My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 20KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "types.h"
  33. #include "enum.h"
  34. #include "Marlin.h"
  35. #if HAS_ABL
  36. #include "vector_3.h"
  37. #endif
  38. enum BlockFlagBit {
  39. // Recalculate trapezoids on entry junction. For optimization.
  40. BLOCK_BIT_RECALCULATE,
  41. // Nominal speed always reached.
  42. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  43. // from a safe speed (in consideration of jerking from zero speed).
  44. BLOCK_BIT_NOMINAL_LENGTH,
  45. // Start from a halt at the start of this block, respecting the maximum allowed jerk.
  46. BLOCK_BIT_START_FROM_FULL_HALT,
  47. // The block is busy
  48. BLOCK_BIT_BUSY,
  49. // The block is segment 2+ of a longer move
  50. BLOCK_BIT_CONTINUED
  51. };
  52. enum BlockFlag {
  53. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  54. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  55. BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
  56. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY),
  57. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
  58. };
  59. /**
  60. * struct block_t
  61. *
  62. * A single entry in the planner buffer.
  63. * Tracks linear movement over multiple axes.
  64. *
  65. * The "nominal" values are as-specified by gcode, and
  66. * may never actually be reached due to acceleration limits.
  67. */
  68. typedef struct {
  69. uint8_t flag; // Block flags (See BlockFlag enum above)
  70. unsigned char active_extruder; // The extruder to move (if E move)
  71. // Fields used by the Bresenham algorithm for tracing the line
  72. int32_t steps[NUM_AXIS]; // Step count along each axis
  73. uint32_t step_event_count; // The number of step events required to complete this block
  74. #if ENABLED(MIXING_EXTRUDER)
  75. uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  76. #endif
  77. int32_t accelerate_until, // The index of the step event on which to stop acceleration
  78. decelerate_after, // The index of the step event on which to start decelerating
  79. acceleration_rate; // The acceleration rate used for acceleration calculation
  80. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  81. // Advance extrusion
  82. #if ENABLED(LIN_ADVANCE)
  83. bool use_advance_lead;
  84. uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
  85. #endif
  86. // Fields used by the motion planner to manage acceleration
  87. float nominal_speed, // The nominal speed for this block in mm/sec
  88. entry_speed, // Entry speed at previous-current junction in mm/sec
  89. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  90. millimeters, // The total travel of this block in mm
  91. acceleration; // acceleration mm/sec^2
  92. // Settings for the trapezoid generator
  93. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  94. initial_rate, // The jerk-adjusted step rate at start of block
  95. final_rate, // The minimal rate at exit
  96. acceleration_steps_per_s2; // acceleration steps/sec^2
  97. #if FAN_COUNT > 0
  98. uint16_t fan_speed[FAN_COUNT];
  99. #endif
  100. #if ENABLED(BARICUDA)
  101. uint8_t valve_pressure, e_to_p_pressure;
  102. #endif
  103. uint32_t segment_time_us;
  104. } block_t;
  105. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  106. class Planner {
  107. public:
  108. /**
  109. * A ring buffer of moves described in steps
  110. */
  111. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  112. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  113. block_buffer_tail;
  114. #if ENABLED(DISTINCT_E_FACTORS)
  115. static uint8_t last_extruder; // Respond to extruder change
  116. #endif
  117. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  118. static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
  119. filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  120. volumetric_area_nominal, // Nominal cross-sectional area
  121. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  122. // May be auto-adjusted by a filament width sensor
  123. static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  124. axis_steps_per_mm[XYZE_N],
  125. steps_to_mm[XYZE_N];
  126. static uint32_t max_acceleration_steps_per_s2[XYZE_N],
  127. max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
  128. static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
  129. static float min_feedrate_mm_s,
  130. acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  131. retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  132. travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  133. max_jerk[XYZE], // The largest speed change requiring no acceleration
  134. min_travel_feedrate_mm_s;
  135. #if HAS_LEVELING
  136. static bool leveling_active; // Flag that bed leveling is enabled
  137. #if ABL_PLANAR
  138. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  139. #endif
  140. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  141. static float z_fade_height, inverse_z_fade_height;
  142. #endif
  143. #else
  144. static constexpr bool leveling_active = false;
  145. #endif
  146. #if ENABLED(LIN_ADVANCE)
  147. static float extruder_advance_k, advance_ed_ratio;
  148. #endif
  149. #if ENABLED(SKEW_CORRECTION)
  150. #if ENABLED(SKEW_CORRECTION_GCODE)
  151. static float xy_skew_factor;
  152. #else
  153. static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
  154. #endif
  155. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  156. #if ENABLED(SKEW_CORRECTION_GCODE)
  157. static float xz_skew_factor, yz_skew_factor;
  158. #else
  159. static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
  160. #endif
  161. #else
  162. static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
  163. #endif
  164. #endif
  165. private:
  166. /**
  167. * The current position of the tool in absolute steps
  168. * Recalculated if any axis_steps_per_mm are changed by gcode
  169. */
  170. static int32_t position[NUM_AXIS];
  171. /**
  172. * Speed of previous path line segment
  173. */
  174. static float previous_speed[NUM_AXIS];
  175. /**
  176. * Nominal speed of previous path line segment
  177. */
  178. static float previous_nominal_speed;
  179. /**
  180. * Limit where 64bit math is necessary for acceleration calculation
  181. */
  182. static uint32_t cutoff_long;
  183. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  184. static float last_fade_z;
  185. #endif
  186. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  187. /**
  188. * Counters to manage disabling inactive extruders
  189. */
  190. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  191. #endif // DISABLE_INACTIVE_EXTRUDER
  192. #ifdef XY_FREQUENCY_LIMIT
  193. // Used for the frequency limit
  194. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  195. // Old direction bits. Used for speed calculations
  196. static unsigned char old_direction_bits;
  197. // Segment times (in µs). Used for speed calculations
  198. static uint32_t axis_segment_time_us[2][3];
  199. #endif
  200. #if ENABLED(ULTRA_LCD)
  201. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  202. #endif
  203. public:
  204. /**
  205. * Instance Methods
  206. */
  207. Planner();
  208. void init();
  209. /**
  210. * Static (class) Methods
  211. */
  212. static void reset_acceleration_rates();
  213. static void refresh_positioning();
  214. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  215. e_factor[e] = volumetric_multiplier[e] * flow_percentage[e] * 0.01;
  216. }
  217. // Manage fans, paste pressure, etc.
