My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 294KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card. (Requires SDSUPPORT)
  118. * M21 - Init SD card. (Requires SDSUPPORT)
  119. * M22 - Release SD card. (Requires SDSUPPORT)
  120. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  121. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  122. * M25 - Pause SD print. (Requires SDSUPPORT)
  123. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  124. * M27 - Report SD print status. (Requires SDSUPPORT)
  125. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  126. * M29 - Stop SD write. (Requires SDSUPPORT)
  127. * M30 - Delete file from SD: "M30 /path/file.gco"
  128. * M31 - Report time since last M109 or SD card start to serial.
  129. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  130. * Use P to run other files as sub-programs: "M32 P !filename#"
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  133. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  134. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  135. * M75 - Start the print job timer.
  136. * M76 - Pause the print job timer.
  137. * M77 - Stop the print job timer.
  138. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  139. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  140. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  141. * M82 - Set E codes absolute (default).
  142. * M83 - Set E codes relative while in Absolute (G90) mode.
  143. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  144. * duration after which steppers should turn off. S0 disables the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  147. * M104 - Set extruder target temp.
  148. * M105 - Report current temperatures.
  149. * M106 - Fan on.
  150. * M107 - Fan off.
  151. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number. (Used by host printing)
  156. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  157. * M112 - Emergency stop.
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  159. * M114 - Report current position.
  160. * M115 - Report capabilities.
  161. * M117 - Display a message on the controller screen. (Requires an LCD)
  162. * M119 - Report endstops status.
  163. * M120 - Enable endstops detection.
  164. * M121 - Disable endstops detection.
  165. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  166. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  167. * M128 - EtoP Open. (Requires BARICUDA)
  168. * M129 - EtoP Closed. (Requires BARICUDA)
  169. * M140 - Set bed target temp. S<temp>
  170. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  172. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  173. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  174. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  177. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  180. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  181. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  182. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset.
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  190. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  193. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  194. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  195. * M221 - Set Flow Percentage: "M221 S<percent>"
  196. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  197. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  198. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  199. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  204. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  205. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  206. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  207. * M400 - Finish all moves.
  208. * M401 - Lower Z probe. (Requires a probe)
  209. * M402 - Raise Z probe. (Requires a probe)
  210. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  211. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  213. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M410 - Quickstop. Abort all planned moves.
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING)
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  217. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  218. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  219. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  220. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  221. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  222. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  224. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  225. * M666 - Set delta endstop adjustment. (Requires DELTA)
  226. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  227. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  229. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  230. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  231. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  232. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  233. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  245. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. float current_position[NUM_AXIS] = { 0.0 };
  265. static float destination[NUM_AXIS] = { 0.0 };
  266. bool axis_known_position[XYZ] = { false };
  267. bool axis_homed[XYZ] = { false };
  268. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  269. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  270. static char* current_command, *current_command_args;
  271. static uint8_t cmd_queue_index_r = 0,
  272. cmd_queue_index_w = 0,
  273. commands_in_queue = 0;
  274. #if ENABLED(INCH_MODE_SUPPORT)
  275. float linear_unit_factor = 1.0;
  276. float volumetric_unit_factor = 1.0;
  277. #endif
  278. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  279. TempUnit input_temp_units = TEMPUNIT_C;
  280. #endif
  281. /**
  282. * Feed rates are often configured with mm/m
  283. * but the planner and stepper like mm/s units.
  284. */
  285. float constexpr homing_feedrate_mm_s[] = {
  286. #if ENABLED(DELTA)
  287. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  288. #else
  289. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  290. #endif
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  292. };
  293. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  294. int feedrate_percentage = 100, saved_feedrate_percentage;
  295. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  296. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  297. bool volumetric_enabled = false;
  298. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  299. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  300. // The distance that XYZ has been offset by G92. Reset by G28.
  301. float position_shift[XYZ] = { 0 };
  302. // This offset is added to the configured home position.
  303. // Set by M206, M428, or menu item. Saved to EEPROM.
  304. float home_offset[XYZ] = { 0 };
  305. // Software Endstops are based on the configured limits.
  306. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  307. bool soft_endstops_enabled = true;
  308. #endif
  309. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  310. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  320. volatile bool wait_for_user = false;
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if HAS_ABL
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  358. #elif defined(XY_PROBE_SPEED)
  359. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  360. #else
  361. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  362. #endif
  363. #if ENABLED(Z_DUAL_ENDSTOPS)
  364. float z_endstop_adj = 0;
  365. #endif
  366. // Extruder offsets
  367. #if HOTENDS > 1
  368. float hotend_offset[][HOTENDS] = {
  369. HOTEND_OFFSET_X,
  370. HOTEND_OFFSET_Y
  371. #ifdef HOTEND_OFFSET_Z
  372. , HOTEND_OFFSET_Z
  373. #endif
  374. };
  375. #endif
  376. #if HAS_Z_SERVO_ENDSTOP
  377. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  378. #endif
  379. #if ENABLED(BARICUDA)
  380. int baricuda_valve_pressure = 0;
  381. int baricuda_e_to_p_pressure = 0;
  382. #endif
  383. #if ENABLED(FWRETRACT)
  384. bool autoretract_enabled = false;
  385. bool retracted[EXTRUDERS] = { false };
  386. bool retracted_swap[EXTRUDERS] = { false };
  387. float retract_length = RETRACT_LENGTH;
  388. float retract_length_swap = RETRACT_LENGTH_SWAP;
  389. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  390. float retract_zlift = RETRACT_ZLIFT;
  391. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  392. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  393. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  394. #endif // FWRETRACT
  395. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  396. bool powersupply =
  397. #if ENABLED(PS_DEFAULT_OFF)
  398. false
  399. #else
  400. true
  401. #endif
  402. ;
  403. #endif
  404. #if ENABLED(DELTA)
  405. #define SIN_60 0.8660254037844386
  406. #define COS_60 0.5
  407. float delta[ABC],
  408. endstop_adj[ABC] = { 0 };
  409. // these are the default values, can be overriden with M665
  410. float delta_radius = DELTA_RADIUS,
  411. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  412. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  413. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  414. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  415. delta_tower3_x = 0, // back middle tower
  416. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  417. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  418. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  419. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  420. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  421. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  422. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  423. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  424. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  425. delta_clip_start_height = Z_MAX_POS;
  426. float delta_safe_distance_from_top();
  427. #else
  428. static bool home_all_axis = true;
  429. #endif
  430. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  431. int bilinear_grid_spacing[2] = { 0 };
  432. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  433. #endif
  434. #if IS_SCARA
  435. // Float constants for SCARA calculations
  436. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  437. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  438. L2_2 = sq(float(L2));
  439. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  440. delta[ABC];
  441. #endif
  442. float cartes[XYZ] = { 0 };
  443. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  446. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  447. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  448. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. #define DEFINE_PGM_READ_ANY(type, reader) \
  489. static inline type pgm_read_any(const type *p) \
  490. { return pgm_read_##reader##_near(p); }
  491. DEFINE_PGM_READ_ANY(float, float);
  492. DEFINE_PGM_READ_ANY(signed char, byte);
  493. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  494. static const PROGMEM type array##_P[XYZ] = \
  495. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  496. static inline type array(int axis) \
  497. { return pgm_read_any(&array##_P[axis]); }
  498. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  499. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  500. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  502. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  503. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  504. /**
  505. * ***************************************************************************
  506. * ******************************** FUNCTIONS ********************************
  507. * ***************************************************************************
  508. */
  509. void stop();
  510. void get_available_commands();
  511. void process_next_command();
  512. void prepare_move_to_destination();
  513. void get_cartesian_from_steppers();
  514. void set_current_from_steppers_for_axis(const AxisEnum axis);
  515. #if ENABLED(ARC_SUPPORT)
  516. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  517. #endif
  518. #if ENABLED(BEZIER_CURVE_SUPPORT)
  519. void plan_cubic_move(const float offset[4]);
  520. #endif
  521. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  522. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  523. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  529. static void report_current_position();
  530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  532. serialprintPGM(prefix);
  533. SERIAL_ECHOPAIR("(", x);
  534. SERIAL_ECHOPAIR(", ", y);
  535. SERIAL_ECHOPAIR(", ", z);
  536. SERIAL_ECHOPGM(")");
  537. if (suffix) serialprintPGM(suffix);
  538. else SERIAL_EOL;
  539. }
  540. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  541. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  542. }
  543. #if HAS_ABL
  544. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  545. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  546. }
  547. #endif
  548. #define DEBUG_POS(SUFFIX,VAR) do { \
  549. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  550. #endif
  551. /**
  552. * sync_plan_position
  553. *
  554. * Set the planner/stepper positions directly from current_position with
  555. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  556. */
  557. inline void sync_plan_position() {
  558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  559. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  560. #endif
  561. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  562. }
  563. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  564. #if IS_KINEMATIC
  565. inline void sync_plan_position_kinematic() {
  566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  567. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  568. #endif
  569. inverse_kinematics(current_position);
  570. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  571. }
  572. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  573. #else
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  575. #endif
  576. #if ENABLED(SDSUPPORT)
  577. #include "SdFatUtil.h"
  578. int freeMemory() { return SdFatUtil::FreeRam(); }
  579. #else
  580. extern "C" {
  581. extern unsigned int __bss_end;
  582. extern unsigned int __heap_start;
  583. extern void* __brkval;
  584. int freeMemory() {
  585. int free_memory;
  586. if ((int)__brkval == 0)
  587. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  588. else
  589. free_memory = ((int)&free_memory) - ((int)__brkval);
  590. return free_memory;
  591. }
  592. }
  593. #endif //!SDSUPPORT
  594. #if ENABLED(DIGIPOT_I2C)
  595. extern void digipot_i2c_set_current(int channel, float current);
  596. extern void digipot_i2c_init();
  597. #endif
  598. /**
  599. * Inject the next "immediate" command, when possible.
  600. * Return true if any immediate commands remain to inject.
  601. */
  602. static bool drain_queued_commands_P() {
  603. if (queued_commands_P != NULL) {
  604. size_t i = 0;
  605. char c, cmd[30];
  606. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  607. cmd[sizeof(cmd) - 1] = '\0';
  608. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  609. cmd[i] = '\0';
  610. if (enqueue_and_echo_command(cmd)) { // success?
  611. if (c) // newline char?
  612. queued_commands_P += i + 1; // advance to the next command
  613. else
  614. queued_commands_P = NULL; // nul char? no more commands
  615. }
  616. }
  617. return (queued_commands_P != NULL); // return whether any more remain
  618. }
  619. /**
  620. * Record one or many commands to run from program memory.
  621. * Aborts the current queue, if any.
