My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the Bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deceleration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. static volatile bool endstop_z_probe_hit = false; // Leaving this in even if Z_PROBE_ENDSTOP isn't defined, keeps code below cleaner. #ifdef it and usage below to save space.
  65. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  66. bool abort_on_endstop_hit = false;
  67. #endif
  68. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  69. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  70. #endif
  71. #if HAS_X_MIN
  72. static bool old_x_min_endstop = false;
  73. #endif
  74. #if HAS_X_MAX
  75. static bool old_x_max_endstop = false;
  76. #endif
  77. #if HAS_Y_MIN
  78. static bool old_y_min_endstop = false;
  79. #endif
  80. #if HAS_Y_MAX
  81. static bool old_y_max_endstop = false;
  82. #endif
  83. static bool old_z_min_endstop = false;
  84. static bool old_z_max_endstop = false;
  85. #ifdef Z_DUAL_ENDSTOPS
  86. static bool old_z2_min_endstop = false;
  87. static bool old_z2_max_endstop = false;
  88. #endif
  89. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  90. static bool old_z_probe_endstop = false;
  91. #endif
  92. static bool check_endstops = true;
  93. volatile long count_position[NUM_AXIS] = { 0 };
  94. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  95. //===========================================================================
  96. //================================ functions ================================
  97. //===========================================================================
  98. #ifdef DUAL_X_CARRIAGE
  99. #define X_APPLY_DIR(v,ALWAYS) \
  100. if (extruder_duplication_enabled || ALWAYS) { \
  101. X_DIR_WRITE(v); \
  102. X2_DIR_WRITE(v); \
  103. } \
  104. else { \
  105. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  106. }
  107. #define X_APPLY_STEP(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_STEP_WRITE(v); \
  110. X2_STEP_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  114. }
  115. #else
  116. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  117. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  118. #endif
  119. #ifdef Y_DUAL_STEPPER_DRIVERS
  120. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  121. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  122. #else
  123. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  124. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  125. #endif
  126. #ifdef Z_DUAL_STEPPER_DRIVERS
  127. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  128. #ifdef Z_DUAL_ENDSTOPS
  129. #define Z_APPLY_STEP(v,Q) \
  130. if (performing_homing) { \
  131. if (Z_HOME_DIR > 0) {\
  132. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  133. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  134. } else {\
  135. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  136. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  137. } \
  138. } else { \
  139. Z_STEP_WRITE(v); \
  140. Z2_STEP_WRITE(v); \
  141. }
  142. #else
  143. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  144. #endif
  145. #else
  146. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  147. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  148. #endif
  149. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  150. // intRes = intIn1 * intIn2 >> 16
  151. // uses:
  152. // r26 to store 0
  153. // r27 to store the byte 1 of the 24 bit result
  154. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  155. asm volatile ( \
  156. "clr r26 \n\t" \
  157. "mul %A1, %B2 \n\t" \
  158. "movw %A0, r0 \n\t" \
  159. "mul %A1, %A2 \n\t" \
  160. "add %A0, r1 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "lsr r0 \n\t" \
  163. "adc %A0, r26 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "clr r1 \n\t" \
  166. : \
  167. "=&r" (intRes) \
  168. : \
  169. "d" (charIn1), \
  170. "d" (intIn2) \
  171. : \
  172. "r26" \
  173. )
  174. // intRes = longIn1 * longIn2 >> 24
  175. // uses:
  176. // r26 to store 0
  177. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  178. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  179. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  180. // B0 A0 are bits 24-39 and are the returned value
  181. // C1 B1 A1 is longIn1
  182. // D2 C2 B2 A2 is longIn2
  183. //
  184. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  185. asm volatile ( \
  186. "clr r26 \n\t" \
  187. "mul %A1, %B2 \n\t" \
  188. "mov r27, r1 \n\t" \
  189. "mul %B1, %C2 \n\t" \
  190. "movw %A0, r0 \n\t" \
  191. "mul %C1, %C2 \n\t" \
  192. "add %B0, r0 \n\t" \
  193. "mul %C1, %B2 \n\t" \
  194. "add %A0, r0 \n\t" \
  195. "adc %B0, r1 \n\t" \
  196. "mul %A1, %C2 \n\t" \
  197. "add r27, r0 \n\t" \
  198. "adc %A0, r1 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "mul %B1, %B2 \n\t" \
  201. "add r27, r0 \n\t" \
  202. "adc %A0, r1 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %C1, %A2 \n\t" \
  205. "add r27, r0 \n\t" \
  206. "adc %A0, r1 \n\t" \
  207. "adc %B0, r26 \n\t" \
  208. "mul %B1, %A2 \n\t" \
  209. "add r27, r1 \n\t" \
  210. "adc %A0, r26 \n\t" \
  211. "adc %B0, r26 \n\t" \
  212. "lsr r27 \n\t" \
  213. "adc %A0, r26 \n\t" \
  214. "adc %B0, r26 \n\t" \
  215. "mul %D2, %A1 \n\t" \
  216. "add %A0, r0 \n\t" \
  217. "adc %B0, r1 \n\t" \
  218. "mul %D2, %B1 \n\t" \
  219. "add %B0, r0 \n\t" \
  220. "clr r1 \n\t" \
  221. : \
  222. "=&r" (intRes) \
  223. : \
  224. "d" (longIn1), \
  225. "d" (longIn2) \
  226. : \
  227. "r26" , "r27" \
  228. )
  229. // Some useful constants
  230. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  231. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  232. void endstops_hit_on_purpose() {
  233. endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false; // #ifdef endstop_z_probe_hit = to save space if needed.
