix.set_to_identity();
  1784. #endif
  1785. current_position[Z_AXIS] = -(Z_MAX_LENGTH + 10);
  1786. do_blocking_move_to_z(current_position[Z_AXIS], Z_PROBE_SPEED_FAST);
  1787. endstops.hit_on_purpose(); // clear endstop hit flags
  1788. // Get the current stepper position after bumping an endstop
  1789. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1790. SYNC_PLAN_POSITION_KINEMATIC(); // tell the planner where we are feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
  1791. // move up the retract distance
  1792. current_position[Z_AXIS] += home_bump_mm(Z_AXIS);
  1793. do_blocking_move_to_z(current_position[Z_AXIS], Z_PROBE_SPEED_FAST);
  1794. // move back down slowly to find bed
  1795. current_position[Z_AXIS] -= home_bump_mm(Z_AXIS) * 2;
  1796. do_blocking_move_to_z(current_position[Z_AXIS], Z_PROBE_SPEED_SLOW);
  1797. endstops.hit_on_purpose(); // clear endstop hit flags
  1798. // Get the current stepper position after bumping an endstop
  1799. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1800. SYNC_PLAN_POSITION_KINEMATIC(); // tell the planner where we are
  1801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1802. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1803. #endif
  1804. return current_position[Z_AXIS];
  1805. }
  1806. //
  1807. // - Move to the given XY
  1808. // - Deploy the probe, if not already deployed
  1809. // - Probe the bed, get the Z position
  1810. // - Depending on the 'stow' flag
  1811. // - Stow the probe, or
  1812. // - Raise to the BETWEEN height
  1813. // - Return the probed Z position
  1814. //
  1815. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1817. if (DEBUGGING(LEVELING)) {
  1818. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1819. SERIAL_ECHOPAIR(", ", y);
  1820. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1821. SERIAL_ECHOLNPGM(")");
  1822. DEBUG_POS("", current_position);
  1823. }
  1824. #endif
  1825. float old_feedrate_mm_m = feedrate_mm_m;
  1826. // Ensure a minimum height before moving the probe
  1827. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1828. // Move to the XY where we shall probe
  1829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1830. if (DEBUGGING(LEVELING)) {
  1831. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1832. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1833. SERIAL_ECHOLNPGM(")");
  1834. }
  1835. #endif
  1836. feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
  1837. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1838. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1839. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1840. #endif
  1841. if (DEPLOY_PROBE()) return NAN;
  1842. float measured_z = run_z_probe();
  1843. if (stow) {
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1846. #endif
  1847. if (STOW_PROBE()) return NAN;
  1848. }
  1849. else {
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1852. #endif
  1853. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1854. }
  1855. if (verbose_level > 2) {
  1856. SERIAL_PROTOCOLPGM("Bed X: ");
  1857. SERIAL_PROTOCOL_F(x, 3);
  1858. SERIAL_PROTOCOLPGM(" Y: ");
  1859. SERIAL_PROTOCOL_F(y, 3);
  1860. SERIAL_PROTOCOLPGM(" Z: ");
  1861. SERIAL_PROTOCOL_F(measured_z, 3);
  1862. SERIAL_EOL;
  1863. }
  1864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1865. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1866. #endif
  1867. feedrate_mm_m = old_feedrate_mm_m;
  1868. return measured_z;
  1869. }
  1870. #endif // HAS_BED_PROBE
  1871. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1872. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1873. #if DISABLED(DELTA)
  1874. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1875. //planner.bed_level_matrix.debug("bed level before");
  1876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1877. planner.bed_level_matrix.set_to_identity();
  1878. if (DEBUGGING(LEVELING)) {
  1879. vector_3 uncorrected_position = planner.adjusted_position();
  1880. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1881. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1882. }
  1883. #endif
  1884. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1885. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1886. vector_3 corrected_position = planner.adjusted_position();
  1887. current_position[X_AXIS] = corrected_position.x;
  1888. current_position[Y_AXIS] = corrected_position.y;
  1889. current_position[Z_AXIS] = corrected_position.z;
  1890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1891. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1892. #endif
  1893. SYNC_PLAN_POSITION_KINEMATIC();
  1894. }
  1895. #endif // !DELTA
  1896. #else // !AUTO_BED_LEVELING_GRID
  1897. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1898. planner.bed_level_matrix.set_to_identity();
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) {
  1901. vector_3 uncorrected_position = planner.adjusted_position();
  1902. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1903. }
  1904. #endif
  1905. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1906. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1907. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1908. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1909. if (planeNormal.z < 0) {
  1910. planeNormal.x = -planeNormal.x;
  1911. planeNormal.y = -planeNormal.y;
  1912. planeNormal.z = -planeNormal.z;
  1913. }
  1914. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1915. vector_3 corrected_position = planner.adjusted_position();
  1916. current_position[X_AXIS] = corrected_position.x;
  1917. current_position[Y_AXIS] = corrected_position.y;
  1918. current_position[Z_AXIS] = corrected_position.z;
  1919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1920. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1921. #endif
  1922. SYNC_PLAN_POSITION_KINEMATIC();
  1923. }
  1924. #endif // !AUTO_BED_LEVELING_GRID
  1925. #if ENABLED(DELTA)
  1926. /**
  1927. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1928. */
  1929. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1930. if (bed_level[x][y] != 0.0) {
  1931. return; // Don't overwrite good values.
  1932. }
  1933. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1934. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1935. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1936. float median = c; // Median is robust (ignores outliers).
  1937. if (a < b) {
  1938. if (b < c) median = b;
  1939. if (c < a) median = a;
  1940. }
  1941. else { // b <= a
  1942. if (c < b) median = b;
  1943. if (a < c) median = a;
  1944. }
  1945. bed_level[x][y] = median;
  1946. }
  1947. /**
  1948. * Fill in the unprobed points (corners of circular print surface)
  1949. * using linear extrapolation, away from the center.
  1950. */
  1951. static void extrapolate_unprobed_bed_level() {
  1952. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1953. for (int y = 0; y <= half; y++) {
  1954. for (int x = 0; x <= half; x++) {
  1955. if (x + y < 3) continue;
  1956. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1957. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1958. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1959. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1960. }
  1961. }
  1962. }
  1963. /**
  1964. * Print calibration results for plotting or manual frame adjustment.
  1965. */
  1966. static void print_bed_level() {
  1967. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1968. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1969. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1970. SERIAL_PROTOCOLCHAR(' ');
  1971. }
  1972. SERIAL_EOL;
  1973. }
  1974. }
  1975. /**
  1976. * Reset calibration results to zero.
  1977. */
  1978. void reset_bed_level() {
  1979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1980. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1981. #endif
  1982. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1983. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1984. bed_level[x][y] = 0.0;
  1985. }
  1986. }
  1987. }
  1988. #endif // DELTA
  1989. #endif // AUTO_BED_LEVELING_FEATURE
  1990. /**
  1991. * Home an individual axis
  1992. */
  1993. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1994. static void homeaxis(AxisEnum axis) {
  1995. #define HOMEAXIS_DO(LETTER) \
  1996. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1997. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  1998. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1999. if (DEBUGGING(LEVELING)) {
  2000. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2001. SERIAL_ECHOLNPGM(")");
  2002. }
  2003. #endif
  2004. int axis_home_dir =
  2005. #if ENABLED(DUAL_X_CARRIAGE)
  2006. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2007. #endif
  2008. home_dir(axis);
  2009. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2010. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2011. if (axis == Z_AXIS && axis_home_dir < 0) {
  2012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2013. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2014. #endif
  2015. if (DEPLOY_PROBE()) return;
  2016. }
  2017. #endif
  2018. // Set the axis position as setup for the move
  2019. current_position[axis] = 0;
  2020. sync_plan_position();
  2021. // Set a flag for Z motor locking
  2022. #if ENABLED(Z_DUAL_ENDSTOPS)
  2023. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2024. #endif
  2025. // Move towards the endstop until an endstop is triggered
  2026. line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
  2027. // Set the axis position as setup for the move
  2028. current_position[axis] = 0;
  2029. sync_plan_position();
  2030. // Move away from the endstop by the axis HOME_BUMP_MM
  2031. line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
  2032. // Move slowly towards the endstop until triggered
  2033. line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2035. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2036. #endif
  2037. #if ENABLED(Z_DUAL_ENDSTOPS)
  2038. if (axis == Z_AXIS) {
  2039. float adj = fabs(z_endstop_adj);
  2040. bool lockZ1;
  2041. if (axis_home_dir > 0) {
  2042. adj = -adj;
  2043. lockZ1 = (z_endstop_adj > 0);
  2044. }
  2045. else
  2046. lockZ1 = (z_endstop_adj < 0);
  2047. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2048. sync_plan_position();
  2049. // Move to the adjusted endstop height
  2050. line_to_axis_pos(axis, adj);
  2051. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2052. stepper.set_homing_flag(false);
  2053. } // Z_AXIS
  2054. #endif
  2055. #if ENABLED(DELTA)
  2056. // retrace by the amount specified in endstop_adj
  2057. if (endstop_adj[axis] * axis_home_dir < 0) {
  2058. sync_plan_position();
  2059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2060. if (DEBUGGING(LEVELING)) {
  2061. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2062. DEBUG_POS("", current_position);
  2063. }
  2064. #endif
  2065. line_to_axis_pos(axis, endstop_adj[axis]);
  2066. }
  2067. #endif
  2068. // Set the axis position to its home position (plus home offsets)
  2069. set_axis_is_at_home(axis);
  2070. SYNC_PLAN_POSITION_KINEMATIC();
  2071. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2072. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2073. #endif
  2074. destination[axis] = current_position[axis];
  2075. endstops.hit_on_purpose(); // clear endstop hit flags
  2076. axis_known_position[axis] = true;
  2077. axis_homed[axis] = true;
  2078. // Put away the Z probe
  2079. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2080. if (axis == Z_AXIS && axis_home_dir < 0) {
  2081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2082. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2083. #endif
  2084. if (STOW_PROBE()) return;
  2085. }
  2086. #endif
  2087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2088. if (DEBUGGING(LEVELING)) {
  2089. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2090. SERIAL_ECHOLNPGM(")");
  2091. }
  2092. #endif
  2093. }
  2094. #if ENABLED(FWRETRACT)
  2095. void retract(bool retracting, bool swapping = false) {
  2096. if (retracting == retracted[active_extruder]) return;
  2097. float old_feedrate_mm_m = feedrate_mm_m;
  2098. set_destination_to_current();
  2099. if (retracting) {
  2100. feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
  2101. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2102. sync_plan_position_e();
  2103. prepare_move_to_destination();
  2104. if (retract_zlift > 0.01) {
  2105. current_position[Z_AXIS] -= retract_zlift;
  2106. SYNC_PLAN_POSITION_KINEMATIC();
  2107. prepare_move_to_destination();
  2108. }
  2109. }
  2110. else {
  2111. if (retract_zlift > 0.01) {
  2112. current_position[Z_AXIS] += retract_zlift;
  2113. SYNC_PLAN_POSITION_KINEMATIC();
  2114. }
  2115. feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
  2116. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2117. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2118. sync_plan_position_e();
  2119. prepare_move_to_destination();
  2120. }
  2121. feedrate_mm_m = old_feedrate_mm_m;
  2122. retracted[active_extruder] = retracting;
  2123. } // retract()
  2124. #endif // FWRETRACT
  2125. #if ENABLED(MIXING_EXTRUDER)
  2126. void normalize_mix() {
  2127. float mix_total = 0.0;
  2128. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2129. float v = mixing_factor[i];
  2130. if (v < 0) v = mixing_factor[i] = 0;
  2131. mix_total += v;
  2132. }
  2133. // Scale all values if they don't add up to ~1.0
  2134. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2135. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2136. float mix_scale = 1.0 / mix_total;
  2137. for (int i = 0; i < MIXING_STEPPERS; i++)
  2138. mixing_factor[i] *= mix_scale;
  2139. }
  2140. }
  2141. #if ENABLED(DIRECT_MIXING_IN_G1)
  2142. // Get mixing parameters from the GCode
  2143. // Factors that are left out are set to 0
  2144. // The total "must" be 1.0 (but it will be normalized)
  2145. void gcode_get_mix() {
  2146. const char* mixing_codes = "ABCDHI";
  2147. for (int i = 0; i < MIXING_STEPPERS; i++)
  2148. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2149. normalize_mix();
  2150. }
  2151. #endif
  2152. #endif
  2153. /**
  2154. * ***************************************************************************
  2155. * ***************************** G-CODE HANDLING *****************************
  2156. * ***************************************************************************
  2157. */
  2158. /**
  2159. * Set XYZE destination and feedrate from the current GCode command
  2160. *
  2161. * - Set destination from included axis codes
  2162. * - Set to current for missing axis codes
  2163. * - Set the feedrate, if included
  2164. */
  2165. void gcode_get_destination() {
  2166. for (int i = 0; i < NUM_AXIS; i++) {
  2167. if (code_seen(axis_codes[i]))
  2168. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2169. else
  2170. destination[i] = current_position[i];
  2171. }
  2172. if (code_seen('F') && code_value_linear_units() > 0.0)
  2173. feedrate_mm_m = code_value_linear_units();
  2174. #if ENABLED(PRINTCOUNTER)
  2175. if (!DEBUGGING(DRYRUN))
  2176. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2177. #endif
  2178. // Get ABCDHI mixing factors
  2179. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2180. gcode_get_mix();
  2181. #endif
  2182. }
  2183. void unknown_command_error() {
  2184. SERIAL_ECHO_START;
  2185. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2186. SERIAL_ECHO(current_command);
  2187. SERIAL_ECHOLNPGM("\"");
  2188. }
  2189. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2190. /**
  2191. * Output a "busy" message at regular intervals
  2192. * while the machine is not accepting commands.
  2193. */
  2194. void host_keepalive() {
  2195. millis_t ms = millis();
  2196. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2197. if (PENDING(ms, next_busy_signal_ms)) return;
  2198. switch (busy_state) {
  2199. case IN_HANDLER:
  2200. case IN_PROCESS:
  2201. SERIAL_ECHO_START;
  2202. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2203. break;
  2204. case PAUSED_FOR_USER:
  2205. SERIAL_ECHO_START;
  2206. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2207. break;
  2208. case PAUSED_FOR_INPUT:
  2209. SERIAL_ECHO_START;
  2210. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2211. break;
  2212. default:
  2213. break;
  2214. }
  2215. }
  2216. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2217. }
  2218. #endif //HOST_KEEPALIVE_FEATURE
  2219. /**
  2220. * G0, G1: Coordinated movement of X Y Z E axes
  2221. */
  2222. inline void gcode_G0_G1() {
  2223. if (IsRunning()) {
  2224. gcode_get_destination(); // For X Y Z E F
  2225. #if ENABLED(FWRETRACT)
  2226. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2227. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2228. // Is this move an attempt to retract or recover?
  2229. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2230. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2231. sync_plan_position_e(); // AND from the planner
  2232. retract(!retracted[active_extruder]);
  2233. return;
  2234. }
  2235. }
  2236. #endif //FWRETRACT
  2237. prepare_move_to_destination();
  2238. }
  2239. }
  2240. /**
  2241. * G2: Clockwise Arc
  2242. * G3: Counterclockwise Arc
  2243. */
  2244. #if ENABLED(ARC_SUPPORT)
  2245. inline void gcode_G2_G3(bool clockwise) {
  2246. if (IsRunning()) {
  2247. #if ENABLED(SF_ARC_FIX)
  2248. bool relative_mode_backup = relative_mode;
  2249. relative_mode = true;
  2250. #endif
  2251. gcode_get_destination();
  2252. #if ENABLED(SF_ARC_FIX)
  2253. relative_mode = relative_mode_backup;
  2254. #endif
  2255. // Center of arc as offset from current_position
  2256. float arc_offset[2] = {
  2257. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2258. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2259. };
  2260. // Send an arc to the planner
  2261. plan_arc(destination, arc_offset, clockwise);
  2262. refresh_cmd_timeout();
  2263. }
  2264. }
  2265. #endif
  2266. /**
  2267. * G4: Dwell S<seconds> or P<milliseconds>
  2268. */
  2269. inline void gcode_G4() {
  2270. millis_t dwell_ms = 0;
  2271. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2272. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2273. stepper.synchronize();
  2274. refresh_cmd_timeout();
  2275. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2276. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2277. while (PENDING(millis(), dwell_ms)) idle();
  2278. }
  2279. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2280. /**
  2281. * Parameters interpreted according to:
  2282. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2283. * However I, J omission is not supported at this point; all
  2284. * parameters can be omitted and default to zero.
  2285. */
  2286. /**
  2287. * G5: Cubic B-spline
  2288. */
  2289. inline void gcode_G5() {
  2290. if (IsRunning()) {
  2291. gcode_get_destination();
  2292. float offset[] = {
  2293. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2294. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2295. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2296. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2297. };
  2298. plan_cubic_move(offset);
  2299. }
  2300. }
  2301. #endif // BEZIER_CURVE_SUPPORT
  2302. #if ENABLED(FWRETRACT)
  2303. /**
  2304. * G10 - Retract filament according to settings of M207
  2305. * G11 - Recover filament according to settings of M208
  2306. */
  2307. inline void gcode_G10_G11(bool doRetract=false) {
  2308. #if EXTRUDERS > 1
  2309. if (doRetract) {
  2310. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2311. }
  2312. #endif
  2313. retract(doRetract
  2314. #if EXTRUDERS > 1
  2315. , retracted_swap[active_extruder]
  2316. #endif
  2317. );
  2318. }
  2319. #endif //FWRETRACT
  2320. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2321. /**
  2322. * G12: Clean the nozzle
  2323. */
  2324. inline void gcode_G12() {
  2325. // Don't allow nozzle cleaning without homing first
  2326. if (axis_unhomed_error(true, true, true)) { return; }
  2327. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2328. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2329. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2330. Nozzle::clean(pattern, strokes, objects);
  2331. }
  2332. #endif
  2333. #if ENABLED(INCH_MODE_SUPPORT)
  2334. /**
  2335. * G20: Set input mode to inches
  2336. */
  2337. inline void gcode_G20() {
  2338. set_input_linear_units(LINEARUNIT_INCH);
  2339. }
  2340. /**
  2341. * G21: Set input mode to millimeters
  2342. */
  2343. inline void gcode_G21() {
  2344. set_input_linear_units(LINEARUNIT_MM);
  2345. }
  2346. #endif
  2347. #if ENABLED(NOZZLE_PARK_FEATURE)
  2348. /**
  2349. * G27: Park the nozzle
  2350. */
  2351. inline void gcode_G27() {
  2352. // Don't allow nozzle parking without homing first
  2353. if (axis_unhomed_error(true, true, true)) { return; }
  2354. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2355. Nozzle::park(z_action);
  2356. }
  2357. #endif // NOZZLE_PARK_FEATURE
  2358. #if ENABLED(QUICK_HOME)
  2359. static void quick_home_xy() {
  2360. // Pretend the current position is 0,0
  2361. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2362. sync_plan_position();
  2363. #if ENABLED(DUAL_X_CARRIAGE)
  2364. int x_axis_home_dir = x_home_dir(active_extruder);
  2365. extruder_duplication_enabled = false;
  2366. #else
  2367. int x_axis_home_dir = home_dir(X_AXIS);
  2368. #endif
  2369. float mlx = max_length(X_AXIS),
  2370. mly = max_length(Y_AXIS),
  2371. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2372. fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2373. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
  2374. endstops.hit_on_purpose(); // clear endstop hit flags
  2375. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2376. }
  2377. #endif // QUICK_HOME
  2378. /**
  2379. * G28: Home all axes according to settings
  2380. *
  2381. * Parameters
  2382. *
  2383. * None Home to all axes with no parameters.
  2384. * With QUICK_HOME enabled XY will home together, then Z.
  2385. *
  2386. * Cartesian parameters
  2387. *
  2388. * X Home to the X endstop
  2389. * Y Home to the Y endstop
  2390. * Z Home to the Z endstop
  2391. *
  2392. */
  2393. inline void gcode_G28() {
  2394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2395. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2396. #endif
  2397. // Wait for planner moves to finish!
  2398. stepper.synchronize();
  2399. // For auto bed leveling, clear the level matrix
  2400. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2401. planner.bed_level_matrix.set_to_identity();
  2402. #if ENABLED(DELTA)
  2403. reset_bed_level();
  2404. #endif
  2405. #endif
  2406. /**
  2407. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2408. * on again when homing all axis
  2409. */
  2410. #if ENABLED(MESH_BED_LEVELING)
  2411. float pre_home_z = MESH_HOME_SEARCH_Z;
  2412. if (mbl.active()) {
  2413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2414. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2415. #endif
  2416. // Save known Z position if already homed
  2417. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2418. pre_home_z = current_position[Z_AXIS];
  2419. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2420. }
  2421. mbl.set_active(false);
  2422. current_position[Z_AXIS] = pre_home_z;
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2425. #endif
  2426. }
  2427. #endif
  2428. setup_for_endstop_or_probe_move();
  2429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2430. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2431. #endif
  2432. endstops.enable(true); // Enable endstops for next homing move
  2433. #if ENABLED(DELTA)
  2434. /**
  2435. * A delta can only safely home all axes at the same time
  2436. */
  2437. // Pretend the current position is 0,0,0
  2438. // This is like quick_home_xy() but for 3 towers.
  2439. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2440. sync_plan_position();
  2441. // Move all carriages up together until the first endstop is hit.