  218. static void check_axes_activity();
  219. /**
  220. * Number of moves currently in the planner
  221. */
  222. static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  223. static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
  224. // Update multipliers based on new diameter measurements
  225. static void calculate_volumetric_multipliers();
  226. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  227. filament_size[e] = v;
  228. // make sure all extruders have some sane value for the filament size
  229. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  230. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  231. }
  232. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  233. /**
  234. * Get the Z leveling fade factor based on the given Z height,
  235. * re-calculating only when needed.
  236. *
  237. * Returns 1.0 if planner.z_fade_height is 0.0.
  238. * Returns 0.0 if Z is past the specified 'Fade Height'.
  239. */
  240. inline static float fade_scaling_factor_for_z(const float &rz) {
  241. static float z_fade_factor = 1.0;
  242. if (z_fade_height) {
  243. if (rz >= z_fade_height) return 0.0;
  244. if (last_fade_z != rz) {
  245. last_fade_z = rz;
  246. z_fade_factor = 1.0 - rz * inverse_z_fade_height;
  247. }
  248. return z_fade_factor;
  249. }
  250. return 1.0;
  251. }
  252. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
  253. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  254. z_fade_height = zfh > 0 ? zfh : 0;
  255. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  256. force_fade_recalc();
  257. }
  258. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  259. return !z_fade_height || rz < z_fade_height;
  260. }
  261. #else
  262. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  263. UNUSED(rz);
  264. return 1.0;
  265. }
  266. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  267. #endif
  268. #if PLANNER_LEVELING
  269. #define ARG_X float rx
  270. #define ARG_Y float ry
  271. #define ARG_Z float rz
  272. /**
  273. * Apply leveling to transform a cartesian position
  274. * as it will be given to the planner and steppers.
  275. */
  276. static void apply_leveling(float &rx, float &ry, float &rz);
  277. static void apply_leveling(float raw[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  278. static void unapply_leveling(float raw[XYZ]);
  279. #else
  280. #define ARG_X const float &rx
  281. #define ARG_Y const float &ry
  282. #define ARG_Z const float &rz
  283. #endif
  284. /**
  285. * Planner::_buffer_steps
  286. *
  287. * Add a new linear movement to the buffer (in terms of steps).
  288. *
  289. * target - target position in steps units
  290. * fr_mm_s - (target) speed of the move
  291. * extruder - target extruder
  292. */
  293. static void _buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder);
  294. /**
  295. * Planner::_buffer_line
  296. *
  297. * Add a new linear movement to the buffer in axis units.
  298. *
  299. * Leveling and kinematics should be applied ahead of calling this.
  300. *
  301. * a,b,c,e - target positions in mm and/or degrees
  302. * fr_mm_s - (target) speed of the move
  303. * extruder - target extruder
  304. */
  305. static void _buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder);
  306. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  307. /**
  308. * Add a new linear movement to the buffer.
  309. * The target is NOT translated to delta/scara
  310. *
  311. * Leveling will be applied to input on cartesians.
  312. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  313. * (Cartesians may also call buffer_line_kinematic.)
  314. *
  315. * rx,ry,rz,e - target position in mm or degrees
  316. * fr_mm_s - (target) speed of the move (mm/s)
  317. * extruder - target extruder
  318. */
  319. FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  320. #if PLANNER_LEVELING && IS_CARTESIAN
  321. apply_leveling(rx, ry, rz);
  322. #endif
  323. _buffer_line(rx, ry, rz, e, fr_mm_s, extruder);
  324. }
  325. /**
  326. * Add a new linear movement to the buffer.
  327. * The target is cartesian, it's translated to delta/scara if
  328. * needed.