  234. }
  235. void checkHitEndstops() {
  236. if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) { // #ifdef || endstop_z_probe_hit to save space if needed.
  237. SERIAL_ECHO_START;
  238. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  239. if (endstop_x_hit) {
  240. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  242. }
  243. if (endstop_y_hit) {
  244. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  245. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  246. }
  247. if (endstop_z_hit) {
  248. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  249. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  250. }
  251. #ifdef Z_PROBE_ENDSTOP
  252. if (endstop_z_probe_hit) {
  253. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  254. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  255. }
  256. #endif
  257. SERIAL_EOL;
  258. endstops_hit_on_purpose();
  259. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  260. if (abort_on_endstop_hit) {
  261. card.sdprinting = false;
  262. card.closefile();
  263. quickStop();
  264. setTargetHotend0(0);
  265. setTargetHotend1(0);
  266. setTargetHotend2(0);
  267. setTargetHotend3(0);
  268. setTargetBed(0);
  269. }
  270. #endif
  271. }
  272. }
  273. void enable_endstops(bool check) { check_endstops = check; }
  274. // __________________________
  275. // /| |\ _________________ ^
  276. // / | | \ /| |\ |
  277. // / | | \ / | | \ s
  278. // / | | | | | \ p
  279. // / | | | | | \ e
  280. // +-----+------------------------+---+--+---------------+----+ e
  281. // | BLOCK 1 | BLOCK 2 | d
  282. //
  283. // time ----->
  284. //
  285. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  286. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  287. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  288. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  289. void st_wake_up() {
  290. // TCNT1 = 0;
  291. ENABLE_STEPPER_DRIVER_INTERRUPT();
  292. }
  293. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  294. unsigned short timer;
  295. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  296. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  297. step_rate = (step_rate >> 2) & 0x3fff;
  298. step_loops = 4;
  299. }
  300. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  301. step_rate = (step_rate >> 1) & 0x7fff;
  302. step_loops = 2;
  303. }
  304. else {
  305. step_loops = 1;
  306. }
  307. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  308. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  309. if (step_rate >= (8 * 256)) { // higher step rate
  310. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  311. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  312. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  313. MultiU16X8toH16(timer, tmp_step_rate, gain);
  314. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  315. }
  316. else { // lower step rates
  317. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  318. table_address += ((step_rate)>>1) & 0xfffc;
  319. timer = (unsigned short)pgm_read_word_near(table_address);
  320. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  321. }
  322. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  323. return timer;
  324. }
  325. // Initializes the trapezoid generator from the current block. Called whenever a new
  326. // block begins.
  327. FORCE_INLINE void trapezoid_generator_reset() {
  328. #ifdef ADVANCE
  329. advance = current_block->initial_advance;
  330. final_advance = current_block->final_advance;
  331. // Do E steps + advance steps
  332. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  333. old_advance = advance >>8;
  334. #endif
  335. deceleration_time = 0;
  336. // step_rate to timer interval
  337. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  338. // make a note of the number of step loops required at nominal speed
  339. step_loops_nominal = step_loops;
  340. acc_step_rate = current_block->initial_rate;
  341. acceleration_time = calc_timer(acc_step_rate);
  342. OCR1A = acceleration_time;
  343. // SERIAL_ECHO_START;
  344. // SERIAL_ECHOPGM("advance :");
  345. // SERIAL_ECHO(current_block->advance/256.0);
  346. // SERIAL_ECHOPGM("advance rate :");
  347. // SERIAL_ECHO(current_block->advance_rate/256.0);
  348. // SERIAL_ECHOPGM("initial advance :");
  349. // SERIAL_ECHO(current_block->initial_advance/256.0);
  350. // SERIAL_ECHOPGM("final advance :");
  351. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  352. }
  353. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  354. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  355. ISR(TIMER1_COMPA_vect) {
  356. if(cleaning_buffer_counter)
  357. {
  358. current_block = NULL;
  359. plan_discard_current_block();
  360. #ifdef SD_FINISHED_RELEASECOMMAND
  361. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  362. #endif
  363. cleaning_buffer_counter--;
  364. OCR1A = 200;
  365. return;
  366. }
  367. // If there is no current block, attempt to pop one from the buffer
  368. if (!current_block) {
  369. // Anything in the buffer?