  2442. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2443. feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
  2444. line_to_current_position();
  2445. stepper.synchronize();
  2446. endstops.hit_on_purpose(); // clear endstop hit flags
  2447. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2448. // take care of back off and rehome. Now one carriage is at the top.
  2449. HOMEAXIS(X);
  2450. HOMEAXIS(Y);
  2451. HOMEAXIS(Z);
  2452. SYNC_PLAN_POSITION_KINEMATIC();
  2453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2454. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2455. #endif
  2456. #else // NOT DELTA
  2457. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2458. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2459. set_destination_to_current();
  2460. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2461. if (home_all_axis || homeZ) {
  2462. HOMEAXIS(Z);
  2463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2464. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2465. #endif
  2466. }
  2467. #else
  2468. if (home_all_axis || homeX || homeY) {
  2469. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2470. destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2471. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2473. if (DEBUGGING(LEVELING)) {
  2474. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2475. SERIAL_EOL;
  2476. }
  2477. #endif
  2478. do_blocking_move_to_z(destination[Z_AXIS]);
  2479. }
  2480. }
  2481. #endif
  2482. #if ENABLED(QUICK_HOME)
  2483. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2484. #endif
  2485. #if ENABLED(HOME_Y_BEFORE_X)
  2486. // Home Y
  2487. if (home_all_axis || homeY) {
  2488. HOMEAXIS(Y);
  2489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2490. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2491. #endif
  2492. }
  2493. #endif
  2494. // Home X
  2495. if (home_all_axis || homeX) {
  2496. #if ENABLED(DUAL_X_CARRIAGE)
  2497. int tmp_extruder = active_extruder;
  2498. extruder_duplication_enabled = false;
  2499. active_extruder = !active_extruder;
  2500. HOMEAXIS(X);
  2501. inactive_extruder_x_pos = current_position[X_AXIS];
  2502. active_extruder = tmp_extruder;
  2503. HOMEAXIS(X);
  2504. // reset state used by the different modes
  2505. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2506. delayed_move_time = 0;
  2507. active_extruder_parked = true;
  2508. #else
  2509. HOMEAXIS(X);
  2510. #endif
  2511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2512. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2513. #endif
  2514. }
  2515. #if DISABLED(HOME_Y_BEFORE_X)
  2516. // Home Y
  2517. if (home_all_axis || homeY) {
  2518. HOMEAXIS(Y);
  2519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2520. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2521. #endif
  2522. }
  2523. #endif
  2524. // Home Z last if homing towards the bed
  2525. #if Z_HOME_DIR < 0
  2526. if (home_all_axis || homeZ) {
  2527. #if ENABLED(Z_SAFE_HOMING)
  2528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2529. if (DEBUGGING(LEVELING)) {
  2530. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2531. }
  2532. #endif
  2533. if (home_all_axis) {
  2534. /**
  2535. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2536. * No need to move Z any more as this height should already be safe
  2537. * enough to reach Z_SAFE_HOMING XY positions.
  2538. * Just make sure the planner is in sync.
  2539. */
  2540. SYNC_PLAN_POSITION_KINEMATIC();
  2541. /**
  2542. * Set the Z probe (or just the nozzle) destination to the safe
  2543. * homing point
  2544. */
  2545. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2546. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2547. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2549. if (DEBUGGING(LEVELING)) {
  2550. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2551. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2552. }
  2553. #endif
  2554. // Move in the XY plane
  2555. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2556. }
  2557. // Let's see if X and Y are homed
  2558. if (axis_unhomed_error(true, true, false)) return;
  2559. /**
  2560. * Make sure the Z probe is within the physical limits
  2561. * NOTE: This doesn't necessarily ensure the Z probe is also
  2562. * within the bed!
  2563. */
  2564. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2565. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2566. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2567. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2568. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2569. // Home the Z axis
  2570. HOMEAXIS(Z);
  2571. }
  2572. else {
  2573. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2574. SERIAL_ECHO_START;
  2575. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2576. }
  2577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2578. if (DEBUGGING(LEVELING)) {
  2579. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2580. }
  2581. #endif
  2582. #else // !Z_SAFE_HOMING
  2583. HOMEAXIS(Z);
  2584. #endif // !Z_SAFE_HOMING
  2585. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2586. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2587. #endif
  2588. } // home_all_axis || homeZ
  2589. #endif // Z_HOME_DIR < 0
  2590. SYNC_PLAN_POSITION_KINEMATIC();
  2591. #endif // !DELTA (gcode_G28)
  2592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2593. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2594. #endif
  2595. endstops.not_homing();
  2596. endstops.hit_on_purpose(); // clear endstop hit flags
  2597. // Enable mesh leveling again
  2598. #if ENABLED(MESH_BED_LEVELING)
  2599. if (mbl.has_mesh()) {
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2602. #endif
  2603. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2605. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2606. #endif
  2607. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2608. #if Z_HOME_DIR > 0
  2609. + Z_MAX_POS
  2610. #endif
  2611. ;
  2612. SYNC_PLAN_POSITION_KINEMATIC();
  2613. mbl.set_active(true);
  2614. #if ENABLED(MESH_G28_REST_ORIGIN)
  2615. current_position[Z_AXIS] = 0.0;
  2616. set_destination_to_current();
  2617. feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
  2618. line_to_destination();
  2619. stepper.synchronize();
  2620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2621. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2622. #endif
  2623. #else
  2624. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2625. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2626. #if Z_HOME_DIR > 0
  2627. + Z_MAX_POS
  2628. #endif
  2629. ;
  2630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2631. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2632. #endif
  2633. #endif
  2634. }
  2635. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2636. current_position[Z_AXIS] = pre_home_z;
  2637. SYNC_PLAN_POSITION_KINEMATIC();
  2638. mbl.set_active(true);
  2639. current_position[Z_AXIS] = pre_home_z -
  2640. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2642. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2643. #endif
  2644. }
  2645. }
  2646. #endif
  2647. #if ENABLED(DELTA)
  2648. // move to a height where we can use the full xy-area
  2649. do_blocking_move_to_z(delta_clip_start_height);
  2650. #endif
  2651. clean_up_after_endstop_or_probe_move();
  2652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2654. #endif
  2655. report_current_position();
  2656. }
  2657. #if HAS_PROBING_PROCEDURE
  2658. void out_of_range_error(const char* p_edge) {
  2659. SERIAL_PROTOCOLPGM("?Probe ");
  2660. serialprintPGM(p_edge);
  2661. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2662. }
  2663. #endif
  2664. #if ENABLED(MESH_BED_LEVELING)
  2665. inline void _mbl_goto_xy(float x, float y) {
  2666. float old_feedrate_mm_m = feedrate_mm_m;
  2667. feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
  2668. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2669. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2670. + Z_RAISE_BETWEEN_PROBINGS
  2671. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2672. + MIN_Z_HEIGHT_FOR_HOMING
  2673. #endif
  2674. ;
  2675. line_to_current_position();
  2676. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2677. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2678. line_to_current_position();
  2679. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2680. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2681. line_to_current_position();
  2682. #endif
  2683. feedrate_mm_m = old_feedrate_mm_m;
  2684. stepper.synchronize();
  2685. }
  2686. /**
  2687. * G29: Mesh-based Z probe, probes a grid and produces a
  2688. * mesh to compensate for variable bed height
  2689. *
  2690. * Parameters With MESH_BED_LEVELING:
  2691. *
  2692. * S0 Produce a mesh report
  2693. * S1 Start probing mesh points
  2694. * S2 Probe the next mesh point
  2695. * S3 Xn Yn Zn.nn Manually modify a single point
  2696. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2697. * S5 Reset and disable mesh
  2698. *
  2699. * The S0 report the points as below
  2700. *
  2701. * +----> X-axis 1-n
  2702. * |
  2703. * |
  2704. * v Y-axis 1-n
  2705. *
  2706. */
  2707. inline void gcode_G29() {
  2708. static int probe_point = -1;
  2709. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2710. if (state < 0 || state > 5) {
  2711. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2712. return;
  2713. }
  2714. int8_t px, py;
  2715. switch (state) {
  2716. case MeshReport:
  2717. if (mbl.has_mesh()) {
  2718. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2719. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2720. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2721. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2722. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2723. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2724. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2725. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2726. SERIAL_PROTOCOLPGM(" ");
  2727. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2728. }
  2729. SERIAL_EOL;
  2730. }
  2731. }
  2732. else
  2733. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2734. break;
  2735. case MeshStart:
  2736. mbl.reset();
  2737. probe_point = 0;
  2738. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2739. break;
  2740. case MeshNext:
  2741. if (probe_point < 0) {
  2742. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2743. return;
  2744. }
  2745. // For each G29 S2...
  2746. if (probe_point == 0) {
  2747. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2748. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2749. #if Z_HOME_DIR > 0
  2750. + Z_MAX_POS
  2751. #endif
  2752. ;
  2753. SYNC_PLAN_POSITION_KINEMATIC();
  2754. }
  2755. else {
  2756. // For G29 S2 after adjusting Z.
  2757. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2758. }
  2759. // If there's another point to sample, move there with optional lift.
  2760. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2761. mbl.zigzag(probe_point, px, py);
  2762. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2763. probe_point++;
  2764. }
  2765. else {
  2766. // One last "return to the bed" (as originally coded) at completion
  2767. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2768. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2769. + Z_RAISE_BETWEEN_PROBINGS
  2770. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2771. + MIN_Z_HEIGHT_FOR_HOMING
  2772. #endif
  2773. ;
  2774. line_to_current_position();
  2775. stepper.synchronize();
  2776. // After recording the last point, activate the mbl and home
  2777. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2778. probe_point = -1;
  2779. mbl.set_has_mesh(true);
  2780. enqueue_and_echo_commands_P(PSTR("G28"));
  2781. }
  2782. break;
  2783. case MeshSet:
  2784. if (code_seen('X')) {
  2785. px = code_value_int() - 1;
  2786. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2787. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2788. return;
  2789. }
  2790. }
  2791. else {
  2792. SERIAL_PROTOCOLLNPGM("X not entered.");
  2793. return;
  2794. }
  2795. if (code_seen('Y')) {
  2796. py = code_value_int() - 1;
  2797. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2798. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2799. return;
  2800. }
  2801. }
  2802. else {
  2803. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2804. return;
  2805. }
  2806. if (code_seen('Z')) {
  2807. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2808. }
  2809. else {
  2810. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2811. return;
  2812. }
  2813. break;
  2814. case MeshSetZOffset:
  2815. if (code_seen('Z')) {
  2816. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2817. }
  2818. else {
  2819. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2820. return;
  2821. }
  2822. break;
  2823. case MeshReset:
  2824. if (mbl.active()) {
  2825. current_position[Z_AXIS] +=
  2826. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2827. mbl.reset();
  2828. SYNC_PLAN_POSITION_KINEMATIC();
  2829. }
  2830. else
  2831. mbl.reset();
  2832. } // switch(state)
  2833. report_current_position();
  2834. }
  2835. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2836. /**
  2837. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2838. * Will fail if the printer has not been homed with G28.
  2839. *
  2840. * Enhanced G29 Auto Bed Leveling Probe Routine
  2841. *
  2842. * Parameters With AUTO_BED_LEVELING_GRID:
  2843. *
  2844. * P Set the size of the grid that will be probed (P x P points).
  2845. * Not supported by non-linear delta printer bed leveling.
  2846. * Example: "G29 P4"
  2847. *
  2848. * S Set the XY travel speed between probe points (in units/min)
  2849. *
  2850. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2851. * or clean the rotation Matrix. Useful to check the topology
  2852. * after a first run of G29.
  2853. *
  2854. * V Set the verbose level (0-4). Example: "G29 V3"
  2855. *
  2856. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2857. * This is useful for manual bed leveling and finding flaws in the bed (to
  2858. * assist with part placement).
  2859. * Not supported by non-linear delta printer bed leveling.
  2860. *
  2861. * F Set the Front limit of the probing grid
  2862. * B Set the Back limit of the probing grid
  2863. * L Set the Left limit of the probing grid
  2864. * R Set the Right limit of the probing grid
  2865. *
  2866. * Global Parameters:
  2867. *
  2868. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2869. * Include "E" to engage/disengage the Z probe for each sample.
  2870. * There's no extra effect if you have a fixed Z probe.
  2871. * Usage: "G29 E" or "G29 e"
  2872. *
  2873. */
  2874. inline void gcode_G29() {
  2875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2876. if (DEBUGGING(LEVELING)) {
  2877. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2878. DEBUG_POS("", current_position);
  2879. }
  2880. #endif
  2881. // Don't allow auto-leveling without homing first
  2882. if (axis_unhomed_error(true, true, true)) return;
  2883. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2884. if (verbose_level < 0 || verbose_level > 4) {
  2885. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2886. return;
  2887. }
  2888. bool dryrun = code_seen('D');
  2889. bool stow_probe_after_each = code_seen('E');
  2890. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2891. #if DISABLED(DELTA)
  2892. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2893. #endif
  2894. if (verbose_level > 0) {
  2895. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2896. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2897. }
  2898. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2899. #if DISABLED(DELTA)
  2900. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2901. if (auto_bed_leveling_grid_points < 2) {
  2902. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2903. return;
  2904. }
  2905. #endif
  2906. xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2907. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2908. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2909. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2910. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2911. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2912. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2913. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2914. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2915. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2916. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2917. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2918. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2919. if (left_out || right_out || front_out || back_out) {
  2920. if (left_out) {
  2921. out_of_range_error(PSTR("(L)eft"));
  2922. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2923. }
  2924. if (right_out) {
  2925. out_of_range_error(PSTR("(R)ight"));
  2926. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2927. }
  2928. if (front_out) {
  2929. out_of_range_error(PSTR("(F)ront"));
  2930. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2931. }
  2932. if (back_out) {
  2933. out_of_range_error(PSTR("(B)ack"));
  2934. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2935. }
  2936. return;
  2937. }
  2938. #endif // AUTO_BED_LEVELING_GRID
  2939. if (!dryrun) {
  2940. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2941. if (DEBUGGING(LEVELING)) {
  2942. vector_3 corrected_position = planner.adjusted_position();
  2943. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2944. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2945. }
  2946. #endif
  2947. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2948. planner.bed_level_matrix.set_to_identity();
  2949. #if ENABLED(DELTA)
  2950. reset_bed_level();
  2951. #else //!DELTA
  2952. //vector_3 corrected_position = planner.adjusted_position();
  2953. //corrected_position.debug("position before G29");
  2954. vector_3 uncorrected_position = planner.adjusted_position();
  2955. //uncorrected_position.debug("position during G29");
  2956. current_position[X_AXIS] = uncorrected_position.x;
  2957. current_position[Y_AXIS] = uncorrected_position.y;
  2958. current_position[Z_AXIS] = uncorrected_position.z;
  2959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2960. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2961. #endif
  2962. SYNC_PLAN_POSITION_KINEMATIC();
  2963. #endif // !DELTA
  2964. }
  2965. stepper.synchronize();
  2966. setup_for_endstop_or_probe_move();
  2967. // Deploy the probe. Probe will raise if needed.
  2968. if (DEPLOY_PROBE()) return;
  2969. bed_leveling_in_progress = true;
  2970. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2971. // probe at the points of a lattice grid
  2972. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2973. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2974. #if ENABLED(DELTA)
  2975. delta_grid_spacing[0] = xGridSpacing;
  2976. delta_grid_spacing[1] = yGridSpacing;
  2977. float zoffset = zprobe_zoffset;
  2978. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2979. #else // !DELTA
  2980. /**
  2981. * solve the plane equation ax + by + d = z
  2982. * A is the matrix with rows [x y 1] for all the probed points
  2983. * B is the vector of the Z positions
  2984. * the normal vector to the plane is formed by the coefficients of the
  2985. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2986. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2987. */
  2988. int abl2 = sq(auto_bed_leveling_grid_points);
  2989. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2990. eqnBVector[abl2], // "B" vector of Z points
  2991. mean = 0.0;
  2992. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2993. #endif // !DELTA
  2994. int probePointCounter = 0;
  2995. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2996. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2997. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2998. int xStart, xStop, xInc;
  2999. if (zig) {
  3000. xStart = 0;
  3001. xStop = auto_bed_leveling_grid_points;
  3002. xInc = 1;
  3003. }
  3004. else {
  3005. xStart = auto_bed_leveling_grid_points - 1;
  3006. xStop = -1;
  3007. xInc = -1;
  3008. }
  3009. zig = !zig;
  3010. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3011. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3012. #if ENABLED(DELTA)
  3013. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3014. float distance_from_center = HYPOT(xProbe, yProbe);
  3015. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3016. #endif //DELTA
  3017. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3018. #if DISABLED(DELTA)
  3019. mean += measured_z;
  3020. eqnBVector[probePointCounter] = measured_z;
  3021. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3022. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3023. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3024. indexIntoAB[xCount][yCount] = probePointCounter;
  3025. #else
  3026. bed_level[xCount][yCount] = measured_z + zoffset;
  3027. #endif
  3028. probePointCounter++;
  3029. idle();
  3030. } //xProbe
  3031. } //yProbe
  3032. #else // !AUTO_BED_LEVELING_GRID
  3033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3034. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3035. #endif
  3036. // Probe at 3 arbitrary points
  3037. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3038. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3039. stow_probe_after_each, verbose_level),
  3040. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3041. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3042. stow_probe_after_each, verbose_level),
  3043. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3044. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3045. stow_probe_after_each, verbose_level);
  3046. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3047. #endif // !AUTO_BED_LEVELING_GRID
  3048. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3049. if (STOW_PROBE()) return;
  3050. // Restore state after probing
  3051. clean_up_after_endstop_or_probe_move();
  3052. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3053. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3054. #endif
  3055. // Calculate leveling, print reports, correct the position
  3056. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3057. #if ENABLED(DELTA)
  3058. if (!dryrun) extrapolate_unprobed_bed_level();
  3059. print_bed_level();
  3060. #else // !DELTA
  3061. // solve lsq problem
  3062. double plane_equation_coefficients[3];
  3063. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3064. mean /= abl2;
  3065. if (verbose_level) {
  3066. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3067. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3068. SERIAL_PROTOCOLPGM(" b: ");
  3069. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3070. SERIAL_PROTOCOLPGM(" d: ");
  3071. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3072. SERIAL_EOL;
  3073. if (verbose_level > 2) {
  3074. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3075. SERIAL_PROTOCOL_F(mean, 8);
  3076. SERIAL_EOL;
  3077. }
  3078. }
  3079. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3080. // Show the Topography map if enabled
  3081. if (do_topography_map) {
  3082. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3083. " +--- BACK --+\n"
  3084. " | |\n"
  3085. " L | (+) | R\n"
  3086. " E | | I\n"
  3087. " F | (-) N (+) | G\n"
  3088. " T | | H\n"
  3089. " | (-) | T\n"
  3090. " | |\n"
  3091. " O-- FRONT --+\n"
  3092. " (0,0)");
  3093. float min_diff = 999;
  3094. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3095. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3096. int ind = indexIntoAB[xx][yy];
  3097. float diff = eqnBVector[ind] - mean;
  3098. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3099. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3100. z_tmp = 0;
  3101. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3102. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3103. if (diff >= 0.0)
  3104. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3105. else
  3106. SERIAL_PROTOCOLCHAR(' ');
  3107. SERIAL_PROTOCOL_F(diff, 5);
  3108. } // xx
  3109. SERIAL_EOL;
  3110. } // yy
  3111. SERIAL_EOL;
  3112. if (verbose_level > 3) {
  3113. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3114. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3115. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3116. int ind = indexIntoAB[xx][yy];
  3117. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3118. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3119. z_tmp = 0;
  3120. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3121. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3122. if (diff >= 0.0)
  3123. SERIAL_PROTOCOLPGM(" +");
  3124. // Include + for column alignment
  3125. else
  3126. SERIAL_PROTOCOLCHAR(' ');
  3127. SERIAL_PROTOCOL_F(diff, 5);
  3128. } // xx
  3129. SERIAL_EOL;
  3130. } // yy
  3131. SERIAL_EOL;
  3132. }
  3133. } //do_topography_map
  3134. #endif //!DELTA
  3135. #endif // AUTO_BED_LEVELING_GRID
  3136. #if DISABLED(DELTA)
  3137. if (verbose_level > 0)
  3138. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3139. if (!dryrun) {
  3140. /**
  3141. * Correct the Z height difference from Z probe position and nozzle tip position.
  3142. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3143. * from the nozzle. When the bed is uneven, this height must be corrected.
  3144. */
  3145. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3146. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3147. z_tmp = current_position[Z_AXIS],
  3148. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3150. if (DEBUGGING(LEVELING)) {
  3151. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3152. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3153. SERIAL_EOL;
  3154. }
  3155. #endif
  3156. // Apply the correction sending the Z probe offset
  3157. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3159. if (DEBUGGING(LEVELING)) {
  3160. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3161. SERIAL_EOL;
  3162. }
  3163. #endif
  3164. // Adjust the current Z and send it to the planner.
