My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 183KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  97. // M80 - Turn on Power Supply
  98. // M81 - Turn off Power Supply
  99. // M82 - Set E codes absolute (default)
  100. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  101. // M84 - Disable steppers until next move,
  102. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  103. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. // M92 - Set axis_steps_per_unit - same syntax as G92
  105. // M104 - Set extruder target temp
  106. // M105 - Read current temp
  107. // M106 - Fan on
  108. // M107 - Fan off
  109. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  110. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  111. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  112. // M112 - Emergency stop
  113. // M114 - Output current position to serial port
  114. // M115 - Capabilities string
  115. // M117 - display message
  116. // M119 - Output Endstop status to serial port
  117. // M120 - Enable endstop detection
  118. // M121 - Disable endstop detection
  119. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  120. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  121. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  123. // M140 - Set bed target temp
  124. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  125. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  127. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  128. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  129. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  130. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  131. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  132. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  133. // M206 - Set additional homing offset
  134. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  135. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  136. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  137. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  138. // M220 S<factor in percent>- set speed factor override percentage
  139. // M221 S<factor in percent>- set extrude factor override percentage
  140. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  141. // M240 - Trigger a camera to take a photograph
  142. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  143. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  144. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  145. // M301 - Set PID parameters P I and D
  146. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  147. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  148. // M304 - Set bed PID parameters P I and D
  149. // M380 - Activate solenoid on active extruder
  150. // M381 - Disable all solenoids
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Display measured filament diameter
  158. // M500 - Store parameters in EEPROM
  159. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - Set delta configurations
  165. // M666 - Set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. #ifdef SDSUPPORT
  182. CardReader card;
  183. #endif
  184. float homing_feedrate[] = HOMING_FEEDRATE;
  185. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  186. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  187. int feedmultiply = 100; //100->1 200->2
  188. int saved_feedmultiply;
  189. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  190. bool volumetric_enabled = false;
  191. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  192. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  193. float current_position[NUM_AXIS] = { 0.0 };
  194. float home_offset[3] = { 0 };
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = { false };
  198. uint8_t active_extruder = 0;
  199. int fanSpeed = 0;
  200. bool cancel_heatup = false;
  201. const char errormagic[] PROGMEM = "Error:";
  202. const char echomagic[] PROGMEM = "echo:";
  203. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  204. static float destination[NUM_AXIS] = { 0 };
  205. static float offset[3] = { 0 };
  206. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  207. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  208. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  209. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  210. static int bufindr = 0;
  211. static int bufindw = 0;
  212. static int buflen = 0;
  213. static char serial_char;
  214. static int serial_count = 0;
  215. static boolean comment_mode = false;
  216. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  217. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  218. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  219. // Inactivity shutdown
  220. static unsigned long previous_millis_cmd = 0;
  221. static unsigned long max_inactive_time = 0;
  222. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  223. unsigned long starttime = 0; ///< Print job start time
  224. unsigned long stoptime = 0; ///< Print job stop time
  225. static uint8_t tmp_extruder;
  226. bool Stopped = false;
  227. bool CooldownNoWait = true;
  228. bool target_direction;
  229. #ifdef ENABLE_AUTO_BED_LEVELING
  230. int xy_travel_speed = XY_TRAVEL_SPEED;
  231. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  232. #endif
  233. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  234. float z_endstop_adj = 0;
  235. #endif
  236. // Extruder offsets
  237. #if EXTRUDERS > 1
  238. #ifndef EXTRUDER_OFFSET_X
  239. #define EXTRUDER_OFFSET_X { 0 }
  240. #endif
  241. #ifndef EXTRUDER_OFFSET_Y
  242. #define EXTRUDER_OFFSET_Y { 0 }
  243. #endif
  244. float extruder_offset[][EXTRUDERS] = {
  245. EXTRUDER_OFFSET_X,
  246. EXTRUDER_OFFSET_Y
  247. #ifdef DUAL_X_CARRIAGE
  248. , { 0 } // supports offsets in XYZ plane
  249. #endif
  250. };
  251. #endif
  252. #ifdef SERVO_ENDSTOPS
  253. int servo_endstops[] = SERVO_ENDSTOPS;
  254. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  255. #endif
  256. #ifdef BARICUDA
  257. int ValvePressure = 0;
  258. int EtoPPressure = 0;
  259. #endif
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled = false;
  262. bool retracted[EXTRUDERS] = { false };
  263. bool retracted_swap[EXTRUDERS] = { false };
  264. float retract_length = RETRACT_LENGTH;
  265. float retract_length_swap = RETRACT_LENGTH_SWAP;
  266. float retract_feedrate = RETRACT_FEEDRATE;
  267. float retract_zlift = RETRACT_ZLIFT;
  268. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  269. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  270. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  271. #endif // FWRETRACT
  272. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  273. bool powersupply =
  274. #ifdef PS_DEFAULT_OFF
  275. false
  276. #else
  277. true
  278. #endif
  279. ;
  280. #endif
  281. #ifdef DELTA
  282. float delta[3] = { 0 };
  283. #define SIN_60 0.8660254037844386
  284. #define COS_60 0.5
  285. float endstop_adj[3] = { 0 };
  286. // these are the default values, can be overriden with M665
  287. float delta_radius = DELTA_RADIUS;
  288. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  289. float delta_tower1_y = -COS_60 * delta_radius;
  290. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  291. float delta_tower2_y = -COS_60 * delta_radius;
  292. float delta_tower3_x = 0; // back middle tower
  293. float delta_tower3_y = delta_radius;
  294. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  295. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  296. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  297. #ifdef ENABLE_AUTO_BED_LEVELING
  298. int delta_grid_spacing[2] = { 0, 0 };
  299. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  300. #endif
  301. #else
  302. static bool home_all_axis = true;
  303. #endif
  304. #ifdef SCARA
  305. static float delta[3] = { 0 };
  306. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  307. #endif
  308. #ifdef FILAMENT_SENSOR
  309. //Variables for Filament Sensor input
  310. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  311. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  312. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  313. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  314. int delay_index1 = 0; //index into ring buffer
  315. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  316. float delay_dist = 0; //delay distance counter
  317. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  318. #endif
  319. #ifdef FILAMENT_RUNOUT_SENSOR
  320. static bool filrunoutEnqued = false;
  321. #endif
  322. #ifdef SDSUPPORT
  323. static bool fromsd[BUFSIZE];
  324. #endif
  325. #if NUM_SERVOS > 0
  326. Servo servos[NUM_SERVOS];
  327. #endif
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //================================ Functions ================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P() {
  364. if (!queued_commands_P) return false;
  365. // Get the next 30 chars from the sequence of gcodes to run
  366. char cmd[30];
  367. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  368. cmd[sizeof(cmd) - 1] = '\0';
  369. // Look for the end of line, or the end of sequence
  370. size_t i = 0;
  371. char c;
  372. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  373. cmd[i] = '\0';
  374. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  375. if (c)
  376. queued_commands_P += i + 1; // move to next command
  377. else
  378. queued_commands_P = NULL; // will have no more commands in the sequence
  379. }
  380. return true;
  381. }
  382. //Record one or many commands to run from program memory.
  383. //Aborts the current queue, if any.
  384. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  385. void enquecommands_P(const char* pgcode) {
  386. queued_commands_P = pgcode;
  387. drain_queued_commands_P(); // first command executed asap (when possible)
  388. }
  389. //adds a single command to the main command buffer, from RAM
  390. //that is really done in a non-safe way.
  391. //needs overworking someday
  392. //Returns false if it failed to do so
  393. bool enquecommand(const char *cmd)
  394. {
  395. if(*cmd==';')
  396. return false;
  397. if(buflen >= BUFSIZE)
  398. return false;
  399. //this is dangerous if a mixing of serial and this happens
  400. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  401. SERIAL_ECHO_START;
  402. SERIAL_ECHOPGM(MSG_Enqueing);
  403. SERIAL_ECHO(cmdbuffer[bufindw]);
  404. SERIAL_ECHOLNPGM("\"");
  405. bufindw= (bufindw + 1)%BUFSIZE;
  406. buflen += 1;
  407. return true;
  408. }
  409. void setup_killpin()
  410. {
  411. #if HAS_KILL
  412. SET_INPUT(KILL_PIN);
  413. WRITE(KILL_PIN, HIGH);
  414. #endif
  415. }
  416. void setup_filrunoutpin()
  417. {
  418. #if HAS_FILRUNOUT
  419. pinMode(FILRUNOUT_PIN, INPUT);
  420. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  421. WRITE(FILLRUNOUT_PIN, HIGH);
  422. #endif
  423. #endif
  424. }
  425. // Set home pin
  426. void setup_homepin(void)
  427. {
  428. #if HAS_HOME
  429. SET_INPUT(HOME_PIN);
  430. WRITE(HOME_PIN, HIGH);
  431. #endif
  432. }
  433. void setup_photpin()
  434. {
  435. #if HAS_PHOTOGRAPH
  436. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  437. #endif
  438. }
  439. void setup_powerhold()
  440. {
  441. #if HAS_SUICIDE
  442. OUT_WRITE(SUICIDE_PIN, HIGH);
  443. #endif
  444. #if HAS_POWER_SWITCH
  445. #ifdef PS_DEFAULT_OFF
  446. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  447. #else
  448. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  449. #endif
  450. #endif
  451. }
  452. void suicide()
  453. {
  454. #if HAS_SUICIDE
  455. OUT_WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. // Set position of Servo Endstops that are defined
  473. #ifdef SERVO_ENDSTOPS
  474. for (int i = 0; i < 3; i++)
  475. if (servo_endstops[i] >= 0)
  476. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  477. #endif
  478. #if SERVO_LEVELING
  479. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  480. servos[servo_endstops[Z_AXIS]].detach();
  481. #endif
  482. }
  483. void setup()
  484. {
  485. setup_killpin();
  486. setup_filrunoutpin();
  487. setup_powerhold();
  488. MYSERIAL.begin(BAUDRATE);
  489. SERIAL_PROTOCOLLNPGM("start");
  490. SERIAL_ECHO_START;
  491. // Check startup - does nothing if bootloader sets MCUSR to 0
  492. byte mcu = MCUSR;
  493. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  494. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  495. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  496. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  497. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  498. MCUSR=0;
  499. SERIAL_ECHOPGM(MSG_MARLIN);
  500. SERIAL_ECHOLNPGM(STRING_VERSION);
  501. #ifdef STRING_VERSION_CONFIG_H
  502. #ifdef STRING_CONFIG_H_AUTHOR
  503. SERIAL_ECHO_START;
  504. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  505. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  506. SERIAL_ECHOPGM(MSG_AUTHOR);
  507. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  508. SERIAL_ECHOPGM("Compiled: ");
  509. SERIAL_ECHOLNPGM(__DATE__);
  510. #endif // STRING_CONFIG_H_AUTHOR
  511. #endif // STRING_VERSION_CONFIG_H
  512. SERIAL_ECHO_START;
  513. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  514. SERIAL_ECHO(freeMemory());
  515. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  516. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  517. #ifdef SDSUPPORT
  518. for(int8_t i = 0; i < BUFSIZE; i++)
  519. {
  520. fromsd[i] = false;
  521. }
  522. #endif //!SDSUPPORT
  523. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  524. Config_RetrieveSettings();
  525. tp_init(); // Initialize temperature loop
  526. plan_init(); // Initialize planner;
  527. watchdog_init();
  528. st_init(); // Initialize stepper, this enables interrupts!
  529. setup_photpin();
  530. servo_init();
  531. lcd_init();
  532. _delay_ms(1000); // wait 1sec to display the splash screen
  533. #if HAS_CONTROLLERFAN
  534. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  535. #endif
  536. #ifdef DIGIPOT_I2C
  537. digipot_i2c_init();
  538. #endif
  539. #ifdef Z_PROBE_SLED
  540. pinMode(SERVO0_PIN, OUTPUT);
  541. digitalWrite(SERVO0_PIN, LOW); // turn it off
  542. #endif // Z_PROBE_SLED
  543. setup_homepin();
  544. #ifdef STAT_LED_RED
  545. pinMode(STAT_LED_RED, OUTPUT);
  546. digitalWrite(STAT_LED_RED, LOW); // turn it off
  547. #endif
  548. #ifdef STAT_LED_BLUE
  549. pinMode(STAT_LED_BLUE, OUTPUT);
  550. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  551. #endif
  552. }
  553. void loop() {
  554. if (buflen < BUFSIZE - 1) get_command();
  555. #ifdef SDSUPPORT
  556. card.checkautostart(false);
  557. #endif
  558. if (buflen) {
  559. #ifdef SDSUPPORT
  560. if (card.saving) {
  561. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  562. card.write_command(cmdbuffer[bufindr]);
  563. if (card.logging)
  564. process_commands();
  565. else
  566. SERIAL_PROTOCOLLNPGM(MSG_OK);
  567. }
  568. else {
  569. card.closefile();
  570. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  571. }
  572. }
  573. else
  574. process_commands();
  575. #else
  576. process_commands();
  577. #endif // SDSUPPORT
  578. buflen--;
  579. bufindr = (bufindr + 1) % BUFSIZE;
  580. }
  581. // Check heater every n milliseconds
  582. manage_heater();
  583. manage_inactivity();
  584. checkHitEndstops();
  585. lcd_update();
  586. }
  587. void get_command()
  588. {
  589. if (drain_queued_commands_P()) // priority is given to non-serial commands
  590. return;
  591. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  592. serial_char = MYSERIAL.read();
  593. if(serial_char == '\n' ||
  594. serial_char == '\r' ||
  595. serial_count >= (MAX_CMD_SIZE - 1) )
  596. {
  597. // end of line == end of comment
  598. comment_mode = false;
  599. if(!serial_count) {
  600. // short cut for empty lines
  601. return;
  602. }
  603. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  604. #ifdef SDSUPPORT
  605. fromsd[bufindw] = false;
  606. #endif //!SDSUPPORT
  607. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  608. {
  609. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  610. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  611. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  614. SERIAL_ERRORLN(gcode_LastN);
  615. //Serial.println(gcode_N);
  616. FlushSerialRequestResend();
  617. serial_count = 0;
  618. return;
  619. }
  620. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  621. {
  622. byte checksum = 0;
  623. byte count = 0;
  624. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  625. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  626. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  629. SERIAL_ERRORLN(gcode_LastN);
  630. FlushSerialRequestResend();
  631. serial_count = 0;
  632. return;
  633. }
  634. //if no errors, continue parsing
  635. }
  636. else
  637. {
  638. SERIAL_ERROR_START;
  639. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  640. SERIAL_ERRORLN(gcode_LastN);
  641. FlushSerialRequestResend();
  642. serial_count = 0;
  643. return;
  644. }
  645. gcode_LastN = gcode_N;
  646. //if no errors, continue parsing
  647. }
  648. else // if we don't receive 'N' but still see '*'
  649. {
  650. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  651. {
  652. SERIAL_ERROR_START;
  653. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  654. SERIAL_ERRORLN(gcode_LastN);
  655. serial_count = 0;
  656. return;
  657. }
  658. }
  659. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  660. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  661. switch(strtol(strchr_pointer + 1, NULL, 10)){
  662. case 0:
  663. case 1:
  664. case 2:
  665. case 3:
  666. if (Stopped == true) {
  667. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  668. LCD_MESSAGEPGM(MSG_STOPPED);
  669. }
  670. break;
  671. default:
  672. break;
  673. }
  674. }
  675. //If command was e-stop process now
  676. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  677. kill();
  678. bufindw = (bufindw + 1)%BUFSIZE;
  679. buflen += 1;
  680. serial_count = 0; //clear buffer
  681. }
  682. else if(serial_char == '\\') { //Handle escapes
  683. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  684. // if we have one more character, copy it over
  685. serial_char = MYSERIAL.read();
  686. cmdbuffer[bufindw][serial_count++] = serial_char;
  687. }
  688. //otherwise do nothing
  689. }
  690. else { // its not a newline, carriage return or escape char
  691. if(serial_char == ';') comment_mode = true;
  692. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  693. }
  694. }
  695. #ifdef SDSUPPORT
  696. if(!card.sdprinting || serial_count!=0){
  697. return;
  698. }
  699. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  700. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  701. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  702. static bool stop_buffering=false;
  703. if(buflen==0) stop_buffering=false;
  704. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  705. int16_t n=card.get();
  706. serial_char = (char)n;
  707. if(serial_char == '\n' ||
  708. serial_char == '\r' ||
  709. (serial_char == '#' && comment_mode == false) ||
  710. (serial_char == ':' && comment_mode == false) ||
  711. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  712. {
  713. if(card.eof()){
  714. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  715. stoptime=millis();
  716. char time[30];
  717. unsigned long t=(stoptime-starttime)/1000;
  718. int hours, minutes;
  719. minutes=(t/60)%60;
  720. hours=t/60/60;
  721. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  722. SERIAL_ECHO_START;
  723. SERIAL_ECHOLN(time);
  724. lcd_setstatus(time, true);
  725. card.printingHasFinished();
  726. card.checkautostart(true);
  727. }
  728. if(serial_char=='#')
  729. stop_buffering=true;
  730. if(!serial_count)
  731. {
  732. comment_mode = false; //for new command
  733. return; //if empty line
  734. }
  735. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  736. // if(!comment_mode){
  737. fromsd[bufindw] = true;
  738. buflen += 1;
  739. bufindw = (bufindw + 1)%BUFSIZE;
  740. // }
  741. comment_mode = false; //for new command
  742. serial_count = 0; //clear buffer
  743. }
  744. else
  745. {
  746. if(serial_char == ';') comment_mode = true;
  747. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  748. }
  749. }
  750. #endif //SDSUPPORT
  751. }
  752. float code_value() {
  753. float ret;
  754. char *e = strchr(strchr_pointer, 'E');
  755. if (e) {
  756. *e = 0;
  757. ret = strtod(strchr_pointer+1, NULL);
  758. *e = 'E';
  759. }
  760. else
  761. ret = strtod(strchr_pointer+1, NULL);
  762. return ret;
  763. }
  764. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  765. bool code_seen(char code) {
  766. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  767. return (strchr_pointer != NULL); //Return True if a character was found
  768. }
  769. #define DEFINE_PGM_READ_ANY(type, reader) \
  770. static inline type pgm_read_any(const type *p) \
  771. { return pgm_read_##reader##_near(p); }
  772. DEFINE_PGM_READ_ANY(float, float);
  773. DEFINE_PGM_READ_ANY(signed char, byte);
  774. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  775. static const PROGMEM type array##_P[3] = \
  776. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  777. static inline type array(int axis) \
  778. { return pgm_read_any(&array##_P[axis]); }
  779. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  780. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  782. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  783. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  784. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  785. #ifdef DUAL_X_CARRIAGE
  786. #define DXC_FULL_CONTROL_MODE 0
  787. #define DXC_AUTO_PARK_MODE 1
  788. #define DXC_DUPLICATION_MODE 2
  789. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  790. static float x_home_pos(int extruder) {
  791. if (extruder == 0)
  792. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  793. else
  794. // In dual carriage mode the extruder offset provides an override of the
  795. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  796. // This allow soft recalibration of the second extruder offset position without firmware reflash
  797. // (through the M218 command).
