My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 153KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #endif
  194. #endif
  195. };
  196. bool volumetric_enabled = false;
  197. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  198. #if EXTRUDERS > 1
  199. , DEFAULT_NOMINAL_FILAMENT_DIA
  200. #if EXTRUDERS > 2
  201. , DEFAULT_NOMINAL_FILAMENT_DIA
  202. #endif
  203. #endif
  204. };
  205. float volumetric_multiplier[EXTRUDERS] = {1.0
  206. #if EXTRUDERS > 1
  207. , 1.0
  208. #if EXTRUDERS > 2
  209. , 1.0
  210. #endif
  211. #endif
  212. };
  213. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  214. float add_homing[3]={0,0,0};
  215. #ifdef DELTA
  216. float endstop_adj[3]={0,0,0};
  217. #endif
  218. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  219. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  220. bool axis_known_position[3] = {false, false, false};
  221. float zprobe_zoffset;
  222. // Extruder offset
  223. #if EXTRUDERS > 1
  224. #ifndef DUAL_X_CARRIAGE
  225. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  226. #else
  227. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  228. #endif
  229. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  230. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  231. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  232. #endif
  233. };
  234. #endif
  235. uint8_t active_extruder = 0;
  236. int fanSpeed=0;
  237. #ifdef SERVO_ENDSTOPS
  238. int servo_endstops[] = SERVO_ENDSTOPS;
  239. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  240. #endif
  241. #ifdef BARICUDA
  242. int ValvePressure=0;
  243. int EtoPPressure=0;
  244. #endif
  245. #ifdef FWRETRACT
  246. bool autoretract_enabled=false;
  247. bool retracted[EXTRUDERS]={false
  248. #if EXTRUDERS > 1
  249. , false
  250. #if EXTRUDERS > 2
  251. , false
  252. #endif
  253. #endif
  254. };
  255. bool retracted_swap[EXTRUDERS]={false
  256. #if EXTRUDERS > 1
  257. , false
  258. #if EXTRUDERS > 2
  259. , false
  260. #endif
  261. #endif
  262. };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif
  271. #ifdef ULTIPANEL
  272. #ifdef PS_DEFAULT_OFF
  273. bool powersupply = false;
  274. #else
  275. bool powersupply = true;
  276. #endif
  277. #endif
  278. #ifdef DELTA
  279. float delta[3] = {0.0, 0.0, 0.0};
  280. #define SIN_60 0.8660254037844386
  281. #define COS_60 0.5
  282. // these are the default values, can be overriden with M665
  283. float delta_radius= DELTA_RADIUS;
  284. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  285. float delta_tower1_y= -COS_60*delta_radius;
  286. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  287. float delta_tower2_y= -COS_60*delta_radius;
  288. float delta_tower3_x= 0.0; // back middle tower
  289. float delta_tower3_y= delta_radius;
  290. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  291. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  292. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  293. #endif
  294. #ifdef SCARA // Build size scaling
  295. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  296. #endif
  297. bool cancel_heatup = false ;
  298. #ifdef FILAMENT_SENSOR
  299. //Variables for Filament Sensor input
  300. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  301. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  302. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  303. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  304. int delay_index1=0; //index into ring buffer
  305. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  306. float delay_dist=0; //delay distance counter
  307. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  308. #endif
  309. const prog_char errormagic[] MARLIN_PROGMEM = "Error:";
  310. const prog_char echomagic[] MARLIN_PROGMEM = "echo:";
  311. //===========================================================================
  312. //=============================Private Variables=============================
  313. //===========================================================================
  314. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  315. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  316. #ifndef DELTA
  317. static float delta[3] = {0.0, 0.0, 0.0};
  318. #endif
  319. static float offset[3] = {0.0, 0.0, 0.0};
  320. static bool home_all_axis = true;
  321. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  322. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  323. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  324. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  325. static bool fromsd[BUFSIZE];
  326. static int bufindr = 0;
  327. static int bufindw = 0;
  328. static int buflen = 0;
  329. //static int i = 0;
  330. static char serial_char;
  331. static int serial_count = 0;
  332. static boolean comment_mode = false;
  333. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  334. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  335. //static float tt = 0;
  336. //static float bt = 0;
  337. //Inactivity shutdown variables
  338. static unsigned long previous_millis_cmd = 0;
  339. static unsigned long max_inactive_time = 0;
  340. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  341. unsigned long starttime=0;
  342. unsigned long stoptime=0;
  343. static uint8_t tmp_extruder;
  344. bool Stopped=false;
  345. #if NUM_SERVOS > 0
  346. Servo servos[NUM_SERVOS];
  347. #endif
  348. bool CooldownNoWait = true;
  349. bool target_direction;
  350. //Insert variables if CHDK is defined
  351. #ifdef CHDK
  352. unsigned long chdkHigh = 0;
  353. boolean chdkActive = false;
  354. #endif
  355. //===========================================================================
  356. //=============================Routines======================================
  357. //===========================================================================
  358. void get_arc_coordinates();
  359. bool setTargetedHotend(int code);
  360. void serial_echopair_P(const char *s_P, float v)
  361. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, double v)
  363. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  364. void serial_echopair_P(const char *s_P, unsigned long v)
  365. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  366. #ifdef SDSUPPORT
  367. #include "SdFatUtil.h"
  368. int freeMemory() { return SdFatUtil::FreeRam(); }
  369. #else
  370. extern "C" {
  371. extern unsigned int __bss_end;
  372. extern unsigned int __heap_start;
  373. extern void *__brkval;
  374. int freeMemory() {
  375. int free_memory;
  376. if ((int)__brkval == 0)
  377. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  378. else
  379. free_memory = ((int)&free_memory) - ((int)__brkval);
  380. return free_memory;
  381. }
  382. }
  383. #endif //!SDSUPPORT
  384. //adds an command to the main command buffer
  385. //thats really done in a non-safe way.
  386. //needs overworking someday
  387. void enquecommand(const char *cmd)
  388. {
  389. if(buflen < BUFSIZE)
  390. {
  391. //this is dangerous if a mixing of serial and this happens
  392. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  393. SERIAL_ECHO_START;
  394. SERIAL_ECHOPGM(MSG_Enqueing);
  395. SERIAL_ECHO(cmdbuffer[bufindw]);
  396. SERIAL_ECHOLNPGM("\"");
  397. bufindw= (bufindw + 1)%BUFSIZE;
  398. buflen += 1;
  399. }
  400. }
  401. void enquecommand_P(const char *cmd)
  402. {
  403. if(buflen < BUFSIZE)
  404. {
  405. //this is dangerous if a mixing of serial and this happens
  406. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  407. SERIAL_ECHO_START;
  408. SERIAL_ECHOPGM(MSG_Enqueing);
  409. SERIAL_ECHO(cmdbuffer[bufindw]);
  410. SERIAL_ECHOLNPGM("\"");
  411. bufindw= (bufindw + 1)%BUFSIZE;
  412. buflen += 1;
  413. }
  414. }
  415. void setup_killpin()
  416. {
  417. #if defined(KILL_PIN) && KILL_PIN > -1
  418. SET_INPUT(KILL_PIN);
  419. WRITE(KILL_PIN,HIGH);
  420. #endif
  421. }
  422. // Set home pin
  423. void setup_homepin(void)
  424. {
  425. #if defined(HOME_PIN) && HOME_PIN > -1
  426. SET_INPUT(HOME_PIN);
  427. WRITE(HOME_PIN,HIGH);
  428. #endif
  429. }
  430. void setup_photpin()
  431. {
  432. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  433. SET_OUTPUT(PHOTOGRAPH_PIN);
  434. WRITE(PHOTOGRAPH_PIN, LOW);
  435. #endif
  436. }
  437. void setup_powerhold()
  438. {
  439. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  440. SET_OUTPUT(SUICIDE_PIN);
  441. WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  444. SET_OUTPUT(PS_ON_PIN);
  445. #if defined(PS_DEFAULT_OFF)
  446. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  447. #else
  448. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  449. #endif
  450. #endif
  451. }
  452. void suicide()
  453. {
  454. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  455. SET_OUTPUT(SUICIDE_PIN);
  456. WRITE(SUICIDE_PIN, LOW);
  457. #endif
  458. }
  459. void servo_init()
  460. {
  461. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  462. servos[0].attach(SERVO0_PIN);
  463. #endif
  464. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  465. servos[1].attach(SERVO1_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  468. servos[2].attach(SERVO2_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  471. servos[3].attach(SERVO3_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 5)
  474. #error "TODO: enter initalisation code for more servos"
  475. #endif
  476. // Set position of Servo Endstops that are defined
  477. #ifdef SERVO_ENDSTOPS
  478. for(int8_t i = 0; i < 3; i++)
  479. {
  480. if(servo_endstops[i] > -1) {
  481. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  482. }
  483. }
  484. #endif
  485. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  486. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  487. servos[servo_endstops[Z_AXIS]].detach();
  488. #endif
  489. }
  490. void setup()
  491. {
  492. setup_killpin();
  493. setup_powerhold();
  494. MYSERIAL.begin(BAUDRATE);
  495. SERIAL_PROTOCOLLNPGM("start");
  496. SERIAL_ECHO_START;
  497. // Check startup - does nothing if bootloader sets MCUSR to 0
  498. byte mcu = MCUSR;
  499. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  500. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  501. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  502. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  503. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  504. MCUSR=0;
  505. SERIAL_ECHOPGM(MSG_MARLIN);
  506. SERIAL_ECHOLNPGM(VERSION_STRING);
  507. #ifdef STRING_VERSION_CONFIG_H
  508. #ifdef STRING_CONFIG_H_AUTHOR
  509. SERIAL_ECHO_START;
  510. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  511. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  512. SERIAL_ECHOPGM(MSG_AUTHOR);
  513. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  514. SERIAL_ECHOPGM("Compiled: ");
  515. SERIAL_ECHOLNPGM(__DATE__);
  516. #endif
  517. #endif
  518. SERIAL_ECHO_START;
  519. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  520. SERIAL_ECHO(freeMemory());
  521. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  522. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  523. for(int8_t i = 0; i < BUFSIZE; i++)
  524. {
  525. fromsd[i] = false;
  526. }
  527. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  528. Config_RetrieveSettings();
  529. tp_init(); // Initialize temperature loop
  530. plan_init(); // Initialize planner;
  531. watchdog_init();
  532. st_init(); // Initialize stepper, this enables interrupts!
  533. setup_photpin();
  534. servo_init();
  535. lcd_init();
  536. _delay_ms(1000); // wait 1sec to display the splash screen
  537. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  538. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  539. #endif
  540. #ifdef DIGIPOT_I2C
  541. digipot_i2c_init();
  542. #endif
  543. #ifdef Z_PROBE_SLED
  544. pinMode(SERVO0_PIN, OUTPUT);
  545. digitalWrite(SERVO0_PIN, LOW); // turn it off
  546. #endif // Z_PROBE_SLED
  547. setup_homepin();
  548. }
  549. void loop()
  550. {
  551. if(buflen < (BUFSIZE-1))
  552. get_command();
  553. #ifdef SDSUPPORT
  554. card.checkautostart(false);
  555. #endif
  556. if(buflen)
  557. {
  558. #ifdef SDSUPPORT
  559. if(card.saving)
  560. {
  561. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  562. {
  563. card.write_command(cmdbuffer[bufindr]);
  564. if(card.logging)
  565. {
  566. process_commands();
  567. }
  568. else
  569. {
  570. SERIAL_PROTOCOLLNPGM(MSG_OK);
  571. }
  572. }
  573. else
  574. {
  575. card.closefile();
  576. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  577. }
  578. }
  579. else
  580. {
  581. process_commands();
  582. }
  583. #else
  584. process_commands();
  585. #endif //SDSUPPORT
  586. buflen = (buflen-1);
  587. bufindr = (bufindr + 1)%BUFSIZE;
  588. }
  589. //check heater every n milliseconds
  590. manage_heater();
  591. manage_inactivity();
  592. checkHitEndstops();
  593. lcd_update();
  594. }
  595. void get_command()
  596. {
  597. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  598. serial_char = MYSERIAL.read();
  599. if(serial_char == '\n' ||
  600. serial_char == '\r' ||
  601. (serial_char == ':' && comment_mode == false) ||
  602. serial_count >= (MAX_CMD_SIZE - 1) )
  603. {
  604. if(!serial_count) { //if empty line
  605. comment_mode = false; //for new command
  606. return;
  607. }
  608. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  609. if(!comment_mode){
  610. comment_mode = false; //for new command
  611. fromsd[bufindw] = false;
  612. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  613. {
  614. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  615. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  616. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  617. SERIAL_ERROR_START;
  618. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  619. SERIAL_ERRORLN(gcode_LastN);
  620. //Serial.println(gcode_N);
  621. FlushSerialRequestResend();
  622. serial_count = 0;
  623. return;
  624. }
  625. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  626. {
  627. byte checksum = 0;
  628. byte count = 0;
  629. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  630. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  631. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  632. SERIAL_ERROR_START;
  633. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  634. SERIAL_ERRORLN(gcode_LastN);
  635. FlushSerialRequestResend();
  636. serial_count = 0;
  637. return;
  638. }
  639. //if no errors, continue parsing
  640. }
  641. else
  642. {
  643. SERIAL_ERROR_START;
  644. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  645. SERIAL_ERRORLN(gcode_LastN);
  646. FlushSerialRequestResend();
  647. serial_count = 0;
  648. return;
  649. }
  650. gcode_LastN = gcode_N;
  651. //if no errors, continue parsing
  652. }
  653. else // if we don't receive 'N' but still see '*'
  654. {
  655. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  656. {
  657. SERIAL_ERROR_START;
  658. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  659. SERIAL_ERRORLN(gcode_LastN);
  660. serial_count = 0;
  661. return;
  662. }
  663. }
  664. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  665. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  666. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  667. case 0:
  668. case 1:
  669. case 2:
  670. case 3:
  671. if (Stopped == true) {
  672. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  673. LCD_MESSAGEPGM(MSG_STOPPED);
  674. }
  675. break;
  676. default:
  677. break;
  678. }
  679. }
  680. //If command was e-stop process now
  681. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  682. kill();
  683. bufindw = (bufindw + 1)%BUFSIZE;
  684. buflen += 1;
  685. }
  686. serial_count = 0; //clear buffer
  687. }
  688. else
  689. {
  690. if(serial_char == ';') comment_mode = true;
  691. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  692. }
  693. }
  694. #ifdef SDSUPPORT
  695. if(!card.sdprinting || serial_count!=0){
  696. return;
  697. }
  698. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  699. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  700. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  701. static bool stop_buffering=false;
  702. if(buflen==0) stop_buffering=false;
  703. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  704. int16_t n=card.get();
  705. serial_char = (char)n;
  706. if(serial_char == '\n' ||
  707. serial_char == '\r' ||
  708. (serial_char == '#' && comment_mode == false) ||
  709. (serial_char == ':' && comment_mode == false) ||
  710. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  711. {
  712. if(card.eof()){
  713. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  714. stoptime=millis();
  715. char time[30];
  716. unsigned long t=(stoptime-starttime)/1000;
  717. int hours, minutes;
  718. minutes=(t/60)%60;
  719. hours=t/60/60;
  720. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHOLN(time);
  723. lcd_setstatus(time);
  724. card.printingHasFinished();
  725. card.checkautostart(true);
  726. }
  727. if(serial_char=='#')
  728. stop_buffering=true;
  729. if(!serial_count)
  730. {
  731. comment_mode = false; //for new command
  732. return; //if empty line
  733. }
  734. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  735. // if(!comment_mode){
  736. fromsd[bufindw] = true;
  737. buflen += 1;
  738. bufindw = (bufindw + 1)%BUFSIZE;
  739. // }
  740. comment_mode = false; //for new command
  741. serial_count = 0; //clear buffer
  742. }
  743. else
  744. {
  745. if(serial_char == ';') comment_mode = true;
  746. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  747. }
  748. }
  749. #endif //SDSUPPORT
  750. }
  751. float code_value()
  752. {
  753. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  754. }
  755. long code_value_long()
  756. {
  757. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  758. }
  759. bool code_seen(char code)
  760. {
  761. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  762. return (strchr_pointer != NULL); //Return True if a character was found
  763. }
  764. #define DEFINE_PGM_READ_ANY(type, reader) \
  765. static inline type pgm_read_any(const type *p) \
  766. { return pgm_read_##reader##_near(p); }
  767. DEFINE_PGM_READ_ANY(float, float);
  768. DEFINE_PGM_READ_ANY(signed char, byte);
  769. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  770. static const type array##_P[3] MARLIN_PROGMEM = \
  771. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  772. static inline type array(int axis) \
  773. { return pgm_read_any(&array##_P[axis]); }
  774. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  775. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  776. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  777. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  778. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  779. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  780. #ifdef DUAL_X_CARRIAGE
  781. #if EXTRUDERS == 1 || defined(COREXY) \
  782. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  783. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  784. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  785. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  786. #endif
  787. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  788. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  789. #endif
  790. #define DXC_FULL_CONTROL_MODE 0
  791. #define DXC_AUTO_PARK_MODE 1
  792. #define DXC_DUPLICATION_MODE 2
  793. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  794. static float x_home_pos(int extruder) {
  795. if (extruder == 0)
  796. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  797. else
  798. // In dual carriage mode the extruder offset provides an override of the
  799. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  800. // This allow soft recalibration of the second extruder offset position without firmware reflash
  801. // (through the M218 command).