  3165. current_position[Z_AXIS] += z_tmp - stepper_z;
  3166. SYNC_PLAN_POSITION_KINEMATIC();
  3167. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3168. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3169. #endif
  3170. }
  3171. #endif // !DELTA
  3172. #ifdef Z_PROBE_END_SCRIPT
  3173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3174. if (DEBUGGING(LEVELING)) {
  3175. SERIAL_ECHOPGM("Z Probe End Script: ");
  3176. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3177. }
  3178. #endif
  3179. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3180. stepper.synchronize();
  3181. #endif
  3182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3183. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3184. #endif
  3185. bed_leveling_in_progress = false;
  3186. report_current_position();
  3187. KEEPALIVE_STATE(IN_HANDLER);
  3188. }
  3189. #endif //AUTO_BED_LEVELING_FEATURE
  3190. #if HAS_BED_PROBE
  3191. /**
  3192. * G30: Do a single Z probe at the current XY
  3193. */
  3194. inline void gcode_G30() {
  3195. setup_for_endstop_or_probe_move();
  3196. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3197. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3198. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3199. true, 1);
  3200. SERIAL_PROTOCOLPGM("Bed X: ");
  3201. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3202. SERIAL_PROTOCOLPGM(" Y: ");
  3203. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3204. SERIAL_PROTOCOLPGM(" Z: ");
  3205. SERIAL_PROTOCOL(measured_z + 0.0001);
  3206. SERIAL_EOL;
  3207. clean_up_after_endstop_or_probe_move();
  3208. report_current_position();
  3209. }
  3210. #if ENABLED(Z_PROBE_SLED)
  3211. /**
  3212. * G31: Deploy the Z probe
  3213. */
  3214. inline void gcode_G31() { DEPLOY_PROBE(); }
  3215. /**
  3216. * G32: Stow the Z probe
  3217. */
  3218. inline void gcode_G32() { STOW_PROBE(); }
  3219. #endif // Z_PROBE_SLED
  3220. #endif // HAS_BED_PROBE
  3221. /**
  3222. * G92: Set current position to given X Y Z E
  3223. */
  3224. inline void gcode_G92() {
  3225. bool didE = code_seen('E');
  3226. if (!didE) stepper.synchronize();
  3227. bool didXYZ = false;
  3228. for (int i = 0; i < NUM_AXIS; i++) {
  3229. if (code_seen(axis_codes[i])) {
  3230. float p = current_position[i],
  3231. v = code_value_axis_units(i);
  3232. current_position[i] = v;
  3233. if (i != E_AXIS) {
  3234. position_shift[i] += v - p; // Offset the coordinate space
  3235. update_software_endstops((AxisEnum)i);
  3236. didXYZ = true;
  3237. }
  3238. }
  3239. }
  3240. if (didXYZ)
  3241. SYNC_PLAN_POSITION_KINEMATIC();
  3242. else if (didE)
  3243. sync_plan_position_e();
  3244. }
  3245. #if ENABLED(ULTIPANEL)
  3246. /**
  3247. * M0: Unconditional stop - Wait for user button press on LCD
  3248. * M1: Conditional stop - Wait for user button press on LCD
  3249. */
  3250. inline void gcode_M0_M1() {
  3251. char* args = current_command_args;
  3252. millis_t codenum = 0;
  3253. bool hasP = false, hasS = false;
  3254. if (code_seen('P')) {
  3255. codenum = code_value_millis(); // milliseconds to wait
  3256. hasP = codenum > 0;
  3257. }
  3258. if (code_seen('S')) {
  3259. codenum = code_value_millis_from_seconds(); // seconds to wait
  3260. hasS = codenum > 0;
  3261. }
  3262. if (!hasP && !hasS && *args != '\0')
  3263. lcd_setstatus(args, true);
  3264. else {
  3265. LCD_MESSAGEPGM(MSG_USERWAIT);
  3266. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3267. dontExpireStatus();
  3268. #endif
  3269. }
  3270. lcd_ignore_click();
  3271. stepper.synchronize();
  3272. refresh_cmd_timeout();
  3273. if (codenum > 0) {
  3274. codenum += previous_cmd_ms; // wait until this time for a click
  3275. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3276. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3277. KEEPALIVE_STATE(IN_HANDLER);
  3278. lcd_ignore_click(false);
  3279. }
  3280. else {
  3281. if (!lcd_detected()) return;
  3282. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3283. while (!lcd_clicked()) idle();
  3284. KEEPALIVE_STATE(IN_HANDLER);
  3285. }
  3286. if (IS_SD_PRINTING)
  3287. LCD_MESSAGEPGM(MSG_RESUMING);
  3288. else
  3289. LCD_MESSAGEPGM(WELCOME_MSG);
  3290. }
  3291. #endif // ULTIPANEL
  3292. /**
  3293. * M17: Enable power on all stepper motors
  3294. */
  3295. inline void gcode_M17() {
  3296. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3297. enable_all_steppers();
  3298. }
  3299. #if ENABLED(SDSUPPORT)
  3300. /**
  3301. * M20: List SD card to serial output
  3302. */
  3303. inline void gcode_M20() {
  3304. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3305. card.ls();
  3306. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3307. }
  3308. /**
  3309. * M21: Init SD Card
  3310. */
  3311. inline void gcode_M21() {
  3312. card.initsd();
  3313. }
  3314. /**
  3315. * M22: Release SD Card
  3316. */
  3317. inline void gcode_M22() {
  3318. card.release();
  3319. }
  3320. /**
  3321. * M23: Open a file
  3322. */
  3323. inline void gcode_M23() {
  3324. card.openFile(current_command_args, true);
  3325. }
  3326. /**
  3327. * M24: Start SD Print
  3328. */
  3329. inline void gcode_M24() {
  3330. card.startFileprint();
  3331. print_job_timer.start();
  3332. }
  3333. /**
  3334. * M25: Pause SD Print
  3335. */
  3336. inline void gcode_M25() {
  3337. card.pauseSDPrint();
  3338. }
  3339. /**
  3340. * M26: Set SD Card file index
  3341. */
  3342. inline void gcode_M26() {
  3343. if (card.cardOK && code_seen('S'))
  3344. card.setIndex(code_value_long());
  3345. }
  3346. /**
  3347. * M27: Get SD Card status
  3348. */
  3349. inline void gcode_M27() {
  3350. card.getStatus();
  3351. }
  3352. /**
  3353. * M28: Start SD Write
  3354. */
  3355. inline void gcode_M28() {
  3356. card.openFile(current_command_args, false);
  3357. }
  3358. /**
  3359. * M29: Stop SD Write
  3360. * Processed in write to file routine above
  3361. */
  3362. inline void gcode_M29() {
  3363. // card.saving = false;
  3364. }
  3365. /**
  3366. * M30 <filename>: Delete SD Card file
  3367. */
  3368. inline void gcode_M30() {
  3369. if (card.cardOK) {
  3370. card.closefile();
  3371. card.removeFile(current_command_args);
  3372. }
  3373. }
  3374. #endif //SDSUPPORT
  3375. /**
  3376. * M31: Get the time since the start of SD Print (or last M109)
  3377. */
  3378. inline void gcode_M31() {
  3379. millis_t t = print_job_timer.duration();
  3380. int d = int(t / 60 / 60 / 24),
  3381. h = int(t / 60 / 60) % 60,
  3382. m = int(t / 60) % 60,
  3383. s = int(t % 60);
  3384. char time[18]; // 123456789012345678
  3385. if (d)
  3386. sprintf_P(time, PSTR("%id %ih %im %is"), d, h, m, s); // 99d 23h 59m 59s
  3387. else
  3388. sprintf_P(time, PSTR("%ih %im %is"), h, m, s); // 23h 59m 59s
  3389. lcd_setstatus(time);
  3390. SERIAL_ECHO_START;
  3391. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3392. SERIAL_ECHOLN(time);
  3393. thermalManager.autotempShutdown();
  3394. }
  3395. #if ENABLED(SDSUPPORT)
  3396. /**
  3397. * M32: Select file and start SD Print
  3398. */
  3399. inline void gcode_M32() {
  3400. if (card.sdprinting)
  3401. stepper.synchronize();
  3402. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3403. if (!namestartpos)
  3404. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3405. else
  3406. namestartpos++; //to skip the '!'
  3407. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3408. if (card.cardOK) {
  3409. card.openFile(namestartpos, true, call_procedure);
  3410. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3411. card.setIndex(code_value_long());
  3412. card.startFileprint();
  3413. // Procedure calls count as normal print time.
  3414. if (!call_procedure) print_job_timer.start();
  3415. }
  3416. }
  3417. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3418. /**
  3419. * M33: Get the long full path of a file or folder
  3420. *
  3421. * Parameters:
  3422. * <dospath> Case-insensitive DOS-style path to a file or folder
  3423. *
  3424. * Example:
  3425. * M33 miscel~1/armchair/armcha~1.gco
  3426. *
  3427. * Output:
  3428. * /Miscellaneous/Armchair/Armchair.gcode
  3429. */
  3430. inline void gcode_M33() {
  3431. card.printLongPath(current_command_args);
  3432. }
  3433. #endif
  3434. /**
  3435. * M928: Start SD Write
  3436. */
  3437. inline void gcode_M928() {
  3438. card.openLogFile(current_command_args);
  3439. }
  3440. #endif // SDSUPPORT
  3441. /**
  3442. * M42: Change pin status via GCode
  3443. *
  3444. * P<pin> Pin number (LED if omitted)
  3445. * S<byte> Pin status from 0 - 255
  3446. */
  3447. inline void gcode_M42() {
  3448. if (!code_seen('S')) return;
  3449. int pin_status = code_value_int();
  3450. if (pin_status < 0 || pin_status > 255) return;
  3451. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3452. if (pin_number < 0) return;
  3453. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3454. if (pin_number == sensitive_pins[i]) return;
  3455. pinMode(pin_number, OUTPUT);
  3456. digitalWrite(pin_number, pin_status);
  3457. analogWrite(pin_number, pin_status);
  3458. #if FAN_COUNT > 0
  3459. switch (pin_number) {
  3460. #if HAS_FAN0
  3461. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3462. #endif
  3463. #if HAS_FAN1
  3464. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3465. #endif
  3466. #if HAS_FAN2
  3467. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3468. #endif
  3469. }
  3470. #endif
  3471. }
  3472. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3473. /**
  3474. * M48: Z probe repeatability measurement function.
  3475. *
  3476. * Usage:
  3477. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3478. * P = Number of sampled points (4-50, default 10)
  3479. * X = Sample X position
  3480. * Y = Sample Y position
  3481. * V = Verbose level (0-4, default=1)
  3482. * E = Engage Z probe for each reading
  3483. * L = Number of legs of movement before probe
  3484. * S = Schizoid (Or Star if you prefer)
  3485. *
  3486. * This function assumes the bed has been homed. Specifically, that a G28 command
  3487. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3488. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3489. * regenerated.
  3490. */
  3491. inline void gcode_M48() {
  3492. if (axis_unhomed_error(true, true, true)) return;
  3493. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3494. if (verbose_level < 0 || verbose_level > 4) {
  3495. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3496. return;
  3497. }
  3498. if (verbose_level > 0)
  3499. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3500. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3501. if (n_samples < 4 || n_samples > 50) {
  3502. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3503. return;
  3504. }
  3505. float X_current = current_position[X_AXIS],
  3506. Y_current = current_position[Y_AXIS];
  3507. bool stow_probe_after_each = code_seen('E');
  3508. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3509. #if DISABLED(DELTA)
  3510. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3511. out_of_range_error(PSTR("X"));
  3512. return;
  3513. }
  3514. #endif
  3515. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3516. #if DISABLED(DELTA)
  3517. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3518. out_of_range_error(PSTR("Y"));
  3519. return;
  3520. }
  3521. #else
  3522. if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3523. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3524. return;
  3525. }
  3526. #endif
  3527. bool seen_L = code_seen('L');
  3528. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3529. if (n_legs > 15) {
  3530. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3531. return;
  3532. }
  3533. if (n_legs == 1) n_legs = 2;
  3534. bool schizoid_flag = code_seen('S');
  3535. if (schizoid_flag && !seen_L) n_legs = 7;
  3536. /**
  3537. * Now get everything to the specified probe point So we can safely do a
  3538. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3539. * we don't want to use that as a starting point for each probe.
  3540. */
  3541. if (verbose_level > 2)
  3542. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3543. #if ENABLED(DELTA)
  3544. // we don't do bed level correction in M48 because we want the raw data when we probe
  3545. reset_bed_level();
  3546. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3547. // we don't do bed level correction in M48 because we want the raw data when we probe
  3548. planner.bed_level_matrix.set_to_identity();
  3549. #endif
  3550. setup_for_endstop_or_probe_move();
  3551. // Move to the first point, deploy, and probe
  3552. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3553. randomSeed(millis());
  3554. double mean = 0, sigma = 0, sample_set[n_samples];
  3555. for (uint8_t n = 0; n < n_samples; n++) {
  3556. if (n_legs) {
  3557. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3558. float angle = random(0.0, 360.0),
  3559. radius = random(
  3560. #if ENABLED(DELTA)
  3561. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3562. #else
  3563. 5, X_MAX_LENGTH / 8
  3564. #endif
  3565. );
  3566. if (verbose_level > 3) {
  3567. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3568. SERIAL_ECHOPAIR(" angle: ", angle);
  3569. SERIAL_ECHOPGM(" Direction: ");
  3570. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3571. SERIAL_ECHOLNPGM("Clockwise");
  3572. }
  3573. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3574. double delta_angle;
  3575. if (schizoid_flag)
  3576. // The points of a 5 point star are 72 degrees apart. We need to
  3577. // skip a point and go to the next one on the star.
  3578. delta_angle = dir * 2.0 * 72.0;
  3579. else
  3580. // If we do this line, we are just trying to move further
  3581. // around the circle.
  3582. delta_angle = dir * (float) random(25, 45);
  3583. angle += delta_angle;
  3584. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3585. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3586. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3587. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3588. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3589. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3590. #if DISABLED(DELTA)
  3591. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3592. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3593. #else
  3594. // If we have gone out too far, we can do a simple fix and scale the numbers
  3595. // back in closer to the origin.
  3596. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3597. X_current /= 1.25;
  3598. Y_current /= 1.25;
  3599. if (verbose_level > 3) {
  3600. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3601. SERIAL_ECHOPAIR(", ", Y_current);
  3602. SERIAL_EOL;
  3603. }
  3604. }
  3605. #endif
  3606. if (verbose_level > 3) {
  3607. SERIAL_PROTOCOLPGM("Going to:");
  3608. SERIAL_ECHOPAIR(" X", X_current);
  3609. SERIAL_ECHOPAIR(" Y", Y_current);
  3610. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3611. SERIAL_EOL;
  3612. }
  3613. do_blocking_move_to_xy(X_current, Y_current);
  3614. } // n_legs loop
  3615. } // n_legs
  3616. // Probe a single point
  3617. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3618. /**
  3619. * Get the current mean for the data points we have so far
  3620. */
  3621. double sum = 0.0;
  3622. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3623. mean = sum / (n + 1);
  3624. /**
  3625. * Now, use that mean to calculate the standard deviation for the
  3626. * data points we have so far
  3627. */
  3628. sum = 0.0;
  3629. for (uint8_t j = 0; j <= n; j++)
  3630. sum += sq(sample_set[j] - mean);
  3631. sigma = sqrt(sum / (n + 1));
  3632. if (verbose_level > 0) {
  3633. if (verbose_level > 1) {
  3634. SERIAL_PROTOCOL(n + 1);
  3635. SERIAL_PROTOCOLPGM(" of ");
  3636. SERIAL_PROTOCOL((int)n_samples);
  3637. SERIAL_PROTOCOLPGM(" z: ");
  3638. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3639. if (verbose_level > 2) {
  3640. SERIAL_PROTOCOLPGM(" mean: ");
  3641. SERIAL_PROTOCOL_F(mean, 6);
  3642. SERIAL_PROTOCOLPGM(" sigma: ");
  3643. SERIAL_PROTOCOL_F(sigma, 6);
  3644. }
  3645. }
  3646. SERIAL_EOL;
  3647. }
  3648. } // End of probe loop
  3649. if (STOW_PROBE()) return;
  3650. if (verbose_level > 0) {
  3651. SERIAL_PROTOCOLPGM("Mean: ");
  3652. SERIAL_PROTOCOL_F(mean, 6);
  3653. SERIAL_EOL;
  3654. }
  3655. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3656. SERIAL_PROTOCOL_F(sigma, 6);
  3657. SERIAL_EOL; SERIAL_EOL;
  3658. clean_up_after_endstop_or_probe_move();
  3659. report_current_position();
  3660. }
  3661. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3662. /**
  3663. * M75: Start print timer
  3664. */
  3665. inline void gcode_M75() { print_job_timer.start(); }
  3666. /**
  3667. * M76: Pause print timer
  3668. */
  3669. inline void gcode_M76() { print_job_timer.pause(); }
  3670. /**
  3671. * M77: Stop print timer
  3672. */
  3673. inline void gcode_M77() { print_job_timer.stop(); }
  3674. #if ENABLED(PRINTCOUNTER)
  3675. /**
  3676. * M78: Show print statistics
  3677. */
  3678. inline void gcode_M78() {
  3679. // "M78 S78" will reset the statistics
  3680. if (code_seen('S') && code_value_int() == 78)
  3681. print_job_timer.initStats();
  3682. else print_job_timer.showStats();
  3683. }
  3684. #endif
  3685. /**
  3686. * M104: Set hot end temperature
  3687. */
  3688. inline void gcode_M104() {
  3689. if (get_target_extruder_from_command(104)) return;
  3690. if (DEBUGGING(DRYRUN)) return;
  3691. #if ENABLED(SINGLENOZZLE)
  3692. if (target_extruder != active_extruder) return;
  3693. #endif
  3694. if (code_seen('S')) {
  3695. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3696. #if ENABLED(DUAL_X_CARRIAGE)
  3697. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3698. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3699. #endif
  3700. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3701. /**
  3702. * Stop the timer at the end of print, starting is managed by
  3703. * 'heat and wait' M109.
  3704. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3705. * stand by mode, for instance in a dual extruder setup, without affecting
  3706. * the running print timer.
  3707. */
  3708. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3709. print_job_timer.stop();
  3710. LCD_MESSAGEPGM(WELCOME_MSG);
  3711. }
  3712. #endif
  3713. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3714. }
  3715. }
  3716. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3717. void print_heaterstates() {
  3718. #if HAS_TEMP_HOTEND
  3719. SERIAL_PROTOCOLPGM(" T:");
  3720. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3721. SERIAL_PROTOCOLPGM(" /");
  3722. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3723. #endif
  3724. #if HAS_TEMP_BED
  3725. SERIAL_PROTOCOLPGM(" B:");
  3726. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3727. SERIAL_PROTOCOLPGM(" /");
  3728. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3729. #endif
  3730. #if HOTENDS > 1
  3731. HOTEND_LOOP() {
  3732. SERIAL_PROTOCOLPGM(" T");
  3733. SERIAL_PROTOCOL(e);
  3734. SERIAL_PROTOCOLCHAR(':');
  3735. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3736. SERIAL_PROTOCOLPGM(" /");
  3737. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3738. }
  3739. #endif
  3740. #if HAS_TEMP_BED
  3741. SERIAL_PROTOCOLPGM(" B@:");
  3742. #ifdef BED_WATTS
  3743. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3744. SERIAL_PROTOCOLCHAR('W');
  3745. #else
  3746. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3747. #endif
  3748. #endif
  3749. SERIAL_PROTOCOLPGM(" @:");
  3750. #ifdef EXTRUDER_WATTS
  3751. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3752. SERIAL_PROTOCOLCHAR('W');
  3753. #else
  3754. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3755. #endif
  3756. #if HOTENDS > 1
  3757. HOTEND_LOOP() {
  3758. SERIAL_PROTOCOLPGM(" @");
  3759. SERIAL_PROTOCOL(e);
  3760. SERIAL_PROTOCOLCHAR(':');
  3761. #ifdef EXTRUDER_WATTS
  3762. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3763. SERIAL_PROTOCOLCHAR('W');
  3764. #else
  3765. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3766. #endif
  3767. }
  3768. #endif
  3769. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3770. #if HAS_TEMP_BED
  3771. SERIAL_PROTOCOLPGM(" ADC B:");
  3772. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3773. SERIAL_PROTOCOLPGM("C->");
  3774. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3775. #endif
  3776. HOTEND_LOOP() {
  3777. SERIAL_PROTOCOLPGM(" T");
  3778. SERIAL_PROTOCOL(e);
  3779. SERIAL_PROTOCOLCHAR(':');
  3780. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3781. SERIAL_PROTOCOLPGM("C->");
  3782. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3783. }
  3784. #endif
  3785. }
  3786. #endif
  3787. /**
  3788. * M105: Read hot end and bed temperature
  3789. */
  3790. inline void gcode_M105() {
  3791. if (get_target_extruder_from_command(105)) return;
  3792. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3793. SERIAL_PROTOCOLPGM(MSG_OK);
  3794. print_heaterstates();
  3795. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3796. SERIAL_ERROR_START;
  3797. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3798. #endif
  3799. SERIAL_EOL;
  3800. }
  3801. #if FAN_COUNT > 0
  3802. /**
  3803. * M106: Set Fan Speed
  3804. *
  3805. * S<int> Speed between 0-255
  3806. * P<index> Fan index, if more than one fan
  3807. */
  3808. inline void gcode_M106() {
  3809. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3810. p = code_seen('P') ? code_value_ushort() : 0;
  3811. NOMORE(s, 255);
  3812. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3813. }
  3814. /**
  3815. * M107: Fan Off
  3816. */
  3817. inline void gcode_M107() {
  3818. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3819. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3820. }
  3821. #endif // FAN_COUNT > 0
  3822. #if DISABLED(EMERGENCY_PARSER)
  3823. /**
  3824. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3825. */
  3826. inline void gcode_M108() { wait_for_heatup = false; }
  3827. /**
  3828. * M112: Emergency Stop
  3829. */
  3830. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3831. /**
  3832. * M410: Quickstop - Abort all planned moves
  3833. *
  3834. * This will stop the carriages mid-move, so most likely they
  3835. * will be out of sync with the stepper position after this.