  798. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  799. }
  800. static int x_home_dir(int extruder) {
  801. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  802. }
  803. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  804. static bool active_extruder_parked = false; // used in mode 1 & 2
  805. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  806. static unsigned long delayed_move_time = 0; // used in mode 1
  807. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  808. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  809. bool extruder_duplication_enabled = false; // used in mode 2
  810. #endif //DUAL_X_CARRIAGE
  811. static void axis_is_at_home(int axis) {
  812. #ifdef DUAL_X_CARRIAGE
  813. if (axis == X_AXIS) {
  814. if (active_extruder != 0) {
  815. current_position[X_AXIS] = x_home_pos(active_extruder);
  816. min_pos[X_AXIS] = X2_MIN_POS;
  817. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  818. return;
  819. }
  820. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  821. float xoff = home_offset[X_AXIS];
  822. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  823. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  824. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  825. return;
  826. }
  827. }
  828. #endif
  829. #ifdef SCARA
  830. float homeposition[3];
  831. if (axis < 2) {
  832. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  833. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  834. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  835. // Works out real Homeposition angles using inverse kinematics,
  836. // and calculates homing offset using forward kinematics
  837. calculate_delta(homeposition);
  838. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  839. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  840. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  841. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  844. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  845. calculate_SCARA_forward_Transform(delta);
  846. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  847. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  848. current_position[axis] = delta[axis];
  849. // SCARA home positions are based on configuration since the actual limits are determined by the
  850. // inverse kinematic transform.
  851. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  853. }
  854. else {
  855. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  856. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  857. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  858. }
  859. #else
  860. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  861. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  862. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  863. #endif
  864. }
  865. inline void refresh_cmd_timeout() { previous_millis_cmd = millis(); }
  866. /**
  867. * Some planner shorthand inline functions
  868. */
  869. inline void line_to_current_position() {
  870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  871. }
  872. inline void line_to_z(float zPosition) {
  873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  874. }
  875. inline void line_to_destination() {
  876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  877. }
  878. inline void sync_plan_position() {
  879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  880. }
  881. #if defined(DELTA) || defined(SCARA)
  882. inline void sync_plan_position_delta() {
  883. calculate_delta(current_position);
  884. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  885. }
  886. #endif
  887. #ifdef ENABLE_AUTO_BED_LEVELING
  888. #ifdef DELTA
  889. /**
  890. * Calculate delta, start a line, and set current_position to destination
  891. */
  892. void prepare_move_raw() {
  893. refresh_cmd_timeout();
  894. calculate_delta(destination);
  895. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  896. for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
  897. }
  898. #endif
  899. #ifdef AUTO_BED_LEVELING_GRID
  900. #ifndef DELTA
  901. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  902. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  903. planeNormal.debug("planeNormal");
  904. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  905. //bedLevel.debug("bedLevel");
  906. //plan_bed_level_matrix.debug("bed level before");
  907. //vector_3 uncorrected_position = plan_get_position_mm();
  908. //uncorrected_position.debug("position before");
  909. vector_3 corrected_position = plan_get_position();
  910. //corrected_position.debug("position after");
  911. current_position[X_AXIS] = corrected_position.x;
  912. current_position[Y_AXIS] = corrected_position.y;
  913. current_position[Z_AXIS] = corrected_position.z;
  914. sync_plan_position();
  915. }
  916. #endif // !DELTA
  917. #else // !AUTO_BED_LEVELING_GRID
  918. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  919. plan_bed_level_matrix.set_to_identity();
  920. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  921. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  922. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  923. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  924. if (planeNormal.z < 0) {
  925. planeNormal.x = -planeNormal.x;
  926. planeNormal.y = -planeNormal.y;
  927. planeNormal.z = -planeNormal.z;
  928. }
  929. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  930. vector_3 corrected_position = plan_get_position();
  931. current_position[X_AXIS] = corrected_position.x;
  932. current_position[Y_AXIS] = corrected_position.y;
  933. current_position[Z_AXIS] = corrected_position.z;
  934. sync_plan_position();
  935. }
  936. #endif // !AUTO_BED_LEVELING_GRID
  937. static void run_z_probe() {
  938. #ifdef DELTA
  939. float start_z = current_position[Z_AXIS];
  940. long start_steps = st_get_position(Z_AXIS);
  941. // move down slowly until you find the bed
  942. feedrate = homing_feedrate[Z_AXIS] / 4;
  943. destination[Z_AXIS] = -10;
  944. prepare_move_raw();
  945. st_synchronize();
  946. endstops_hit_on_purpose(); // clear endstop hit flags
  947. // we have to let the planner know where we are right now as it is not where we said to go.
  948. long stop_steps = st_get_position(Z_AXIS);
  949. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  950. current_position[Z_AXIS] = mm;
  951. sync_plan_position_delta();
  952. #else // !DELTA
  953. plan_bed_level_matrix.set_to_identity();
  954. feedrate = homing_feedrate[Z_AXIS];
  955. // move down until you find the bed
  956. float zPosition = -10;
  957. line_to_z(zPosition);
  958. st_synchronize();
  959. // we have to let the planner know where we are right now as it is not where we said to go.
  960. zPosition = st_get_position_mm(Z_AXIS);
  961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  962. // move up the retract distance
  963. zPosition += home_bump_mm(Z_AXIS);
  964. line_to_z(zPosition);
  965. st_synchronize();
  966. endstops_hit_on_purpose(); // clear endstop hit flags
  967. // move back down slowly to find bed
  968. if (homing_bump_divisor[Z_AXIS] >= 1)
  969. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  970. else {
  971. feedrate = homing_feedrate[Z_AXIS] / 10;
  972. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  973. }
  974. zPosition -= home_bump_mm(Z_AXIS) * 2;
  975. line_to_z(zPosition);
  976. st_synchronize();
  977. endstops_hit_on_purpose(); // clear endstop hit flags
  978. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  979. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  980. sync_plan_position();
  981. #endif // !DELTA
  982. }
  983. /**
  984. *
  985. */
  986. static void do_blocking_move_to(float x, float y, float z) {
  987. float oldFeedRate = feedrate;
  988. #ifdef DELTA
  989. feedrate = XY_TRAVEL_SPEED;
  990. destination[X_AXIS] = x;
  991. destination[Y_AXIS] = y;
  992. destination[Z_AXIS] = z;
  993. prepare_move_raw();
  994. st_synchronize();
  995. #else
  996. feedrate = homing_feedrate[Z_AXIS];
  997. current_position[Z_AXIS] = z;
  998. line_to_current_position();
  999. st_synchronize();
  1000. feedrate = xy_travel_speed;
  1001. current_position[X_AXIS] = x;
  1002. current_position[Y_AXIS] = y;
  1003. line_to_current_position();
  1004. st_synchronize();
  1005. #endif
  1006. feedrate = oldFeedRate;
  1007. }
  1008. static void setup_for_endstop_move() {
  1009. saved_feedrate = feedrate;
  1010. saved_feedmultiply = feedmultiply;
  1011. feedmultiply = 100;
  1012. refresh_cmd_timeout();
  1013. enable_endstops(true);
  1014. }
  1015. static void clean_up_after_endstop_move() {
  1016. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1017. enable_endstops(false);
  1018. #endif
  1019. feedrate = saved_feedrate;
  1020. feedmultiply = saved_feedmultiply;
  1021. refresh_cmd_timeout();
  1022. }
  1023. static void deploy_z_probe() {
  1024. #ifdef SERVO_ENDSTOPS
  1025. // Engage Z Servo endstop if enabled
  1026. if (servo_endstops[Z_AXIS] >= 0) {
  1027. #if SERVO_LEVELING
  1028. servos[servo_endstops[Z_AXIS]].attach(0);
  1029. #endif
  1030. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1031. #if SERVO_LEVELING
  1032. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1033. servos[servo_endstops[Z_AXIS]].detach();
  1034. #endif
  1035. }
  1036. #elif defined(Z_PROBE_ALLEN_KEY)
  1037. feedrate = homing_feedrate[X_AXIS];
  1038. // Move to the start position to initiate deployment
  1039. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1040. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1041. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1042. prepare_move_raw();
  1043. // Home X to touch the belt
  1044. feedrate = homing_feedrate[X_AXIS]/10;
  1045. destination[X_AXIS] = 0;
  1046. prepare_move_raw();
  1047. // Home Y for safety
  1048. feedrate = homing_feedrate[X_AXIS]/2;
  1049. destination[Y_AXIS] = 0;
  1050. prepare_move_raw();
  1051. st_synchronize();
  1052. #ifdef Z_PROBE_ENDSTOP
  1053. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1054. if (z_probe_endstop)
  1055. #else
  1056. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1057. if (z_min_endstop)
  1058. #endif
  1059. {
  1060. if (!Stopped) {
  1061. SERIAL_ERROR_START;
  1062. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1063. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1064. }
  1065. Stop();
  1066. }
  1067. #endif // Z_PROBE_ALLEN_KEY
  1068. }
  1069. static void stow_z_probe() {
  1070. #ifdef SERVO_ENDSTOPS
  1071. // Retract Z Servo endstop if enabled
  1072. if (servo_endstops[Z_AXIS] >= 0) {
  1073. #if Z_RAISE_AFTER_PROBING > 0
  1074. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1075. st_synchronize();
  1076. #endif
  1077. #if SERVO_LEVELING
  1078. servos[servo_endstops[Z_AXIS]].attach(0);
  1079. #endif
  1080. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1081. #if SERVO_LEVELING
  1082. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1083. servos[servo_endstops[Z_AXIS]].detach();
  1084. #endif
  1085. }
  1086. #elif defined(Z_PROBE_ALLEN_KEY)
  1087. // Move up for safety
  1088. feedrate = homing_feedrate[X_AXIS];
  1089. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1090. prepare_move_raw();
  1091. // Move to the start position to initiate retraction
  1092. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1093. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1094. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1095. prepare_move_raw();
  1096. // Move the nozzle down to push the probe into retracted position
  1097. feedrate = homing_feedrate[Z_AXIS]/10;
  1098. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1099. prepare_move_raw();
  1100. // Move up for safety
  1101. feedrate = homing_feedrate[Z_AXIS]/2;
  1102. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1103. prepare_move_raw();
  1104. // Home XY for safety
  1105. feedrate = homing_feedrate[X_AXIS]/2;
  1106. destination[X_AXIS] = 0;
  1107. destination[Y_AXIS] = 0;
  1108. prepare_move_raw();
  1109. st_synchronize();
  1110. #ifdef Z_PROBE_ENDSTOP
  1111. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1112. if (!z_probe_endstop)
  1113. #else
  1114. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1115. if (!z_min_endstop)
  1116. #endif
  1117. {
  1118. if (!Stopped) {
  1119. SERIAL_ERROR_START;
  1120. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1121. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1122. }
  1123. Stop();
  1124. }
  1125. #endif
  1126. }
  1127. enum ProbeAction {
  1128. ProbeStay = 0,
  1129. ProbeEngage = BIT(0),
  1130. ProbeRetract = BIT(1),
  1131. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1132. };
  1133. // Probe bed height at position (x,y), returns the measured z value
  1134. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1135. // move to right place
  1136. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1137. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1138. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1139. if (retract_action & ProbeEngage) deploy_z_probe();
  1140. #endif
  1141. run_z_probe();
  1142. float measured_z = current_position[Z_AXIS];
  1143. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1144. if (retract_action == ProbeStay) {
  1145. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1146. st_synchronize();
  1147. }
  1148. #endif
  1149. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1150. if (retract_action & ProbeRetract) stow_z_probe();
  1151. #endif
  1152. if (verbose_level > 2) {
  1153. SERIAL_PROTOCOLPGM(MSG_BED);
  1154. SERIAL_PROTOCOLPGM(" X: ");
  1155. SERIAL_PROTOCOL_F(x, 3);
  1156. SERIAL_PROTOCOLPGM(" Y: ");
  1157. SERIAL_PROTOCOL_F(y, 3);
  1158. SERIAL_PROTOCOLPGM(" Z: ");
  1159. SERIAL_PROTOCOL_F(measured_z, 3);
  1160. SERIAL_EOL;
  1161. }
  1162. return measured_z;
  1163. }
  1164. #ifdef DELTA
  1165. /**
  1166. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1167. */
  1168. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1169. if (bed_level[x][y] != 0.0) {
  1170. return; // Don't overwrite good values.
  1171. }
  1172. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1173. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1174. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1175. float median = c; // Median is robust (ignores outliers).
  1176. if (a < b) {
  1177. if (b < c) median = b;
  1178. if (c < a) median = a;
  1179. } else { // b <= a
  1180. if (c < b) median = b;
  1181. if (a < c) median = a;
  1182. }
  1183. bed_level[x][y] = median;
  1184. }
  1185. // Fill in the unprobed points (corners of circular print surface)
  1186. // using linear extrapolation, away from the center.
  1187. static void extrapolate_unprobed_bed_level() {
  1188. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1189. for (int y = 0; y <= half; y++) {
  1190. for (int x = 0; x <= half; x++) {
  1191. if (x + y < 3) continue;
  1192. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1193. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1194. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1195. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1196. }
  1197. }
  1198. }
  1199. // Print calibration results for plotting or manual frame adjustment.
  1200. static void print_bed_level() {
  1201. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1202. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1203. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1204. SERIAL_PROTOCOLPGM(" ");
  1205. }
  1206. SERIAL_ECHOLN("");
  1207. }
  1208. }
  1209. // Reset calibration results to zero.
  1210. void reset_bed_level() {
  1211. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1212. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1213. bed_level[x][y] = 0.0;
  1214. }
  1215. }
  1216. }
  1217. #endif // DELTA
  1218. #endif // ENABLE_AUTO_BED_LEVELING
  1219. /**
  1220. * Home an individual axis
  1221. */
  1222. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1223. static void homeaxis(int axis) {
  1224. #define HOMEAXIS_DO(LETTER) \
  1225. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1226. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1227. int axis_home_dir;
  1228. #ifdef DUAL_X_CARRIAGE
  1229. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1230. #else
  1231. axis_home_dir = home_dir(axis);
  1232. #endif
  1233. // Set the axis position as setup for the move
  1234. current_position[axis] = 0;
  1235. sync_plan_position();
  1236. // Engage Servo endstop if enabled
  1237. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1238. #if SERVO_LEVELING
  1239. if (axis == Z_AXIS) deploy_z_probe(); else
  1240. #endif
  1241. {
  1242. if (servo_endstops[axis] > -1)
  1243. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1244. }
  1245. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1246. #ifdef Z_DUAL_ENDSTOPS
  1247. if (axis == Z_AXIS) In_Homing_Process(true);
  1248. #endif
  1249. // Move towards the endstop until an endstop is triggered
  1250. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1251. feedrate = homing_feedrate[axis];
  1252. line_to_destination();
  1253. st_synchronize();
  1254. // Set the axis position as setup for the move
  1255. current_position[axis] = 0;
  1256. sync_plan_position();
  1257. // Move away from the endstop by the axis HOME_BUMP_MM
  1258. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1259. line_to_destination();
  1260. st_synchronize();
  1261. // Slow down the feedrate for the next move
  1262. if (homing_bump_divisor[axis] >= 1)
  1263. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1264. else {
  1265. feedrate = homing_feedrate[axis] / 10;
  1266. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1267. }
  1268. // Move slowly towards the endstop until triggered
  1269. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1270. line_to_destination();
  1271. st_synchronize();
  1272. #ifdef Z_DUAL_ENDSTOPS
  1273. if (axis == Z_AXIS) {
  1274. float adj = fabs(z_endstop_adj);
  1275. bool lockZ1;
  1276. if (axis_home_dir > 0) {
  1277. adj = -adj;
  1278. lockZ1 = (z_endstop_adj > 0);
  1279. }
  1280. else
  1281. lockZ1 = (z_endstop_adj < 0);
  1282. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1283. sync_plan_position();
  1284. // Move to the adjusted endstop height
  1285. feedrate = homing_feedrate[axis];
  1286. destination[Z_AXIS] = adj;
  1287. line_to_destination();
  1288. st_synchronize();
  1289. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1290. In_Homing_Process(false);
  1291. } // Z_AXIS
  1292. #endif
  1293. #ifdef DELTA
  1294. // retrace by the amount specified in endstop_adj
  1295. if (endstop_adj[axis] * axis_home_dir < 0) {
  1296. sync_plan_position();
  1297. destination[axis] = endstop_adj[axis];
  1298. line_to_destination();
  1299. st_synchronize();
  1300. }
  1301. #endif
  1302. // Set the axis position to its home position (plus home offsets)
  1303. axis_is_at_home(axis);
  1304. destination[axis] = current_position[axis];
  1305. feedrate = 0.0;
  1306. endstops_hit_on_purpose(); // clear endstop hit flags
  1307. axis_known_position[axis] = true;
  1308. // Retract Servo endstop if enabled
  1309. #ifdef SERVO_ENDSTOPS
  1310. if (servo_endstops[axis] > -1)
  1311. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1312. #endif
  1313. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1314. if (axis == Z_AXIS) stow_z_probe();
  1315. #endif
  1316. }
  1317. }
  1318. #ifdef FWRETRACT
  1319. void retract(bool retracting, bool swapretract = false) {
  1320. if (retracting == retracted[active_extruder]) return;
  1321. float oldFeedrate = feedrate;
  1322. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1323. if (retracting) {
  1324. feedrate = retract_feedrate * 60;
  1325. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1326. plan_set_e_position(current_position[E_AXIS]);
  1327. prepare_move();
  1328. if (retract_zlift > 0.01) {
  1329. current_position[Z_AXIS] -= retract_zlift;
  1330. #ifdef DELTA
  1331. sync_plan_position_delta();
  1332. #else
  1333. sync_plan_position();
  1334. #endif
  1335. prepare_move();
  1336. }
  1337. }
  1338. else {
  1339. if (retract_zlift > 0.01) {
  1340. current_position[Z_AXIS] += retract_zlift;
  1341. #ifdef DELTA
  1342. sync_plan_position_delta();
  1343. #else
  1344. sync_plan_position();
  1345. #endif
  1346. //prepare_move();
  1347. }
  1348. feedrate = retract_recover_feedrate * 60;
  1349. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1350. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1351. plan_set_e_position(current_position[E_AXIS]);
  1352. prepare_move();
  1353. }
  1354. feedrate = oldFeedrate;
  1355. retracted[active_extruder] = retract;
  1356. } // retract()
  1357. #endif // FWRETRACT
  1358. #ifdef Z_PROBE_SLED
  1359. #ifndef SLED_DOCKING_OFFSET
  1360. #define SLED_DOCKING_OFFSET 0
  1361. #endif
  1362. //
  1363. // Method to dock/undock a sled designed by Charles Bell.
  1364. //
  1365. // dock[in] If true, move to MAX_X and engage the electromagnet
  1366. // offset[in] The additional distance to move to adjust docking location
  1367. //
  1368. static void dock_sled(bool dock, int offset=0) {
  1369. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1370. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1371. SERIAL_ECHO_START;
  1372. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1373. return;
  1374. }
  1375. if (dock) {
  1376. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1377. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1378. } else {
  1379. float z_loc = current_position[Z_AXIS];
  1380. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1381. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1382. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1383. }
  1384. }
  1385. #endif // Z_PROBE_SLED
  1386. /**
  1387. *
  1388. * G-Code Handler functions
  1389. *
  1390. */
  1391. /**
  1392. * G0, G1: Coordinated movement of X Y Z E axes
  1393. */
  1394. inline void gcode_G0_G1() {
  1395. if (!Stopped) {
  1396. get_coordinates(); // For X Y Z E F
  1397. #ifdef FWRETRACT
  1398. if (autoretract_enabled)
  1399. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1400. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1401. // Is this move an attempt to retract or recover?