  622. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  623. */
  624. void enqueue_and_echo_commands_P(const char* pgcode) {
  625. queued_commands_P = pgcode;
  626. drain_queued_commands_P(); // first command executed asap (when possible)
  627. }
  628. void clear_command_queue() {
  629. cmd_queue_index_r = cmd_queue_index_w;
  630. commands_in_queue = 0;
  631. }
  632. /**
  633. * Once a new command is in the ring buffer, call this to commit it
  634. */
  635. inline void _commit_command(bool say_ok) {
  636. send_ok[cmd_queue_index_w] = say_ok;
  637. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  638. commands_in_queue++;
  639. }
  640. /**
  641. * Copy a command directly into the main command buffer, from RAM.
  642. * Returns true if successfully adds the command
  643. */
  644. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  645. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  646. strcpy(command_queue[cmd_queue_index_w], cmd);
  647. _commit_command(say_ok);
  648. return true;
  649. }
  650. void enqueue_and_echo_command_now(const char* cmd) {
  651. while (!enqueue_and_echo_command(cmd)) idle();
  652. }
  653. /**
  654. * Enqueue with Serial Echo
  655. */
  656. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  657. if (_enqueuecommand(cmd, say_ok)) {
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  660. SERIAL_ECHOLNPGM("\"");
  661. return true;
  662. }
  663. return false;
  664. }
  665. void setup_killpin() {
  666. #if HAS_KILL
  667. SET_INPUT(KILL_PIN);
  668. WRITE(KILL_PIN, HIGH);
  669. #endif
  670. }
  671. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  672. void setup_filrunoutpin() {
  673. SET_INPUT(FIL_RUNOUT_PIN);
  674. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  675. WRITE(FIL_RUNOUT_PIN, HIGH);
  676. #endif
  677. }
  678. #endif
  679. // Set home pin
  680. void setup_homepin(void) {
  681. #if HAS_HOME
  682. SET_INPUT(HOME_PIN);
  683. WRITE(HOME_PIN, HIGH);
  684. #endif
  685. }
  686. void setup_photpin() {
  687. #if HAS_PHOTOGRAPH
  688. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  689. #endif
  690. }
  691. void setup_powerhold() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, HIGH);
  694. #endif
  695. #if HAS_POWER_SWITCH
  696. #if ENABLED(PS_DEFAULT_OFF)
  697. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  698. #else
  699. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  700. #endif
  701. #endif
  702. }
  703. void suicide() {
  704. #if HAS_SUICIDE
  705. OUT_WRITE(SUICIDE_PIN, LOW);
  706. #endif
  707. }
  708. void servo_init() {
  709. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  710. servo[0].attach(SERVO0_PIN);
  711. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  712. #endif
  713. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  714. servo[1].attach(SERVO1_PIN);
  715. servo[1].detach();
  716. #endif
  717. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  718. servo[2].attach(SERVO2_PIN);
  719. servo[2].detach();
  720. #endif
  721. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  722. servo[3].attach(SERVO3_PIN);
  723. servo[3].detach();
  724. #endif
  725. #if HAS_Z_SERVO_ENDSTOP
  726. /**
  727. * Set position of Z Servo Endstop
  728. *
  729. * The servo might be deployed and positioned too low to stow
  730. * when starting up the machine or rebooting the board.
  731. * There's no way to know where the nozzle is positioned until
  732. * homing has been done - no homing with z-probe without init!
  733. *
  734. */
  735. STOW_Z_SERVO();
  736. #endif
  737. }
  738. /**
  739. * Stepper Reset (RigidBoard, et.al.)
  740. */
  741. #if HAS_STEPPER_RESET
  742. void disableStepperDrivers() {
  743. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  744. }
  745. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  746. #endif
  747. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  748. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  749. i2c.receive(bytes);
  750. }
  751. void i2c_on_request() { // just send dummy data for now
  752. i2c.reply("Hello World!\n");
  753. }
  754. #endif
  755. void gcode_line_error(const char* err, bool doFlush = true) {
  756. SERIAL_ERROR_START;
  757. serialprintPGM(err);
  758. SERIAL_ERRORLN(gcode_LastN);
  759. //Serial.println(gcode_N);
  760. if (doFlush) FlushSerialRequestResend();
  761. serial_count = 0;
  762. }
  763. inline void get_serial_commands() {
  764. static char serial_line_buffer[MAX_CMD_SIZE];
  765. static boolean serial_comment_mode = false;
  766. // If the command buffer is empty for too long,
  767. // send "wait" to indicate Marlin is still waiting.
  768. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  769. static millis_t last_command_time = 0;
  770. millis_t ms = millis();
  771. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  772. SERIAL_ECHOLNPGM(MSG_WAIT);
  773. last_command_time = ms;
  774. }
  775. #endif
  776. /**
  777. * Loop while serial characters are incoming and the queue is not full
  778. */
  779. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  780. char serial_char = MYSERIAL.read();
  781. /**
  782. * If the character ends the line
  783. */
  784. if (serial_char == '\n' || serial_char == '\r') {
  785. serial_comment_mode = false; // end of line == end of comment
  786. if (!serial_count) continue; // skip empty lines
  787. serial_line_buffer[serial_count] = 0; // terminate string
  788. serial_count = 0; //reset buffer
  789. char* command = serial_line_buffer;
  790. while (*command == ' ') command++; // skip any leading spaces
  791. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  792. char* apos = strchr(command, '*');
  793. if (npos) {
  794. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  795. if (M110) {
  796. char* n2pos = strchr(command + 4, 'N');
  797. if (n2pos) npos = n2pos;
  798. }
  799. gcode_N = strtol(npos + 1, NULL, 10);
  800. if (gcode_N != gcode_LastN + 1 && !M110) {
  801. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  802. return;
  803. }
  804. if (apos) {
  805. byte checksum = 0, count = 0;
  806. while (command[count] != '*') checksum ^= command[count++];
  807. if (strtol(apos + 1, NULL, 10) != checksum) {
  808. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  809. return;
  810. }
  811. // if no errors, continue parsing
  812. }
  813. else {
  814. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  815. return;
  816. }
  817. gcode_LastN = gcode_N;
  818. // if no errors, continue parsing
  819. }
  820. else if (apos) { // No '*' without 'N'
  821. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  822. return;
  823. }
  824. // Movement commands alert when stopped
  825. if (IsStopped()) {
  826. char* gpos = strchr(command, 'G');
  827. if (gpos) {
  828. int codenum = strtol(gpos + 1, NULL, 10);
  829. switch (codenum) {
  830. case 0:
  831. case 1:
  832. case 2:
  833. case 3:
  834. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  835. LCD_MESSAGEPGM(MSG_STOPPED);
  836. break;
  837. }
  838. }
  839. }
  840. #if DISABLED(EMERGENCY_PARSER)
  841. // If command was e-stop process now
  842. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  843. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  844. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  845. #endif
  846. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  847. last_command_time = ms;
  848. #endif
  849. // Add the command to the queue
  850. _enqueuecommand(serial_line_buffer, true);
  851. }
  852. else if (serial_count >= MAX_CMD_SIZE - 1) {
  853. // Keep fetching, but ignore normal characters beyond the max length
  854. // The command will be injected when EOL is reached
  855. }
  856. else if (serial_char == '\\') { // Handle escapes
  857. if (MYSERIAL.available() > 0) {
  858. // if we have one more character, copy it over
  859. serial_char = MYSERIAL.read();
  860. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  861. }
  862. // otherwise do nothing
  863. }
  864. else { // it's not a newline, carriage return or escape char
  865. if (serial_char == ';') serial_comment_mode = true;
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. } // queue has space, serial has data
  869. }
  870. #if ENABLED(SDSUPPORT)
  871. inline void get_sdcard_commands() {
  872. static bool stop_buffering = false,
  873. sd_comment_mode = false;
  874. if (!card.sdprinting) return;
  875. /**
  876. * '#' stops reading from SD to the buffer prematurely, so procedural
  877. * macro calls are possible. If it occurs, stop_buffering is triggered
  878. * and the buffer is run dry; this character _can_ occur in serial com
  879. * due to checksums, however, no checksums are used in SD printing.