  370. current_block = plan_get_current_block();
  371. if (current_block) {
  372. current_block->busy = true;
  373. trapezoid_generator_reset();
  374. counter_x = -(current_block->step_event_count >> 1);
  375. counter_y = counter_z = counter_e = counter_x;
  376. step_events_completed = 0;
  377. #ifdef Z_LATE_ENABLE
  378. if (current_block->steps[Z_AXIS] > 0) {
  379. enable_z();
  380. OCR1A = 2000; //1ms wait
  381. return;
  382. }
  383. #endif
  384. // #ifdef ADVANCE
  385. // e_steps[current_block->active_extruder] = 0;
  386. // #endif
  387. }
  388. else {
  389. OCR1A = 2000; // 1kHz.
  390. }
  391. }
  392. if (current_block != NULL) {
  393. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  394. out_bits = current_block->direction_bits;
  395. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  396. if (TEST(out_bits, X_AXIS)) {
  397. X_APPLY_DIR(INVERT_X_DIR,0);
  398. count_direction[X_AXIS] = -1;
  399. }
  400. else {
  401. X_APPLY_DIR(!INVERT_X_DIR,0);
  402. count_direction[X_AXIS] = 1;
  403. }
  404. if (TEST(out_bits, Y_AXIS)) {
  405. Y_APPLY_DIR(INVERT_Y_DIR,0);
  406. count_direction[Y_AXIS] = -1;
  407. }
  408. else {
  409. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  410. count_direction[Y_AXIS] = 1;
  411. }
  412. #define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
  413. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  414. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  415. #define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
  416. #define _AXIS(AXIS) AXIS ##_AXIS
  417. #define _ENDSTOP_HIT(axis) endstop_## axis ##_hit
  418. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  419. bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
  420. if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  421. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  422. _ENDSTOP_HIT(axis) = true; \
  423. step_events_completed = current_block->step_event_count; \
  424. } \
  425. _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
  426. // Check X and Y endstops
  427. if (check_endstops) {
  428. #ifdef COREXY
  429. // Head direction in -X axis for CoreXY bots.
  430. // If DeltaX == -DeltaY, the movement is only in Y axis
  431. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  432. if (TEST(out_bits, X_HEAD))
  433. #else
  434. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  435. #endif
  436. { // -direction
  437. #ifdef DUAL_X_CARRIAGE
  438. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  439. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  440. #endif
  441. {
  442. #if HAS_X_MIN
  443. UPDATE_ENDSTOP(x, X, min, MIN);
  444. #endif
  445. }
  446. }
  447. else { // +direction
  448. #ifdef DUAL_X_CARRIAGE
  449. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  450. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  451. #endif
  452. {
  453. #if HAS_X_MAX
  454. UPDATE_ENDSTOP(x, X, max, MAX);
  455. #endif
  456. }
  457. }
  458. #ifdef COREXY
  459. }
  460. // Head direction in -Y axis for CoreXY bots.