  1402. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1403. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1404. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1405. retract(!retracted[active_extruder]);
  1406. return;
  1407. }
  1408. }
  1409. #endif //FWRETRACT
  1410. prepare_move();
  1411. //ClearToSend();
  1412. }
  1413. }
  1414. /**
  1415. * G2: Clockwise Arc
  1416. * G3: Counterclockwise Arc
  1417. */
  1418. inline void gcode_G2_G3(bool clockwise) {
  1419. if (!Stopped) {
  1420. get_arc_coordinates();
  1421. prepare_arc_move(clockwise);
  1422. }
  1423. }
  1424. /**
  1425. * G4: Dwell S<seconds> or P<milliseconds>
  1426. */
  1427. inline void gcode_G4() {
  1428. unsigned long codenum=0;
  1429. LCD_MESSAGEPGM(MSG_DWELL);
  1430. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1431. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1432. st_synchronize();
  1433. refresh_cmd_timeout();
  1434. codenum += previous_millis_cmd; // keep track of when we started waiting
  1435. while (millis() < codenum) {
  1436. manage_heater();
  1437. manage_inactivity();
  1438. lcd_update();
  1439. }
  1440. }
  1441. #ifdef FWRETRACT
  1442. /**
  1443. * G10 - Retract filament according to settings of M207
  1444. * G11 - Recover filament according to settings of M208
  1445. */
  1446. inline void gcode_G10_G11(bool doRetract=false) {
  1447. #if EXTRUDERS > 1
  1448. if (doRetract) {
  1449. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1450. }
  1451. #endif
  1452. retract(doRetract
  1453. #if EXTRUDERS > 1
  1454. , retracted_swap[active_extruder]
  1455. #endif
  1456. );
  1457. }
  1458. #endif //FWRETRACT
  1459. /**
  1460. * G28: Home all axes according to settings
  1461. *
  1462. * Parameters
  1463. *
  1464. * None Home to all axes with no parameters.
  1465. * With QUICK_HOME enabled XY will home together, then Z.
  1466. *
  1467. * Cartesian parameters
  1468. *
  1469. * X Home to the X endstop
  1470. * Y Home to the Y endstop
  1471. * Z Home to the Z endstop
  1472. *
  1473. * If numbers are included with XYZ set the position as with G92
  1474. * Currently adds the home_offset, which may be wrong and removed soon.
  1475. *
  1476. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1477. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1478. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1479. */
  1480. inline void gcode_G28() {
  1481. // For auto bed leveling, clear the level matrix
  1482. #ifdef ENABLE_AUTO_BED_LEVELING
  1483. plan_bed_level_matrix.set_to_identity();
  1484. #ifdef DELTA
  1485. reset_bed_level();
  1486. #endif
  1487. #endif
  1488. // For manual bed leveling deactivate the matrix temporarily
  1489. #ifdef MESH_BED_LEVELING
  1490. uint8_t mbl_was_active = mbl.active;
  1491. mbl.active = 0;
  1492. #endif
  1493. saved_feedrate = feedrate;
  1494. saved_feedmultiply = feedmultiply;
  1495. feedmultiply = 100;
  1496. refresh_cmd_timeout();
  1497. enable_endstops(true);
  1498. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1499. feedrate = 0.0;
  1500. #ifdef DELTA
  1501. // A delta can only safely home all axis at the same time
  1502. // all axis have to home at the same time
  1503. // Pretend the current position is 0,0,0
  1504. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1505. sync_plan_position();
  1506. // Move all carriages up together until the first endstop is hit.
  1507. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1508. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1509. line_to_destination();
  1510. st_synchronize();
  1511. endstops_hit_on_purpose(); // clear endstop hit flags
  1512. // Destination reached
  1513. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1514. // take care of back off and rehome now we are all at the top
  1515. HOMEAXIS(X);
  1516. HOMEAXIS(Y);
  1517. HOMEAXIS(Z);
  1518. sync_plan_position_delta();
  1519. #else // NOT DELTA
  1520. bool homeX = code_seen(axis_codes[X_AXIS]),
  1521. homeY = code_seen(axis_codes[Y_AXIS]),
  1522. homeZ = code_seen(axis_codes[Z_AXIS]);
  1523. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1524. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1525. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1526. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1527. // Raise Z before homing any other axes
  1528. if (home_all_axis || homeZ) {
  1529. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1530. feedrate = max_feedrate[Z_AXIS] * 60;
  1531. line_to_destination();
  1532. st_synchronize();
  1533. }
  1534. #endif
  1535. #ifdef QUICK_HOME
  1536. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1537. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1538. #ifdef DUAL_X_CARRIAGE
  1539. int x_axis_home_dir = x_home_dir(active_extruder);
  1540. extruder_duplication_enabled = false;
  1541. #else
  1542. int x_axis_home_dir = home_dir(X_AXIS);
  1543. #endif
  1544. sync_plan_position();
  1545. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1546. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1547. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1548. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1549. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1550. line_to_destination();
  1551. st_synchronize();
  1552. axis_is_at_home(X_AXIS);
  1553. axis_is_at_home(Y_AXIS);
  1554. sync_plan_position();
  1555. destination[X_AXIS] = current_position[X_AXIS];
  1556. destination[Y_AXIS] = current_position[Y_AXIS];
  1557. line_to_destination();
  1558. feedrate = 0.0;
  1559. st_synchronize();
  1560. endstops_hit_on_purpose(); // clear endstop hit flags
  1561. current_position[X_AXIS] = destination[X_AXIS];
  1562. current_position[Y_AXIS] = destination[Y_AXIS];
  1563. #ifndef SCARA
  1564. current_position[Z_AXIS] = destination[Z_AXIS];
  1565. #endif
  1566. }
  1567. #endif // QUICK_HOME
  1568. // Home X
  1569. if (home_all_axis || homeX) {
  1570. #ifdef DUAL_X_CARRIAGE
  1571. int tmp_extruder = active_extruder;
  1572. extruder_duplication_enabled = false;
  1573. active_extruder = !active_extruder;
  1574. HOMEAXIS(X);
  1575. inactive_extruder_x_pos = current_position[X_AXIS];
  1576. active_extruder = tmp_extruder;
  1577. HOMEAXIS(X);
  1578. // reset state used by the different modes
  1579. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1580. delayed_move_time = 0;
  1581. active_extruder_parked = true;
  1582. #else
  1583. HOMEAXIS(X);
  1584. #endif
  1585. }
  1586. // Home Y
  1587. if (home_all_axis || homeY) HOMEAXIS(Y);
  1588. // Set the X position, if included
  1589. // Adds the home_offset as well, which may be wrong
  1590. if (code_seen(axis_codes[X_AXIS])) {
  1591. float v = code_value();
  1592. if (v) current_position[X_AXIS] = v
  1593. #ifndef SCARA
  1594. + home_offset[X_AXIS]
  1595. #endif
  1596. ;
  1597. }
  1598. // Set the Y position, if included
  1599. // Adds the home_offset as well, which may be wrong
  1600. if (code_seen(axis_codes[Y_AXIS])) {
  1601. float v = code_value();
  1602. if (v) current_position[Y_AXIS] = v
  1603. #ifndef SCARA
  1604. + home_offset[Y_AXIS]
  1605. #endif
  1606. ;
  1607. }
  1608. // Home Z last if homing towards the bed
  1609. #if Z_HOME_DIR < 0
  1610. #ifndef Z_SAFE_HOMING
  1611. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1612. #else // Z_SAFE_HOMING
  1613. if (home_all_axis) {
  1614. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1615. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1616. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1617. feedrate = XY_TRAVEL_SPEED;
  1618. current_position[Z_AXIS] = 0;
  1619. sync_plan_position();
  1620. line_to_destination();
  1621. st_synchronize();
  1622. current_position[X_AXIS] = destination[X_AXIS];
  1623. current_position[Y_AXIS] = destination[Y_AXIS];
  1624. HOMEAXIS(Z);
  1625. }
  1626. // Let's see if X and Y are homed and probe is inside bed area.
  1627. if (homeZ) {
  1628. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1629. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1630. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1631. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1632. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1633. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1634. current_position[Z_AXIS] = 0;
  1635. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1636. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1637. feedrate = max_feedrate[Z_AXIS] * 60; // max_feedrate is in mm/s. line_to_destination is feedrate/60.
  1638. line_to_destination();
  1639. st_synchronize();
  1640. HOMEAXIS(Z);
  1641. }
  1642. else {
  1643. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1644. SERIAL_ECHO_START;
  1645. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1646. }
  1647. }
  1648. else {
  1649. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1650. SERIAL_ECHO_START;
  1651. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1652. }
  1653. }
  1654. #endif // Z_SAFE_HOMING
  1655. #endif // Z_HOME_DIR < 0
  1656. // Set the Z position, if included
  1657. // Adds the home_offset as well, which may be wrong
  1658. if (code_seen(axis_codes[Z_AXIS])) {
  1659. float v = code_value();
  1660. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1661. }
  1662. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1663. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1664. #endif
  1665. sync_plan_position();
  1666. #endif // else DELTA
  1667. #ifdef SCARA
  1668. sync_plan_position_delta();
  1669. #endif
  1670. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1671. enable_endstops(false);
  1672. #endif
  1673. // For manual leveling move back to 0,0
  1674. #ifdef MESH_BED_LEVELING
  1675. if (mbl_was_active) {
  1676. current_position[X_AXIS] = mbl.get_x(0);
  1677. current_position[Y_AXIS] = mbl.get_y(0);
  1678. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1679. feedrate = homing_feedrate[X_AXIS];
  1680. line_to_destination();
  1681. st_synchronize();
  1682. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1683. sync_plan_position();
  1684. mbl.active = 1;
  1685. }
  1686. #endif
  1687. feedrate = saved_feedrate;
  1688. feedmultiply = saved_feedmultiply;
  1689. refresh_cmd_timeout();
  1690. endstops_hit_on_purpose(); // clear endstop hit flags
  1691. }
  1692. #ifdef MESH_BED_LEVELING
  1693. enum MeshLevelingState { MeshReport, MeshStart, MeshNext };
  1694. /**
  1695. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1696. * mesh to compensate for variable bed height
  1697. *
  1698. * Parameters With MESH_BED_LEVELING:
  1699. *
  1700. * S0 Produce a mesh report
  1701. * S1 Start probing mesh points
  1702. * S2 Probe the next mesh point
  1703. *
  1704. */
  1705. inline void gcode_G29() {
  1706. static int probe_point = -1;
  1707. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_long() : MeshReport;
  1708. if (state < 0 || state > 2) {
  1709. SERIAL_PROTOCOLLNPGM("S out of range (0-2).");
  1710. return;
  1711. }
  1712. switch(state) {
  1713. case MeshReport:
  1714. if (mbl.active) {
  1715. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1716. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1717. SERIAL_PROTOCOLPGM(",");
  1718. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1719. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1720. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1721. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1722. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1723. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1724. SERIAL_PROTOCOLPGM(" ");
  1725. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1726. }
  1727. SERIAL_EOL;
  1728. }
  1729. }
  1730. else
  1731. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1732. break;
  1733. case MeshStart:
  1734. mbl.reset();
  1735. probe_point = 0;
  1736. enquecommands_P(PSTR("G28\nG29 S2"));
  1737. break;
  1738. case MeshNext:
  1739. if (probe_point < 0) {
  1740. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1741. return;
  1742. }
  1743. int ix, iy;
  1744. if (probe_point == 0) {
  1745. // Set Z to a positive value before recording the first Z.
  1746. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1747. sync_plan_position();
  1748. }
  1749. else {
  1750. // For others, save the Z of the previous point, then raise Z again.
  1751. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1752. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1753. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1754. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1755. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1757. st_synchronize();
  1758. }
  1759. // Is there another point to sample? Move there.
  1760. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1761. ix = probe_point % MESH_NUM_X_POINTS;
  1762. iy = probe_point / MESH_NUM_X_POINTS;
  1763. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1764. current_position[X_AXIS] = mbl.get_x(ix);
  1765. current_position[Y_AXIS] = mbl.get_y(iy);
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1767. st_synchronize();
  1768. probe_point++;
  1769. }
  1770. else {
  1771. // After recording the last point, activate the mbl and home
  1772. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1773. probe_point = -1;
  1774. mbl.active = 1;
  1775. enquecommands_P(PSTR("G28"));
  1776. }
  1777. } // switch(state)
  1778. }
  1779. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1780. /**
  1781. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1782. * Will fail if the printer has not been homed with G28.
  1783. *
  1784. * Enhanced G29 Auto Bed Leveling Probe Routine
  1785. *
  1786. * Parameters With AUTO_BED_LEVELING_GRID:
  1787. *
  1788. * P Set the size of the grid that will be probed (P x P points).
  1789. * Not supported by non-linear delta printer bed leveling.
  1790. * Example: "G29 P4"
  1791. *
  1792. * S Set the XY travel speed between probe points (in mm/min)
  1793. *
  1794. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1795. * or clean the rotation Matrix. Useful to check the topology
  1796. * after a first run of G29.
  1797. *
  1798. * V Set the verbose level (0-4). Example: "G29 V3"
  1799. *
  1800. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1801. * This is useful for manual bed leveling and finding flaws in the bed (to
  1802. * assist with part placement).
  1803. * Not supported by non-linear delta printer bed leveling.
  1804. *
  1805. * F Set the Front limit of the probing grid
  1806. * B Set the Back limit of the probing grid
  1807. * L Set the Left limit of the probing grid
  1808. * R Set the Right limit of the probing grid
  1809. *
  1810. * Global Parameters:
  1811. *
  1812. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1813. * Include "E" to engage/disengage the probe for each sample.
  1814. * There's no extra effect if you have a fixed probe.
  1815. * Usage: "G29 E" or "G29 e"
  1816. *
  1817. */
  1818. inline void gcode_G29() {
  1819. // Don't allow auto-leveling without homing first
  1820. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1821. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1822. SERIAL_ECHO_START;
  1823. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1824. return;
  1825. }
  1826. int verbose_level = code_seen('V') || code_seen('v') ? code_value_long() : 1;
  1827. if (verbose_level < 0 || verbose_level > 4) {
  1828. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1829. return;
  1830. }
  1831. bool dryrun = code_seen('D') || code_seen('d'),
  1832. engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1833. #ifdef AUTO_BED_LEVELING_GRID
  1834. #ifndef DELTA
  1835. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1836. #endif
  1837. if (verbose_level > 0) {
  1838. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1839. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1840. }
  1841. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1842. #ifndef DELTA
  1843. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1844. if (auto_bed_leveling_grid_points < 2) {
  1845. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1846. return;
  1847. }
  1848. #endif
  1849. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1850. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1851. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1852. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1853. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1854. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1855. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1856. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1857. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1858. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1859. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1860. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1861. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1862. if (left_out || right_out || front_out || back_out) {
  1863. if (left_out) {
  1864. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1865. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1866. }
  1867. if (right_out) {
  1868. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1869. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1870. }
  1871. if (front_out) {
  1872. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1873. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1874. }
  1875. if (back_out) {
  1876. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1877. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1878. }
  1879. return;
  1880. }
  1881. #endif // AUTO_BED_LEVELING_GRID
  1882. #ifdef Z_PROBE_SLED
  1883. dock_sled(false); // engage (un-dock) the probe
  1884. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1885. deploy_z_probe();
  1886. #endif
  1887. st_synchronize();
  1888. if (!dryrun) {
  1889. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1890. plan_bed_level_matrix.set_to_identity();
  1891. #ifdef DELTA
  1892. reset_bed_level();
  1893. #else //!DELTA
  1894. //vector_3 corrected_position = plan_get_position_mm();
  1895. //corrected_position.debug("position before G29");
  1896. vector_3 uncorrected_position = plan_get_position();
  1897. //uncorrected_position.debug("position during G29");
  1898. current_position[X_AXIS] = uncorrected_position.x;
  1899. current_position[Y_AXIS] = uncorrected_position.y;
  1900. current_position[Z_AXIS] = uncorrected_position.z;
  1901. sync_plan_position();
  1902. #endif // !DELTA
  1903. }
  1904. setup_for_endstop_move();
  1905. feedrate = homing_feedrate[Z_AXIS];
  1906. #ifdef AUTO_BED_LEVELING_GRID
  1907. // probe at the points of a lattice grid
  1908. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1909. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1910. #ifdef DELTA
  1911. delta_grid_spacing[0] = xGridSpacing;
  1912. delta_grid_spacing[1] = yGridSpacing;
  1913. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1914. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1915. #else // !DELTA
  1916. // solve the plane equation ax + by + d = z
  1917. // A is the matrix with rows [x y 1] for all the probed points
  1918. // B is the vector of the Z positions
  1919. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1920. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1921. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1922. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1923. eqnBVector[abl2], // "B" vector of Z points
  1924. mean = 0.0;
  1925. #endif // !DELTA
  1926. int probePointCounter = 0;
  1927. bool zig = true;
  1928. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1929. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1930. int xStart, xStop, xInc;
  1931. if (zig) {
  1932. xStart = 0;
  1933. xStop = auto_bed_leveling_grid_points;
  1934. xInc = 1;
  1935. }
  1936. else {
  1937. xStart = auto_bed_leveling_grid_points - 1;
  1938. xStop = -1;
  1939. xInc = -1;
  1940. }
  1941. #ifndef DELTA
  1942. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1943. // This gets the probe points in more readable order.
