My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 187KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float home_offset[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #endif
  231. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  232. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  233. bool axis_known_position[3] = { false, false, false };
  234. float zprobe_zoffset;
  235. // Extruder offset
  236. #if EXTRUDERS > 1
  237. #ifndef DUAL_X_CARRIAGE
  238. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  239. #else
  240. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  241. #endif
  242. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  243. #if defined(EXTRUDER_OFFSET_X)
  244. EXTRUDER_OFFSET_X
  245. #else
  246. 0
  247. #endif
  248. ,
  249. #if defined(EXTRUDER_OFFSET_Y)
  250. EXTRUDER_OFFSET_Y
  251. #else
  252. 0
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed = 0;
  258. #ifdef SERVO_ENDSTOPS
  259. int servo_endstops[] = SERVO_ENDSTOPS;
  260. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  261. #endif
  262. #ifdef BARICUDA
  263. int ValvePressure = 0;
  264. int EtoPPressure = 0;
  265. #endif
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled = false;
  268. bool retracted[EXTRUDERS] = { false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #if EXTRUDERS > 3
  274. , false
  275. #endif
  276. #endif
  277. #endif
  278. };
  279. bool retracted_swap[EXTRUDERS] = { false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #if EXTRUDERS > 3
  285. , false
  286. #endif
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif // FWRETRACT
  298. #ifdef ULTIPANEL
  299. bool powersupply =
  300. #ifdef PS_DEFAULT_OFF
  301. false
  302. #else
  303. true
  304. #endif
  305. ;
  306. #endif
  307. #ifdef DELTA
  308. float delta[3] = { 0, 0, 0 };
  309. #define SIN_60 0.8660254037844386
  310. #define COS_60 0.5
  311. // these are the default values, can be overriden with M665
  312. float delta_radius = DELTA_RADIUS;
  313. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  314. float delta_tower1_y = -COS_60 * delta_radius;
  315. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  316. float delta_tower2_y = -COS_60 * delta_radius;
  317. float delta_tower3_x = 0; // back middle tower
  318. float delta_tower3_y = delta_radius;
  319. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  320. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  321. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  322. #ifdef ENABLE_AUTO_BED_LEVELING
  323. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  324. #endif
  325. #endif
  326. #ifdef SCARA
  327. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  328. static float delta[3] = { 0, 0, 0 };
  329. #endif
  330. bool cancel_heatup = false;
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1=0; //index into ring buffer
  338. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist=0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. #ifdef FILAMENT_RUNOUT_SENSOR
  343. static bool filrunoutEnqued = false;
  344. #endif
  345. const char errormagic[] PROGMEM = "Error:";
  346. const char echomagic[] PROGMEM = "echo:";
  347. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  348. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  349. static float offset[3] = { 0, 0, 0 };
  350. static bool home_all_axis = true;
  351. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  352. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  353. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  354. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  355. static bool fromsd[BUFSIZE];
  356. static int bufindr = 0;
  357. static int bufindw = 0;
  358. static int buflen = 0;
  359. static char serial_char;
  360. static int serial_count = 0;
  361. static boolean comment_mode = false;
  362. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  363. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  364. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  365. // Inactivity shutdown
  366. static unsigned long previous_millis_cmd = 0;
  367. static unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime = 0; ///< Print job start time
  370. unsigned long stoptime = 0; ///< Print job stop time
  371. static uint8_t tmp_extruder;
  372. bool Stopped = false;
  373. #if NUM_SERVOS > 0
  374. Servo servos[NUM_SERVOS];
  375. #endif
  376. bool CooldownNoWait = true;
  377. bool target_direction;
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. //Injects the next command from the pending sequence of commands, when possible
  412. //Return false if and only if no command was pending
  413. static bool drain_queued_commands_P()
  414. {
  415. char cmd[30];
  416. if(!queued_commands_P)
  417. return false;
  418. // Get the next 30 chars from the sequence of gcodes to run
  419. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  420. cmd[sizeof(cmd)-1]= 0;
  421. // Look for the end of line, or the end of sequence
  422. size_t i= 0;
  423. char c;
  424. while( (c= cmd[i]) && c!='\n' )
  425. ++i; // look for the end of this gcode command
  426. cmd[i]= 0;
  427. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  428. {
  429. if(c)
  430. queued_commands_P+= i+1; // move to next command
  431. else
  432. queued_commands_P= NULL; // will have no more commands in the sequence
  433. }
  434. return true;
  435. }
  436. //Record one or many commands to run from program memory.
  437. //Aborts the current queue, if any.
  438. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  439. void enquecommands_P(const char* pgcode)
  440. {
  441. queued_commands_P= pgcode;
  442. drain_queued_commands_P(); // first command exectuted asap (when possible)
  443. }
  444. //adds a single command to the main command buffer, from RAM
  445. //that is really done in a non-safe way.
  446. //needs overworking someday
  447. //Returns false if it failed to do so
  448. bool enquecommand(const char *cmd)
  449. {
  450. if(*cmd==';')
  451. return false;
  452. if(buflen >= BUFSIZE)
  453. return false;
  454. //this is dangerous if a mixing of serial and this happens
  455. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  456. SERIAL_ECHO_START;
  457. SERIAL_ECHOPGM(MSG_Enqueing);
  458. SERIAL_ECHO(cmdbuffer[bufindw]);
  459. SERIAL_ECHOLNPGM("\"");
  460. bufindw= (bufindw + 1)%BUFSIZE;
  461. buflen += 1;
  462. return true;
  463. }
  464. void setup_killpin()
  465. {
  466. #if defined(KILL_PIN) && KILL_PIN > -1
  467. SET_INPUT(KILL_PIN);
  468. WRITE(KILL_PIN,HIGH);
  469. #endif
  470. }
  471. void setup_filrunoutpin()
  472. {
  473. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  474. pinMode(FILRUNOUT_PIN,INPUT);
  475. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  476. WRITE(FILLRUNOUT_PIN,HIGH);
  477. #endif
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. OUT_WRITE(SUICIDE_PIN, HIGH);
  498. #endif
  499. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  500. #if defined(PS_DEFAULT_OFF)
  501. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  502. #else
  503. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  504. #endif
  505. #endif
  506. }
  507. void suicide()
  508. {
  509. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  510. OUT_WRITE(SUICIDE_PIN, LOW);
  511. #endif
  512. }
  513. void servo_init()
  514. {
  515. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  516. servos[0].attach(SERVO0_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  519. servos[1].attach(SERVO1_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  522. servos[2].attach(SERVO2_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  525. servos[3].attach(SERVO3_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 5)
  528. #error "TODO: enter initalisation code for more servos"
  529. #endif
  530. // Set position of Servo Endstops that are defined
  531. #ifdef SERVO_ENDSTOPS
  532. for(int8_t i = 0; i < 3; i++)
  533. {
  534. if(servo_endstops[i] > -1) {
  535. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  536. }
  537. }
  538. #endif
  539. #if SERVO_LEVELING
  540. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  541. servos[servo_endstops[Z_AXIS]].detach();
  542. #endif
  543. }
  544. void setup()
  545. {
  546. setup_killpin();
  547. setup_filrunoutpin();
  548. setup_powerhold();
  549. MYSERIAL.begin(BAUDRATE);
  550. SERIAL_PROTOCOLLNPGM("start");
  551. SERIAL_ECHO_START;
  552. // Check startup - does nothing if bootloader sets MCUSR to 0
  553. byte mcu = MCUSR;
  554. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  555. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  556. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  557. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  558. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  559. MCUSR=0;
  560. SERIAL_ECHOPGM(MSG_MARLIN);
  561. SERIAL_ECHOLNPGM(STRING_VERSION);
  562. #ifdef STRING_VERSION_CONFIG_H
  563. #ifdef STRING_CONFIG_H_AUTHOR
  564. SERIAL_ECHO_START;
  565. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  566. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  567. SERIAL_ECHOPGM(MSG_AUTHOR);
  568. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  569. SERIAL_ECHOPGM("Compiled: ");
  570. SERIAL_ECHOLNPGM(__DATE__);
  571. #endif // STRING_CONFIG_H_AUTHOR
  572. #endif // STRING_VERSION_CONFIG_H
  573. SERIAL_ECHO_START;
  574. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  575. SERIAL_ECHO(freeMemory());
  576. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  577. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  578. for(int8_t i = 0; i < BUFSIZE; i++)
  579. {
  580. fromsd[i] = false;
  581. }
  582. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  583. Config_RetrieveSettings();
  584. tp_init(); // Initialize temperature loop
  585. plan_init(); // Initialize planner;
  586. watchdog_init();
  587. st_init(); // Initialize stepper, this enables interrupts!
  588. setup_photpin();
  589. servo_init();
  590. lcd_init();
  591. _delay_ms(1000); // wait 1sec to display the splash screen
  592. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  593. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  594. #endif
  595. #ifdef DIGIPOT_I2C
  596. digipot_i2c_init();
  597. #endif
  598. #ifdef Z_PROBE_SLED
  599. pinMode(SERVO0_PIN, OUTPUT);
  600. digitalWrite(SERVO0_PIN, LOW); // turn it off
  601. #endif // Z_PROBE_SLED
  602. setup_homepin();
  603. #ifdef STAT_LED_RED
  604. pinMode(STAT_LED_RED, OUTPUT);
  605. digitalWrite(STAT_LED_RED, LOW); // turn it off
  606. #endif
  607. #ifdef STAT_LED_BLUE
  608. pinMode(STAT_LED_BLUE, OUTPUT);
  609. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  610. #endif
  611. }
  612. void loop()
  613. {
  614. if(buflen < (BUFSIZE-1))
  615. get_command();
  616. #ifdef SDSUPPORT
  617. card.checkautostart(false);
  618. #endif
  619. if(buflen)
  620. {
  621. #ifdef SDSUPPORT
  622. if(card.saving)
  623. {
  624. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  625. {
  626. card.write_command(cmdbuffer[bufindr]);
  627. if(card.logging)
  628. {
  629. process_commands();
  630. }
  631. else
  632. {
  633. SERIAL_PROTOCOLLNPGM(MSG_OK);
  634. }
  635. }
  636. else
  637. {
  638. card.closefile();
  639. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  640. }
  641. }
  642. else
  643. {
  644. process_commands();
  645. }
  646. #else
  647. process_commands();
  648. #endif //SDSUPPORT
  649. buflen = (buflen-1);
  650. bufindr = (bufindr + 1)%BUFSIZE;
  651. }
  652. //check heater every n milliseconds
  653. manage_heater();
  654. manage_inactivity();
  655. checkHitEndstops();
  656. lcd_update();
  657. }
  658. void get_command()
  659. {
  660. if(drain_queued_commands_P()) // priority is given to non-serial commands
  661. return;
  662. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  663. serial_char = MYSERIAL.read();
  664. if(serial_char == '\n' ||
  665. serial_char == '\r' ||
  666. serial_count >= (MAX_CMD_SIZE - 1) )
  667. {
  668. // end of line == end of comment
  669. comment_mode = false;
  670. if(!serial_count) {
  671. // short cut for empty lines
  672. return;
  673. }
  674. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  675. fromsd[bufindw] = false;
  676. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  677. {
  678. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  679. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  680. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  681. SERIAL_ERROR_START;
  682. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  683. SERIAL_ERRORLN(gcode_LastN);
  684. //Serial.println(gcode_N);
  685. FlushSerialRequestResend();
  686. serial_count = 0;
  687. return;
  688. }
  689. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  690. {
  691. byte checksum = 0;
  692. byte count = 0;
  693. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  694. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  695. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  696. SERIAL_ERROR_START;
  697. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  698. SERIAL_ERRORLN(gcode_LastN);
  699. FlushSerialRequestResend();
  700. serial_count = 0;
  701. return;
  702. }
  703. //if no errors, continue parsing
  704. }
  705. else
  706. {
  707. SERIAL_ERROR_START;
  708. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  709. SERIAL_ERRORLN(gcode_LastN);
  710. FlushSerialRequestResend();
  711. serial_count = 0;
  712. return;
  713. }
  714. gcode_LastN = gcode_N;
  715. //if no errors, continue parsing
  716. }
  717. else // if we don't receive 'N' but still see '*'
  718. {
  719. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  720. {
  721. SERIAL_ERROR_START;
  722. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  723. SERIAL_ERRORLN(gcode_LastN);
  724. serial_count = 0;
  725. return;
  726. }
  727. }
  728. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  729. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  730. switch(strtol(strchr_pointer + 1, NULL, 10)){
  731. case 0:
  732. case 1:
  733. case 2:
  734. case 3:
  735. if (Stopped == true) {
  736. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  737. LCD_MESSAGEPGM(MSG_STOPPED);
  738. }
  739. break;
  740. default:
  741. break;
  742. }
  743. }
  744. //If command was e-stop process now
  745. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  746. kill();
  747. bufindw = (bufindw + 1)%BUFSIZE;
  748. buflen += 1;
  749. serial_count = 0; //clear buffer
  750. }
  751. else if(serial_char == '\\') { //Handle escapes
  752. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  753. // if we have one more character, copy it over
  754. serial_char = MYSERIAL.read();
  755. cmdbuffer[bufindw][serial_count++] = serial_char;
  756. }
  757. //otherwise do nothing
  758. }
  759. else { // its not a newline, carriage return or escape char
  760. if(serial_char == ';') comment_mode = true;
  761. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  762. }
  763. }
  764. #ifdef SDSUPPORT
  765. if(!card.sdprinting || serial_count!=0){
  766. return;
  767. }
  768. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  769. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  770. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  771. static bool stop_buffering=false;
  772. if(buflen==0) stop_buffering=false;
  773. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  774. int16_t n=card.get();
  775. serial_char = (char)n;
  776. if(serial_char == '\n' ||
  777. serial_char == '\r' ||
  778. (serial_char == '#' && comment_mode == false) ||
  779. (serial_char == ':' && comment_mode == false) ||
  780. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  781. {
  782. if(card.eof()){
  783. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  784. stoptime=millis();
  785. char time[30];
  786. unsigned long t=(stoptime-starttime)/1000;
  787. int hours, minutes;
  788. minutes=(t/60)%60;
  789. hours=t/60/60;
  790. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  791. SERIAL_ECHO_START;
  792. SERIAL_ECHOLN(time);
  793. lcd_setstatus(time);
  794. card.printingHasFinished();
  795. card.checkautostart(true);
  796. }
  797. if(serial_char=='#')
  798. stop_buffering=true;
  799. if(!serial_count)
  800. {
  801. comment_mode = false; //for new command
  802. return; //if empty line
  803. }
  804. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  805. // if(!comment_mode){
  806. fromsd[bufindw] = true;
  807. buflen += 1;
  808. bufindw = (bufindw + 1)%BUFSIZE;
  809. // }
  810. comment_mode = false; //for new command
  811. serial_count = 0; //clear buffer
  812. }
  813. else
  814. {
  815. if(serial_char == ';') comment_mode = true;
  816. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  817. }
  818. }
  819. #endif //SDSUPPORT
  820. }
  821. float code_value()
  822. {
  823. return (strtod(strchr_pointer + 1, NULL));
  824. }
  825. long code_value_long()
  826. {
  827. return (strtol(strchr_pointer + 1, NULL, 10));
  828. }
  829. bool code_seen(char code)
  830. {
  831. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  832. return (strchr_pointer != NULL); //Return True if a character was found
  833. }
  834. #define DEFINE_PGM_READ_ANY(type, reader) \
  835. static inline type pgm_read_any(const type *p) \
  836. { return pgm_read_##reader##_near(p); }
  837. DEFINE_PGM_READ_ANY(float, float);
  838. DEFINE_PGM_READ_ANY(signed char, byte);
  839. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  840. static const PROGMEM type array##_P[3] = \
  841. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  842. static inline type array(int axis) \
  843. { return pgm_read_any(&array##_P[axis]); }
  844. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  845. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  846. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  847. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  848. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  849. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  850. #ifdef DUAL_X_CARRIAGE
  851. #define DXC_FULL_CONTROL_MODE 0
  852. #define DXC_AUTO_PARK_MODE 1
  853. #define DXC_DUPLICATION_MODE 2
  854. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  855. static float x_home_pos(int extruder) {
  856. if (extruder == 0)
  857. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  858. else
  859. // In dual carriage mode the extruder offset provides an override of the
  860. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  861. // This allow soft recalibration of the second extruder offset position without firmware reflash
  862. // (through the M218 command).
  863. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  864. }
  865. static int x_home_dir(int extruder) {
  866. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  867. }
  868. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  869. static bool active_extruder_parked = false; // used in mode 1 & 2
  870. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  871. static unsigned long delayed_move_time = 0; // used in mode 1
  872. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  873. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  874. bool extruder_duplication_enabled = false; // used in mode 2
  875. #endif //DUAL_X_CARRIAGE
  876. static void axis_is_at_home(int axis) {
  877. #ifdef DUAL_X_CARRIAGE
  878. if (axis == X_AXIS) {
  879. if (active_extruder != 0) {
  880. current_position[X_AXIS] = x_home_pos(active_extruder);
  881. min_pos[X_AXIS] = X2_MIN_POS;
  882. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  883. return;
  884. }
  885. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  886. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  887. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  888. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  889. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  890. return;
  891. }
  892. }
  893. #endif
  894. #ifdef SCARA
  895. float homeposition[3];
  896. char i;
  897. if (axis < 2)
  898. {
  899. for (i=0; i<3; i++)
  900. {
  901. homeposition[i] = base_home_pos(i);
  902. }
  903. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  904. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  905. // Works out real Homeposition angles using inverse kinematics,
  906. // and calculates homing offset using forward kinematics
  907. calculate_delta(homeposition);
  908. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  909. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  910. for (i=0; i<2; i++)
  911. {
  912. delta[i] -= home_offset[i];
  913. }
  914. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  915. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  916. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  917. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  918. calculate_SCARA_forward_Transform(delta);
  919. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  920. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  921. current_position[axis] = delta[axis];
  922. // SCARA home positions are based on configuration since the actual limits are determined by the
  923. // inverse kinematic transform.
  924. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  925. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  926. }
  927. else
  928. {
  929. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  930. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  931. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  932. }
  933. #else
  934. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  935. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  936. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  937. #endif
  938. }
  939. #ifdef ENABLE_AUTO_BED_LEVELING
  940. #ifdef AUTO_BED_LEVELING_GRID
  941. #ifndef DELTA
  942. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  943. {
  944. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  945. planeNormal.debug("planeNormal");
  946. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  947. //bedLevel.debug("bedLevel");
  948. //plan_bed_level_matrix.debug("bed level before");
  949. //vector_3 uncorrected_position = plan_get_position_mm();
  950. //uncorrected_position.debug("position before");
  951. vector_3 corrected_position = plan_get_position();
  952. // corrected_position.debug("position after");
  953. current_position[X_AXIS] = corrected_position.x;
  954. current_position[Y_AXIS] = corrected_position.y;
  955. current_position[Z_AXIS] = corrected_position.z;
  956. // put the bed at 0 so we don't go below it.