  880. */
  881. if (commands_in_queue == 0) stop_buffering = false;
  882. uint16_t sd_count = 0;
  883. bool card_eof = card.eof();
  884. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  885. int16_t n = card.get();
  886. char sd_char = (char)n;
  887. card_eof = card.eof();
  888. if (card_eof || n == -1
  889. || sd_char == '\n' || sd_char == '\r'
  890. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  891. ) {
  892. if (card_eof) {
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  894. card.printingHasFinished();
  895. card.checkautostart(true);
  896. }
  897. else if (n == -1) {
  898. SERIAL_ERROR_START;
  899. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  900. }
  901. if (sd_char == '#') stop_buffering = true;
  902. sd_comment_mode = false; //for new command
  903. if (!sd_count) continue; //skip empty lines
  904. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  905. sd_count = 0; //clear buffer
  906. _commit_command(false);
  907. }
  908. else if (sd_count >= MAX_CMD_SIZE - 1) {
  909. /**
  910. * Keep fetching, but ignore normal characters beyond the max length
  911. * The command will be injected when EOL is reached
  912. */
  913. }
  914. else {
  915. if (sd_char == ';') sd_comment_mode = true;
  916. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  917. }
  918. }
  919. }
  920. #endif // SDSUPPORT
  921. /**
  922. * Add to the circular command queue the next command from:
  923. * - The command-injection queue (queued_commands_P)
  924. * - The active serial input (usually USB)
  925. * - The SD card file being actively printed
  926. */
  927. void get_available_commands() {
  928. // if any immediate commands remain, don't get other commands yet
  929. if (drain_queued_commands_P()) return;
  930. get_serial_commands();
  931. #if ENABLED(SDSUPPORT)
  932. get_sdcard_commands();
  933. #endif
  934. }
  935. inline bool code_has_value() {
  936. int i = 1;
  937. char c = seen_pointer[i];
  938. while (c == ' ') c = seen_pointer[++i];
  939. if (c == '-' || c == '+') c = seen_pointer[++i];
  940. if (c == '.') c = seen_pointer[++i];
  941. return NUMERIC(c);
  942. }
  943. inline float code_value_float() {
  944. float ret;
  945. char* e = strchr(seen_pointer, 'E');
  946. if (e) {
  947. *e = 0;
  948. ret = strtod(seen_pointer + 1, NULL);
  949. *e = 'E';
  950. }
  951. else
  952. ret = strtod(seen_pointer + 1, NULL);
  953. return ret;
  954. }
  955. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  956. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  957. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  958. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  959. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  960. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  961. #if ENABLED(INCH_MODE_SUPPORT)
  962. inline void set_input_linear_units(LinearUnit units) {
  963. switch (units) {
  964. case LINEARUNIT_INCH:
  965. linear_unit_factor = 25.4;
  966. break;
  967. case LINEARUNIT_MM:
  968. default:
  969. linear_unit_factor = 1.0;
  970. break;
  971. }
  972. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  973. }
  974. inline float axis_unit_factor(int axis) {
  975. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  976. }
  977. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  978. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  979. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  980. #else
  981. inline float code_value_linear_units() { return code_value_float(); }
  982. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  983. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  984. #endif
  985. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  986. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  987. float code_value_temp_abs() {
  988. switch (input_temp_units) {
  989. case TEMPUNIT_C:
  990. return code_value_float();
  991. case TEMPUNIT_F:
  992. return (code_value_float() - 32) * 0.5555555556;
  993. case TEMPUNIT_K:
  994. return code_value_float() - 272.15;
  995. default:
  996. return code_value_float();
  997. }
  998. }
  999. float code_value_temp_diff() {
  1000. switch (input_temp_units) {
  1001. case TEMPUNIT_C:
  1002. case TEMPUNIT_K:
  1003. return code_value_float();
  1004. case TEMPUNIT_F:
  1005. return code_value_float() * 0.5555555556;
  1006. default:
  1007. return code_value_float();
  1008. }
  1009. }
  1010. #else
  1011. float code_value_temp_abs() { return code_value_float(); }
  1012. float code_value_temp_diff() { return code_value_float(); }
  1013. #endif
  1014. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1015. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1016. bool code_seen(char code) {
  1017. seen_pointer = strchr(current_command_args, code);
  1018. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1019. }
  1020. /**
  1021. * Set target_extruder from the T parameter or the active_extruder
  1022. *
  1023. * Returns TRUE if the target is invalid
  1024. */
  1025. bool get_target_extruder_from_command(int code) {
  1026. if (code_seen('T')) {
  1027. if (code_value_byte() >= EXTRUDERS) {
  1028. SERIAL_ECHO_START;
  1029. SERIAL_CHAR('M');
  1030. SERIAL_ECHO(code);
  1031. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1032. return true;
  1033. }
  1034. target_extruder = code_value_byte();
  1035. }
  1036. else
  1037. target_extruder = active_extruder;
  1038. return false;
  1039. }
  1040. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1041. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1042. #endif
  1043. #if ENABLED(DUAL_X_CARRIAGE)
  1044. #define DXC_FULL_CONTROL_MODE 0
  1045. #define DXC_AUTO_PARK_MODE 1
  1046. #define DXC_DUPLICATION_MODE 2
  1047. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1048. static float x_home_pos(int extruder) {
  1049. if (extruder == 0)
  1050. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1051. else
  1052. /**
  1053. * In dual carriage mode the extruder offset provides an override of the
  1054. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1055. * This allow soft recalibration of the second extruder offset position
  1056. * without firmware reflash (through the M218 command).
  1057. */
  1058. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1059. }
  1060. static int x_home_dir(int extruder) {
  1061. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1062. }
  1063. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1064. static bool active_extruder_parked = false; // used in mode 1 & 2
  1065. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1066. static millis_t delayed_move_time = 0; // used in mode 1
  1067. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1068. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1069. #endif //DUAL_X_CARRIAGE
  1070. /**
  1071. * Software endstops can be used to monitor the open end of
  1072. * an axis that has a hardware endstop on the other end. Or
  1073. * they can prevent axes from moving past endstops and grinding.
  1074. *
  1075. * To keep doing their job as the coordinate system changes,
  1076. * the software endstop positions must be refreshed to remain
  1077. * at the same positions relative to the machine.
  1078. */
  1079. void update_software_endstops(AxisEnum axis) {
  1080. float offs = LOGICAL_POSITION(0, axis);
  1081. #if ENABLED(DUAL_X_CARRIAGE)
  1082. if (axis == X_AXIS) {
  1083. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1084. if (active_extruder != 0) {
  1085. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1086. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1087. return;
  1088. }
  1089. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1090. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1091. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1092. return;
  1093. }
  1094. }
  1095. else
  1096. #endif
  1097. {
  1098. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1099. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1100. }
  1101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1102. if (DEBUGGING(LEVELING)) {
  1103. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1104. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1105. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1106. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1107. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1108. }
  1109. #endif
  1110. #if ENABLED(DELTA)
  1111. if (axis == Z_AXIS)
  1112. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1113. #endif
  1114. }
  1115. /**
  1116. * Change the home offset for an axis, update the current
  1117. * position and the software endstops to retain the same
  1118. * relative distance to the new home.
  1119. *
  1120. * Since this changes the current_position, code should
  1121. * call sync_plan_position soon after this.
  1122. */
  1123. static void set_home_offset(AxisEnum axis, float v) {
  1124. current_position[axis] += v - home_offset[axis];
  1125. home_offset[axis] = v;
  1126. update_software_endstops(axis);
  1127. }
  1128. /**
  1129. * Set an axis' current position to its home position (after homing).
  1130. *
  1131. * For Core and Cartesian robots this applies one-to-one when an
  1132. * individual axis has been homed.
  1133. *
  1134. * DELTA should wait until all homing is done before setting the XYZ
  1135. * current_position to home, because homing is a single operation.
  1136. * In the case where the axis positions are already known and previously
  1137. * homed, DELTA could home to X or Y individually by moving either one
  1138. * to the center. However, homing Z always homes XY and Z.
  1139. *
  1140. * SCARA should wait until all XY homing is done before setting the XY
  1141. * current_position to home, because neither X nor Y is at home until
  1142. * both are at home. Z can however be homed individually.
  1143. *
  1144. */
  1145. static void set_axis_is_at_home(AxisEnum axis) {
  1146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1147. if (DEBUGGING(LEVELING)) {
  1148. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1149. SERIAL_ECHOLNPGM(")");
  1150. }
  1151. #endif
  1152. axis_known_position[axis] = axis_homed[axis] = true;
  1153. position_shift[axis] = 0;
  1154. update_software_endstops(axis);
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1157. if (active_extruder != 0)
  1158. current_position[X_AXIS] = x_home_pos(active_extruder);
  1159. else
  1160. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1161. update_software_endstops(X_AXIS);
  1162. return;
  1163. }
  1164. #endif
  1165. #if ENABLED(MORGAN_SCARA)
  1166. /**
  1167. * Morgan SCARA homes XY at the same time
  1168. */
  1169. if (axis == X_AXIS || axis == Y_AXIS) {
  1170. float homeposition[XYZ];
  1171. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1172. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1173. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1174. /**
  1175. * Get Home position SCARA arm angles using inverse kinematics,
  1176. * and calculate homing offset using forward kinematics
  1177. */
  1178. inverse_kinematics(homeposition);
  1179. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1180. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1181. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1182. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1183. /**
  1184. * SCARA home positions are based on configuration since the actual
  1185. * limits are determined by the inverse kinematic transform.
  1186. */
  1187. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1189. }
  1190. else
  1191. #endif
  1192. {
  1193. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1194. }
  1195. /**
  1196. * Z Probe Z Homing? Account for the probe's Z offset.
  1197. */
  1198. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1199. if (axis == Z_AXIS) {
  1200. #if HOMING_Z_WITH_PROBE
  1201. current_position[Z_AXIS] -= zprobe_zoffset;
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) {
  1204. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1205. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1206. }
  1207. #endif
  1208. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1209. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1210. #endif
  1211. }
  1212. #endif
  1213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1214. if (DEBUGGING(LEVELING)) {
  1215. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1216. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1217. DEBUG_POS("", current_position);
  1218. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1219. SERIAL_ECHOLNPGM(")");
  1220. }
  1221. #endif
  1222. }
  1223. /**
  1224. * Some planner shorthand inline functions
  1225. */
  1226. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1227. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1228. int hbd = homing_bump_divisor[axis];
  1229. if (hbd < 1) {
  1230. hbd = 10;
  1231. SERIAL_ECHO_START;
  1232. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1233. }
  1234. return homing_feedrate_mm_s[axis] / hbd;
  1235. }
  1236. //
  1237. // line_to_current_position
  1238. // Move the planner to the current position from wherever it last moved
  1239. // (or from wherever it has been told it is located).
  1240. //
  1241. inline void line_to_current_position() {
  1242. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1243. }
  1244. //
  1245. // line_to_destination
  1246. // Move the planner, not necessarily synced with current_position
  1247. //
  1248. inline void line_to_destination(float fr_mm_s) {
  1249. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1250. }
  1251. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1252. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1253. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1254. #if IS_KINEMATIC
  1255. /**
  1256. * Calculate delta, start a line, and set current_position to destination
  1257. */
  1258. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1261. #endif
  1262. if ( current_position[X_AXIS] == destination[X_AXIS]
  1263. && current_position[Y_AXIS] == destination[Y_AXIS]
  1264. && current_position[Z_AXIS] == destination[Z_AXIS]
  1265. && current_position[E_AXIS] == destination[E_AXIS]
  1266. ) return;
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif // IS_KINEMATIC
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #elif IS_SCARA
  1329. set_destination_to_current();
  1330. // If Z needs to raise, do it before moving XY
  1331. if (destination[Z_AXIS] < z) {
  1332. destination[Z_AXIS] = z;
  1333. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1334. }
  1335. destination[X_AXIS] = x;
  1336. destination[Y_AXIS] = y;
  1337. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1338. // If Z needs to lower, do it after moving XY
  1339. if (destination[Z_AXIS] > z) {
  1340. destination[Z_AXIS] = z;
  1341. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1342. }
  1343. #else
  1344. // If Z needs to raise, do it before moving XY
  1345. if (current_position[Z_AXIS] < z) {
  1346. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1347. current_position[Z_AXIS] = z;
  1348. line_to_current_position();
  1349. }
  1350. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1351. current_position[X_AXIS] = x;
  1352. current_position[Y_AXIS] = y;
  1353. line_to_current_position();
  1354. // If Z needs to lower, do it after moving XY
  1355. if (current_position[Z_AXIS] > z) {
  1356. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1357. current_position[Z_AXIS] = z;
  1358. line_to_current_position();
  1359. }
  1360. #endif
  1361. stepper.synchronize();
  1362. feedrate_mm_s = old_feedrate_mm_s;
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1365. #endif
  1366. }
  1367. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1368. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1369. }
  1370. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1371. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1372. }
  1373. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1374. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1375. }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate_mm_s = feedrate_mm_s;
  1390. saved_feedrate_percentage = feedrate_percentage;
  1391. feedrate_percentage = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate_mm_s = saved_feedrate_mm_s;
  1399. feedrate_percentage = saved_feedrate_percentage;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. /**
  1404. * Raise Z to a minimum height to make room for a probe to move
  1405. */
  1406. inline void do_probe_raise(float z_raise) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1410. SERIAL_ECHOLNPGM(")");
  1411. }
  1412. #endif
  1413. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1414. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1415. if (z_dest > current_position[Z_AXIS])
  1416. do_blocking_move_to_z(z_dest);
  1417. }
  1418. #endif //HAS_BED_PROBE
  1419. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1420. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1421. const bool xx = x && !axis_homed[X_AXIS],
  1422. yy = y && !axis_homed[Y_AXIS],
  1423. zz = z && !axis_homed[Z_AXIS];
  1424. if (xx || yy || zz) {
  1425. SERIAL_ECHO_START;
  1426. SERIAL_ECHOPGM(MSG_HOME " ");
  1427. if (xx) SERIAL_ECHOPGM(MSG_X);
  1428. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1429. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1430. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1431. #if ENABLED(ULTRA_LCD)
  1432. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1433. strcat_P(message, PSTR(MSG_HOME " "));
  1434. if (xx) strcat_P(message, PSTR(MSG_X));
  1435. if (yy) strcat_P(message, PSTR(MSG_Y));
  1436. if (zz) strcat_P(message, PSTR(MSG_Z));
  1437. strcat_P(message, PSTR(" " MSG_FIRST));
  1438. lcd_setstatus(message);
  1439. #endif
  1440. return true;
  1441. }
  1442. return false;
  1443. }
  1444. #endif
  1445. #if ENABLED(Z_PROBE_SLED)
  1446. #ifndef SLED_DOCKING_OFFSET
  1447. #define SLED_DOCKING_OFFSET 0
  1448. #endif
  1449. /**
  1450. * Method to dock/undock a sled designed by Charles Bell.