  1944. if (!do_topography_map) zig = !zig;
  1945. #endif
  1946. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1947. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1948. // raise extruder
  1949. float measured_z,
  1950. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  1951. #ifdef DELTA
  1952. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1953. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1954. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1955. #endif //DELTA
  1956. // Enhanced G29 - Do not retract servo between probes
  1957. ProbeAction act;
  1958. if (engage_probe_for_each_reading)
  1959. act = ProbeEngageAndRetract;
  1960. else if (yProbe == front_probe_bed_position && xCount == 0)
  1961. act = ProbeEngage;
  1962. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1963. act = ProbeRetract;
  1964. else
  1965. act = ProbeStay;
  1966. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1967. #ifndef DELTA
  1968. mean += measured_z;
  1969. eqnBVector[probePointCounter] = measured_z;
  1970. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1971. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1972. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1973. #else
  1974. bed_level[xCount][yCount] = measured_z + z_offset;
  1975. #endif
  1976. probePointCounter++;
  1977. manage_heater();
  1978. manage_inactivity();
  1979. lcd_update();
  1980. } //xProbe
  1981. } //yProbe
  1982. clean_up_after_endstop_move();
  1983. #ifdef DELTA
  1984. if (!dryrun) extrapolate_unprobed_bed_level();
  1985. print_bed_level();
  1986. #else // !DELTA
  1987. // solve lsq problem
  1988. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1989. mean /= abl2;
  1990. if (verbose_level) {
  1991. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1992. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1993. SERIAL_PROTOCOLPGM(" b: ");
  1994. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1995. SERIAL_PROTOCOLPGM(" d: ");
  1996. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1997. SERIAL_EOL;
  1998. if (verbose_level > 2) {
  1999. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2000. SERIAL_PROTOCOL_F(mean, 8);
  2001. SERIAL_EOL;
  2002. }
  2003. }
  2004. // Show the Topography map if enabled
  2005. if (do_topography_map) {
  2006. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2007. SERIAL_PROTOCOLPGM("+-----------+\n");
  2008. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2009. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2010. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2011. SERIAL_PROTOCOLPGM("+-----------+\n");
  2012. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2013. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2014. int ind = yy * auto_bed_leveling_grid_points + xx;
  2015. float diff = eqnBVector[ind] - mean;
  2016. if (diff >= 0.0)
  2017. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2018. else
  2019. SERIAL_PROTOCOLPGM(" ");
  2020. SERIAL_PROTOCOL_F(diff, 5);
  2021. } // xx
  2022. SERIAL_EOL;
  2023. } // yy
  2024. SERIAL_EOL;
  2025. } //do_topography_map
  2026. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2027. free(plane_equation_coefficients);
  2028. #endif //!DELTA
  2029. #else // !AUTO_BED_LEVELING_GRID
  2030. // Actions for each probe
  2031. ProbeAction p1, p2, p3;
  2032. if (engage_probe_for_each_reading)
  2033. p1 = p2 = p3 = ProbeEngageAndRetract;
  2034. else
  2035. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2036. // Probe at 3 arbitrary points
  2037. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2038. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2039. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2040. clean_up_after_endstop_move();
  2041. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2042. #endif // !AUTO_BED_LEVELING_GRID
  2043. #ifndef DELTA
  2044. if (verbose_level > 0)
  2045. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2046. if (!dryrun) {
  2047. // Correct the Z height difference from z-probe position and hotend tip position.
  2048. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2049. // When the bed is uneven, this height must be corrected.
  2050. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2051. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2052. z_tmp = current_position[Z_AXIS],
  2053. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2054. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2055. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2056. sync_plan_position();
  2057. }
  2058. #endif // !DELTA
  2059. #ifdef Z_PROBE_SLED
  2060. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2061. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2062. stow_z_probe();
  2063. #endif
  2064. #ifdef Z_PROBE_END_SCRIPT
  2065. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2066. st_synchronize();
  2067. #endif
  2068. }
  2069. #ifndef Z_PROBE_SLED
  2070. inline void gcode_G30() {
  2071. deploy_z_probe(); // Engage Z Servo endstop if available
  2072. st_synchronize();
  2073. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2074. setup_for_endstop_move();
  2075. feedrate = homing_feedrate[Z_AXIS];
  2076. run_z_probe();
  2077. SERIAL_PROTOCOLPGM(MSG_BED);
  2078. SERIAL_PROTOCOLPGM(" X: ");
  2079. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2080. SERIAL_PROTOCOLPGM(" Y: ");
  2081. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2082. SERIAL_PROTOCOLPGM(" Z: ");
  2083. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2084. SERIAL_EOL;
  2085. clean_up_after_endstop_move();
  2086. stow_z_probe(); // Retract Z Servo endstop if available
  2087. }
  2088. #endif //!Z_PROBE_SLED
  2089. #endif //ENABLE_AUTO_BED_LEVELING
  2090. /**
  2091. * G92: Set current position to given X Y Z E
  2092. */
  2093. inline void gcode_G92() {
  2094. if (!code_seen(axis_codes[E_AXIS]))
  2095. st_synchronize();
  2096. bool didXYZ = false;
  2097. for (int i = 0; i < NUM_AXIS; i++) {
  2098. if (code_seen(axis_codes[i])) {
  2099. float v = current_position[i] = code_value();
  2100. if (i == E_AXIS)
  2101. plan_set_e_position(v);
  2102. else
  2103. didXYZ = true;
  2104. }
  2105. }
  2106. if (didXYZ) sync_plan_position();
  2107. }
  2108. #ifdef ULTIPANEL
  2109. /**
  2110. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2111. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2112. */
  2113. inline void gcode_M0_M1() {
  2114. char *src = strchr_pointer + 2;
  2115. unsigned long codenum = 0;
  2116. bool hasP = false, hasS = false;
  2117. if (code_seen('P')) {
  2118. codenum = code_value(); // milliseconds to wait
  2119. hasP = codenum > 0;
  2120. }
  2121. if (code_seen('S')) {
  2122. codenum = code_value() * 1000; // seconds to wait
  2123. hasS = codenum > 0;
  2124. }
  2125. char* starpos = strchr(src, '*');
  2126. if (starpos != NULL) *(starpos) = '\0';
  2127. while (*src == ' ') ++src;
  2128. if (!hasP && !hasS && *src != '\0')
  2129. lcd_setstatus(src, true);
  2130. else {
  2131. LCD_MESSAGEPGM(MSG_USERWAIT);
  2132. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2133. dontExpireStatus();
  2134. #endif
  2135. }
  2136. lcd_ignore_click();
  2137. st_synchronize();
  2138. refresh_cmd_timeout();
  2139. if (codenum > 0) {
  2140. codenum += previous_millis_cmd; // keep track of when we started waiting
  2141. while(millis() < codenum && !lcd_clicked()) {
  2142. manage_heater();
  2143. manage_inactivity();
  2144. lcd_update();
  2145. }
  2146. lcd_ignore_click(false);
  2147. }
  2148. else {
  2149. if (!lcd_detected()) return;
  2150. while (!lcd_clicked()) {
  2151. manage_heater();
  2152. manage_inactivity();
  2153. lcd_update();
  2154. }
  2155. }
  2156. if (IS_SD_PRINTING)
  2157. LCD_MESSAGEPGM(MSG_RESUMING);
  2158. else
  2159. LCD_MESSAGEPGM(WELCOME_MSG);
  2160. }
  2161. #endif // ULTIPANEL
  2162. /**
  2163. * M17: Enable power on all stepper motors
  2164. */
  2165. inline void gcode_M17() {
  2166. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2167. enable_all_steppers();
  2168. }
  2169. #ifdef SDSUPPORT
  2170. /**
  2171. * M20: List SD card to serial output
  2172. */
  2173. inline void gcode_M20() {
  2174. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2175. card.ls();
  2176. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2177. }
  2178. /**
  2179. * M21: Init SD Card
  2180. */
  2181. inline void gcode_M21() {
  2182. card.initsd();
  2183. }
  2184. /**
  2185. * M22: Release SD Card
  2186. */
  2187. inline void gcode_M22() {
  2188. card.release();
  2189. }
  2190. /**
  2191. * M23: Select a file
  2192. */
  2193. inline void gcode_M23() {
  2194. char* codepos = strchr_pointer + 4;
  2195. char* starpos = strchr(codepos, '*');
  2196. if (starpos) *starpos = '\0';
  2197. card.openFile(codepos, true);
  2198. }
  2199. /**
  2200. * M24: Start SD Print
  2201. */
  2202. inline void gcode_M24() {
  2203. card.startFileprint();
  2204. starttime = millis();
  2205. }
  2206. /**
  2207. * M25: Pause SD Print
  2208. */
  2209. inline void gcode_M25() {
  2210. card.pauseSDPrint();
  2211. }
  2212. /**
  2213. * M26: Set SD Card file index
  2214. */
  2215. inline void gcode_M26() {
  2216. if (card.cardOK && code_seen('S'))
  2217. card.setIndex(code_value_long());
  2218. }
  2219. /**
  2220. * M27: Get SD Card status
  2221. */
  2222. inline void gcode_M27() {
  2223. card.getStatus();
  2224. }
  2225. /**
  2226. * M28: Start SD Write
  2227. */
  2228. inline void gcode_M28() {
  2229. char* codepos = strchr_pointer + 4;
  2230. char* starpos = strchr(codepos, '*');
  2231. if (starpos) {
  2232. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2233. strchr_pointer = strchr(npos, ' ') + 1;
  2234. *(starpos) = '\0';
  2235. }
  2236. card.openFile(codepos, false);
  2237. }
  2238. /**
  2239. * M29: Stop SD Write
  2240. * Processed in write to file routine above
  2241. */
  2242. inline void gcode_M29() {
  2243. // card.saving = false;
  2244. }
  2245. /**
  2246. * M30 <filename>: Delete SD Card file
  2247. */
  2248. inline void gcode_M30() {
  2249. if (card.cardOK) {
  2250. card.closefile();
  2251. char* starpos = strchr(strchr_pointer + 4, '*');
  2252. if (starpos) {
  2253. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2254. strchr_pointer = strchr(npos, ' ') + 1;
  2255. *(starpos) = '\0';
  2256. }
  2257. card.removeFile(strchr_pointer + 4);
  2258. }
  2259. }
  2260. #endif
  2261. /**
  2262. * M31: Get the time since the start of SD Print (or last M109)
  2263. */
  2264. inline void gcode_M31() {
  2265. stoptime = millis();
  2266. unsigned long t = (stoptime - starttime) / 1000;
  2267. int min = t / 60, sec = t % 60;
  2268. char time[30];
  2269. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHOLN(time);
  2272. lcd_setstatus(time);
  2273. autotempShutdown();
  2274. }
  2275. #ifdef SDSUPPORT
  2276. /**
  2277. * M32: Select file and start SD Print
  2278. */
  2279. inline void gcode_M32() {
  2280. if (card.sdprinting)
  2281. st_synchronize();
  2282. char* codepos = strchr_pointer + 4;
  2283. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2284. if (! namestartpos)
  2285. namestartpos = codepos; //default name position, 4 letters after the M
  2286. else
  2287. namestartpos++; //to skip the '!'
  2288. char* starpos = strchr(codepos, '*');
  2289. if (starpos) *(starpos) = '\0';
  2290. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2291. if (card.cardOK) {
  2292. card.openFile(namestartpos, true, !call_procedure);
  2293. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2294. card.setIndex(code_value_long());
  2295. card.startFileprint();
  2296. if (!call_procedure)
  2297. starttime = millis(); //procedure calls count as normal print time.
  2298. }
  2299. }
  2300. /**
  2301. * M928: Start SD Write
  2302. */
  2303. inline void gcode_M928() {
  2304. char* starpos = strchr(strchr_pointer + 5, '*');
  2305. if (starpos) {
  2306. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2307. strchr_pointer = strchr(npos, ' ') + 1;
  2308. *(starpos) = '\0';
  2309. }
  2310. card.openLogFile(strchr_pointer + 5);
  2311. }
  2312. #endif // SDSUPPORT
  2313. /**
  2314. * M42: Change pin status via GCode
  2315. */
  2316. inline void gcode_M42() {
  2317. if (code_seen('S')) {
  2318. int pin_status = code_value(),
  2319. pin_number = LED_PIN;
  2320. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2321. pin_number = code_value();
  2322. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2323. if (sensitive_pins[i] == pin_number) {
  2324. pin_number = -1;
  2325. break;
  2326. }
  2327. }
  2328. #if HAS_FAN
  2329. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2330. #endif
  2331. if (pin_number > -1) {
  2332. pinMode(pin_number, OUTPUT);
  2333. digitalWrite(pin_number, pin_status);
  2334. analogWrite(pin_number, pin_status);
  2335. }
  2336. } // code_seen('S')
  2337. }
  2338. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2339. // This is redudant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2340. #ifdef Z_PROBE_ENDSTOP
  2341. #if !HAS_Z_PROBE
  2342. #error "You must have a Z_PROBE_PIN defined in order to enable calculation of Z-Probe repeatability."
  2343. #endif
  2344. #elif !HAS_Z_MIN
  2345. #error "You must have a Z_MIN_PIN defined in order to enable calculation of Z-Probe repeatability."
  2346. #endif
  2347. /**
  2348. * M48: Z-Probe repeatability measurement function.
  2349. *
  2350. * Usage:
  2351. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2352. * P = Number of sampled points (4-50, default 10)
  2353. * X = Sample X position
  2354. * Y = Sample Y position
  2355. * V = Verbose level (0-4, default=1)
  2356. * E = Engage probe for each reading
  2357. * L = Number of legs of movement before probe
  2358. *
  2359. * This function assumes the bed has been homed. Specifically, that a G28 command
  2360. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2361. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2362. * regenerated.
  2363. *
  2364. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2365. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2366. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2367. */
  2368. inline void gcode_M48() {
  2369. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2370. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2371. if (code_seen('V') || code_seen('v')) {
  2372. verbose_level = code_value();
  2373. if (verbose_level < 0 || verbose_level > 4 ) {
  2374. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2375. return;
  2376. }
  2377. }
  2378. if (verbose_level > 0)
  2379. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2380. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2381. n_samples = code_value();
  2382. if (n_samples < 4 || n_samples > 50) {
  2383. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2384. return;
  2385. }
  2386. }
  2387. double X_probe_location, Y_probe_location,
  2388. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2389. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2390. Z_current = st_get_position_mm(Z_AXIS),
  2391. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2392. ext_position = st_get_position_mm(E_AXIS);
  2393. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  2394. if (code_seen('X') || code_seen('x')) {
  2395. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2396. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2397. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2398. return;
  2399. }
  2400. }
  2401. if (code_seen('Y') || code_seen('y')) {
  2402. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2403. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2404. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2405. return;
  2406. }
  2407. }
  2408. if (code_seen('L') || code_seen('l')) {
  2409. n_legs = code_value();
  2410. if (n_legs == 1) n_legs = 2;
  2411. if (n_legs < 0 || n_legs > 15) {
  2412. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2413. return;
  2414. }
  2415. }
  2416. //
  2417. // Do all the preliminary setup work. First raise the probe.
  2418. //
  2419. st_synchronize();
  2420. plan_bed_level_matrix.set_to_identity();
  2421. plan_buffer_line(X_current, Y_current, Z_start_location,
  2422. ext_position,
  2423. homing_feedrate[Z_AXIS] / 60,
  2424. active_extruder);
  2425. st_synchronize();
  2426. //
  2427. // Now get everything to the specified probe point So we can safely do a probe to
  2428. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2429. // use that as a starting point for each probe.
  2430. //
  2431. if (verbose_level > 2)
  2432. SERIAL_PROTOCOL("Positioning the probe...\n");
  2433. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2434. ext_position,
  2435. homing_feedrate[X_AXIS]/60,
  2436. active_extruder);
  2437. st_synchronize();
  2438. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2439. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2440. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2441. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2442. //
  2443. // OK, do the inital probe to get us close to the bed.