  802. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  803. }
  804. static int x_home_dir(int extruder) {
  805. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  806. }
  807. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  808. static bool active_extruder_parked = false; // used in mode 1 & 2
  809. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  810. static unsigned long delayed_move_time = 0; // used in mode 1
  811. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  812. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  813. bool extruder_duplication_enabled = false; // used in mode 2
  814. #endif //DUAL_X_CARRIAGE
  815. static void axis_is_at_home(int axis) {
  816. #ifdef DUAL_X_CARRIAGE
  817. if (axis == X_AXIS) {
  818. if (active_extruder != 0) {
  819. current_position[X_AXIS] = x_home_pos(active_extruder);
  820. min_pos[X_AXIS] = X2_MIN_POS;
  821. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  822. return;
  823. }
  824. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  825. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  826. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  827. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  828. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  829. return;
  830. }
  831. }
  832. #endif
  833. #ifdef SCARA
  834. float homeposition[3];
  835. char i;
  836. if (axis < 2)
  837. {
  838. for (i=0; i<3; i++)
  839. {
  840. homeposition[i] = base_home_pos(i);
  841. }
  842. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  843. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  844. // Works out real Homeposition angles using inverse kinematics,
  845. // and calculates homing offset using forward kinematics
  846. calculate_delta(homeposition);
  847. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  848. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  849. for (i=0; i<2; i++)
  850. {
  851. delta[i] -= add_homing[i];
  852. }
  853. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  854. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  855. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  856. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  857. calculate_SCARA_forward_Transform(delta);
  858. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  859. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  860. current_position[axis] = delta[axis];
  861. // SCARA home positions are based on configuration since the actual limits are determined by the
  862. // inverse kinematic transform.
  863. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  864. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  865. }
  866. else
  867. {
  868. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  869. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  870. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  871. }
  872. #else
  873. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  874. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  875. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  876. #endif
  877. }
  878. #ifdef ENABLE_AUTO_BED_LEVELING
  879. #ifdef AUTO_BED_LEVELING_GRID
  880. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  881. {
  882. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  883. planeNormal.debug("planeNormal");
  884. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  885. //bedLevel.debug("bedLevel");
  886. //plan_bed_level_matrix.debug("bed level before");
  887. //vector_3 uncorrected_position = plan_get_position_mm();
  888. //uncorrected_position.debug("position before");
  889. vector_3 corrected_position = plan_get_position();
  890. // corrected_position.debug("position after");
  891. current_position[X_AXIS] = corrected_position.x;
  892. current_position[Y_AXIS] = corrected_position.y;
  893. current_position[Z_AXIS] = corrected_position.z;
  894. // put the bed at 0 so we don't go below it.
  895. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  897. }
  898. #else // not AUTO_BED_LEVELING_GRID
  899. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  900. plan_bed_level_matrix.set_to_identity();
  901. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  902. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  903. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  904. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  905. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  906. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  907. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  908. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  909. vector_3 corrected_position = plan_get_position();
  910. current_position[X_AXIS] = corrected_position.x;
  911. current_position[Y_AXIS] = corrected_position.y;
  912. current_position[Z_AXIS] = corrected_position.z;
  913. // put the bed at 0 so we don't go below it.
  914. current_position[Z_AXIS] = zprobe_zoffset;
  915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  916. }
  917. #endif // AUTO_BED_LEVELING_GRID
  918. static void run_z_probe() {
  919. plan_bed_level_matrix.set_to_identity();
  920. feedrate = homing_feedrate[Z_AXIS];
  921. // move down until you find the bed
  922. float zPosition = -10;
  923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  924. st_synchronize();
  925. // we have to let the planner know where we are right now as it is not where we said to go.
  926. zPosition = st_get_position_mm(Z_AXIS);
  927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  928. // move up the retract distance
  929. zPosition += home_retract_mm(Z_AXIS);
  930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  931. st_synchronize();
  932. // move back down slowly to find bed
  933. feedrate = homing_feedrate[Z_AXIS]/4;
  934. zPosition -= home_retract_mm(Z_AXIS) * 2;
  935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  936. st_synchronize();
  937. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  938. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. }
  941. static void do_blocking_move_to(float x, float y, float z) {
  942. float oldFeedRate = feedrate;
  943. feedrate = homing_feedrate[Z_AXIS];
  944. current_position[Z_AXIS] = z;
  945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. feedrate = XY_TRAVEL_SPEED;
  948. current_position[X_AXIS] = x;
  949. current_position[Y_AXIS] = y;
  950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  951. st_synchronize();
  952. feedrate = oldFeedRate;
  953. }
  954. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  955. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  956. }
  957. static void setup_for_endstop_move() {
  958. saved_feedrate = feedrate;
  959. saved_feedmultiply = feedmultiply;
  960. feedmultiply = 100;
  961. previous_millis_cmd = millis();
  962. enable_endstops(true);
  963. }
  964. static void clean_up_after_endstop_move() {
  965. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  966. enable_endstops(false);
  967. #endif
  968. feedrate = saved_feedrate;
  969. feedmultiply = saved_feedmultiply;
  970. previous_millis_cmd = millis();
  971. }
  972. static void engage_z_probe() {
  973. // Engage Z Servo endstop if enabled
  974. #ifdef SERVO_ENDSTOPS
  975. if (servo_endstops[Z_AXIS] > -1) {
  976. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  977. servos[servo_endstops[Z_AXIS]].attach(0);
  978. #endif
  979. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  980. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  981. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  982. servos[servo_endstops[Z_AXIS]].detach();
  983. #endif
  984. }
  985. #endif
  986. }
  987. static void retract_z_probe() {
  988. // Retract Z Servo endstop if enabled
  989. #ifdef SERVO_ENDSTOPS
  990. if (servo_endstops[Z_AXIS] > -1) {
  991. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  992. servos[servo_endstops[Z_AXIS]].attach(0);
  993. #endif
  994. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  995. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  996. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  997. servos[servo_endstops[Z_AXIS]].detach();
  998. #endif
  999. }
  1000. #endif
  1001. }
  1002. /// Probe bed height at position (x,y), returns the measured z value
  1003. static float probe_pt(float x, float y, float z_before) {
  1004. // move to right place
  1005. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1006. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1007. #ifndef Z_PROBE_SLED
  1008. engage_z_probe(); // Engage Z Servo endstop if available
  1009. #endif // Z_PROBE_SLED
  1010. run_z_probe();
  1011. float measured_z = current_position[Z_AXIS];
  1012. #ifndef Z_PROBE_SLED
  1013. retract_z_probe();
  1014. #endif // Z_PROBE_SLED
  1015. SERIAL_PROTOCOLPGM(MSG_BED);
  1016. SERIAL_PROTOCOLPGM(" x: ");
  1017. SERIAL_PROTOCOL(x);
  1018. SERIAL_PROTOCOLPGM(" y: ");
  1019. SERIAL_PROTOCOL(y);
  1020. SERIAL_PROTOCOLPGM(" z: ");
  1021. SERIAL_PROTOCOL(measured_z);
  1022. SERIAL_PROTOCOLPGM("\n");
  1023. return measured_z;
  1024. }
  1025. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1026. static void homeaxis(int axis) {
  1027. #define HOMEAXIS_DO(LETTER) \
  1028. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1029. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1030. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1031. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1032. 0) {
  1033. int axis_home_dir = home_dir(axis);
  1034. #ifdef DUAL_X_CARRIAGE
  1035. if (axis == X_AXIS)
  1036. axis_home_dir = x_home_dir(active_extruder);
  1037. #endif
  1038. current_position[axis] = 0;
  1039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1040. #ifndef Z_PROBE_SLED
  1041. // Engage Servo endstop if enabled
  1042. #ifdef SERVO_ENDSTOPS
  1043. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1044. if (axis==Z_AXIS) {
  1045. engage_z_probe();
  1046. }
  1047. else
  1048. #endif
  1049. if (servo_endstops[axis] > -1) {
  1050. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1051. }
  1052. #endif
  1053. #endif // Z_PROBE_SLED
  1054. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1055. feedrate = homing_feedrate[axis];
  1056. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1057. st_synchronize();
  1058. current_position[axis] = 0;
  1059. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1060. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1061. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1062. st_synchronize();
  1063. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1064. #ifdef DELTA
  1065. feedrate = homing_feedrate[axis]/10;
  1066. #else
  1067. feedrate = homing_feedrate[axis]/2 ;
  1068. #endif
  1069. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1070. st_synchronize();
  1071. #ifdef DELTA
  1072. // retrace by the amount specified in endstop_adj
  1073. if (endstop_adj[axis] * axis_home_dir < 0) {
  1074. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1075. destination[axis] = endstop_adj[axis];
  1076. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1077. st_synchronize();
  1078. }
  1079. #endif
  1080. axis_is_at_home(axis);
  1081. destination[axis] = current_position[axis];
  1082. feedrate = 0.0;
  1083. endstops_hit_on_purpose();
  1084. axis_known_position[axis] = true;
  1085. // Retract Servo endstop if enabled
  1086. #ifdef SERVO_ENDSTOPS
  1087. if (servo_endstops[axis] > -1) {
  1088. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1089. }
  1090. #endif
  1091. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1092. #ifndef Z_PROBE_SLED
  1093. if (axis==Z_AXIS) retract_z_probe();
  1094. #endif
  1095. #endif
  1096. }
  1097. }
  1098. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1099. void refresh_cmd_timeout(void)
  1100. {
  1101. previous_millis_cmd = millis();
  1102. }
  1103. #ifdef FWRETRACT
  1104. void retract(bool retracting, bool swapretract = false) {
  1105. if(retracting && !retracted[active_extruder]) {
  1106. destination[X_AXIS]=current_position[X_AXIS];
  1107. destination[Y_AXIS]=current_position[Y_AXIS];
  1108. destination[Z_AXIS]=current_position[Z_AXIS];
  1109. destination[E_AXIS]=current_position[E_AXIS];
  1110. if (swapretract) {
  1111. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1112. } else {
  1113. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1114. }
  1115. plan_set_e_position(current_position[E_AXIS]);
  1116. float oldFeedrate = feedrate;
  1117. feedrate=retract_feedrate*60;
  1118. retracted[active_extruder]=true;
  1119. prepare_move();
  1120. if(retract_zlift > 0.01) {
  1121. current_position[Z_AXIS]-=retract_zlift;
  1122. #ifdef DELTA
  1123. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1124. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1125. #else
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. #endif
  1128. prepare_move();
  1129. }
  1130. feedrate = oldFeedrate;
  1131. } else if(!retracting && retracted[active_extruder]) {
  1132. destination[X_AXIS]=current_position[X_AXIS];
  1133. destination[Y_AXIS]=current_position[Y_AXIS];
  1134. destination[Z_AXIS]=current_position[Z_AXIS];
  1135. destination[E_AXIS]=current_position[E_AXIS];
  1136. if(retract_zlift > 0.01) {
  1137. current_position[Z_AXIS]+=retract_zlift;
  1138. #ifdef DELTA
  1139. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1140. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1141. #else
  1142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1143. #endif
  1144. //prepare_move();
  1145. }
  1146. if (swapretract) {
  1147. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1148. } else {
  1149. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1150. }
  1151. plan_set_e_position(current_position[E_AXIS]);
  1152. float oldFeedrate = feedrate;
  1153. feedrate=retract_recover_feedrate*60;
  1154. retracted[active_extruder]=false;
  1155. prepare_move();
  1156. feedrate = oldFeedrate;
  1157. }
  1158. } //retract
  1159. #endif //FWRETRACT
  1160. #ifdef Z_PROBE_SLED
  1161. //
  1162. // Method to dock/undock a sled designed by Charles Bell.