  461. // If DeltaX == DeltaY, the movement is only in X axis
  462. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  463. if (TEST(out_bits, Y_HEAD))
  464. #else
  465. if (TEST(out_bits, Y_AXIS)) // -direction
  466. #endif
  467. { // -direction
  468. #if HAS_Y_MIN
  469. UPDATE_ENDSTOP(y, Y, min, MIN);
  470. #endif
  471. }
  472. else { // +direction
  473. #if HAS_Y_MAX
  474. UPDATE_ENDSTOP(y, Y, max, MAX);
  475. #endif
  476. }
  477. #ifdef COREXY
  478. }
  479. #endif
  480. }
  481. if (TEST(out_bits, Z_AXIS)) { // -direction
  482. Z_APPLY_DIR(INVERT_Z_DIR,0);
  483. count_direction[Z_AXIS] = -1;
  484. if (check_endstops) {
  485. #if HAS_Z_MIN
  486. #ifdef Z_DUAL_ENDSTOPS
  487. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  488. z2_min_endstop =
  489. #if HAS_Z2_MIN
  490. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  491. #else
  492. z_min_endstop
  493. #endif
  494. ;
  495. bool z_min_both = z_min_endstop && old_z_min_endstop,
  496. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  497. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  498. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  499. endstop_z_hit = true;
  500. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  501. step_events_completed = current_block->step_event_count;
  502. }
  503. old_z_min_endstop = z_min_endstop;
  504. old_z2_min_endstop = z2_min_endstop;
  505. #else // !Z_DUAL_ENDSTOPS
  506. UPDATE_ENDSTOP(z, Z, min, MIN);
  507. #endif // !Z_DUAL_ENDSTOPS
  508. #endif // Z_MIN_PIN
  509. #ifdef Z_PROBE_ENDSTOP
  510. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  511. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  512. if(z_probe_endstop && old_z_probe_endstop)
  513. {
  514. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  515. endstop_z_probe_hit=true;
  516. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  517. }
  518. old_z_probe_endstop = z_probe_endstop;
  519. #endif
  520. } // check_endstops
  521. }
  522. else { // +direction
  523. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  524. count_direction[Z_AXIS] = 1;
  525. if (check_endstops) {
  526. #if HAS_Z_MAX
  527. #ifdef Z_DUAL_ENDSTOPS
  528. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  529. z2_max_endstop =
  530. #if HAS_Z2_MAX
  531. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  532. #else
  533. z_max_endstop
  534. #endif
  535. ;
  536. bool z_max_both = z_max_endstop && old_z_max_endstop,
  537. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  538. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  539. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  540. endstop_z_hit = true;
  541. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  542. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  543. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  544. step_events_completed = current_block->step_event_count;
  545. }
  546. old_z_max_endstop = z_max_endstop;
  547. old_z2_max_endstop = z2_max_endstop;
  548. #else // !Z_DUAL_ENDSTOPS
  549. UPDATE_ENDSTOP(z, Z, max, MAX);
  550. #endif // !Z_DUAL_ENDSTOPS
  551. #endif // Z_MAX_PIN
  552. #ifdef Z_PROBE_ENDSTOP
  553. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  554. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  555. if(z_probe_endstop && old_z_probe_endstop)
  556. {
  557. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  558. endstop_z_probe_hit=true;
  559. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  560. }
  561. old_z_probe_endstop = z_probe_endstop;
  562. #endif
  563. } // check_endstops
  564. } // +direction
  565. #ifndef ADVANCE
  566. if (TEST(out_bits, E_AXIS)) { // -direction
  567. REV_E_DIR();
  568. count_direction[E_AXIS] = -1;
  569. }
  570. else { // +direction
  571. NORM_E_DIR();
  572. count_direction[E_AXIS] = 1;
  573. }
  574. #endif //!ADVANCE
  575. // Take multiple steps per interrupt (For high speed moves)
  576. for (int8_t i = 0; i < step_loops; i++) {
  577. #ifndef AT90USB
  578. MSerial.checkRx(); // Check for serial chars.
  579. #endif
  580. #ifdef ADVANCE
  581. counter_e += current_block->steps[E_AXIS];
  582. if (counter_e > 0) {
  583. counter_e -= current_block->step_event_count;
  584. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  585. }
  586. #endif //ADVANCE
  587. #define _COUNTER(axis) counter_## axis
  588. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  589. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  590. #define STEP_ADD(axis, AXIS) \
  591. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  592. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  593. STEP_ADD(x,X);
  594. STEP_ADD(y,Y);
  595. STEP_ADD(z,Z);
  596. #ifndef ADVANCE
  597. STEP_ADD(e,E);
  598. #endif
  599. #define STEP_IF_COUNTER(axis, AXIS) \
  600. if (_COUNTER(axis) > 0) { \
  601. _COUNTER(axis) -= current_block->step_event_count; \
  602. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  603. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  604. }
  605. STEP_IF_COUNTER(x, X);
  606. STEP_IF_COUNTER(y, Y);
  607. STEP_IF_COUNTER(z, Z);
  608. #ifndef ADVANCE
  609. STEP_IF_COUNTER(e, E);
  610. #endif
  611. step_events_completed++;
  612. if (step_events_completed >= current_block->step_event_count) break;
  613. }
  614. // Calculate new timer value
  615. unsigned short timer;