  957. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  959. }
  960. #endif
  961. #else // not AUTO_BED_LEVELING_GRID
  962. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  963. plan_bed_level_matrix.set_to_identity();
  964. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  965. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  966. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  967. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  968. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  969. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  970. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  971. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  972. vector_3 corrected_position = plan_get_position();
  973. current_position[X_AXIS] = corrected_position.x;
  974. current_position[Y_AXIS] = corrected_position.y;
  975. current_position[Z_AXIS] = corrected_position.z;
  976. // put the bed at 0 so we don't go below it.
  977. current_position[Z_AXIS] = zprobe_zoffset;
  978. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  979. }
  980. #endif // AUTO_BED_LEVELING_GRID
  981. static void run_z_probe() {
  982. #ifdef DELTA
  983. float start_z = current_position[Z_AXIS];
  984. long start_steps = st_get_position(Z_AXIS);
  985. // move down slowly until you find the bed
  986. feedrate = homing_feedrate[Z_AXIS] / 4;
  987. destination[Z_AXIS] = -10;
  988. prepare_move_raw();
  989. st_synchronize();
  990. endstops_hit_on_purpose();
  991. // we have to let the planner know where we are right now as it is not where we said to go.
  992. long stop_steps = st_get_position(Z_AXIS);
  993. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  994. current_position[Z_AXIS] = mm;
  995. calculate_delta(current_position);
  996. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  997. #else
  998. plan_bed_level_matrix.set_to_identity();
  999. feedrate = homing_feedrate[Z_AXIS];
  1000. // move down until you find the bed
  1001. float zPosition = -10;
  1002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1003. st_synchronize();
  1004. // we have to let the planner know where we are right now as it is not where we said to go.
  1005. zPosition = st_get_position_mm(Z_AXIS);
  1006. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1007. // move up the retract distance
  1008. zPosition += home_retract_mm(Z_AXIS);
  1009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1010. st_synchronize();
  1011. // move back down slowly to find bed
  1012. if (homing_bump_divisor[Z_AXIS] >= 1)
  1013. {
  1014. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1015. }
  1016. else
  1017. {
  1018. feedrate = homing_feedrate[Z_AXIS]/10;
  1019. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1020. }
  1021. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1023. st_synchronize();
  1024. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1025. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1027. #endif
  1028. }
  1029. static void do_blocking_move_to(float x, float y, float z) {
  1030. float oldFeedRate = feedrate;
  1031. #ifdef DELTA
  1032. feedrate = XY_TRAVEL_SPEED;
  1033. destination[X_AXIS] = x;
  1034. destination[Y_AXIS] = y;
  1035. destination[Z_AXIS] = z;
  1036. prepare_move_raw();
  1037. st_synchronize();
  1038. #else
  1039. feedrate = homing_feedrate[Z_AXIS];
  1040. current_position[Z_AXIS] = z;
  1041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1042. st_synchronize();
  1043. feedrate = xy_travel_speed;
  1044. current_position[X_AXIS] = x;
  1045. current_position[Y_AXIS] = y;
  1046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1047. st_synchronize();
  1048. #endif
  1049. feedrate = oldFeedRate;
  1050. }
  1051. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1052. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1053. }
  1054. static void setup_for_endstop_move() {
  1055. saved_feedrate = feedrate;
  1056. saved_feedmultiply = feedmultiply;
  1057. feedmultiply = 100;
  1058. previous_millis_cmd = millis();
  1059. enable_endstops(true);
  1060. }
  1061. static void clean_up_after_endstop_move() {
  1062. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1063. enable_endstops(false);
  1064. #endif
  1065. feedrate = saved_feedrate;
  1066. feedmultiply = saved_feedmultiply;
  1067. previous_millis_cmd = millis();
  1068. }
  1069. static void engage_z_probe() {
  1070. // Engage Z Servo endstop if enabled
  1071. #ifdef SERVO_ENDSTOPS
  1072. if (servo_endstops[Z_AXIS] > -1) {
  1073. #if SERVO_LEVELING
  1074. servos[servo_endstops[Z_AXIS]].attach(0);
  1075. #endif
  1076. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1077. #if SERVO_LEVELING
  1078. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1079. servos[servo_endstops[Z_AXIS]].detach();
  1080. #endif
  1081. }
  1082. #elif defined(Z_PROBE_ALLEN_KEY)
  1083. feedrate = homing_feedrate[X_AXIS];
  1084. // Move to the start position to initiate deployment
  1085. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1086. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1087. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1088. prepare_move_raw();
  1089. // Home X to touch the belt
  1090. feedrate = homing_feedrate[X_AXIS]/10;
  1091. destination[X_AXIS] = 0;
  1092. prepare_move_raw();
  1093. // Home Y for safety
  1094. feedrate = homing_feedrate[X_AXIS]/2;
  1095. destination[Y_AXIS] = 0;
  1096. prepare_move_raw();
  1097. st_synchronize();
  1098. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1099. if (z_min_endstop)
  1100. {
  1101. if (!Stopped)
  1102. {
  1103. SERIAL_ERROR_START;
  1104. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1105. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1106. }
  1107. Stop();
  1108. }
  1109. #endif
  1110. }
  1111. static void retract_z_probe() {
  1112. // Retract Z Servo endstop if enabled
  1113. #ifdef SERVO_ENDSTOPS
  1114. if (servo_endstops[Z_AXIS] > -1)
  1115. {
  1116. #if Z_RAISE_AFTER_PROBING > 0
  1117. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1118. st_synchronize();
  1119. #endif
  1120. #if SERVO_LEVELING
  1121. servos[servo_endstops[Z_AXIS]].attach(0);
  1122. #endif
  1123. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1124. #if SERVO_LEVELING
  1125. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1126. servos[servo_endstops[Z_AXIS]].detach();
  1127. #endif
  1128. }
  1129. #elif defined(Z_PROBE_ALLEN_KEY)
  1130. // Move up for safety
  1131. feedrate = homing_feedrate[X_AXIS];
  1132. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1133. prepare_move_raw();
  1134. // Move to the start position to initiate retraction
  1135. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1136. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1137. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1138. prepare_move_raw();
  1139. // Move the nozzle down to push the probe into retracted position
  1140. feedrate = homing_feedrate[Z_AXIS]/10;
  1141. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1142. prepare_move_raw();
  1143. // Move up for safety
  1144. feedrate = homing_feedrate[Z_AXIS]/2;
  1145. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1146. prepare_move_raw();
  1147. // Home XY for safety
  1148. feedrate = homing_feedrate[X_AXIS]/2;
  1149. destination[X_AXIS] = 0;
  1150. destination[Y_AXIS] = 0;
  1151. prepare_move_raw();
  1152. st_synchronize();
  1153. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1154. if (!z_min_endstop)
  1155. {
  1156. if (!Stopped)
  1157. {
  1158. SERIAL_ERROR_START;
  1159. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1160. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1161. }
  1162. Stop();
  1163. }
  1164. #endif
  1165. }
  1166. enum ProbeAction {
  1167. ProbeStay = 0,
  1168. ProbeEngage = BIT(0),
  1169. ProbeRetract = BIT(1),
  1170. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1171. };
  1172. /// Probe bed height at position (x,y), returns the measured z value
  1173. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1174. // move to right place
  1175. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1176. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1177. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1178. if (retract_action & ProbeEngage) engage_z_probe();
  1179. #endif
  1180. run_z_probe();
  1181. float measured_z = current_position[Z_AXIS];
  1182. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1183. if (retract_action & ProbeRetract) retract_z_probe();
  1184. #endif
  1185. if (verbose_level > 2) {
  1186. SERIAL_PROTOCOLPGM(MSG_BED);
  1187. SERIAL_PROTOCOLPGM(" X: ");
  1188. SERIAL_PROTOCOL(x + 0.0001);
  1189. SERIAL_PROTOCOLPGM(" Y: ");
  1190. SERIAL_PROTOCOL(y + 0.0001);
  1191. SERIAL_PROTOCOLPGM(" Z: ");
  1192. SERIAL_PROTOCOL(measured_z + 0.0001);
  1193. SERIAL_EOL;
  1194. }
  1195. return measured_z;
  1196. }
  1197. #ifdef DELTA
  1198. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1199. if (bed_level[x][y] != 0.0) {
  1200. return; // Don't overwrite good values.
  1201. }
  1202. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1203. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1204. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1205. float median = c; // Median is robust (ignores outliers).
  1206. if (a < b) {
  1207. if (b < c) median = b;
  1208. if (c < a) median = a;
  1209. } else { // b <= a
  1210. if (c < b) median = b;
  1211. if (a < c) median = a;
  1212. }
  1213. bed_level[x][y] = median;
  1214. }
  1215. // Fill in the unprobed points (corners of circular print surface)
  1216. // using linear extrapolation, away from the center.
  1217. static void extrapolate_unprobed_bed_level() {
  1218. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1219. for (int y = 0; y <= half; y++) {
  1220. for (int x = 0; x <= half; x++) {
  1221. if (x + y < 3) continue;
  1222. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1223. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1224. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1225. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1226. }
  1227. }
  1228. }
  1229. // Print calibration results for plotting or manual frame adjustment.
  1230. static void print_bed_level() {
  1231. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1232. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1233. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1234. SERIAL_PROTOCOLPGM(" ");
  1235. }
  1236. SERIAL_ECHOLN("");
  1237. }
  1238. }
  1239. // Reset calibration results to zero.
  1240. void reset_bed_level() {
  1241. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1242. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1243. bed_level[x][y] = 0.0;
  1244. }
  1245. }
  1246. }
  1247. #endif // DELTA
  1248. #endif // ENABLE_AUTO_BED_LEVELING
  1249. static void homeaxis(int axis) {
  1250. #define HOMEAXIS_DO(LETTER) \
  1251. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1252. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1253. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1254. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1255. 0) {
  1256. int axis_home_dir = home_dir(axis);
  1257. #ifdef DUAL_X_CARRIAGE
  1258. if (axis == X_AXIS)
  1259. axis_home_dir = x_home_dir(active_extruder);
  1260. #endif
  1261. current_position[axis] = 0;
  1262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1263. #ifndef Z_PROBE_SLED
  1264. // Engage Servo endstop if enabled
  1265. #ifdef SERVO_ENDSTOPS
  1266. #if SERVO_LEVELING
  1267. if (axis==Z_AXIS) {
  1268. engage_z_probe();
  1269. }
  1270. else
  1271. #endif
  1272. if (servo_endstops[axis] > -1) {
  1273. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1274. }
  1275. #endif
  1276. #endif // Z_PROBE_SLED
  1277. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1278. feedrate = homing_feedrate[axis];
  1279. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1280. st_synchronize();
  1281. current_position[axis] = 0;
  1282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1283. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1284. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1285. st_synchronize();
  1286. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1287. if (homing_bump_divisor[axis] >= 1)
  1288. {
  1289. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1290. }
  1291. else
  1292. {
  1293. feedrate = homing_feedrate[axis]/10;
  1294. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1295. }
  1296. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1297. st_synchronize();
  1298. #ifdef DELTA
  1299. // retrace by the amount specified in endstop_adj
  1300. if (endstop_adj[axis] * axis_home_dir < 0) {
  1301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1302. destination[axis] = endstop_adj[axis];
  1303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1304. st_synchronize();
  1305. }
  1306. #endif
  1307. axis_is_at_home(axis);
  1308. destination[axis] = current_position[axis];
  1309. feedrate = 0.0;
  1310. endstops_hit_on_purpose();
  1311. axis_known_position[axis] = true;
  1312. // Retract Servo endstop if enabled
  1313. #ifdef SERVO_ENDSTOPS
  1314. if (servo_endstops[axis] > -1) {
  1315. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1316. }
  1317. #endif
  1318. #if SERVO_LEVELING
  1319. #ifndef Z_PROBE_SLED
  1320. if (axis==Z_AXIS) retract_z_probe();
  1321. #endif
  1322. #endif
  1323. }
  1324. }
  1325. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1326. void refresh_cmd_timeout(void)
  1327. {
  1328. previous_millis_cmd = millis();
  1329. }
  1330. #ifdef FWRETRACT
  1331. void retract(bool retracting, bool swapretract = false) {
  1332. if(retracting && !retracted[active_extruder]) {
  1333. destination[X_AXIS]=current_position[X_AXIS];
  1334. destination[Y_AXIS]=current_position[Y_AXIS];
  1335. destination[Z_AXIS]=current_position[Z_AXIS];
  1336. destination[E_AXIS]=current_position[E_AXIS];
  1337. if (swapretract) {
  1338. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1339. } else {
  1340. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1341. }
  1342. plan_set_e_position(current_position[E_AXIS]);
  1343. float oldFeedrate = feedrate;
  1344. feedrate=retract_feedrate*60;
  1345. retracted[active_extruder]=true;
  1346. prepare_move();
  1347. if(retract_zlift > 0.01) {
  1348. current_position[Z_AXIS]-=retract_zlift;
  1349. #ifdef DELTA
  1350. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1351. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1352. #else
  1353. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1354. #endif
  1355. prepare_move();
  1356. }
  1357. feedrate = oldFeedrate;
  1358. } else if(!retracting && retracted[active_extruder]) {
  1359. destination[X_AXIS]=current_position[X_AXIS];
  1360. destination[Y_AXIS]=current_position[Y_AXIS];
  1361. destination[Z_AXIS]=current_position[Z_AXIS];
  1362. destination[E_AXIS]=current_position[E_AXIS];
  1363. if(retract_zlift > 0.01) {
  1364. current_position[Z_AXIS]+=retract_zlift;
  1365. #ifdef DELTA
  1366. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1367. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1368. #else
  1369. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1370. #endif
  1371. //prepare_move();
  1372. }
  1373. if (swapretract) {
  1374. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1375. } else {
  1376. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1377. }
  1378. plan_set_e_position(current_position[E_AXIS]);
  1379. float oldFeedrate = feedrate;
  1380. feedrate=retract_recover_feedrate*60;
  1381. retracted[active_extruder]=false;
  1382. prepare_move();
  1383. feedrate = oldFeedrate;
  1384. }
  1385. } //retract
  1386. #endif //FWRETRACT
  1387. #ifdef Z_PROBE_SLED
  1388. #ifndef SLED_DOCKING_OFFSET
  1389. #define SLED_DOCKING_OFFSET 0
  1390. #endif
  1391. //
  1392. // Method to dock/undock a sled designed by Charles Bell.
  1393. //
  1394. // dock[in] If true, move to MAX_X and engage the electromagnet
  1395. // offset[in] The additional distance to move to adjust docking location
  1396. //
  1397. static void dock_sled(bool dock, int offset=0) {
  1398. int z_loc;
  1399. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1400. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1401. SERIAL_ECHO_START;
  1402. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1403. return;
  1404. }
  1405. if (dock) {
  1406. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1407. current_position[Y_AXIS],
  1408. current_position[Z_AXIS]);
  1409. // turn off magnet
  1410. digitalWrite(SERVO0_PIN, LOW);
  1411. } else {
  1412. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1413. z_loc = Z_RAISE_BEFORE_PROBING;
  1414. else
  1415. z_loc = current_position[Z_AXIS];
  1416. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1417. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1418. // turn on magnet
  1419. digitalWrite(SERVO0_PIN, HIGH);
  1420. }
  1421. }
  1422. #endif
  1423. /**
  1424. *
  1425. * G-Code Handler functions
  1426. *
  1427. */
  1428. /**
  1429. * G0, G1: Coordinated movement of X Y Z E axes
  1430. */
  1431. inline void gcode_G0_G1() {
  1432. if (!Stopped) {
  1433. get_coordinates(); // For X Y Z E F
  1434. #ifdef FWRETRACT
  1435. if (autoretract_enabled)
  1436. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1437. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1438. // Is this move an attempt to retract or recover?
  1439. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1440. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1441. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1442. retract(!retracted[active_extruder]);
  1443. return;
  1444. }
  1445. }
  1446. #endif //FWRETRACT
  1447. prepare_move();
  1448. //ClearToSend();
  1449. }
  1450. }
  1451. /**
  1452. * G2: Clockwise Arc
  1453. * G3: Counterclockwise Arc
  1454. */
  1455. inline void gcode_G2_G3(bool clockwise) {
  1456. if (!Stopped) {
  1457. get_arc_coordinates();
  1458. prepare_arc_move(clockwise);
  1459. }
  1460. }
  1461. /**
  1462. * G4: Dwell S<seconds> or P<milliseconds>
  1463. */
  1464. inline void gcode_G4() {
  1465. unsigned long codenum=0;
  1466. LCD_MESSAGEPGM(MSG_DWELL);
  1467. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1468. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1469. st_synchronize();
  1470. previous_millis_cmd = millis();
  1471. codenum += previous_millis_cmd; // keep track of when we started waiting
  1472. while(millis() < codenum) {
  1473. manage_heater();
  1474. manage_inactivity();
  1475. lcd_update();
  1476. }
  1477. }
  1478. #ifdef FWRETRACT
  1479. /**
  1480. * G10 - Retract filament according to settings of M207
  1481. * G11 - Recover filament according to settings of M208
  1482. */
  1483. inline void gcode_G10_G11(bool doRetract=false) {
  1484. #if EXTRUDERS > 1
  1485. if (doRetract) {
  1486. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1487. }
  1488. #endif
  1489. retract(doRetract
  1490. #if EXTRUDERS > 1
  1491. , retracted_swap[active_extruder]
  1492. #endif
  1493. );
  1494. }
  1495. #endif //FWRETRACT
  1496. /**
  1497. * G28: Home all axes, one at a time
  1498. */
  1499. inline void gcode_G28() {
  1500. #ifdef ENABLE_AUTO_BED_LEVELING
  1501. #ifdef DELTA
  1502. reset_bed_level();
  1503. #else
  1504. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1505. #endif
  1506. #endif
  1507. #if defined(MESH_BED_LEVELING)
  1508. uint8_t mbl_was_active = mbl.active;
  1509. mbl.active = 0;
  1510. #endif // MESH_BED_LEVELING
  1511. saved_feedrate = feedrate;
  1512. saved_feedmultiply = feedmultiply;
  1513. feedmultiply = 100;
  1514. previous_millis_cmd = millis();
  1515. enable_endstops(true);
  1516. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1517. feedrate = 0.0;
  1518. #ifdef DELTA
  1519. // A delta can only safely home all axis at the same time
  1520. // all axis have to home at the same time
  1521. // Move all carriages up together until the first endstop is hit.