  1163. //
  1164. // dock[in] If true, move to MAX_X and engage the electromagnet
  1165. // offset[in] The additional distance to move to adjust docking location
  1166. //
  1167. static void dock_sled(bool dock, int offset=0) {
  1168. int z_loc;
  1169. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1170. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1171. SERIAL_ECHO_START;
  1172. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1173. return;
  1174. }
  1175. if (dock) {
  1176. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1177. current_position[Y_AXIS],
  1178. current_position[Z_AXIS]);
  1179. // turn off magnet
  1180. digitalWrite(SERVO0_PIN, LOW);
  1181. } else {
  1182. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1183. z_loc = Z_RAISE_BEFORE_PROBING;
  1184. else
  1185. z_loc = current_position[Z_AXIS];
  1186. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1187. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1188. // turn on magnet
  1189. digitalWrite(SERVO0_PIN, HIGH);
  1190. }
  1191. }
  1192. #endif
  1193. void process_commands()
  1194. {
  1195. unsigned long codenum; //throw away variable
  1196. char *starpos = NULL;
  1197. #ifdef ENABLE_AUTO_BED_LEVELING
  1198. float x_tmp, y_tmp, z_tmp, real_z;
  1199. #endif
  1200. if(code_seen('G'))
  1201. {
  1202. switch((int)code_value())
  1203. {
  1204. case 0: // G0 -> G1
  1205. case 1: // G1
  1206. if(Stopped == false) {
  1207. get_coordinates(); // For X Y Z E F
  1208. #ifdef FWRETRACT
  1209. if(autoretract_enabled)
  1210. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1211. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1212. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1213. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1214. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1215. retract(!retracted);
  1216. return;
  1217. }
  1218. }
  1219. #endif //FWRETRACT
  1220. prepare_move();
  1221. //ClearToSend();
  1222. }
  1223. break;
  1224. #ifndef SCARA //disable arc support
  1225. case 2: // G2 - CW ARC
  1226. if(Stopped == false) {
  1227. get_arc_coordinates();
  1228. prepare_arc_move(true);
  1229. }
  1230. break;
  1231. case 3: // G3 - CCW ARC
  1232. if(Stopped == false) {
  1233. get_arc_coordinates();
  1234. prepare_arc_move(false);
  1235. }
  1236. break;
  1237. #endif
  1238. case 4: // G4 dwell
  1239. LCD_MESSAGEPGM(MSG_DWELL);
  1240. codenum = 0;
  1241. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1242. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1243. st_synchronize();
  1244. codenum += millis(); // keep track of when we started waiting
  1245. previous_millis_cmd = millis();
  1246. while(millis() < codenum) {
  1247. manage_heater();
  1248. manage_inactivity();
  1249. lcd_update();
  1250. }
  1251. break;
  1252. #ifdef FWRETRACT
  1253. case 10: // G10 retract
  1254. #if EXTRUDERS > 1
  1255. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1256. retract(true,retracted_swap[active_extruder]);
  1257. #else
  1258. retract(true);
  1259. #endif
  1260. break;
  1261. case 11: // G11 retract_recover
  1262. #if EXTRUDERS > 1
  1263. retract(false,retracted_swap[active_extruder]);
  1264. #else
  1265. retract(false);
  1266. #endif
  1267. break;
  1268. #endif //FWRETRACT
  1269. case 28: //G28 Home all Axis one at a time
  1270. #ifdef ENABLE_AUTO_BED_LEVELING
  1271. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1272. #endif //ENABLE_AUTO_BED_LEVELING
  1273. saved_feedrate = feedrate;
  1274. saved_feedmultiply = feedmultiply;
  1275. feedmultiply = 100;
  1276. previous_millis_cmd = millis();
  1277. enable_endstops(true);
  1278. for(int8_t i=0; i < NUM_AXIS; i++) {
  1279. destination[i] = current_position[i];
  1280. }
  1281. feedrate = 0.0;
  1282. #ifdef DELTA
  1283. // A delta can only safely home all axis at the same time
  1284. // all axis have to home at the same time
  1285. // Move all carriages up together until the first endstop is hit.
  1286. current_position[X_AXIS] = 0;
  1287. current_position[Y_AXIS] = 0;
  1288. current_position[Z_AXIS] = 0;
  1289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1290. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1291. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1292. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1293. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. endstops_hit_on_purpose();
  1297. current_position[X_AXIS] = destination[X_AXIS];
  1298. current_position[Y_AXIS] = destination[Y_AXIS];
  1299. current_position[Z_AXIS] = destination[Z_AXIS];
  1300. // take care of back off and rehome now we are all at the top
  1301. HOMEAXIS(X);
  1302. HOMEAXIS(Y);
  1303. HOMEAXIS(Z);
  1304. calculate_delta(current_position);
  1305. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1306. #else // NOT DELTA
  1307. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1308. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1309. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1310. HOMEAXIS(Z);
  1311. }
  1312. #endif
  1313. #ifdef QUICK_HOME
  1314. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1315. {
  1316. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1317. #ifndef DUAL_X_CARRIAGE
  1318. int x_axis_home_dir = home_dir(X_AXIS);
  1319. #else
  1320. int x_axis_home_dir = x_home_dir(active_extruder);
  1321. extruder_duplication_enabled = false;
  1322. #endif
  1323. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1324. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1325. feedrate = homing_feedrate[X_AXIS];
  1326. if(homing_feedrate[Y_AXIS]<feedrate)
  1327. feedrate = homing_feedrate[Y_AXIS];
  1328. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1329. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1330. } else {
  1331. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1332. }
  1333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1334. st_synchronize();
  1335. axis_is_at_home(X_AXIS);
  1336. axis_is_at_home(Y_AXIS);
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. destination[X_AXIS] = current_position[X_AXIS];
  1339. destination[Y_AXIS] = current_position[Y_AXIS];
  1340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1341. feedrate = 0.0;
  1342. st_synchronize();
  1343. endstops_hit_on_purpose();
  1344. current_position[X_AXIS] = destination[X_AXIS];
  1345. current_position[Y_AXIS] = destination[Y_AXIS];
  1346. #ifndef SCARA
  1347. current_position[Z_AXIS] = destination[Z_AXIS];
  1348. #endif
  1349. }
  1350. #endif
  1351. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1352. {
  1353. #ifdef DUAL_X_CARRIAGE
  1354. int tmp_extruder = active_extruder;
  1355. extruder_duplication_enabled = false;
  1356. active_extruder = !active_extruder;
  1357. HOMEAXIS(X);
  1358. inactive_extruder_x_pos = current_position[X_AXIS];
  1359. active_extruder = tmp_extruder;
  1360. HOMEAXIS(X);
  1361. // reset state used by the different modes
  1362. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1363. delayed_move_time = 0;
  1364. active_extruder_parked = true;
  1365. #else
  1366. HOMEAXIS(X);
  1367. #endif
  1368. }
  1369. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1370. HOMEAXIS(Y);
  1371. }
  1372. if(code_seen(axis_codes[X_AXIS]))
  1373. {
  1374. if(code_value_long() != 0) {
  1375. #ifdef SCARA
  1376. current_position[X_AXIS]=code_value();
  1377. #else
  1378. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1379. #endif
  1380. }
  1381. }
  1382. if(code_seen(axis_codes[Y_AXIS])) {
  1383. if(code_value_long() != 0) {
  1384. #ifdef SCARA
  1385. current_position[Y_AXIS]=code_value();
  1386. #else
  1387. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1388. #endif
  1389. }
  1390. }
  1391. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1392. #ifndef Z_SAFE_HOMING
  1393. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1394. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1395. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1396. feedrate = max_feedrate[Z_AXIS];
  1397. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1398. st_synchronize();
  1399. #endif
  1400. HOMEAXIS(Z);
  1401. }
  1402. #else // Z Safe mode activated.
  1403. if(home_all_axis) {
  1404. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1405. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1406. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1407. feedrate = XY_TRAVEL_SPEED/60;
  1408. current_position[Z_AXIS] = 0;
  1409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1410. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1411. st_synchronize();
  1412. current_position[X_AXIS] = destination[X_AXIS];
  1413. current_position[Y_AXIS] = destination[Y_AXIS];
  1414. HOMEAXIS(Z);
  1415. }
  1416. // Let's see if X and Y are homed and probe is inside bed area.
  1417. if(code_seen(axis_codes[Z_AXIS])) {
  1418. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1419. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1420. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1421. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1422. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1423. current_position[Z_AXIS] = 0;
  1424. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1425. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1426. feedrate = max_feedrate[Z_AXIS];
  1427. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1428. st_synchronize();
  1429. HOMEAXIS(Z);
  1430. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1431. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1432. SERIAL_ECHO_START;
  1433. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1434. } else {
  1435. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1438. }
  1439. }
  1440. #endif
  1441. #endif
  1442. if(code_seen(axis_codes[Z_AXIS])) {
  1443. if(code_value_long() != 0) {
  1444. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1445. }
  1446. }
  1447. #ifdef ENABLE_AUTO_BED_LEVELING
  1448. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1449. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1450. }
  1451. #endif
  1452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1453. #endif // else DELTA
  1454. #ifdef SCARA
  1455. calculate_delta(current_position);
  1456. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1457. #endif // SCARA
  1458. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1459. enable_endstops(false);
  1460. #endif
  1461. feedrate = saved_feedrate;
  1462. feedmultiply = saved_feedmultiply;
  1463. previous_millis_cmd = millis();
  1464. endstops_hit_on_purpose();
  1465. break;
  1466. #ifdef ENABLE_AUTO_BED_LEVELING
  1467. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1468. {
  1469. #if Z_MIN_PIN == -1
  1470. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1471. #endif
  1472. // Prevent user from running a G29 without first homing in X and Y
  1473. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1474. {
  1475. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1476. SERIAL_ECHO_START;
  1477. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1478. break; // abort G29, since we don't know where we are
  1479. }
  1480. #ifdef Z_PROBE_SLED
  1481. dock_sled(false);
  1482. #endif // Z_PROBE_SLED
  1483. st_synchronize();
  1484. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1485. //vector_3 corrected_position = plan_get_position_mm();
  1486. //corrected_position.debug("position before G29");
  1487. plan_bed_level_matrix.set_to_identity();
  1488. vector_3 uncorrected_position = plan_get_position();
  1489. //uncorrected_position.debug("position durring G29");
  1490. current_position[X_AXIS] = uncorrected_position.x;
  1491. current_position[Y_AXIS] = uncorrected_position.y;
  1492. current_position[Z_AXIS] = uncorrected_position.z;
  1493. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1494. setup_for_endstop_move();
  1495. feedrate = homing_feedrate[Z_AXIS];
  1496. #ifdef AUTO_BED_LEVELING_GRID
  1497. // probe at the points of a lattice grid
  1498. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1499. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1500. // solve the plane equation ax + by + d = z
  1501. // A is the matrix with rows [x y 1] for all the probed points
  1502. // B is the vector of the Z positions
  1503. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1504. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1505. // "A" matrix of the linear system of equations
  1506. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1507. // "B" vector of Z points
  1508. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1509. int probePointCounter = 0;
  1510. bool zig = true;
  1511. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1512. {
  1513. int xProbe, xInc;
  1514. if (zig)
  1515. {
  1516. xProbe = LEFT_PROBE_BED_POSITION;
  1517. //xEnd = RIGHT_PROBE_BED_POSITION;
  1518. xInc = xGridSpacing;
  1519. zig = false;
  1520. } else // zag
  1521. {
  1522. xProbe = RIGHT_PROBE_BED_POSITION;
  1523. //xEnd = LEFT_PROBE_BED_POSITION;
  1524. xInc = -xGridSpacing;
  1525. zig = true;
  1526. }
  1527. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1528. {
  1529. float z_before;
  1530. if (probePointCounter == 0)
  1531. {
  1532. // raise before probing
  1533. z_before = Z_RAISE_BEFORE_PROBING;
  1534. } else
  1535. {
  1536. // raise extruder
  1537. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1538. }
  1539. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1540. eqnBVector[probePointCounter] = measured_z;
  1541. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1542. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1543. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1544. probePointCounter++;
  1545. xProbe += xInc;
  1546. }
  1547. }
  1548. clean_up_after_endstop_move();
  1549. // solve lsq problem
  1550. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1551. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1552. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1553. SERIAL_PROTOCOLPGM(" b: ");
  1554. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1555. SERIAL_PROTOCOLPGM(" d: ");
  1556. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1557. set_bed_level_equation_lsq(plane_equation_coefficients);
  1558. free(plane_equation_coefficients);
  1559. #else // AUTO_BED_LEVELING_GRID not defined
  1560. // Probe at 3 arbitrary points
  1561. // probe 1
  1562. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1563. // probe 2
  1564. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1565. // probe 3
  1566. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1567. clean_up_after_endstop_move();
  1568. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1569. #endif // AUTO_BED_LEVELING_GRID
  1570. st_synchronize();
  1571. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1572. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1573. // When the bed is uneven, this height must be corrected.