  3836. */
  3837. inline void gcode_M410() { quickstop_stepper(); }
  3838. #endif
  3839. #ifndef MIN_COOLING_SLOPE_DEG
  3840. #define MIN_COOLING_SLOPE_DEG 1.50
  3841. #endif
  3842. #ifndef MIN_COOLING_SLOPE_TIME
  3843. #define MIN_COOLING_SLOPE_TIME 60
  3844. #endif
  3845. /**
  3846. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3847. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3848. */
  3849. inline void gcode_M109() {
  3850. if (get_target_extruder_from_command(109)) return;
  3851. if (DEBUGGING(DRYRUN)) return;
  3852. #if ENABLED(SINGLENOZZLE)
  3853. if (target_extruder != active_extruder) return;
  3854. #endif
  3855. bool no_wait_for_cooling = code_seen('S');
  3856. if (no_wait_for_cooling || code_seen('R')) {
  3857. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3858. #if ENABLED(DUAL_X_CARRIAGE)
  3859. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3860. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3861. #endif
  3862. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3863. /**
  3864. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3865. * stand by mode, for instance in a dual extruder setup, without affecting
  3866. * the running print timer.
  3867. */
  3868. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3869. print_job_timer.stop();
  3870. LCD_MESSAGEPGM(WELCOME_MSG);
  3871. }
  3872. /**
  3873. * We do not check if the timer is already running because this check will
  3874. * be done for us inside the Stopwatch::start() method thus a running timer
  3875. * will not restart.
  3876. */
  3877. else print_job_timer.start();
  3878. #endif
  3879. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3880. }
  3881. #if ENABLED(AUTOTEMP)
  3882. planner.autotemp_M109();
  3883. #endif
  3884. #if TEMP_RESIDENCY_TIME > 0
  3885. millis_t residency_start_ms = 0;
  3886. // Loop until the temperature has stabilized
  3887. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3888. #else
  3889. // Loop until the temperature is very close target
  3890. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3891. #endif //TEMP_RESIDENCY_TIME > 0
  3892. float theTarget = -1.0, old_temp = 9999.0;
  3893. bool wants_to_cool = false;
  3894. wait_for_heatup = true;
  3895. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3896. KEEPALIVE_STATE(NOT_BUSY);
  3897. do {
  3898. // Target temperature might be changed during the loop
  3899. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3900. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3901. theTarget = thermalManager.degTargetHotend(target_extruder);
  3902. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3903. if (no_wait_for_cooling && wants_to_cool) break;
  3904. }
  3905. now = millis();
  3906. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3907. next_temp_ms = now + 1000UL;
  3908. print_heaterstates();
  3909. #if TEMP_RESIDENCY_TIME > 0
  3910. SERIAL_PROTOCOLPGM(" W:");
  3911. if (residency_start_ms) {
  3912. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3913. SERIAL_PROTOCOLLN(rem);
  3914. }
  3915. else {
  3916. SERIAL_PROTOCOLLNPGM("?");
  3917. }
  3918. #else
  3919. SERIAL_EOL;
  3920. #endif
  3921. }
  3922. idle();
  3923. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3924. float temp = thermalManager.degHotend(target_extruder);
  3925. #if TEMP_RESIDENCY_TIME > 0
  3926. float temp_diff = fabs(theTarget - temp);
  3927. if (!residency_start_ms) {
  3928. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3929. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3930. }
  3931. else if (temp_diff > TEMP_HYSTERESIS) {
  3932. // Restart the timer whenever the temperature falls outside the hysteresis.
  3933. residency_start_ms = now;
  3934. }
  3935. #endif //TEMP_RESIDENCY_TIME > 0
  3936. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3937. if (wants_to_cool) {
  3938. // break after MIN_COOLING_SLOPE_TIME seconds
  3939. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3940. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3941. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3942. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3943. old_temp = temp;
  3944. }
  3945. }
  3946. } while (wait_for_heatup && TEMP_CONDITIONS);
  3947. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3948. KEEPALIVE_STATE(IN_HANDLER);
  3949. }
  3950. #if HAS_TEMP_BED
  3951. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3952. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3953. #endif
  3954. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3955. #define MIN_COOLING_SLOPE_TIME_BED 60
  3956. #endif
  3957. /**
  3958. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3959. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3960. */
  3961. inline void gcode_M190() {
  3962. if (DEBUGGING(DRYRUN)) return;
  3963. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3964. bool no_wait_for_cooling = code_seen('S');
  3965. if (no_wait_for_cooling || code_seen('R')) {
  3966. thermalManager.setTargetBed(code_value_temp_abs());
  3967. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3968. if (code_value_temp_abs() > BED_MINTEMP) {
  3969. /**
  3970. * We start the timer when 'heating and waiting' command arrives, LCD
  3971. * functions never wait. Cooling down managed by extruders.
  3972. *
  3973. * We do not check if the timer is already running because this check will
  3974. * be done for us inside the Stopwatch::start() method thus a running timer
  3975. * will not restart.
  3976. */
  3977. print_job_timer.start();
  3978. }
  3979. #endif
  3980. }
  3981. #if TEMP_BED_RESIDENCY_TIME > 0
  3982. millis_t residency_start_ms = 0;
  3983. // Loop until the temperature has stabilized
  3984. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3985. #else
  3986. // Loop until the temperature is very close target
  3987. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3988. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3989. float theTarget = -1.0, old_temp = 9999.0;
  3990. bool wants_to_cool = false;
  3991. wait_for_heatup = true;
  3992. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3993. KEEPALIVE_STATE(NOT_BUSY);
  3994. target_extruder = active_extruder; // for print_heaterstates
  3995. do {
  3996. // Target temperature might be changed during the loop
  3997. if (theTarget != thermalManager.degTargetBed()) {
  3998. wants_to_cool = thermalManager.isCoolingBed();
  3999. theTarget = thermalManager.degTargetBed();
  4000. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4001. if (no_wait_for_cooling && wants_to_cool) break;
  4002. }
  4003. now = millis();
  4004. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4005. next_temp_ms = now + 1000UL;
  4006. print_heaterstates();
  4007. #if TEMP_BED_RESIDENCY_TIME > 0
  4008. SERIAL_PROTOCOLPGM(" W:");
  4009. if (residency_start_ms) {
  4010. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4011. SERIAL_PROTOCOLLN(rem);
  4012. }
  4013. else {
  4014. SERIAL_PROTOCOLLNPGM("?");
  4015. }
  4016. #else
  4017. SERIAL_EOL;
  4018. #endif
  4019. }
  4020. idle();
  4021. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4022. float temp = thermalManager.degBed();
  4023. #if TEMP_BED_RESIDENCY_TIME > 0
  4024. float temp_diff = fabs(theTarget - temp);
  4025. if (!residency_start_ms) {
  4026. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4027. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4028. }
  4029. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4030. // Restart the timer whenever the temperature falls outside the hysteresis.
  4031. residency_start_ms = now;
  4032. }
  4033. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4034. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4035. if (wants_to_cool) {
  4036. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4037. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4038. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4039. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4040. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4041. old_temp = temp;
  4042. }
  4043. }
  4044. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4045. LCD_MESSAGEPGM(MSG_BED_DONE);
  4046. KEEPALIVE_STATE(IN_HANDLER);
  4047. }
  4048. #endif // HAS_TEMP_BED
  4049. /**
  4050. * M110: Set Current Line Number
  4051. */
  4052. inline void gcode_M110() {
  4053. if (code_seen('N')) gcode_N = code_value_long();
  4054. }
  4055. /**
  4056. * M111: Set the debug level
  4057. */
  4058. inline void gcode_M111() {
  4059. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4060. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4061. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4062. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4063. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4064. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4066. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4067. #endif
  4068. const static char* const debug_strings[] PROGMEM = {
  4069. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4071. str_debug_32
  4072. #endif
  4073. };
  4074. SERIAL_ECHO_START;
  4075. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4076. if (marlin_debug_flags) {
  4077. uint8_t comma = 0;
  4078. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4079. if (TEST(marlin_debug_flags, i)) {
  4080. if (comma++) SERIAL_CHAR(',');
  4081. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4082. }
  4083. }
  4084. }
  4085. else {
  4086. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4087. }
  4088. SERIAL_EOL;
  4089. }
  4090. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4091. /**
  4092. * M113: Get or set Host Keepalive interval (0 to disable)
  4093. *
  4094. * S<seconds> Optional. Set the keepalive interval.
  4095. */
  4096. inline void gcode_M113() {
  4097. if (code_seen('S')) {
  4098. host_keepalive_interval = code_value_byte();
  4099. NOMORE(host_keepalive_interval, 60);
  4100. }
  4101. else {
  4102. SERIAL_ECHO_START;
  4103. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4104. SERIAL_EOL;
  4105. }
  4106. }
  4107. #endif
  4108. #if ENABLED(BARICUDA)
  4109. #if HAS_HEATER_1
  4110. /**
  4111. * M126: Heater 1 valve open
  4112. */
  4113. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4114. /**
  4115. * M127: Heater 1 valve close
  4116. */
  4117. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4118. #endif
  4119. #if HAS_HEATER_2
  4120. /**
  4121. * M128: Heater 2 valve open
  4122. */
  4123. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4124. /**
  4125. * M129: Heater 2 valve close
  4126. */
  4127. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4128. #endif
  4129. #endif //BARICUDA
  4130. /**
  4131. * M140: Set bed temperature
  4132. */
  4133. inline void gcode_M140() {
  4134. if (DEBUGGING(DRYRUN)) return;
  4135. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4136. }
  4137. #if ENABLED(ULTIPANEL)
  4138. /**
  4139. * M145: Set the heatup state for a material in the LCD menu
  4140. * S<material> (0=PLA, 1=ABS)
  4141. * H<hotend temp>
  4142. * B<bed temp>
  4143. * F<fan speed>
  4144. */
  4145. inline void gcode_M145() {
  4146. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4147. if (material < 0 || material > 1) {
  4148. SERIAL_ERROR_START;
  4149. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4150. }
  4151. else {
  4152. int v;
  4153. switch (material) {
  4154. case 0:
  4155. if (code_seen('H')) {
  4156. v = code_value_int();
  4157. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4158. }
  4159. if (code_seen('F')) {
  4160. v = code_value_int();
  4161. preheatFanSpeed1 = constrain(v, 0, 255);
  4162. }
  4163. #if TEMP_SENSOR_BED != 0
  4164. if (code_seen('B')) {
  4165. v = code_value_int();
  4166. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4167. }
  4168. #endif
  4169. break;
  4170. case 1:
  4171. if (code_seen('H')) {
  4172. v = code_value_int();
  4173. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4174. }
  4175. if (code_seen('F')) {
  4176. v = code_value_int();
  4177. preheatFanSpeed2 = constrain(v, 0, 255);
  4178. }
  4179. #if TEMP_SENSOR_BED != 0
  4180. if (code_seen('B')) {
  4181. v = code_value_int();
  4182. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4183. }
  4184. #endif
  4185. break;
  4186. }
  4187. }
  4188. }
  4189. #endif
  4190. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4191. /**
  4192. * M149: Set temperature units
  4193. */
  4194. inline void gcode_M149() {
  4195. if (code_seen('C')) {
  4196. set_input_temp_units(TEMPUNIT_C);
  4197. } else if (code_seen('K')) {
  4198. set_input_temp_units(TEMPUNIT_K);
  4199. } else if (code_seen('F')) {
  4200. set_input_temp_units(TEMPUNIT_F);
  4201. }
  4202. }
  4203. #endif
  4204. #if HAS_POWER_SWITCH
  4205. /**
  4206. * M80: Turn on Power Supply
  4207. */
  4208. inline void gcode_M80() {
  4209. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4210. /**
  4211. * If you have a switch on suicide pin, this is useful
  4212. * if you want to start another print with suicide feature after
  4213. * a print without suicide...
  4214. */
  4215. #if HAS_SUICIDE
  4216. OUT_WRITE(SUICIDE_PIN, HIGH);
  4217. #endif
  4218. #if ENABLED(ULTIPANEL)
  4219. powersupply = true;
  4220. LCD_MESSAGEPGM(WELCOME_MSG);
  4221. lcd_update();
  4222. #endif
  4223. }
  4224. #endif // HAS_POWER_SWITCH
  4225. /**
  4226. * M81: Turn off Power, including Power Supply, if there is one.
  4227. *
  4228. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4229. */
  4230. inline void gcode_M81() {
  4231. thermalManager.disable_all_heaters();
  4232. stepper.finish_and_disable();
  4233. #if FAN_COUNT > 0
  4234. #if FAN_COUNT > 1
  4235. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4236. #else
  4237. fanSpeeds[0] = 0;
  4238. #endif
  4239. #endif
  4240. delay(1000); // Wait 1 second before switching off
  4241. #if HAS_SUICIDE
  4242. stepper.synchronize();
  4243. suicide();
  4244. #elif HAS_POWER_SWITCH
  4245. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4246. #endif
  4247. #if ENABLED(ULTIPANEL)
  4248. #if HAS_POWER_SWITCH
  4249. powersupply = false;
  4250. #endif
  4251. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4252. lcd_update();
  4253. #endif
  4254. }
  4255. /**
  4256. * M82: Set E codes absolute (default)
  4257. */
  4258. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4259. /**
  4260. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4261. */
  4262. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4263. /**
  4264. * M18, M84: Disable all stepper motors
  4265. */
  4266. inline void gcode_M18_M84() {
  4267. if (code_seen('S')) {
  4268. stepper_inactive_time = code_value_millis_from_seconds();
  4269. }
  4270. else {
  4271. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4272. if (all_axis) {
  4273. stepper.finish_and_disable();
  4274. }
  4275. else {
  4276. stepper.synchronize();
  4277. if (code_seen('X')) disable_x();
  4278. if (code_seen('Y')) disable_y();
  4279. if (code_seen('Z')) disable_z();
  4280. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4281. if (code_seen('E')) {
  4282. disable_e0();
  4283. disable_e1();
  4284. disable_e2();
  4285. disable_e3();
  4286. }
  4287. #endif
  4288. }
  4289. }
  4290. }
  4291. /**
  4292. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4293. */
  4294. inline void gcode_M85() {
  4295. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4296. }
  4297. /**
  4298. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4299. * (Follows the same syntax as G92)
  4300. */
  4301. inline void gcode_M92() {
  4302. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4303. if (code_seen(axis_codes[i])) {
  4304. if (i == E_AXIS) {
  4305. float value = code_value_per_axis_unit(i);
  4306. if (value < 20.0) {
  4307. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4308. planner.max_e_jerk *= factor;
  4309. planner.max_feedrate_mm_s[i] *= factor;
  4310. planner.max_acceleration_steps_per_s2[i] *= factor;
  4311. }
  4312. planner.axis_steps_per_mm[i] = value;
  4313. }
  4314. else {
  4315. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4316. }
  4317. }
  4318. }
  4319. }
  4320. /**
  4321. * Output the current position to serial
  4322. */
  4323. static void report_current_position() {
  4324. SERIAL_PROTOCOLPGM("X:");
  4325. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4326. SERIAL_PROTOCOLPGM(" Y:");
  4327. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4328. SERIAL_PROTOCOLPGM(" Z:");
  4329. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4330. SERIAL_PROTOCOLPGM(" E:");
  4331. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4332. stepper.report_positions();
  4333. #if ENABLED(SCARA)
  4334. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4335. SERIAL_PROTOCOL(delta[X_AXIS]);
  4336. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4337. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4338. SERIAL_EOL;
  4339. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4340. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4341. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4342. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4343. SERIAL_EOL;
  4344. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4345. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4346. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4347. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4348. SERIAL_EOL; SERIAL_EOL;
  4349. #endif
  4350. }
  4351. /**
  4352. * M114: Output current position to serial port
  4353. */
  4354. inline void gcode_M114() { report_current_position(); }
  4355. /**
  4356. * M115: Capabilities string
  4357. */
  4358. inline void gcode_M115() {
  4359. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4360. }
  4361. /**
  4362. * M117: Set LCD Status Message
  4363. */
  4364. inline void gcode_M117() {
  4365. lcd_setstatus(current_command_args);
  4366. }
  4367. /**
  4368. * M119: Output endstop states to serial output
  4369. */
  4370. inline void gcode_M119() { endstops.M119(); }
  4371. /**
  4372. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4373. */
  4374. inline void gcode_M120() { endstops.enable_globally(true); }
  4375. /**
  4376. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4377. */
  4378. inline void gcode_M121() { endstops.enable_globally(false); }
  4379. #if ENABLED(BLINKM)
  4380. /**
  4381. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4382. */
  4383. inline void gcode_M150() {
  4384. SendColors(
  4385. code_seen('R') ? code_value_byte() : 0,
  4386. code_seen('U') ? code_value_byte() : 0,
  4387. code_seen('B') ? code_value_byte() : 0
  4388. );
  4389. }
  4390. #endif // BLINKM
  4391. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4392. /**
  4393. * M155: Send data to a I2C slave device
  4394. *
  4395. * This is a PoC, the formating and arguments for the GCODE will
  4396. * change to be more compatible, the current proposal is:
  4397. *
  4398. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4399. *
  4400. * M155 B<byte-1 value in base 10>
  4401. * M155 B<byte-2 value in base 10>
  4402. * M155 B<byte-3 value in base 10>
  4403. *
  4404. * M155 S1 ; Send the buffered data and reset the buffer
  4405. * M155 R1 ; Reset the buffer without sending data
  4406. *
  4407. */
  4408. inline void gcode_M155() {
  4409. // Set the target address
  4410. if (code_seen('A'))
  4411. i2c.address(code_value_byte());
  4412. // Add a new byte to the buffer
  4413. else if (code_seen('B'))
  4414. i2c.addbyte(code_value_int());
  4415. // Flush the buffer to the bus
  4416. else if (code_seen('S')) i2c.send();
  4417. // Reset and rewind the buffer
  4418. else if (code_seen('R')) i2c.reset();
  4419. }
  4420. /**
  4421. * M156: Request X bytes from I2C slave device
  4422. *
  4423. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4424. */
  4425. inline void gcode_M156() {
  4426. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4427. int bytes = code_seen('B') ? code_value_int() : 1;
  4428. if (addr && bytes > 0 && bytes <= 32) {
  4429. i2c.address(addr);
  4430. i2c.reqbytes(bytes);
  4431. }
  4432. else {
  4433. SERIAL_ERROR_START;
  4434. SERIAL_ERRORLN("Bad i2c request");
  4435. }
  4436. }
  4437. #endif //EXPERIMENTAL_I2CBUS
  4438. /**
  4439. * M200: Set filament diameter and set E axis units to cubic units
  4440. *
  4441. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4442. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4443. */
  4444. inline void gcode_M200() {
  4445. if (get_target_extruder_from_command(200)) return;
  4446. if (code_seen('D')) {
  4447. // setting any extruder filament size disables volumetric on the assumption that
  4448. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4449. // for all extruders
  4450. volumetric_enabled = (code_value_linear_units() != 0.0);
  4451. if (volumetric_enabled) {
  4452. filament_size[target_extruder] = code_value_linear_units();
  4453. // make sure all extruders have some sane value for the filament size
  4454. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4455. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4456. }
  4457. }
  4458. else {
  4459. //reserved for setting filament diameter via UFID or filament measuring device
  4460. return;
  4461. }
  4462. calculate_volumetric_multipliers();
  4463. }
  4464. /**
  4465. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4466. */
  4467. inline void gcode_M201() {
  4468. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4469. if (code_seen(axis_codes[i])) {
  4470. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4471. }
  4472. }
  4473. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4474. planner.reset_acceleration_rates();
  4475. }
  4476. #if 0 // Not used for Sprinter/grbl gen6
  4477. inline void gcode_M202() {
  4478. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4479. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4480. }
  4481. }
  4482. #endif
  4483. /**
  4484. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4485. */
  4486. inline void gcode_M203() {
  4487. for (int8_t i = 0; i < NUM_AXIS; i++)
  4488. if (code_seen(axis_codes[i]))
  4489. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4490. }
  4491. /**
  4492. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4493. *
  4494. * P = Printing moves
  4495. * R = Retract only (no X, Y, Z) moves
  4496. * T = Travel (non printing) moves
  4497. *
  4498. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4499. */
  4500. inline void gcode_M204() {
  4501. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4502. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4503. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4504. SERIAL_EOL;
  4505. }
  4506. if (code_seen('P')) {
  4507. planner.acceleration = code_value_linear_units();
  4508. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4509. SERIAL_EOL;
  4510. }
  4511. if (code_seen('R')) {
  4512. planner.retract_acceleration = code_value_linear_units();
  4513. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4514. SERIAL_EOL;
  4515. }
  4516. if (code_seen('T')) {
  4517. planner.travel_acceleration = code_value_linear_units();
  4518. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4519. SERIAL_EOL;
  4520. }
  4521. }
  4522. /**
  4523. * M205: Set Advanced Settings
  4524. *
  4525. * S = Min Feed Rate (units/s)
  4526. * T = Min Travel Feed Rate (units/s)
  4527. * B = Min Segment Time (µs)
  4528. * X = Max XY Jerk (units/sec^2)
  4529. * Z = Max Z Jerk (units/sec^2)
  4530. * E = Max E Jerk (units/sec^2)
  4531. */
  4532. inline void gcode_M205() {
  4533. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4534. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4535. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4536. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4537. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4538. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4539. }
  4540. /**
  4541. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4542. */
  4543. inline void gcode_M206() {
  4544. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4545. if (code_seen(axis_codes[i]))
  4546. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4547. #if ENABLED(SCARA)