  2444. // Then retrace the right amount and use that in subsequent probes
  2445. //
  2446. deploy_z_probe();
  2447. setup_for_endstop_move();
  2448. run_z_probe();
  2449. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2450. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2451. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2452. ext_position,
  2453. homing_feedrate[X_AXIS]/60,
  2454. active_extruder);
  2455. st_synchronize();
  2456. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2457. if (engage_probe_for_each_reading) stow_z_probe();
  2458. for (uint16_t n=0; n < n_samples; n++) {
  2459. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2460. if (n_legs) {
  2461. unsigned long ms = millis();
  2462. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2463. theta = RADIANS(ms % 360L);
  2464. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2465. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2466. //SERIAL_ECHOPAIR(" theta: ",theta);
  2467. //SERIAL_ECHOPAIR(" direction: ",dir);
  2468. //SERIAL_EOL;
  2469. for (int l = 0; l < n_legs - 1; l++) {
  2470. ms = millis();
  2471. theta += RADIANS(dir * (ms % 20L));
  2472. radius += (ms % 10L) - 5L;
  2473. if (radius < 0.0) radius = -radius;
  2474. X_current = X_probe_location + cos(theta) * radius;
  2475. Y_current = Y_probe_location + sin(theta) * radius;
  2476. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2477. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2478. if (verbose_level > 3) {
  2479. SERIAL_ECHOPAIR("x: ", X_current);
  2480. SERIAL_ECHOPAIR("y: ", Y_current);
  2481. SERIAL_EOL;
  2482. }
  2483. do_blocking_move_to(X_current, Y_current, Z_current);
  2484. } // n_legs loop
  2485. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2486. } // n_legs
  2487. if (engage_probe_for_each_reading) {
  2488. deploy_z_probe();
  2489. delay(1000);
  2490. }
  2491. setup_for_endstop_move();
  2492. run_z_probe();
  2493. sample_set[n] = current_position[Z_AXIS];
  2494. //
  2495. // Get the current mean for the data points we have so far
  2496. //
  2497. sum = 0.0;
  2498. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2499. mean = sum / (n + 1);
  2500. //
  2501. // Now, use that mean to calculate the standard deviation for the
  2502. // data points we have so far
  2503. //
  2504. sum = 0.0;
  2505. for (int j = 0; j <= n; j++) {
  2506. float ss = sample_set[j] - mean;
  2507. sum += ss * ss;
  2508. }
  2509. sigma = sqrt(sum / (n + 1));
  2510. if (verbose_level > 1) {
  2511. SERIAL_PROTOCOL(n+1);
  2512. SERIAL_PROTOCOLPGM(" of ");
  2513. SERIAL_PROTOCOL(n_samples);
  2514. SERIAL_PROTOCOLPGM(" z: ");
  2515. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2516. if (verbose_level > 2) {
  2517. SERIAL_PROTOCOLPGM(" mean: ");
  2518. SERIAL_PROTOCOL_F(mean,6);
  2519. SERIAL_PROTOCOLPGM(" sigma: ");
  2520. SERIAL_PROTOCOL_F(sigma,6);
  2521. }
  2522. }
  2523. if (verbose_level > 0) SERIAL_EOL;
  2524. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2525. st_synchronize();
  2526. if (engage_probe_for_each_reading) {
  2527. stow_z_probe();
  2528. delay(1000);
  2529. }
  2530. }
  2531. if (!engage_probe_for_each_reading) {
  2532. stow_z_probe();
  2533. delay(1000);
  2534. }
  2535. clean_up_after_endstop_move();
  2536. // enable_endstops(true);
  2537. if (verbose_level > 0) {
  2538. SERIAL_PROTOCOLPGM("Mean: ");
  2539. SERIAL_PROTOCOL_F(mean, 6);
  2540. SERIAL_EOL;
  2541. }
  2542. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2543. SERIAL_PROTOCOL_F(sigma, 6);
  2544. SERIAL_EOL; SERIAL_EOL;
  2545. }
  2546. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2547. /**
  2548. * M104: Set hot end temperature
  2549. */
  2550. inline void gcode_M104() {
  2551. if (setTargetedHotend(104)) return;
  2552. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2553. #ifdef DUAL_X_CARRIAGE
  2554. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2555. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2556. #endif
  2557. setWatch();
  2558. }
  2559. /**
  2560. * M105: Read hot end and bed temperature
  2561. */
  2562. inline void gcode_M105() {
  2563. if (setTargetedHotend(105)) return;
  2564. #if HAS_TEMP_0 || HAS_TEMP_BED
  2565. SERIAL_PROTOCOLPGM("ok");
  2566. #if HAS_TEMP_0
  2567. SERIAL_PROTOCOLPGM(" T:");
  2568. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  2569. SERIAL_PROTOCOLPGM(" /");
  2570. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder), 1);
  2571. #endif
  2572. #if HAS_TEMP_BED
  2573. SERIAL_PROTOCOLPGM(" B:");
  2574. SERIAL_PROTOCOL_F(degBed(), 1);
  2575. SERIAL_PROTOCOLPGM(" /");
  2576. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2577. #endif
  2578. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2579. SERIAL_PROTOCOLPGM(" T");
  2580. SERIAL_PROTOCOL(e);
  2581. SERIAL_PROTOCOLPGM(":");
  2582. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2583. SERIAL_PROTOCOLPGM(" /");
  2584. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2585. }
  2586. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2587. SERIAL_ERROR_START;
  2588. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2589. #endif
  2590. SERIAL_PROTOCOLPGM(" @:");
  2591. #ifdef EXTRUDER_WATTS
  2592. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2593. SERIAL_PROTOCOLPGM("W");
  2594. #else
  2595. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2596. #endif
  2597. SERIAL_PROTOCOLPGM(" B@:");
  2598. #ifdef BED_WATTS
  2599. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2600. SERIAL_PROTOCOLPGM("W");
  2601. #else
  2602. SERIAL_PROTOCOL(getHeaterPower(-1));
  2603. #endif
  2604. #ifdef SHOW_TEMP_ADC_VALUES
  2605. #if HAS_TEMP_BED
  2606. SERIAL_PROTOCOLPGM(" ADC B:");
  2607. SERIAL_PROTOCOL_F(degBed(),1);
  2608. SERIAL_PROTOCOLPGM("C->");
  2609. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2610. #endif
  2611. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2612. SERIAL_PROTOCOLPGM(" T");
  2613. SERIAL_PROTOCOL(cur_extruder);
  2614. SERIAL_PROTOCOLPGM(":");
  2615. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2616. SERIAL_PROTOCOLPGM("C->");
  2617. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2618. }
  2619. #endif
  2620. SERIAL_EOL;
  2621. }
  2622. #if HAS_FAN
  2623. /**
  2624. * M106: Set Fan Speed
  2625. */
  2626. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2627. /**
  2628. * M107: Fan Off
  2629. */
  2630. inline void gcode_M107() { fanSpeed = 0; }
  2631. #endif // HAS_FAN
  2632. /**
  2633. * M109: Wait for extruder(s) to reach temperature
  2634. */
  2635. inline void gcode_M109() {
  2636. if (setTargetedHotend(109)) return;
  2637. LCD_MESSAGEPGM(MSG_HEATING);
  2638. CooldownNoWait = code_seen('S');
  2639. if (CooldownNoWait || code_seen('R')) {
  2640. setTargetHotend(code_value(), tmp_extruder);
  2641. #ifdef DUAL_X_CARRIAGE
  2642. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2643. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2644. #endif
  2645. }
  2646. #ifdef AUTOTEMP
  2647. autotemp_enabled = code_seen('F');
  2648. if (autotemp_enabled) autotemp_factor = code_value();
  2649. if (code_seen('S')) autotemp_min = code_value();
  2650. if (code_seen('B')) autotemp_max = code_value();
  2651. #endif
  2652. setWatch();
  2653. unsigned long timetemp = millis();
  2654. /* See if we are heating up or cooling down */
  2655. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2656. cancel_heatup = false;
  2657. #ifdef TEMP_RESIDENCY_TIME
  2658. long residencyStart = -1;
  2659. /* continue to loop until we have reached the target temp
  2660. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2661. while((!cancel_heatup)&&((residencyStart == -1) ||
  2662. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2663. #else
  2664. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2665. #endif //TEMP_RESIDENCY_TIME
  2666. { // while loop
  2667. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2668. SERIAL_PROTOCOLPGM("T:");
  2669. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2670. SERIAL_PROTOCOLPGM(" E:");
  2671. SERIAL_PROTOCOL((int)tmp_extruder);
  2672. #ifdef TEMP_RESIDENCY_TIME
  2673. SERIAL_PROTOCOLPGM(" W:");
  2674. if (residencyStart > -1) {
  2675. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2676. SERIAL_PROTOCOLLN( timetemp );
  2677. }
  2678. else {
  2679. SERIAL_PROTOCOLLNPGM("?");
  2680. }
  2681. #else
  2682. SERIAL_EOL;
  2683. #endif
  2684. timetemp = millis();
  2685. }
  2686. manage_heater();
  2687. manage_inactivity();
  2688. lcd_update();
  2689. #ifdef TEMP_RESIDENCY_TIME
  2690. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2691. // or when current temp falls outside the hysteresis after target temp was reached
  2692. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2693. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2694. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2695. {
  2696. residencyStart = millis();
  2697. }
  2698. #endif //TEMP_RESIDENCY_TIME
  2699. }
  2700. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2701. refresh_cmd_timeout();
  2702. starttime = previous_millis_cmd;
  2703. }
  2704. #if HAS_TEMP_BED
  2705. /**
  2706. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2707. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2708. */
  2709. inline void gcode_M190() {
  2710. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2711. CooldownNoWait = code_seen('S');
  2712. if (CooldownNoWait || code_seen('R'))
  2713. setTargetBed(code_value());
  2714. unsigned long timetemp = millis();
  2715. cancel_heatup = false;
  2716. target_direction = isHeatingBed(); // true if heating, false if cooling
  2717. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2718. unsigned long ms = millis();
  2719. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2720. timetemp = ms;
  2721. float tt = degHotend(active_extruder);
  2722. SERIAL_PROTOCOLPGM("T:");
  2723. SERIAL_PROTOCOL(tt);
  2724. SERIAL_PROTOCOLPGM(" E:");
  2725. SERIAL_PROTOCOL((int)active_extruder);
  2726. SERIAL_PROTOCOLPGM(" B:");
  2727. SERIAL_PROTOCOL_F(degBed(), 1);
  2728. SERIAL_EOL;
  2729. }
  2730. manage_heater();
  2731. manage_inactivity();
  2732. lcd_update();
  2733. }
  2734. LCD_MESSAGEPGM(MSG_BED_DONE);
  2735. refresh_cmd_timeout();
  2736. }
  2737. #endif // HAS_TEMP_BED
  2738. /**
  2739. * M112: Emergency Stop
  2740. */
  2741. inline void gcode_M112() {
  2742. kill();
  2743. }
  2744. #ifdef BARICUDA
  2745. #if HAS_HEATER_1
  2746. /**
  2747. * M126: Heater 1 valve open
  2748. */
  2749. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2750. /**
  2751. * M127: Heater 1 valve close
  2752. */
  2753. inline void gcode_M127() { ValvePressure = 0; }
  2754. #endif
  2755. #if HAS_HEATER_2
  2756. /**
  2757. * M128: Heater 2 valve open
  2758. */
  2759. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2760. /**
  2761. * M129: Heater 2 valve close
  2762. */
  2763. inline void gcode_M129() { EtoPPressure = 0; }
  2764. #endif
  2765. #endif //BARICUDA
  2766. /**
  2767. * M140: Set bed temperature
  2768. */
  2769. inline void gcode_M140() {
  2770. if (code_seen('S')) setTargetBed(code_value());
  2771. }
  2772. #if HAS_POWER_SWITCH
  2773. /**
  2774. * M80: Turn on Power Supply
  2775. */
  2776. inline void gcode_M80() {
  2777. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2778. // If you have a switch on suicide pin, this is useful
  2779. // if you want to start another print with suicide feature after
  2780. // a print without suicide...
  2781. #if HAS_SUICIDE
  2782. OUT_WRITE(SUICIDE_PIN, HIGH);
  2783. #endif
  2784. #ifdef ULTIPANEL
  2785. powersupply = true;
  2786. LCD_MESSAGEPGM(WELCOME_MSG);
  2787. lcd_update();
  2788. #endif
  2789. }
  2790. #endif // HAS_POWER_SWITCH
  2791. /**
  2792. * M81: Turn off Power, including Power Supply, if there is one.
  2793. *
  2794. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2795. */
  2796. inline void gcode_M81() {
  2797. disable_heater();
  2798. st_synchronize();
  2799. disable_e0();
  2800. disable_e1();
  2801. disable_e2();
  2802. disable_e3();
  2803. finishAndDisableSteppers();
  2804. fanSpeed = 0;
  2805. delay(1000); // Wait 1 second before switching off
  2806. #if HAS_SUICIDE
  2807. st_synchronize();
  2808. suicide();
  2809. #elif HAS_POWER_SWITCH
  2810. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2811. #endif
  2812. #ifdef ULTIPANEL
  2813. #if HAS_POWER_SWITCH
  2814. powersupply = false;
  2815. #endif
  2816. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2817. lcd_update();
  2818. #endif
  2819. }
  2820. /**
  2821. * M82: Set E codes absolute (default)
  2822. */
  2823. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2824. /**
  2825. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2826. */
  2827. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2828. /**
  2829. * M18, M84: Disable all stepper motors
  2830. */
  2831. inline void gcode_M18_M84() {
  2832. if (code_seen('S')) {
  2833. stepper_inactive_time = code_value() * 1000;
  2834. }
  2835. else {
  2836. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2837. if (all_axis) {
  2838. st_synchronize();
  2839. disable_e0();
  2840. disable_e1();
  2841. disable_e2();
  2842. disable_e3();
  2843. finishAndDisableSteppers();
  2844. }
  2845. else {
  2846. st_synchronize();
  2847. if (code_seen('X')) disable_x();
  2848. if (code_seen('Y')) disable_y();
  2849. if (code_seen('Z')) disable_z();
  2850. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2851. if (code_seen('E')) {
  2852. disable_e0();
  2853. disable_e1();
  2854. disable_e2();
  2855. disable_e3();
  2856. }
  2857. #endif
  2858. }
  2859. }
  2860. }
  2861. /**
  2862. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2863. */
  2864. inline void gcode_M85() {
  2865. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2866. }
  2867. /**
  2868. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2869. */
  2870. inline void gcode_M92() {
  2871. for(int8_t i=0; i < NUM_AXIS; i++) {
  2872. if (code_seen(axis_codes[i])) {
  2873. if (i == E_AXIS) {
  2874. float value = code_value();
  2875. if (value < 20.0) {
  2876. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2877. max_e_jerk *= factor;
  2878. max_feedrate[i] *= factor;
  2879. axis_steps_per_sqr_second[i] *= factor;
  2880. }
  2881. axis_steps_per_unit[i] = value;
  2882. }
  2883. else {
  2884. axis_steps_per_unit[i] = code_value();
  2885. }
  2886. }
  2887. }
  2888. }
  2889. /**
  2890. * M114: Output current position to serial port
  2891. */
  2892. inline void gcode_M114() {
  2893. SERIAL_PROTOCOLPGM("X:");
  2894. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2895. SERIAL_PROTOCOLPGM(" Y:");
  2896. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2897. SERIAL_PROTOCOLPGM(" Z:");
  2898. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2899. SERIAL_PROTOCOLPGM(" E:");
  2900. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2901. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2902. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2903. SERIAL_PROTOCOLPGM(" Y:");
  2904. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2905. SERIAL_PROTOCOLPGM(" Z:");
  2906. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2907. SERIAL_EOL;
  2908. #ifdef SCARA
  2909. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2910. SERIAL_PROTOCOL(delta[X_AXIS]);
  2911. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2912. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2913. SERIAL_EOL;
  2914. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2915. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2916. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2917. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2918. SERIAL_EOL;
  2919. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2920. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2922. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2923. SERIAL_EOL; SERIAL_EOL;
  2924. #endif
  2925. }
  2926. /**
  2927. * M115: Capabilities string
  2928. */
  2929. inline void gcode_M115() {
  2930. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2931. }
  2932. /**
  2933. * M117: Set LCD Status Message
  2934. */
  2935. inline void gcode_M117() {
  2936. char* codepos = strchr_pointer + 5;
  2937. char* starpos = strchr(codepos, '*');
  2938. if (starpos) *starpos = '\0';
  2939. lcd_setstatus(codepos);
  2940. }
  2941. /**
  2942. * M119: Output endstop states to serial output
  2943. */
  2944. inline void gcode_M119() {
  2945. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2946. #if HAS_X_MIN
  2947. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2948. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2949. #endif
  2950. #if HAS_X_MAX
  2951. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2952. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2953. #endif
  2954. #if HAS_Y_MIN
  2955. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2956. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2957. #endif
  2958. #if HAS_Y_MAX
  2959. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2960. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2961. #endif
  2962. #if HAS_Z_MIN
  2963. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2964. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2965. #endif
  2966. #if HAS_Z_MAX
  2967. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2968. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2969. #endif
  2970. #if HAS_Z2_MAX
  2971. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2972. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2973. #endif
  2974. #if HAS_Z_PROBE
  2975. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  2976. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2977. #endif
  2978. }
  2979. /**
  2980. * M120: Enable endstops
  2981. */
  2982. inline void gcode_M120() { enable_endstops(false); }
  2983. /**
  2984. * M121: Disable endstops
  2985. */
  2986. inline void gcode_M121() { enable_endstops(true); }
  2987. #ifdef BLINKM
  2988. /**
  2989. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2990. */
  2991. inline void gcode_M150() {
  2992. SendColors(
  2993. code_seen('R') ? (byte)code_value() : 0,
  2994. code_seen('U') ? (byte)code_value() : 0,
  2995. code_seen('B') ? (byte)code_value() : 0
  2996. );
  2997. }
  2998. #endif // BLINKM
  2999. /**
  3000. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3001. * T<extruder>
  3002. * D<millimeters>
  3003. */
  3004. inline void gcode_M200() {
  3005. tmp_extruder = active_extruder;
  3006. if (code_seen('T')) {
  3007. tmp_extruder = code_value();
  3008. if (tmp_extruder >= EXTRUDERS) {
  3009. SERIAL_ECHO_START;
  3010. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3011. return;
  3012. }
  3013. }
  3014. if (code_seen('D')) {
  3015. float diameter = code_value();
  3016. // setting any extruder filament size disables volumetric on the assumption that
  3017. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3018. // for all extruders
  3019. volumetric_enabled = (diameter != 0.0);
  3020. if (volumetric_enabled) {
  3021. filament_size[tmp_extruder] = diameter;
  3022. // make sure all extruders have some sane value for the filament size
  3023. for (int i=0; i<EXTRUDERS; i++)
  3024. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3025. }
  3026. }
  3027. else {
  3028. //reserved for setting filament diameter via UFID or filament measuring device
  3029. return;
  3030. }
  3031. calculate_volumetric_multipliers();
  3032. }
  3033. /**
  3034. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3035. */
  3036. inline void gcode_M201() {
  3037. for (int8_t i=0; i < NUM_AXIS; i++) {
  3038. if (code_seen(axis_codes[i])) {
  3039. max_acceleration_units_per_sq_second[i] = code_value();
  3040. }
  3041. }
  3042. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3043. reset_acceleration_rates();
  3044. }
  3045. #if 0 // Not used for Sprinter/grbl gen6
  3046. inline void gcode_M202() {
  3047. for(int8_t i=0; i < NUM_AXIS; i++) {
  3048. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3049. }
  3050. }
  3051. #endif
  3052. /**
  3053. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3054. */
  3055. inline void gcode_M203() {
  3056. for (int8_t i=0; i < NUM_AXIS; i++) {
  3057. if (code_seen(axis_codes[i])) {
  3058. max_feedrate[i] = code_value();
  3059. }
  3060. }
  3061. }
  3062. /**
  3063. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3064. *
  3065. * P = Printing moves
  3066. * R = Retract only (no X, Y, Z) moves
  3067. * T = Travel (non printing) moves
  3068. *
  3069. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3070. */
  3071. inline void gcode_M204() {
  3072. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3073. {
  3074. acceleration = code_value();
  3075. travel_acceleration = acceleration;
  3076. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3077. SERIAL_EOL;
  3078. }
  3079. if (code_seen('P'))
  3080. {
  3081. acceleration = code_value();
  3082. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3083. SERIAL_EOL;
  3084. }
  3085. if (code_seen('R'))
  3086. {
  3087. retract_acceleration = code_value();
  3088. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3089. SERIAL_EOL;
  3090. }
  3091. if (code_seen('T'))
  3092. {
  3093. travel_acceleration = code_value();
  3094. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3095. SERIAL_EOL;
  3096. }
  3097. }
  3098. /**
  3099. * M205: Set Advanced Settings
  3100. *
  3101. * S = Min Feed Rate (mm/s)
  3102. * T = Min Travel Feed Rate (mm/s)
  3103. * B = Min Segment Time (µs)
  3104. * X = Max XY Jerk (mm/s/s)
  3105. * Z = Max Z Jerk (mm/s/s)
  3106. * E = Max E Jerk (mm/s/s)
  3107. */
  3108. inline void gcode_M205() {
  3109. if (code_seen('S')) minimumfeedrate = code_value();
  3110. if (code_seen('T')) mintravelfeedrate = code_value();
  3111. if (code_seen('B')) minsegmenttime = code_value();