  1574. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1575. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1576. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1577. z_tmp = current_position[Z_AXIS];
  1578. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1579. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1580. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1581. #ifdef Z_PROBE_SLED
  1582. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1583. #endif // Z_PROBE_SLED
  1584. }
  1585. break;
  1586. #ifndef Z_PROBE_SLED
  1587. case 30: // G30 Single Z Probe
  1588. {
  1589. engage_z_probe(); // Engage Z Servo endstop if available
  1590. st_synchronize();
  1591. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1592. setup_for_endstop_move();
  1593. feedrate = homing_feedrate[Z_AXIS];
  1594. run_z_probe();
  1595. SERIAL_PROTOCOLPGM(MSG_BED);
  1596. SERIAL_PROTOCOLPGM(" X: ");
  1597. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1598. SERIAL_PROTOCOLPGM(" Y: ");
  1599. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1600. SERIAL_PROTOCOLPGM(" Z: ");
  1601. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1602. SERIAL_PROTOCOLPGM("\n");
  1603. clean_up_after_endstop_move();
  1604. retract_z_probe(); // Retract Z Servo endstop if available
  1605. }
  1606. break;
  1607. #else
  1608. case 31: // dock the sled
  1609. dock_sled(true);
  1610. break;
  1611. case 32: // undock the sled
  1612. dock_sled(false);
  1613. break;
  1614. #endif // Z_PROBE_SLED
  1615. #endif // ENABLE_AUTO_BED_LEVELING
  1616. case 90: // G90
  1617. relative_mode = false;
  1618. break;
  1619. case 91: // G91
  1620. relative_mode = true;
  1621. break;
  1622. case 92: // G92
  1623. if(!code_seen(axis_codes[E_AXIS]))
  1624. st_synchronize();
  1625. for(int8_t i=0; i < NUM_AXIS; i++) {
  1626. if(code_seen(axis_codes[i])) {
  1627. if(i == E_AXIS) {
  1628. current_position[i] = code_value();
  1629. plan_set_e_position(current_position[E_AXIS]);
  1630. }
  1631. else {
  1632. #ifdef SCARA
  1633. if (i == X_AXIS || i == Y_AXIS) {
  1634. current_position[i] = code_value();
  1635. }
  1636. else {
  1637. current_position[i] = code_value()+add_homing[i];
  1638. }
  1639. #else
  1640. current_position[i] = code_value()+add_homing[i];
  1641. #endif
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. }
  1645. }
  1646. break;
  1647. }
  1648. }
  1649. else if(code_seen('M'))
  1650. {
  1651. switch( (int)code_value() )
  1652. {
  1653. #ifdef ULTIPANEL
  1654. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1655. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1656. {
  1657. char *src = strchr_pointer + 2;
  1658. codenum = 0;
  1659. bool hasP = false, hasS = false;
  1660. if (code_seen('P')) {
  1661. codenum = code_value(); // milliseconds to wait
  1662. hasP = codenum > 0;
  1663. }
  1664. if (code_seen('S')) {
  1665. codenum = code_value() * 1000; // seconds to wait
  1666. hasS = codenum > 0;
  1667. }
  1668. starpos = strchr(src, '*');
  1669. if (starpos != NULL) *(starpos) = '\0';
  1670. while (*src == ' ') ++src;
  1671. if (!hasP && !hasS && *src != '\0') {
  1672. lcd_setstatus(src);
  1673. } else {
  1674. LCD_MESSAGEPGM(MSG_USERWAIT);
  1675. }
  1676. lcd_ignore_click();
  1677. st_synchronize();
  1678. previous_millis_cmd = millis();
  1679. if (codenum > 0){
  1680. codenum += millis(); // keep track of when we started waiting
  1681. while(millis() < codenum && !lcd_clicked()){
  1682. manage_heater();
  1683. manage_inactivity();
  1684. lcd_update();
  1685. }
  1686. lcd_ignore_click(false);
  1687. }else{
  1688. if (!lcd_detected())
  1689. break;
  1690. while(!lcd_clicked()){
  1691. manage_heater();
  1692. manage_inactivity();
  1693. lcd_update();
  1694. }
  1695. }
  1696. if (IS_SD_PRINTING)
  1697. LCD_MESSAGEPGM(MSG_RESUMING);
  1698. else
  1699. LCD_MESSAGEPGM(WELCOME_MSG);
  1700. }
  1701. break;
  1702. #endif
  1703. case 17:
  1704. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1705. enable_x();
  1706. enable_y();
  1707. enable_z();
  1708. enable_e0();
  1709. enable_e1();
  1710. enable_e2();
  1711. break;
  1712. #ifdef SDSUPPORT
  1713. case 20: // M20 - list SD card
  1714. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1715. card.ls();
  1716. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1717. break;
  1718. case 21: // M21 - init SD card
  1719. card.initsd();
  1720. break;
  1721. case 22: //M22 - release SD card
  1722. card.release();
  1723. break;
  1724. case 23: //M23 - Select file
  1725. starpos = (strchr(strchr_pointer + 4,'*'));
  1726. if(starpos!=NULL)
  1727. *(starpos)='\0';
  1728. card.openFile(strchr_pointer + 4,true);
  1729. break;
  1730. case 24: //M24 - Start SD print
  1731. card.startFileprint();
  1732. starttime=millis();
  1733. break;
  1734. case 25: //M25 - Pause SD print
  1735. card.pauseSDPrint();
  1736. break;
  1737. case 26: //M26 - Set SD index
  1738. if(card.cardOK && code_seen('S')) {
  1739. card.setIndex(code_value_long());
  1740. }
  1741. break;
  1742. case 27: //M27 - Get SD status
  1743. card.getStatus();
  1744. break;
  1745. case 28: //M28 - Start SD write
  1746. starpos = (strchr(strchr_pointer + 4,'*'));
  1747. if(starpos != NULL){
  1748. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1749. strchr_pointer = strchr(npos,' ') + 1;
  1750. *(starpos) = '\0';
  1751. }
  1752. card.openFile(strchr_pointer+4,false);
  1753. break;
  1754. case 29: //M29 - Stop SD write
  1755. //processed in write to file routine above
  1756. //card,saving = false;
  1757. break;
  1758. case 30: //M30 <filename> Delete File
  1759. if (card.cardOK){
  1760. card.closefile();
  1761. starpos = (strchr(strchr_pointer + 4,'*'));
  1762. if(starpos != NULL){
  1763. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1764. strchr_pointer = strchr(npos,' ') + 1;
  1765. *(starpos) = '\0';
  1766. }
  1767. card.removeFile(strchr_pointer + 4);
  1768. }
  1769. break;
  1770. case 32: //M32 - Select file and start SD print
  1771. {
  1772. if(card.sdprinting) {
  1773. st_synchronize();
  1774. }
  1775. starpos = (strchr(strchr_pointer + 4,'*'));
  1776. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1777. if(namestartpos==NULL)
  1778. {
  1779. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1780. }
  1781. else
  1782. namestartpos++; //to skip the '!'
  1783. if(starpos!=NULL)
  1784. *(starpos)='\0';
  1785. bool call_procedure=(code_seen('P'));
  1786. if(strchr_pointer>namestartpos)
  1787. call_procedure=false; //false alert, 'P' found within filename
  1788. if( card.cardOK )
  1789. {
  1790. card.openFile(namestartpos,true,!call_procedure);
  1791. if(code_seen('S'))
  1792. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1793. card.setIndex(code_value_long());
  1794. card.startFileprint();
  1795. if(!call_procedure)
  1796. starttime=millis(); //procedure calls count as normal print time.
  1797. }
  1798. } break;
  1799. case 928: //M928 - Start SD write
  1800. starpos = (strchr(strchr_pointer + 5,'*'));
  1801. if(starpos != NULL){
  1802. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1803. strchr_pointer = strchr(npos,' ') + 1;
  1804. *(starpos) = '\0';
  1805. }
  1806. card.openLogFile(strchr_pointer+5);
  1807. break;
  1808. #endif //SDSUPPORT
  1809. case 31: //M31 take time since the start of the SD print or an M109 command
  1810. {
  1811. stoptime=millis();
  1812. char time[30];
  1813. unsigned long t=(stoptime-starttime)/1000;
  1814. int sec,min;
  1815. min=t/60;
  1816. sec=t%60;
  1817. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1818. SERIAL_ECHO_START;
  1819. SERIAL_ECHOLN(time);
  1820. lcd_setstatus(time);
  1821. autotempShutdown();
  1822. }
  1823. break;
  1824. case 42: //M42 -Change pin status via gcode
  1825. if (code_seen('S'))
  1826. {
  1827. int pin_status = code_value();
  1828. int pin_number = LED_PIN;
  1829. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1830. pin_number = code_value();
  1831. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1832. {
  1833. if (sensitive_pins[i] == pin_number)
  1834. {
  1835. pin_number = -1;
  1836. break;
  1837. }
  1838. }
  1839. #if defined(FAN_PIN) && FAN_PIN > -1
  1840. if (pin_number == FAN_PIN)
  1841. fanSpeed = pin_status;
  1842. #endif
  1843. if (pin_number > -1)
  1844. {
  1845. pinMode(pin_number, OUTPUT);
  1846. digitalWrite(pin_number, pin_status);
  1847. analogWrite(pin_number, pin_status);
  1848. }
  1849. }
  1850. break;
  1851. // M48 Z-Probe repeatability measurement function.
  1852. //
  1853. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1854. //
  1855. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1856. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1857. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1858. // regenerated.
  1859. //
  1860. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1861. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1862. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1863. //
  1864. #ifdef ENABLE_AUTO_BED_LEVELING
  1865. #ifdef Z_PROBE_REPEATABILITY_TEST
  1866. case 48: // M48 Z-Probe repeatability
  1867. {
  1868. #if Z_MIN_PIN == -1
  1869. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1870. #endif
  1871. double sum=0.0;
  1872. double mean=0.0;
  1873. double sigma=0.0;
  1874. double sample_set[50];
  1875. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1876. double X_current, Y_current, Z_current;
  1877. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1878. if (code_seen('V') || code_seen('v')) {
  1879. verbose_level = code_value();
  1880. if (verbose_level<0 || verbose_level>4 ) {
  1881. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1882. goto Sigma_Exit;
  1883. }
  1884. }
  1885. if (verbose_level > 0) {
  1886. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1887. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1888. }
  1889. if (code_seen('n')) {
  1890. n_samples = code_value();
  1891. if (n_samples<4 || n_samples>50 ) {
  1892. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1893. goto Sigma_Exit;
  1894. }
  1895. }
  1896. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1897. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1898. Z_current = st_get_position_mm(Z_AXIS);
  1899. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1900. ext_position = st_get_position_mm(E_AXIS);
  1901. if (code_seen('E') || code_seen('e') )
  1902. engage_probe_for_each_reading++;
  1903. if (code_seen('X') || code_seen('x') ) {
  1904. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1905. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1906. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1907. goto Sigma_Exit;
  1908. }
  1909. }
  1910. if (code_seen('Y') || code_seen('y') ) {
  1911. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1912. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1913. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1914. goto Sigma_Exit;
  1915. }
  1916. }
  1917. if (code_seen('L') || code_seen('l') ) {
  1918. n_legs = code_value();
  1919. if ( n_legs==1 )
  1920. n_legs = 2;
  1921. if ( n_legs<0 || n_legs>15 ) {
  1922. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1923. goto Sigma_Exit;
  1924. }
  1925. }
  1926. //
  1927. // Do all the preliminary setup work. First raise the probe.
  1928. //
  1929. st_synchronize();
  1930. plan_bed_level_matrix.set_to_identity();
  1931. plan_buffer_line( X_current, Y_current, Z_start_location,
  1932. ext_position,
  1933. homing_feedrate[Z_AXIS]/60,
  1934. active_extruder);
  1935. st_synchronize();
  1936. //
  1937. // Now get everything to the specified probe point So we can safely do a probe to
  1938. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1939. // use that as a starting point for each probe.
  1940. //
  1941. if (verbose_level > 2)
  1942. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1943. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1944. ext_position,
  1945. homing_feedrate[X_AXIS]/60,
  1946. active_extruder);
  1947. st_synchronize();
  1948. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1949. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1950. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1951. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1952. //
  1953. // OK, do the inital probe to get us close to the bed.
  1954. // Then retrace the right amount and use that in subsequent probes
  1955. //
  1956. engage_z_probe();
  1957. setup_for_endstop_move();
  1958. run_z_probe();
  1959. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1960. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1961. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1962. ext_position,
  1963. homing_feedrate[X_AXIS]/60,
  1964. active_extruder);
  1965. st_synchronize();
  1966. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1967. if (engage_probe_for_each_reading)
  1968. retract_z_probe();
  1969. for( n=0; n<n_samples; n++) {
  1970. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1971. if ( n_legs) {
  1972. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1973. int rotational_direction, l;
  1974. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1975. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1976. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1977. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1978. //SERIAL_ECHOPAIR(" theta: ",theta);
  1979. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1980. //SERIAL_PROTOCOLLNPGM("");
  1981. for( l=0; l<n_legs-1; l++) {
  1982. if (rotational_direction==1)
  1983. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1984. else
  1985. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1986. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1987. if ( radius<0.0 )
  1988. radius = -radius;
  1989. X_current = X_probe_location + cos(theta) * radius;
  1990. Y_current = Y_probe_location + sin(theta) * radius;
  1991. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1992. X_current = X_MIN_POS;
  1993. if ( X_current>X_MAX_POS)
  1994. X_current = X_MAX_POS;
  1995. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1996. Y_current = Y_MIN_POS;
  1997. if ( Y_current>Y_MAX_POS)
  1998. Y_current = Y_MAX_POS;
  1999. if (verbose_level>3 ) {
  2000. SERIAL_ECHOPAIR("x: ", X_current);
  2001. SERIAL_ECHOPAIR("y: ", Y_current);
  2002. SERIAL_PROTOCOLLNPGM("");
  2003. }
  2004. do_blocking_move_to( X_current, Y_current, Z_current );
  2005. }
  2006. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2007. }
  2008. if (engage_probe_for_each_reading) {
  2009. engage_z_probe();
  2010. delay(1000);
  2011. }
  2012. setup_for_endstop_move();
  2013. run_z_probe();
  2014. sample_set[n] = current_position[Z_AXIS];
  2015. //
  2016. // Get the current mean for the data points we have so far
  2017. //
  2018. sum=0.0;
  2019. for( j=0; j<=n; j++) {
  2020. sum = sum + sample_set[j];
  2021. }
  2022. mean = sum / (double (n+1));
  2023. //
  2024. // Now, use that mean to calculate the standard deviation for the
  2025. // data points we have so far
  2026. //
  2027. sum=0.0;
  2028. for( j=0; j<=n; j++) {
  2029. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2030. }
  2031. sigma = sqrt( sum / (double (n+1)) );
  2032. if (verbose_level > 1) {
  2033. SERIAL_PROTOCOL(n+1);
  2034. SERIAL_PROTOCOL(" of ");
  2035. SERIAL_PROTOCOL(n_samples);
  2036. SERIAL_PROTOCOLPGM(" z: ");
  2037. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2038. }
  2039. if (verbose_level > 2) {
  2040. SERIAL_PROTOCOL(" mean: ");
  2041. SERIAL_PROTOCOL_F(mean,6);
  2042. SERIAL_PROTOCOL(" sigma: ");
  2043. SERIAL_PROTOCOL_F(sigma,6);
  2044. }
  2045. if (verbose_level > 0)
  2046. SERIAL_PROTOCOLPGM("\n");
  2047. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2048. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2049. st_synchronize();
  2050. if (engage_probe_for_each_reading) {
  2051. retract_z_probe();
  2052. delay(1000);
  2053. }
  2054. }
  2055. retract_z_probe();
  2056. delay(1000);
  2057. clean_up_after_endstop_move();
  2058. // enable_endstops(true);
  2059. if (verbose_level > 0) {
  2060. SERIAL_PROTOCOLPGM("Mean: ");
  2061. SERIAL_PROTOCOL_F(mean, 6);
  2062. SERIAL_PROTOCOLPGM("\n");
  2063. }
  2064. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2065. SERIAL_PROTOCOL_F(sigma, 6);
  2066. SERIAL_PROTOCOLPGM("\n\n");
  2067. Sigma_Exit:
  2068. break;
  2069. }
  2070. #endif // Z_PROBE_REPEATABILITY_TEST
  2071. #endif // ENABLE_AUTO_BED_LEVELING
  2072. case 104: // M104
  2073. if(setTargetedHotend(104)){
  2074. break;
  2075. }
  2076. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2077. #ifdef DUAL_X_CARRIAGE
  2078. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2079. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2080. #endif
  2081. setWatch();
  2082. break;
  2083. case 112: // M112 -Emergency Stop
  2084. kill();
  2085. break;
  2086. case 140: // M140 set bed temp
  2087. if (code_seen('S')) setTargetBed(code_value());
  2088. break;
  2089. case 105 : // M105
  2090. if(setTargetedHotend(105)){
  2091. break;
  2092. }
  2093. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2094. SERIAL_PROTOCOLPGM("ok T:");
  2095. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2096. SERIAL_PROTOCOLPGM(" /");
  2097. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2098. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2099. SERIAL_PROTOCOLPGM(" B:");
  2100. SERIAL_PROTOCOL_F(degBed(),1);
  2101. SERIAL_PROTOCOLPGM(" /");
  2102. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2103. #endif //TEMP_BED_PIN
  2104. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2105. SERIAL_PROTOCOLPGM(" T");
  2106. SERIAL_PROTOCOL(cur_extruder);
  2107. SERIAL_PROTOCOLPGM(":");
  2108. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2109. SERIAL_PROTOCOLPGM(" /");
  2110. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2111. }
  2112. #else
  2113. SERIAL_ERROR_START;
  2114. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2115. #endif
  2116. SERIAL_PROTOCOLPGM(" @:");
  2117. #ifdef EXTRUDER_WATTS
  2118. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2119. SERIAL_PROTOCOLPGM("W");
  2120. #else
  2121. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2122. #endif
  2123. SERIAL_PROTOCOLPGM(" B@:");
  2124. #ifdef BED_WATTS
  2125. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2126. SERIAL_PROTOCOLPGM("W");
  2127. #else
  2128. SERIAL_PROTOCOL(getHeaterPower(-1));
  2129. #endif
  2130. #ifdef SHOW_TEMP_ADC_VALUES
  2131. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2132. SERIAL_PROTOCOLPGM(" ADC B:");
  2133. SERIAL_PROTOCOL_F(degBed(),1);
  2134. SERIAL_PROTOCOLPGM("C->");
  2135. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2136. #endif
  2137. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2138. SERIAL_PROTOCOLPGM(" T");
  2139. SERIAL_PROTOCOL(cur_extruder);
  2140. SERIAL_PROTOCOLPGM(":");
  2141. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2142. SERIAL_PROTOCOLPGM("C->");
  2143. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2144. }
  2145. #endif
  2146. SERIAL_PROTOCOLLN("");
  2147. return;
  2148. break;
  2149. case 109:
  2150. {// M109 - Wait for extruder heater to reach target.