  1522. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1523. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1524. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1525. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1526. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. endstops_hit_on_purpose();
  1529. // Destination reached
  1530. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1531. // take care of back off and rehome now we are all at the top
  1532. HOMEAXIS(X);
  1533. HOMEAXIS(Y);
  1534. HOMEAXIS(Z);
  1535. calculate_delta(current_position);
  1536. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1537. #else // NOT DELTA
  1538. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1539. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1540. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1541. HOMEAXIS(Z);
  1542. }
  1543. #endif
  1544. #ifdef QUICK_HOME
  1545. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1546. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1547. #ifndef DUAL_X_CARRIAGE
  1548. int x_axis_home_dir = home_dir(X_AXIS);
  1549. #else
  1550. int x_axis_home_dir = x_home_dir(active_extruder);
  1551. extruder_duplication_enabled = false;
  1552. #endif
  1553. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1554. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1555. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1556. feedrate = homing_feedrate[X_AXIS];
  1557. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1558. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1559. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1560. } else {
  1561. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1562. }
  1563. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1564. st_synchronize();
  1565. axis_is_at_home(X_AXIS);
  1566. axis_is_at_home(Y_AXIS);
  1567. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1568. destination[X_AXIS] = current_position[X_AXIS];
  1569. destination[Y_AXIS] = current_position[Y_AXIS];
  1570. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1571. feedrate = 0.0;
  1572. st_synchronize();
  1573. endstops_hit_on_purpose();
  1574. current_position[X_AXIS] = destination[X_AXIS];
  1575. current_position[Y_AXIS] = destination[Y_AXIS];
  1576. #ifndef SCARA
  1577. current_position[Z_AXIS] = destination[Z_AXIS];
  1578. #endif
  1579. }
  1580. #endif //QUICK_HOME
  1581. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1582. #ifdef DUAL_X_CARRIAGE
  1583. int tmp_extruder = active_extruder;
  1584. extruder_duplication_enabled = false;
  1585. active_extruder = !active_extruder;
  1586. HOMEAXIS(X);
  1587. inactive_extruder_x_pos = current_position[X_AXIS];
  1588. active_extruder = tmp_extruder;
  1589. HOMEAXIS(X);
  1590. // reset state used by the different modes
  1591. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1592. delayed_move_time = 0;
  1593. active_extruder_parked = true;
  1594. #else
  1595. HOMEAXIS(X);
  1596. #endif
  1597. }
  1598. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1599. if (code_seen(axis_codes[X_AXIS])) {
  1600. if (code_value_long() != 0) {
  1601. current_position[X_AXIS] = code_value()
  1602. #ifndef SCARA
  1603. + home_offset[X_AXIS]
  1604. #endif
  1605. ;
  1606. }
  1607. }
  1608. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1609. current_position[Y_AXIS] = code_value()
  1610. #ifndef SCARA
  1611. + home_offset[Y_AXIS]
  1612. #endif
  1613. ;
  1614. }
  1615. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1616. #ifndef Z_SAFE_HOMING
  1617. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1618. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1619. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1620. feedrate = max_feedrate[Z_AXIS];
  1621. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1622. st_synchronize();
  1623. #endif
  1624. HOMEAXIS(Z);
  1625. }
  1626. #else // Z_SAFE_HOMING
  1627. if (home_all_axis) {
  1628. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1629. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1630. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1631. feedrate = XY_TRAVEL_SPEED / 60;
  1632. current_position[Z_AXIS] = 0;
  1633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1635. st_synchronize();
  1636. current_position[X_AXIS] = destination[X_AXIS];
  1637. current_position[Y_AXIS] = destination[Y_AXIS];
  1638. HOMEAXIS(Z);
  1639. }
  1640. // Let's see if X and Y are homed and probe is inside bed area.
  1641. if (code_seen(axis_codes[Z_AXIS])) {
  1642. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1643. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1644. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1645. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1646. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1647. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1648. current_position[Z_AXIS] = 0;
  1649. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1650. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1651. feedrate = max_feedrate[Z_AXIS];
  1652. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1653. st_synchronize();
  1654. HOMEAXIS(Z);
  1655. }
  1656. else {
  1657. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1658. SERIAL_ECHO_START;
  1659. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1660. }
  1661. }
  1662. else {
  1663. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1664. SERIAL_ECHO_START;
  1665. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1666. }
  1667. }
  1668. #endif // Z_SAFE_HOMING
  1669. #endif // Z_HOME_DIR < 0
  1670. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1671. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1672. #ifdef ENABLE_AUTO_BED_LEVELING
  1673. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1674. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1675. #endif
  1676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1677. #endif // else DELTA
  1678. #ifdef SCARA
  1679. calculate_delta(current_position);
  1680. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1681. #endif
  1682. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1683. enable_endstops(false);
  1684. #endif
  1685. #if defined(MESH_BED_LEVELING)
  1686. if (mbl_was_active) {
  1687. current_position[X_AXIS] = mbl.get_x(0);
  1688. current_position[Y_AXIS] = mbl.get_y(0);
  1689. destination[X_AXIS] = current_position[X_AXIS];
  1690. destination[Y_AXIS] = current_position[Y_AXIS];
  1691. destination[Z_AXIS] = current_position[Z_AXIS];
  1692. destination[E_AXIS] = current_position[E_AXIS];
  1693. feedrate = homing_feedrate[X_AXIS];
  1694. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1695. st_synchronize();
  1696. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1698. mbl.active = 1;
  1699. }
  1700. #endif
  1701. feedrate = saved_feedrate;
  1702. feedmultiply = saved_feedmultiply;
  1703. previous_millis_cmd = millis();
  1704. endstops_hit_on_purpose();
  1705. }
  1706. #if defined(MESH_BED_LEVELING)
  1707. inline void gcode_G29() {
  1708. static int probe_point = -1;
  1709. int state = 0;
  1710. if (code_seen('S') || code_seen('s')) {
  1711. state = code_value_long();
  1712. if (state < 0 || state > 2) {
  1713. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1714. return;
  1715. }
  1716. }
  1717. if (state == 0) { // Dump mesh_bed_leveling
  1718. if (mbl.active) {
  1719. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1720. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1721. SERIAL_PROTOCOLPGM(",");
  1722. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1723. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1724. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1725. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1726. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1727. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1728. SERIAL_PROTOCOLPGM(" ");
  1729. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1730. }
  1731. SERIAL_EOL;
  1732. }
  1733. } else {
  1734. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1735. }
  1736. } else if (state == 1) { // Begin probing mesh points
  1737. mbl.reset();
  1738. probe_point = 0;
  1739. enquecommands_P(PSTR("G28"));
  1740. enquecommands_P(PSTR("G29 S2"));
  1741. } else if (state == 2) { // Goto next point
  1742. if (probe_point < 0) {
  1743. SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
  1744. return;
  1745. }
  1746. int ix, iy;
  1747. if (probe_point == 0) {
  1748. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1749. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1750. } else {
  1751. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1752. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1753. if (iy&1) { // Zig zag
  1754. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1755. }
  1756. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1757. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1759. st_synchronize();
  1760. }
  1761. if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
  1762. SERIAL_PROTOCOLPGM("Mesh done.\n");
  1763. probe_point = -1;
  1764. mbl.active = 1;
  1765. enquecommands_P(PSTR("G28"));
  1766. return;
  1767. }
  1768. ix = probe_point % MESH_NUM_X_POINTS;
  1769. iy = probe_point / MESH_NUM_X_POINTS;
  1770. if (iy&1) { // Zig zag
  1771. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1772. }
  1773. current_position[X_AXIS] = mbl.get_x(ix);
  1774. current_position[Y_AXIS] = mbl.get_y(iy);
  1775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1776. st_synchronize();
  1777. probe_point++;
  1778. }
  1779. }
  1780. #endif
  1781. #ifdef ENABLE_AUTO_BED_LEVELING
  1782. /**
  1783. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1784. * Will fail if the printer has not been homed with G28.
  1785. *
  1786. * Enhanced G29 Auto Bed Leveling Probe Routine
  1787. *
  1788. * Parameters With AUTO_BED_LEVELING_GRID:
  1789. *
  1790. * P Set the size of the grid that will be probed (P x P points).
  1791. * Not supported by non-linear delta printer bed leveling.
  1792. * Example: "G29 P4"
  1793. *
  1794. * S Set the XY travel speed between probe points (in mm/min)
  1795. *
  1796. * V Set the verbose level (0-4). Example: "G29 V3"
  1797. *
  1798. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1799. * This is useful for manual bed leveling and finding flaws in the bed (to
  1800. * assist with part placement).
  1801. * Not supported by non-linear delta printer bed leveling.
  1802. *
  1803. * F Set the Front limit of the probing grid
  1804. * B Set the Back limit of the probing grid
  1805. * L Set the Left limit of the probing grid
  1806. * R Set the Right limit of the probing grid
  1807. *
  1808. * Global Parameters:
  1809. *
  1810. * E/e By default G29 engages / disengages the probe for each point.
  1811. * Include "E" to engage and disengage the probe just once.
  1812. * There's no extra effect if you have a fixed probe.
  1813. * Usage: "G29 E" or "G29 e"
  1814. *
  1815. */
  1816. inline void gcode_G29() {
  1817. // Prevent user from running a G29 without first homing in X and Y
  1818. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1819. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1820. SERIAL_ECHO_START;
  1821. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1822. return;
  1823. }
  1824. int verbose_level = 1;
  1825. float x_tmp, y_tmp, z_tmp, real_z;
  1826. if (code_seen('V') || code_seen('v')) {
  1827. verbose_level = code_value_long();
  1828. if (verbose_level < 0 || verbose_level > 4) {
  1829. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1830. return;
  1831. }
  1832. }
  1833. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1834. #ifdef AUTO_BED_LEVELING_GRID
  1835. #ifndef DELTA
  1836. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1837. #endif
  1838. if (verbose_level > 0)
  1839. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1840. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1841. #ifndef DELTA
  1842. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1843. if (auto_bed_leveling_grid_points < 2) {
  1844. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1845. return;
  1846. }
  1847. #endif
  1848. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1849. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1850. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1851. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1852. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1853. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1854. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1855. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1856. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1857. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1858. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1859. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1860. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1861. if (left_out || right_out || front_out || back_out) {
  1862. if (left_out) {
  1863. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1864. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1865. }
  1866. if (right_out) {
  1867. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1868. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1869. }
  1870. if (front_out) {
  1871. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1872. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1873. }
  1874. if (back_out) {
  1875. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1876. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1877. }
  1878. return;
  1879. }
  1880. #endif // AUTO_BED_LEVELING_GRID
  1881. #ifdef Z_PROBE_SLED
  1882. dock_sled(false); // engage (un-dock) the probe
  1883. #elif defined(Z_PROBE_ALLEN_KEY)
  1884. engage_z_probe();
  1885. #endif
  1886. st_synchronize();
  1887. #ifdef DELTA
  1888. reset_bed_level();
  1889. #else
  1890. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1891. //vector_3 corrected_position = plan_get_position_mm();
  1892. //corrected_position.debug("position before G29");
  1893. plan_bed_level_matrix.set_to_identity();
  1894. vector_3 uncorrected_position = plan_get_position();
  1895. //uncorrected_position.debug("position during G29");
  1896. current_position[X_AXIS] = uncorrected_position.x;
  1897. current_position[Y_AXIS] = uncorrected_position.y;
  1898. current_position[Z_AXIS] = uncorrected_position.z;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. #endif
  1901. setup_for_endstop_move();
  1902. feedrate = homing_feedrate[Z_AXIS];
  1903. #ifdef AUTO_BED_LEVELING_GRID
  1904. // probe at the points of a lattice grid
  1905. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1906. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1907. #ifndef DELTA
  1908. // solve the plane equation ax + by + d = z
  1909. // A is the matrix with rows [x y 1] for all the probed points
  1910. // B is the vector of the Z positions
  1911. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1912. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1913. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1914. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1915. eqnBVector[abl2], // "B" vector of Z points
  1916. mean = 0.0;
  1917. #else
  1918. delta_grid_spacing[0] = xGridSpacing;
  1919. delta_grid_spacing[1] = yGridSpacing;
  1920. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1921. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1922. #endif
  1923. int probePointCounter = 0;
  1924. bool zig = true;
  1925. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1926. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1927. int xStart, xStop, xInc;
  1928. if (zig) {
  1929. xStart = 0;
  1930. xStop = auto_bed_leveling_grid_points;
  1931. xInc = 1;
  1932. zig = false;
  1933. }
  1934. else {
  1935. xStart = auto_bed_leveling_grid_points - 1;
  1936. xStop = -1;
  1937. xInc = -1;
  1938. zig = true;
  1939. }
  1940. #ifndef DELTA
  1941. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1942. // This gets the probe points in more readable order.
  1943. if (!do_topography_map) zig = !zig;
  1944. #endif
  1945. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1946. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1947. // raise extruder
  1948. float measured_z,
  1949. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1950. #ifdef DELTA
  1951. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1952. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1953. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1954. continue;
  1955. #endif //DELTA
  1956. // Enhanced G29 - Do not retract servo between probes
  1957. ProbeAction act;
  1958. if (enhanced_g29) {
  1959. if (yProbe == front_probe_bed_position && xCount == 0)
  1960. act = ProbeEngage;
  1961. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1962. act = ProbeRetract;
  1963. else
  1964. act = ProbeStay;
  1965. }
  1966. else
  1967. act = ProbeEngageAndRetract;
  1968. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1969. #ifndef DELTA
  1970. mean += measured_z;
  1971. eqnBVector[probePointCounter] = measured_z;
  1972. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1973. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1974. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1975. #else
  1976. bed_level[xCount][yCount] = measured_z + z_offset;
  1977. #endif
  1978. probePointCounter++;
  1979. } //xProbe
  1980. } //yProbe
  1981. clean_up_after_endstop_move();
  1982. #ifndef DELTA
  1983. // solve lsq problem
  1984. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1985. mean /= abl2;
  1986. if (verbose_level) {
  1987. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1988. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1989. SERIAL_PROTOCOLPGM(" b: ");
  1990. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1991. SERIAL_PROTOCOLPGM(" d: ");
  1992. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1993. SERIAL_EOL;
  1994. if (verbose_level > 2) {
  1995. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1996. SERIAL_PROTOCOL_F(mean, 8);
  1997. SERIAL_EOL;
  1998. }
  1999. }
  2000. // Show the Topography map if enabled
  2001. if (do_topography_map) {
  2002. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2003. SERIAL_PROTOCOLPGM("+-----------+\n");
  2004. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2005. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2006. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2007. SERIAL_PROTOCOLPGM("+-----------+\n");
  2008. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2009. for (int xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--) {
  2010. int ind = yy * auto_bed_leveling_grid_points + xx;
  2011. float diff = eqnBVector[ind] - mean;
  2012. if (diff >= 0.0)
  2013. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2014. else
  2015. SERIAL_PROTOCOLPGM(" ");
  2016. SERIAL_PROTOCOL_F(diff, 5);
  2017. } // xx
  2018. SERIAL_EOL;
  2019. } // yy
  2020. SERIAL_EOL;
  2021. } //do_topography_map
  2022. set_bed_level_equation_lsq(plane_equation_coefficients);
  2023. free(plane_equation_coefficients);
  2024. #else
  2025. extrapolate_unprobed_bed_level();
  2026. print_bed_level();
  2027. #endif
  2028. #else // !AUTO_BED_LEVELING_GRID
  2029. // Probe at 3 arbitrary points
  2030. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2031. if (enhanced_g29) {
  2032. // Basic Enhanced G29
  2033. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2034. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2035. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2036. }
  2037. else {
  2038. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
  2039. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2040. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2041. }
  2042. clean_up_after_endstop_move();
  2043. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2044. #endif // !AUTO_BED_LEVELING_GRID
  2045. #ifndef DELTA
  2046. if (verbose_level > 0)
  2047. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2048. // Correct the Z height difference from z-probe position and hotend tip position.
  2049. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2050. // When the bed is uneven, this height must be corrected.