  3112. if (code_seen('X')) max_xy_jerk = code_value();
  3113. if (code_seen('Z')) max_z_jerk = code_value();
  3114. if (code_seen('E')) max_e_jerk = code_value();
  3115. }
  3116. /**
  3117. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3118. */
  3119. inline void gcode_M206() {
  3120. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3121. if (code_seen(axis_codes[i])) {
  3122. home_offset[i] = code_value();
  3123. }
  3124. }
  3125. #ifdef SCARA
  3126. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3127. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3128. #endif
  3129. }
  3130. #ifdef DELTA
  3131. /**
  3132. * M665: Set delta configurations
  3133. *
  3134. * L = diagonal rod
  3135. * R = delta radius
  3136. * S = segments per second
  3137. */
  3138. inline void gcode_M665() {
  3139. if (code_seen('L')) delta_diagonal_rod = code_value();
  3140. if (code_seen('R')) delta_radius = code_value();
  3141. if (code_seen('S')) delta_segments_per_second = code_value();
  3142. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3143. }
  3144. /**
  3145. * M666: Set delta endstop adjustment
  3146. */
  3147. inline void gcode_M666() {
  3148. for (int8_t i = 0; i < 3; i++) {
  3149. if (code_seen(axis_codes[i])) {
  3150. endstop_adj[i] = code_value();
  3151. }
  3152. }
  3153. }
  3154. #elif defined(Z_DUAL_ENDSTOPS)
  3155. /**
  3156. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3157. */
  3158. inline void gcode_M666() {
  3159. if (code_seen('Z')) z_endstop_adj = code_value();
  3160. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3161. SERIAL_EOL;
  3162. }
  3163. #endif // DELTA
  3164. #ifdef FWRETRACT
  3165. /**
  3166. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3167. */
  3168. inline void gcode_M207() {
  3169. if (code_seen('S')) retract_length = code_value();
  3170. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3171. if (code_seen('Z')) retract_zlift = code_value();
  3172. }
  3173. /**
  3174. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3175. */
  3176. inline void gcode_M208() {
  3177. if (code_seen('S')) retract_recover_length = code_value();
  3178. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3179. }
  3180. /**
  3181. * M209: Enable automatic retract (M209 S1)
  3182. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3183. */
  3184. inline void gcode_M209() {
  3185. if (code_seen('S')) {
  3186. int t = code_value();
  3187. switch(t) {
  3188. case 0:
  3189. autoretract_enabled = false;
  3190. break;
  3191. case 1:
  3192. autoretract_enabled = true;
  3193. break;
  3194. default:
  3195. SERIAL_ECHO_START;
  3196. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3197. SERIAL_ECHO(cmdbuffer[bufindr]);
  3198. SERIAL_ECHOLNPGM("\"");
  3199. return;
  3200. }
  3201. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3202. }
  3203. }
  3204. #endif // FWRETRACT
  3205. #if EXTRUDERS > 1
  3206. /**
  3207. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3208. */
  3209. inline void gcode_M218() {
  3210. if (setTargetedHotend(218)) return;
  3211. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3212. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3213. #ifdef DUAL_X_CARRIAGE
  3214. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3215. #endif
  3216. SERIAL_ECHO_START;
  3217. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3218. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3219. SERIAL_ECHO(" ");
  3220. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3221. SERIAL_ECHO(",");
  3222. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3223. #ifdef DUAL_X_CARRIAGE
  3224. SERIAL_ECHO(",");
  3225. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3226. #endif
  3227. }
  3228. SERIAL_EOL;
  3229. }
  3230. #endif // EXTRUDERS > 1
  3231. /**
  3232. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3233. */
  3234. inline void gcode_M220() {
  3235. if (code_seen('S')) feedmultiply = code_value();
  3236. }
  3237. /**
  3238. * M221: Set extrusion percentage (M221 T0 S95)
  3239. */
  3240. inline void gcode_M221() {
  3241. if (code_seen('S')) {
  3242. int sval = code_value();
  3243. if (code_seen('T')) {
  3244. if (setTargetedHotend(221)) return;
  3245. extruder_multiply[tmp_extruder] = sval;
  3246. }
  3247. else {
  3248. extruder_multiply[active_extruder] = sval;
  3249. }
  3250. }
  3251. }
  3252. /**
  3253. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3254. */
  3255. inline void gcode_M226() {
  3256. if (code_seen('P')) {
  3257. int pin_number = code_value();
  3258. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3259. if (pin_state >= -1 && pin_state <= 1) {
  3260. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3261. if (sensitive_pins[i] == pin_number) {
  3262. pin_number = -1;
  3263. break;
  3264. }
  3265. }
  3266. if (pin_number > -1) {
  3267. int target = LOW;
  3268. st_synchronize();
  3269. pinMode(pin_number, INPUT);
  3270. switch(pin_state){
  3271. case 1:
  3272. target = HIGH;
  3273. break;
  3274. case 0:
  3275. target = LOW;
  3276. break;
  3277. case -1:
  3278. target = !digitalRead(pin_number);
  3279. break;
  3280. }
  3281. while(digitalRead(pin_number) != target) {
  3282. manage_heater();
  3283. manage_inactivity();
  3284. lcd_update();
  3285. }
  3286. } // pin_number > -1
  3287. } // pin_state -1 0 1
  3288. } // code_seen('P')
  3289. }
  3290. #if NUM_SERVOS > 0
  3291. /**
  3292. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3293. */
  3294. inline void gcode_M280() {
  3295. int servo_index = code_seen('P') ? code_value() : -1;
  3296. int servo_position = 0;
  3297. if (code_seen('S')) {
  3298. servo_position = code_value();
  3299. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3300. #if SERVO_LEVELING
  3301. servos[servo_index].attach(0);
  3302. #endif
  3303. servos[servo_index].write(servo_position);
  3304. #if SERVO_LEVELING
  3305. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3306. servos[servo_index].detach();
  3307. #endif
  3308. }
  3309. else {
  3310. SERIAL_ECHO_START;
  3311. SERIAL_ECHO("Servo ");
  3312. SERIAL_ECHO(servo_index);
  3313. SERIAL_ECHOLN(" out of range");
  3314. }
  3315. }
  3316. else if (servo_index >= 0) {
  3317. SERIAL_PROTOCOL(MSG_OK);
  3318. SERIAL_PROTOCOL(" Servo ");
  3319. SERIAL_PROTOCOL(servo_index);
  3320. SERIAL_PROTOCOL(": ");
  3321. SERIAL_PROTOCOL(servos[servo_index].read());
  3322. SERIAL_EOL;
  3323. }
  3324. }
  3325. #endif // NUM_SERVOS > 0
  3326. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3327. /**
  3328. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3329. */
  3330. inline void gcode_M300() {
  3331. int beepS = code_seen('S') ? code_value() : 110;
  3332. int beepP = code_seen('P') ? code_value() : 1000;
  3333. if (beepS > 0) {
  3334. #if BEEPER > 0
  3335. tone(BEEPER, beepS);
  3336. delay(beepP);
  3337. noTone(BEEPER);
  3338. #elif defined(ULTRALCD)
  3339. lcd_buzz(beepS, beepP);
  3340. #elif defined(LCD_USE_I2C_BUZZER)
  3341. lcd_buzz(beepP, beepS);
  3342. #endif
  3343. }
  3344. else {
  3345. delay(beepP);
  3346. }
  3347. }
  3348. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3349. #ifdef PIDTEMP
  3350. /**
  3351. * M301: Set PID parameters P I D (and optionally C)
  3352. */
  3353. inline void gcode_M301() {
  3354. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3355. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3356. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3357. if (e < EXTRUDERS) { // catch bad input value
  3358. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3359. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3360. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3361. #ifdef PID_ADD_EXTRUSION_RATE
  3362. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3363. #endif
  3364. updatePID();
  3365. SERIAL_PROTOCOL(MSG_OK);
  3366. #ifdef PID_PARAMS_PER_EXTRUDER
  3367. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3368. SERIAL_PROTOCOL(e);
  3369. #endif // PID_PARAMS_PER_EXTRUDER
  3370. SERIAL_PROTOCOL(" p:");
  3371. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3372. SERIAL_PROTOCOL(" i:");
  3373. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3374. SERIAL_PROTOCOL(" d:");
  3375. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3376. #ifdef PID_ADD_EXTRUSION_RATE
  3377. SERIAL_PROTOCOL(" c:");
  3378. //Kc does not have scaling applied above, or in resetting defaults
  3379. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3380. #endif
  3381. SERIAL_EOL;
  3382. }
  3383. else {
  3384. SERIAL_ECHO_START;
  3385. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3386. }
  3387. }
  3388. #endif // PIDTEMP
  3389. #ifdef PIDTEMPBED
  3390. inline void gcode_M304() {
  3391. if (code_seen('P')) bedKp = code_value();
  3392. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3393. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3394. updatePID();
  3395. SERIAL_PROTOCOL(MSG_OK);
  3396. SERIAL_PROTOCOL(" p:");
  3397. SERIAL_PROTOCOL(bedKp);
  3398. SERIAL_PROTOCOL(" i:");
  3399. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3400. SERIAL_PROTOCOL(" d:");
  3401. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3402. SERIAL_EOL;
  3403. }
  3404. #endif // PIDTEMPBED
  3405. #if defined(CHDK) || HAS_PHOTOGRAPH
  3406. /**
  3407. * M240: Trigger a camera by emulating a Canon RC-1
  3408. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3409. */
  3410. inline void gcode_M240() {
  3411. #ifdef CHDK
  3412. OUT_WRITE(CHDK, HIGH);
  3413. chdkHigh = millis();
  3414. chdkActive = true;
  3415. #elif HAS_PHOTOGRAPH
  3416. const uint8_t NUM_PULSES = 16;
  3417. const float PULSE_LENGTH = 0.01524;
  3418. for (int i = 0; i < NUM_PULSES; i++) {
  3419. WRITE(PHOTOGRAPH_PIN, HIGH);
  3420. _delay_ms(PULSE_LENGTH);
  3421. WRITE(PHOTOGRAPH_PIN, LOW);
  3422. _delay_ms(PULSE_LENGTH);
  3423. }
  3424. delay(7.33);
  3425. for (int i = 0; i < NUM_PULSES; i++) {
  3426. WRITE(PHOTOGRAPH_PIN, HIGH);
  3427. _delay_ms(PULSE_LENGTH);
  3428. WRITE(PHOTOGRAPH_PIN, LOW);
  3429. _delay_ms(PULSE_LENGTH);
  3430. }
  3431. #endif // !CHDK && HAS_PHOTOGRAPH
  3432. }
  3433. #endif // CHDK || PHOTOGRAPH_PIN
  3434. #ifdef DOGLCD
  3435. /**
  3436. * M250: Read and optionally set the LCD contrast
  3437. */
  3438. inline void gcode_M250() {
  3439. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3440. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3441. SERIAL_PROTOCOL(lcd_contrast);
  3442. SERIAL_EOL;
  3443. }
  3444. #endif // DOGLCD
  3445. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3446. /**
  3447. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3448. */
  3449. inline void gcode_M302() {
  3450. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3451. }
  3452. #endif // PREVENT_DANGEROUS_EXTRUDE
  3453. /**
  3454. * M303: PID relay autotune
  3455. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3456. * E<extruder> (-1 for the bed)
  3457. * C<cycles>
  3458. */
  3459. inline void gcode_M303() {
  3460. int e = code_seen('E') ? code_value_long() : 0;
  3461. int c = code_seen('C') ? code_value_long() : 5;
  3462. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3463. PID_autotune(temp, e, c);
  3464. }
  3465. #ifdef SCARA
  3466. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3467. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3468. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3469. if (! Stopped) {
  3470. //get_coordinates(); // For X Y Z E F
  3471. delta[X_AXIS] = delta_x;
  3472. delta[Y_AXIS] = delta_y;
  3473. calculate_SCARA_forward_Transform(delta);
  3474. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3475. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3476. prepare_move();
  3477. //ClearToSend();
  3478. return true;
  3479. }
  3480. return false;
  3481. }
  3482. /**
  3483. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3484. */
  3485. inline bool gcode_M360() {
  3486. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3487. return SCARA_move_to_cal(0, 120);
  3488. }
  3489. /**
  3490. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3491. */
  3492. inline bool gcode_M361() {
  3493. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3494. return SCARA_move_to_cal(90, 130);
  3495. }
  3496. /**
  3497. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3498. */
  3499. inline bool gcode_M362() {
  3500. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3501. return SCARA_move_to_cal(60, 180);
  3502. }
  3503. /**
  3504. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3505. */
  3506. inline bool gcode_M363() {
  3507. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3508. return SCARA_move_to_cal(50, 90);
  3509. }
  3510. /**
  3511. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3512. */
  3513. inline bool gcode_M364() {
  3514. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3515. return SCARA_move_to_cal(45, 135);
  3516. }
  3517. /**
  3518. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3519. */
  3520. inline void gcode_M365() {
  3521. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3522. if (code_seen(axis_codes[i])) {
  3523. axis_scaling[i] = code_value();
  3524. }
  3525. }
  3526. }
  3527. #endif // SCARA
  3528. #ifdef EXT_SOLENOID
  3529. void enable_solenoid(uint8_t num) {
  3530. switch(num) {
  3531. case 0:
  3532. OUT_WRITE(SOL0_PIN, HIGH);
  3533. break;
  3534. #if HAS_SOLENOID_1
  3535. case 1:
  3536. OUT_WRITE(SOL1_PIN, HIGH);
  3537. break;
  3538. #endif
  3539. #if HAS_SOLENOID_2
  3540. case 2:
  3541. OUT_WRITE(SOL2_PIN, HIGH);
  3542. break;
  3543. #endif
  3544. #if HAS_SOLENOID_3
  3545. case 3:
  3546. OUT_WRITE(SOL3_PIN, HIGH);
  3547. break;
  3548. #endif
  3549. default:
  3550. SERIAL_ECHO_START;
  3551. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3552. break;
  3553. }
  3554. }
  3555. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3556. void disable_all_solenoids() {
  3557. OUT_WRITE(SOL0_PIN, LOW);
  3558. OUT_WRITE(SOL1_PIN, LOW);
  3559. OUT_WRITE(SOL2_PIN, LOW);
  3560. OUT_WRITE(SOL3_PIN, LOW);
  3561. }
  3562. /**
  3563. * M380: Enable solenoid on the active extruder
  3564. */
  3565. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3566. /**
  3567. * M381: Disable all solenoids
  3568. */
  3569. inline void gcode_M381() { disable_all_solenoids(); }
  3570. #endif // EXT_SOLENOID
  3571. /**
  3572. * M400: Finish all moves
  3573. */
  3574. inline void gcode_M400() { st_synchronize(); }
  3575. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3576. /**
  3577. * M401: Engage Z Servo endstop if available
  3578. */
  3579. inline void gcode_M401() { deploy_z_probe(); }
  3580. /**
  3581. * M402: Retract Z Servo endstop if enabled
  3582. */
  3583. inline void gcode_M402() { stow_z_probe(); }
  3584. #endif
  3585. #ifdef FILAMENT_SENSOR
  3586. /**
  3587. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3588. */
  3589. inline void gcode_M404() {
  3590. #if HAS_FILWIDTH
  3591. if (code_seen('W')) {
  3592. filament_width_nominal = code_value();
  3593. }
  3594. else {
  3595. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3596. SERIAL_PROTOCOLLN(filament_width_nominal);
  3597. }
  3598. #endif
  3599. }
  3600. /**
  3601. * M405: Turn on filament sensor for control
  3602. */
  3603. inline void gcode_M405() {
  3604. if (code_seen('D')) meas_delay_cm = code_value();
  3605. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3606. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3607. int temp_ratio = widthFil_to_size_ratio();
  3608. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3609. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3610. delay_index1 = delay_index2 = 0;
  3611. }
  3612. filament_sensor = true;
  3613. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3614. //SERIAL_PROTOCOL(filament_width_meas);
  3615. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3616. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3617. }
  3618. /**
  3619. * M406: Turn off filament sensor for control
  3620. */
  3621. inline void gcode_M406() { filament_sensor = false; }
  3622. /**
  3623. * M407: Get measured filament diameter on serial output
  3624. */
  3625. inline void gcode_M407() {
  3626. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3627. SERIAL_PROTOCOLLN(filament_width_meas);
  3628. }
  3629. #endif // FILAMENT_SENSOR
  3630. /**
  3631. * M500: Store settings in EEPROM
  3632. */
  3633. inline void gcode_M500() {
  3634. Config_StoreSettings();
  3635. }
  3636. /**
  3637. * M501: Read settings from EEPROM
  3638. */
  3639. inline void gcode_M501() {
  3640. Config_RetrieveSettings();
  3641. }
  3642. /**
  3643. * M502: Revert to default settings
  3644. */
  3645. inline void gcode_M502() {
  3646. Config_ResetDefault();
  3647. }
  3648. /**
  3649. * M503: print settings currently in memory
  3650. */
  3651. inline void gcode_M503() {
  3652. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3653. }
  3654. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3655. /**
  3656. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3657. */
  3658. inline void gcode_M540() {
  3659. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3660. }
  3661. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3662. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3663. inline void gcode_SET_Z_PROBE_OFFSET() {
  3664. float value;
  3665. if (code_seen('Z')) {
  3666. value = code_value();
  3667. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3668. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3669. SERIAL_ECHO_START;
  3670. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3671. SERIAL_EOL;
  3672. }
  3673. else {
  3674. SERIAL_ECHO_START;
  3675. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3676. SERIAL_ECHOPGM(MSG_Z_MIN);
  3677. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3678. SERIAL_ECHOPGM(MSG_Z_MAX);
  3679. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3680. SERIAL_EOL;
  3681. }
  3682. }
  3683. else {
  3684. SERIAL_ECHO_START;
  3685. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3686. SERIAL_ECHO(-zprobe_zoffset);
  3687. SERIAL_EOL;
  3688. }
  3689. }
  3690. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3691. #ifdef FILAMENTCHANGEENABLE
  3692. /**
  3693. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3694. */
  3695. inline void gcode_M600() {
  3696. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3697. for (int i=0; i<NUM_AXIS; i++)
  3698. target[i] = lastpos[i] = current_position[i];
  3699. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3700. #ifdef DELTA
  3701. #define RUNPLAN calculate_delta(target); BASICPLAN
  3702. #else
  3703. #define RUNPLAN BASICPLAN
  3704. #endif
  3705. //retract by E
  3706. if (code_seen('E')) target[E_AXIS] += code_value();
  3707. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3708. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3709. #endif
  3710. RUNPLAN;
  3711. //lift Z
  3712. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3713. #ifdef FILAMENTCHANGE_ZADD
  3714. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3715. #endif
  3716. RUNPLAN;
  3717. //move xy
  3718. if (code_seen('X')) target[X_AXIS] = code_value();
  3719. #ifdef FILAMENTCHANGE_XPOS
  3720. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3721. #endif
  3722. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3723. #ifdef FILAMENTCHANGE_YPOS
  3724. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3725. #endif
  3726. RUNPLAN;
  3727. if (code_seen('L')) target[E_AXIS] += code_value();
  3728. #ifdef FILAMENTCHANGE_FINALRETRACT
  3729. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3730. #endif
  3731. RUNPLAN;
  3732. //finish moves
  3733. st_synchronize();
  3734. //disable extruder steppers so filament can be removed
  3735. disable_e0();
  3736. disable_e1();
  3737. disable_e2();
  3738. disable_e3();
  3739. delay(100);
  3740. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3741. uint8_t cnt = 0;
  3742. while (!lcd_clicked()) {
  3743. cnt++;
  3744. manage_heater();
  3745. manage_inactivity(true);
  3746. lcd_update();
  3747. if (cnt == 0) {
  3748. #if BEEPER > 0
  3749. OUT_WRITE(BEEPER,HIGH);
  3750. delay(3);
  3751. WRITE(BEEPER,LOW);
  3752. delay(3);
  3753. #else
  3754. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3755. lcd_buzz(1000/6, 100);
  3756. #else
  3757. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3758. #endif
  3759. #endif
  3760. }
  3761. } // while(!lcd_clicked)
  3762. //return to normal
  3763. if (code_seen('L')) target[E_AXIS] -= code_value();
  3764. #ifdef FILAMENTCHANGE_FINALRETRACT
  3765. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3766. #endif
  3767. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3768. plan_set_e_position(current_position[E_AXIS]);
  3769. RUNPLAN; //should do nothing
  3770. lcd_reset_alert_level();
  3771. #ifdef DELTA
  3772. calculate_delta(lastpos);
  3773. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3774. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3775. #else
  3776. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3777. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3778. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3779. #endif
  3780. #ifdef FILAMENT_RUNOUT_SENSOR
  3781. filrunoutEnqued = false;
  3782. #endif
  3783. }
  3784. #endif // FILAMENTCHANGEENABLE
  3785. #ifdef DUAL_X_CARRIAGE
  3786. /**
  3787. * M605: Set dual x-carriage movement mode
  3788. *
  3789. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3790. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3791. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3792. * millimeters x-offset and an optional differential hotend temperature of
  3793. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3794. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3795. *
  3796. * Note: the X axis should be homed after changing dual x-carriage mode.