  1451. *
  1452. * stow[in] If false, move to MAX_X and engage the solenoid
  1453. * If true, move to MAX_X and release the solenoid
  1454. */
  1455. static void dock_sled(bool stow) {
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) {
  1458. SERIAL_ECHOPAIR("dock_sled(", stow);
  1459. SERIAL_ECHOLNPGM(")");
  1460. }
  1461. #endif
  1462. // Dock sled a bit closer to ensure proper capturing
  1463. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1464. #if PIN_EXISTS(SLED)
  1465. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1466. #endif
  1467. }
  1468. #endif // Z_PROBE_SLED
  1469. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1470. void run_deploy_moves_script() {
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1530. #endif
  1531. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1532. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1533. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1534. #endif
  1535. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1536. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1537. #endif
  1538. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1539. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1540. #endif
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1543. #endif
  1544. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1545. #endif
  1546. }
  1547. void run_stow_moves_script() {
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1610. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1613. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1616. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1620. #endif
  1621. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1622. #endif
  1623. }
  1624. #endif
  1625. #if HAS_BED_PROBE
  1626. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1627. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1628. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1629. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1630. #else
  1631. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1632. #endif
  1633. #endif
  1634. #define DEPLOY_PROBE() set_probe_deployed(true)
  1635. #define STOW_PROBE() set_probe_deployed(false)
  1636. #if ENABLED(BLTOUCH)
  1637. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1638. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1639. }
  1640. #endif
  1641. // returns false for ok and true for failure
  1642. static bool set_probe_deployed(bool deploy) {
  1643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1644. if (DEBUGGING(LEVELING)) {
  1645. DEBUG_POS("set_probe_deployed", current_position);
  1646. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1647. }
  1648. #endif
  1649. if (endstops.z_probe_enabled == deploy) return false;
  1650. // Make room for probe
  1651. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1652. // When deploying make sure BLTOUCH is not already triggered
  1653. #if ENABLED(BLTOUCH)
  1654. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1655. #endif
  1656. #if ENABLED(Z_PROBE_SLED)
  1657. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1658. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1659. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1660. #endif
  1661. float oldXpos = current_position[X_AXIS],
  1662. oldYpos = current_position[Y_AXIS];
  1663. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1664. // If endstop is already false, the Z probe is deployed
  1665. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1666. // Would a goto be less ugly?
  1667. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1668. // for a triggered when stowed manual probe.
  1669. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1670. // otherwise an Allen-Key probe can't be stowed.
  1671. #endif
  1672. #if ENABLED(Z_PROBE_SLED)
  1673. dock_sled(!deploy);
  1674. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1675. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1676. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1677. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1678. #endif
  1679. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1680. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1681. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1682. if (IsRunning()) {
  1683. SERIAL_ERROR_START;
  1684. SERIAL_ERRORLNPGM("Z-Probe failed");
  1685. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1686. }
  1687. stop();
  1688. return true;
  1689. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1690. #endif
  1691. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1692. endstops.enable_z_probe(deploy);
  1693. return false;
  1694. }
  1695. static void do_probe_move(float z, float fr_mm_m) {
  1696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1697. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1698. #endif
  1699. // Deploy BLTouch at the start of any probe
  1700. #if ENABLED(BLTOUCH)
  1701. set_bltouch_deployed(true);
  1702. #endif
  1703. // Move down until probe triggered
  1704. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1705. // Retract BLTouch immediately after a probe
  1706. #if ENABLED(BLTOUCH)
  1707. set_bltouch_deployed(false);
  1708. #endif
  1709. // Clear endstop flags
  1710. endstops.hit_on_purpose();
  1711. // Tell the planner where we actually are
  1712. planner.sync_from_steppers();
  1713. // Get Z where the steppers were interrupted
  1714. set_current_from_steppers_for_axis(Z_AXIS);
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1717. #endif
  1718. }
  1719. // Do a single Z probe and return with current_position[Z_AXIS]
  1720. // at the height where the probe triggered.
  1721. static float run_z_probe() {
  1722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1723. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1724. #endif
  1725. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1726. refresh_cmd_timeout();
  1727. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1728. // Do a first probe at the fast speed
  1729. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1730. // move up by the bump distance
  1731. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1732. #else
  1733. // If the nozzle is above the travel height then
  1734. // move down quickly before doing the slow probe
  1735. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1736. if (z < current_position[Z_AXIS])
  1737. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1738. #endif
  1739. // move down slowly to find bed
  1740. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1742. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1743. #endif
  1744. return current_position[Z_AXIS];
  1745. }
  1746. //
  1747. // - Move to the given XY
  1748. // - Deploy the probe, if not already deployed
  1749. // - Probe the bed, get the Z position
  1750. // - Depending on the 'stow' flag
  1751. // - Stow the probe, or
  1752. // - Raise to the BETWEEN height
  1753. // - Return the probed Z position
  1754. //
  1755. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1757. if (DEBUGGING(LEVELING)) {
  1758. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1759. SERIAL_ECHOPAIR(", ", y);
  1760. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1761. SERIAL_ECHOLNPGM(")");
  1762. DEBUG_POS("", current_position);
  1763. }
  1764. #endif
  1765. float old_feedrate_mm_s = feedrate_mm_s;
  1766. // Ensure a minimum height before moving the probe
  1767. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1768. // Move to the XY where we shall probe
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) {
  1771. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1772. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1773. SERIAL_ECHOLNPGM(")");
  1774. }
  1775. #endif
  1776. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1777. // Move the probe to the given XY
  1778. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1779. if (DEPLOY_PROBE()) return NAN;
  1780. float measured_z = run_z_probe();
  1781. if (!stow)
  1782. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1783. else
  1784. if (STOW_PROBE()) return NAN;
  1785. if (verbose_level > 2) {
  1786. SERIAL_PROTOCOLPGM("Bed X: ");
  1787. SERIAL_PROTOCOL_F(x, 3);
  1788. SERIAL_PROTOCOLPGM(" Y: ");
  1789. SERIAL_PROTOCOL_F(y, 3);
  1790. SERIAL_PROTOCOLPGM(" Z: ");
  1791. SERIAL_PROTOCOL_F(measured_z, 3);
  1792. SERIAL_EOL;
  1793. }
  1794. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1795. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1796. #endif
  1797. feedrate_mm_s = old_feedrate_mm_s;
  1798. return measured_z;
  1799. }
  1800. #endif // HAS_BED_PROBE
  1801. #if HAS_ABL
  1802. /**
  1803. * Reset calibration results to zero.
  1804. *
  1805. * TODO: Proper functions to disable / enable
  1806. * bed leveling via a flag, correcting the
  1807. * current position in each case.
  1808. */
  1809. void reset_bed_level() {
  1810. planner.abl_enabled = false;
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1813. #endif
  1814. #if ABL_PLANAR
  1815. planner.bed_level_matrix.set_to_identity();
  1816. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1817. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1818. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1819. bed_level_grid[x][y] = 1000.0;
  1820. #endif
  1821. }
  1822. #endif // HAS_ABL
  1823. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1824. /**
  1825. * Extrapolate a single point from its neighbors
  1826. */
  1827. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. if (DEBUGGING(LEVELING)) {
  1830. SERIAL_ECHOPGM("Extrapolate [");
  1831. if (x < 10) SERIAL_CHAR(' ');
  1832. SERIAL_ECHO((int)x);
  1833. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1834. SERIAL_CHAR(' ');
  1835. if (y < 10) SERIAL_CHAR(' ');
  1836. SERIAL_ECHO((int)y);
  1837. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1838. SERIAL_CHAR(']');
  1839. }
  1840. #endif
  1841. if (bed_level_grid[x][y] < 999.0) {
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1844. #endif
  1845. return; // Don't overwrite good values.
  1846. }
  1847. // Get X neighbors, Y neighbors, and XY neighbors
  1848. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1849. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1850. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1851. // Treat far unprobed points as zero, near as equal to far
  1852. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1853. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1854. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1855. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1856. // Take the average intstead of the median
  1857. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1858. // Median is robust (ignores outliers).
  1859. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1860. // : ((c < b) ? b : (a < c) ? a : c);
  1861. }
  1862. #define EXTRAPOLATE_FROM_EDGE
  1863. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1864. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1865. #define HALF_IN_X
  1866. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1867. #define HALF_IN_Y
  1868. #endif
  1869. #endif
  1870. /**
  1871. * Fill in the unprobed points (corners of circular print surface)
  1872. * using linear extrapolation, away from the center.