  2051. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2052. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2053. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2054. z_tmp = current_position[Z_AXIS];
  2055. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2056. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. #endif
  2059. #ifdef Z_PROBE_SLED
  2060. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2061. #elif defined(Z_PROBE_ALLEN_KEY)
  2062. retract_z_probe();
  2063. #endif
  2064. #ifdef Z_PROBE_END_SCRIPT
  2065. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2066. st_synchronize();
  2067. #endif
  2068. }
  2069. #ifndef Z_PROBE_SLED
  2070. inline void gcode_G30() {
  2071. engage_z_probe(); // Engage Z Servo endstop if available
  2072. st_synchronize();
  2073. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2074. setup_for_endstop_move();
  2075. feedrate = homing_feedrate[Z_AXIS];
  2076. run_z_probe();
  2077. SERIAL_PROTOCOLPGM(MSG_BED);
  2078. SERIAL_PROTOCOLPGM(" X: ");
  2079. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2080. SERIAL_PROTOCOLPGM(" Y: ");
  2081. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2082. SERIAL_PROTOCOLPGM(" Z: ");
  2083. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2084. SERIAL_EOL;
  2085. clean_up_after_endstop_move();
  2086. retract_z_probe(); // Retract Z Servo endstop if available
  2087. }
  2088. #endif //!Z_PROBE_SLED
  2089. #endif //ENABLE_AUTO_BED_LEVELING
  2090. /**
  2091. * G92: Set current position to given X Y Z E
  2092. */
  2093. inline void gcode_G92() {
  2094. if (!code_seen(axis_codes[E_AXIS]))
  2095. st_synchronize();
  2096. for (int i = 0; i < NUM_AXIS; i++) {
  2097. if (code_seen(axis_codes[i])) {
  2098. current_position[i] = code_value();
  2099. if (i == E_AXIS)
  2100. plan_set_e_position(current_position[E_AXIS]);
  2101. else
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. }
  2104. }
  2105. }
  2106. #ifdef ULTIPANEL
  2107. /**
  2108. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2109. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2110. */
  2111. inline void gcode_M0_M1() {
  2112. char *src = strchr_pointer + 2;
  2113. unsigned long codenum = 0;
  2114. bool hasP = false, hasS = false;
  2115. if (code_seen('P')) {
  2116. codenum = code_value(); // milliseconds to wait
  2117. hasP = codenum > 0;
  2118. }
  2119. if (code_seen('S')) {
  2120. codenum = code_value() * 1000; // seconds to wait
  2121. hasS = codenum > 0;
  2122. }
  2123. char* starpos = strchr(src, '*');
  2124. if (starpos != NULL) *(starpos) = '\0';
  2125. while (*src == ' ') ++src;
  2126. if (!hasP && !hasS && *src != '\0')
  2127. lcd_setstatus(src);
  2128. else
  2129. LCD_MESSAGEPGM(MSG_USERWAIT);
  2130. lcd_ignore_click();
  2131. st_synchronize();
  2132. previous_millis_cmd = millis();
  2133. if (codenum > 0) {
  2134. codenum += previous_millis_cmd; // keep track of when we started waiting
  2135. while(millis() < codenum && !lcd_clicked()) {
  2136. manage_heater();
  2137. manage_inactivity();
  2138. lcd_update();
  2139. }
  2140. lcd_ignore_click(false);
  2141. }
  2142. else {
  2143. if (!lcd_detected()) return;
  2144. while (!lcd_clicked()) {
  2145. manage_heater();
  2146. manage_inactivity();
  2147. lcd_update();
  2148. }
  2149. }
  2150. if (IS_SD_PRINTING)
  2151. LCD_MESSAGEPGM(MSG_RESUMING);
  2152. else
  2153. LCD_MESSAGEPGM(WELCOME_MSG);
  2154. }
  2155. #endif // ULTIPANEL
  2156. /**
  2157. * M17: Enable power on all stepper motors
  2158. */
  2159. inline void gcode_M17() {
  2160. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2161. enable_x();
  2162. enable_y();
  2163. enable_z();
  2164. enable_e0();
  2165. enable_e1();
  2166. enable_e2();
  2167. enable_e3();
  2168. }
  2169. #ifdef SDSUPPORT
  2170. /**
  2171. * M20: List SD card to serial output
  2172. */
  2173. inline void gcode_M20() {
  2174. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2175. card.ls();
  2176. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2177. }
  2178. /**
  2179. * M21: Init SD Card
  2180. */
  2181. inline void gcode_M21() {
  2182. card.initsd();
  2183. }
  2184. /**
  2185. * M22: Release SD Card
  2186. */
  2187. inline void gcode_M22() {
  2188. card.release();
  2189. }
  2190. /**
  2191. * M23: Select a file
  2192. */
  2193. inline void gcode_M23() {
  2194. char* codepos = strchr_pointer + 4;
  2195. char* starpos = strchr(codepos, '*');
  2196. if (starpos) *starpos = '\0';
  2197. card.openFile(codepos, true);
  2198. }
  2199. /**
  2200. * M24: Start SD Print
  2201. */
  2202. inline void gcode_M24() {
  2203. card.startFileprint();
  2204. starttime = millis();
  2205. }
  2206. /**
  2207. * M25: Pause SD Print
  2208. */
  2209. inline void gcode_M25() {
  2210. card.pauseSDPrint();
  2211. }
  2212. /**
  2213. * M26: Set SD Card file index
  2214. */
  2215. inline void gcode_M26() {
  2216. if (card.cardOK && code_seen('S'))
  2217. card.setIndex(code_value_long());
  2218. }
  2219. /**
  2220. * M27: Get SD Card status
  2221. */
  2222. inline void gcode_M27() {
  2223. card.getStatus();
  2224. }
  2225. /**
  2226. * M28: Start SD Write
  2227. */
  2228. inline void gcode_M28() {
  2229. char* codepos = strchr_pointer + 4;
  2230. char* starpos = strchr(codepos, '*');
  2231. if (starpos) {
  2232. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2233. strchr_pointer = strchr(npos, ' ') + 1;
  2234. *(starpos) = '\0';
  2235. }
  2236. card.openFile(codepos, false);
  2237. }
  2238. /**
  2239. * M29: Stop SD Write
  2240. * Processed in write to file routine above
  2241. */
  2242. inline void gcode_M29() {
  2243. // card.saving = false;
  2244. }
  2245. /**
  2246. * M30 <filename>: Delete SD Card file
  2247. */
  2248. inline void gcode_M30() {
  2249. if (card.cardOK) {
  2250. card.closefile();
  2251. char* starpos = strchr(strchr_pointer + 4, '*');
  2252. if (starpos) {
  2253. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2254. strchr_pointer = strchr(npos, ' ') + 1;
  2255. *(starpos) = '\0';
  2256. }
  2257. card.removeFile(strchr_pointer + 4);
  2258. }
  2259. }
  2260. #endif
  2261. /**
  2262. * M31: Get the time since the start of SD Print (or last M109)
  2263. */
  2264. inline void gcode_M31() {
  2265. stoptime = millis();
  2266. unsigned long t = (stoptime - starttime) / 1000;
  2267. int min = t / 60, sec = t % 60;
  2268. char time[30];
  2269. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHOLN(time);
  2272. lcd_setstatus(time);
  2273. autotempShutdown();
  2274. }
  2275. #ifdef SDSUPPORT
  2276. /**
  2277. * M32: Select file and start SD Print
  2278. */
  2279. inline void gcode_M32() {
  2280. if (card.sdprinting)
  2281. st_synchronize();
  2282. char* codepos = strchr_pointer + 4;
  2283. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2284. if (! namestartpos)
  2285. namestartpos = codepos; //default name position, 4 letters after the M
  2286. else
  2287. namestartpos++; //to skip the '!'
  2288. char* starpos = strchr(codepos, '*');
  2289. if (starpos) *(starpos) = '\0';
  2290. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2291. if (card.cardOK) {
  2292. card.openFile(namestartpos, true, !call_procedure);
  2293. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2294. card.setIndex(code_value_long());
  2295. card.startFileprint();
  2296. if (!call_procedure)
  2297. starttime = millis(); //procedure calls count as normal print time.
  2298. }
  2299. }
  2300. /**
  2301. * M928: Start SD Write
  2302. */
  2303. inline void gcode_M928() {
  2304. char* starpos = strchr(strchr_pointer + 5, '*');
  2305. if (starpos) {
  2306. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2307. strchr_pointer = strchr(npos, ' ') + 1;
  2308. *(starpos) = '\0';
  2309. }
  2310. card.openLogFile(strchr_pointer + 5);
  2311. }
  2312. #endif // SDSUPPORT
  2313. /**
  2314. * M42: Change pin status via GCode
  2315. */
  2316. inline void gcode_M42() {
  2317. if (code_seen('S')) {
  2318. int pin_status = code_value(),
  2319. pin_number = LED_PIN;
  2320. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2321. pin_number = code_value();
  2322. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2323. if (sensitive_pins[i] == pin_number) {
  2324. pin_number = -1;
  2325. break;
  2326. }
  2327. }
  2328. #if defined(FAN_PIN) && FAN_PIN > -1
  2329. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2330. #endif
  2331. if (pin_number > -1) {
  2332. pinMode(pin_number, OUTPUT);
  2333. digitalWrite(pin_number, pin_status);
  2334. analogWrite(pin_number, pin_status);
  2335. }
  2336. } // code_seen('S')
  2337. }
  2338. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2339. #if Z_MIN_PIN == -1
  2340. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2341. #endif
  2342. /**
  2343. * M48: Z-Probe repeatability measurement function.
  2344. *
  2345. * Usage:
  2346. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2347. * n = Number of samples (4-50, default 10)
  2348. * X = Sample X position
  2349. * Y = Sample Y position
  2350. * V = Verbose level (0-4, default=1)
  2351. * E = Engage probe for each reading
  2352. * L = Number of legs of movement before probe
  2353. *
  2354. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2355. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2356. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2357. * regenerated.
  2358. *
  2359. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2360. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2361. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2362. */
  2363. inline void gcode_M48() {
  2364. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2365. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2366. double X_current, Y_current, Z_current;
  2367. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2368. if (code_seen('V') || code_seen('v')) {
  2369. verbose_level = code_value();
  2370. if (verbose_level < 0 || verbose_level > 4 ) {
  2371. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2372. return;
  2373. }
  2374. }
  2375. if (verbose_level > 0)
  2376. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2377. if (code_seen('n')) {
  2378. n_samples = code_value();
  2379. if (n_samples < 4 || n_samples > 50) {
  2380. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2381. return;
  2382. }
  2383. }
  2384. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2385. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2386. Z_current = st_get_position_mm(Z_AXIS);
  2387. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2388. ext_position = st_get_position_mm(E_AXIS);
  2389. if (code_seen('E') || code_seen('e'))
  2390. engage_probe_for_each_reading++;
  2391. if (code_seen('X') || code_seen('x')) {
  2392. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2393. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2394. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2395. return;
  2396. }
  2397. }
  2398. if (code_seen('Y') || code_seen('y')) {
  2399. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2400. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2401. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2402. return;
  2403. }
  2404. }
  2405. if (code_seen('L') || code_seen('l')) {
  2406. n_legs = code_value();
  2407. if (n_legs == 1) n_legs = 2;
  2408. if (n_legs < 0 || n_legs > 15) {
  2409. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2410. return;
  2411. }
  2412. }
  2413. //
  2414. // Do all the preliminary setup work. First raise the probe.
  2415. //
  2416. st_synchronize();
  2417. plan_bed_level_matrix.set_to_identity();
  2418. plan_buffer_line(X_current, Y_current, Z_start_location,
  2419. ext_position,
  2420. homing_feedrate[Z_AXIS] / 60,
  2421. active_extruder);
  2422. st_synchronize();
  2423. //
  2424. // Now get everything to the specified probe point So we can safely do a probe to
  2425. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2426. // use that as a starting point for each probe.
  2427. //
  2428. if (verbose_level > 2)
  2429. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2430. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2431. ext_position,
  2432. homing_feedrate[X_AXIS]/60,
  2433. active_extruder);
  2434. st_synchronize();
  2435. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2436. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2437. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2438. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2439. //
  2440. // OK, do the inital probe to get us close to the bed.
  2441. // Then retrace the right amount and use that in subsequent probes
  2442. //
  2443. engage_z_probe();
  2444. setup_for_endstop_move();
  2445. run_z_probe();
  2446. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2447. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2448. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2449. ext_position,
  2450. homing_feedrate[X_AXIS]/60,
  2451. active_extruder);
  2452. st_synchronize();
  2453. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2454. if (engage_probe_for_each_reading) retract_z_probe();
  2455. for (n=0; n < n_samples; n++) {
  2456. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2457. if (n_legs) {
  2458. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2459. int l;
  2460. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2461. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2462. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2463. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2464. //SERIAL_ECHOPAIR(" theta: ",theta);
  2465. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2466. //SERIAL_PROTOCOLLNPGM("");
  2467. float dir = rotational_direction ? 1 : -1;
  2468. for (l = 0; l < n_legs - 1; l++) {
  2469. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2470. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2471. if (radius < 0.0) radius = -radius;
  2472. X_current = X_probe_location + cos(theta) * radius;
  2473. Y_current = Y_probe_location + sin(theta) * radius;
  2474. // Make sure our X & Y are sane
  2475. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2476. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2477. if (verbose_level > 3) {
  2478. SERIAL_ECHOPAIR("x: ", X_current);
  2479. SERIAL_ECHOPAIR("y: ", Y_current);
  2480. SERIAL_PROTOCOLLNPGM("");
  2481. }
  2482. do_blocking_move_to( X_current, Y_current, Z_current );
  2483. }
  2484. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2485. }
  2486. if (engage_probe_for_each_reading) {
  2487. engage_z_probe();
  2488. delay(1000);
  2489. }
  2490. setup_for_endstop_move();
  2491. run_z_probe();
  2492. sample_set[n] = current_position[Z_AXIS];
  2493. //
  2494. // Get the current mean for the data points we have so far
  2495. //
  2496. sum = 0.0;
  2497. for (j=0; j<=n; j++) sum += sample_set[j];
  2498. mean = sum / (double (n+1));
  2499. //
  2500. // Now, use that mean to calculate the standard deviation for the
  2501. // data points we have so far
  2502. //
  2503. sum = 0.0;
  2504. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2505. sigma = sqrt( sum / (double (n+1)) );
  2506. if (verbose_level > 1) {
  2507. SERIAL_PROTOCOL(n+1);
  2508. SERIAL_PROTOCOL(" of ");
  2509. SERIAL_PROTOCOL(n_samples);
  2510. SERIAL_PROTOCOLPGM(" z: ");
  2511. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2512. }
  2513. if (verbose_level > 2) {
  2514. SERIAL_PROTOCOL(" mean: ");
  2515. SERIAL_PROTOCOL_F(mean,6);
  2516. SERIAL_PROTOCOL(" sigma: ");
  2517. SERIAL_PROTOCOL_F(sigma,6);
  2518. }
  2519. if (verbose_level > 0) SERIAL_EOL;
  2520. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2521. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2522. st_synchronize();
  2523. if (engage_probe_for_each_reading) {
  2524. retract_z_probe();
  2525. delay(1000);
  2526. }
  2527. }
  2528. retract_z_probe();
  2529. delay(1000);
  2530. clean_up_after_endstop_move();
  2531. // enable_endstops(true);
  2532. if (verbose_level > 0) {
  2533. SERIAL_PROTOCOLPGM("Mean: ");
  2534. SERIAL_PROTOCOL_F(mean, 6);
  2535. SERIAL_EOL;
  2536. }
  2537. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2538. SERIAL_PROTOCOL_F(sigma, 6);
  2539. SERIAL_EOL; SERIAL_EOL;
  2540. }
  2541. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2542. /**
  2543. * M104: Set hot end temperature
  2544. */
  2545. inline void gcode_M104() {
  2546. if (setTargetedHotend(104)) return;
  2547. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2548. #ifdef DUAL_X_CARRIAGE
  2549. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2550. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2551. #endif
  2552. setWatch();
  2553. }
  2554. /**
  2555. * M105: Read hot end and bed temperature
  2556. */
  2557. inline void gcode_M105() {
  2558. if (setTargetedHotend(105)) return;
  2559. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2560. SERIAL_PROTOCOLPGM("ok T:");
  2561. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2562. SERIAL_PROTOCOLPGM(" /");
  2563. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2564. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2565. SERIAL_PROTOCOLPGM(" B:");
  2566. SERIAL_PROTOCOL_F(degBed(),1);
  2567. SERIAL_PROTOCOLPGM(" /");
  2568. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2569. #endif //TEMP_BED_PIN
  2570. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2571. SERIAL_PROTOCOLPGM(" T");
  2572. SERIAL_PROTOCOL(cur_extruder);
  2573. SERIAL_PROTOCOLPGM(":");
  2574. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2575. SERIAL_PROTOCOLPGM(" /");
  2576. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2577. }
  2578. #else
  2579. SERIAL_ERROR_START;
  2580. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2581. #endif
  2582. SERIAL_PROTOCOLPGM(" @:");
  2583. #ifdef EXTRUDER_WATTS
  2584. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2585. SERIAL_PROTOCOLPGM("W");
  2586. #else
  2587. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2588. #endif
  2589. SERIAL_PROTOCOLPGM(" B@:");
  2590. #ifdef BED_WATTS
  2591. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2592. SERIAL_PROTOCOLPGM("W");
  2593. #else
  2594. SERIAL_PROTOCOL(getHeaterPower(-1));
  2595. #endif
  2596. #ifdef SHOW_TEMP_ADC_VALUES
  2597. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2598. SERIAL_PROTOCOLPGM(" ADC B:");
  2599. SERIAL_PROTOCOL_F(degBed(),1);
  2600. SERIAL_PROTOCOLPGM("C->");
  2601. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2602. #endif
  2603. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2604. SERIAL_PROTOCOLPGM(" T");
  2605. SERIAL_PROTOCOL(cur_extruder);
  2606. SERIAL_PROTOCOLPGM(":");
  2607. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2608. SERIAL_PROTOCOLPGM("C->");
  2609. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2610. }
  2611. #endif
  2612. SERIAL_PROTOCOLLN("");
  2613. }
  2614. #if defined(FAN_PIN) && FAN_PIN > -1
  2615. /**
  2616. * M106: Set Fan Speed
  2617. */
  2618. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2619. /**
  2620. * M107: Fan Off
  2621. */
  2622. inline void gcode_M107() { fanSpeed = 0; }
  2623. #endif //FAN_PIN
  2624. /**
  2625. * M109: Wait for extruder(s) to reach temperature
  2626. */
  2627. inline void gcode_M109() {
  2628. if (setTargetedHotend(109)) return;
  2629. LCD_MESSAGEPGM(MSG_HEATING);
  2630. CooldownNoWait = code_seen('S');
  2631. if (CooldownNoWait || code_seen('R')) {
  2632. setTargetHotend(code_value(), tmp_extruder);
  2633. #ifdef DUAL_X_CARRIAGE
  2634. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2635. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2636. #endif
  2637. }
  2638. #ifdef AUTOTEMP
  2639. autotemp_enabled = code_seen('F');
  2640. if (autotemp_enabled) autotemp_factor = code_value();
  2641. if (code_seen('S')) autotemp_min = code_value();
  2642. if (code_seen('B')) autotemp_max = code_value();
  2643. #endif
  2644. setWatch();
  2645. unsigned long timetemp = millis();
  2646. /* See if we are heating up or cooling down */
  2647. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2648. cancel_heatup = false;
  2649. #ifdef TEMP_RESIDENCY_TIME
  2650. long residencyStart = -1;
  2651. /* continue to loop until we have reached the target temp
  2652. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2653. while((!cancel_heatup)&&((residencyStart == -1) ||
  2654. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2655. #else
  2656. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2657. #endif //TEMP_RESIDENCY_TIME
  2658. { // while loop
  2659. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2660. SERIAL_PROTOCOLPGM("T:");
  2661. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2662. SERIAL_PROTOCOLPGM(" E:");
  2663. SERIAL_PROTOCOL((int)tmp_extruder);
  2664. #ifdef TEMP_RESIDENCY_TIME
  2665. SERIAL_PROTOCOLPGM(" W:");
  2666. if (residencyStart > -1) {
  2667. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2668. SERIAL_PROTOCOLLN( timetemp );
  2669. }
  2670. else {
  2671. SERIAL_PROTOCOLLN( "?" );
  2672. }
  2673. #else
  2674. SERIAL_PROTOCOLLN("");
  2675. #endif
  2676. timetemp = millis();
  2677. }
  2678. manage_heater();
  2679. manage_inactivity();
  2680. lcd_update();
  2681. #ifdef TEMP_RESIDENCY_TIME
  2682. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2683. // or when current temp falls outside the hysteresis after target temp was reached
  2684. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2685. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2686. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2687. {
  2688. residencyStart = millis();
  2689. }
  2690. #endif //TEMP_RESIDENCY_TIME
  2691. }
  2692. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2693. starttime = previous_millis_cmd = millis();
  2694. }
  2695. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2696. /**
  2697. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2698. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2699. */
  2700. inline void gcode_M190() {
  2701. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2702. CooldownNoWait = code_seen('S');
  2703. if (CooldownNoWait || code_seen('R'))
  2704. setTargetBed(code_value());
  2705. unsigned long timetemp = millis();
  2706. cancel_heatup = false;
  2707. target_direction = isHeatingBed(); // true if heating, false if cooling
  2708. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2709. unsigned long ms = millis();
  2710. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2711. timetemp = ms;
  2712. float tt = degHotend(active_extruder);
  2713. SERIAL_PROTOCOLPGM("T:");
  2714. SERIAL_PROTOCOL(tt);
  2715. SERIAL_PROTOCOLPGM(" E:");
  2716. SERIAL_PROTOCOL((int)active_extruder);
  2717. SERIAL_PROTOCOLPGM(" B:");
  2718. SERIAL_PROTOCOL_F(degBed(), 1);
  2719. SERIAL_PROTOCOLLN("");
  2720. }
  2721. manage_heater();
  2722. manage_inactivity();
  2723. lcd_update();
  2724. }
  2725. LCD_MESSAGEPGM(MSG_BED_DONE);
  2726. previous_millis_cmd = millis();
  2727. }
  2728. #endif // TEMP_BED_PIN > -1
  2729. /**
  2730. * M112: Emergency Stop
  2731. */
  2732. inline void gcode_M112() {
  2733. kill();
  2734. }
  2735. #ifdef BARICUDA
  2736. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2737. /**
  2738. * M126: Heater 1 valve open
  2739. */
  2740. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2741. /**
  2742. * M127: Heater 1 valve close
  2743. */
  2744. inline void gcode_M127() { ValvePressure = 0; }
  2745. #endif
  2746. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2747. /**
  2748. * M128: Heater 2 valve open
  2749. */
  2750. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2751. /**
  2752. * M129: Heater 2 valve close
  2753. */
  2754. inline void gcode_M129() { EtoPPressure = 0; }
  2755. #endif
  2756. #endif //BARICUDA
  2757. /**
  2758. * M140: Set bed temperature
  2759. */
  2760. inline void gcode_M140() {
  2761. if (code_seen('S')) setTargetBed(code_value());
  2762. }
  2763. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2764. /**
  2765. * M80: Turn on Power Supply
  2766. */
  2767. inline void gcode_M80() {
  2768. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2769. // If you have a switch on suicide pin, this is useful
  2770. // if you want to start another print with suicide feature after
  2771. // a print without suicide...