  3797. */
  3798. inline void gcode_M605() {
  3799. st_synchronize();
  3800. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3801. switch(dual_x_carriage_mode) {
  3802. case DXC_DUPLICATION_MODE:
  3803. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3804. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3805. SERIAL_ECHO_START;
  3806. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3807. SERIAL_ECHO(" ");
  3808. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3809. SERIAL_ECHO(",");
  3810. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3811. SERIAL_ECHO(" ");
  3812. SERIAL_ECHO(duplicate_extruder_x_offset);
  3813. SERIAL_ECHO(",");
  3814. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3815. break;
  3816. case DXC_FULL_CONTROL_MODE:
  3817. case DXC_AUTO_PARK_MODE:
  3818. break;
  3819. default:
  3820. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3821. break;
  3822. }
  3823. active_extruder_parked = false;
  3824. extruder_duplication_enabled = false;
  3825. delayed_move_time = 0;
  3826. }
  3827. #endif // DUAL_X_CARRIAGE
  3828. /**
  3829. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3830. */
  3831. inline void gcode_M907() {
  3832. #if HAS_DIGIPOTSS
  3833. for (int i=0;i<NUM_AXIS;i++)
  3834. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3835. if (code_seen('B')) digipot_current(4, code_value());
  3836. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3837. #endif
  3838. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3839. if (code_seen('X')) digipot_current(0, code_value());
  3840. #endif
  3841. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3842. if (code_seen('Z')) digipot_current(1, code_value());
  3843. #endif
  3844. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3845. if (code_seen('E')) digipot_current(2, code_value());
  3846. #endif
  3847. #ifdef DIGIPOT_I2C
  3848. // this one uses actual amps in floating point
  3849. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3850. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3851. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3852. #endif
  3853. }
  3854. #if HAS_DIGIPOTSS
  3855. /**
  3856. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3857. */
  3858. inline void gcode_M908() {
  3859. digitalPotWrite(
  3860. code_seen('P') ? code_value() : 0,
  3861. code_seen('S') ? code_value() : 0
  3862. );
  3863. }
  3864. #endif // HAS_DIGIPOTSS
  3865. #if HAS_MICROSTEPS
  3866. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3867. inline void gcode_M350() {
  3868. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3869. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3870. if(code_seen('B')) microstep_mode(4,code_value());
  3871. microstep_readings();
  3872. }
  3873. /**
  3874. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3875. * S# determines MS1 or MS2, X# sets the pin high/low.
  3876. */
  3877. inline void gcode_M351() {
  3878. if (code_seen('S')) switch(code_value_long()) {
  3879. case 1:
  3880. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3881. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3882. break;
  3883. case 2:
  3884. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3885. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3886. break;
  3887. }
  3888. microstep_readings();
  3889. }
  3890. #endif // HAS_MICROSTEPS
  3891. /**
  3892. * M999: Restart after being stopped
  3893. */
  3894. inline void gcode_M999() {
  3895. Stopped = false;
  3896. lcd_reset_alert_level();
  3897. gcode_LastN = Stopped_gcode_LastN;
  3898. FlushSerialRequestResend();
  3899. }
  3900. inline void gcode_T() {
  3901. tmp_extruder = code_value();
  3902. if (tmp_extruder >= EXTRUDERS) {
  3903. SERIAL_ECHO_START;
  3904. SERIAL_ECHO("T");
  3905. SERIAL_ECHO(tmp_extruder);
  3906. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3907. }
  3908. else {
  3909. #if EXTRUDERS > 1
  3910. bool make_move = false;
  3911. #endif
  3912. if (code_seen('F')) {
  3913. #if EXTRUDERS > 1
  3914. make_move = true;
  3915. #endif
  3916. next_feedrate = code_value();
  3917. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3918. }
  3919. #if EXTRUDERS > 1
  3920. if (tmp_extruder != active_extruder) {
  3921. // Save current position to return to after applying extruder offset
  3922. memcpy(destination, current_position, sizeof(destination));
  3923. #ifdef DUAL_X_CARRIAGE
  3924. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3925. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3926. // Park old head: 1) raise 2) move to park position 3) lower
  3927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3928. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3929. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3930. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3931. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3932. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3933. st_synchronize();
  3934. }
  3935. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3936. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3937. extruder_offset[Y_AXIS][active_extruder] +
  3938. extruder_offset[Y_AXIS][tmp_extruder];
  3939. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3940. extruder_offset[Z_AXIS][active_extruder] +
  3941. extruder_offset[Z_AXIS][tmp_extruder];
  3942. active_extruder = tmp_extruder;
  3943. // This function resets the max/min values - the current position may be overwritten below.
  3944. axis_is_at_home(X_AXIS);
  3945. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3946. current_position[X_AXIS] = inactive_extruder_x_pos;
  3947. inactive_extruder_x_pos = destination[X_AXIS];
  3948. }
  3949. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3950. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3951. if (active_extruder == 0 || active_extruder_parked)
  3952. current_position[X_AXIS] = inactive_extruder_x_pos;
  3953. else
  3954. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3955. inactive_extruder_x_pos = destination[X_AXIS];
  3956. extruder_duplication_enabled = false;
  3957. }
  3958. else {
  3959. // record raised toolhead position for use by unpark
  3960. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3961. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3962. active_extruder_parked = true;
  3963. delayed_move_time = 0;
  3964. }
  3965. #else // !DUAL_X_CARRIAGE
  3966. // Offset extruder (only by XY)
  3967. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3968. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3969. // Set the new active extruder and position
  3970. active_extruder = tmp_extruder;
  3971. #endif // !DUAL_X_CARRIAGE
  3972. #ifdef DELTA
  3973. sync_plan_position_delta();
  3974. #else
  3975. sync_plan_position();
  3976. #endif
  3977. // Move to the old position if 'F' was in the parameters
  3978. if (make_move && !Stopped) prepare_move();
  3979. }
  3980. #ifdef EXT_SOLENOID
  3981. st_synchronize();
  3982. disable_all_solenoids();
  3983. enable_solenoid_on_active_extruder();
  3984. #endif // EXT_SOLENOID
  3985. #endif // EXTRUDERS > 1
  3986. SERIAL_ECHO_START;
  3987. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3988. SERIAL_PROTOCOLLN((int)active_extruder);
  3989. }
  3990. }
  3991. /**
  3992. * Process Commands and dispatch them to handlers
  3993. * This is called from the main loop()
  3994. */
  3995. void process_commands() {
  3996. if (code_seen('G')) {
  3997. int gCode = code_value_long();
  3998. switch(gCode) {
  3999. // G0, G1
  4000. case 0:
  4001. case 1:
  4002. gcode_G0_G1();
  4003. break;
  4004. // G2, G3
  4005. #ifndef SCARA
  4006. case 2: // G2 - CW ARC
  4007. case 3: // G3 - CCW ARC
  4008. gcode_G2_G3(gCode == 2);
  4009. break;
  4010. #endif
  4011. // G4 Dwell
  4012. case 4:
  4013. gcode_G4();
  4014. break;
  4015. #ifdef FWRETRACT
  4016. case 10: // G10: retract
  4017. case 11: // G11: retract_recover
  4018. gcode_G10_G11(gCode == 10);
  4019. break;
  4020. #endif //FWRETRACT
  4021. case 28: // G28: Home all axes, one at a time
  4022. gcode_G28();
  4023. break;
  4024. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4025. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4026. gcode_G29();
  4027. break;
  4028. #endif
  4029. #ifdef ENABLE_AUTO_BED_LEVELING
  4030. #ifndef Z_PROBE_SLED
  4031. case 30: // G30 Single Z Probe
  4032. gcode_G30();
  4033. break;
  4034. #else // Z_PROBE_SLED
  4035. case 31: // G31: dock the sled
  4036. case 32: // G32: undock the sled
  4037. dock_sled(gCode == 31);
  4038. break;
  4039. #endif // Z_PROBE_SLED
  4040. #endif // ENABLE_AUTO_BED_LEVELING
  4041. case 90: // G90
  4042. relative_mode = false;
  4043. break;
  4044. case 91: // G91
  4045. relative_mode = true;
  4046. break;
  4047. case 92: // G92
  4048. gcode_G92();
  4049. break;
  4050. }
  4051. }
  4052. else if (code_seen('M')) {
  4053. switch( code_value_long() ) {
  4054. #ifdef ULTIPANEL
  4055. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4056. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4057. gcode_M0_M1();
  4058. break;
  4059. #endif // ULTIPANEL
  4060. case 17:
  4061. gcode_M17();
  4062. break;
  4063. #ifdef SDSUPPORT
  4064. case 20: // M20 - list SD card
  4065. gcode_M20(); break;
  4066. case 21: // M21 - init SD card
  4067. gcode_M21(); break;
  4068. case 22: //M22 - release SD card
  4069. gcode_M22(); break;
  4070. case 23: //M23 - Select file
  4071. gcode_M23(); break;
  4072. case 24: //M24 - Start SD print
  4073. gcode_M24(); break;
  4074. case 25: //M25 - Pause SD print
  4075. gcode_M25(); break;
  4076. case 26: //M26 - Set SD index
  4077. gcode_M26(); break;
  4078. case 27: //M27 - Get SD status
  4079. gcode_M27(); break;
  4080. case 28: //M28 - Start SD write
  4081. gcode_M28(); break;
  4082. case 29: //M29 - Stop SD write
  4083. gcode_M29(); break;
  4084. case 30: //M30 <filename> Delete File
  4085. gcode_M30(); break;
  4086. case 32: //M32 - Select file and start SD print
  4087. gcode_M32(); break;
  4088. case 928: //M928 - Start SD write
  4089. gcode_M928(); break;
  4090. #endif //SDSUPPORT
  4091. case 31: //M31 take time since the start of the SD print or an M109 command
  4092. gcode_M31();
  4093. break;
  4094. case 42: //M42 -Change pin status via gcode
  4095. gcode_M42();
  4096. break;
  4097. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4098. case 48: // M48 Z-Probe repeatability
  4099. gcode_M48();
  4100. break;
  4101. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4102. case 104: // M104
  4103. gcode_M104();
  4104. break;
  4105. case 112: // M112 Emergency Stop
  4106. gcode_M112();
  4107. break;
  4108. case 140: // M140 Set bed temp
  4109. gcode_M140();
  4110. break;
  4111. case 105: // M105 Read current temperature
  4112. gcode_M105();
  4113. return;
  4114. break;
  4115. case 109: // M109 Wait for temperature
  4116. gcode_M109();
  4117. break;
  4118. #if HAS_TEMP_BED
  4119. case 190: // M190 - Wait for bed heater to reach target.
  4120. gcode_M190();
  4121. break;
  4122. #endif // HAS_TEMP_BED
  4123. #if HAS_FAN
  4124. case 106: //M106 Fan On
  4125. gcode_M106();
  4126. break;
  4127. case 107: //M107 Fan Off
  4128. gcode_M107();
  4129. break;
  4130. #endif // HAS_FAN
  4131. #ifdef BARICUDA
  4132. // PWM for HEATER_1_PIN
  4133. #if HAS_HEATER_1
  4134. case 126: // M126 valve open
  4135. gcode_M126();
  4136. break;
  4137. case 127: // M127 valve closed
  4138. gcode_M127();
  4139. break;
  4140. #endif // HAS_HEATER_1
  4141. // PWM for HEATER_2_PIN
  4142. #if HAS_HEATER_2
  4143. case 128: // M128 valve open
  4144. gcode_M128();
  4145. break;
  4146. case 129: // M129 valve closed
  4147. gcode_M129();
  4148. break;
  4149. #endif // HAS_HEATER_2
  4150. #endif // BARICUDA
  4151. #if HAS_POWER_SWITCH
  4152. case 80: // M80 - Turn on Power Supply
  4153. gcode_M80();
  4154. break;
  4155. #endif // HAS_POWER_SWITCH
  4156. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4157. gcode_M81();
  4158. break;
  4159. case 82:
  4160. gcode_M82();
  4161. break;
  4162. case 83:
  4163. gcode_M83();
  4164. break;
  4165. case 18: //compatibility
  4166. case 84: // M84
  4167. gcode_M18_M84();
  4168. break;
  4169. case 85: // M85
  4170. gcode_M85();
  4171. break;
  4172. case 92: // M92
  4173. gcode_M92();
  4174. break;
  4175. case 115: // M115
  4176. gcode_M115();
  4177. break;
  4178. case 117: // M117 display message
  4179. gcode_M117();
  4180. break;
  4181. case 114: // M114
  4182. gcode_M114();
  4183. break;
  4184. case 120: // M120
  4185. gcode_M120();
  4186. break;
  4187. case 121: // M121
  4188. gcode_M121();
  4189. break;
  4190. case 119: // M119
  4191. gcode_M119();
  4192. break;
  4193. //TODO: update for all axis, use for loop
  4194. #ifdef BLINKM
  4195. case 150: // M150
  4196. gcode_M150();
  4197. break;
  4198. #endif //BLINKM
  4199. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4200. gcode_M200();
  4201. break;
  4202. case 201: // M201
  4203. gcode_M201();
  4204. break;
  4205. #if 0 // Not used for Sprinter/grbl gen6
  4206. case 202: // M202
  4207. gcode_M202();
  4208. break;
  4209. #endif
  4210. case 203: // M203 max feedrate mm/sec
  4211. gcode_M203();
  4212. break;
  4213. case 204: // M204 acclereration S normal moves T filmanent only moves
  4214. gcode_M204();
  4215. break;
  4216. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4217. gcode_M205();
  4218. break;
  4219. case 206: // M206 additional homing offset
  4220. gcode_M206();
  4221. break;
  4222. #ifdef DELTA
  4223. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4224. gcode_M665();
  4225. break;
  4226. #endif
  4227. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4228. case 666: // M666 set delta / dual endstop adjustment
  4229. gcode_M666();
  4230. break;
  4231. #endif
  4232. #ifdef FWRETRACT
  4233. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4234. gcode_M207();
  4235. break;
  4236. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4237. gcode_M208();
  4238. break;
  4239. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4240. gcode_M209();
  4241. break;
  4242. #endif // FWRETRACT
  4243. #if EXTRUDERS > 1
  4244. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4245. gcode_M218();
  4246. break;
  4247. #endif
  4248. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4249. gcode_M220();
  4250. break;
  4251. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4252. gcode_M221();
  4253. break;
  4254. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4255. gcode_M226();
  4256. break;
  4257. #if NUM_SERVOS > 0
  4258. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4259. gcode_M280();
  4260. break;
  4261. #endif // NUM_SERVOS > 0
  4262. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4263. case 300: // M300 - Play beep tone
  4264. gcode_M300();
  4265. break;
  4266. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4267. #ifdef PIDTEMP
  4268. case 301: // M301
  4269. gcode_M301();
  4270. break;
  4271. #endif // PIDTEMP
  4272. #ifdef PIDTEMPBED
  4273. case 304: // M304
  4274. gcode_M304();
  4275. break;
  4276. #endif // PIDTEMPBED
  4277. #if defined(CHDK) || HAS_PHOTOGRAPH
  4278. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4279. gcode_M240();
  4280. break;
  4281. #endif // CHDK || PHOTOGRAPH_PIN
  4282. #ifdef DOGLCD
  4283. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4284. gcode_M250();
  4285. break;
  4286. #endif // DOGLCD
  4287. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4288. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4289. gcode_M302();
  4290. break;
  4291. #endif // PREVENT_DANGEROUS_EXTRUDE
  4292. case 303: // M303 PID autotune
  4293. gcode_M303();
  4294. break;
  4295. #ifdef SCARA
  4296. case 360: // M360 SCARA Theta pos1
  4297. if (gcode_M360()) return;
  4298. break;
  4299. case 361: // M361 SCARA Theta pos2
  4300. if (gcode_M361()) return;
  4301. break;
  4302. case 362: // M362 SCARA Psi pos1
  4303. if (gcode_M362()) return;
  4304. break;
  4305. case 363: // M363 SCARA Psi pos2
  4306. if (gcode_M363()) return;
  4307. break;
  4308. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4309. if (gcode_M364()) return;
  4310. break;
  4311. case 365: // M365 Set SCARA scaling for X Y Z
  4312. gcode_M365();
  4313. break;
  4314. #endif // SCARA
  4315. case 400: // M400 finish all moves
  4316. gcode_M400();
  4317. break;
  4318. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4319. case 401:
  4320. gcode_M401();
  4321. break;
  4322. case 402:
  4323. gcode_M402();
  4324. break;
  4325. #endif
  4326. #ifdef FILAMENT_SENSOR
  4327. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4328. gcode_M404();
  4329. break;
  4330. case 405: //M405 Turn on filament sensor for control
  4331. gcode_M405();
  4332. break;
  4333. case 406: //M406 Turn off filament sensor for control
  4334. gcode_M406();
  4335. break;
  4336. case 407: //M407 Display measured filament diameter
  4337. gcode_M407();
  4338. break;
  4339. #endif // FILAMENT_SENSOR
  4340. case 500: // M500 Store settings in EEPROM
  4341. gcode_M500();
  4342. break;
  4343. case 501: // M501 Read settings from EEPROM
  4344. gcode_M501();
  4345. break;
  4346. case 502: // M502 Revert to default settings
  4347. gcode_M502();
  4348. break;
  4349. case 503: // M503 print settings currently in memory
  4350. gcode_M503();
  4351. break;
  4352. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4353. case 540:
  4354. gcode_M540();
  4355. break;
  4356. #endif
  4357. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4358. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4359. gcode_SET_Z_PROBE_OFFSET();
  4360. break;
  4361. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4362. #ifdef FILAMENTCHANGEENABLE
  4363. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4364. gcode_M600();
  4365. break;
  4366. #endif // FILAMENTCHANGEENABLE
  4367. #ifdef DUAL_X_CARRIAGE
  4368. case 605:
  4369. gcode_M605();
  4370. break;
  4371. #endif // DUAL_X_CARRIAGE
  4372. case 907: // M907 Set digital trimpot motor current using axis codes.
  4373. gcode_M907();
  4374. break;
  4375. #if HAS_DIGIPOTSS
  4376. case 908: // M908 Control digital trimpot directly.
  4377. gcode_M908();
  4378. break;
  4379. #endif // HAS_DIGIPOTSS
  4380. #if HAS_MICROSTEPS
  4381. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4382. gcode_M350();
  4383. break;
  4384. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4385. gcode_M351();
  4386. break;
  4387. #endif // HAS_MICROSTEPS
  4388. case 999: // M999: Restart after being Stopped
  4389. gcode_M999();
  4390. break;
  4391. }
  4392. }
  4393. else if (code_seen('T')) {
  4394. gcode_T();
  4395. }
  4396. else {
  4397. SERIAL_ECHO_START;
  4398. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4399. SERIAL_ECHO(cmdbuffer[bufindr]);
  4400. SERIAL_ECHOLNPGM("\"");
  4401. }
  4402. ClearToSend();
  4403. }
  4404. void FlushSerialRequestResend() {
  4405. //char cmdbuffer[bufindr][100]="Resend:";
  4406. MYSERIAL.flush();
  4407. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4408. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4409. ClearToSend();
  4410. }
  4411. void ClearToSend() {
  4412. refresh_cmd_timeout();
  4413. #ifdef SDSUPPORT
  4414. if (fromsd[bufindr]) return;
  4415. #endif
  4416. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4417. }
  4418. void get_coordinates() {
  4419. for (int i = 0; i < NUM_AXIS; i++) {
  4420. if (code_seen(axis_codes[i]))
  4421. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4422. else
  4423. destination[i] = current_position[i];
  4424. }
  4425. if (code_seen('F')) {
  4426. next_feedrate = code_value();
  4427. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4428. }
  4429. }
  4430. void get_arc_coordinates() {
  4431. #ifdef SF_ARC_FIX
  4432. bool relative_mode_backup = relative_mode;
  4433. relative_mode = true;
  4434. #endif
  4435. get_coordinates();
  4436. #ifdef SF_ARC_FIX
  4437. relative_mode = relative_mode_backup;
  4438. #endif
  4439. offset[0] = code_seen('I') ? code_value() : 0;
  4440. offset[1] = code_seen('J') ? code_value() : 0;
  4441. }
  4442. void clamp_to_software_endstops(float target[3])
  4443. {
  4444. if (min_software_endstops) {
  4445. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4446. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4447. float negative_z_offset = 0;
  4448. #ifdef ENABLE_AUTO_BED_LEVELING
  4449. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4450. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4451. #endif
  4452. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4453. }
  4454. if (max_software_endstops) {
  4455. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4456. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4457. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4458. }
  4459. }
  4460. #ifdef DELTA
  4461. void recalc_delta_settings(float radius, float diagonal_rod) {
  4462. delta_tower1_x = -SIN_60 * radius; // front left tower
  4463. delta_tower1_y = -COS_60 * radius;
  4464. delta_tower2_x = SIN_60 * radius; // front right tower
  4465. delta_tower2_y = -COS_60 * radius;
  4466. delta_tower3_x = 0.0; // back middle tower
  4467. delta_tower3_y = radius;
  4468. delta_diagonal_rod_2 = sq(diagonal_rod);
  4469. }
  4470. void calculate_delta(float cartesian[3]) {
  4471. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4472. - sq(delta_tower1_x-cartesian[X_AXIS])
  4473. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4474. ) + cartesian[Z_AXIS];
  4475. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4476. - sq(delta_tower2_x-cartesian[X_AXIS])
  4477. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4478. ) + cartesian[Z_AXIS];
  4479. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4480. - sq(delta_tower3_x-cartesian[X_AXIS])
  4481. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4482. ) + cartesian[Z_AXIS];
  4483. /*
  4484. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4485. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4486. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4487. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4488. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4489. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4490. */
  4491. }
  4492. #ifdef ENABLE_AUTO_BED_LEVELING
  4493. // Adjust print surface height by linear interpolation over the bed_level array.