  1873. */
  1874. static void extrapolate_unprobed_bed_level() {
  1875. #ifdef HALF_IN_X
  1876. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1877. #else
  1878. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1879. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1880. xlen = ctrx1;
  1881. #endif
  1882. #ifdef HALF_IN_Y
  1883. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1884. #else
  1885. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1886. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  1887. ylen = ctry1;
  1888. #endif
  1889. for (uint8_t xo = 0; xo <= xlen; xo++)
  1890. for (uint8_t yo = 0; yo <= ylen; yo++) {
  1891. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  1892. #ifndef HALF_IN_X
  1893. uint8_t x1 = ctrx1 - xo;
  1894. #endif
  1895. #ifndef HALF_IN_Y
  1896. uint8_t y1 = ctry1 - yo;
  1897. #ifndef HALF_IN_X
  1898. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  1899. #endif
  1900. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  1901. #endif
  1902. #ifndef HALF_IN_X
  1903. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  1904. #endif
  1905. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  1906. }
  1907. }
  1908. /**
  1909. * Print calibration results for plotting or manual frame adjustment.
  1910. */
  1911. static void print_bed_level() {
  1912. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  1913. for (uint8_t x = 1; x < ABL_GRID_POINTS_X + 1; x++) {
  1914. SERIAL_PROTOCOLPGM(" ");
  1915. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  1916. SERIAL_PROTOCOL((int)x);
  1917. }
  1918. SERIAL_EOL;
  1919. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1920. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  1921. SERIAL_PROTOCOL(y + 1);
  1922. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1923. SERIAL_PROTOCOLCHAR(' ');
  1924. float offset = bed_level_grid[x][y];
  1925. if (offset < 999.0) {
  1926. if (offset > 0) SERIAL_CHAR('+');
  1927. SERIAL_PROTOCOL_F(offset, 2);
  1928. }
  1929. else
  1930. SERIAL_PROTOCOLPGM(" ====");
  1931. }
  1932. SERIAL_EOL;
  1933. }
  1934. SERIAL_EOL;
  1935. }
  1936. #endif // AUTO_BED_LEVELING_BILINEAR
  1937. /**
  1938. * Home an individual linear axis
  1939. */
  1940. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1941. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1942. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  1943. if (deploy_bltouch) set_bltouch_deployed(true);
  1944. #endif
  1945. // Tell the planner we're at Z=0
  1946. current_position[axis] = 0;
  1947. #if IS_SCARA
  1948. SYNC_PLAN_POSITION_KINEMATIC();
  1949. current_position[axis] = distance;
  1950. inverse_kinematics(current_position);
  1951. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1952. #else
  1953. sync_plan_position();
  1954. current_position[axis] = distance;
  1955. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1956. #endif
  1957. stepper.synchronize();
  1958. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1959. if (deploy_bltouch) set_bltouch_deployed(false);
  1960. #endif
  1961. endstops.hit_on_purpose();
  1962. }
  1963. /**
  1964. * Home an individual "raw axis" to its endstop.
  1965. * This applies to XYZ on Cartesian and Core robots, and
  1966. * to the individual ABC steppers on DELTA and SCARA.
  1967. *
  1968. * At the end of the procedure the axis is marked as
  1969. * homed and the current position of that axis is updated.
  1970. * Kinematic robots should wait till all axes are homed
  1971. * before updating the current position.
  1972. */
  1973. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1974. static void homeaxis(AxisEnum axis) {
  1975. #if IS_SCARA
  1976. // Only Z homing (with probe) is permitted
  1977. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1978. #else
  1979. #define CAN_HOME(A) \
  1980. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1981. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1982. #endif
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. if (DEBUGGING(LEVELING)) {
  1985. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1986. SERIAL_ECHOLNPGM(")");
  1987. }
  1988. #endif
  1989. int axis_home_dir =
  1990. #if ENABLED(DUAL_X_CARRIAGE)
  1991. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1992. #endif
  1993. home_dir(axis);
  1994. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1995. #if HOMING_Z_WITH_PROBE
  1996. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1997. #endif
  1998. // Set a flag for Z motor locking
  1999. #if ENABLED(Z_DUAL_ENDSTOPS)
  2000. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2001. #endif
  2002. // Fast move towards endstop until triggered
  2003. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2004. // When homing Z with probe respect probe clearance
  2005. const float bump = axis_home_dir * (
  2006. #if HOMING_Z_WITH_PROBE
  2007. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2008. #endif
  2009. home_bump_mm(axis)
  2010. );
  2011. // If a second homing move is configured...
  2012. if (bump) {
  2013. // Move away from the endstop by the axis HOME_BUMP_MM
  2014. do_homing_move(axis, -bump);
  2015. // Slow move towards endstop until triggered
  2016. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2017. }
  2018. #if ENABLED(Z_DUAL_ENDSTOPS)
  2019. if (axis == Z_AXIS) {
  2020. float adj = fabs(z_endstop_adj);
  2021. bool lockZ1;
  2022. if (axis_home_dir > 0) {
  2023. adj = -adj;
  2024. lockZ1 = (z_endstop_adj > 0);
  2025. }
  2026. else
  2027. lockZ1 = (z_endstop_adj < 0);
  2028. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2029. // Move to the adjusted endstop height
  2030. do_homing_move(axis, adj);
  2031. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2032. stepper.set_homing_flag(false);
  2033. } // Z_AXIS
  2034. #endif
  2035. #if IS_SCARA
  2036. set_axis_is_at_home(axis);
  2037. SYNC_PLAN_POSITION_KINEMATIC();
  2038. #elif ENABLED(DELTA)
  2039. // Delta has already moved all three towers up in G28
  2040. // so here it re-homes each tower in turn.
  2041. // Delta homing treats the axes as normal linear axes.
  2042. // retrace by the amount specified in endstop_adj
  2043. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2044. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2045. if (DEBUGGING(LEVELING)) {
  2046. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  2047. DEBUG_POS("", current_position);
  2048. }
  2049. #endif
  2050. do_homing_move(axis, endstop_adj[axis]);
  2051. }
  2052. #else
  2053. // For cartesian/core machines,
  2054. // set the axis to its home position
  2055. set_axis_is_at_home(axis);
  2056. sync_plan_position();
  2057. destination[axis] = current_position[axis];
  2058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2059. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2060. #endif
  2061. #endif
  2062. // Put away the Z probe
  2063. #if HOMING_Z_WITH_PROBE
  2064. if (axis == Z_AXIS && STOW_PROBE()) return;
  2065. #endif
  2066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2067. if (DEBUGGING(LEVELING)) {
  2068. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2069. SERIAL_ECHOLNPGM(")");
  2070. }
  2071. #endif
  2072. } // homeaxis()
  2073. #if ENABLED(FWRETRACT)
  2074. void retract(bool retracting, bool swapping = false) {
  2075. if (retracting == retracted[active_extruder]) return;
  2076. float old_feedrate_mm_s = feedrate_mm_s;
  2077. set_destination_to_current();
  2078. if (retracting) {
  2079. feedrate_mm_s = retract_feedrate_mm_s;
  2080. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2081. sync_plan_position_e();
  2082. prepare_move_to_destination();
  2083. if (retract_zlift > 0.01) {
  2084. current_position[Z_AXIS] -= retract_zlift;
  2085. SYNC_PLAN_POSITION_KINEMATIC();
  2086. prepare_move_to_destination();
  2087. }
  2088. }
  2089. else {
  2090. if (retract_zlift > 0.01) {
  2091. current_position[Z_AXIS] += retract_zlift;
  2092. SYNC_PLAN_POSITION_KINEMATIC();
  2093. }
  2094. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2095. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2096. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2097. sync_plan_position_e();
  2098. prepare_move_to_destination();
  2099. }
  2100. feedrate_mm_s = old_feedrate_mm_s;
  2101. retracted[active_extruder] = retracting;
  2102. } // retract()
  2103. #endif // FWRETRACT
  2104. #if ENABLED(MIXING_EXTRUDER)
  2105. void normalize_mix() {
  2106. float mix_total = 0.0;
  2107. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2108. float v = mixing_factor[i];
  2109. if (v < 0) v = mixing_factor[i] = 0;
  2110. mix_total += v;
  2111. }
  2112. // Scale all values if they don't add up to ~1.0
  2113. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2114. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2115. float mix_scale = 1.0 / mix_total;
  2116. for (int i = 0; i < MIXING_STEPPERS; i++)
  2117. mixing_factor[i] *= mix_scale;
  2118. }
  2119. }
  2120. #if ENABLED(DIRECT_MIXING_IN_G1)
  2121. // Get mixing parameters from the GCode
  2122. // Factors that are left out are set to 0
  2123. // The total "must" be 1.0 (but it will be normalized)
  2124. void gcode_get_mix() {
  2125. const char* mixing_codes = "ABCDHI";
  2126. for (int i = 0; i < MIXING_STEPPERS; i++)
  2127. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2128. normalize_mix();
  2129. }
  2130. #endif
  2131. #endif
  2132. /**
  2133. * ***************************************************************************
  2134. * ***************************** G-CODE HANDLING *****************************
  2135. * ***************************************************************************
  2136. */
  2137. /**
  2138. * Set XYZE destination and feedrate from the current GCode command
  2139. *
  2140. * - Set destination from included axis codes
  2141. * - Set to current for missing axis codes
  2142. * - Set the feedrate, if included
  2143. */
  2144. void gcode_get_destination() {
  2145. LOOP_XYZE(i) {
  2146. if (code_seen(axis_codes[i]))
  2147. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2148. else
  2149. destination[i] = current_position[i];
  2150. }
  2151. if (code_seen('F') && code_value_linear_units() > 0.0)
  2152. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2153. #if ENABLED(PRINTCOUNTER)
  2154. if (!DEBUGGING(DRYRUN))
  2155. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2156. #endif
  2157. // Get ABCDHI mixing factors
  2158. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2159. gcode_get_mix();
  2160. #endif
  2161. }
  2162. void unknown_command_error() {
  2163. SERIAL_ECHO_START;
  2164. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2165. SERIAL_ECHOLNPGM("\"");
  2166. }
  2167. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2168. /**
  2169. * Output a "busy" message at regular intervals
  2170. * while the machine is not accepting commands.