  4548. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4549. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4550. #endif
  4551. SYNC_PLAN_POSITION_KINEMATIC();
  4552. report_current_position();
  4553. }
  4554. #if ENABLED(DELTA)
  4555. /**
  4556. * M665: Set delta configurations
  4557. *
  4558. * L = diagonal rod
  4559. * R = delta radius
  4560. * S = segments per second
  4561. * A = Alpha (Tower 1) diagonal rod trim
  4562. * B = Beta (Tower 2) diagonal rod trim
  4563. * C = Gamma (Tower 3) diagonal rod trim
  4564. */
  4565. inline void gcode_M665() {
  4566. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4567. if (code_seen('R')) delta_radius = code_value_linear_units();
  4568. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4569. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4570. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4571. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4572. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4573. }
  4574. /**
  4575. * M666: Set delta endstop adjustment
  4576. */
  4577. inline void gcode_M666() {
  4578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4579. if (DEBUGGING(LEVELING)) {
  4580. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4581. }
  4582. #endif
  4583. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4584. if (code_seen(axis_codes[i])) {
  4585. endstop_adj[i] = code_value_axis_units(i);
  4586. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4587. if (DEBUGGING(LEVELING)) {
  4588. SERIAL_ECHOPGM("endstop_adj[");
  4589. SERIAL_ECHO(axis_codes[i]);
  4590. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4591. SERIAL_EOL;
  4592. }
  4593. #endif
  4594. }
  4595. }
  4596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4597. if (DEBUGGING(LEVELING)) {
  4598. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4599. }
  4600. #endif
  4601. }
  4602. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4603. /**
  4604. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4605. */
  4606. inline void gcode_M666() {
  4607. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4608. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4609. SERIAL_EOL;
  4610. }
  4611. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4612. #if ENABLED(FWRETRACT)
  4613. /**
  4614. * M207: Set firmware retraction values
  4615. *
  4616. * S[+units] retract_length
  4617. * W[+units] retract_length_swap (multi-extruder)
  4618. * F[units/min] retract_feedrate_mm_s
  4619. * Z[units] retract_zlift
  4620. */
  4621. inline void gcode_M207() {
  4622. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4623. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4624. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4625. #if EXTRUDERS > 1
  4626. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4627. #endif
  4628. }
  4629. /**
  4630. * M208: Set firmware un-retraction values
  4631. *
  4632. * S[+units] retract_recover_length (in addition to M207 S*)
  4633. * W[+units] retract_recover_length_swap (multi-extruder)
  4634. * F[units/min] retract_recover_feedrate_mm_s
  4635. */
  4636. inline void gcode_M208() {
  4637. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4638. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4639. #if EXTRUDERS > 1
  4640. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4641. #endif
  4642. }
  4643. /**
  4644. * M209: Enable automatic retract (M209 S1)
  4645. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4646. */
  4647. inline void gcode_M209() {
  4648. if (code_seen('S')) {
  4649. int t = code_value_int();
  4650. switch (t) {
  4651. case 0:
  4652. autoretract_enabled = false;
  4653. break;
  4654. case 1:
  4655. autoretract_enabled = true;
  4656. break;
  4657. default:
  4658. unknown_command_error();
  4659. return;
  4660. }
  4661. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4662. }
  4663. }
  4664. #endif // FWRETRACT
  4665. #if HOTENDS > 1
  4666. /**
  4667. * M218 - set hotend offset (in linear units)
  4668. *
  4669. * T<tool>
  4670. * X<xoffset>
  4671. * Y<yoffset>
  4672. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4673. */
  4674. inline void gcode_M218() {
  4675. if (get_target_extruder_from_command(218)) return;
  4676. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4677. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4678. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4679. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4680. #endif
  4681. SERIAL_ECHO_START;
  4682. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4683. HOTEND_LOOP() {
  4684. SERIAL_CHAR(' ');
  4685. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4686. SERIAL_CHAR(',');
  4687. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4688. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4689. SERIAL_CHAR(',');
  4690. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4691. #endif
  4692. }
  4693. SERIAL_EOL;
  4694. }
  4695. #endif // HOTENDS > 1
  4696. /**
  4697. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4698. */
  4699. inline void gcode_M220() {
  4700. if (code_seen('S')) feedrate_percentage = code_value_int();
  4701. }
  4702. /**
  4703. * M221: Set extrusion percentage (M221 T0 S95)
  4704. */
  4705. inline void gcode_M221() {
  4706. if (get_target_extruder_from_command(221)) return;
  4707. if (code_seen('S'))
  4708. extruder_multiplier[target_extruder] = code_value_int();
  4709. }
  4710. /**
  4711. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4712. */
  4713. inline void gcode_M226() {
  4714. if (code_seen('P')) {
  4715. int pin_number = code_value_int();
  4716. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4717. if (pin_state >= -1 && pin_state <= 1) {
  4718. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4719. if (sensitive_pins[i] == pin_number) {
  4720. pin_number = -1;
  4721. break;
  4722. }
  4723. }
  4724. if (pin_number > -1) {
  4725. int target = LOW;
  4726. stepper.synchronize();
  4727. pinMode(pin_number, INPUT);
  4728. switch (pin_state) {
  4729. case 1:
  4730. target = HIGH;
  4731. break;
  4732. case 0:
  4733. target = LOW;
  4734. break;
  4735. case -1:
  4736. target = !digitalRead(pin_number);
  4737. break;
  4738. }
  4739. while (digitalRead(pin_number) != target) idle();
  4740. } // pin_number > -1
  4741. } // pin_state -1 0 1
  4742. } // code_seen('P')
  4743. }
  4744. #if HAS_SERVOS
  4745. /**
  4746. * M280: Get or set servo position. P<index> [S<angle>]
  4747. */
  4748. inline void gcode_M280() {
  4749. if (!code_seen('P')) return;
  4750. int servo_index = code_value_int();
  4751. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4752. if (code_seen('S'))
  4753. MOVE_SERVO(servo_index, code_value_int());
  4754. else {
  4755. SERIAL_ECHO_START;
  4756. SERIAL_ECHOPGM(" Servo ");
  4757. SERIAL_ECHO(servo_index);
  4758. SERIAL_ECHOPGM(": ");
  4759. SERIAL_ECHOLN(servo[servo_index].read());
  4760. }
  4761. }
  4762. else {
  4763. SERIAL_ERROR_START;
  4764. SERIAL_ERROR("Servo ");
  4765. SERIAL_ERROR(servo_index);
  4766. SERIAL_ERRORLN(" out of range");
  4767. }
  4768. }
  4769. #endif // HAS_SERVOS
  4770. #if HAS_BUZZER
  4771. /**
  4772. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4773. */
  4774. inline void gcode_M300() {
  4775. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4776. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4777. // Limits the tone duration to 0-5 seconds.
  4778. NOMORE(duration, 5000);
  4779. buzzer.tone(duration, frequency);
  4780. }
  4781. #endif // HAS_BUZZER
  4782. #if ENABLED(PIDTEMP)
  4783. /**
  4784. * M301: Set PID parameters P I D (and optionally C, L)
  4785. *
  4786. * P[float] Kp term
  4787. * I[float] Ki term (unscaled)
  4788. * D[float] Kd term (unscaled)
  4789. *
  4790. * With PID_ADD_EXTRUSION_RATE:
  4791. *
  4792. * C[float] Kc term
  4793. * L[float] LPQ length
  4794. */
  4795. inline void gcode_M301() {
  4796. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4797. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4798. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4799. if (e < HOTENDS) { // catch bad input value
  4800. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4801. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4802. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4803. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4804. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4805. if (code_seen('L')) lpq_len = code_value_float();
  4806. NOMORE(lpq_len, LPQ_MAX_LEN);
  4807. #endif
  4808. thermalManager.updatePID();
  4809. SERIAL_ECHO_START;
  4810. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4811. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4812. SERIAL_ECHO(e);
  4813. #endif // PID_PARAMS_PER_HOTEND
  4814. SERIAL_ECHOPGM(" p:");
  4815. SERIAL_ECHO(PID_PARAM(Kp, e));
  4816. SERIAL_ECHOPGM(" i:");
  4817. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4818. SERIAL_ECHOPGM(" d:");
  4819. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4820. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4821. SERIAL_ECHOPGM(" c:");
  4822. //Kc does not have scaling applied above, or in resetting defaults
  4823. SERIAL_ECHO(PID_PARAM(Kc, e));
  4824. #endif
  4825. SERIAL_EOL;
  4826. }
  4827. else {
  4828. SERIAL_ERROR_START;
  4829. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4830. }
  4831. }
  4832. #endif // PIDTEMP
  4833. #if ENABLED(PIDTEMPBED)
  4834. inline void gcode_M304() {
  4835. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4836. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4837. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4838. thermalManager.updatePID();
  4839. SERIAL_ECHO_START;
  4840. SERIAL_ECHOPGM(" p:");
  4841. SERIAL_ECHO(thermalManager.bedKp);
  4842. SERIAL_ECHOPGM(" i:");
  4843. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4844. SERIAL_ECHOPGM(" d:");
  4845. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4846. }
  4847. #endif // PIDTEMPBED
  4848. #if defined(CHDK) || HAS_PHOTOGRAPH
  4849. /**
  4850. * M240: Trigger a camera by emulating a Canon RC-1
  4851. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4852. */
  4853. inline void gcode_M240() {
  4854. #ifdef CHDK
  4855. OUT_WRITE(CHDK, HIGH);
  4856. chdkHigh = millis();
  4857. chdkActive = true;
  4858. #elif HAS_PHOTOGRAPH
  4859. const uint8_t NUM_PULSES = 16;
  4860. const float PULSE_LENGTH = 0.01524;
  4861. for (int i = 0; i < NUM_PULSES; i++) {
  4862. WRITE(PHOTOGRAPH_PIN, HIGH);
  4863. _delay_ms(PULSE_LENGTH);
  4864. WRITE(PHOTOGRAPH_PIN, LOW);
  4865. _delay_ms(PULSE_LENGTH);
  4866. }
  4867. delay(7.33);
  4868. for (int i = 0; i < NUM_PULSES; i++) {
  4869. WRITE(PHOTOGRAPH_PIN, HIGH);
  4870. _delay_ms(PULSE_LENGTH);
  4871. WRITE(PHOTOGRAPH_PIN, LOW);
  4872. _delay_ms(PULSE_LENGTH);
  4873. }
  4874. #endif // !CHDK && HAS_PHOTOGRAPH
  4875. }
  4876. #endif // CHDK || PHOTOGRAPH_PIN
  4877. #if HAS_LCD_CONTRAST
  4878. /**
  4879. * M250: Read and optionally set the LCD contrast
  4880. */
  4881. inline void gcode_M250() {
  4882. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4883. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4884. SERIAL_PROTOCOL(lcd_contrast);
  4885. SERIAL_EOL;
  4886. }
  4887. #endif // HAS_LCD_CONTRAST
  4888. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4889. /**
  4890. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4891. *
  4892. * S<temperature> sets the minimum extrude temperature
  4893. * P<bool> enables (1) or disables (0) cold extrusion
  4894. *
  4895. * Examples:
  4896. *
  4897. * M302 ; report current cold extrusion state
  4898. * M302 P0 ; enable cold extrusion checking
  4899. * M302 P1 ; disables cold extrusion checking
  4900. * M302 S0 ; always allow extrusion (disables checking)
  4901. * M302 S170 ; only allow extrusion above 170
  4902. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4903. */
  4904. inline void gcode_M302() {
  4905. bool seen_S = code_seen('S');
  4906. if (seen_S) {
  4907. thermalManager.extrude_min_temp = code_value_temp_abs();
  4908. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4909. }
  4910. if (code_seen('P'))
  4911. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4912. else if (!seen_S) {
  4913. // Report current state
  4914. SERIAL_ECHO_START;
  4915. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4916. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4917. SERIAL_ECHOLNPGM("C)");
  4918. }
  4919. }
  4920. #endif // PREVENT_DANGEROUS_EXTRUDE
  4921. /**
  4922. * M303: PID relay autotune
  4923. *
  4924. * S<temperature> sets the target temperature. (default 150C)
  4925. * E<extruder> (-1 for the bed) (default 0)
  4926. * C<cycles>
  4927. * U<bool> with a non-zero value will apply the result to current settings
  4928. */
  4929. inline void gcode_M303() {
  4930. #if HAS_PID_HEATING
  4931. int e = code_seen('E') ? code_value_int() : 0;
  4932. int c = code_seen('C') ? code_value_int() : 5;
  4933. bool u = code_seen('U') && code_value_bool();
  4934. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4935. if (e >= 0 && e < HOTENDS)
  4936. target_extruder = e;
  4937. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4938. thermalManager.PID_autotune(temp, e, c, u);
  4939. KEEPALIVE_STATE(IN_HANDLER);
  4940. #else
  4941. SERIAL_ERROR_START;
  4942. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4943. #endif
  4944. }
  4945. #if ENABLED(SCARA)
  4946. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4947. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4948. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4949. if (IsRunning()) {
  4950. //gcode_get_destination(); // For X Y Z E F
  4951. delta[X_AXIS] = delta_x;
  4952. delta[Y_AXIS] = delta_y;
  4953. calculate_SCARA_forward_Transform(delta);
  4954. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4955. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4956. prepare_move_to_destination();
  4957. //ok_to_send();
  4958. return true;
  4959. }
  4960. return false;
  4961. }
  4962. /**
  4963. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4964. */
  4965. inline bool gcode_M360() {
  4966. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4967. return SCARA_move_to_cal(0, 120);
  4968. }
  4969. /**
  4970. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4971. */
  4972. inline bool gcode_M361() {
  4973. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4974. return SCARA_move_to_cal(90, 130);
  4975. }
  4976. /**
  4977. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4978. */
  4979. inline bool gcode_M362() {
  4980. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4981. return SCARA_move_to_cal(60, 180);
  4982. }
  4983. /**
  4984. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4985. */
  4986. inline bool gcode_M363() {
  4987. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4988. return SCARA_move_to_cal(50, 90);
  4989. }
  4990. /**
  4991. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4992. */
  4993. inline bool gcode_M364() {
  4994. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4995. return SCARA_move_to_cal(45, 135);
  4996. }
  4997. /**
  4998. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4999. */
  5000. inline void gcode_M365() {
  5001. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  5002. if (code_seen(axis_codes[i]))
  5003. axis_scaling[i] = code_value_float();
  5004. }
  5005. #endif // SCARA
  5006. #if ENABLED(EXT_SOLENOID)
  5007. void enable_solenoid(uint8_t num) {
  5008. switch (num) {
  5009. case 0:
  5010. OUT_WRITE(SOL0_PIN, HIGH);
  5011. break;
  5012. #if HAS_SOLENOID_1
  5013. case 1:
  5014. OUT_WRITE(SOL1_PIN, HIGH);
  5015. break;
  5016. #endif
  5017. #if HAS_SOLENOID_2
  5018. case 2:
  5019. OUT_WRITE(SOL2_PIN, HIGH);
  5020. break;
  5021. #endif
  5022. #if HAS_SOLENOID_3
  5023. case 3:
  5024. OUT_WRITE(SOL3_PIN, HIGH);
  5025. break;
  5026. #endif
  5027. default:
  5028. SERIAL_ECHO_START;
  5029. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5030. break;
  5031. }
  5032. }
  5033. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5034. void disable_all_solenoids() {
  5035. OUT_WRITE(SOL0_PIN, LOW);
  5036. OUT_WRITE(SOL1_PIN, LOW);
  5037. OUT_WRITE(SOL2_PIN, LOW);
  5038. OUT_WRITE(SOL3_PIN, LOW);
  5039. }
  5040. /**
  5041. * M380: Enable solenoid on the active extruder
  5042. */
  5043. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5044. /**
  5045. * M381: Disable all solenoids
  5046. */
  5047. inline void gcode_M381() { disable_all_solenoids(); }
  5048. #endif // EXT_SOLENOID
  5049. /**
  5050. * M400: Finish all moves
  5051. */
  5052. inline void gcode_M400() { stepper.synchronize(); }
  5053. #if HAS_BED_PROBE
  5054. /**
  5055. * M401: Engage Z Servo endstop if available
  5056. */
  5057. inline void gcode_M401() { DEPLOY_PROBE(); }
  5058. /**
  5059. * M402: Retract Z Servo endstop if enabled
  5060. */
  5061. inline void gcode_M402() { STOW_PROBE(); }
  5062. #endif // HAS_BED_PROBE
  5063. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5064. /**
  5065. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5066. */
  5067. inline void gcode_M404() {
  5068. if (code_seen('W')) {
  5069. filament_width_nominal = code_value_linear_units();
  5070. }
  5071. else {
  5072. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5073. SERIAL_PROTOCOLLN(filament_width_nominal);
  5074. }
  5075. }
  5076. /**
  5077. * M405: Turn on filament sensor for control
  5078. */
  5079. inline void gcode_M405() {
  5080. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5081. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5082. if (code_seen('D')) meas_delay_cm = code_value_int();
  5083. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5084. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5085. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5086. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5087. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5088. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5089. }
  5090. filament_sensor = true;
  5091. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5092. //SERIAL_PROTOCOL(filament_width_meas);
  5093. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5094. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5095. }
  5096. /**
  5097. * M406: Turn off filament sensor for control
  5098. */
  5099. inline void gcode_M406() { filament_sensor = false; }
  5100. /**
  5101. * M407: Get measured filament diameter on serial output
  5102. */
  5103. inline void gcode_M407() {
  5104. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5105. SERIAL_PROTOCOLLN(filament_width_meas);
  5106. }
  5107. #endif // FILAMENT_WIDTH_SENSOR
  5108. void quickstop_stepper() {
  5109. stepper.quick_stop();
  5110. #if DISABLED(DELTA) && DISABLED(SCARA)
  5111. stepper.synchronize();
  5112. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5113. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5114. current_position[X_AXIS] = pos.x;
  5115. current_position[Y_AXIS] = pos.y;
  5116. current_position[Z_AXIS] = pos.z;
  5117. #else
  5118. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5119. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5120. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5121. #endif
  5122. sync_plan_position(); // ...re-apply to planner position
  5123. #endif
  5124. }
  5125. #if ENABLED(MESH_BED_LEVELING)
  5126. /**
  5127. * M420: Enable/Disable Mesh Bed Leveling
  5128. */
  5129. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5130. /**
  5131. * M421: Set a single Mesh Bed Leveling Z coordinate
  5132. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5133. */
  5134. inline void gcode_M421() {
  5135. int8_t px = 0, py = 0;
  5136. float z = 0;
  5137. bool hasX, hasY, hasZ, hasI, hasJ;
  5138. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5139. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5140. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5141. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5142. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5143. if (hasX && hasY && hasZ) {
  5144. if (px >= 0 && py >= 0)
  5145. mbl.set_z(px, py, z);
  5146. else {
  5147. SERIAL_ERROR_START;
  5148. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5149. }
  5150. }
  5151. else if (hasI && hasJ && hasZ) {
  5152. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5153. mbl.set_z(px, py, z);
  5154. else {
  5155. SERIAL_ERROR_START;
  5156. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5157. }
  5158. }
  5159. else {
  5160. SERIAL_ERROR_START;
  5161. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5162. }
  5163. }
  5164. #endif
  5165. /**
  5166. * M428: Set home_offset based on the distance between the
  5167. * current_position and the nearest "reference point."
  5168. * If an axis is past center its endstop position
  5169. * is the reference-point. Otherwise it uses 0. This allows
  5170. * the Z offset to be set near the bed when using a max endstop.
  5171. *
  5172. * M428 can't be used more than 2cm away from 0 or an endstop.
  5173. *
  5174. * Use M206 to set these values directly.
  5175. */
  5176. inline void gcode_M428() {
  5177. bool err = false;
  5178. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5179. if (axis_homed[i]) {
  5180. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5181. diff = current_position[i] - base;
  5182. if (diff > -20 && diff < 20) {
  5183. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5184. }
  5185. else {
  5186. SERIAL_ERROR_START;
  5187. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5188. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5189. #if HAS_BUZZER
  5190. buzzer.tone(200, 40);
  5191. #endif
  5192. err = true;
  5193. break;
  5194. }
  5195. }
  5196. }
  5197. if (!err) {
  5198. SYNC_PLAN_POSITION_KINEMATIC();
  5199. report_current_position();
  5200. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5201. #if HAS_BUZZER
  5202. buzzer.tone(200, 659);
  5203. buzzer.tone(200, 698);
  5204. #endif
  5205. }
  5206. }
  5207. /**
  5208. * M500: Store settings in EEPROM
  5209. */
  5210. inline void gcode_M500() {
  5211. Config_StoreSettings();
  5212. }
  5213. /**
  5214. * M501: Read settings from EEPROM
  5215. */
  5216. inline void gcode_M501() {
  5217. Config_RetrieveSettings();
  5218. }
  5219. /**
  5220. * M502: Revert to default settings
  5221. */
  5222. inline void gcode_M502() {
  5223. Config_ResetDefault();
  5224. }
  5225. /**
  5226. * M503: print settings currently in memory
  5227. */
  5228. inline void gcode_M503() {
  5229. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5230. }
  5231. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5232. /**
  5233. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5234. */
  5235. inline void gcode_M540() {
  5236. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5237. }
  5238. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5239. #if HAS_BED_PROBE
  5240. inline void gcode_M851() {
  5241. SERIAL_ECHO_START;
  5242. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5243. SERIAL_CHAR(' ');
  5244. if (code_seen('Z')) {
  5245. float value = code_value_axis_units(Z_AXIS);
  5246. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5247. zprobe_zoffset = value;
  5248. SERIAL_ECHO(zprobe_zoffset);
  5249. }
  5250. else {
  5251. SERIAL_ECHOPGM(MSG_Z_MIN);
  5252. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5253. SERIAL_CHAR(' ');
  5254. SERIAL_ECHOPGM(MSG_Z_MAX);
  5255. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5256. }
  5257. }
  5258. else {
  5259. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5260. }
  5261. SERIAL_EOL;
  5262. }
  5263. #endif // HAS_BED_PROBE
  5264. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5265. /**
  5266. * M600: Pause for filament change
  5267. *
  5268. * E[distance] - Retract the filament this far (negative value)
  5269. * Z[distance] - Move the Z axis by this distance
  5270. * X[position] - Move to this X position, with Y
  5271. * Y[position] - Move to this Y position, with X
  5272. * L[distance] - Retract distance for removal (manual reload)
  5273. *
  5274. * Default values are used for omitted arguments.