  2151. if(setTargetedHotend(109)){
  2152. break;
  2153. }
  2154. LCD_MESSAGEPGM(MSG_HEATING);
  2155. #ifdef AUTOTEMP
  2156. autotemp_enabled=false;
  2157. #endif
  2158. if (code_seen('S')) {
  2159. setTargetHotend(code_value(), tmp_extruder);
  2160. #ifdef DUAL_X_CARRIAGE
  2161. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2162. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2163. #endif
  2164. CooldownNoWait = true;
  2165. } else if (code_seen('R')) {
  2166. setTargetHotend(code_value(), tmp_extruder);
  2167. #ifdef DUAL_X_CARRIAGE
  2168. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2169. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2170. #endif
  2171. CooldownNoWait = false;
  2172. }
  2173. #ifdef AUTOTEMP
  2174. if (code_seen('S')) autotemp_min=code_value();
  2175. if (code_seen('B')) autotemp_max=code_value();
  2176. if (code_seen('F'))
  2177. {
  2178. autotemp_factor=code_value();
  2179. autotemp_enabled=true;
  2180. }
  2181. #endif
  2182. setWatch();
  2183. codenum = millis();
  2184. /* See if we are heating up or cooling down */
  2185. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2186. cancel_heatup = false;
  2187. #ifdef TEMP_RESIDENCY_TIME
  2188. long residencyStart;
  2189. residencyStart = -1;
  2190. /* continue to loop until we have reached the target temp
  2191. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2192. while((!cancel_heatup)&&((residencyStart == -1) ||
  2193. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2194. #else
  2195. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2196. #endif //TEMP_RESIDENCY_TIME
  2197. if( (millis() - codenum) > 1000UL )
  2198. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2199. SERIAL_PROTOCOLPGM("T:");
  2200. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2201. SERIAL_PROTOCOLPGM(" E:");
  2202. SERIAL_PROTOCOL((int)tmp_extruder);
  2203. #ifdef TEMP_RESIDENCY_TIME
  2204. SERIAL_PROTOCOLPGM(" W:");
  2205. if(residencyStart > -1)
  2206. {
  2207. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2208. SERIAL_PROTOCOLLN( codenum );
  2209. }
  2210. else
  2211. {
  2212. SERIAL_PROTOCOLLN( "?" );
  2213. }
  2214. #else
  2215. SERIAL_PROTOCOLLN("");
  2216. #endif
  2217. codenum = millis();
  2218. }
  2219. manage_heater();
  2220. manage_inactivity();
  2221. lcd_update();
  2222. #ifdef TEMP_RESIDENCY_TIME
  2223. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2224. or when current temp falls outside the hysteresis after target temp was reached */
  2225. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2226. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2227. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2228. {
  2229. residencyStart = millis();
  2230. }
  2231. #endif //TEMP_RESIDENCY_TIME
  2232. }
  2233. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2234. starttime=millis();
  2235. previous_millis_cmd = millis();
  2236. }
  2237. break;
  2238. case 190: // M190 - Wait for bed heater to reach target.
  2239. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2240. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2241. if (code_seen('S')) {
  2242. setTargetBed(code_value());
  2243. CooldownNoWait = true;
  2244. } else if (code_seen('R')) {
  2245. setTargetBed(code_value());
  2246. CooldownNoWait = false;
  2247. }
  2248. codenum = millis();
  2249. cancel_heatup = false;
  2250. target_direction = isHeatingBed(); // true if heating, false if cooling
  2251. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2252. {
  2253. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2254. {
  2255. float tt=degHotend(active_extruder);
  2256. SERIAL_PROTOCOLPGM("T:");
  2257. SERIAL_PROTOCOL(tt);
  2258. SERIAL_PROTOCOLPGM(" E:");
  2259. SERIAL_PROTOCOL((int)active_extruder);
  2260. SERIAL_PROTOCOLPGM(" B:");
  2261. SERIAL_PROTOCOL_F(degBed(),1);
  2262. SERIAL_PROTOCOLLN("");
  2263. codenum = millis();
  2264. }
  2265. manage_heater();
  2266. manage_inactivity();
  2267. lcd_update();
  2268. }
  2269. LCD_MESSAGEPGM(MSG_BED_DONE);
  2270. previous_millis_cmd = millis();
  2271. #endif
  2272. break;
  2273. #if defined(FAN_PIN) && FAN_PIN > -1
  2274. case 106: //M106 Fan On
  2275. if (code_seen('S')){
  2276. fanSpeed=constrain(code_value(),0,255);
  2277. }
  2278. else {
  2279. fanSpeed=255;
  2280. }
  2281. break;
  2282. case 107: //M107 Fan Off
  2283. fanSpeed = 0;
  2284. break;
  2285. #endif //FAN_PIN
  2286. #ifdef BARICUDA
  2287. // PWM for HEATER_1_PIN
  2288. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2289. case 126: //M126 valve open
  2290. if (code_seen('S')){
  2291. ValvePressure=constrain(code_value(),0,255);
  2292. }
  2293. else {
  2294. ValvePressure=255;
  2295. }
  2296. break;
  2297. case 127: //M127 valve closed
  2298. ValvePressure = 0;
  2299. break;
  2300. #endif //HEATER_1_PIN
  2301. // PWM for HEATER_2_PIN
  2302. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2303. case 128: //M128 valve open
  2304. if (code_seen('S')){
  2305. EtoPPressure=constrain(code_value(),0,255);
  2306. }
  2307. else {
  2308. EtoPPressure=255;
  2309. }
  2310. break;
  2311. case 129: //M129 valve closed
  2312. EtoPPressure = 0;
  2313. break;
  2314. #endif //HEATER_2_PIN
  2315. #endif
  2316. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2317. case 80: // M80 - Turn on Power Supply
  2318. SET_OUTPUT(PS_ON_PIN); //GND
  2319. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2320. // If you have a switch on suicide pin, this is useful
  2321. // if you want to start another print with suicide feature after
  2322. // a print without suicide...
  2323. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2324. SET_OUTPUT(SUICIDE_PIN);
  2325. WRITE(SUICIDE_PIN, HIGH);
  2326. #endif
  2327. #ifdef ULTIPANEL
  2328. powersupply = true;
  2329. LCD_MESSAGEPGM(WELCOME_MSG);
  2330. lcd_update();
  2331. #endif
  2332. break;
  2333. #endif
  2334. case 81: // M81 - Turn off Power Supply
  2335. disable_heater();
  2336. st_synchronize();
  2337. disable_e0();
  2338. disable_e1();
  2339. disable_e2();
  2340. finishAndDisableSteppers();
  2341. fanSpeed = 0;
  2342. delay(1000); // Wait a little before to switch off
  2343. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2344. st_synchronize();
  2345. suicide();
  2346. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2347. SET_OUTPUT(PS_ON_PIN);
  2348. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2349. #endif
  2350. #ifdef ULTIPANEL
  2351. powersupply = false;
  2352. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2353. lcd_update();
  2354. #endif
  2355. break;
  2356. case 82:
  2357. axis_relative_modes[3] = false;
  2358. break;
  2359. case 83:
  2360. axis_relative_modes[3] = true;
  2361. break;
  2362. case 18: //compatibility
  2363. case 84: // M84
  2364. if(code_seen('S')){
  2365. stepper_inactive_time = code_value() * 1000;
  2366. }
  2367. else
  2368. {
  2369. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2370. if(all_axis)
  2371. {
  2372. st_synchronize();
  2373. disable_e0();
  2374. disable_e1();
  2375. disable_e2();
  2376. finishAndDisableSteppers();
  2377. }
  2378. else
  2379. {
  2380. st_synchronize();
  2381. if(code_seen('X')) disable_x();
  2382. if(code_seen('Y')) disable_y();
  2383. if(code_seen('Z')) disable_z();
  2384. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2385. if(code_seen('E')) {
  2386. disable_e0();
  2387. disable_e1();
  2388. disable_e2();
  2389. }
  2390. #endif
  2391. }
  2392. }
  2393. break;
  2394. case 85: // M85
  2395. if(code_seen('S')) {
  2396. max_inactive_time = code_value() * 1000;
  2397. }
  2398. break;
  2399. case 92: // M92
  2400. for(int8_t i=0; i < NUM_AXIS; i++)
  2401. {
  2402. if(code_seen(axis_codes[i]))
  2403. {
  2404. if(i == 3) { // E
  2405. float value = code_value();
  2406. if(value < 20.0) {
  2407. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2408. max_e_jerk *= factor;
  2409. max_feedrate[i] *= factor;
  2410. axis_steps_per_sqr_second[i] *= factor;
  2411. }
  2412. axis_steps_per_unit[i] = value;
  2413. }
  2414. else {
  2415. axis_steps_per_unit[i] = code_value();
  2416. }
  2417. }
  2418. }
  2419. break;
  2420. case 115: // M115
  2421. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2422. break;
  2423. case 117: // M117 display message
  2424. starpos = (strchr(strchr_pointer + 5,'*'));
  2425. if(starpos!=NULL)
  2426. *(starpos)='\0';
  2427. lcd_setstatus(strchr_pointer + 5);
  2428. break;
  2429. case 114: // M114
  2430. SERIAL_PROTOCOLPGM("X:");
  2431. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2432. SERIAL_PROTOCOLPGM(" Y:");
  2433. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2434. SERIAL_PROTOCOLPGM(" Z:");
  2435. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2436. SERIAL_PROTOCOLPGM(" E:");
  2437. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2438. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2439. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2440. SERIAL_PROTOCOLPGM(" Y:");
  2441. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2442. SERIAL_PROTOCOLPGM(" Z:");
  2443. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2444. SERIAL_PROTOCOLLN("");
  2445. #ifdef SCARA
  2446. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2447. SERIAL_PROTOCOL(delta[X_AXIS]);
  2448. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2449. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2450. SERIAL_PROTOCOLLN("");
  2451. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2452. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2453. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2454. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2455. SERIAL_PROTOCOLLN("");
  2456. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2457. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2458. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2459. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2460. SERIAL_PROTOCOLLN("");
  2461. SERIAL_PROTOCOLLN("");
  2462. #endif
  2463. break;
  2464. case 120: // M120
  2465. enable_endstops(false) ;
  2466. break;
  2467. case 121: // M121
  2468. enable_endstops(true) ;
  2469. break;
  2470. case 119: // M119
  2471. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2472. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2473. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2474. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2475. #endif
  2476. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2477. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2478. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2479. #endif
  2480. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2481. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2482. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2483. #endif
  2484. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2485. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2486. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2487. #endif
  2488. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2489. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2490. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2491. #endif
  2492. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2493. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2494. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2495. #endif
  2496. break;
  2497. //TODO: update for all axis, use for loop
  2498. #ifdef BLINKM
  2499. case 150: // M150
  2500. {
  2501. byte red;
  2502. byte grn;
  2503. byte blu;
  2504. if(code_seen('R')) red = code_value();
  2505. if(code_seen('U')) grn = code_value();
  2506. if(code_seen('B')) blu = code_value();
  2507. SendColors(red,grn,blu);
  2508. }
  2509. break;
  2510. #endif //BLINKM
  2511. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2512. {
  2513. tmp_extruder = active_extruder;
  2514. if(code_seen('T')) {
  2515. tmp_extruder = code_value();
  2516. if(tmp_extruder >= EXTRUDERS) {
  2517. SERIAL_ECHO_START;
  2518. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2519. break;
  2520. }
  2521. }
  2522. float area = .0;
  2523. if(code_seen('D')) {
  2524. float diameter = (float)code_value();
  2525. if (diameter == 0.0) {
  2526. // setting any extruder filament size disables volumetric on the assumption that
  2527. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2528. // for all extruders
  2529. volumetric_enabled = false;
  2530. } else {
  2531. filament_size[tmp_extruder] = (float)code_value();
  2532. // make sure all extruders have some sane value for the filament size
  2533. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2534. #if EXTRUDERS > 1
  2535. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2536. #if EXTRUDERS > 2
  2537. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2538. #endif
  2539. #endif
  2540. volumetric_enabled = true;
  2541. }
  2542. } else {
  2543. //reserved for setting filament diameter via UFID or filament measuring device
  2544. break;
  2545. }
  2546. calculate_volumetric_multipliers();
  2547. }
  2548. break;
  2549. case 201: // M201
  2550. for(int8_t i=0; i < NUM_AXIS; i++)
  2551. {
  2552. if(code_seen(axis_codes[i]))
  2553. {
  2554. max_acceleration_units_per_sq_second[i] = code_value();
  2555. }
  2556. }
  2557. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2558. reset_acceleration_rates();
  2559. break;
  2560. #if 0 // Not used for Sprinter/grbl gen6
  2561. case 202: // M202
  2562. for(int8_t i=0; i < NUM_AXIS; i++) {
  2563. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2564. }
  2565. break;
  2566. #endif
  2567. case 203: // M203 max feedrate mm/sec
  2568. for(int8_t i=0; i < NUM_AXIS; i++) {
  2569. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2570. }
  2571. break;
  2572. case 204: // M204 acclereration S normal moves T filmanent only moves
  2573. {
  2574. if(code_seen('S')) acceleration = code_value() ;
  2575. if(code_seen('T')) retract_acceleration = code_value() ;
  2576. }
  2577. break;
  2578. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2579. {
  2580. if(code_seen('S')) minimumfeedrate = code_value();
  2581. if(code_seen('T')) mintravelfeedrate = code_value();
  2582. if(code_seen('B')) minsegmenttime = code_value() ;
  2583. if(code_seen('X')) max_xy_jerk = code_value() ;
  2584. if(code_seen('Z')) max_z_jerk = code_value() ;
  2585. if(code_seen('E')) max_e_jerk = code_value() ;
  2586. }
  2587. break;
  2588. case 206: // M206 additional homing offset
  2589. for(int8_t i=0; i < 3; i++)
  2590. {
  2591. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2592. }
  2593. #ifdef SCARA
  2594. if(code_seen('T')) // Theta
  2595. {
  2596. add_homing[X_AXIS] = code_value() ;
  2597. }
  2598. if(code_seen('P')) // Psi
  2599. {
  2600. add_homing[Y_AXIS] = code_value() ;
  2601. }
  2602. #endif
  2603. break;
  2604. #ifdef DELTA
  2605. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2606. if(code_seen('L')) {
  2607. delta_diagonal_rod= code_value();
  2608. }
  2609. if(code_seen('R')) {
  2610. delta_radius= code_value();
  2611. }
  2612. if(code_seen('S')) {
  2613. delta_segments_per_second= code_value();
  2614. }
  2615. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2616. break;
  2617. case 666: // M666 set delta endstop adjustemnt
  2618. for(int8_t i=0; i < 3; i++)
  2619. {
  2620. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2621. }
  2622. break;
  2623. #endif
  2624. #ifdef FWRETRACT
  2625. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2626. {
  2627. if(code_seen('S'))
  2628. {
  2629. retract_length = code_value() ;
  2630. }
  2631. if(code_seen('F'))
  2632. {
  2633. retract_feedrate = code_value()/60 ;
  2634. }
  2635. if(code_seen('Z'))
  2636. {
  2637. retract_zlift = code_value() ;
  2638. }
  2639. }break;
  2640. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2641. {
  2642. if(code_seen('S'))
  2643. {
  2644. retract_recover_length = code_value() ;
  2645. }
  2646. if(code_seen('F'))
  2647. {
  2648. retract_recover_feedrate = code_value()/60 ;
  2649. }
  2650. }break;
  2651. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2652. {
  2653. if(code_seen('S'))
  2654. {
  2655. int t= code_value() ;
  2656. switch(t)
  2657. {
  2658. case 0:
  2659. {
  2660. autoretract_enabled=false;
  2661. retracted[0]=false;
  2662. #if EXTRUDERS > 1
  2663. retracted[1]=false;
  2664. #endif
  2665. #if EXTRUDERS > 2
  2666. retracted[2]=false;
  2667. #endif
  2668. }break;
  2669. case 1:
  2670. {
  2671. autoretract_enabled=true;
  2672. retracted[0]=false;
  2673. #if EXTRUDERS > 1
  2674. retracted[1]=false;
  2675. #endif
  2676. #if EXTRUDERS > 2
  2677. retracted[2]=false;
  2678. #endif
  2679. }break;
  2680. default:
  2681. SERIAL_ECHO_START;