  2171. */
  2172. void host_keepalive() {
  2173. millis_t ms = millis();
  2174. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2175. if (PENDING(ms, next_busy_signal_ms)) return;
  2176. switch (busy_state) {
  2177. case IN_HANDLER:
  2178. case IN_PROCESS:
  2179. SERIAL_ECHO_START;
  2180. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2181. break;
  2182. case PAUSED_FOR_USER:
  2183. SERIAL_ECHO_START;
  2184. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2185. break;
  2186. case PAUSED_FOR_INPUT:
  2187. SERIAL_ECHO_START;
  2188. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2189. break;
  2190. default:
  2191. break;
  2192. }
  2193. }
  2194. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2195. }
  2196. #endif //HOST_KEEPALIVE_FEATURE
  2197. bool position_is_reachable(float target[XYZ]
  2198. #if HAS_BED_PROBE
  2199. , bool by_probe=false
  2200. #endif
  2201. ) {
  2202. float dx = RAW_X_POSITION(target[X_AXIS]),
  2203. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2204. #if HAS_BED_PROBE
  2205. if (by_probe) {
  2206. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2207. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2208. }
  2209. #endif
  2210. #if IS_SCARA
  2211. #if MIDDLE_DEAD_ZONE_R > 0
  2212. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2213. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2214. #else
  2215. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2216. #endif
  2217. #elif ENABLED(DELTA)
  2218. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2219. #else
  2220. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2221. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2222. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2223. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2224. #endif
  2225. }
  2226. /**************************************************
  2227. ***************** GCode Handlers *****************
  2228. **************************************************/
  2229. /**
  2230. * G0, G1: Coordinated movement of X Y Z E axes
  2231. */
  2232. inline void gcode_G0_G1(
  2233. #if IS_SCARA
  2234. bool fast_move=false
  2235. #endif
  2236. ) {
  2237. if (IsRunning()) {
  2238. gcode_get_destination(); // For X Y Z E F
  2239. #if ENABLED(FWRETRACT)
  2240. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2241. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2242. // Is this move an attempt to retract or recover?
  2243. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2244. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2245. sync_plan_position_e(); // AND from the planner
  2246. retract(!retracted[active_extruder]);
  2247. return;
  2248. }
  2249. }
  2250. #endif //FWRETRACT
  2251. #if IS_SCARA
  2252. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2253. #else
  2254. prepare_move_to_destination();
  2255. #endif
  2256. }
  2257. }
  2258. /**
  2259. * G2: Clockwise Arc
  2260. * G3: Counterclockwise Arc
  2261. *
  2262. * This command has two forms: IJ-form and R-form.
  2263. *
  2264. * - I specifies an X offset. J specifies a Y offset.
  2265. * At least one of the IJ parameters is required.
  2266. * X and Y can be omitted to do a complete circle.
  2267. * The given XY is not error-checked. The arc ends
  2268. * based on the angle of the destination.
  2269. * Mixing I or J with R will throw an error.
  2270. *
  2271. * - R specifies the radius. X or Y is required.
  2272. * Omitting both X and Y will throw an error.
  2273. * X or Y must differ from the current XY.
  2274. * Mixing R with I or J will throw an error.
  2275. *
  2276. * Examples:
  2277. *
  2278. * G2 I10 ; CW circle centered at X+10
  2279. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2280. */
  2281. #if ENABLED(ARC_SUPPORT)
  2282. inline void gcode_G2_G3(bool clockwise) {
  2283. if (IsRunning()) {
  2284. #if ENABLED(SF_ARC_FIX)
  2285. bool relative_mode_backup = relative_mode;
  2286. relative_mode = true;
  2287. #endif
  2288. gcode_get_destination();
  2289. #if ENABLED(SF_ARC_FIX)
  2290. relative_mode = relative_mode_backup;
  2291. #endif
  2292. float arc_offset[2] = { 0.0, 0.0 };
  2293. if (code_seen('R')) {
  2294. const float r = code_value_axis_units(X_AXIS),
  2295. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2296. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2297. if (r && (x2 != x1 || y2 != y1)) {
  2298. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2299. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2300. d = HYPOT(dx, dy), // Linear distance between the points
  2301. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2302. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2303. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2304. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2305. arc_offset[X_AXIS] = cx - x1;
  2306. arc_offset[Y_AXIS] = cy - y1;
  2307. }
  2308. }
  2309. else {
  2310. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2311. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2312. }
  2313. if (arc_offset[0] || arc_offset[1]) {
  2314. // Send an arc to the planner
  2315. plan_arc(destination, arc_offset, clockwise);
  2316. refresh_cmd_timeout();
  2317. }
  2318. else {
  2319. // Bad arguments
  2320. SERIAL_ERROR_START;
  2321. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2322. }
  2323. }
  2324. }
  2325. #endif
  2326. /**
  2327. * G4: Dwell S<seconds> or P<milliseconds>
  2328. */
  2329. inline void gcode_G4() {
  2330. millis_t dwell_ms = 0;
  2331. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2332. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2333. stepper.synchronize();
  2334. refresh_cmd_timeout();
  2335. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2336. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2337. while (PENDING(millis(), dwell_ms)) idle();
  2338. }
  2339. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2340. /**
  2341. * Parameters interpreted according to:
  2342. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2343. * However I, J omission is not supported at this point; all
  2344. * parameters can be omitted and default to zero.
  2345. */
  2346. /**
  2347. * G5: Cubic B-spline
  2348. */
  2349. inline void gcode_G5() {
  2350. if (IsRunning()) {
  2351. gcode_get_destination();
  2352. float offset[] = {
  2353. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2354. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2355. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2356. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2357. };
  2358. plan_cubic_move(offset);
  2359. }
  2360. }
  2361. #endif // BEZIER_CURVE_SUPPORT
  2362. #if ENABLED(FWRETRACT)
  2363. /**
  2364. * G10 - Retract filament according to settings of M207
  2365. * G11 - Recover filament according to settings of M208
  2366. */
  2367. inline void gcode_G10_G11(bool doRetract=false) {
  2368. #if EXTRUDERS > 1
  2369. if (doRetract) {
  2370. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2371. }
  2372. #endif
  2373. retract(doRetract
  2374. #if EXTRUDERS > 1
  2375. , retracted_swap[active_extruder]
  2376. #endif
  2377. );
  2378. }
  2379. #endif //FWRETRACT
  2380. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2381. /**
  2382. * G12: Clean the nozzle
  2383. */
  2384. inline void gcode_G12() {
  2385. // Don't allow nozzle cleaning without homing first
  2386. if (axis_unhomed_error(true, true, true)) { return; }
  2387. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2388. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2389. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2390. Nozzle::clean(pattern, strokes, objects);
  2391. }
  2392. #endif
  2393. #if ENABLED(INCH_MODE_SUPPORT)
  2394. /**
  2395. * G20: Set input mode to inches
  2396. */
  2397. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2398. /**
  2399. * G21: Set input mode to millimeters
  2400. */
  2401. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2402. #endif
  2403. #if ENABLED(NOZZLE_PARK_FEATURE)
  2404. /**
  2405. * G27: Park the nozzle
  2406. */
  2407. inline void gcode_G27() {
  2408. // Don't allow nozzle parking without homing first
  2409. if (axis_unhomed_error(true, true, true)) { return; }
  2410. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2411. Nozzle::park(z_action);
  2412. }
  2413. #endif // NOZZLE_PARK_FEATURE
  2414. #if ENABLED(QUICK_HOME)
  2415. static void quick_home_xy() {
  2416. // Pretend the current position is 0,0
  2417. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2418. sync_plan_position();
  2419. int x_axis_home_dir =
  2420. #if ENABLED(DUAL_X_CARRIAGE)
  2421. x_home_dir(active_extruder)
  2422. #else
  2423. home_dir(X_AXIS)
  2424. #endif
  2425. ;
  2426. float mlx = max_length(X_AXIS),
  2427. mly = max_length(Y_AXIS),
  2428. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2429. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2430. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2431. endstops.hit_on_purpose(); // clear endstop hit flags
  2432. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2433. }
  2434. #endif // QUICK_HOME
  2435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2436. void log_machine_info() {
  2437. SERIAL_ECHOPGM("Machine Type: ");
  2438. #if ENABLED(DELTA)
  2439. SERIAL_ECHOLNPGM("Delta");
  2440. #elif IS_SCARA
  2441. SERIAL_ECHOLNPGM("SCARA");
  2442. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2443. SERIAL_ECHOLNPGM("Core");
  2444. #else
  2445. SERIAL_ECHOLNPGM("Cartesian");
  2446. #endif
  2447. SERIAL_ECHOPGM("Probe: ");
  2448. #if ENABLED(FIX_MOUNTED_PROBE)
  2449. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2450. #elif HAS_Z_SERVO_ENDSTOP
  2451. SERIAL_ECHOLNPGM("SERVO PROBE");
  2452. #elif ENABLED(BLTOUCH)
  2453. SERIAL_ECHOLNPGM("BLTOUCH");
  2454. #elif ENABLED(Z_PROBE_SLED)
  2455. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2456. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2457. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2458. #else
  2459. SERIAL_ECHOLNPGM("NONE");
  2460. #endif
  2461. #if HAS_BED_PROBE
  2462. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2463. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2464. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2465. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2466. SERIAL_ECHOPGM(" (Right");
  2467. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2468. SERIAL_ECHOPGM(" (Left");
  2469. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2470. SERIAL_ECHOPGM(" (Middle");
  2471. #else
  2472. SERIAL_ECHOPGM(" (Aligned With");
  2473. #endif
  2474. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2475. SERIAL_ECHOPGM("-Back");
  2476. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2477. SERIAL_ECHOPGM("-Front");
  2478. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2479. SERIAL_ECHOPGM("-Center");
  2480. #endif
  2481. if (zprobe_zoffset < 0)
  2482. SERIAL_ECHOPGM(" & Below");
  2483. else if (zprobe_zoffset > 0)
  2484. SERIAL_ECHOPGM(" & Above");
  2485. else
  2486. SERIAL_ECHOPGM(" & Same Z as");
  2487. SERIAL_ECHOLNPGM(" Nozzle)");
  2488. #endif
  2489. #if HAS_ABL
  2490. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2491. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2492. SERIAL_ECHOPGM("LINEAR");
  2493. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2494. SERIAL_ECHOPGM("BILINEAR");
  2495. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2496. SERIAL_ECHOPGM("3POINT");
  2497. #endif
  2498. if (planner.abl_enabled) {
  2499. SERIAL_ECHOLNPGM(" (enabled)");
  2500. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2501. float diff[XYZ] = {
  2502. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2503. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2504. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2505. };
  2506. SERIAL_ECHOPGM("ABL Adjustment X");
  2507. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2508. SERIAL_ECHO(diff[X_AXIS]);
  2509. SERIAL_ECHOPGM(" Y");
  2510. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2511. SERIAL_ECHO(diff[Y_AXIS]);
  2512. SERIAL_ECHOPGM(" Z");
  2513. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2514. SERIAL_ECHO(diff[Z_AXIS]);
  2515. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2516. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2517. #endif
  2518. }
  2519. SERIAL_EOL;
  2520. #elif ENABLED(MESH_BED_LEVELING)
  2521. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2522. if (mbl.active()) {
  2523. SERIAL_ECHOLNPGM(" (enabled)");
  2524. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2525. }
  2526. SERIAL_EOL;
  2527. #endif
  2528. }
  2529. #endif // DEBUG_LEVELING_FEATURE
  2530. #if ENABLED(DELTA)
  2531. /**
  2532. * A delta can only safely home all axes at the same time
  2533. * This is like quick_home_xy() but for 3 towers.