  5275. *
  5276. */
  5277. inline void gcode_M600() {
  5278. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5279. SERIAL_ERROR_START;
  5280. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5281. return;
  5282. }
  5283. // Show initial message and wait for synchronize steppers
  5284. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5285. stepper.synchronize();
  5286. float lastpos[NUM_AXIS];
  5287. // Save current position of all axes
  5288. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5289. lastpos[i] = destination[i] = current_position[i];
  5290. // Define runplan for move axes
  5291. #if ENABLED(DELTA)
  5292. #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \
  5293. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5294. #else
  5295. #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
  5296. #endif
  5297. KEEPALIVE_STATE(IN_HANDLER);
  5298. // Initial retract before move to filament change position
  5299. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5300. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5301. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5302. #endif
  5303. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5304. // Lift Z axis
  5305. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5306. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5307. FILAMENT_CHANGE_Z_ADD
  5308. #else
  5309. 0
  5310. #endif
  5311. ;
  5312. if (z_lift > 0) {
  5313. destination[Z_AXIS] += z_lift;
  5314. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5315. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5316. }
  5317. // Move XY axes to filament exchange position
  5318. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5319. #ifdef FILAMENT_CHANGE_X_POS
  5320. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5321. #endif
  5322. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5323. #ifdef FILAMENT_CHANGE_Y_POS
  5324. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5325. #endif
  5326. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5327. stepper.synchronize();
  5328. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5329. // Unload filament
  5330. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5331. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5332. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5333. #endif
  5334. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5335. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5336. stepper.synchronize();
  5337. disable_e0();
  5338. disable_e1();
  5339. disable_e2();
  5340. disable_e3();
  5341. delay(100);
  5342. #if HAS_BUZZER
  5343. millis_t next_tick = 0;
  5344. #endif
  5345. // Wait for filament insert by user and press button
  5346. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5347. while (!lcd_clicked()) {
  5348. #if HAS_BUZZER
  5349. millis_t ms = millis();
  5350. if (ms >= next_tick) {
  5351. buzzer.tone(300, 2000);
  5352. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5353. }
  5354. #endif
  5355. idle(true);
  5356. }
  5357. delay(100);
  5358. while (lcd_clicked()) idle(true);
  5359. delay(100);
  5360. // Show load message
  5361. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5362. // Load filament
  5363. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5364. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5365. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5366. #endif
  5367. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5368. stepper.synchronize();
  5369. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5370. do {
  5371. // Extrude filament to get into hotend
  5372. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5373. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5374. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5375. stepper.synchronize();
  5376. // Ask user if more filament should be extruded
  5377. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5378. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5379. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5380. KEEPALIVE_STATE(IN_HANDLER);
  5381. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5382. #endif
  5383. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5384. KEEPALIVE_STATE(IN_HANDLER);
  5385. // Set extruder to saved position
  5386. current_position[E_AXIS] = lastpos[E_AXIS];
  5387. destination[E_AXIS] = lastpos[E_AXIS];
  5388. planner.set_e_position_mm(current_position[E_AXIS]);
  5389. #if ENABLED(DELTA)
  5390. // Move XYZ to starting position, then E
  5391. calculate_delta(lastpos);
  5392. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5393. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5394. #else
  5395. // Move XY to starting position, then Z, then E
  5396. destination[X_AXIS] = lastpos[X_AXIS];
  5397. destination[Y_AXIS] = lastpos[Y_AXIS];
  5398. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5399. destination[Z_AXIS] = lastpos[Z_AXIS];
  5400. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5401. #endif
  5402. stepper.synchronize();
  5403. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5404. filament_ran_out = false;
  5405. #endif
  5406. // Show status screen
  5407. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5408. }
  5409. #endif // FILAMENT_CHANGE_FEATURE
  5410. #if ENABLED(DUAL_X_CARRIAGE)
  5411. /**
  5412. * M605: Set dual x-carriage movement mode
  5413. *
  5414. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5415. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5416. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5417. * units x-offset and an optional differential hotend temperature of
  5418. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5419. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5420. *
  5421. * Note: the X axis should be homed after changing dual x-carriage mode.
  5422. */
  5423. inline void gcode_M605() {
  5424. stepper.synchronize();
  5425. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5426. switch (dual_x_carriage_mode) {
  5427. case DXC_DUPLICATION_MODE:
  5428. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5429. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5430. SERIAL_ECHO_START;
  5431. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5432. SERIAL_CHAR(' ');
  5433. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5434. SERIAL_CHAR(',');
  5435. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5436. SERIAL_CHAR(' ');
  5437. SERIAL_ECHO(duplicate_extruder_x_offset);
  5438. SERIAL_CHAR(',');
  5439. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5440. break;
  5441. case DXC_FULL_CONTROL_MODE:
  5442. case DXC_AUTO_PARK_MODE:
  5443. break;
  5444. default:
  5445. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5446. break;
  5447. }
  5448. active_extruder_parked = false;
  5449. extruder_duplication_enabled = false;
  5450. delayed_move_time = 0;
  5451. }
  5452. #endif // DUAL_X_CARRIAGE
  5453. #if ENABLED(LIN_ADVANCE)
  5454. /**
  5455. * M905: Set advance factor
  5456. */
  5457. inline void gcode_M905() {
  5458. stepper.synchronize();
  5459. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5460. }
  5461. #endif
  5462. /**
  5463. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5464. */
  5465. inline void gcode_M907() {
  5466. #if HAS_DIGIPOTSS
  5467. for (int i = 0; i < NUM_AXIS; i++)
  5468. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5469. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5470. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5471. #endif
  5472. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5473. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5474. #endif
  5475. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5476. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5477. #endif
  5478. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5479. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5480. #endif
  5481. #if ENABLED(DIGIPOT_I2C)
  5482. // this one uses actual amps in floating point
  5483. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5484. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5485. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5486. #endif
  5487. #if ENABLED(DAC_STEPPER_CURRENT)
  5488. if (code_seen('S')) {
  5489. float dac_percent = code_value_float();
  5490. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5491. }
  5492. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5493. #endif
  5494. }
  5495. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5496. /**
  5497. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5498. */
  5499. inline void gcode_M908() {
  5500. #if HAS_DIGIPOTSS
  5501. stepper.digitalPotWrite(
  5502. code_seen('P') ? code_value_int() : 0,
  5503. code_seen('S') ? code_value_int() : 0
  5504. );
  5505. #endif
  5506. #ifdef DAC_STEPPER_CURRENT
  5507. dac_current_raw(
  5508. code_seen('P') ? code_value_byte() : -1,
  5509. code_seen('S') ? code_value_ushort() : 0
  5510. );
  5511. #endif
  5512. }
  5513. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5514. inline void gcode_M909() { dac_print_values(); }
  5515. inline void gcode_M910() { dac_commit_eeprom(); }
  5516. #endif
  5517. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5518. #if HAS_MICROSTEPS
  5519. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5520. inline void gcode_M350() {
  5521. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5522. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5523. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5524. stepper.microstep_readings();
  5525. }
  5526. /**
  5527. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5528. * S# determines MS1 or MS2, X# sets the pin high/low.
  5529. */
  5530. inline void gcode_M351() {
  5531. if (code_seen('S')) switch (code_value_byte()) {
  5532. case 1:
  5533. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5534. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5535. break;
  5536. case 2:
  5537. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5538. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5539. break;
  5540. }
  5541. stepper.microstep_readings();
  5542. }
  5543. #endif // HAS_MICROSTEPS
  5544. #if ENABLED(MIXING_EXTRUDER)
  5545. /**
  5546. * M163: Set a single mix factor for a mixing extruder
  5547. * This is called "weight" by some systems.
  5548. *
  5549. * S[index] The channel index to set
  5550. * P[float] The mix value
  5551. *
  5552. */
  5553. inline void gcode_M163() {
  5554. int mix_index = code_seen('S') ? code_value_int() : 0;
  5555. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5556. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5557. }
  5558. #if MIXING_VIRTUAL_TOOLS > 1
  5559. /**
  5560. * M164: Store the current mix factors as a virtual tool.
  5561. *
  5562. * S[index] The virtual tool to store
  5563. *
  5564. */
  5565. inline void gcode_M164() {
  5566. int tool_index = code_seen('S') ? code_value_int() : 0;
  5567. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5568. normalize_mix();
  5569. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5570. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5571. }
  5572. }
  5573. #endif
  5574. #if ENABLED(DIRECT_MIXING_IN_G1)
  5575. /**
  5576. * M165: Set multiple mix factors for a mixing extruder.
  5577. * Factors that are left out will be set to 0.
  5578. * All factors together must add up to 1.0.
  5579. *
  5580. * A[factor] Mix factor for extruder stepper 1
  5581. * B[factor] Mix factor for extruder stepper 2
  5582. * C[factor] Mix factor for extruder stepper 3
  5583. * D[factor] Mix factor for extruder stepper 4
  5584. * H[factor] Mix factor for extruder stepper 5
  5585. * I[factor] Mix factor for extruder stepper 6
  5586. *
  5587. */
  5588. inline void gcode_M165() { gcode_get_mix(); }
  5589. #endif
  5590. #endif // MIXING_EXTRUDER
  5591. /**
  5592. * M999: Restart after being stopped
  5593. *
  5594. * Default behaviour is to flush the serial buffer and request
  5595. * a resend to the host starting on the last N line received.
  5596. *
  5597. * Sending "M999 S1" will resume printing without flushing the
  5598. * existing command buffer.
  5599. *
  5600. */
  5601. inline void gcode_M999() {
  5602. Running = true;
  5603. lcd_reset_alert_level();
  5604. if (code_seen('S') && code_value_bool()) return;
  5605. // gcode_LastN = Stopped_gcode_LastN;
  5606. FlushSerialRequestResend();
  5607. }
  5608. #if ENABLED(SWITCHING_EXTRUDER)
  5609. inline void move_extruder_servo(uint8_t e) {
  5610. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5611. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5612. }
  5613. #endif
  5614. inline void invalid_extruder_error(const uint8_t &e) {
  5615. SERIAL_ECHO_START;
  5616. SERIAL_CHAR('T');
  5617. SERIAL_PROTOCOL_F(e, DEC);
  5618. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5619. }
  5620. /**
  5621. * T0-T3: Switch tool, usually switching extruders
  5622. *
  5623. * F[units/min] Set the movement feedrate
  5624. * S1 Don't move the tool in XY after change
  5625. */
  5626. inline void gcode_T(uint8_t tmp_extruder) {
  5627. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5628. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5629. invalid_extruder_error(tmp_extruder);
  5630. return;
  5631. }
  5632. // T0-Tnnn: Switch virtual tool by changing the mix
  5633. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5634. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5635. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5637. if (DEBUGGING(LEVELING)) {
  5638. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5639. SERIAL_ECHOLNPGM(")");
  5640. DEBUG_POS("BEFORE", current_position);
  5641. }
  5642. #endif
  5643. #if HOTENDS > 1
  5644. if (tmp_extruder >= EXTRUDERS) {
  5645. invalid_extruder_error(tmp_extruder);
  5646. return;
  5647. }
  5648. float old_feedrate_mm_m = feedrate_mm_m;
  5649. if (code_seen('F')) {
  5650. float next_feedrate_mm_m = code_value_axis_units(X_AXIS);
  5651. if (next_feedrate_mm_m > 0.0) old_feedrate_mm_m = feedrate_mm_m = next_feedrate_mm_m;
  5652. }
  5653. else
  5654. feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
  5655. if (tmp_extruder != active_extruder) {
  5656. bool no_move = code_seen('S') && code_value_bool();
  5657. if (!no_move && axis_unhomed_error(true, true, true)) {
  5658. SERIAL_ECHOLNPGM("No move on toolchange");
  5659. no_move = true;
  5660. }
  5661. // Save current position to destination, for use later
  5662. set_destination_to_current();
  5663. #if ENABLED(DUAL_X_CARRIAGE)
  5664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5665. if (DEBUGGING(LEVELING)) {
  5666. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5667. switch (dual_x_carriage_mode) {
  5668. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5669. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5670. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5671. }
  5672. }
  5673. #endif
  5674. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5675. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5676. ) {
  5677. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5678. if (DEBUGGING(LEVELING)) {
  5679. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5680. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5681. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5682. }
  5683. #endif
  5684. // Park old head: 1) raise 2) move to park position 3) lower
  5685. for (uint8_t i = 0; i < 3; i++)
  5686. planner.buffer_line(
  5687. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5688. current_position[Y_AXIS],
  5689. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5690. current_position[E_AXIS],
  5691. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5692. active_extruder
  5693. );
  5694. stepper.synchronize();
  5695. }
  5696. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5697. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5698. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5699. active_extruder = tmp_extruder;
  5700. // This function resets the max/min values - the current position may be overwritten below.
  5701. set_axis_is_at_home(X_AXIS);
  5702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5703. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5704. #endif
  5705. switch (dual_x_carriage_mode) {
  5706. case DXC_FULL_CONTROL_MODE:
  5707. current_position[X_AXIS] = inactive_extruder_x_pos;
  5708. inactive_extruder_x_pos = destination[X_AXIS];
  5709. break;
  5710. case DXC_DUPLICATION_MODE:
  5711. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5712. if (active_extruder_parked)
  5713. current_position[X_AXIS] = inactive_extruder_x_pos;
  5714. else
  5715. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5716. inactive_extruder_x_pos = destination[X_AXIS];
  5717. extruder_duplication_enabled = false;
  5718. break;
  5719. default:
  5720. // record raised toolhead position for use by unpark
  5721. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5722. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5723. active_extruder_parked = true;
  5724. delayed_move_time = 0;
  5725. break;
  5726. }
  5727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5728. if (DEBUGGING(LEVELING)) {
  5729. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5730. SERIAL_EOL;
  5731. DEBUG_POS("New extruder (parked)", current_position);
  5732. }
  5733. #endif
  5734. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5735. #else // !DUAL_X_CARRIAGE
  5736. #if ENABLED(SWITCHING_EXTRUDER)
  5737. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5738. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5739. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5740. // Always raise by some amount
  5741. planner.buffer_line(
  5742. current_position[X_AXIS],
  5743. current_position[Y_AXIS],
  5744. current_position[Z_AXIS] + z_raise,
  5745. current_position[E_AXIS],
  5746. planner.max_feedrate_mm_s[Z_AXIS],
  5747. active_extruder
  5748. );
  5749. stepper.synchronize();
  5750. move_extruder_servo(active_extruder);
  5751. delay(500);
  5752. // Move back down, if needed
  5753. if (z_raise != z_diff) {
  5754. planner.buffer_line(
  5755. current_position[X_AXIS],
  5756. current_position[Y_AXIS],
  5757. current_position[Z_AXIS] + z_diff,
  5758. current_position[E_AXIS],
  5759. planner.max_feedrate_mm_s[Z_AXIS],
  5760. active_extruder
  5761. );
  5762. stepper.synchronize();
  5763. }
  5764. #endif
  5765. /**
  5766. * Set current_position to the position of the new nozzle.
  5767. * Offsets are based on linear distance, so we need to get
  5768. * the resulting position in coordinate space.
  5769. *
  5770. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5771. * - With mesh leveling, update Z for the new position
  5772. * - Otherwise, just use the raw linear distance
  5773. *
  5774. * Software endstops are altered here too. Consider a case where:
  5775. * E0 at X=0 ... E1 at X=10
  5776. * When we switch to E1 now X=10, but E1 can't move left.
  5777. * To express this we apply the change in XY to the software endstops.
  5778. * E1 can move farther right than E0, so the right limit is extended.
  5779. *
  5780. * Note that we don't adjust the Z software endstops. Why not?
  5781. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5782. * because the bed is 1mm lower at the new position. As long as
  5783. * the first nozzle is out of the way, the carriage should be
  5784. * allowed to move 1mm lower. This technically "breaks" the
  5785. * Z software endstop. But this is technically correct (and
  5786. * there is no viable alternative).
  5787. */
  5788. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5789. // Offset extruder, make sure to apply the bed level rotation matrix
  5790. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5791. hotend_offset[Y_AXIS][tmp_extruder],
  5792. 0),
  5793. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5794. hotend_offset[Y_AXIS][active_extruder],
  5795. 0),
  5796. offset_vec = tmp_offset_vec - act_offset_vec;
  5797. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5798. if (DEBUGGING(LEVELING)) {
  5799. tmp_offset_vec.debug("tmp_offset_vec");
  5800. act_offset_vec.debug("act_offset_vec");
  5801. offset_vec.debug("offset_vec (BEFORE)");
  5802. }
  5803. #endif
  5804. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5806. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5807. #endif
  5808. // Adjustments to the current position
  5809. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5810. current_position[Z_AXIS] += offset_vec.z;
  5811. #else // !AUTO_BED_LEVELING_FEATURE
  5812. float xydiff[2] = {
  5813. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5814. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5815. };
  5816. #if ENABLED(MESH_BED_LEVELING)
  5817. if (mbl.active()) {
  5818. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5819. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5820. #endif
  5821. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5822. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5823. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5824. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5825. if (DEBUGGING(LEVELING)) {
  5826. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5827. SERIAL_EOL;
  5828. }
  5829. #endif
  5830. }
  5831. #endif // MESH_BED_LEVELING
  5832. #endif // !AUTO_BED_LEVELING_FEATURE
  5833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5834. if (DEBUGGING(LEVELING)) {
  5835. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5836. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5837. SERIAL_ECHOLNPGM(" }");
  5838. }
  5839. #endif
  5840. // The newly-selected extruder XY is actually at...
  5841. current_position[X_AXIS] += xydiff[X_AXIS];
  5842. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5843. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5844. position_shift[i] += xydiff[i];
  5845. update_software_endstops((AxisEnum)i);
  5846. }
  5847. // Set the new active extruder
  5848. active_extruder = tmp_extruder;
  5849. #endif // !DUAL_X_CARRIAGE
  5850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5851. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5852. #endif
  5853. // Tell the planner the new "current position"
  5854. SYNC_PLAN_POSITION_KINEMATIC();
  5855. // Move to the "old position" (move the extruder into place)
  5856. if (!no_move && IsRunning()) {
  5857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5858. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5859. #endif
  5860. prepare_move_to_destination();
  5861. }
  5862. } // (tmp_extruder != active_extruder)
  5863. stepper.synchronize();
  5864. #if ENABLED(EXT_SOLENOID)
  5865. disable_all_solenoids();
  5866. enable_solenoid_on_active_extruder();
  5867. #endif // EXT_SOLENOID
  5868. feedrate_mm_m = old_feedrate_mm_m;
  5869. #else // HOTENDS <= 1
  5870. // Set the new active extruder
  5871. active_extruder = tmp_extruder;
  5872. #endif // HOTENDS <= 1
  5873. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5874. if (DEBUGGING(LEVELING)) {
  5875. DEBUG_POS("AFTER", current_position);
  5876. SERIAL_ECHOLNPGM("<<< gcode_T");
  5877. }
  5878. #endif
  5879. SERIAL_ECHO_START;
  5880. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5881. SERIAL_PROTOCOLLN((int)active_extruder);
  5882. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5883. }
  5884. /**
  5885. * Process a single command and dispatch it to its handler
  5886. * This is called from the main loop()
  5887. */
  5888. void process_next_command() {
  5889. current_command = command_queue[cmd_queue_index_r];
  5890. if (DEBUGGING(ECHO)) {
  5891. SERIAL_ECHO_START;
  5892. SERIAL_ECHOLN(current_command);
  5893. }
  5894. // Sanitize the current command:
  5895. // - Skip leading spaces
  5896. // - Bypass N[-0-9][0-9]*[ ]*
  5897. // - Overwrite * with nul to mark the end
  5898. while (*current_command == ' ') ++current_command;
  5899. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5900. current_command += 2; // skip N[-0-9]
  5901. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5902. while (*current_command == ' ') ++current_command; // skip [ ]*
  5903. }
  5904. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5905. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5906. char *cmd_ptr = current_command;
  5907. // Get the command code, which must be G, M, or T
  5908. char command_code = *cmd_ptr++;
  5909. // Skip spaces to get the numeric part
  5910. while (*cmd_ptr == ' ') cmd_ptr++;
  5911. uint16_t codenum = 0; // define ahead of goto
  5912. // Bail early if there's no code
  5913. bool code_is_good = NUMERIC(*cmd_ptr);
  5914. if (!code_is_good) goto ExitUnknownCommand;
  5915. // Get and skip the code number
  5916. do {
  5917. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5918. cmd_ptr++;
  5919. } while (NUMERIC(*cmd_ptr));
  5920. // Skip all spaces to get to the first argument, or nul
  5921. while (*cmd_ptr == ' ') cmd_ptr++;
  5922. // The command's arguments (if any) start here, for sure!