  2682. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2683. SERIAL_ECHO(cmdbuffer[bufindr]);
  2684. SERIAL_ECHOLNPGM("\"");
  2685. }
  2686. }
  2687. }break;
  2688. #endif // FWRETRACT
  2689. #if EXTRUDERS > 1
  2690. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2691. {
  2692. if(setTargetedHotend(218)){
  2693. break;
  2694. }
  2695. if(code_seen('X'))
  2696. {
  2697. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2698. }
  2699. if(code_seen('Y'))
  2700. {
  2701. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2702. }
  2703. #ifdef DUAL_X_CARRIAGE
  2704. if(code_seen('Z'))
  2705. {
  2706. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2707. }
  2708. #endif
  2709. SERIAL_ECHO_START;
  2710. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2711. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2712. {
  2713. SERIAL_ECHO(" ");
  2714. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2715. SERIAL_ECHO(",");
  2716. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2717. #ifdef DUAL_X_CARRIAGE
  2718. SERIAL_ECHO(",");
  2719. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2720. #endif
  2721. }
  2722. SERIAL_ECHOLN("");
  2723. }break;
  2724. #endif
  2725. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2726. {
  2727. if(code_seen('S'))
  2728. {
  2729. feedmultiply = code_value() ;
  2730. }
  2731. }
  2732. break;
  2733. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2734. {
  2735. if(code_seen('S'))
  2736. {
  2737. int tmp_code = code_value();
  2738. if (code_seen('T'))
  2739. {
  2740. if(setTargetedHotend(221)){
  2741. break;
  2742. }
  2743. extruder_multiply[tmp_extruder] = tmp_code;
  2744. }
  2745. else
  2746. {
  2747. extrudemultiply = tmp_code ;
  2748. }
  2749. }
  2750. }
  2751. break;
  2752. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2753. {
  2754. if(code_seen('P')){
  2755. int pin_number = code_value(); // pin number
  2756. int pin_state = -1; // required pin state - default is inverted
  2757. if(code_seen('S')) pin_state = code_value(); // required pin state
  2758. if(pin_state >= -1 && pin_state <= 1){
  2759. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2760. {
  2761. if (sensitive_pins[i] == pin_number)
  2762. {
  2763. pin_number = -1;
  2764. break;
  2765. }
  2766. }
  2767. if (pin_number > -1)
  2768. {
  2769. int target = LOW;
  2770. st_synchronize();
  2771. pinMode(pin_number, INPUT);
  2772. switch(pin_state){
  2773. case 1:
  2774. target = HIGH;
  2775. break;
  2776. case 0:
  2777. target = LOW;
  2778. break;
  2779. case -1:
  2780. target = !digitalRead(pin_number);
  2781. break;
  2782. }
  2783. while(digitalRead(pin_number) != target){
  2784. manage_heater();
  2785. manage_inactivity();
  2786. lcd_update();
  2787. }
  2788. }
  2789. }
  2790. }
  2791. }
  2792. break;
  2793. #if NUM_SERVOS > 0
  2794. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2795. {
  2796. int servo_index = -1;
  2797. int servo_position = 0;
  2798. if (code_seen('P'))
  2799. servo_index = code_value();
  2800. if (code_seen('S')) {
  2801. servo_position = code_value();
  2802. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2803. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2804. servos[servo_index].attach(0);
  2805. #endif
  2806. servos[servo_index].write(servo_position);
  2807. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2808. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2809. servos[servo_index].detach();
  2810. #endif
  2811. }
  2812. else {
  2813. SERIAL_ECHO_START;
  2814. SERIAL_ECHO("Servo ");
  2815. SERIAL_ECHO(servo_index);
  2816. SERIAL_ECHOLN(" out of range");
  2817. }
  2818. }
  2819. else if (servo_index >= 0) {
  2820. SERIAL_PROTOCOL(MSG_OK);
  2821. SERIAL_PROTOCOL(" Servo ");
  2822. SERIAL_PROTOCOL(servo_index);
  2823. SERIAL_PROTOCOL(": ");
  2824. SERIAL_PROTOCOL(servos[servo_index].read());
  2825. SERIAL_PROTOCOLLN("");
  2826. }
  2827. }
  2828. break;
  2829. #endif // NUM_SERVOS > 0
  2830. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2831. case 300: // M300
  2832. {
  2833. int beepS = code_seen('S') ? code_value() : 110;
  2834. int beepP = code_seen('P') ? code_value() : 1000;
  2835. if (beepS > 0)
  2836. {
  2837. #if BEEPER > 0
  2838. tone(BEEPER, beepS);
  2839. delay(beepP);
  2840. noTone(BEEPER);
  2841. #elif defined(ULTRALCD)
  2842. lcd_buzz(beepS, beepP);
  2843. #elif defined(LCD_USE_I2C_BUZZER)
  2844. lcd_buzz(beepP, beepS);
  2845. #endif
  2846. }
  2847. else
  2848. {
  2849. delay(beepP);
  2850. }
  2851. }
  2852. break;
  2853. #endif // M300
  2854. #ifdef PIDTEMP
  2855. case 301: // M301
  2856. {
  2857. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2858. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2859. int e = 0; // extruder being updated
  2860. if (code_seen('E'))
  2861. {
  2862. e = (int)code_value();
  2863. }
  2864. if (e < EXTRUDERS) // catch bad input value
  2865. {
  2866. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2867. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2868. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2869. #ifdef PID_ADD_EXTRUSION_RATE
  2870. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2871. #endif
  2872. updatePID();
  2873. SERIAL_PROTOCOL(MSG_OK);
  2874. #ifdef PID_PARAMS_PER_EXTRUDER
  2875. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2876. SERIAL_PROTOCOL(e);
  2877. #endif // PID_PARAMS_PER_EXTRUDER
  2878. SERIAL_PROTOCOL(" p:");
  2879. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2880. SERIAL_PROTOCOL(" i:");
  2881. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2882. SERIAL_PROTOCOL(" d:");
  2883. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2884. #ifdef PID_ADD_EXTRUSION_RATE
  2885. SERIAL_PROTOCOL(" c:");
  2886. //Kc does not have scaling applied above, or in resetting defaults
  2887. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2888. #endif
  2889. SERIAL_PROTOCOLLN("");
  2890. }
  2891. else
  2892. {
  2893. SERIAL_ECHO_START;
  2894. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2895. }
  2896. }
  2897. break;
  2898. #endif //PIDTEMP
  2899. #ifdef PIDTEMPBED
  2900. case 304: // M304
  2901. {
  2902. if(code_seen('P')) bedKp = code_value();
  2903. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2904. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2905. updatePID();
  2906. SERIAL_PROTOCOL(MSG_OK);
  2907. SERIAL_PROTOCOL(" p:");
  2908. SERIAL_PROTOCOL(bedKp);
  2909. SERIAL_PROTOCOL(" i:");
  2910. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2911. SERIAL_PROTOCOL(" d:");
  2912. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2913. SERIAL_PROTOCOLLN("");
  2914. }
  2915. break;
  2916. #endif //PIDTEMP
  2917. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2918. {
  2919. #ifdef CHDK
  2920. SET_OUTPUT(CHDK);
  2921. WRITE(CHDK, HIGH);
  2922. chdkHigh = millis();
  2923. chdkActive = true;
  2924. #else
  2925. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2926. const uint8_t NUM_PULSES=16;
  2927. const float PULSE_LENGTH=0.01524;
  2928. for(int i=0; i < NUM_PULSES; i++) {
  2929. WRITE(PHOTOGRAPH_PIN, HIGH);
  2930. _delay_ms(PULSE_LENGTH);
  2931. WRITE(PHOTOGRAPH_PIN, LOW);
  2932. _delay_ms(PULSE_LENGTH);
  2933. }
  2934. delay(7.33);
  2935. for(int i=0; i < NUM_PULSES; i++) {
  2936. WRITE(PHOTOGRAPH_PIN, HIGH);
  2937. _delay_ms(PULSE_LENGTH);
  2938. WRITE(PHOTOGRAPH_PIN, LOW);
  2939. _delay_ms(PULSE_LENGTH);
  2940. }
  2941. #endif
  2942. #endif //chdk end if
  2943. }
  2944. break;
  2945. #ifdef DOGLCD
  2946. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2947. {
  2948. if (code_seen('C')) {
  2949. lcd_setcontrast( ((int)code_value())&63 );
  2950. }
  2951. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2952. SERIAL_PROTOCOL(lcd_contrast);
  2953. SERIAL_PROTOCOLLN("");
  2954. }
  2955. break;
  2956. #endif
  2957. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2958. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2959. {
  2960. float temp = .0;
  2961. if (code_seen('S')) temp=code_value();
  2962. set_extrude_min_temp(temp);
  2963. }
  2964. break;
  2965. #endif
  2966. case 303: // M303 PID autotune
  2967. {
  2968. float temp = 150.0;
  2969. int e=0;
  2970. int c=5;
  2971. if (code_seen('E')) e=code_value();
  2972. if (e<0)
  2973. temp=70;
  2974. if (code_seen('S')) temp=code_value();
  2975. if (code_seen('C')) c=code_value();
  2976. PID_autotune(temp, e, c);
  2977. }
  2978. break;
  2979. #ifdef SCARA
  2980. case 360: // M360 SCARA Theta pos1
  2981. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2982. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2983. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2984. if(Stopped == false) {
  2985. //get_coordinates(); // For X Y Z E F
  2986. delta[X_AXIS] = 0;
  2987. delta[Y_AXIS] = 120;
  2988. calculate_SCARA_forward_Transform(delta);
  2989. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2990. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2991. prepare_move();
  2992. //ClearToSend();
  2993. return;
  2994. }
  2995. break;
  2996. case 361: // SCARA Theta pos2
  2997. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2998. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2999. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3000. if(Stopped == false) {
  3001. //get_coordinates(); // For X Y Z E F
  3002. delta[X_AXIS] = 90;
  3003. delta[Y_AXIS] = 130;
  3004. calculate_SCARA_forward_Transform(delta);
  3005. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3006. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3007. prepare_move();
  3008. //ClearToSend();
  3009. return;
  3010. }
  3011. break;
  3012. case 362: // SCARA Psi pos1
  3013. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3014. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3015. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3016. if(Stopped == false) {
  3017. //get_coordinates(); // For X Y Z E F
  3018. delta[X_AXIS] = 60;
  3019. delta[Y_AXIS] = 180;
  3020. calculate_SCARA_forward_Transform(delta);
  3021. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3022. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3023. prepare_move();
  3024. //ClearToSend();
  3025. return;
  3026. }
  3027. break;
  3028. case 363: // SCARA Psi pos2
  3029. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3030. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3031. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3032. if(Stopped == false) {
  3033. //get_coordinates(); // For X Y Z E F
  3034. delta[X_AXIS] = 50;
  3035. delta[Y_AXIS] = 90;
  3036. calculate_SCARA_forward_Transform(delta);
  3037. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3038. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3039. prepare_move();
  3040. //ClearToSend();
  3041. return;
  3042. }
  3043. break;
  3044. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3045. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3046. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3047. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3048. if(Stopped == false) {
  3049. //get_coordinates(); // For X Y Z E F
  3050. delta[X_AXIS] = 45;
  3051. delta[Y_AXIS] = 135;
  3052. calculate_SCARA_forward_Transform(delta);
  3053. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3054. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3055. prepare_move();
  3056. //ClearToSend();
  3057. return;
  3058. }
  3059. break;
  3060. case 365: // M364 Set SCARA scaling for X Y Z
  3061. for(int8_t i=0; i < 3; i++)
  3062. {
  3063. if(code_seen(axis_codes[i]))
  3064. {
  3065. axis_scaling[i] = code_value();
  3066. }
  3067. }
  3068. break;
  3069. #endif
  3070. case 400: // M400 finish all moves
  3071. {
  3072. st_synchronize();
  3073. }
  3074. break;
  3075. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3076. case 401:
  3077. {
  3078. engage_z_probe(); // Engage Z Servo endstop if available
  3079. }
  3080. break;
  3081. case 402:
  3082. {
  3083. retract_z_probe(); // Retract Z Servo endstop if enabled
  3084. }
  3085. break;
  3086. #endif
  3087. #ifdef FILAMENT_SENSOR
  3088. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3089. {
  3090. #if (FILWIDTH_PIN > -1)
  3091. if(code_seen('N')) filament_width_nominal=code_value();
  3092. else{
  3093. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3094. SERIAL_PROTOCOLLN(filament_width_nominal);
  3095. }
  3096. #endif
  3097. }
  3098. break;
  3099. case 405: //M405 Turn on filament sensor for control
  3100. {
  3101. if(code_seen('D')) meas_delay_cm=code_value();
  3102. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3103. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3104. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3105. {
  3106. int temp_ratio = widthFil_to_size_ratio();
  3107. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3108. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3109. }
  3110. delay_index1=0;
  3111. delay_index2=0;
  3112. }
  3113. filament_sensor = true ;
  3114. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3115. //SERIAL_PROTOCOL(filament_width_meas);
  3116. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3117. //SERIAL_PROTOCOL(extrudemultiply);
  3118. }
  3119. break;
  3120. case 406: //M406 Turn off filament sensor for control
  3121. {
  3122. filament_sensor = false ;
  3123. }
  3124. break;
  3125. case 407: //M407 Display measured filament diameter
  3126. {
  3127. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3128. SERIAL_PROTOCOLLN(filament_width_meas);
  3129. }
  3130. break;
  3131. #endif
  3132. case 500: // M500 Store settings in EEPROM
  3133. {
  3134. Config_StoreSettings();
  3135. }
  3136. break;
  3137. case 501: // M501 Read settings from EEPROM
  3138. {
  3139. Config_RetrieveSettings();
  3140. }
  3141. break;
  3142. case 502: // M502 Revert to default settings
  3143. {
  3144. Config_ResetDefault();
  3145. }
  3146. break;
  3147. case 503: // M503 print settings currently in memory
  3148. {
  3149. Config_PrintSettings();
  3150. }
  3151. break;
  3152. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3153. case 540:
  3154. {
  3155. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3156. }
  3157. break;
  3158. #endif
  3159. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3160. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3161. {
  3162. float value;
  3163. if (code_seen('Z'))
  3164. {
  3165. value = code_value();
  3166. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3167. {
  3168. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3169. SERIAL_ECHO_START;
  3170. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3171. SERIAL_PROTOCOLLN("");
  3172. }
  3173. else
  3174. {
  3175. SERIAL_ECHO_START;
  3176. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3177. SERIAL_ECHOPGM(MSG_Z_MIN);
  3178. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3179. SERIAL_ECHOPGM(MSG_Z_MAX);
  3180. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3181. SERIAL_PROTOCOLLN("");
  3182. }
  3183. }
  3184. else
  3185. {
  3186. SERIAL_ECHO_START;
  3187. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3188. SERIAL_ECHO(-zprobe_zoffset);
  3189. SERIAL_PROTOCOLLN("");
  3190. }
  3191. break;
  3192. }
  3193. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3194. #ifdef FILAMENTCHANGEENABLE
  3195. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3196. {
  3197. float target[4];
  3198. float lastpos[4];
  3199. target[X_AXIS]=current_position[X_AXIS];
  3200. target[Y_AXIS]=current_position[Y_AXIS];
  3201. target[Z_AXIS]=current_position[Z_AXIS];
  3202. target[E_AXIS]=current_position[E_AXIS];
  3203. lastpos[X_AXIS]=current_position[X_AXIS];
  3204. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3205. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3206. lastpos[E_AXIS]=current_position[E_AXIS];
  3207. //retract by E
  3208. if(code_seen('E'))
  3209. {
  3210. target[E_AXIS]+= code_value();
  3211. }
  3212. else
  3213. {
  3214. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3215. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3216. #endif
  3217. }
  3218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3219. //lift Z
  3220. if(code_seen('Z'))
  3221. {
  3222. target[Z_AXIS]+= code_value();
  3223. }
  3224. else
  3225. {
  3226. #ifdef FILAMENTCHANGE_ZADD
  3227. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3228. #endif
  3229. }
  3230. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3231. //move xy
  3232. if(code_seen('X'))
  3233. {
  3234. target[X_AXIS]+= code_value();
  3235. }
  3236. else
  3237. {
  3238. #ifdef FILAMENTCHANGE_XPOS
  3239. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3240. #endif