  2772. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2773. OUT_WRITE(SUICIDE_PIN, HIGH);
  2774. #endif
  2775. #ifdef ULTIPANEL
  2776. powersupply = true;
  2777. LCD_MESSAGEPGM(WELCOME_MSG);
  2778. lcd_update();
  2779. #endif
  2780. }
  2781. #endif // PS_ON_PIN
  2782. /**
  2783. * M81: Turn off Power Supply
  2784. */
  2785. inline void gcode_M81() {
  2786. disable_heater();
  2787. st_synchronize();
  2788. disable_e0();
  2789. disable_e1();
  2790. disable_e2();
  2791. disable_e3();
  2792. finishAndDisableSteppers();
  2793. fanSpeed = 0;
  2794. delay(1000); // Wait 1 second before switching off
  2795. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2796. st_synchronize();
  2797. suicide();
  2798. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2799. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2800. #endif
  2801. #ifdef ULTIPANEL
  2802. powersupply = false;
  2803. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2804. lcd_update();
  2805. #endif
  2806. }
  2807. /**
  2808. * M82: Set E codes absolute (default)
  2809. */
  2810. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2811. /**
  2812. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2813. */
  2814. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2815. /**
  2816. * M18, M84: Disable all stepper motors
  2817. */
  2818. inline void gcode_M18_M84() {
  2819. if (code_seen('S')) {
  2820. stepper_inactive_time = code_value() * 1000;
  2821. }
  2822. else {
  2823. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2824. if (all_axis) {
  2825. st_synchronize();
  2826. disable_e0();
  2827. disable_e1();
  2828. disable_e2();
  2829. disable_e3();
  2830. finishAndDisableSteppers();
  2831. }
  2832. else {
  2833. st_synchronize();
  2834. if (code_seen('X')) disable_x();
  2835. if (code_seen('Y')) disable_y();
  2836. if (code_seen('Z')) disable_z();
  2837. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2838. if (code_seen('E')) {
  2839. disable_e0();
  2840. disable_e1();
  2841. disable_e2();
  2842. disable_e3();
  2843. }
  2844. #endif
  2845. }
  2846. }
  2847. }
  2848. /**
  2849. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2850. */
  2851. inline void gcode_M85() {
  2852. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2853. }
  2854. /**
  2855. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2856. */
  2857. inline void gcode_M92() {
  2858. for(int8_t i=0; i < NUM_AXIS; i++) {
  2859. if (code_seen(axis_codes[i])) {
  2860. if (i == E_AXIS) {
  2861. float value = code_value();
  2862. if (value < 20.0) {
  2863. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2864. max_e_jerk *= factor;
  2865. max_feedrate[i] *= factor;
  2866. axis_steps_per_sqr_second[i] *= factor;
  2867. }
  2868. axis_steps_per_unit[i] = value;
  2869. }
  2870. else {
  2871. axis_steps_per_unit[i] = code_value();
  2872. }
  2873. }
  2874. }
  2875. }
  2876. /**
  2877. * M114: Output current position to serial port
  2878. */
  2879. inline void gcode_M114() {
  2880. SERIAL_PROTOCOLPGM("X:");
  2881. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2882. SERIAL_PROTOCOLPGM(" Y:");
  2883. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2884. SERIAL_PROTOCOLPGM(" Z:");
  2885. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2886. SERIAL_PROTOCOLPGM(" E:");
  2887. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2888. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2889. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2890. SERIAL_PROTOCOLPGM(" Y:");
  2891. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2892. SERIAL_PROTOCOLPGM(" Z:");
  2893. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2894. SERIAL_PROTOCOLLN("");
  2895. #ifdef SCARA
  2896. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2897. SERIAL_PROTOCOL(delta[X_AXIS]);
  2898. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2899. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2900. SERIAL_PROTOCOLLN("");
  2901. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2902. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2903. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2904. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2905. SERIAL_PROTOCOLLN("");
  2906. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2907. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2908. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2909. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2910. SERIAL_PROTOCOLLN("");
  2911. SERIAL_PROTOCOLLN("");
  2912. #endif
  2913. }
  2914. /**
  2915. * M115: Capabilities string
  2916. */
  2917. inline void gcode_M115() {
  2918. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2919. }
  2920. /**
  2921. * M117: Set LCD Status Message
  2922. */
  2923. inline void gcode_M117() {
  2924. char* codepos = strchr_pointer + 5;
  2925. char* starpos = strchr(codepos, '*');
  2926. if (starpos) *starpos = '\0';
  2927. lcd_setstatus(codepos);
  2928. }
  2929. /**
  2930. * M119: Output endstop states to serial output
  2931. */
  2932. inline void gcode_M119() {
  2933. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2934. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2935. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2936. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2937. #endif
  2938. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2939. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2940. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2941. #endif
  2942. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2943. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2944. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2945. #endif
  2946. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2947. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2948. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2949. #endif
  2950. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2951. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2952. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2953. #endif
  2954. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2955. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2956. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2957. #endif
  2958. }
  2959. /**
  2960. * M120: Enable endstops
  2961. */
  2962. inline void gcode_M120() { enable_endstops(false); }
  2963. /**
  2964. * M121: Disable endstops
  2965. */
  2966. inline void gcode_M121() { enable_endstops(true); }
  2967. #ifdef BLINKM
  2968. /**
  2969. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2970. */
  2971. inline void gcode_M150() {
  2972. SendColors(
  2973. code_seen('R') ? (byte)code_value() : 0,
  2974. code_seen('U') ? (byte)code_value() : 0,
  2975. code_seen('B') ? (byte)code_value() : 0
  2976. );
  2977. }
  2978. #endif // BLINKM
  2979. /**
  2980. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2981. * T<extruder>
  2982. * D<millimeters>
  2983. */
  2984. inline void gcode_M200() {
  2985. tmp_extruder = active_extruder;
  2986. if (code_seen('T')) {
  2987. tmp_extruder = code_value();
  2988. if (tmp_extruder >= EXTRUDERS) {
  2989. SERIAL_ECHO_START;
  2990. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2991. return;
  2992. }
  2993. }
  2994. float area = .0;
  2995. if (code_seen('D')) {
  2996. float diameter = code_value();
  2997. // setting any extruder filament size disables volumetric on the assumption that
  2998. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2999. // for all extruders
  3000. volumetric_enabled = (diameter != 0.0);
  3001. if (volumetric_enabled) {
  3002. filament_size[tmp_extruder] = diameter;
  3003. // make sure all extruders have some sane value for the filament size
  3004. for (int i=0; i<EXTRUDERS; i++)
  3005. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3006. }
  3007. }
  3008. else {
  3009. //reserved for setting filament diameter via UFID or filament measuring device
  3010. return;
  3011. }
  3012. calculate_volumetric_multipliers();
  3013. }
  3014. /**
  3015. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3016. */
  3017. inline void gcode_M201() {
  3018. for (int8_t i=0; i < NUM_AXIS; i++) {
  3019. if (code_seen(axis_codes[i])) {
  3020. max_acceleration_units_per_sq_second[i] = code_value();
  3021. }
  3022. }
  3023. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3024. reset_acceleration_rates();
  3025. }
  3026. #if 0 // Not used for Sprinter/grbl gen6
  3027. inline void gcode_M202() {
  3028. for(int8_t i=0; i < NUM_AXIS; i++) {
  3029. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3030. }
  3031. }
  3032. #endif
  3033. /**
  3034. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3035. */
  3036. inline void gcode_M203() {
  3037. for (int8_t i=0; i < NUM_AXIS; i++) {
  3038. if (code_seen(axis_codes[i])) {
  3039. max_feedrate[i] = code_value();
  3040. }
  3041. }
  3042. }
  3043. /**
  3044. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3045. *
  3046. * P = Printing moves
  3047. * R = Retract only (no X, Y, Z) moves
  3048. * T = Travel (non printing) moves
  3049. *
  3050. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3051. */
  3052. inline void gcode_M204() {
  3053. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3054. {
  3055. acceleration = code_value();
  3056. travel_acceleration = acceleration;
  3057. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3058. SERIAL_EOL;
  3059. }
  3060. if (code_seen('P'))
  3061. {
  3062. acceleration = code_value();
  3063. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3064. SERIAL_EOL;
  3065. }
  3066. if (code_seen('R'))
  3067. {
  3068. retract_acceleration = code_value();
  3069. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3070. SERIAL_EOL;
  3071. }
  3072. if (code_seen('T'))
  3073. {
  3074. travel_acceleration = code_value();
  3075. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3076. SERIAL_EOL;
  3077. }
  3078. }
  3079. /**
  3080. * M205: Set Advanced Settings
  3081. *
  3082. * S = Min Feed Rate (mm/s)
  3083. * T = Min Travel Feed Rate (mm/s)
  3084. * B = Min Segment Time (µs)
  3085. * X = Max XY Jerk (mm/s/s)
  3086. * Z = Max Z Jerk (mm/s/s)
  3087. * E = Max E Jerk (mm/s/s)
  3088. */
  3089. inline void gcode_M205() {
  3090. if (code_seen('S')) minimumfeedrate = code_value();
  3091. if (code_seen('T')) mintravelfeedrate = code_value();
  3092. if (code_seen('B')) minsegmenttime = code_value();
  3093. if (code_seen('X')) max_xy_jerk = code_value();
  3094. if (code_seen('Z')) max_z_jerk = code_value();
  3095. if (code_seen('E')) max_e_jerk = code_value();
  3096. }
  3097. /**
  3098. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3099. */
  3100. inline void gcode_M206() {
  3101. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3102. if (code_seen(axis_codes[i])) {
  3103. home_offset[i] = code_value();
  3104. }
  3105. }
  3106. #ifdef SCARA
  3107. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3108. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3109. #endif
  3110. }
  3111. #ifdef DELTA
  3112. /**
  3113. * M665: Set delta configurations
  3114. *
  3115. * L = diagonal rod
  3116. * R = delta radius
  3117. * S = segments per second
  3118. */
  3119. inline void gcode_M665() {
  3120. if (code_seen('L')) delta_diagonal_rod = code_value();
  3121. if (code_seen('R')) delta_radius = code_value();
  3122. if (code_seen('S')) delta_segments_per_second = code_value();
  3123. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3124. }
  3125. /**
  3126. * M666: Set delta endstop adjustment
  3127. */
  3128. inline void gcode_M666() {
  3129. for (int8_t i = 0; i < 3; i++) {
  3130. if (code_seen(axis_codes[i])) {
  3131. endstop_adj[i] = code_value();
  3132. }
  3133. }
  3134. }
  3135. #endif // DELTA
  3136. #ifdef FWRETRACT
  3137. /**
  3138. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3139. */
  3140. inline void gcode_M207() {
  3141. if (code_seen('S')) retract_length = code_value();
  3142. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3143. if (code_seen('Z')) retract_zlift = code_value();
  3144. }
  3145. /**
  3146. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3147. */
  3148. inline void gcode_M208() {
  3149. if (code_seen('S')) retract_recover_length = code_value();
  3150. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3151. }
  3152. /**
  3153. * M209: Enable automatic retract (M209 S1)
  3154. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3155. */
  3156. inline void gcode_M209() {
  3157. if (code_seen('S')) {
  3158. int t = code_value();
  3159. switch(t) {
  3160. case 0:
  3161. autoretract_enabled = false;
  3162. break;
  3163. case 1:
  3164. autoretract_enabled = true;
  3165. break;
  3166. default:
  3167. SERIAL_ECHO_START;
  3168. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3169. SERIAL_ECHO(cmdbuffer[bufindr]);
  3170. SERIAL_ECHOLNPGM("\"");
  3171. return;
  3172. }
  3173. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3174. }
  3175. }
  3176. #endif // FWRETRACT
  3177. #if EXTRUDERS > 1
  3178. /**
  3179. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3180. */
  3181. inline void gcode_M218() {
  3182. if (setTargetedHotend(218)) return;
  3183. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3184. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3185. #ifdef DUAL_X_CARRIAGE
  3186. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3187. #endif
  3188. SERIAL_ECHO_START;
  3189. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3190. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3191. SERIAL_ECHO(" ");
  3192. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3193. SERIAL_ECHO(",");
  3194. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3195. #ifdef DUAL_X_CARRIAGE
  3196. SERIAL_ECHO(",");
  3197. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3198. #endif
  3199. }
  3200. SERIAL_EOL;
  3201. }
  3202. #endif // EXTRUDERS > 1
  3203. /**
  3204. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3205. */
  3206. inline void gcode_M220() {
  3207. if (code_seen('S')) feedmultiply = code_value();
  3208. }
  3209. /**
  3210. * M221: Set extrusion percentage (M221 T0 S95)
  3211. */
  3212. inline void gcode_M221() {
  3213. if (code_seen('S')) {
  3214. int sval = code_value();
  3215. if (code_seen('T')) {
  3216. if (setTargetedHotend(221)) return;
  3217. extruder_multiply[tmp_extruder] = sval;
  3218. }
  3219. else {
  3220. extrudemultiply = sval;
  3221. }
  3222. }
  3223. }
  3224. /**
  3225. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3226. */
  3227. inline void gcode_M226() {
  3228. if (code_seen('P')) {
  3229. int pin_number = code_value();
  3230. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3231. if (pin_state >= -1 && pin_state <= 1) {
  3232. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3233. if (sensitive_pins[i] == pin_number) {
  3234. pin_number = -1;
  3235. break;
  3236. }
  3237. }
  3238. if (pin_number > -1) {
  3239. int target = LOW;
  3240. st_synchronize();
  3241. pinMode(pin_number, INPUT);
  3242. switch(pin_state){
  3243. case 1:
  3244. target = HIGH;
  3245. break;
  3246. case 0:
  3247. target = LOW;
  3248. break;
  3249. case -1:
  3250. target = !digitalRead(pin_number);
  3251. break;
  3252. }
  3253. while(digitalRead(pin_number) != target) {
  3254. manage_heater();
  3255. manage_inactivity();
  3256. lcd_update();
  3257. }
  3258. } // pin_number > -1
  3259. } // pin_state -1 0 1
  3260. } // code_seen('P')
  3261. }
  3262. #if NUM_SERVOS > 0
  3263. /**
  3264. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3265. */
  3266. inline void gcode_M280() {
  3267. int servo_index = code_seen('P') ? code_value() : -1;
  3268. int servo_position = 0;
  3269. if (code_seen('S')) {
  3270. servo_position = code_value();
  3271. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3272. #if SERVO_LEVELING
  3273. servos[servo_index].attach(0);
  3274. #endif
  3275. servos[servo_index].write(servo_position);
  3276. #if SERVO_LEVELING
  3277. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3278. servos[servo_index].detach();
  3279. #endif
  3280. }
  3281. else {
  3282. SERIAL_ECHO_START;
  3283. SERIAL_ECHO("Servo ");
  3284. SERIAL_ECHO(servo_index);
  3285. SERIAL_ECHOLN(" out of range");
  3286. }
  3287. }
  3288. else if (servo_index >= 0) {
  3289. SERIAL_PROTOCOL(MSG_OK);
  3290. SERIAL_PROTOCOL(" Servo ");
  3291. SERIAL_PROTOCOL(servo_index);
  3292. SERIAL_PROTOCOL(": ");
  3293. SERIAL_PROTOCOL(servos[servo_index].read());
  3294. SERIAL_PROTOCOLLN("");
  3295. }
  3296. }
  3297. #endif // NUM_SERVOS > 0
  3298. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3299. /**
  3300. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3301. */
  3302. inline void gcode_M300() {
  3303. int beepS = code_seen('S') ? code_value() : 110;
  3304. int beepP = code_seen('P') ? code_value() : 1000;
  3305. if (beepS > 0) {
  3306. #if BEEPER > 0
  3307. tone(BEEPER, beepS);
  3308. delay(beepP);
  3309. noTone(BEEPER);
  3310. #elif defined(ULTRALCD)
  3311. lcd_buzz(beepS, beepP);
  3312. #elif defined(LCD_USE_I2C_BUZZER)
  3313. lcd_buzz(beepP, beepS);
  3314. #endif
  3315. }
  3316. else {
  3317. delay(beepP);
  3318. }
  3319. }
  3320. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3321. #ifdef PIDTEMP
  3322. /**
  3323. * M301: Set PID parameters P I D (and optionally C)
  3324. */
  3325. inline void gcode_M301() {
  3326. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3327. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3328. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3329. if (e < EXTRUDERS) { // catch bad input value
  3330. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3331. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3332. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3333. #ifdef PID_ADD_EXTRUSION_RATE
  3334. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3335. #endif
  3336. updatePID();
  3337. SERIAL_PROTOCOL(MSG_OK);
  3338. #ifdef PID_PARAMS_PER_EXTRUDER
  3339. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3340. SERIAL_PROTOCOL(e);
  3341. #endif // PID_PARAMS_PER_EXTRUDER
  3342. SERIAL_PROTOCOL(" p:");
  3343. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3344. SERIAL_PROTOCOL(" i:");
  3345. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3346. SERIAL_PROTOCOL(" d:");
  3347. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3348. #ifdef PID_ADD_EXTRUSION_RATE
  3349. SERIAL_PROTOCOL(" c:");
  3350. //Kc does not have scaling applied above, or in resetting defaults
  3351. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3352. #endif
  3353. SERIAL_PROTOCOLLN("");
  3354. }
  3355. else {
  3356. SERIAL_ECHO_START;
  3357. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3358. }
  3359. }
  3360. #endif // PIDTEMP
  3361. #ifdef PIDTEMPBED
  3362. inline void gcode_M304() {
  3363. if (code_seen('P')) bedKp = code_value();
  3364. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3365. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3366. updatePID();
  3367. SERIAL_PROTOCOL(MSG_OK);
  3368. SERIAL_PROTOCOL(" p:");
  3369. SERIAL_PROTOCOL(bedKp);
  3370. SERIAL_PROTOCOL(" i:");
  3371. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3372. SERIAL_PROTOCOL(" d:");
  3373. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3374. SERIAL_PROTOCOLLN("");
  3375. }
  3376. #endif // PIDTEMPBED
  3377. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3378. /**
  3379. * M240: Trigger a camera by emulating a Canon RC-1
  3380. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3381. */
  3382. inline void gcode_M240() {
  3383. #ifdef CHDK
  3384. OUT_WRITE(CHDK, HIGH);
  3385. chdkHigh = millis();
  3386. chdkActive = true;