  5923. current_command_args = cmd_ptr;
  5924. KEEPALIVE_STATE(IN_HANDLER);
  5925. // Handle a known G, M, or T
  5926. switch (command_code) {
  5927. case 'G': switch (codenum) {
  5928. // G0, G1
  5929. case 0:
  5930. case 1:
  5931. gcode_G0_G1();
  5932. break;
  5933. // G2, G3
  5934. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5935. case 2: // G2 - CW ARC
  5936. case 3: // G3 - CCW ARC
  5937. gcode_G2_G3(codenum == 2);
  5938. break;
  5939. #endif
  5940. // G4 Dwell
  5941. case 4:
  5942. gcode_G4();
  5943. break;
  5944. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5945. // G5
  5946. case 5: // G5 - Cubic B_spline
  5947. gcode_G5();
  5948. break;
  5949. #endif // BEZIER_CURVE_SUPPORT
  5950. #if ENABLED(FWRETRACT)
  5951. case 10: // G10: retract
  5952. case 11: // G11: retract_recover
  5953. gcode_G10_G11(codenum == 10);
  5954. break;
  5955. #endif // FWRETRACT
  5956. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5957. case 12:
  5958. gcode_G12(); // G12: Nozzle Clean
  5959. break;
  5960. #endif // NOZZLE_CLEAN_FEATURE
  5961. #if ENABLED(INCH_MODE_SUPPORT)
  5962. case 20: //G20: Inch Mode
  5963. gcode_G20();
  5964. break;
  5965. case 21: //G21: MM Mode
  5966. gcode_G21();
  5967. break;
  5968. #endif // INCH_MODE_SUPPORT
  5969. #if ENABLED(NOZZLE_PARK_FEATURE)
  5970. case 27: // G27: Nozzle Park
  5971. gcode_G27();
  5972. break;
  5973. #endif // NOZZLE_PARK_FEATURE
  5974. case 28: // G28: Home all axes, one at a time
  5975. gcode_G28();
  5976. break;
  5977. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5978. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5979. gcode_G29();
  5980. break;
  5981. #endif // AUTO_BED_LEVELING_FEATURE
  5982. #if HAS_BED_PROBE
  5983. case 30: // G30 Single Z probe
  5984. gcode_G30();
  5985. break;
  5986. #if ENABLED(Z_PROBE_SLED)
  5987. case 31: // G31: dock the sled
  5988. gcode_G31();
  5989. break;
  5990. case 32: // G32: undock the sled
  5991. gcode_G32();
  5992. break;
  5993. #endif // Z_PROBE_SLED
  5994. #endif // HAS_BED_PROBE
  5995. case 90: // G90
  5996. relative_mode = false;
  5997. break;
  5998. case 91: // G91
  5999. relative_mode = true;
  6000. break;
  6001. case 92: // G92
  6002. gcode_G92();
  6003. break;
  6004. }
  6005. break;
  6006. case 'M': switch (codenum) {
  6007. #if ENABLED(ULTIPANEL)
  6008. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6009. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6010. gcode_M0_M1();
  6011. break;
  6012. #endif // ULTIPANEL
  6013. case 17:
  6014. gcode_M17();
  6015. break;
  6016. #if ENABLED(SDSUPPORT)
  6017. case 20: // M20 - list SD card
  6018. gcode_M20(); break;
  6019. case 21: // M21 - init SD card
  6020. gcode_M21(); break;
  6021. case 22: //M22 - release SD card
  6022. gcode_M22(); break;
  6023. case 23: //M23 - Select file
  6024. gcode_M23(); break;
  6025. case 24: //M24 - Start SD print
  6026. gcode_M24(); break;
  6027. case 25: //M25 - Pause SD print
  6028. gcode_M25(); break;
  6029. case 26: //M26 - Set SD index
  6030. gcode_M26(); break;
  6031. case 27: //M27 - Get SD status
  6032. gcode_M27(); break;
  6033. case 28: //M28 - Start SD write
  6034. gcode_M28(); break;
  6035. case 29: //M29 - Stop SD write
  6036. gcode_M29(); break;
  6037. case 30: //M30 <filename> Delete File
  6038. gcode_M30(); break;
  6039. case 32: //M32 - Select file and start SD print
  6040. gcode_M32(); break;
  6041. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6042. case 33: //M33 - Get the long full path to a file or folder
  6043. gcode_M33(); break;
  6044. #endif // LONG_FILENAME_HOST_SUPPORT
  6045. case 928: //M928 - Start SD write
  6046. gcode_M928(); break;
  6047. #endif //SDSUPPORT
  6048. case 31: //M31 take time since the start of the SD print or an M109 command
  6049. gcode_M31();
  6050. break;
  6051. case 42: //M42 -Change pin status via gcode
  6052. gcode_M42();
  6053. break;
  6054. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6055. case 48: // M48 Z probe repeatability
  6056. gcode_M48();
  6057. break;
  6058. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6059. case 75: // Start print timer
  6060. gcode_M75();
  6061. break;
  6062. case 76: // Pause print timer
  6063. gcode_M76();
  6064. break;
  6065. case 77: // Stop print timer
  6066. gcode_M77();
  6067. break;
  6068. #if ENABLED(PRINTCOUNTER)
  6069. case 78: // Show print statistics
  6070. gcode_M78();
  6071. break;
  6072. #endif
  6073. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6074. case 100:
  6075. gcode_M100();
  6076. break;
  6077. #endif
  6078. case 104: // M104
  6079. gcode_M104();
  6080. break;
  6081. case 110: // M110: Set Current Line Number
  6082. gcode_M110();
  6083. break;
  6084. case 111: // M111: Set debug level
  6085. gcode_M111();
  6086. break;
  6087. #if DISABLED(EMERGENCY_PARSER)
  6088. case 108: // M108: Cancel Waiting
  6089. gcode_M108();
  6090. break;
  6091. case 112: // M112: Emergency Stop
  6092. gcode_M112();
  6093. break;
  6094. case 410: // M410 quickstop - Abort all the planned moves.
  6095. gcode_M410();
  6096. break;
  6097. #endif
  6098. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6099. case 113: // M113: Set Host Keepalive interval
  6100. gcode_M113();
  6101. break;
  6102. #endif
  6103. case 140: // M140: Set bed temp
  6104. gcode_M140();
  6105. break;
  6106. case 105: // M105: Read current temperature
  6107. gcode_M105();
  6108. KEEPALIVE_STATE(NOT_BUSY);
  6109. return; // "ok" already printed
  6110. case 109: // M109: Wait for temperature
  6111. gcode_M109();
  6112. break;
  6113. #if HAS_TEMP_BED
  6114. case 190: // M190: Wait for bed heater to reach target
  6115. gcode_M190();
  6116. break;
  6117. #endif // HAS_TEMP_BED
  6118. #if FAN_COUNT > 0
  6119. case 106: // M106: Fan On
  6120. gcode_M106();
  6121. break;
  6122. case 107: // M107: Fan Off
  6123. gcode_M107();
  6124. break;
  6125. #endif // FAN_COUNT > 0
  6126. #if ENABLED(BARICUDA)
  6127. // PWM for HEATER_1_PIN
  6128. #if HAS_HEATER_1
  6129. case 126: // M126: valve open
  6130. gcode_M126();
  6131. break;
  6132. case 127: // M127: valve closed
  6133. gcode_M127();
  6134. break;
  6135. #endif // HAS_HEATER_1
  6136. // PWM for HEATER_2_PIN
  6137. #if HAS_HEATER_2
  6138. case 128: // M128: valve open
  6139. gcode_M128();
  6140. break;
  6141. case 129: // M129: valve closed
  6142. gcode_M129();
  6143. break;
  6144. #endif // HAS_HEATER_2
  6145. #endif // BARICUDA
  6146. #if HAS_POWER_SWITCH
  6147. case 80: // M80: Turn on Power Supply
  6148. gcode_M80();
  6149. break;
  6150. #endif // HAS_POWER_SWITCH
  6151. case 81: // M81: Turn off Power, including Power Supply, if possible
  6152. gcode_M81();
  6153. break;
  6154. case 82:
  6155. gcode_M82();
  6156. break;
  6157. case 83:
  6158. gcode_M83();
  6159. break;
  6160. case 18: // (for compatibility)
  6161. case 84: // M84
  6162. gcode_M18_M84();
  6163. break;
  6164. case 85: // M85
  6165. gcode_M85();
  6166. break;
  6167. case 92: // M92: Set the steps-per-unit for one or more axes
  6168. gcode_M92();
  6169. break;
  6170. case 115: // M115: Report capabilities
  6171. gcode_M115();
  6172. break;
  6173. case 117: // M117: Set LCD message text, if possible
  6174. gcode_M117();
  6175. break;
  6176. case 114: // M114: Report current position
  6177. gcode_M114();
  6178. break;
  6179. case 120: // M120: Enable endstops
  6180. gcode_M120();
  6181. break;
  6182. case 121: // M121: Disable endstops
  6183. gcode_M121();
  6184. break;
  6185. case 119: // M119: Report endstop states
  6186. gcode_M119();
  6187. break;
  6188. #if ENABLED(ULTIPANEL)
  6189. case 145: // M145: Set material heatup parameters
  6190. gcode_M145();
  6191. break;
  6192. #endif
  6193. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6194. case 149:
  6195. gcode_M149();
  6196. break;
  6197. #endif
  6198. #if ENABLED(BLINKM)
  6199. case 150: // M150
  6200. gcode_M150();
  6201. break;
  6202. #endif //BLINKM
  6203. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6204. case 155:
  6205. gcode_M155();
  6206. break;
  6207. case 156:
  6208. gcode_M156();
  6209. break;
  6210. #endif //EXPERIMENTAL_I2CBUS
  6211. #if ENABLED(MIXING_EXTRUDER)
  6212. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6213. gcode_M163();
  6214. break;
  6215. #if MIXING_VIRTUAL_TOOLS > 1
  6216. case 164: // M164 S<int> save current mix as a virtual extruder
  6217. gcode_M164();
  6218. break;
  6219. #endif
  6220. #if ENABLED(DIRECT_MIXING_IN_G1)
  6221. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6222. gcode_M165();
  6223. break;
  6224. #endif
  6225. #endif
  6226. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6227. gcode_M200();
  6228. break;
  6229. case 201: // M201
  6230. gcode_M201();
  6231. break;
  6232. #if 0 // Not used for Sprinter/grbl gen6
  6233. case 202: // M202
  6234. gcode_M202();
  6235. break;
  6236. #endif
  6237. case 203: // M203 max feedrate units/sec
  6238. gcode_M203();
  6239. break;
  6240. case 204: // M204 acclereration S normal moves T filmanent only moves
  6241. gcode_M204();
  6242. break;
  6243. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6244. gcode_M205();
  6245. break;
  6246. case 206: // M206 additional homing offset
  6247. gcode_M206();
  6248. break;
  6249. #if ENABLED(DELTA)
  6250. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6251. gcode_M665();
  6252. break;
  6253. #endif
  6254. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6255. case 666: // M666 set delta / dual endstop adjustment
  6256. gcode_M666();
  6257. break;
  6258. #endif
  6259. #if ENABLED(FWRETRACT)
  6260. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6261. gcode_M207();
  6262. break;
  6263. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6264. gcode_M208();
  6265. break;
  6266. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6267. gcode_M209();
  6268. break;
  6269. #endif // FWRETRACT
  6270. #if HOTENDS > 1
  6271. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6272. gcode_M218();
  6273. break;
  6274. #endif
  6275. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6276. gcode_M220();
  6277. break;
  6278. case 221: // M221 - Set Flow Percentage: S<percent>
  6279. gcode_M221();
  6280. break;
  6281. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6282. gcode_M226();
  6283. break;
  6284. #if HAS_SERVOS
  6285. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6286. gcode_M280();
  6287. break;
  6288. #endif // HAS_SERVOS
  6289. #if HAS_BUZZER
  6290. case 300: // M300 - Play beep tone
  6291. gcode_M300();
  6292. break;
  6293. #endif // HAS_BUZZER
  6294. #if ENABLED(PIDTEMP)
  6295. case 301: // M301
  6296. gcode_M301();
  6297. break;
  6298. #endif // PIDTEMP
  6299. #if ENABLED(PIDTEMPBED)
  6300. case 304: // M304
  6301. gcode_M304();
  6302. break;
  6303. #endif // PIDTEMPBED
  6304. #if defined(CHDK) || HAS_PHOTOGRAPH
  6305. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6306. gcode_M240();
  6307. break;
  6308. #endif // CHDK || PHOTOGRAPH_PIN
  6309. #if HAS_LCD_CONTRAST
  6310. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6311. gcode_M250();
  6312. break;
  6313. #endif // HAS_LCD_CONTRAST
  6314. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6315. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6316. gcode_M302();
  6317. break;
  6318. #endif // PREVENT_DANGEROUS_EXTRUDE
  6319. case 303: // M303 PID autotune
  6320. gcode_M303();
  6321. break;
  6322. #if ENABLED(SCARA)
  6323. case 360: // M360 SCARA Theta pos1
  6324. if (gcode_M360()) return;
  6325. break;
  6326. case 361: // M361 SCARA Theta pos2
  6327. if (gcode_M361()) return;
  6328. break;
  6329. case 362: // M362 SCARA Psi pos1
  6330. if (gcode_M362()) return;
  6331. break;
  6332. case 363: // M363 SCARA Psi pos2
  6333. if (gcode_M363()) return;
  6334. break;
  6335. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6336. if (gcode_M364()) return;
  6337. break;
  6338. case 365: // M365 Set SCARA scaling for X Y Z
  6339. gcode_M365();
  6340. break;
  6341. #endif // SCARA
  6342. case 400: // M400 finish all moves
  6343. gcode_M400();
  6344. break;
  6345. #if HAS_BED_PROBE
  6346. case 401:
  6347. gcode_M401();
  6348. break;
  6349. case 402:
  6350. gcode_M402();
  6351. break;
  6352. #endif // HAS_BED_PROBE
  6353. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6354. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6355. gcode_M404();
  6356. break;
  6357. case 405: //M405 Turn on filament sensor for control
  6358. gcode_M405();
  6359. break;
  6360. case 406: //M406 Turn off filament sensor for control
  6361. gcode_M406();
  6362. break;
  6363. case 407: //M407 Display measured filament diameter
  6364. gcode_M407();
  6365. break;
  6366. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6367. #if ENABLED(MESH_BED_LEVELING)
  6368. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6369. gcode_M420();
  6370. break;
  6371. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6372. gcode_M421();
  6373. break;
  6374. #endif
  6375. case 428: // M428 Apply current_position to home_offset
  6376. gcode_M428();
  6377. break;
  6378. case 500: // M500 Store settings in EEPROM
  6379. gcode_M500();
  6380. break;
  6381. case 501: // M501 Read settings from EEPROM
  6382. gcode_M501();
  6383. break;
  6384. case 502: // M502 Revert to default settings
  6385. gcode_M502();
  6386. break;
  6387. case 503: // M503 print settings currently in memory
  6388. gcode_M503();
  6389. break;
  6390. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6391. case 540:
  6392. gcode_M540();
  6393. break;
  6394. #endif
  6395. #if HAS_BED_PROBE
  6396. case 851:
  6397. gcode_M851();
  6398. break;
  6399. #endif // HAS_BED_PROBE
  6400. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6401. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6402. gcode_M600();
  6403. break;
  6404. #endif // FILAMENT_CHANGE_FEATURE
  6405. #if ENABLED(DUAL_X_CARRIAGE)
  6406. case 605:
  6407. gcode_M605();
  6408. break;
  6409. #endif // DUAL_X_CARRIAGE
  6410. #if ENABLED(LIN_ADVANCE)
  6411. case 905: // M905 Set advance factor.
  6412. gcode_M905();
  6413. break;
  6414. #endif
  6415. case 907: // M907 Set digital trimpot motor current using axis codes.
  6416. gcode_M907();
  6417. break;
  6418. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6419. case 908: // M908 Control digital trimpot directly.
  6420. gcode_M908();
  6421. break;
  6422. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6423. case 909: // M909 Print digipot/DAC current value
  6424. gcode_M909();
  6425. break;
  6426. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6427. gcode_M910();
  6428. break;
  6429. #endif
  6430. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6431. #if HAS_MICROSTEPS
  6432. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6433. gcode_M350();
  6434. break;
  6435. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6436. gcode_M351();
  6437. break;
  6438. #endif // HAS_MICROSTEPS
  6439. case 999: // M999: Restart after being Stopped
  6440. gcode_M999();
  6441. break;
  6442. }
  6443. break;
  6444. case 'T':
  6445. gcode_T(codenum);
  6446. break;
  6447. default: code_is_good = false;
  6448. }
  6449. KEEPALIVE_STATE(NOT_BUSY);
  6450. ExitUnknownCommand:
  6451. // Still unknown command? Throw an error
  6452. if (!code_is_good) unknown_command_error();
  6453. ok_to_send();
  6454. }
  6455. void FlushSerialRequestResend() {
  6456. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6457. MYSERIAL.flush();
  6458. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6459. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6460. ok_to_send();
  6461. }
  6462. void ok_to_send() {
  6463. refresh_cmd_timeout();
  6464. if (!send_ok[cmd_queue_index_r]) return;
  6465. SERIAL_PROTOCOLPGM(MSG_OK);
  6466. #if ENABLED(ADVANCED_OK)
  6467. char* p = command_queue[cmd_queue_index_r];
  6468. if (*p == 'N') {
  6469. SERIAL_PROTOCOL(' ');
  6470. SERIAL_ECHO(*p++);
  6471. while (NUMERIC_SIGNED(*p))
  6472. SERIAL_ECHO(*p++);
  6473. }
  6474. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6475. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6476. #endif
  6477. SERIAL_EOL;
  6478. }
  6479. void clamp_to_software_endstops(float target[3]) {
  6480. if (min_software_endstops) {
  6481. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6482. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6483. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6484. }
  6485. if (max_software_endstops) {
  6486. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6487. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6488. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6489. }
  6490. }
  6491. #if ENABLED(DELTA)
  6492. void recalc_delta_settings(float radius, float diagonal_rod) {
  6493. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6494. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6495. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6496. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6497. delta_tower3_x = 0.0; // back middle tower
  6498. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6499. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6500. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6501. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6502. }
  6503. void calculate_delta(float cartesian[3]) {
  6504. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6505. - sq(delta_tower1_x - cartesian[X_AXIS])
  6506. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6507. ) + cartesian[Z_AXIS];
  6508. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6509. - sq(delta_tower2_x - cartesian[X_AXIS])
  6510. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6511. ) + cartesian[Z_AXIS];
  6512. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6513. - sq(delta_tower3_x - cartesian[X_AXIS])
  6514. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6515. ) + cartesian[Z_AXIS];
  6516. /**
  6517. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6518. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6519. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6520. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6521. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6522. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6523. */
  6524. }
  6525. float delta_safe_distance_from_top() {
  6526. float cartesian[3] = { 0 };
  6527. calculate_delta(cartesian);
  6528. float distance = delta[TOWER_3];
  6529. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  6530. calculate_delta(cartesian);
  6531. return abs(distance - delta[TOWER_3]);
  6532. }
  6533. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6534. // Adjust print surface height by linear interpolation over the bed_level array.
  6535. void adjust_delta(float cartesian[3]) {
  6536. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6537. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6538. float h1 = 0.001 - half, h2 = half - 0.001,
  6539. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6540. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6541. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6542. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6543. z1 = bed_level[floor_x + half][floor_y + half],
  6544. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6545. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6546. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6547. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6548. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6549. offset = (1 - ratio_x) * left + ratio_x * right;
  6550. delta[X_AXIS] += offset;
  6551. delta[Y_AXIS] += offset;
  6552. delta[Z_AXIS] += offset;
  6553. /**
  6554. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6555. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6556. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6557. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6558. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6559. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6560. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6561. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6562. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6563. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6564. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6565. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6566. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6567. */
  6568. }
  6569. #endif // AUTO_BED_LEVELING_FEATURE
  6570. #endif // DELTA
  6571. #if ENABLED(MESH_BED_LEVELING)
  6572. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6573. void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6574. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6575. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6576. cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)),
  6577. cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS));
  6578. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6579. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6580. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6581. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6582. if (cx1 == cx2 && cy1 == cy2) {
  6583. // Start and end on same mesh square
  6584. line_to_destination(fr_mm_m);
  6585. set_current_to_destination();
  6586. return;
  6587. }
  6588. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6589. float normalized_dist, end[NUM_AXIS];
  6590. // Split at the left/front border of the right/top square
  6591. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6592. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6593. memcpy(end, destination, sizeof(end));
  6594. destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
  6595. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6596. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6597. CBI(x_splits, gcx);
  6598. }
  6599. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6600. memcpy(end, destination, sizeof(end));
  6601. destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
  6602. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6603. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6604. CBI(y_splits, gcy);
  6605. }
  6606. else {
  6607. // Already split on a border
  6608. line_to_destination(fr_mm_m);
  6609. set_current_to_destination();
  6610. return;
  6611. }
  6612. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6613. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6614. // Do the split and look for more borders
  6615. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6616. // Restore destination from stack
  6617. memcpy(destination, end, sizeof(end));
  6618. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6619. }
  6620. #endif // MESH_BED_LEVELING
  6621. #if ENABLED(DELTA) || ENABLED(SCARA)
  6622. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6623. float difference[NUM_AXIS];
  6624. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6625. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6626. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6627. if (cartesian_mm < 0.000001) return false;
  6628. float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6629. float seconds = cartesian_mm / _feedrate_mm_s;
  6630. int steps = max(1, int(delta_segments_per_second * seconds));
  6631. float inv_steps = 1.0/steps;
  6632. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6633. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6634. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6635. for (int s = 1; s <= steps; s++) {
  6636. float fraction = float(s) * inv_steps;
  6637. for (int8_t i = 0; i < NUM_AXIS; i++)
  6638. target[i] = current_position[i] + difference[i] * fraction;
  6639. calculate_delta(target);
  6640. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6641. if (!bed_leveling_in_progress) adjust_delta(target);
  6642. #endif
  6643. //DEBUG_POS("prepare_delta_move_to", target);
  6644. //DEBUG_POS("prepare_delta_move_to", delta);
  6645. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6646. }
  6647. return true;
  6648. }
  6649. #endif // DELTA || SCARA
  6650. #if ENABLED(SCARA)
  6651. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6652. #endif
  6653. #if ENABLED(DUAL_X_CARRIAGE)
  6654. inline bool prepare_move_to_destination_dualx() {
  6655. if (active_extruder_parked) {
  6656. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6657. // move duplicate extruder into correct duplication position.