  3241. }
  3242. if(code_seen('Y'))
  3243. {
  3244. target[Y_AXIS]= code_value();
  3245. }
  3246. else
  3247. {
  3248. #ifdef FILAMENTCHANGE_YPOS
  3249. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3250. #endif
  3251. }
  3252. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3253. if(code_seen('L'))
  3254. {
  3255. target[E_AXIS]+= code_value();
  3256. }
  3257. else
  3258. {
  3259. #ifdef FILAMENTCHANGE_FINALRETRACT
  3260. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3261. #endif
  3262. }
  3263. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3264. //finish moves
  3265. st_synchronize();
  3266. //disable extruder steppers so filament can be removed
  3267. disable_e0();
  3268. disable_e1();
  3269. disable_e2();
  3270. delay(100);
  3271. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3272. uint8_t cnt=0;
  3273. while(!lcd_clicked()){
  3274. cnt++;
  3275. manage_heater();
  3276. manage_inactivity(true);
  3277. lcd_update();
  3278. if(cnt==0)
  3279. {
  3280. #if BEEPER > 0
  3281. SET_OUTPUT(BEEPER);
  3282. WRITE(BEEPER,HIGH);
  3283. delay(3);
  3284. WRITE(BEEPER,LOW);
  3285. delay(3);
  3286. #else
  3287. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3288. lcd_buzz(1000/6,100);
  3289. #else
  3290. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3291. #endif
  3292. #endif
  3293. }
  3294. }
  3295. //return to normal
  3296. if(code_seen('L'))
  3297. {
  3298. target[E_AXIS]+= -code_value();
  3299. }
  3300. else
  3301. {
  3302. #ifdef FILAMENTCHANGE_FINALRETRACT
  3303. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3304. #endif
  3305. }
  3306. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3307. plan_set_e_position(current_position[E_AXIS]);
  3308. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3309. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3310. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3311. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3312. }
  3313. break;
  3314. #endif //FILAMENTCHANGEENABLE
  3315. #ifdef DUAL_X_CARRIAGE
  3316. case 605: // Set dual x-carriage movement mode:
  3317. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3318. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3319. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3320. // millimeters x-offset and an optional differential hotend temperature of
  3321. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3322. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3323. //
  3324. // Note: the X axis should be homed after changing dual x-carriage mode.
  3325. {
  3326. st_synchronize();
  3327. if (code_seen('S'))
  3328. dual_x_carriage_mode = code_value();
  3329. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3330. {
  3331. if (code_seen('X'))
  3332. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3333. if (code_seen('R'))
  3334. duplicate_extruder_temp_offset = code_value();
  3335. SERIAL_ECHO_START;
  3336. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3337. SERIAL_ECHO(" ");
  3338. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3339. SERIAL_ECHO(",");
  3340. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3341. SERIAL_ECHO(" ");
  3342. SERIAL_ECHO(duplicate_extruder_x_offset);
  3343. SERIAL_ECHO(",");
  3344. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3345. }
  3346. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3347. {
  3348. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3349. }
  3350. active_extruder_parked = false;
  3351. extruder_duplication_enabled = false;
  3352. delayed_move_time = 0;
  3353. }
  3354. break;
  3355. #endif //DUAL_X_CARRIAGE
  3356. case 907: // M907 Set digital trimpot motor current using axis codes.
  3357. {
  3358. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3359. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3360. if(code_seen('B')) digipot_current(4,code_value());
  3361. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3362. #endif
  3363. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3364. if(code_seen('X')) digipot_current(0, code_value());
  3365. #endif
  3366. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3367. if(code_seen('Z')) digipot_current(1, code_value());
  3368. #endif
  3369. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3370. if(code_seen('E')) digipot_current(2, code_value());
  3371. #endif
  3372. #ifdef DIGIPOT_I2C
  3373. // this one uses actual amps in floating point
  3374. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3375. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3376. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3377. #endif
  3378. }
  3379. break;
  3380. case 908: // M908 Control digital trimpot directly.
  3381. {
  3382. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3383. uint8_t channel,current;
  3384. if(code_seen('P')) channel=code_value();
  3385. if(code_seen('S')) current=code_value();
  3386. digitalPotWrite(channel, current);
  3387. #endif
  3388. }
  3389. break;
  3390. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3391. {
  3392. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3393. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3394. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3395. if(code_seen('B')) microstep_mode(4,code_value());
  3396. microstep_readings();
  3397. #endif
  3398. }
  3399. break;
  3400. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3401. {
  3402. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3403. if(code_seen('S')) switch((int)code_value())
  3404. {
  3405. case 1:
  3406. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3407. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3408. break;
  3409. case 2:
  3410. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3411. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3412. break;
  3413. }
  3414. microstep_readings();
  3415. #endif
  3416. }
  3417. break;
  3418. case 999: // M999: Restart after being stopped
  3419. Stopped = false;
  3420. lcd_reset_alert_level();
  3421. gcode_LastN = Stopped_gcode_LastN;
  3422. FlushSerialRequestResend();
  3423. break;
  3424. }
  3425. }
  3426. else if(code_seen('T'))
  3427. {
  3428. tmp_extruder = code_value();
  3429. if(tmp_extruder >= EXTRUDERS) {
  3430. SERIAL_ECHO_START;
  3431. SERIAL_ECHO("T");
  3432. SERIAL_ECHO(tmp_extruder);
  3433. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3434. }
  3435. else {
  3436. boolean make_move = false;
  3437. if(code_seen('F')) {
  3438. make_move = true;
  3439. next_feedrate = code_value();
  3440. if(next_feedrate > 0.0) {
  3441. feedrate = next_feedrate;
  3442. }
  3443. }
  3444. #if EXTRUDERS > 1
  3445. if(tmp_extruder != active_extruder) {
  3446. // Save current position to return to after applying extruder offset
  3447. memcpy(destination, current_position, sizeof(destination));
  3448. #ifdef DUAL_X_CARRIAGE
  3449. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3450. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3451. {
  3452. // Park old head: 1) raise 2) move to park position 3) lower
  3453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3454. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3455. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3456. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3457. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3458. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3459. st_synchronize();
  3460. }
  3461. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3462. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3463. extruder_offset[Y_AXIS][active_extruder] +
  3464. extruder_offset[Y_AXIS][tmp_extruder];
  3465. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3466. extruder_offset[Z_AXIS][active_extruder] +
  3467. extruder_offset[Z_AXIS][tmp_extruder];
  3468. active_extruder = tmp_extruder;
  3469. // This function resets the max/min values - the current position may be overwritten below.
  3470. axis_is_at_home(X_AXIS);
  3471. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3472. {
  3473. current_position[X_AXIS] = inactive_extruder_x_pos;
  3474. inactive_extruder_x_pos = destination[X_AXIS];
  3475. }
  3476. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3477. {
  3478. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3479. if (active_extruder == 0 || active_extruder_parked)
  3480. current_position[X_AXIS] = inactive_extruder_x_pos;
  3481. else
  3482. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3483. inactive_extruder_x_pos = destination[X_AXIS];
  3484. extruder_duplication_enabled = false;
  3485. }
  3486. else
  3487. {
  3488. // record raised toolhead position for use by unpark
  3489. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3490. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3491. active_extruder_parked = true;
  3492. delayed_move_time = 0;
  3493. }
  3494. #else
  3495. // Offset extruder (only by XY)
  3496. int i;
  3497. for(i = 0; i < 2; i++) {
  3498. current_position[i] = current_position[i] -
  3499. extruder_offset[i][active_extruder] +
  3500. extruder_offset[i][tmp_extruder];
  3501. }
  3502. // Set the new active extruder and position
  3503. active_extruder = tmp_extruder;
  3504. #endif //else DUAL_X_CARRIAGE
  3505. #ifdef DELTA
  3506. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3507. //sent position to plan_set_position();
  3508. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3509. #else
  3510. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3511. #endif
  3512. // Move to the old position if 'F' was in the parameters
  3513. if(make_move && Stopped == false) {
  3514. prepare_move();
  3515. }
  3516. }
  3517. #endif
  3518. SERIAL_ECHO_START;
  3519. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3520. SERIAL_PROTOCOLLN((int)active_extruder);
  3521. }
  3522. }
  3523. else
  3524. {
  3525. SERIAL_ECHO_START;
  3526. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3527. SERIAL_ECHO(cmdbuffer[bufindr]);
  3528. SERIAL_ECHOLNPGM("\"");
  3529. }
  3530. ClearToSend();
  3531. }
  3532. void FlushSerialRequestResend()
  3533. {
  3534. //char cmdbuffer[bufindr][100]="Resend:";
  3535. MYSERIAL.flush();
  3536. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3537. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3538. ClearToSend();
  3539. }
  3540. void ClearToSend()
  3541. {
  3542. previous_millis_cmd = millis();
  3543. #ifdef SDSUPPORT
  3544. if(fromsd[bufindr])
  3545. return;
  3546. #endif //SDSUPPORT
  3547. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3548. }
  3549. void get_coordinates()
  3550. {
  3551. bool seen[4]={false,false,false,false};
  3552. for(int8_t i=0; i < NUM_AXIS; i++) {
  3553. if(code_seen(axis_codes[i]))
  3554. {
  3555. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3556. seen[i]=true;
  3557. }
  3558. else destination[i] = current_position[i]; //Are these else lines really needed?
  3559. }
  3560. if(code_seen('F')) {
  3561. next_feedrate = code_value();
  3562. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3563. }
  3564. }
  3565. void get_arc_coordinates()
  3566. {
  3567. #ifdef SF_ARC_FIX
  3568. bool relative_mode_backup = relative_mode;
  3569. relative_mode = true;
  3570. #endif
  3571. get_coordinates();
  3572. #ifdef SF_ARC_FIX
  3573. relative_mode=relative_mode_backup;
  3574. #endif
  3575. if(code_seen('I')) {
  3576. offset[0] = code_value();
  3577. }
  3578. else {
  3579. offset[0] = 0.0;
  3580. }
  3581. if(code_seen('J')) {
  3582. offset[1] = code_value();
  3583. }
  3584. else {
  3585. offset[1] = 0.0;
  3586. }
  3587. }
  3588. void clamp_to_software_endstops(float target[3])
  3589. {
  3590. if (min_software_endstops) {
  3591. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3592. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3593. float negative_z_offset = 0;
  3594. #ifdef ENABLE_AUTO_BED_LEVELING
  3595. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3596. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3597. #endif
  3598. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3599. }
  3600. if (max_software_endstops) {
  3601. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3602. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3603. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3604. }
  3605. }
  3606. #ifdef DELTA
  3607. void recalc_delta_settings(float radius, float diagonal_rod)
  3608. {
  3609. delta_tower1_x= -SIN_60*radius; // front left tower
  3610. delta_tower1_y= -COS_60*radius;
  3611. delta_tower2_x= SIN_60*radius; // front right tower
  3612. delta_tower2_y= -COS_60*radius;
  3613. delta_tower3_x= 0.0; // back middle tower
  3614. delta_tower3_y= radius;
  3615. delta_diagonal_rod_2= sq(diagonal_rod);
  3616. }
  3617. void calculate_delta(float cartesian[3])
  3618. {
  3619. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3620. - sq(delta_tower1_x-cartesian[X_AXIS])
  3621. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3622. ) + cartesian[Z_AXIS];
  3623. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3624. - sq(delta_tower2_x-cartesian[X_AXIS])
  3625. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3626. ) + cartesian[Z_AXIS];
  3627. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3628. - sq(delta_tower3_x-cartesian[X_AXIS])
  3629. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3630. ) + cartesian[Z_AXIS];
  3631. /*
  3632. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3633. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3634. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3635. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3636. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3637. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3638. */
  3639. }
  3640. #endif
  3641. void prepare_move()
  3642. {
  3643. clamp_to_software_endstops(destination);
  3644. previous_millis_cmd = millis();
  3645. #ifdef SCARA //for now same as delta-code
  3646. float difference[NUM_AXIS];
  3647. for (int8_t i=0; i < NUM_AXIS; i++) {
  3648. difference[i] = destination[i] - current_position[i];
  3649. }
  3650. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3651. sq(difference[Y_AXIS]) +
  3652. sq(difference[Z_AXIS]));
  3653. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3654. if (cartesian_mm < 0.000001) { return; }
  3655. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3656. int steps = max(1, int(scara_segments_per_second * seconds));
  3657. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3658. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3659. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3660. for (int s = 1; s <= steps; s++) {
  3661. float fraction = float(s) / float(steps);
  3662. for(int8_t i=0; i < NUM_AXIS; i++) {
  3663. destination[i] = current_position[i] + difference[i] * fraction;
  3664. }
  3665. calculate_delta(destination);
  3666. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3667. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3668. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3669. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3670. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3671. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3672. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3673. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3674. active_extruder);
  3675. }
  3676. #endif // SCARA
  3677. #ifdef DELTA
  3678. float difference[NUM_AXIS];
  3679. for (int8_t i=0; i < NUM_AXIS; i++) {
  3680. difference[i] = destination[i] - current_position[i];
  3681. }
  3682. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3683. sq(difference[Y_AXIS]) +
  3684. sq(difference[Z_AXIS]));
  3685. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3686. if (cartesian_mm < 0.000001) { return; }
  3687. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3688. int steps = max(1, int(delta_segments_per_second * seconds));
  3689. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3690. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3691. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3692. for (int s = 1; s <= steps; s++) {
  3693. float fraction = float(s) / float(steps);
  3694. for(int8_t i=0; i < NUM_AXIS; i++) {
  3695. destination[i] = current_position[i] + difference[i] * fraction;
  3696. }
  3697. calculate_delta(destination);
  3698. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3699. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3700. active_extruder);
  3701. }
  3702. #endif // DELTA
  3703. #ifdef DUAL_X_CARRIAGE
  3704. if (active_extruder_parked)
  3705. {
  3706. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3707. {
  3708. // move duplicate extruder into correct duplication position.