  3387. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3388. const uint8_t NUM_PULSES = 16;
  3389. const float PULSE_LENGTH = 0.01524;
  3390. for (int i = 0; i < NUM_PULSES; i++) {
  3391. WRITE(PHOTOGRAPH_PIN, HIGH);
  3392. _delay_ms(PULSE_LENGTH);
  3393. WRITE(PHOTOGRAPH_PIN, LOW);
  3394. _delay_ms(PULSE_LENGTH);
  3395. }
  3396. delay(7.33);
  3397. for (int i = 0; i < NUM_PULSES; i++) {
  3398. WRITE(PHOTOGRAPH_PIN, HIGH);
  3399. _delay_ms(PULSE_LENGTH);
  3400. WRITE(PHOTOGRAPH_PIN, LOW);
  3401. _delay_ms(PULSE_LENGTH);
  3402. }
  3403. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3404. }
  3405. #endif // CHDK || PHOTOGRAPH_PIN
  3406. #ifdef DOGLCD
  3407. /**
  3408. * M250: Read and optionally set the LCD contrast
  3409. */
  3410. inline void gcode_M250() {
  3411. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3412. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3413. SERIAL_PROTOCOL(lcd_contrast);
  3414. SERIAL_PROTOCOLLN("");
  3415. }
  3416. #endif // DOGLCD
  3417. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3418. /**
  3419. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3420. */
  3421. inline void gcode_M302() {
  3422. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3423. }
  3424. #endif // PREVENT_DANGEROUS_EXTRUDE
  3425. /**
  3426. * M303: PID relay autotune
  3427. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3428. * E<extruder> (-1 for the bed)
  3429. * C<cycles>
  3430. */
  3431. inline void gcode_M303() {
  3432. int e = code_seen('E') ? code_value_long() : 0;
  3433. int c = code_seen('C') ? code_value_long() : 5;
  3434. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3435. PID_autotune(temp, e, c);
  3436. }
  3437. #ifdef SCARA
  3438. /**
  3439. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3440. */
  3441. inline bool gcode_M360() {
  3442. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3443. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3444. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3445. if (! Stopped) {
  3446. //get_coordinates(); // For X Y Z E F
  3447. delta[X_AXIS] = 0;
  3448. delta[Y_AXIS] = 120;
  3449. calculate_SCARA_forward_Transform(delta);
  3450. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3451. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3452. prepare_move();
  3453. //ClearToSend();
  3454. return true;
  3455. }
  3456. return false;
  3457. }
  3458. /**
  3459. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3460. */
  3461. inline bool gcode_M361() {
  3462. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3463. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3464. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3465. if (! Stopped) {
  3466. //get_coordinates(); // For X Y Z E F
  3467. delta[X_AXIS] = 90;
  3468. delta[Y_AXIS] = 130;
  3469. calculate_SCARA_forward_Transform(delta);
  3470. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3471. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3472. prepare_move();
  3473. //ClearToSend();
  3474. return true;
  3475. }
  3476. return false;
  3477. }
  3478. /**
  3479. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3480. */
  3481. inline bool gcode_M362() {
  3482. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3483. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3484. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3485. if (! Stopped) {
  3486. //get_coordinates(); // For X Y Z E F
  3487. delta[X_AXIS] = 60;
  3488. delta[Y_AXIS] = 180;
  3489. calculate_SCARA_forward_Transform(delta);
  3490. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3491. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3492. prepare_move();
  3493. //ClearToSend();
  3494. return true;
  3495. }
  3496. return false;
  3497. }
  3498. /**
  3499. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3500. */
  3501. inline bool gcode_M363() {
  3502. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3503. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3504. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3505. if (! Stopped) {
  3506. //get_coordinates(); // For X Y Z E F
  3507. delta[X_AXIS] = 50;
  3508. delta[Y_AXIS] = 90;
  3509. calculate_SCARA_forward_Transform(delta);
  3510. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3511. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3512. prepare_move();
  3513. //ClearToSend();
  3514. return true;
  3515. }
  3516. return false;
  3517. }
  3518. /**
  3519. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3520. */
  3521. inline bool gcode_M364() {
  3522. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3523. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3524. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3525. if (! Stopped) {
  3526. //get_coordinates(); // For X Y Z E F
  3527. delta[X_AXIS] = 45;
  3528. delta[Y_AXIS] = 135;
  3529. calculate_SCARA_forward_Transform(delta);
  3530. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3531. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3532. prepare_move();
  3533. //ClearToSend();
  3534. return true;
  3535. }
  3536. return false;
  3537. }
  3538. /**
  3539. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3540. */
  3541. inline void gcode_M365() {
  3542. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3543. if (code_seen(axis_codes[i])) {
  3544. axis_scaling[i] = code_value();
  3545. }
  3546. }
  3547. }
  3548. #endif // SCARA
  3549. #ifdef EXT_SOLENOID
  3550. void enable_solenoid(uint8_t num) {
  3551. switch(num) {
  3552. case 0:
  3553. OUT_WRITE(SOL0_PIN, HIGH);
  3554. break;
  3555. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3556. case 1:
  3557. OUT_WRITE(SOL1_PIN, HIGH);
  3558. break;
  3559. #endif
  3560. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3561. case 2:
  3562. OUT_WRITE(SOL2_PIN, HIGH);
  3563. break;
  3564. #endif
  3565. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3566. case 3:
  3567. OUT_WRITE(SOL3_PIN, HIGH);
  3568. break;
  3569. #endif
  3570. default:
  3571. SERIAL_ECHO_START;
  3572. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3573. break;
  3574. }
  3575. }
  3576. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3577. void disable_all_solenoids() {
  3578. OUT_WRITE(SOL0_PIN, LOW);
  3579. OUT_WRITE(SOL1_PIN, LOW);
  3580. OUT_WRITE(SOL2_PIN, LOW);
  3581. OUT_WRITE(SOL3_PIN, LOW);
  3582. }
  3583. /**
  3584. * M380: Enable solenoid on the active extruder
  3585. */
  3586. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3587. /**
  3588. * M381: Disable all solenoids
  3589. */
  3590. inline void gcode_M381() { disable_all_solenoids(); }
  3591. #endif // EXT_SOLENOID
  3592. /**
  3593. * M400: Finish all moves
  3594. */
  3595. inline void gcode_M400() { st_synchronize(); }
  3596. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3597. /**
  3598. * M401: Engage Z Servo endstop if available
  3599. */
  3600. inline void gcode_M401() { engage_z_probe(); }
  3601. /**
  3602. * M402: Retract Z Servo endstop if enabled
  3603. */
  3604. inline void gcode_M402() { retract_z_probe(); }
  3605. #endif
  3606. #ifdef FILAMENT_SENSOR
  3607. /**
  3608. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3609. */
  3610. inline void gcode_M404() {
  3611. #if FILWIDTH_PIN > -1
  3612. if (code_seen('W')) {
  3613. filament_width_nominal = code_value();
  3614. }
  3615. else {
  3616. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3617. SERIAL_PROTOCOLLN(filament_width_nominal);
  3618. }
  3619. #endif
  3620. }
  3621. /**
  3622. * M405: Turn on filament sensor for control
  3623. */
  3624. inline void gcode_M405() {
  3625. if (code_seen('D')) meas_delay_cm = code_value();
  3626. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3627. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3628. int temp_ratio = widthFil_to_size_ratio();
  3629. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3630. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3631. delay_index1 = delay_index2 = 0;
  3632. }
  3633. filament_sensor = true;
  3634. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3635. //SERIAL_PROTOCOL(filament_width_meas);
  3636. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3637. //SERIAL_PROTOCOL(extrudemultiply);
  3638. }
  3639. /**
  3640. * M406: Turn off filament sensor for control
  3641. */
  3642. inline void gcode_M406() { filament_sensor = false; }
  3643. /**
  3644. * M407: Get measured filament diameter on serial output
  3645. */
  3646. inline void gcode_M407() {
  3647. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3648. SERIAL_PROTOCOLLN(filament_width_meas);
  3649. }
  3650. #endif // FILAMENT_SENSOR
  3651. /**
  3652. * M500: Store settings in EEPROM
  3653. */
  3654. inline void gcode_M500() {
  3655. Config_StoreSettings();
  3656. }
  3657. /**
  3658. * M501: Read settings from EEPROM
  3659. */
  3660. inline void gcode_M501() {
  3661. Config_RetrieveSettings();
  3662. }
  3663. /**
  3664. * M502: Revert to default settings
  3665. */
  3666. inline void gcode_M502() {
  3667. Config_ResetDefault();
  3668. }
  3669. /**
  3670. * M503: print settings currently in memory
  3671. */
  3672. inline void gcode_M503() {
  3673. Config_PrintSettings(code_seen('S') && code_value == 0);
  3674. }
  3675. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3676. /**
  3677. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3678. */
  3679. inline void gcode_M540() {
  3680. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3681. }
  3682. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3683. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3684. inline void gcode_SET_Z_PROBE_OFFSET() {
  3685. float value;
  3686. if (code_seen('Z')) {
  3687. value = code_value();
  3688. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3689. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3690. SERIAL_ECHO_START;
  3691. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3692. SERIAL_PROTOCOLLN("");
  3693. }
  3694. else {
  3695. SERIAL_ECHO_START;
  3696. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3697. SERIAL_ECHOPGM(MSG_Z_MIN);
  3698. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3699. SERIAL_ECHOPGM(MSG_Z_MAX);
  3700. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3701. SERIAL_PROTOCOLLN("");
  3702. }
  3703. }
  3704. else {
  3705. SERIAL_ECHO_START;
  3706. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3707. SERIAL_ECHO(-zprobe_zoffset);
  3708. SERIAL_PROTOCOLLN("");
  3709. }
  3710. }
  3711. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3712. #ifdef FILAMENTCHANGEENABLE
  3713. /**
  3714. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3715. */
  3716. inline void gcode_M600() {
  3717. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3718. for (int i=0; i<NUM_AXIS; i++)
  3719. target[i] = lastpos[i] = current_position[i];
  3720. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3721. #ifdef DELTA
  3722. #define RUNPLAN calculate_delta(target); BASICPLAN
  3723. #else
  3724. #define RUNPLAN BASICPLAN
  3725. #endif
  3726. //retract by E
  3727. if (code_seen('E')) target[E_AXIS] += code_value();
  3728. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3729. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3730. #endif
  3731. RUNPLAN;
  3732. //lift Z
  3733. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3734. #ifdef FILAMENTCHANGE_ZADD
  3735. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3736. #endif
  3737. RUNPLAN;
  3738. //move xy
  3739. if (code_seen('X')) target[X_AXIS] = code_value();
  3740. #ifdef FILAMENTCHANGE_XPOS
  3741. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3742. #endif
  3743. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3744. #ifdef FILAMENTCHANGE_YPOS
  3745. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3746. #endif
  3747. RUNPLAN;
  3748. if (code_seen('L')) target[E_AXIS] += code_value();
  3749. #ifdef FILAMENTCHANGE_FINALRETRACT
  3750. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3751. #endif
  3752. RUNPLAN;
  3753. //finish moves
  3754. st_synchronize();
  3755. //disable extruder steppers so filament can be removed
  3756. disable_e0();
  3757. disable_e1();
  3758. disable_e2();
  3759. disable_e3();
  3760. delay(100);
  3761. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3762. uint8_t cnt = 0;
  3763. while (!lcd_clicked()) {
  3764. cnt++;
  3765. manage_heater();
  3766. manage_inactivity(true);
  3767. lcd_update();
  3768. if (cnt == 0) {
  3769. #if BEEPER > 0
  3770. OUT_WRITE(BEEPER,HIGH);
  3771. delay(3);
  3772. WRITE(BEEPER,LOW);
  3773. delay(3);
  3774. #else
  3775. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3776. lcd_buzz(1000/6, 100);
  3777. #else
  3778. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3779. #endif
  3780. #endif
  3781. }
  3782. } // while(!lcd_clicked)
  3783. //return to normal
  3784. if (code_seen('L')) target[E_AXIS] -= code_value();
  3785. #ifdef FILAMENTCHANGE_FINALRETRACT
  3786. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3787. #endif
  3788. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3789. plan_set_e_position(current_position[E_AXIS]);
  3790. RUNPLAN; //should do nothing
  3791. lcd_reset_alert_level();
  3792. #ifdef DELTA
  3793. calculate_delta(lastpos);
  3794. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3795. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3796. #else
  3797. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3798. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3799. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3800. #endif
  3801. #ifdef FILAMENT_RUNOUT_SENSOR
  3802. filrunoutEnqued = false;
  3803. #endif
  3804. }
  3805. #endif // FILAMENTCHANGEENABLE
  3806. #ifdef DUAL_X_CARRIAGE
  3807. /**
  3808. * M605: Set dual x-carriage movement mode
  3809. *
  3810. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3811. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3812. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3813. * millimeters x-offset and an optional differential hotend temperature of
  3814. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3815. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3816. *
  3817. * Note: the X axis should be homed after changing dual x-carriage mode.
  3818. */
  3819. inline void gcode_M605() {
  3820. st_synchronize();
  3821. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3822. switch(dual_x_carriage_mode) {
  3823. case DXC_DUPLICATION_MODE:
  3824. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3825. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3826. SERIAL_ECHO_START;
  3827. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3828. SERIAL_ECHO(" ");
  3829. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3830. SERIAL_ECHO(",");
  3831. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3832. SERIAL_ECHO(" ");
  3833. SERIAL_ECHO(duplicate_extruder_x_offset);
  3834. SERIAL_ECHO(",");
  3835. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3836. break;
  3837. case DXC_FULL_CONTROL_MODE:
  3838. case DXC_AUTO_PARK_MODE:
  3839. break;
  3840. default:
  3841. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3842. break;
  3843. }
  3844. active_extruder_parked = false;
  3845. extruder_duplication_enabled = false;
  3846. delayed_move_time = 0;
  3847. }
  3848. #endif // DUAL_X_CARRIAGE
  3849. /**
  3850. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3851. */
  3852. inline void gcode_M907() {
  3853. #if HAS_DIGIPOTSS
  3854. for (int i=0;i<NUM_AXIS;i++)
  3855. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3856. if (code_seen('B')) digipot_current(4, code_value());
  3857. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3858. #endif
  3859. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3860. if (code_seen('X')) digipot_current(0, code_value());
  3861. #endif
  3862. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3863. if (code_seen('Z')) digipot_current(1, code_value());
  3864. #endif
  3865. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3866. if (code_seen('E')) digipot_current(2, code_value());
  3867. #endif
  3868. #ifdef DIGIPOT_I2C
  3869. // this one uses actual amps in floating point
  3870. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3871. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3872. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3873. #endif
  3874. }
  3875. #if HAS_DIGIPOTSS
  3876. /**
  3877. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3878. */
  3879. inline void gcode_M908() {
  3880. digitalPotWrite(
  3881. code_seen('P') ? code_value() : 0,
  3882. code_seen('S') ? code_value() : 0
  3883. );
  3884. }
  3885. #endif // HAS_DIGIPOTSS
  3886. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3887. inline void gcode_M350() {
  3888. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3889. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3890. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3891. if(code_seen('B')) microstep_mode(4,code_value());
  3892. microstep_readings();
  3893. #endif
  3894. }
  3895. /**
  3896. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3897. * S# determines MS1 or MS2, X# sets the pin high/low.
  3898. */
  3899. inline void gcode_M351() {
  3900. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3901. if (code_seen('S')) switch(code_value_long()) {
  3902. case 1:
  3903. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3904. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3905. break;
  3906. case 2:
  3907. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3908. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3909. break;
  3910. }
  3911. microstep_readings();
  3912. #endif
  3913. }
  3914. /**
  3915. * M999: Restart after being stopped
  3916. */
  3917. inline void gcode_M999() {
  3918. Stopped = false;
  3919. lcd_reset_alert_level();
  3920. gcode_LastN = Stopped_gcode_LastN;
  3921. FlushSerialRequestResend();
  3922. }
  3923. inline void gcode_T() {
  3924. tmp_extruder = code_value();
  3925. if (tmp_extruder >= EXTRUDERS) {
  3926. SERIAL_ECHO_START;
  3927. SERIAL_ECHO("T");
  3928. SERIAL_ECHO(tmp_extruder);
  3929. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3930. }
  3931. else {
  3932. boolean make_move = false;
  3933. if (code_seen('F')) {
  3934. make_move = true;
  3935. next_feedrate = code_value();
  3936. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3937. }
  3938. #if EXTRUDERS > 1
  3939. if (tmp_extruder != active_extruder) {
  3940. // Save current position to return to after applying extruder offset
  3941. memcpy(destination, current_position, sizeof(destination));
  3942. #ifdef DUAL_X_CARRIAGE
  3943. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3944. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3945. // Park old head: 1) raise 2) move to park position 3) lower
  3946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3947. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3948. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3949. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3950. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3951. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3952. st_synchronize();
  3953. }
  3954. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3955. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3956. extruder_offset[Y_AXIS][active_extruder] +
  3957. extruder_offset[Y_AXIS][tmp_extruder];
  3958. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3959. extruder_offset[Z_AXIS][active_extruder] +
  3960. extruder_offset[Z_AXIS][tmp_extruder];
  3961. active_extruder = tmp_extruder;
  3962. // This function resets the max/min values - the current position may be overwritten below.