  616. unsigned short step_rate;
  617. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  618. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  619. acc_step_rate += current_block->initial_rate;
  620. // upper limit
  621. if (acc_step_rate > current_block->nominal_rate)
  622. acc_step_rate = current_block->nominal_rate;
  623. // step_rate to timer interval
  624. timer = calc_timer(acc_step_rate);
  625. OCR1A = timer;
  626. acceleration_time += timer;
  627. #ifdef ADVANCE
  628. for(int8_t i=0; i < step_loops; i++) {
  629. advance += advance_rate;
  630. }
  631. //if (advance > current_block->advance) advance = current_block->advance;
  632. // Do E steps + advance steps
  633. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  634. old_advance = advance >>8;
  635. #endif
  636. }
  637. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  638. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  639. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  640. step_rate = current_block->final_rate;
  641. }
  642. else {
  643. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  644. }
  645. // lower limit
  646. if (step_rate < current_block->final_rate)
  647. step_rate = current_block->final_rate;
  648. // step_rate to timer interval
  649. timer = calc_timer(step_rate);
  650. OCR1A = timer;
  651. deceleration_time += timer;
  652. #ifdef ADVANCE
  653. for(int8_t i=0; i < step_loops; i++) {
  654. advance -= advance_rate;
  655. }
  656. if (advance < final_advance) advance = final_advance;
  657. // Do E steps + advance steps
  658. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  659. old_advance = advance >>8;
  660. #endif //ADVANCE
  661. }
  662. else {
  663. OCR1A = OCR1A_nominal;
  664. // ensure we're running at the correct step rate, even if we just came off an acceleration
  665. step_loops = step_loops_nominal;
  666. }
  667. // If current block is finished, reset pointer
  668. if (step_events_completed >= current_block->step_event_count) {
  669. current_block = NULL;
  670. plan_discard_current_block();
  671. }
  672. }
  673. }
  674. #ifdef ADVANCE
  675. unsigned char old_OCR0A;
  676. // Timer interrupt for E. e_steps is set in the main routine;
  677. // Timer 0 is shared with millies
  678. ISR(TIMER0_COMPA_vect)
  679. {
  680. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  681. OCR0A = old_OCR0A;
  682. // Set E direction (Depends on E direction + advance)
  683. for(unsigned char i=0; i<4;i++) {
  684. if (e_steps[0] != 0) {
  685. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  686. if (e_steps[0] < 0) {
  687. E0_DIR_WRITE(INVERT_E0_DIR);
  688. e_steps[0]++;
  689. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  690. }
  691. else if (e_steps[0] > 0) {
  692. E0_DIR_WRITE(!INVERT_E0_DIR);
  693. e_steps[0]--;
  694. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  695. }
  696. }
  697. #if EXTRUDERS > 1
  698. if (e_steps[1] != 0) {
  699. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  700. if (e_steps[1] < 0) {
  701. E1_DIR_WRITE(INVERT_E1_DIR);
  702. e_steps[1]++;
  703. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  704. }
  705. else if (e_steps[1] > 0) {
  706. E1_DIR_WRITE(!INVERT_E1_DIR);
  707. e_steps[1]--;
  708. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  709. }
  710. }
  711. #endif
  712. #if EXTRUDERS > 2
  713. if (e_steps[2] != 0) {
  714. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  715. if (e_steps[2] < 0) {
  716. E2_DIR_WRITE(INVERT_E2_DIR);
  717. e_steps[2]++;
  718. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  719. }
  720. else if (e_steps[2] > 0) {
  721. E2_DIR_WRITE(!INVERT_E2_DIR);
  722. e_steps[2]--;
  723. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  724. }
  725. }
  726. #endif
  727. #if EXTRUDERS > 3
  728. if (e_steps[3] != 0) {
  729. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  730. if (e_steps[3] < 0) {
  731. E3_DIR_WRITE(INVERT_E3_DIR);
  732. e_steps[3]++;
  733. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  734. }
  735. else if (e_steps[3] > 0) {
  736. E3_DIR_WRITE(!INVERT_E3_DIR);
  737. e_steps[3]--;
  738. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  739. }
  740. }
  741. #endif
  742. }
  743. }
  744. #endif // ADVANCE
  745. void st_init() {
  746. digipot_init(); //Initialize Digipot Motor Current
  747. microstep_init(); //Initialize Microstepping Pins
  748. // initialise TMC Steppers
  749. #ifdef HAVE_TMCDRIVER
  750. tmc_init();
  751. #endif
  752. // initialise L6470 Steppers
  753. #ifdef HAVE_L6470DRIVER
  754. L6470_init();
  755. #endif
  756. // Initialize Dir Pins
  757. #if HAS_X_DIR
  758. X_DIR_INIT;
  759. #endif
  760. #if HAS_X2_DIR
  761. X2_DIR_INIT;
  762. #endif
  763. #if HAS_Y_DIR
  764. Y_DIR_INIT;
  765. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  766. Y2_DIR_INIT;
  767. #endif
  768. #endif
  769. #if HAS_Z_DIR
  770. Z_DIR_INIT;
  771. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  772. Z2_DIR_INIT;
  773. #endif
  774. #endif
  775. #if HAS_E0_DIR
  776. E0_DIR_INIT;
  777. #endif
  778. #if HAS_E1_DIR
  779. E1_DIR_INIT;
  780. #endif
  781. #if HAS_E2_DIR
  782. E2_DIR_INIT;
  783. #endif
  784. #if HAS_E3_DIR
  785. E3_DIR_INIT;
  786. #endif
  787. //Initialize Enable Pins - steppers default to disabled.