  329. *
  330. * cart - x,y,z,e CARTESIAN target in mm
  331. * fr_mm_s - (target) speed of the move (mm/s)
  332. * extruder - target extruder
  333. */
  334. FORCE_INLINE static void buffer_line_kinematic(const float cart[XYZE], const float &fr_mm_s, const uint8_t extruder) {
  335. #if PLANNER_LEVELING
  336. float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
  337. apply_leveling(raw);
  338. #else
  339. const float * const raw = cart;
  340. #endif
  341. #if IS_KINEMATIC
  342. inverse_kinematics(raw);
  343. _buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder);
  344. #else
  345. _buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder);
  346. #endif
  347. }
  348. /**
  349. * Set the planner.position and individual stepper positions.
  350. * Used by G92, G28, G29, and other procedures.
  351. *
  352. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  353. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  354. *
  355. * Clears previous speed values.
  356. */
  357. FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  358. #if PLANNER_LEVELING && IS_CARTESIAN
  359. apply_leveling(rx, ry, rz);
  360. #endif
  361. _set_position_mm(rx, ry, rz, e);
  362. }
  363. static void set_position_mm_kinematic(const float position[NUM_AXIS]);
  364. static void set_position_mm(const AxisEnum axis, const float &v);
  365. FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
  366. FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
  367. /**
  368. * Sync from the stepper positions. (e.g., after an interrupted move)
  369. */
  370. static void sync_from_steppers();
  371. /**
  372. * Does the buffer have any blocks queued?
  373. */
  374. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  375. /**
  376. * "Discard" the block and "release" the memory.
  377. * Called when the current block is no longer needed.
  378. */
  379. FORCE_INLINE static void discard_current_block() {
  380. if (blocks_queued())
  381. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  382. }
  383. /**
  384. * "Discard" the next block if it's continued.
  385. * Called after an interrupted move to throw away the rest of the move.
  386. */
  387. FORCE_INLINE static bool discard_continued_block() {
  388. const bool discard = blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
  389. if (discard) discard_current_block();
  390. return discard;
  391. }
  392. /**
  393. * The current block. NULL if the buffer is empty.
  394. * This also marks the block as busy.
  395. * WARNING: Called from Stepper ISR context!
  396. */
  397. static block_t* get_current_block() {
  398. if (blocks_queued()) {
  399. block_t * const block = &block_buffer[block_buffer_tail];
  400. #if ENABLED(ULTRA_LCD)
  401. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  402. #endif
  403. SBI(block->flag, BLOCK_BIT_BUSY);
  404. return block;
  405. }
  406. else {
  407. #if ENABLED(ULTRA_LCD)
  408. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  409. #endif
  410. return NULL;
  411. }
  412. }
  413. #if ENABLED(ULTRA_LCD)
  414. static uint16_t block_buffer_runtime() {
  415. CRITICAL_SECTION_START
  416. millis_t bbru = block_buffer_runtime_us;
  417. CRITICAL_SECTION_END
  418. // To translate µs to ms a division by 1000 would be required.
  419. // We introduce 2.4% error here by dividing by 1024.
  420. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  421. bbru >>= 10;
  422. // limit to about a minute.
  423. NOMORE(bbru, 0xFFFFul);
  424. return bbru;
  425. }
  426. static void clear_block_buffer_runtime(){
  427. CRITICAL_SECTION_START
  428. block_buffer_runtime_us = 0;
  429. CRITICAL_SECTION_END
  430. }
  431. #endif
  432. #if ENABLED(AUTOTEMP)
  433. static float autotemp_min, autotemp_max, autotemp_factor;
  434. static bool autotemp_enabled;
  435. static void getHighESpeed();
  436. static void autotemp_M104_M109();
  437. #endif
  438. private:
  439. /**
  440. * Get the index of the next / previous block in the ring buffer
  441. */
  442. static int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  443. static int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  444. /**
  445. * Calculate the distance (not time) it takes to accelerate
  446. * from initial_rate to target_rate using the given acceleration:
  447. */
  448. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  449. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  450. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  451. }
  452. /**
  453. * Return the point at which you must start braking (at the rate of -'accel') if
  454. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  455. * 'final_rate' after traveling 'distance'.
  456. *
  457. * This is used to compute the intersection point between acceleration and deceleration
  458. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  459. */
  460. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  461. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  462. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  463. }
  464. /**
  465. * Calculate the maximum allowable speed at this point, in order
  466. * to reach 'target_velocity' using 'acceleration' within a given
  467. * 'distance'.
  468. */
  469. static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
  470. return SQRT(sq(target_velocity) - 2 * accel * distance);
  471. }
  472. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  473. static void reverse_pass_kernel(block_t* const current, const block_t *next);
  474. static void forward_pass_kernel(const block_t *previous, block_t* const current);
  475. static void reverse_pass();
  476. static void forward_pass();
  477. static void recalculate_trapezoids();
  478. static void recalculate();
  479. };
  480. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  481. extern Planner planner;
  482. #endif // PLANNER_H