  2534. */
  2535. inline void home_delta() {
  2536. // Init the current position of all carriages to 0,0,0
  2537. memset(current_position, 0, sizeof(current_position));
  2538. sync_plan_position();
  2539. // Move all carriages together linearly until an endstop is hit.
  2540. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2541. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2542. line_to_current_position();
  2543. stepper.synchronize();
  2544. endstops.hit_on_purpose(); // clear endstop hit flags
  2545. // Probably not needed. Double-check this line:
  2546. memset(current_position, 0, sizeof(current_position));
  2547. // At least one carriage has reached the top.
  2548. // Now back off and re-home each carriage separately.
  2549. HOMEAXIS(A);
  2550. HOMEAXIS(B);
  2551. HOMEAXIS(C);
  2552. // Set all carriages to their home positions
  2553. // Do this here all at once for Delta, because
  2554. // XYZ isn't ABC. Applying this per-tower would
  2555. // give the impression that they are the same.
  2556. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2557. SYNC_PLAN_POSITION_KINEMATIC();
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2560. #endif
  2561. }
  2562. #endif // DELTA
  2563. #if ENABLED(Z_SAFE_HOMING)
  2564. inline void home_z_safely() {
  2565. // Disallow Z homing if X or Y are unknown
  2566. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2567. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2568. SERIAL_ECHO_START;
  2569. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2570. return;
  2571. }
  2572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2573. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2574. #endif
  2575. SYNC_PLAN_POSITION_KINEMATIC();
  2576. /**
  2577. * Move the Z probe (or just the nozzle) to the safe homing point
  2578. */
  2579. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2580. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2581. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2582. if (position_is_reachable(
  2583. destination
  2584. #if HOMING_Z_WITH_PROBE
  2585. , true
  2586. #endif
  2587. )
  2588. ) {
  2589. #if HOMING_Z_WITH_PROBE
  2590. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2591. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2592. #endif
  2593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2594. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2595. #endif
  2596. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2597. HOMEAXIS(Z);
  2598. }
  2599. else {
  2600. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2601. SERIAL_ECHO_START;
  2602. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2603. }
  2604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2605. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2606. #endif
  2607. }
  2608. #endif // Z_SAFE_HOMING
  2609. /**
  2610. * G28: Home all axes according to settings
  2611. *
  2612. * Parameters
  2613. *
  2614. * None Home to all axes with no parameters.
  2615. * With QUICK_HOME enabled XY will home together, then Z.
  2616. *
  2617. * Cartesian parameters
  2618. *
  2619. * X Home to the X endstop
  2620. * Y Home to the Y endstop
  2621. * Z Home to the Z endstop
  2622. *
  2623. */
  2624. inline void gcode_G28() {
  2625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2626. if (DEBUGGING(LEVELING)) {
  2627. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2628. log_machine_info();
  2629. }
  2630. #endif
  2631. // Wait for planner moves to finish!
  2632. stepper.synchronize();
  2633. // For auto bed leveling, clear the level matrix
  2634. #if HAS_ABL
  2635. reset_bed_level();
  2636. #endif
  2637. // Always home with tool 0 active
  2638. #if HOTENDS > 1
  2639. uint8_t old_tool_index = active_extruder;
  2640. tool_change(0, 0, true);
  2641. #endif
  2642. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2643. extruder_duplication_enabled = false;
  2644. #endif
  2645. /**
  2646. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2647. * on again when homing all axis
  2648. */
  2649. #if ENABLED(MESH_BED_LEVELING)
  2650. float pre_home_z = MESH_HOME_SEARCH_Z;
  2651. if (mbl.active()) {
  2652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2654. #endif
  2655. // Save known Z position if already homed
  2656. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2657. pre_home_z = current_position[Z_AXIS];
  2658. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2659. }
  2660. mbl.set_active(false);
  2661. current_position[Z_AXIS] = pre_home_z;
  2662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2663. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2664. #endif
  2665. }
  2666. #endif
  2667. setup_for_endstop_or_probe_move();
  2668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2669. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2670. #endif
  2671. endstops.enable(true); // Enable endstops for next homing move
  2672. #if ENABLED(DELTA)
  2673. home_delta();
  2674. #else // NOT DELTA
  2675. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2676. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2677. set_destination_to_current();
  2678. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2679. if (home_all_axis || homeZ) {
  2680. HOMEAXIS(Z);
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2683. #endif
  2684. }
  2685. #else
  2686. if (home_all_axis || homeX || homeY) {
  2687. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2688. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2689. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2691. if (DEBUGGING(LEVELING))
  2692. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2693. #endif
  2694. do_blocking_move_to_z(destination[Z_AXIS]);
  2695. }
  2696. }
  2697. #endif
  2698. #if ENABLED(QUICK_HOME)
  2699. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2700. #endif
  2701. #if ENABLED(HOME_Y_BEFORE_X)
  2702. // Home Y
  2703. if (home_all_axis || homeY) {
  2704. HOMEAXIS(Y);
  2705. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2706. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2707. #endif
  2708. }
  2709. #endif
  2710. // Home X
  2711. if (home_all_axis || homeX) {
  2712. #if ENABLED(DUAL_X_CARRIAGE)
  2713. int tmp_extruder = active_extruder;
  2714. active_extruder = !active_extruder;
  2715. HOMEAXIS(X);
  2716. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2717. active_extruder = tmp_extruder;
  2718. HOMEAXIS(X);
  2719. // reset state used by the different modes
  2720. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2721. delayed_move_time = 0;
  2722. active_extruder_parked = true;
  2723. #else
  2724. HOMEAXIS(X);
  2725. #endif
  2726. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2727. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2728. #endif
  2729. }
  2730. #if DISABLED(HOME_Y_BEFORE_X)
  2731. // Home Y
  2732. if (home_all_axis || homeY) {
  2733. HOMEAXIS(Y);
  2734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2735. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2736. #endif
  2737. }
  2738. #endif
  2739. // Home Z last if homing towards the bed
  2740. #if Z_HOME_DIR < 0
  2741. if (home_all_axis || homeZ) {
  2742. #if ENABLED(Z_SAFE_HOMING)
  2743. home_z_safely();
  2744. #else
  2745. HOMEAXIS(Z);
  2746. #endif
  2747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2748. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2749. #endif
  2750. } // home_all_axis || homeZ
  2751. #endif // Z_HOME_DIR < 0
  2752. SYNC_PLAN_POSITION_KINEMATIC();
  2753. #endif // !DELTA (gcode_G28)
  2754. endstops.not_homing();
  2755. // Enable mesh leveling again
  2756. #if ENABLED(MESH_BED_LEVELING)
  2757. if (mbl.has_mesh()) {
  2758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2759. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2760. #endif
  2761. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2763. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2764. #endif
  2765. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2766. #if Z_HOME_DIR > 0
  2767. + Z_MAX_POS
  2768. #endif
  2769. ;
  2770. SYNC_PLAN_POSITION_KINEMATIC();
  2771. mbl.set_active(true);
  2772. #if ENABLED(MESH_G28_REST_ORIGIN)
  2773. current_position[Z_AXIS] = 0.0;
  2774. set_destination_to_current();
  2775. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2776. stepper.synchronize();
  2777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2778. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2779. #endif
  2780. #else
  2781. planner.unapply_leveling(current_position);
  2782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2783. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2784. #endif
  2785. #endif
  2786. }
  2787. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2788. current_position[Z_AXIS] = pre_home_z;
  2789. SYNC_PLAN_POSITION_KINEMATIC();
  2790. mbl.set_active(true);
  2791. planner.unapply_leveling(current_position);
  2792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2793. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2794. #endif
  2795. }
  2796. }
  2797. #endif
  2798. #if ENABLED(DELTA)
  2799. // move to a height where we can use the full xy-area
  2800. do_blocking_move_to_z(delta_clip_start_height);
  2801. #endif
  2802. clean_up_after_endstop_or_probe_move();
  2803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2805. #endif
  2806. // Restore the active tool after homing
  2807. #if HOTENDS > 1
  2808. tool_change(old_tool_index, 0, true);
  2809. #endif
  2810. report_current_position();
  2811. }
  2812. #if HAS_PROBING_PROCEDURE
  2813. void out_of_range_error(const char* p_edge) {
  2814. SERIAL_PROTOCOLPGM("?Probe ");
  2815. serialprintPGM(p_edge);
  2816. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2817. }
  2818. #endif
  2819. #if ENABLED(MESH_BED_LEVELING)
  2820. inline void _mbl_goto_xy(float x, float y) {
  2821. float old_feedrate_mm_s = feedrate_mm_s;
  2822. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2823. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2824. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2825. + Z_CLEARANCE_BETWEEN_PROBES
  2826. #elif Z_HOMING_HEIGHT > 0
  2827. + Z_HOMING_HEIGHT
  2828. #endif
  2829. ;
  2830. line_to_current_position();
  2831. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2832. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2833. line_to_current_position();
  2834. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2835. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2836. line_to_current_position();
  2837. #endif
  2838. feedrate_mm_s = old_feedrate_mm_s;
  2839. stepper.synchronize();
  2840. }
  2841. /**
  2842. * G29: Mesh-based Z probe, probes a grid and produces a
  2843. * mesh to compensate for variable bed height
  2844. *
  2845. * Parameters With MESH_BED_LEVELING:
  2846. *
  2847. * S0 Produce a mesh report
  2848. * S1 Start probing mesh points
  2849. * S2 Probe the next mesh point
  2850. * S3 Xn Yn Zn.nn Manually modify a single point
  2851. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2852. * S5 Reset and disable mesh
  2853. *
  2854. * The S0 report the points as below
  2855. *
  2856. * +----> X-axis 1-n
  2857. * |
  2858. * |
  2859. * v Y-axis 1-n
  2860. *
  2861. */
  2862. inline void gcode_G29() {
  2863. static int probe_point = -1;
  2864. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2865. if (state < 0 || state > 5) {
  2866. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2867. return;
  2868. }
  2869. int8_t px, py;
  2870. switch (state) {
  2871. case MeshReport:
  2872. if (mbl.has_mesh()) {
  2873. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2874. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2875. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2876. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2877. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2878. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2879. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2880. SERIAL_PROTOCOLPGM(" ");
  2881. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2882. }
  2883. SERIAL_EOL;
  2884. }
  2885. }
  2886. else
  2887. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2888. break;
  2889. case MeshStart:
  2890. mbl.reset();
  2891. probe_point = 0;
  2892. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2893. break;
  2894. case MeshNext:
  2895. if (probe_point < 0) {
  2896. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2897. return;
  2898. }
  2899. // For each G29 S2...