  6658. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6659. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6660. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6661. SYNC_PLAN_POSITION_KINEMATIC();
  6662. stepper.synchronize();
  6663. extruder_duplication_enabled = true;
  6664. active_extruder_parked = false;
  6665. }
  6666. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6667. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6668. // This is a travel move (with no extrusion)
  6669. // Skip it, but keep track of the current position
  6670. // (so it can be used as the start of the next non-travel move)
  6671. if (delayed_move_time != 0xFFFFFFFFUL) {
  6672. set_current_to_destination();
  6673. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6674. delayed_move_time = millis();
  6675. return false;
  6676. }
  6677. }
  6678. delayed_move_time = 0;
  6679. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6680. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6681. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6682. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6683. active_extruder_parked = false;
  6684. }
  6685. }
  6686. return true;
  6687. }
  6688. #endif // DUAL_X_CARRIAGE
  6689. #if DISABLED(DELTA) && DISABLED(SCARA)
  6690. inline bool prepare_move_to_destination_cartesian() {
  6691. // Do not use feedrate_percentage for E or Z only moves
  6692. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6693. line_to_destination();
  6694. }
  6695. else {
  6696. #if ENABLED(MESH_BED_LEVELING)
  6697. if (mbl.active()) {
  6698. mesh_line_to_destination(MMM_SCALED(feedrate_mm_m));
  6699. return false;
  6700. }
  6701. else
  6702. #endif
  6703. line_to_destination(MMM_SCALED(feedrate_mm_m));
  6704. }
  6705. return true;
  6706. }
  6707. #endif // !DELTA && !SCARA
  6708. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6709. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6710. if (DEBUGGING(DRYRUN)) return;
  6711. float de = dest_e - curr_e;
  6712. if (de) {
  6713. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6714. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6715. SERIAL_ECHO_START;
  6716. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6717. }
  6718. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6719. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6720. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6721. SERIAL_ECHO_START;
  6722. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6723. }
  6724. #endif
  6725. }
  6726. }
  6727. #endif // PREVENT_DANGEROUS_EXTRUDE
  6728. /**
  6729. * Prepare a single move and get ready for the next one
  6730. *
  6731. * (This may call planner.buffer_line several times to put
  6732. * smaller moves into the planner for DELTA or SCARA.)
  6733. */
  6734. void prepare_move_to_destination() {
  6735. clamp_to_software_endstops(destination);
  6736. refresh_cmd_timeout();
  6737. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6738. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6739. #endif
  6740. #if ENABLED(SCARA)
  6741. if (!prepare_scara_move_to(destination)) return;
  6742. #elif ENABLED(DELTA)
  6743. if (!prepare_delta_move_to(destination)) return;
  6744. #else
  6745. #if ENABLED(DUAL_X_CARRIAGE)
  6746. if (!prepare_move_to_destination_dualx()) return;
  6747. #endif
  6748. if (!prepare_move_to_destination_cartesian()) return;
  6749. #endif
  6750. set_current_to_destination();
  6751. }
  6752. #if ENABLED(ARC_SUPPORT)
  6753. /**
  6754. * Plan an arc in 2 dimensions
  6755. *
  6756. * The arc is approximated by generating many small linear segments.
  6757. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6758. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6759. * larger segments will tend to be more efficient. Your slicer should have
  6760. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6761. */
  6762. void plan_arc(
  6763. float target[NUM_AXIS], // Destination position
  6764. float* offset, // Center of rotation relative to current_position
  6765. uint8_t clockwise // Clockwise?
  6766. ) {
  6767. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6768. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6769. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6770. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6771. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6772. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6773. r_Y = -offset[Y_AXIS],
  6774. rt_X = target[X_AXIS] - center_X,
  6775. rt_Y = target[Y_AXIS] - center_Y;
  6776. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6777. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6778. if (angular_travel < 0) angular_travel += RADIANS(360);
  6779. if (clockwise) angular_travel -= RADIANS(360);
  6780. // Make a circle if the angular rotation is 0
  6781. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6782. angular_travel += RADIANS(360);
  6783. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6784. if (mm_of_travel < 0.001) return;
  6785. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6786. if (segments == 0) segments = 1;
  6787. float theta_per_segment = angular_travel / segments;
  6788. float linear_per_segment = linear_travel / segments;
  6789. float extruder_per_segment = extruder_travel / segments;
  6790. /**
  6791. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6792. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6793. * r_T = [cos(phi) -sin(phi);
  6794. * sin(phi) cos(phi] * r ;
  6795. *
  6796. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6797. * defined from the circle center to the initial position. Each line segment is formed by successive
  6798. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6799. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6800. * all double numbers are single precision on the Arduino. (True double precision will not have
  6801. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6802. * tool precision in some cases. Therefore, arc path correction is implemented.
  6803. *
  6804. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6805. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6806. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6807. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6808. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6809. * issue for CNC machines with the single precision Arduino calculations.
  6810. *
  6811. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6812. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6813. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6814. * This is important when there are successive arc motions.
  6815. */
  6816. // Vector rotation matrix values
  6817. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6818. float sin_T = theta_per_segment;
  6819. float arc_target[NUM_AXIS];
  6820. float sin_Ti, cos_Ti, r_new_Y;
  6821. uint16_t i;
  6822. int8_t count = 0;
  6823. // Initialize the linear axis
  6824. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6825. // Initialize the extruder axis
  6826. arc_target[E_AXIS] = current_position[E_AXIS];
  6827. float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6828. millis_t next_idle_ms = millis() + 200UL;
  6829. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6830. thermalManager.manage_heater();
  6831. millis_t now = millis();
  6832. if (ELAPSED(now, next_idle_ms)) {
  6833. next_idle_ms = now + 200UL;
  6834. idle();
  6835. }
  6836. if (++count < N_ARC_CORRECTION) {
  6837. // Apply vector rotation matrix to previous r_X / 1
  6838. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6839. r_X = r_X * cos_T - r_Y * sin_T;
  6840. r_Y = r_new_Y;
  6841. }
  6842. else {
  6843. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6844. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6845. // To reduce stuttering, the sin and cos could be computed at different times.
  6846. // For now, compute both at the same time.
  6847. cos_Ti = cos(i * theta_per_segment);
  6848. sin_Ti = sin(i * theta_per_segment);
  6849. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6850. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6851. count = 0;
  6852. }
  6853. // Update arc_target location
  6854. arc_target[X_AXIS] = center_X + r_X;
  6855. arc_target[Y_AXIS] = center_Y + r_Y;
  6856. arc_target[Z_AXIS] += linear_per_segment;
  6857. arc_target[E_AXIS] += extruder_per_segment;
  6858. clamp_to_software_endstops(arc_target);
  6859. #if ENABLED(DELTA) || ENABLED(SCARA)
  6860. calculate_delta(arc_target);
  6861. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6862. adjust_delta(arc_target);
  6863. #endif
  6864. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6865. #else
  6866. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6867. #endif
  6868. }
  6869. // Ensure last segment arrives at target location.
  6870. #if ENABLED(DELTA) || ENABLED(SCARA)
  6871. calculate_delta(target);
  6872. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6873. adjust_delta(target);
  6874. #endif
  6875. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6876. #else
  6877. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6878. #endif
  6879. // As far as the parser is concerned, the position is now == target. In reality the
  6880. // motion control system might still be processing the action and the real tool position
  6881. // in any intermediate location.
  6882. set_current_to_destination();
  6883. }
  6884. #endif
  6885. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6886. void plan_cubic_move(const float offset[4]) {
  6887. cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  6888. // As far as the parser is concerned, the position is now == target. In reality the
  6889. // motion control system might still be processing the action and the real tool position
  6890. // in any intermediate location.
  6891. set_current_to_destination();
  6892. }
  6893. #endif // BEZIER_CURVE_SUPPORT
  6894. #if HAS_CONTROLLERFAN
  6895. void controllerFan() {
  6896. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6897. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6898. millis_t ms = millis();
  6899. if (ELAPSED(ms, nextMotorCheck)) {
  6900. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6901. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6902. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6903. #if E_STEPPERS > 1
  6904. || E1_ENABLE_READ == E_ENABLE_ON
  6905. #if HAS_X2_ENABLE
  6906. || X2_ENABLE_READ == X_ENABLE_ON
  6907. #endif
  6908. #if E_STEPPERS > 2
  6909. || E2_ENABLE_READ == E_ENABLE_ON
  6910. #if E_STEPPERS > 3
  6911. || E3_ENABLE_READ == E_ENABLE_ON
  6912. #endif
  6913. #endif
  6914. #endif
  6915. ) {
  6916. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6917. }
  6918. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6919. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6920. // allows digital or PWM fan output to be used (see M42 handling)
  6921. digitalWrite(CONTROLLERFAN_PIN, speed);
  6922. analogWrite(CONTROLLERFAN_PIN, speed);
  6923. }
  6924. }
  6925. #endif // HAS_CONTROLLERFAN
  6926. #if ENABLED(SCARA)
  6927. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6928. // Perform forward kinematics, and place results in delta[3]
  6929. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6930. float x_sin, x_cos, y_sin, y_cos;
  6931. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6932. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6933. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6934. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6935. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6936. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6937. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6938. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6939. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6940. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6941. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6942. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6943. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6944. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6945. }
  6946. void calculate_delta(float cartesian[3]) {
  6947. //reverse kinematics.
  6948. // Perform reversed kinematics, and place results in delta[3]
  6949. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6950. float SCARA_pos[2];
  6951. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6952. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6953. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6954. #if (Linkage_1 == Linkage_2)
  6955. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6956. #else
  6957. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6958. #endif
  6959. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6960. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6961. SCARA_K2 = Linkage_2 * SCARA_S2;
  6962. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6963. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6964. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6965. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6966. delta[Z_AXIS] = cartesian[Z_AXIS];
  6967. /**
  6968. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6969. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6970. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6971. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6972. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6973. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6974. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6975. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6976. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6977. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6978. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6979. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6980. SERIAL_EOL;
  6981. */
  6982. }
  6983. #endif // SCARA
  6984. #if ENABLED(TEMP_STAT_LEDS)
  6985. static bool red_led = false;
  6986. static millis_t next_status_led_update_ms = 0;
  6987. void handle_status_leds(void) {
  6988. float max_temp = 0.0;
  6989. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6990. next_status_led_update_ms += 500; // Update every 0.5s
  6991. HOTEND_LOOP() {
  6992. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  6993. }
  6994. #if HAS_TEMP_BED
  6995. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6996. #endif
  6997. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6998. if (new_led != red_led) {
  6999. red_led = new_led;
  7000. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7001. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7002. }
  7003. }
  7004. }
  7005. #endif
  7006. void enable_all_steppers() {
  7007. enable_x();
  7008. enable_y();
  7009. enable_z();
  7010. enable_e0();
  7011. enable_e1();
  7012. enable_e2();
  7013. enable_e3();
  7014. }
  7015. void disable_all_steppers() {
  7016. disable_x();
  7017. disable_y();
  7018. disable_z();
  7019. disable_e0();
  7020. disable_e1();
  7021. disable_e2();
  7022. disable_e3();
  7023. }
  7024. /**
  7025. * Standard idle routine keeps the machine alive
  7026. */
  7027. void idle(
  7028. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7029. bool no_stepper_sleep/*=false*/
  7030. #endif
  7031. ) {
  7032. lcd_update();
  7033. host_keepalive();
  7034. manage_inactivity(
  7035. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7036. no_stepper_sleep
  7037. #endif
  7038. );
  7039. thermalManager.manage_heater();
  7040. #if ENABLED(PRINTCOUNTER)
  7041. print_job_timer.tick();
  7042. #endif
  7043. #if HAS_BUZZER
  7044. buzzer.tick();
  7045. #endif
  7046. }
  7047. /**
  7048. * Manage several activities:
  7049. * - Check for Filament Runout
  7050. * - Keep the command buffer full
  7051. * - Check for maximum inactive time between commands
  7052. * - Check for maximum inactive time between stepper commands
  7053. * - Check if pin CHDK needs to go LOW
  7054. * - Check for KILL button held down
  7055. * - Check for HOME button held down
  7056. * - Check if cooling fan needs to be switched on
  7057. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7058. */
  7059. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7060. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7061. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7062. handle_filament_runout();
  7063. #endif
  7064. if (commands_in_queue < BUFSIZE) get_available_commands();
  7065. millis_t ms = millis();
  7066. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7067. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7068. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7069. #if ENABLED(DISABLE_INACTIVE_X)
  7070. disable_x();
  7071. #endif
  7072. #if ENABLED(DISABLE_INACTIVE_Y)
  7073. disable_y();
  7074. #endif
  7075. #if ENABLED(DISABLE_INACTIVE_Z)
  7076. disable_z();
  7077. #endif
  7078. #if ENABLED(DISABLE_INACTIVE_E)
  7079. disable_e0();
  7080. disable_e1();
  7081. disable_e2();
  7082. disable_e3();
  7083. #endif
  7084. }
  7085. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7086. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7087. chdkActive = false;
  7088. WRITE(CHDK, LOW);
  7089. }
  7090. #endif
  7091. #if HAS_KILL
  7092. // Check if the kill button was pressed and wait just in case it was an accidental
  7093. // key kill key press
  7094. // -------------------------------------------------------------------------------
  7095. static int killCount = 0; // make the inactivity button a bit less responsive
  7096. const int KILL_DELAY = 750;
  7097. if (!READ(KILL_PIN))
  7098. killCount++;
  7099. else if (killCount > 0)
  7100. killCount--;
  7101. // Exceeded threshold and we can confirm that it was not accidental
  7102. // KILL the machine
  7103. // ----------------------------------------------------------------
  7104. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7105. #endif
  7106. #if HAS_HOME
  7107. // Check to see if we have to home, use poor man's debouncer
  7108. // ---------------------------------------------------------
  7109. static int homeDebounceCount = 0; // poor man's debouncing count
  7110. const int HOME_DEBOUNCE_DELAY = 2500;
  7111. if (!READ(HOME_PIN)) {
  7112. if (!homeDebounceCount) {
  7113. enqueue_and_echo_commands_P(PSTR("G28"));
  7114. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7115. }
  7116. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7117. homeDebounceCount++;
  7118. else
  7119. homeDebounceCount = 0;
  7120. }
  7121. #endif
  7122. #if HAS_CONTROLLERFAN
  7123. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7124. #endif
  7125. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7126. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7127. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7128. #if ENABLED(SWITCHING_EXTRUDER)
  7129. bool oldstatus = E0_ENABLE_READ;
  7130. enable_e0();
  7131. #else // !SWITCHING_EXTRUDER
  7132. bool oldstatus;
  7133. switch (active_extruder) {
  7134. case 0:
  7135. oldstatus = E0_ENABLE_READ;
  7136. enable_e0();
  7137. break;
  7138. #if E_STEPPERS > 1
  7139. case 1:
  7140. oldstatus = E1_ENABLE_READ;
  7141. enable_e1();
  7142. break;
  7143. #if E_STEPPERS > 2
  7144. case 2:
  7145. oldstatus = E2_ENABLE_READ;
  7146. enable_e2();
  7147. break;
  7148. #if E_STEPPERS > 3
  7149. case 3:
  7150. oldstatus = E3_ENABLE_READ;
  7151. enable_e3();
  7152. break;
  7153. #endif
  7154. #endif
  7155. #endif
  7156. }
  7157. #endif // !SWITCHING_EXTRUDER
  7158. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7159. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7160. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7161. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7162. current_position[E_AXIS] = oldepos;
  7163. destination[E_AXIS] = oldedes;
  7164. planner.set_e_position_mm(oldepos);
  7165. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7166. stepper.synchronize();
  7167. #if ENABLED(SWITCHING_EXTRUDER)
  7168. E0_ENABLE_WRITE(oldstatus);
  7169. #else
  7170. switch (active_extruder) {
  7171. case 0:
  7172. E0_ENABLE_WRITE(oldstatus);
  7173. break;
  7174. #if E_STEPPERS > 1
  7175. case 1:
  7176. E1_ENABLE_WRITE(oldstatus);
  7177. break;
  7178. #if E_STEPPERS > 2
  7179. case 2:
  7180. E2_ENABLE_WRITE(oldstatus);
  7181. break;
  7182. #if E_STEPPERS > 3
  7183. case 3:
  7184. E3_ENABLE_WRITE(oldstatus);
  7185. break;
  7186. #endif
  7187. #endif
  7188. #endif
  7189. }
  7190. #endif // !SWITCHING_EXTRUDER
  7191. }
  7192. #endif // EXTRUDER_RUNOUT_PREVENT
  7193. #if ENABLED(DUAL_X_CARRIAGE)
  7194. // handle delayed move timeout
  7195. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7196. // travel moves have been received so enact them
  7197. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7198. set_destination_to_current();
  7199. prepare_move_to_destination();
  7200. }
  7201. #endif
  7202. #if ENABLED(TEMP_STAT_LEDS)
  7203. handle_status_leds();
  7204. #endif
  7205. planner.check_axes_activity();
  7206. }
  7207. void kill(const char* lcd_msg) {
  7208. SERIAL_ERROR_START;
  7209. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7210. #if ENABLED(ULTRA_LCD)
  7211. kill_screen(lcd_msg);
  7212. #else
  7213. UNUSED(lcd_msg);
  7214. #endif
  7215. for (int i = 5; i--;) delay(100); // Wait a short time
  7216. cli(); // Stop interrupts
  7217. thermalManager.disable_all_heaters();
  7218. disable_all_steppers();
  7219. #if HAS_POWER_SWITCH
  7220. pinMode(PS_ON_PIN, INPUT);
  7221. #endif
  7222. suicide();
  7223. while (1) {
  7224. #if ENABLED(USE_WATCHDOG)
  7225. watchdog_reset();
  7226. #endif
  7227. } // Wait for reset
  7228. }
  7229. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7230. void handle_filament_runout() {
  7231. if (!filament_ran_out) {
  7232. filament_ran_out = true;
  7233. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7234. stepper.synchronize();
  7235. }
  7236. }
  7237. #endif // FILAMENT_RUNOUT_SENSOR
  7238. #if ENABLED(FAST_PWM_FAN)
  7239. void setPwmFrequency(uint8_t pin, int val) {
  7240. val &= 0x07;
  7241. switch (digitalPinToTimer(pin)) {
  7242. #if defined(TCCR0A)
  7243. case TIMER0A:
  7244. case TIMER0B:
  7245. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7246. // TCCR0B |= val;
  7247. break;
  7248. #endif
  7249. #if defined(TCCR1A)
  7250. case TIMER1A:
  7251. case TIMER1B:
  7252. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7253. // TCCR1B |= val;
  7254. break;
  7255. #endif
  7256. #if defined(TCCR2)
  7257. case TIMER2:
  7258. case TIMER2:
  7259. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7260. TCCR2 |= val;
  7261. break;
  7262. #endif
  7263. #if defined(TCCR2A)
  7264. case TIMER2A:
  7265. case TIMER2B:
  7266. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7267. TCCR2B |= val;
  7268. break;
  7269. #endif
  7270. #if defined(TCCR3A)
  7271. case TIMER3A:
  7272. case TIMER3B:
  7273. case TIMER3C:
  7274. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7275. TCCR3B |= val;
  7276. break;
  7277. #endif
  7278. #if defined(TCCR4A)
  7279. case TIMER4A:
  7280. case TIMER4B:
  7281. case TIMER4C:
  7282. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7283. TCCR4B |= val;
  7284. break;
  7285. #endif
  7286. #if defined(TCCR5A)
  7287. case TIMER5A:
  7288. case TIMER5B:
  7289. case TIMER5C:
  7290. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7291. TCCR5B |= val;
  7292. break;
  7293. #endif
  7294. }
  7295. }
  7296. #endif // FAST_PWM_FAN
  7297. void stop() {
  7298. thermalManager.disable_all_heaters();
  7299. if (IsRunning()) {
  7300. Running = false;
  7301. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7302. SERIAL_ERROR_START;
  7303. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7304. LCD_MESSAGEPGM(MSG_STOPPED);
  7305. }
  7306. }
  7307. float calculate_volumetric_multiplier(float diameter) {
  7308. if (!volumetric_enabled || diameter == 0) return 1.0;
  7309. float d2 = diameter * 0.5;
  7310. return 1.0 / (M_PI * d2 * d2);
  7311. }
  7312. void calculate_volumetric_multipliers() {
  7313. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7314. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7315. }