  4494. void adjust_delta(float cartesian[3]) {
  4495. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4496. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4497. float h1 = 0.001 - half, h2 = half - 0.001,
  4498. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4499. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4500. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4501. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4502. z1 = bed_level[floor_x + half][floor_y + half],
  4503. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4504. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4505. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4506. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4507. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4508. offset = (1 - ratio_x) * left + ratio_x * right;
  4509. delta[X_AXIS] += offset;
  4510. delta[Y_AXIS] += offset;
  4511. delta[Z_AXIS] += offset;
  4512. /*
  4513. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4514. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4515. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4516. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4517. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4518. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4519. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4520. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4521. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4522. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4523. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4524. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4525. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4526. */
  4527. }
  4528. #endif // ENABLE_AUTO_BED_LEVELING
  4529. #endif // DELTA
  4530. #ifdef MESH_BED_LEVELING
  4531. #if !defined(MIN)
  4532. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4533. #endif // ! MIN
  4534. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4535. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4536. {
  4537. if (!mbl.active) {
  4538. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4539. for(int8_t i=0; i < NUM_AXIS; i++) {
  4540. current_position[i] = destination[i];
  4541. }
  4542. return;
  4543. }
  4544. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4545. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4546. int ix = mbl.select_x_index(x);
  4547. int iy = mbl.select_y_index(y);
  4548. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4549. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4550. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4551. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4552. if (pix == ix && piy == iy) {
  4553. // Start and end on same mesh square
  4554. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4555. for(int8_t i=0; i < NUM_AXIS; i++) {
  4556. current_position[i] = destination[i];
  4557. }
  4558. return;
  4559. }
  4560. float nx, ny, ne, normalized_dist;
  4561. if (ix > pix && (x_splits) & BIT(ix)) {
  4562. nx = mbl.get_x(ix);
  4563. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4564. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4565. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4566. x_splits ^= BIT(ix);
  4567. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4568. nx = mbl.get_x(pix);
  4569. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4570. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4571. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4572. x_splits ^= BIT(pix);
  4573. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4574. ny = mbl.get_y(iy);
  4575. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4576. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4577. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4578. y_splits ^= BIT(iy);
  4579. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4580. ny = mbl.get_y(piy);
  4581. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4582. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4583. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4584. y_splits ^= BIT(piy);
  4585. } else {
  4586. // Already split on a border
  4587. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4588. for(int8_t i=0; i < NUM_AXIS; i++) {
  4589. current_position[i] = destination[i];
  4590. }
  4591. return;
  4592. }
  4593. // Do the split and look for more borders
  4594. destination[X_AXIS] = nx;
  4595. destination[Y_AXIS] = ny;
  4596. destination[E_AXIS] = ne;
  4597. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4598. destination[X_AXIS] = x;
  4599. destination[Y_AXIS] = y;
  4600. destination[E_AXIS] = e;
  4601. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4602. }
  4603. #endif // MESH_BED_LEVELING
  4604. void prepare_move() {
  4605. clamp_to_software_endstops(destination);
  4606. refresh_cmd_timeout();
  4607. #ifdef SCARA //for now same as delta-code
  4608. float difference[NUM_AXIS];
  4609. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4610. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4611. sq(difference[Y_AXIS]) +
  4612. sq(difference[Z_AXIS]));
  4613. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4614. if (cartesian_mm < 0.000001) { return; }
  4615. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4616. int steps = max(1, int(scara_segments_per_second * seconds));
  4617. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4618. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4619. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4620. for (int s = 1; s <= steps; s++) {
  4621. float fraction = float(s) / float(steps);
  4622. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4623. destination[i] = current_position[i] + difference[i] * fraction;
  4624. }
  4625. calculate_delta(destination);
  4626. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4627. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4628. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4629. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4630. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4631. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4632. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4633. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4634. active_extruder);
  4635. }
  4636. #endif // SCARA
  4637. #ifdef DELTA
  4638. float difference[NUM_AXIS];
  4639. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4640. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4641. sq(difference[Y_AXIS]) +
  4642. sq(difference[Z_AXIS]));
  4643. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4644. if (cartesian_mm < 0.000001) return;
  4645. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4646. int steps = max(1, int(delta_segments_per_second * seconds));
  4647. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4648. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4649. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4650. for (int s = 1; s <= steps; s++) {
  4651. float fraction = float(s) / float(steps);
  4652. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4653. calculate_delta(destination);
  4654. #ifdef ENABLE_AUTO_BED_LEVELING
  4655. adjust_delta(destination);
  4656. #endif
  4657. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4658. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4659. active_extruder);
  4660. }
  4661. #endif // DELTA
  4662. #ifdef DUAL_X_CARRIAGE
  4663. if (active_extruder_parked)
  4664. {
  4665. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4666. {
  4667. // move duplicate extruder into correct duplication position.
  4668. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4669. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4670. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4671. sync_plan_position();
  4672. st_synchronize();
  4673. extruder_duplication_enabled = true;
  4674. active_extruder_parked = false;
  4675. }
  4676. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4677. {
  4678. if (current_position[E_AXIS] == destination[E_AXIS])
  4679. {
  4680. // this is a travel move - skit it but keep track of current position (so that it can later
  4681. // be used as start of first non-travel move)
  4682. if (delayed_move_time != 0xFFFFFFFFUL)
  4683. {
  4684. memcpy(current_position, destination, sizeof(current_position));
  4685. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4686. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4687. delayed_move_time = millis();
  4688. return;
  4689. }
  4690. }
  4691. delayed_move_time = 0;
  4692. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4693. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4695. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4697. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4698. active_extruder_parked = false;
  4699. }
  4700. }
  4701. #endif //DUAL_X_CARRIAGE
  4702. #if !defined(DELTA) && !defined(SCARA)
  4703. // Do not use feedmultiply for E or Z only moves
  4704. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4705. line_to_destination();
  4706. } else {
  4707. #ifdef MESH_BED_LEVELING
  4708. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4709. return;
  4710. #else
  4711. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4712. #endif // MESH_BED_LEVELING
  4713. }
  4714. #endif // !(DELTA || SCARA)
  4715. for(int8_t i=0; i < NUM_AXIS; i++) {
  4716. current_position[i] = destination[i];
  4717. }
  4718. }
  4719. void prepare_arc_move(char isclockwise) {
  4720. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4721. // Trace the arc
  4722. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4723. // As far as the parser is concerned, the position is now == target. In reality the
  4724. // motion control system might still be processing the action and the real tool position
  4725. // in any intermediate location.
  4726. for(int8_t i=0; i < NUM_AXIS; i++) {
  4727. current_position[i] = destination[i];
  4728. }
  4729. refresh_cmd_timeout();
  4730. }
  4731. #if HAS_CONTROLLERFAN
  4732. unsigned long lastMotor = 0; // Last time a motor was turned on
  4733. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4734. void controllerFan() {
  4735. uint32_t ms = millis();
  4736. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4737. lastMotorCheck = ms;
  4738. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4739. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4740. #if EXTRUDERS > 1
  4741. || E1_ENABLE_READ == E_ENABLE_ON
  4742. #if HAS_X2_ENABLE
  4743. || X2_ENABLE_READ == X_ENABLE_ON
  4744. #endif
  4745. #if EXTRUDERS > 2
  4746. || E2_ENABLE_READ == E_ENABLE_ON
  4747. #if EXTRUDERS > 3
  4748. || E3_ENABLE_READ == E_ENABLE_ON
  4749. #endif
  4750. #endif
  4751. #endif
  4752. ) {
  4753. lastMotor = ms; //... set time to NOW so the fan will turn on
  4754. }
  4755. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4756. // allows digital or PWM fan output to be used (see M42 handling)
  4757. digitalWrite(CONTROLLERFAN_PIN, speed);
  4758. analogWrite(CONTROLLERFAN_PIN, speed);
  4759. }
  4760. }
  4761. #endif
  4762. #ifdef SCARA
  4763. void calculate_SCARA_forward_Transform(float f_scara[3])
  4764. {
  4765. // Perform forward kinematics, and place results in delta[3]
  4766. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4767. float x_sin, x_cos, y_sin, y_cos;
  4768. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4769. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4770. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4771. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4772. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4773. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4774. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4775. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4776. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4777. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4778. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4779. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4780. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4781. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4782. }
  4783. void calculate_delta(float cartesian[3]){
  4784. //reverse kinematics.
  4785. // Perform reversed kinematics, and place results in delta[3]
  4786. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4787. float SCARA_pos[2];
  4788. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4789. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4790. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4791. #if (Linkage_1 == Linkage_2)
  4792. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4793. #else
  4794. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4795. #endif
  4796. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4797. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4798. SCARA_K2 = Linkage_2 * SCARA_S2;
  4799. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4800. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4801. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4802. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4803. delta[Z_AXIS] = cartesian[Z_AXIS];
  4804. /*
  4805. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4806. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4807. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4808. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4809. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4810. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4811. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4812. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4813. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4814. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4815. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4816. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4817. SERIAL_ECHOLN(" ");*/
  4818. }
  4819. #endif
  4820. #ifdef TEMP_STAT_LEDS
  4821. static bool blue_led = false;
  4822. static bool red_led = false;
  4823. static uint32_t stat_update = 0;
  4824. void handle_status_leds(void) {
  4825. float max_temp = 0.0;
  4826. if(millis() > stat_update) {
  4827. stat_update += 500; // Update every 0.5s
  4828. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4829. max_temp = max(max_temp, degHotend(cur_extruder));
  4830. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4831. }
  4832. #if HAS_TEMP_BED
  4833. max_temp = max(max_temp, degTargetBed());
  4834. max_temp = max(max_temp, degBed());
  4835. #endif
  4836. if((max_temp > 55.0) && (red_led == false)) {
  4837. digitalWrite(STAT_LED_RED, 1);
  4838. digitalWrite(STAT_LED_BLUE, 0);
  4839. red_led = true;
  4840. blue_led = false;
  4841. }
  4842. if((max_temp < 54.0) && (blue_led == false)) {
  4843. digitalWrite(STAT_LED_RED, 0);
  4844. digitalWrite(STAT_LED_BLUE, 1);
  4845. red_led = false;
  4846. blue_led = true;
  4847. }
  4848. }
  4849. }
  4850. #endif
  4851. void enable_all_steppers() {
  4852. enable_x();
  4853. enable_y();
  4854. enable_z();
  4855. enable_e0();
  4856. enable_e1();
  4857. enable_e2();
  4858. enable_e3();
  4859. }
  4860. void disable_all_steppers() {
  4861. disable_x();
  4862. disable_y();
  4863. disable_z();
  4864. disable_e0();
  4865. disable_e1();
  4866. disable_e2();
  4867. disable_e3();
  4868. }
  4869. /**
  4870. *
  4871. */
  4872. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4873. #if HAS_FILRUNOUT
  4874. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4875. filrunout();
  4876. #endif
  4877. if (buflen < BUFSIZE - 1) get_command();
  4878. unsigned long ms = millis();
  4879. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4880. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4881. && !ignore_stepper_queue && !blocks_queued())
  4882. disable_all_steppers();
  4883. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4884. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4885. chdkActive = false;
  4886. WRITE(CHDK, LOW);
  4887. }
  4888. #endif
  4889. #if HAS_KILL
  4890. // Check if the kill button was pressed and wait just in case it was an accidental
  4891. // key kill key press
  4892. // -------------------------------------------------------------------------------
  4893. static int killCount = 0; // make the inactivity button a bit less responsive
  4894. const int KILL_DELAY = 750;
  4895. if (!READ(KILL_PIN))
  4896. killCount++;
  4897. else if (killCount > 0)
  4898. killCount--;
  4899. // Exceeded threshold and we can confirm that it was not accidental
  4900. // KILL the machine
  4901. // ----------------------------------------------------------------
  4902. if (killCount >= KILL_DELAY) kill();
  4903. #endif
  4904. #if HAS_HOME
  4905. // Check to see if we have to home, use poor man's debouncer
  4906. // ---------------------------------------------------------
  4907. static int homeDebounceCount = 0; // poor man's debouncing count
  4908. const int HOME_DEBOUNCE_DELAY = 750;
  4909. if (!READ(HOME_PIN)) {
  4910. if (!homeDebounceCount) {
  4911. enquecommands_P(PSTR("G28"));
  4912. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4913. }
  4914. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4915. homeDebounceCount++;
  4916. else
  4917. homeDebounceCount = 0;
  4918. }
  4919. #endif
  4920. #if HAS_CONTROLLERFAN
  4921. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4922. #endif
  4923. #ifdef EXTRUDER_RUNOUT_PREVENT
  4924. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4925. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4926. bool oldstatus = E0_ENABLE_READ;
  4927. enable_e0();
  4928. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4930. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4931. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4932. current_position[E_AXIS] = oldepos;
  4933. destination[E_AXIS] = oldedes;
  4934. plan_set_e_position(oldepos);
  4935. previous_millis_cmd = ms; // refresh_cmd_timeout()
  4936. st_synchronize();
  4937. E0_ENABLE_WRITE(oldstatus);
  4938. }
  4939. #endif
  4940. #ifdef DUAL_X_CARRIAGE
  4941. // handle delayed move timeout
  4942. if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
  4943. // travel moves have been received so enact them
  4944. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4945. memcpy(destination, current_position, sizeof(destination));
  4946. prepare_move();
  4947. }
  4948. #endif
  4949. #ifdef TEMP_STAT_LEDS
  4950. handle_status_leds();
  4951. #endif
  4952. check_axes_activity();
  4953. }
  4954. void kill()
  4955. {
  4956. cli(); // Stop interrupts
  4957. disable_heater();
  4958. disable_all_steppers();
  4959. #if HAS_POWER_SWITCH
  4960. pinMode(PS_ON_PIN, INPUT);
  4961. #endif
  4962. SERIAL_ERROR_START;
  4963. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4964. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4965. // FMC small patch to update the LCD before ending
  4966. sei(); // enable interrupts
  4967. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  4968. cli(); // disable interrupts
  4969. suicide();
  4970. while(1) { /* Intentionally left empty */ } // Wait for reset
  4971. }
  4972. #ifdef FILAMENT_RUNOUT_SENSOR
  4973. void filrunout()
  4974. {
  4975. if filrunoutEnqued == false {
  4976. filrunoutEnqued = true;
  4977. enquecommand("M600");
  4978. }
  4979. }
  4980. #endif
  4981. void Stop()
  4982. {
  4983. disable_heater();
  4984. if(Stopped == false) {
  4985. Stopped = true;
  4986. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4987. SERIAL_ERROR_START;
  4988. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4989. LCD_MESSAGEPGM(MSG_STOPPED);
  4990. }
  4991. }
  4992. bool IsStopped() { return Stopped; };
  4993. #ifdef FAST_PWM_FAN
  4994. void setPwmFrequency(uint8_t pin, int val)
  4995. {
  4996. val &= 0x07;
  4997. switch(digitalPinToTimer(pin))
  4998. {
  4999. #if defined(TCCR0A)
  5000. case TIMER0A:
  5001. case TIMER0B:
  5002. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5003. // TCCR0B |= val;
  5004. break;
  5005. #endif
  5006. #if defined(TCCR1A)
  5007. case TIMER1A:
  5008. case TIMER1B:
  5009. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5010. // TCCR1B |= val;
  5011. break;
  5012. #endif
  5013. #if defined(TCCR2)
  5014. case TIMER2:
  5015. case TIMER2:
  5016. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5017. TCCR2 |= val;
  5018. break;
  5019. #endif
  5020. #if defined(TCCR2A)
  5021. case TIMER2A:
  5022. case TIMER2B:
  5023. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5024. TCCR2B |= val;
  5025. break;
  5026. #endif
  5027. #if defined(TCCR3A)
  5028. case TIMER3A:
  5029. case TIMER3B:
  5030. case TIMER3C:
  5031. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5032. TCCR3B |= val;
  5033. break;
  5034. #endif
  5035. #if defined(TCCR4A)
  5036. case TIMER4A:
  5037. case TIMER4B:
  5038. case TIMER4C:
  5039. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5040. TCCR4B |= val;
  5041. break;
  5042. #endif
  5043. #if defined(TCCR5A)
  5044. case TIMER5A:
  5045. case TIMER5B:
  5046. case TIMER5C:
  5047. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5048. TCCR5B |= val;
  5049. break;
  5050. #endif
  5051. }
  5052. }
  5053. #endif //FAST_PWM_FAN
  5054. bool setTargetedHotend(int code){
  5055. tmp_extruder = active_extruder;
  5056. if(code_seen('T')) {
  5057. tmp_extruder = code_value();
  5058. if(tmp_extruder >= EXTRUDERS) {
  5059. SERIAL_ECHO_START;
  5060. switch(code){
  5061. case 104:
  5062. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5063. break;
  5064. case 105:
  5065. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5066. break;
  5067. case 109:
  5068. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5069. break;
  5070. case 218:
  5071. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5072. break;
  5073. case 221:
  5074. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5075. break;
  5076. }
  5077. SERIAL_ECHOLN(tmp_extruder);
  5078. return true;
  5079. }
  5080. }
  5081. return false;
  5082. }
  5083. float calculate_volumetric_multiplier(float diameter) {
  5084. if (!volumetric_enabled || diameter == 0) return 1.0;
  5085. float d2 = diameter * 0.5;
  5086. return 1.0 / (M_PI * d2 * d2);
  5087. }
  5088. void calculate_volumetric_multipliers() {
  5089. for (int i=0; i<EXTRUDERS; i++)
  5090. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5091. }