  3963. axis_is_at_home(X_AXIS);
  3964. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3965. current_position[X_AXIS] = inactive_extruder_x_pos;
  3966. inactive_extruder_x_pos = destination[X_AXIS];
  3967. }
  3968. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3969. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3970. if (active_extruder == 0 || active_extruder_parked)
  3971. current_position[X_AXIS] = inactive_extruder_x_pos;
  3972. else
  3973. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3974. inactive_extruder_x_pos = destination[X_AXIS];
  3975. extruder_duplication_enabled = false;
  3976. }
  3977. else {
  3978. // record raised toolhead position for use by unpark
  3979. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3980. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3981. active_extruder_parked = true;
  3982. delayed_move_time = 0;
  3983. }
  3984. #else // !DUAL_X_CARRIAGE
  3985. // Offset extruder (only by XY)
  3986. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3987. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3988. // Set the new active extruder and position
  3989. active_extruder = tmp_extruder;
  3990. #endif // !DUAL_X_CARRIAGE
  3991. #ifdef DELTA
  3992. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3993. //sent position to plan_set_position();
  3994. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3995. #else
  3996. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3997. #endif
  3998. // Move to the old position if 'F' was in the parameters
  3999. if (make_move && !Stopped) prepare_move();
  4000. }
  4001. #ifdef EXT_SOLENOID
  4002. st_synchronize();
  4003. disable_all_solenoids();
  4004. enable_solenoid_on_active_extruder();
  4005. #endif // EXT_SOLENOID
  4006. #endif // EXTRUDERS > 1
  4007. SERIAL_ECHO_START;
  4008. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4009. SERIAL_PROTOCOLLN((int)active_extruder);
  4010. }
  4011. }
  4012. /**
  4013. * Process Commands and dispatch them to handlers
  4014. */
  4015. void process_commands() {
  4016. if (code_seen('G')) {
  4017. int gCode = code_value_long();
  4018. switch(gCode) {
  4019. // G0, G1
  4020. case 0:
  4021. case 1:
  4022. gcode_G0_G1();
  4023. break;
  4024. // G2, G3
  4025. #ifndef SCARA
  4026. case 2: // G2 - CW ARC
  4027. case 3: // G3 - CCW ARC
  4028. gcode_G2_G3(gCode == 2);
  4029. break;
  4030. #endif
  4031. // G4 Dwell
  4032. case 4:
  4033. gcode_G4();
  4034. break;
  4035. #ifdef FWRETRACT
  4036. case 10: // G10: retract
  4037. case 11: // G11: retract_recover
  4038. gcode_G10_G11(gCode == 10);
  4039. break;
  4040. #endif //FWRETRACT
  4041. case 28: // G28: Home all axes, one at a time
  4042. gcode_G28();
  4043. break;
  4044. #if defined(MESH_BED_LEVELING)
  4045. case 29: // G29 Handle mesh based leveling
  4046. gcode_G29();
  4047. break;
  4048. #endif
  4049. #ifdef ENABLE_AUTO_BED_LEVELING
  4050. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4051. gcode_G29();
  4052. break;
  4053. #ifndef Z_PROBE_SLED
  4054. case 30: // G30 Single Z Probe
  4055. gcode_G30();
  4056. break;
  4057. #else // Z_PROBE_SLED
  4058. case 31: // G31: dock the sled
  4059. case 32: // G32: undock the sled
  4060. dock_sled(gCode == 31);
  4061. break;
  4062. #endif // Z_PROBE_SLED
  4063. #endif // ENABLE_AUTO_BED_LEVELING
  4064. case 90: // G90
  4065. relative_mode = false;
  4066. break;
  4067. case 91: // G91
  4068. relative_mode = true;
  4069. break;
  4070. case 92: // G92
  4071. gcode_G92();
  4072. break;
  4073. }
  4074. }
  4075. else if (code_seen('M')) {
  4076. switch( code_value_long() ) {
  4077. #ifdef ULTIPANEL
  4078. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4079. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4080. gcode_M0_M1();
  4081. break;
  4082. #endif // ULTIPANEL
  4083. case 17:
  4084. gcode_M17();
  4085. break;
  4086. #ifdef SDSUPPORT
  4087. case 20: // M20 - list SD card
  4088. gcode_M20(); break;
  4089. case 21: // M21 - init SD card
  4090. gcode_M21(); break;
  4091. case 22: //M22 - release SD card
  4092. gcode_M22(); break;
  4093. case 23: //M23 - Select file
  4094. gcode_M23(); break;
  4095. case 24: //M24 - Start SD print
  4096. gcode_M24(); break;
  4097. case 25: //M25 - Pause SD print
  4098. gcode_M25(); break;
  4099. case 26: //M26 - Set SD index
  4100. gcode_M26(); break;
  4101. case 27: //M27 - Get SD status
  4102. gcode_M27(); break;
  4103. case 28: //M28 - Start SD write
  4104. gcode_M28(); break;
  4105. case 29: //M29 - Stop SD write
  4106. gcode_M29(); break;
  4107. case 30: //M30 <filename> Delete File
  4108. gcode_M30(); break;
  4109. case 32: //M32 - Select file and start SD print
  4110. gcode_M32(); break;
  4111. case 928: //M928 - Start SD write
  4112. gcode_M928(); break;
  4113. #endif //SDSUPPORT
  4114. case 31: //M31 take time since the start of the SD print or an M109 command
  4115. gcode_M31();
  4116. break;
  4117. case 42: //M42 -Change pin status via gcode
  4118. gcode_M42();
  4119. break;
  4120. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4121. case 48: // M48 Z-Probe repeatability
  4122. gcode_M48();
  4123. break;
  4124. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4125. case 104: // M104
  4126. gcode_M104();
  4127. break;
  4128. case 112: // M112 Emergency Stop
  4129. gcode_M112();
  4130. break;
  4131. case 140: // M140 Set bed temp
  4132. gcode_M140();
  4133. break;
  4134. case 105: // M105 Read current temperature
  4135. gcode_M105();
  4136. return;
  4137. break;
  4138. case 109: // M109 Wait for temperature
  4139. gcode_M109();
  4140. break;
  4141. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4142. case 190: // M190 - Wait for bed heater to reach target.
  4143. gcode_M190();
  4144. break;
  4145. #endif //TEMP_BED_PIN
  4146. #if defined(FAN_PIN) && FAN_PIN > -1
  4147. case 106: //M106 Fan On
  4148. gcode_M106();
  4149. break;
  4150. case 107: //M107 Fan Off
  4151. gcode_M107();
  4152. break;
  4153. #endif //FAN_PIN
  4154. #ifdef BARICUDA
  4155. // PWM for HEATER_1_PIN
  4156. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4157. case 126: // M126 valve open
  4158. gcode_M126();
  4159. break;
  4160. case 127: // M127 valve closed
  4161. gcode_M127();
  4162. break;
  4163. #endif //HEATER_1_PIN
  4164. // PWM for HEATER_2_PIN
  4165. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4166. case 128: // M128 valve open
  4167. gcode_M128();
  4168. break;
  4169. case 129: // M129 valve closed
  4170. gcode_M129();
  4171. break;
  4172. #endif //HEATER_2_PIN
  4173. #endif //BARICUDA
  4174. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4175. case 80: // M80 - Turn on Power Supply
  4176. gcode_M80();
  4177. break;
  4178. #endif // PS_ON_PIN
  4179. case 81: // M81 - Turn off Power Supply
  4180. gcode_M81();
  4181. break;
  4182. case 82:
  4183. gcode_M82();
  4184. break;
  4185. case 83:
  4186. gcode_M83();
  4187. break;
  4188. case 18: //compatibility
  4189. case 84: // M84
  4190. gcode_M18_M84();
  4191. break;
  4192. case 85: // M85
  4193. gcode_M85();
  4194. break;
  4195. case 92: // M92
  4196. gcode_M92();
  4197. break;
  4198. case 115: // M115
  4199. gcode_M115();
  4200. break;
  4201. case 117: // M117 display message
  4202. gcode_M117();
  4203. break;
  4204. case 114: // M114
  4205. gcode_M114();
  4206. break;
  4207. case 120: // M120
  4208. gcode_M120();
  4209. break;
  4210. case 121: // M121
  4211. gcode_M121();
  4212. break;
  4213. case 119: // M119
  4214. gcode_M119();
  4215. break;
  4216. //TODO: update for all axis, use for loop
  4217. #ifdef BLINKM
  4218. case 150: // M150
  4219. gcode_M150();
  4220. break;
  4221. #endif //BLINKM
  4222. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4223. gcode_M200();
  4224. break;
  4225. case 201: // M201
  4226. gcode_M201();
  4227. break;
  4228. #if 0 // Not used for Sprinter/grbl gen6
  4229. case 202: // M202
  4230. gcode_M202();
  4231. break;
  4232. #endif
  4233. case 203: // M203 max feedrate mm/sec
  4234. gcode_M203();
  4235. break;
  4236. case 204: // M204 acclereration S normal moves T filmanent only moves
  4237. gcode_M204();
  4238. break;
  4239. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4240. gcode_M205();
  4241. break;
  4242. case 206: // M206 additional homing offset
  4243. gcode_M206();
  4244. break;
  4245. #ifdef DELTA
  4246. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4247. gcode_M665();
  4248. break;
  4249. case 666: // M666 set delta endstop adjustment
  4250. gcode_M666();
  4251. break;
  4252. #endif // DELTA
  4253. #ifdef FWRETRACT
  4254. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4255. gcode_M207();
  4256. break;
  4257. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4258. gcode_M208();
  4259. break;
  4260. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4261. gcode_M209();
  4262. break;
  4263. #endif // FWRETRACT
  4264. #if EXTRUDERS > 1
  4265. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4266. gcode_M218();
  4267. break;
  4268. #endif
  4269. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4270. gcode_M220();
  4271. break;
  4272. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4273. gcode_M221();
  4274. break;
  4275. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4276. gcode_M226();
  4277. break;
  4278. #if NUM_SERVOS > 0
  4279. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4280. gcode_M280();
  4281. break;
  4282. #endif // NUM_SERVOS > 0
  4283. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4284. case 300: // M300 - Play beep tone
  4285. gcode_M300();
  4286. break;
  4287. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4288. #ifdef PIDTEMP
  4289. case 301: // M301
  4290. gcode_M301();
  4291. break;
  4292. #endif // PIDTEMP
  4293. #ifdef PIDTEMPBED
  4294. case 304: // M304
  4295. gcode_M304();
  4296. break;
  4297. #endif // PIDTEMPBED
  4298. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4299. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4300. gcode_M240();
  4301. break;
  4302. #endif // CHDK || PHOTOGRAPH_PIN
  4303. #ifdef DOGLCD
  4304. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4305. gcode_M250();
  4306. break;
  4307. #endif // DOGLCD
  4308. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4309. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4310. gcode_M302();
  4311. break;
  4312. #endif // PREVENT_DANGEROUS_EXTRUDE
  4313. case 303: // M303 PID autotune
  4314. gcode_M303();
  4315. break;
  4316. #ifdef SCARA
  4317. case 360: // M360 SCARA Theta pos1
  4318. if (gcode_M360()) return;
  4319. break;
  4320. case 361: // M361 SCARA Theta pos2
  4321. if (gcode_M361()) return;
  4322. break;
  4323. case 362: // M362 SCARA Psi pos1
  4324. if (gcode_M362()) return;
  4325. break;
  4326. case 363: // M363 SCARA Psi pos2
  4327. if (gcode_M363()) return;
  4328. break;
  4329. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4330. if (gcode_M364()) return;
  4331. break;
  4332. case 365: // M365 Set SCARA scaling for X Y Z
  4333. gcode_M365();
  4334. break;
  4335. #endif // SCARA
  4336. case 400: // M400 finish all moves
  4337. gcode_M400();
  4338. break;
  4339. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4340. case 401:
  4341. gcode_M401();
  4342. break;
  4343. case 402:
  4344. gcode_M402();
  4345. break;
  4346. #endif
  4347. #ifdef FILAMENT_SENSOR
  4348. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4349. gcode_M404();
  4350. break;
  4351. case 405: //M405 Turn on filament sensor for control
  4352. gcode_M405();
  4353. break;
  4354. case 406: //M406 Turn off filament sensor for control
  4355. gcode_M406();
  4356. break;
  4357. case 407: //M407 Display measured filament diameter
  4358. gcode_M407();
  4359. break;
  4360. #endif // FILAMENT_SENSOR
  4361. case 500: // M500 Store settings in EEPROM
  4362. gcode_M500();
  4363. break;
  4364. case 501: // M501 Read settings from EEPROM
  4365. gcode_M501();
  4366. break;
  4367. case 502: // M502 Revert to default settings
  4368. gcode_M502();
  4369. break;
  4370. case 503: // M503 print settings currently in memory
  4371. gcode_M503();
  4372. break;
  4373. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4374. case 540:
  4375. gcode_M540();
  4376. break;
  4377. #endif
  4378. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4379. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4380. gcode_SET_Z_PROBE_OFFSET();
  4381. break;
  4382. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4383. #ifdef FILAMENTCHANGEENABLE
  4384. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4385. gcode_M600();
  4386. break;
  4387. #endif // FILAMENTCHANGEENABLE
  4388. #ifdef DUAL_X_CARRIAGE
  4389. case 605:
  4390. gcode_M605();
  4391. break;
  4392. #endif // DUAL_X_CARRIAGE
  4393. case 907: // M907 Set digital trimpot motor current using axis codes.
  4394. gcode_M907();
  4395. break;
  4396. #if HAS_DIGIPOTSS
  4397. case 908: // M908 Control digital trimpot directly.
  4398. gcode_M908();
  4399. break;
  4400. #endif // HAS_DIGIPOTSS
  4401. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4402. gcode_M350();
  4403. break;
  4404. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4405. gcode_M351();
  4406. break;
  4407. case 999: // M999: Restart after being Stopped
  4408. gcode_M999();
  4409. break;
  4410. }
  4411. }
  4412. else if (code_seen('T')) {
  4413. gcode_T();
  4414. }
  4415. else {
  4416. SERIAL_ECHO_START;
  4417. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4418. SERIAL_ECHO(cmdbuffer[bufindr]);
  4419. SERIAL_ECHOLNPGM("\"");
  4420. }
  4421. ClearToSend();
  4422. }
  4423. void FlushSerialRequestResend()
  4424. {
  4425. //char cmdbuffer[bufindr][100]="Resend:";
  4426. MYSERIAL.flush();
  4427. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4428. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4429. ClearToSend();
  4430. }
  4431. void ClearToSend()
  4432. {
  4433. previous_millis_cmd = millis();
  4434. #ifdef SDSUPPORT
  4435. if(fromsd[bufindr])
  4436. return;
  4437. #endif //SDSUPPORT
  4438. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4439. }
  4440. void get_coordinates()
  4441. {
  4442. bool seen[4]={false,false,false,false};
  4443. for(int8_t i=0; i < NUM_AXIS; i++) {
  4444. if(code_seen(axis_codes[i]))
  4445. {
  4446. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4447. seen[i]=true;
  4448. }
  4449. else destination[i] = current_position[i]; //Are these else lines really needed?
  4450. }
  4451. if(code_seen('F')) {
  4452. next_feedrate = code_value();
  4453. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4454. }
  4455. }
  4456. void get_arc_coordinates()
  4457. {
  4458. #ifdef SF_ARC_FIX
  4459. bool relative_mode_backup = relative_mode;
  4460. relative_mode = true;
  4461. #endif
  4462. get_coordinates();
  4463. #ifdef SF_ARC_FIX
  4464. relative_mode=relative_mode_backup;
  4465. #endif
  4466. if(code_seen('I')) {
  4467. offset[0] = code_value();
  4468. }
  4469. else {
  4470. offset[0] = 0.0;
  4471. }
  4472. if(code_seen('J')) {
  4473. offset[1] = code_value();
  4474. }
  4475. else {
  4476. offset[1] = 0.0;
  4477. }
  4478. }
  4479. void clamp_to_software_endstops(float target[3])
  4480. {
  4481. if (min_software_endstops) {
  4482. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4483. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4484. float negative_z_offset = 0;
  4485. #ifdef ENABLE_AUTO_BED_LEVELING
  4486. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4487. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4488. #endif
  4489. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4490. }
  4491. if (max_software_endstops) {
  4492. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4493. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4494. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4495. }
  4496. }
  4497. #ifdef DELTA
  4498. void recalc_delta_settings(float radius, float diagonal_rod)
  4499. {
  4500. delta_tower1_x= -SIN_60*radius; // front left tower
  4501. delta_tower1_y= -COS_60*radius;
  4502. delta_tower2_x= SIN_60*radius; // front right tower
  4503. delta_tower2_y= -COS_60*radius;
  4504. delta_tower3_x= 0.0; // back middle tower
  4505. delta_tower3_y= radius;
  4506. delta_diagonal_rod_2= sq(diagonal_rod);
  4507. }
  4508. void calculate_delta(float cartesian[3])
  4509. {
  4510. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4511. - sq(delta_tower1_x-cartesian[X_AXIS])
  4512. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4513. ) + cartesian[Z_AXIS];
  4514. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4515. - sq(delta_tower2_x-cartesian[X_AXIS])
  4516. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4517. ) + cartesian[Z_AXIS];
  4518. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4519. - sq(delta_tower3_x-cartesian[X_AXIS])
  4520. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4521. ) + cartesian[Z_AXIS];
  4522. /*
  4523. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4524. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4525. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4526. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4527. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4528. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4529. */
  4530. }
  4531. #ifdef ENABLE_AUTO_BED_LEVELING
  4532. // Adjust print surface height by linear interpolation over the bed_level array.