  3709. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3710. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3711. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3712. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3713. st_synchronize();
  3714. extruder_duplication_enabled = true;
  3715. active_extruder_parked = false;
  3716. }
  3717. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3718. {
  3719. if (current_position[E_AXIS] == destination[E_AXIS])
  3720. {
  3721. // this is a travel move - skit it but keep track of current position (so that it can later
  3722. // be used as start of first non-travel move)
  3723. if (delayed_move_time != 0xFFFFFFFFUL)
  3724. {
  3725. memcpy(current_position, destination, sizeof(current_position));
  3726. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3727. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3728. delayed_move_time = millis();
  3729. return;
  3730. }
  3731. }
  3732. delayed_move_time = 0;
  3733. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3734. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3736. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3738. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3739. active_extruder_parked = false;
  3740. }
  3741. }
  3742. #endif //DUAL_X_CARRIAGE
  3743. #if ! (defined DELTA || defined SCARA)
  3744. // Do not use feedmultiply for E or Z only moves
  3745. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3747. }
  3748. else {
  3749. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3750. }
  3751. #endif // !(DELTA || SCARA)
  3752. for(int8_t i=0; i < NUM_AXIS; i++) {
  3753. current_position[i] = destination[i];
  3754. }
  3755. }
  3756. void prepare_arc_move(char isclockwise) {
  3757. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3758. // Trace the arc
  3759. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3760. // As far as the parser is concerned, the position is now == target. In reality the
  3761. // motion control system might still be processing the action and the real tool position
  3762. // in any intermediate location.
  3763. for(int8_t i=0; i < NUM_AXIS; i++) {
  3764. current_position[i] = destination[i];
  3765. }
  3766. previous_millis_cmd = millis();
  3767. }
  3768. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3769. #if defined(FAN_PIN)
  3770. #if CONTROLLERFAN_PIN == FAN_PIN
  3771. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3772. #endif
  3773. #endif
  3774. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3775. unsigned long lastMotorCheck = 0;
  3776. void controllerFan()
  3777. {
  3778. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3779. {
  3780. lastMotorCheck = millis();
  3781. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3782. #if EXTRUDERS > 2
  3783. || !READ(E2_ENABLE_PIN)
  3784. #endif
  3785. #if EXTRUDER > 1
  3786. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3787. || !READ(X2_ENABLE_PIN)
  3788. #endif
  3789. || !READ(E1_ENABLE_PIN)
  3790. #endif
  3791. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3792. {
  3793. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3794. }
  3795. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3796. {
  3797. digitalWrite(CONTROLLERFAN_PIN, 0);
  3798. analogWrite(CONTROLLERFAN_PIN, 0);
  3799. }
  3800. else
  3801. {
  3802. // allows digital or PWM fan output to be used (see M42 handling)
  3803. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3804. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3805. }
  3806. }
  3807. }
  3808. #endif
  3809. #ifdef SCARA
  3810. void calculate_SCARA_forward_Transform(float f_scara[3])
  3811. {
  3812. // Perform forward kinematics, and place results in delta[3]
  3813. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3814. float x_sin, x_cos, y_sin, y_cos;
  3815. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3816. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3817. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3818. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3819. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3820. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3821. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3822. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3823. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3824. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3825. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3826. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3827. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3828. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3829. }
  3830. void calculate_delta(float cartesian[3]){
  3831. //reverse kinematics.
  3832. // Perform reversed kinematics, and place results in delta[3]
  3833. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3834. float SCARA_pos[2];
  3835. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3836. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3837. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3838. #if (Linkage_1 == Linkage_2)
  3839. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3840. #else
  3841. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3842. #endif
  3843. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3844. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3845. SCARA_K2 = Linkage_2 * SCARA_S2;
  3846. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3847. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3848. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3849. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3850. delta[Z_AXIS] = cartesian[Z_AXIS];
  3851. /*
  3852. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3853. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3854. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3855. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3856. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3857. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3858. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3859. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3860. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3861. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3862. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3863. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3864. SERIAL_ECHOLN(" ");*/
  3865. }
  3866. #endif
  3867. #ifdef TEMP_STAT_LEDS
  3868. static bool blue_led = false;
  3869. static bool red_led = false;
  3870. static uint32_t stat_update = 0;
  3871. void handle_status_leds(void) {
  3872. float max_temp = 0.0;
  3873. if(millis() > stat_update) {
  3874. stat_update += 500; // Update every 0.5s
  3875. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3876. max_temp = max(max_temp, degHotend(cur_extruder));
  3877. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3878. }
  3879. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3880. max_temp = max(max_temp, degTargetBed());
  3881. max_temp = max(max_temp, degBed());
  3882. #endif
  3883. if((max_temp > 55.0) && (red_led == false)) {
  3884. digitalWrite(STAT_LED_RED, 1);
  3885. digitalWrite(STAT_LED_BLUE, 0);
  3886. red_led = true;
  3887. blue_led = false;
  3888. }
  3889. if((max_temp < 54.0) && (blue_led == false)) {
  3890. digitalWrite(STAT_LED_RED, 0);
  3891. digitalWrite(STAT_LED_BLUE, 1);
  3892. red_led = false;
  3893. blue_led = true;
  3894. }
  3895. }
  3896. }
  3897. #endif
  3898. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3899. {
  3900. #if defined(KILL_PIN) && KILL_PIN > -1
  3901. static int killCount = 0; // make the inactivity button a bit less responsive
  3902. const int KILL_DELAY = 10000;
  3903. #endif
  3904. #if defined(HOME_PIN) && HOME_PIN > -1
  3905. static int homeDebounceCount = 0; // poor man's debouncing count
  3906. const int HOME_DEBOUNCE_DELAY = 10000;
  3907. #endif
  3908. if(buflen < (BUFSIZE-1))
  3909. get_command();
  3910. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3911. if(max_inactive_time)
  3912. kill();
  3913. if(stepper_inactive_time) {
  3914. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3915. {
  3916. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3917. disable_x();
  3918. disable_y();
  3919. disable_z();
  3920. disable_e0();
  3921. disable_e1();
  3922. disable_e2();
  3923. }
  3924. }
  3925. }
  3926. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3927. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3928. {
  3929. chdkActive = false;
  3930. WRITE(CHDK, LOW);
  3931. }
  3932. #endif
  3933. #if defined(KILL_PIN) && KILL_PIN > -1
  3934. // Check if the kill button was pressed and wait just in case it was an accidental
  3935. // key kill key press
  3936. // -------------------------------------------------------------------------------
  3937. if( 0 == READ(KILL_PIN) )
  3938. {
  3939. killCount++;
  3940. }
  3941. else if (killCount > 0)
  3942. {
  3943. killCount--;
  3944. }
  3945. // Exceeded threshold and we can confirm that it was not accidental
  3946. // KILL the machine
  3947. // ----------------------------------------------------------------
  3948. if ( killCount >= KILL_DELAY)
  3949. {
  3950. kill();
  3951. }
  3952. #endif
  3953. #if defined(HOME_PIN) && HOME_PIN > -1
  3954. // Check to see if we have to home, use poor man's debouncer
  3955. // ---------------------------------------------------------
  3956. if ( 0 == READ(HOME_PIN) )
  3957. {
  3958. if (homeDebounceCount == 0)
  3959. {
  3960. enquecommand_P((PSTR("G28")));
  3961. homeDebounceCount++;
  3962. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  3963. }
  3964. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  3965. {
  3966. homeDebounceCount++;
  3967. }
  3968. else
  3969. {
  3970. homeDebounceCount = 0;
  3971. }
  3972. }
  3973. #endif
  3974. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3975. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3976. #endif
  3977. #ifdef EXTRUDER_RUNOUT_PREVENT
  3978. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3979. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3980. {
  3981. bool oldstatus=READ(E0_ENABLE_PIN);
  3982. enable_e0();
  3983. float oldepos=current_position[E_AXIS];
  3984. float oldedes=destination[E_AXIS];
  3985. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3986. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3987. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3988. current_position[E_AXIS]=oldepos;
  3989. destination[E_AXIS]=oldedes;
  3990. plan_set_e_position(oldepos);
  3991. previous_millis_cmd=millis();
  3992. st_synchronize();
  3993. WRITE(E0_ENABLE_PIN,oldstatus);
  3994. }
  3995. #endif
  3996. #if defined(DUAL_X_CARRIAGE)
  3997. // handle delayed move timeout
  3998. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3999. {
  4000. // travel moves have been received so enact them
  4001. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4002. memcpy(destination,current_position,sizeof(destination));
  4003. prepare_move();
  4004. }
  4005. #endif
  4006. #ifdef TEMP_STAT_LEDS
  4007. handle_status_leds();
  4008. #endif
  4009. check_axes_activity();
  4010. }
  4011. void kill()
  4012. {
  4013. cli(); // Stop interrupts
  4014. disable_heater();
  4015. disable_x();
  4016. disable_y();
  4017. disable_z();
  4018. disable_e0();
  4019. disable_e1();
  4020. disable_e2();
  4021. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4022. pinMode(PS_ON_PIN,INPUT);
  4023. #endif
  4024. SERIAL_ERROR_START;
  4025. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4026. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4027. // FMC small patch to update the LCD before ending
  4028. sei(); // enable interrupts
  4029. for ( int i=5; i--; lcd_update())
  4030. {
  4031. delay(200);
  4032. }
  4033. cli(); // disable interrupts
  4034. suicide();
  4035. while(1) { /* Intentionally left empty */ } // Wait for reset
  4036. }
  4037. void Stop()
  4038. {
  4039. disable_heater();
  4040. if(Stopped == false) {
  4041. Stopped = true;
  4042. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4043. SERIAL_ERROR_START;
  4044. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4045. LCD_MESSAGEPGM(MSG_STOPPED);
  4046. }
  4047. }
  4048. bool IsStopped() { return Stopped; };
  4049. #ifdef FAST_PWM_FAN
  4050. void setPwmFrequency(uint8_t pin, int val)
  4051. {
  4052. val &= 0x07;
  4053. switch(digitalPinToTimer(pin))
  4054. {
  4055. #if defined(TCCR0A)
  4056. case TIMER0A:
  4057. case TIMER0B:
  4058. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4059. // TCCR0B |= val;
  4060. break;
  4061. #endif
  4062. #if defined(TCCR1A)
  4063. case TIMER1A:
  4064. case TIMER1B:
  4065. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4066. // TCCR1B |= val;
  4067. break;
  4068. #endif
  4069. #if defined(TCCR2)
  4070. case TIMER2:
  4071. case TIMER2:
  4072. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4073. TCCR2 |= val;
  4074. break;
  4075. #endif
  4076. #if defined(TCCR2A)
  4077. case TIMER2A:
  4078. case TIMER2B:
  4079. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4080. TCCR2B |= val;
  4081. break;
  4082. #endif
  4083. #if defined(TCCR3A)
  4084. case TIMER3A:
  4085. case TIMER3B:
  4086. case TIMER3C:
  4087. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4088. TCCR3B |= val;
  4089. break;
  4090. #endif
  4091. #if defined(TCCR4A)
  4092. case TIMER4A:
  4093. case TIMER4B:
  4094. case TIMER4C:
  4095. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4096. TCCR4B |= val;
  4097. break;
  4098. #endif
  4099. #if defined(TCCR5A)
  4100. case TIMER5A:
  4101. case TIMER5B:
  4102. case TIMER5C:
  4103. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4104. TCCR5B |= val;
  4105. break;
  4106. #endif
  4107. }
  4108. }
  4109. #endif //FAST_PWM_FAN
  4110. bool setTargetedHotend(int code){
  4111. tmp_extruder = active_extruder;
  4112. if(code_seen('T')) {
  4113. tmp_extruder = code_value();
  4114. if(tmp_extruder >= EXTRUDERS) {
  4115. SERIAL_ECHO_START;
  4116. switch(code){
  4117. case 104:
  4118. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4119. break;
  4120. case 105:
  4121. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4122. break;
  4123. case 109:
  4124. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4125. break;
  4126. case 218:
  4127. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4128. break;
  4129. case 221:
  4130. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4131. break;
  4132. }
  4133. SERIAL_ECHOLN(tmp_extruder);
  4134. return true;
  4135. }
  4136. }
  4137. return false;
  4138. }
  4139. float calculate_volumetric_multiplier(float diameter) {
  4140. float area = .0;
  4141. float radius = .0;
  4142. radius = diameter * .5;
  4143. if (! volumetric_enabled || radius == 0) {
  4144. area = 1;
  4145. }
  4146. else {
  4147. area = M_PI * pow(radius, 2);
  4148. }
  4149. return 1.0 / area;
  4150. }
  4151. void calculate_volumetric_multipliers() {
  4152. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4153. #if EXTRUDERS > 1
  4154. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4155. #if EXTRUDERS > 2
  4156. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4157. #endif
  4158. #endif
  4159. }