  788. #if HAS_X_ENABLE
  789. X_ENABLE_INIT;
  790. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  791. #endif
  792. #if HAS_X2_ENABLE
  793. X2_ENABLE_INIT;
  794. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  795. #endif
  796. #if HAS_Y_ENABLE
  797. Y_ENABLE_INIT;
  798. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  799. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  800. Y2_ENABLE_INIT;
  801. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  802. #endif
  803. #endif
  804. #if HAS_Z_ENABLE
  805. Z_ENABLE_INIT;
  806. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  807. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  808. Z2_ENABLE_INIT;
  809. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  810. #endif
  811. #endif
  812. #if HAS_E0_ENABLE
  813. E0_ENABLE_INIT;
  814. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  815. #endif
  816. #if HAS_E1_ENABLE
  817. E1_ENABLE_INIT;
  818. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if HAS_E2_ENABLE
  821. E2_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if HAS_E3_ENABLE
  825. E3_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  827. #endif
  828. //endstops and pullups
  829. #if HAS_X_MIN
  830. SET_INPUT(X_MIN_PIN);
  831. #ifdef ENDSTOPPULLUP_XMIN
  832. WRITE(X_MIN_PIN,HIGH);
  833. #endif
  834. #endif
  835. #if HAS_Y_MIN
  836. SET_INPUT(Y_MIN_PIN);
  837. #ifdef ENDSTOPPULLUP_YMIN
  838. WRITE(Y_MIN_PIN,HIGH);
  839. #endif
  840. #endif
  841. #if HAS_Z_MIN
  842. SET_INPUT(Z_MIN_PIN);
  843. #ifdef ENDSTOPPULLUP_ZMIN
  844. WRITE(Z_MIN_PIN,HIGH);
  845. #endif
  846. #endif
  847. #if HAS_X_MAX
  848. SET_INPUT(X_MAX_PIN);
  849. #ifdef ENDSTOPPULLUP_XMAX
  850. WRITE(X_MAX_PIN,HIGH);
  851. #endif
  852. #endif
  853. #if HAS_Y_MAX
  854. SET_INPUT(Y_MAX_PIN);
  855. #ifdef ENDSTOPPULLUP_YMAX
  856. WRITE(Y_MAX_PIN,HIGH);
  857. #endif
  858. #endif
  859. #if HAS_Z_MAX
  860. SET_INPUT(Z_MAX_PIN);
  861. #ifdef ENDSTOPPULLUP_ZMAX
  862. WRITE(Z_MAX_PIN,HIGH);
  863. #endif
  864. #endif
  865. #if HAS_Z2_MAX
  866. SET_INPUT(Z2_MAX_PIN);
  867. #ifdef ENDSTOPPULLUP_ZMAX
  868. WRITE(Z2_MAX_PIN,HIGH);
  869. #endif
  870. #endif
  871. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  872. SET_INPUT(Z_PROBE_PIN);
  873. #ifdef ENDSTOPPULLUP_ZPROBE
  874. WRITE(Z_PROBE_PIN,HIGH);
  875. #endif
  876. #endif
  877. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  878. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  879. #define _DISABLE(axis) disable_## axis()
  880. #define AXIS_INIT(axis, AXIS, PIN) \
  881. _STEP_INIT(AXIS); \
  882. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  883. _DISABLE(axis)
  884. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  885. // Initialize Step Pins
  886. #if HAS_X_STEP
  887. AXIS_INIT(x, X, X);
  888. #endif
  889. #if HAS_X2_STEP
  890. AXIS_INIT(x, X2, X);
  891. #endif
  892. #if HAS_Y_STEP
  893. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  894. Y2_STEP_INIT;
  895. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  896. #endif
  897. AXIS_INIT(y, Y, Y);
  898. #endif
  899. #if HAS_Z_STEP
  900. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  901. Z2_STEP_INIT;
  902. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  903. #endif
  904. AXIS_INIT(z, Z, Z);
  905. #endif
  906. #if HAS_E0_STEP
  907. E_AXIS_INIT(0);
  908. #endif
  909. #if HAS_E1_STEP
  910. E_AXIS_INIT(1);
  911. #endif
  912. #if HAS_E2_STEP
  913. E_AXIS_INIT(2);
  914. #endif
  915. #if HAS_E3_STEP
  916. E_AXIS_INIT(3);
  917. #endif
  918. // waveform generation = 0100 = CTC
  919. TCCR1B &= ~BIT(WGM13);
  920. TCCR1B |= BIT(WGM12);
  921. TCCR1A &= ~BIT(WGM11);
  922. TCCR1A &= ~BIT(WGM10);
  923. // output mode = 00 (disconnected)
  924. TCCR1A &= ~(3<<COM1A0);
  925. TCCR1A &= ~(3<<COM1B0);
  926. // Set the timer pre-scaler
  927. // Generally we use a divider of 8, resulting in a 2MHz timer