  4533. int delta_grid_spacing[2] = { 0, 0 };
  4534. void adjust_delta(float cartesian[3])
  4535. {
  4536. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4537. return; // G29 not done
  4538. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4539. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4540. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4541. int floor_x = floor(grid_x);
  4542. int floor_y = floor(grid_y);
  4543. float ratio_x = grid_x - floor_x;
  4544. float ratio_y = grid_y - floor_y;
  4545. float z1 = bed_level[floor_x+half][floor_y+half];
  4546. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4547. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4548. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4549. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4550. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4551. float offset = (1-ratio_x)*left + ratio_x*right;
  4552. delta[X_AXIS] += offset;
  4553. delta[Y_AXIS] += offset;
  4554. delta[Z_AXIS] += offset;
  4555. /*
  4556. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4557. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4558. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4559. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4560. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4561. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4562. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4563. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4564. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4565. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4566. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4567. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4568. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4569. */
  4570. }
  4571. #endif //ENABLE_AUTO_BED_LEVELING
  4572. void prepare_move_raw()
  4573. {
  4574. previous_millis_cmd = millis();
  4575. calculate_delta(destination);
  4576. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4577. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4578. active_extruder);
  4579. for(int8_t i=0; i < NUM_AXIS; i++) {
  4580. current_position[i] = destination[i];
  4581. }
  4582. }
  4583. #endif //DELTA
  4584. #if defined(MESH_BED_LEVELING)
  4585. #if !defined(MIN)
  4586. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4587. #endif // ! MIN
  4588. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4589. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4590. {
  4591. if (!mbl.active) {
  4592. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4593. for(int8_t i=0; i < NUM_AXIS; i++) {
  4594. current_position[i] = destination[i];
  4595. }
  4596. return;
  4597. }
  4598. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4599. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4600. int ix = mbl.select_x_index(x);
  4601. int iy = mbl.select_y_index(y);
  4602. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4603. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4604. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4605. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4606. if (pix == ix && piy == iy) {
  4607. // Start and end on same mesh square
  4608. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4609. for(int8_t i=0; i < NUM_AXIS; i++) {
  4610. current_position[i] = destination[i];
  4611. }
  4612. return;
  4613. }
  4614. float nx, ny, ne, normalized_dist;
  4615. if (ix > pix && (x_splits) & BIT(ix)) {
  4616. nx = mbl.get_x(ix);
  4617. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4618. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4619. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4620. x_splits ^= BIT(ix);
  4621. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4622. nx = mbl.get_x(pix);
  4623. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4624. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4625. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4626. x_splits ^= BIT(pix);
  4627. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4628. ny = mbl.get_y(iy);
  4629. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4630. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4631. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4632. y_splits ^= BIT(iy);
  4633. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4634. ny = mbl.get_y(piy);
  4635. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4636. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4637. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4638. y_splits ^= BIT(piy);
  4639. } else {
  4640. // Already split on a border
  4641. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4642. for(int8_t i=0; i < NUM_AXIS; i++) {
  4643. current_position[i] = destination[i];
  4644. }
  4645. return;
  4646. }
  4647. // Do the split and look for more borders
  4648. destination[X_AXIS] = nx;
  4649. destination[Y_AXIS] = ny;
  4650. destination[E_AXIS] = ne;
  4651. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4652. destination[X_AXIS] = x;
  4653. destination[Y_AXIS] = y;
  4654. destination[E_AXIS] = e;
  4655. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4656. }
  4657. #endif // MESH_BED_LEVELING
  4658. void prepare_move()
  4659. {
  4660. clamp_to_software_endstops(destination);
  4661. previous_millis_cmd = millis();
  4662. #ifdef SCARA //for now same as delta-code
  4663. float difference[NUM_AXIS];
  4664. for (int8_t i=0; i < NUM_AXIS; i++) {
  4665. difference[i] = destination[i] - current_position[i];
  4666. }
  4667. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4668. sq(difference[Y_AXIS]) +
  4669. sq(difference[Z_AXIS]));
  4670. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4671. if (cartesian_mm < 0.000001) { return; }
  4672. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4673. int steps = max(1, int(scara_segments_per_second * seconds));
  4674. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4675. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4676. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4677. for (int s = 1; s <= steps; s++) {
  4678. float fraction = float(s) / float(steps);
  4679. for(int8_t i=0; i < NUM_AXIS; i++) {
  4680. destination[i] = current_position[i] + difference[i] * fraction;
  4681. }
  4682. calculate_delta(destination);
  4683. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4684. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4685. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4686. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4687. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4688. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4689. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4690. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4691. active_extruder);
  4692. }
  4693. #endif // SCARA
  4694. #ifdef DELTA
  4695. float difference[NUM_AXIS];
  4696. for (int8_t i=0; i < NUM_AXIS; i++) {
  4697. difference[i] = destination[i] - current_position[i];
  4698. }
  4699. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4700. sq(difference[Y_AXIS]) +
  4701. sq(difference[Z_AXIS]));
  4702. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4703. if (cartesian_mm < 0.000001) { return; }
  4704. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4705. int steps = max(1, int(delta_segments_per_second * seconds));
  4706. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4707. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4708. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4709. for (int s = 1; s <= steps; s++) {
  4710. float fraction = float(s) / float(steps);
  4711. for(int8_t i=0; i < NUM_AXIS; i++) {
  4712. destination[i] = current_position[i] + difference[i] * fraction;
  4713. }
  4714. calculate_delta(destination);
  4715. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4716. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4717. active_extruder);
  4718. }
  4719. #endif // DELTA
  4720. #ifdef DUAL_X_CARRIAGE
  4721. if (active_extruder_parked)
  4722. {
  4723. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4724. {
  4725. // move duplicate extruder into correct duplication position.
  4726. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4727. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4728. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4730. st_synchronize();
  4731. extruder_duplication_enabled = true;
  4732. active_extruder_parked = false;
  4733. }
  4734. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4735. {
  4736. if (current_position[E_AXIS] == destination[E_AXIS])
  4737. {
  4738. // this is a travel move - skit it but keep track of current position (so that it can later
  4739. // be used as start of first non-travel move)
  4740. if (delayed_move_time != 0xFFFFFFFFUL)
  4741. {
  4742. memcpy(current_position, destination, sizeof(current_position));
  4743. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4744. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4745. delayed_move_time = millis();
  4746. return;
  4747. }
  4748. }
  4749. delayed_move_time = 0;
  4750. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4751. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4753. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4755. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4756. active_extruder_parked = false;
  4757. }
  4758. }
  4759. #endif //DUAL_X_CARRIAGE
  4760. #if ! (defined DELTA || defined SCARA)
  4761. // Do not use feedmultiply for E or Z only moves
  4762. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4764. } else {
  4765. #if defined(MESH_BED_LEVELING)
  4766. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4767. return;
  4768. #else
  4769. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4770. #endif // MESH_BED_LEVELING
  4771. }
  4772. #endif // !(DELTA || SCARA)
  4773. for(int8_t i=0; i < NUM_AXIS; i++) {
  4774. current_position[i] = destination[i];
  4775. }
  4776. }
  4777. void prepare_arc_move(char isclockwise) {
  4778. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4779. // Trace the arc
  4780. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4781. // As far as the parser is concerned, the position is now == target. In reality the
  4782. // motion control system might still be processing the action and the real tool position
  4783. // in any intermediate location.
  4784. for(int8_t i=0; i < NUM_AXIS; i++) {
  4785. current_position[i] = destination[i];
  4786. }
  4787. previous_millis_cmd = millis();
  4788. }
  4789. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4790. #if defined(FAN_PIN)
  4791. #if CONTROLLERFAN_PIN == FAN_PIN
  4792. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4793. #endif
  4794. #endif
  4795. unsigned long lastMotor = 0; // Last time a motor was turned on
  4796. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4797. void controllerFan() {
  4798. uint32_t ms = millis();
  4799. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4800. lastMotorCheck = ms;
  4801. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4802. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4803. #if EXTRUDERS > 1
  4804. || E1_ENABLE_READ == E_ENABLE_ON
  4805. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4806. || X2_ENABLE_READ == X_ENABLE_ON
  4807. #endif
  4808. #if EXTRUDERS > 2
  4809. || E2_ENABLE_READ == E_ENABLE_ON
  4810. #if EXTRUDERS > 3
  4811. || E3_ENABLE_READ == E_ENABLE_ON
  4812. #endif
  4813. #endif
  4814. #endif
  4815. ) {
  4816. lastMotor = ms; //... set time to NOW so the fan will turn on
  4817. }
  4818. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4819. // allows digital or PWM fan output to be used (see M42 handling)
  4820. digitalWrite(CONTROLLERFAN_PIN, speed);
  4821. analogWrite(CONTROLLERFAN_PIN, speed);
  4822. }
  4823. }
  4824. #endif
  4825. #ifdef SCARA
  4826. void calculate_SCARA_forward_Transform(float f_scara[3])
  4827. {
  4828. // Perform forward kinematics, and place results in delta[3]
  4829. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4830. float x_sin, x_cos, y_sin, y_cos;
  4831. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4832. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4833. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4834. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4835. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4836. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4837. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4838. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4839. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4840. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4841. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4842. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4843. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4844. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4845. }
  4846. void calculate_delta(float cartesian[3]){
  4847. //reverse kinematics.
  4848. // Perform reversed kinematics, and place results in delta[3]
  4849. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4850. float SCARA_pos[2];
  4851. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4852. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4853. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4854. #if (Linkage_1 == Linkage_2)
  4855. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4856. #else
  4857. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4858. #endif
  4859. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4860. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4861. SCARA_K2 = Linkage_2 * SCARA_S2;
  4862. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4863. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4864. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4865. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4866. delta[Z_AXIS] = cartesian[Z_AXIS];
  4867. /*
  4868. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4869. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4870. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4871. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4872. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4873. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4874. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4875. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4876. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4877. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4878. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4879. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4880. SERIAL_ECHOLN(" ");*/
  4881. }
  4882. #endif
  4883. #ifdef TEMP_STAT_LEDS
  4884. static bool blue_led = false;
  4885. static bool red_led = false;
  4886. static uint32_t stat_update = 0;
  4887. void handle_status_leds(void) {
  4888. float max_temp = 0.0;
  4889. if(millis() > stat_update) {
  4890. stat_update += 500; // Update every 0.5s
  4891. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4892. max_temp = max(max_temp, degHotend(cur_extruder));
  4893. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4894. }
  4895. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4896. max_temp = max(max_temp, degTargetBed());
  4897. max_temp = max(max_temp, degBed());
  4898. #endif
  4899. if((max_temp > 55.0) && (red_led == false)) {
  4900. digitalWrite(STAT_LED_RED, 1);
  4901. digitalWrite(STAT_LED_BLUE, 0);
  4902. red_led = true;
  4903. blue_led = false;
  4904. }
  4905. if((max_temp < 54.0) && (blue_led == false)) {
  4906. digitalWrite(STAT_LED_RED, 0);
  4907. digitalWrite(STAT_LED_BLUE, 1);
  4908. red_led = false;
  4909. blue_led = true;
  4910. }
  4911. }
  4912. }
  4913. #endif
  4914. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4915. {
  4916. #if defined(KILL_PIN) && KILL_PIN > -1
  4917. static int killCount = 0; // make the inactivity button a bit less responsive
  4918. const int KILL_DELAY = 750;
  4919. #endif
  4920. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4921. if(card.sdprinting) {
  4922. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4923. filrunout(); }
  4924. #endif
  4925. #if defined(HOME_PIN) && HOME_PIN > -1
  4926. static int homeDebounceCount = 0; // poor man's debouncing count
  4927. const int HOME_DEBOUNCE_DELAY = 750;
  4928. #endif
  4929. if(buflen < (BUFSIZE-1))
  4930. get_command();
  4931. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4932. if(max_inactive_time)
  4933. kill();
  4934. if(stepper_inactive_time) {
  4935. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4936. {
  4937. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4938. disable_x();
  4939. disable_y();
  4940. disable_z();
  4941. disable_e0();
  4942. disable_e1();
  4943. disable_e2();
  4944. disable_e3();
  4945. }
  4946. }
  4947. }
  4948. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4949. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4950. {
  4951. chdkActive = false;
  4952. WRITE(CHDK, LOW);
  4953. }
  4954. #endif
  4955. #if defined(KILL_PIN) && KILL_PIN > -1
  4956. // Check if the kill button was pressed and wait just in case it was an accidental
  4957. // key kill key press
  4958. // -------------------------------------------------------------------------------
  4959. if( 0 == READ(KILL_PIN) )
  4960. {
  4961. killCount++;
  4962. }
  4963. else if (killCount > 0)
  4964. {
  4965. killCount--;
  4966. }
  4967. // Exceeded threshold and we can confirm that it was not accidental
  4968. // KILL the machine
  4969. // ----------------------------------------------------------------
  4970. if ( killCount >= KILL_DELAY)
  4971. {
  4972. kill();
  4973. }
  4974. #endif
  4975. #if defined(HOME_PIN) && HOME_PIN > -1
  4976. // Check to see if we have to home, use poor man's debouncer
  4977. // ---------------------------------------------------------
  4978. if ( 0 == READ(HOME_PIN) )
  4979. {
  4980. if (homeDebounceCount == 0)
  4981. {
  4982. enquecommands_P((PSTR("G28")));
  4983. homeDebounceCount++;
  4984. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4985. }
  4986. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4987. {
  4988. homeDebounceCount++;
  4989. }
  4990. else
  4991. {
  4992. homeDebounceCount = 0;
  4993. }
  4994. }
  4995. #endif
  4996. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4997. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4998. #endif
  4999. #ifdef EXTRUDER_RUNOUT_PREVENT
  5000. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5001. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5002. {
  5003. bool oldstatus=E0_ENABLE_READ;
  5004. enable_e0();
  5005. float oldepos=current_position[E_AXIS];
  5006. float oldedes=destination[E_AXIS];
  5007. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5008. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5009. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5010. current_position[E_AXIS]=oldepos;
  5011. destination[E_AXIS]=oldedes;
  5012. plan_set_e_position(oldepos);
  5013. previous_millis_cmd=millis();
  5014. st_synchronize();
  5015. E0_ENABLE_WRITE(oldstatus);
  5016. }
  5017. #endif
  5018. #if defined(DUAL_X_CARRIAGE)
  5019. // handle delayed move timeout
  5020. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5021. {
  5022. // travel moves have been received so enact them
  5023. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5024. memcpy(destination,current_position,sizeof(destination));
  5025. prepare_move();
  5026. }
  5027. #endif
  5028. #ifdef TEMP_STAT_LEDS
  5029. handle_status_leds();
  5030. #endif
  5031. check_axes_activity();
  5032. }
  5033. void kill()
  5034. {
  5035. cli(); // Stop interrupts
  5036. disable_heater();
  5037. disable_x();
  5038. disable_y();
  5039. disable_z();
  5040. disable_e0();
  5041. disable_e1();
  5042. disable_e2();
  5043. disable_e3();
  5044. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5045. pinMode(PS_ON_PIN,INPUT);
  5046. #endif
  5047. SERIAL_ERROR_START;
  5048. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5049. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5050. // FMC small patch to update the LCD before ending
  5051. sei(); // enable interrupts
  5052. for ( int i=5; i--; lcd_update())
  5053. {
  5054. delay(200);
  5055. }
  5056. cli(); // disable interrupts
  5057. suicide();
  5058. while(1) { /* Intentionally left empty */ } // Wait for reset
  5059. }
  5060. #ifdef FILAMENT_RUNOUT_SENSOR
  5061. void filrunout()
  5062. {
  5063. if filrunoutEnqued == false {
  5064. filrunoutEnqued = true;
  5065. enquecommand("M600");
  5066. }
  5067. }
  5068. #endif
  5069. void Stop()
  5070. {
  5071. disable_heater();
  5072. if(Stopped == false) {
  5073. Stopped = true;
  5074. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5075. SERIAL_ERROR_START;
  5076. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5077. LCD_MESSAGEPGM(MSG_STOPPED);
  5078. }
  5079. }
  5080. bool IsStopped() { return Stopped; };
  5081. #ifdef FAST_PWM_FAN
  5082. void setPwmFrequency(uint8_t pin, int val)
  5083. {
  5084. val &= 0x07;
  5085. switch(digitalPinToTimer(pin))
  5086. {
  5087. #if defined(TCCR0A)
  5088. case TIMER0A:
  5089. case TIMER0B:
  5090. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5091. // TCCR0B |= val;
  5092. break;
  5093. #endif
  5094. #if defined(TCCR1A)
  5095. case TIMER1A:
  5096. case TIMER1B:
  5097. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5098. // TCCR1B |= val;
  5099. break;
  5100. #endif
  5101. #if defined(TCCR2)
  5102. case TIMER2:
  5103. case TIMER2:
  5104. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5105. TCCR2 |= val;
  5106. break;
  5107. #endif
  5108. #if defined(TCCR2A)
  5109. case TIMER2A:
  5110. case TIMER2B:
  5111. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5112. TCCR2B |= val;
  5113. break;
  5114. #endif
  5115. #if defined(TCCR3A)
  5116. case TIMER3A:
  5117. case TIMER3B:
  5118. case TIMER3C:
  5119. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5120. TCCR3B |= val;
  5121. break;
  5122. #endif
  5123. #if defined(TCCR4A)
  5124. case TIMER4A:
  5125. case TIMER4B:
  5126. case TIMER4C:
  5127. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5128. TCCR4B |= val;
  5129. break;
  5130. #endif
  5131. #if defined(TCCR5A)
  5132. case TIMER5A:
  5133. case TIMER5B:
  5134. case TIMER5C:
  5135. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5136. TCCR5B |= val;
  5137. break;
  5138. #endif
  5139. }
  5140. }
  5141. #endif //FAST_PWM_FAN
  5142. bool setTargetedHotend(int code){
  5143. tmp_extruder = active_extruder;
  5144. if(code_seen('T')) {
  5145. tmp_extruder = code_value();
  5146. if(tmp_extruder >= EXTRUDERS) {
  5147. SERIAL_ECHO_START;
  5148. switch(code){
  5149. case 104:
  5150. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5151. break;
  5152. case 105:
  5153. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5154. break;
  5155. case 109:
  5156. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5157. break;
  5158. case 218:
  5159. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5160. break;
  5161. case 221:
  5162. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5163. break;
  5164. }
  5165. SERIAL_ECHOLN(tmp_extruder);
  5166. return true;
  5167. }
  5168. }
  5169. return false;
  5170. }
  5171. float calculate_volumetric_multiplier(float diameter) {
  5172. if (!volumetric_enabled || diameter == 0) return 1.0;
  5173. float d2 = diameter * 0.5;
  5174. return 1.0 / (M_PI * d2 * d2);
  5175. }
  5176. void calculate_volumetric_multipliers() {
  5177. for (int i=0; i<EXTRUDERS; i++)
  5178. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5179. }