  928. // frequency on a 16MHz MCU. If you are going to change this, be
  929. // sure to regenerate speed_lookuptable.h with
  930. // create_speed_lookuptable.py
  931. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  932. OCR1A = 0x4000;
  933. TCNT1 = 0;
  934. ENABLE_STEPPER_DRIVER_INTERRUPT();
  935. #ifdef ADVANCE
  936. #if defined(TCCR0A) && defined(WGM01)
  937. TCCR0A &= ~BIT(WGM01);
  938. TCCR0A &= ~BIT(WGM00);
  939. #endif
  940. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  941. TIMSK0 |= BIT(OCIE0A);
  942. #endif //ADVANCE
  943. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  944. sei();
  945. }
  946. // Block until all buffered steps are executed
  947. void st_synchronize() {
  948. while (blocks_queued()) {
  949. manage_heater();
  950. manage_inactivity();
  951. lcd_update();
  952. }
  953. }
  954. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  955. CRITICAL_SECTION_START;
  956. count_position[X_AXIS] = x;
  957. count_position[Y_AXIS] = y;
  958. count_position[Z_AXIS] = z;
  959. count_position[E_AXIS] = e;
  960. CRITICAL_SECTION_END;
  961. }
  962. void st_set_e_position(const long &e) {
  963. CRITICAL_SECTION_START;
  964. count_position[E_AXIS] = e;
  965. CRITICAL_SECTION_END;
  966. }
  967. long st_get_position(uint8_t axis) {
  968. long count_pos;
  969. CRITICAL_SECTION_START;
  970. count_pos = count_position[axis];
  971. CRITICAL_SECTION_END;
  972. return count_pos;
  973. }
  974. #ifdef ENABLE_AUTO_BED_LEVELING
  975. float st_get_position_mm(uint8_t axis) {
  976. float steper_position_in_steps = st_get_position(axis);
  977. return steper_position_in_steps / axis_steps_per_unit[axis];
  978. }
  979. #endif // ENABLE_AUTO_BED_LEVELING
  980. void finishAndDisableSteppers() {
  981. st_synchronize();
  982. disable_all_steppers();
  983. }
  984. void quickStop() {
  985. cleaning_buffer_counter = 5000;
  986. DISABLE_STEPPER_DRIVER_INTERRUPT();
  987. while (blocks_queued()) plan_discard_current_block();
  988. current_block = NULL;
  989. ENABLE_STEPPER_DRIVER_INTERRUPT();
  990. }
  991. #ifdef BABYSTEPPING
  992. // MUST ONLY BE CALLED BY AN ISR,
  993. // No other ISR should ever interrupt this!
  994. void babystep(const uint8_t axis, const bool direction) {
  995. #define _ENABLE(axis) enable_## axis()
  996. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  997. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  998. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  999. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1000. _ENABLE(axis); \
  1001. uint8_t old_pin = _READ_DIR(AXIS); \
  1002. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1003. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1004. delayMicroseconds(2); \
  1005. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1006. _APPLY_DIR(AXIS, old_pin); \
  1007. }
  1008. switch(axis) {
  1009. case X_AXIS:
  1010. BABYSTEP_AXIS(x, X, false);
  1011. break;
  1012. case Y_AXIS:
  1013. BABYSTEP_AXIS(y, Y, false);
  1014. break;
  1015. case Z_AXIS: {
  1016. #ifndef DELTA
  1017. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1018. #else // DELTA
  1019. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1020. enable_x();
  1021. enable_y();
  1022. enable_z();
  1023. uint8_t old_x_dir_pin = X_DIR_READ,
  1024. old_y_dir_pin = Y_DIR_READ,
  1025. old_z_dir_pin = Z_DIR_READ;
  1026. //setup new step
  1027. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1028. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1029. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1030. //perform step
  1031. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1032. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1033. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1034. delayMicroseconds(2);
  1035. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1036. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1037. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1038. //get old pin state back.
  1039. X_DIR_WRITE(old_x_dir_pin);
  1040. Y_DIR_WRITE(old_y_dir_pin);
  1041. Z_DIR_WRITE(old_z_dir_pin);
  1042. #endif
  1043. } break;
  1044. default: break;
  1045. }
  1046. }
  1047. #endif //BABYSTEPPING
  1048. // From Arduino DigitalPotControl example
  1049. void digitalPotWrite(int address, int value) {
  1050. #if HAS_DIGIPOTSS
  1051. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1052. SPI.transfer(address); // send in the address and value via SPI:
  1053. SPI.transfer(value);
  1054. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1055. //delay(10);
  1056. #endif
  1057. }
  1058. // Initialize Digipot Motor Current
  1059. void digipot_init() {
  1060. #if HAS_DIGIPOTSS
  1061. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1062. SPI.begin();
  1063. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1064. for (int i = 0; i <= 4; i++) {
  1065. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1066. digipot_current(i,digipot_motor_current[i]);
  1067. }
  1068. #endif
  1069. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1070. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1071. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1072. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1073. digipot_current(0, motor_current_setting[0]);
  1074. digipot_current(1, motor_current_setting[1]);
  1075. digipot_current(2, motor_current_setting[2]);
  1076. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1077. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1078. #endif
  1079. }
  1080. void digipot_current(uint8_t driver, int current) {
  1081. #if HAS_DIGIPOTSS
  1082. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1083. digitalPotWrite(digipot_ch[driver], current);
  1084. #endif
  1085. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1086. switch(driver) {
  1087. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1088. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1089. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1090. }
  1091. #endif
  1092. }
  1093. void microstep_init() {
  1094. #if HAS_MICROSTEPS_E1
  1095. pinMode(E1_MS1_PIN,OUTPUT);
  1096. pinMode(E1_MS2_PIN,OUTPUT);
  1097. #endif
  1098. #if HAS_MICROSTEPS
  1099. pinMode(X_MS1_PIN,OUTPUT);
  1100. pinMode(X_MS2_PIN,OUTPUT);
  1101. pinMode(Y_MS1_PIN,OUTPUT);
  1102. pinMode(Y_MS2_PIN,OUTPUT);
  1103. pinMode(Z_MS1_PIN,OUTPUT);
  1104. pinMode(Z_MS2_PIN,OUTPUT);
  1105. pinMode(E0_MS1_PIN,OUTPUT);
  1106. pinMode(E0_MS2_PIN,OUTPUT);
  1107. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1108. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1109. microstep_mode(i, microstep_modes[i]);
  1110. #endif
  1111. }
  1112. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1113. if (ms1 >= 0) switch(driver) {
  1114. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1115. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1116. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1117. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1118. #if HAS_MICROSTEPS_E1
  1119. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1120. #endif
  1121. }
  1122. if (ms2 >= 0) switch(driver) {
  1123. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1124. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1125. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1126. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1127. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1128. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1129. #endif
  1130. }
  1131. }
  1132. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1133. switch(stepping_mode) {
  1134. case 1: microstep_ms(driver,MICROSTEP1); break;
  1135. case 2: microstep_ms(driver,MICROSTEP2); break;
  1136. case 4: microstep_ms(driver,MICROSTEP4); break;
  1137. case 8: microstep_ms(driver,MICROSTEP8); break;
  1138. case 16: microstep_ms(driver,MICROSTEP16); break;
  1139. }
  1140. }
  1141. void microstep_readings() {
  1142. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1143. SERIAL_PROTOCOLPGM("X: ");
  1144. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1145. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1146. SERIAL_PROTOCOLPGM("Y: ");
  1147. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1148. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1149. SERIAL_PROTOCOLPGM("Z: ");
  1150. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1151. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1152. SERIAL_PROTOCOLPGM("E0: ");
  1153. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1154. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1155. #if HAS_MICROSTEPS_E1
  1156. SERIAL_PROTOCOLPGM("E1: ");
  1157. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1158. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1159. #endif
  1160. }
  1161. #ifdef Z_DUAL_ENDSTOPS
  1162. void In_Homing_Process(bool state) { performing_homing = state; }
  1163. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1164. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1165. #endif