  2900. if (probe_point == 0) {
  2901. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2902. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2903. #if Z_HOME_DIR > 0
  2904. + Z_MAX_POS
  2905. #endif
  2906. ;
  2907. SYNC_PLAN_POSITION_KINEMATIC();
  2908. }
  2909. else {
  2910. // For G29 S2 after adjusting Z.
  2911. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2912. }
  2913. // If there's another point to sample, move there with optional lift.
  2914. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2915. mbl.zigzag(probe_point, px, py);
  2916. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2917. probe_point++;
  2918. }
  2919. else {
  2920. // One last "return to the bed" (as originally coded) at completion
  2921. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2922. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2923. + Z_CLEARANCE_BETWEEN_PROBES
  2924. #elif Z_HOMING_HEIGHT > 0
  2925. + Z_HOMING_HEIGHT
  2926. #endif
  2927. ;
  2928. line_to_current_position();
  2929. stepper.synchronize();
  2930. // After recording the last point, activate the mbl and home
  2931. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2932. probe_point = -1;
  2933. mbl.set_has_mesh(true);
  2934. enqueue_and_echo_commands_P(PSTR("G28"));
  2935. }
  2936. break;
  2937. case MeshSet:
  2938. if (code_seen('X')) {
  2939. px = code_value_int() - 1;
  2940. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2941. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2942. return;
  2943. }
  2944. }
  2945. else {
  2946. SERIAL_PROTOCOLLNPGM("X not entered.");
  2947. return;
  2948. }
  2949. if (code_seen('Y')) {
  2950. py = code_value_int() - 1;
  2951. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2952. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2953. return;
  2954. }
  2955. }
  2956. else {
  2957. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2958. return;
  2959. }
  2960. if (code_seen('Z')) {
  2961. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2962. }
  2963. else {
  2964. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2965. return;
  2966. }
  2967. break;
  2968. case MeshSetZOffset:
  2969. if (code_seen('Z')) {
  2970. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2971. }
  2972. else {
  2973. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2974. return;
  2975. }
  2976. break;
  2977. case MeshReset:
  2978. if (mbl.active()) {
  2979. current_position[Z_AXIS] +=
  2980. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2981. mbl.reset();
  2982. SYNC_PLAN_POSITION_KINEMATIC();
  2983. }
  2984. else
  2985. mbl.reset();
  2986. } // switch(state)
  2987. report_current_position();
  2988. }
  2989. #elif HAS_ABL
  2990. /**
  2991. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2992. * Will fail if the printer has not been homed with G28.
  2993. *
  2994. * Enhanced G29 Auto Bed Leveling Probe Routine
  2995. *
  2996. * Parameters With ABL_GRID:
  2997. *
  2998. * P Set the size of the grid that will be probed (P x P points).
  2999. * Not supported by non-linear delta printer bed leveling.
  3000. * Example: "G29 P4"
  3001. *
  3002. * S Set the XY travel speed between probe points (in units/min)
  3003. *
  3004. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3005. * or clean the rotation Matrix. Useful to check the topology
  3006. * after a first run of G29.
  3007. *
  3008. * V Set the verbose level (0-4). Example: "G29 V3"
  3009. *
  3010. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3011. * This is useful for manual bed leveling and finding flaws in the bed (to
  3012. * assist with part placement).
  3013. * Not supported by non-linear delta printer bed leveling.
  3014. *
  3015. * F Set the Front limit of the probing grid
  3016. * B Set the Back limit of the probing grid
  3017. * L Set the Left limit of the probing grid
  3018. * R Set the Right limit of the probing grid
  3019. *
  3020. * Global Parameters:
  3021. *
  3022. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3023. * Include "E" to engage/disengage the Z probe for each sample.
  3024. * There's no extra effect if you have a fixed Z probe.
  3025. * Usage: "G29 E" or "G29 e"
  3026. *
  3027. */
  3028. inline void gcode_G29() {
  3029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3030. bool query = code_seen('Q');
  3031. uint8_t old_debug_flags = marlin_debug_flags;
  3032. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3033. if (DEBUGGING(LEVELING)) {
  3034. DEBUG_POS(">>> gcode_G29", current_position);
  3035. log_machine_info();
  3036. }
  3037. marlin_debug_flags = old_debug_flags;
  3038. if (query) return;
  3039. #endif
  3040. // Don't allow auto-leveling without homing first
  3041. if (axis_unhomed_error(true, true, true)) return;
  3042. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3043. if (verbose_level < 0 || verbose_level > 4) {
  3044. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3045. return;
  3046. }
  3047. bool dryrun = code_seen('D'),
  3048. stow_probe_after_each = code_seen('E');
  3049. #if ABL_GRID
  3050. #if ABL_PLANAR
  3051. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3052. #endif
  3053. if (verbose_level > 0) {
  3054. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3055. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3056. }
  3057. int abl_grid_points_x = ABL_GRID_POINTS_X,
  3058. abl_grid_points_y = ABL_GRID_POINTS_Y;
  3059. #if ABL_PLANAR
  3060. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3061. if (abl_grid_points_x < 2) {
  3062. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  3063. return;
  3064. }
  3065. #endif
  3066. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3067. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3068. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3069. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3070. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3071. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3072. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3073. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3074. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3075. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3076. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3077. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3078. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3079. if (left_out || right_out || front_out || back_out) {
  3080. if (left_out) {
  3081. out_of_range_error(PSTR("(L)eft"));
  3082. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3083. }
  3084. if (right_out) {
  3085. out_of_range_error(PSTR("(R)ight"));
  3086. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3087. }
  3088. if (front_out) {
  3089. out_of_range_error(PSTR("(F)ront"));
  3090. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3091. }
  3092. if (back_out) {
  3093. out_of_range_error(PSTR("(B)ack"));
  3094. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3095. }
  3096. return;
  3097. }
  3098. #endif // ABL_GRID
  3099. stepper.synchronize();
  3100. // Disable auto bed leveling during G29
  3101. bool abl_should_enable = planner.abl_enabled;
  3102. planner.abl_enabled = false;
  3103. if (!dryrun) {
  3104. // Re-orient the current position without leveling
  3105. // based on where the steppers are positioned.
  3106. get_cartesian_from_steppers();
  3107. memcpy(current_position, cartes, sizeof(cartes));
  3108. // Inform the planner about the new coordinates
  3109. SYNC_PLAN_POSITION_KINEMATIC();
  3110. }
  3111. setup_for_endstop_or_probe_move();
  3112. // Deploy the probe. Probe will raise if needed.
  3113. if (DEPLOY_PROBE()) {
  3114. planner.abl_enabled = abl_should_enable;
  3115. return;
  3116. }
  3117. float xProbe = 0, yProbe = 0, measured_z = 0;
  3118. #if ABL_GRID
  3119. // probe at the points of a lattice grid
  3120. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3121. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3122. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3123. float zoffset = zprobe_zoffset;
  3124. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3125. if (xGridSpacing != bilinear_grid_spacing[X_AXIS] || yGridSpacing != bilinear_grid_spacing[Y_AXIS]) {
  3126. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3127. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3128. // Can't re-enable (on error) until the new grid is written
  3129. abl_should_enable = false;
  3130. }
  3131. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3132. /**
  3133. * solve the plane equation ax + by + d = z
  3134. * A is the matrix with rows [x y 1] for all the probed points
  3135. * B is the vector of the Z positions
  3136. * the normal vector to the plane is formed by the coefficients of the
  3137. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3138. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3139. */
  3140. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3141. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3142. probePointCounter = -1;
  3143. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3144. eqnBVector[abl2], // "B" vector of Z points
  3145. mean = 0.0;
  3146. #endif // AUTO_BED_LEVELING_LINEAR
  3147. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3148. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3149. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3150. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3151. int8_t xStart, xStop, xInc;
  3152. if (zig) {
  3153. xStart = 0;
  3154. xStop = abl_grid_points_x;
  3155. xInc = 1;
  3156. }
  3157. else {
  3158. xStart = abl_grid_points_x - 1;
  3159. xStop = -1;
  3160. xInc = -1;
  3161. }
  3162. zig = !zig;
  3163. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3164. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3165. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3166. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3167. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3168. #endif
  3169. #if IS_KINEMATIC
  3170. // Avoid probing outside the round or hexagonal area
  3171. float pos[XYZ] = { xProbe, yProbe, 0 };
  3172. if (!position_is_reachable(pos, true)) continue;
  3173. #endif
  3174. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3175. if (measured_z == NAN) {
  3176. planner.abl_enabled = abl_should_enable;
  3177. return;
  3178. }
  3179. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3180. mean += measured_z;
  3181. eqnBVector[probePointCounter] = measured_z;
  3182. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3183. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3184. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3185. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3186. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3187. #endif
  3188. idle();
  3189. } //xProbe
  3190. } //yProbe
  3191. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3193. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3194. #endif
  3195. // Probe at 3 arbitrary points
  3196. vector_3 points[3] = {
  3197. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3198. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3199. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3200. };
  3201. for (uint8_t i = 0; i < 3; ++i) {
  3202. // Retain the last probe position
  3203. xProbe = LOGICAL_X_POSITION(points[i].x);
  3204. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3205. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3206. }
  3207. if (measured_z == NAN) {
  3208. planner.abl_enabled = abl_should_enable;
  3209. return;
  3210. }
  3211. if (!dryrun) {
  3212. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3213. if (planeNormal.z < 0) {
  3214. planeNormal.x *= -1;
  3215. planeNormal.y *= -1;
  3216. planeNormal.z *= -1;
  3217. }
  3218. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3219. // Can't re-enable (on error) until the new grid is written
  3220. abl_should_enable = false;
  3221. }
  3222. #endif // AUTO_BED_LEVELING_3POINT
  3223. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3224. if (STOW_PROBE()) {
  3225. planner.abl_enabled = abl_should_enable;
  3226. return;
  3227. }
  3228. //
  3229. // Unless this is a dry run, auto bed leveling will
  3230. // definitely be enabled after this point
  3231. //
  3232. // Restore state after probing
  3233. clean_up_after_endstop_or_probe_move();
  3234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3235. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3236. #endif
  3237. // Calculate leveling, print reports, correct the position
  3238. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3239. if (!dryrun) extrapolate_unprobed_bed_level();
  3240. print_bed_level();
  3241. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3242. // For LINEAR leveling calculate matrix, print reports, correct the position
  3243. // solve lsq problem
  3244. float plane_equation_coefficients[3];
  3245. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3246. mean /= abl2;
  3247. if (verbose_level) {
  3248. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3249. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3250. SERIAL_PROTOCOLPGM(" b: ");
  3251. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3252. SERIAL_PROTOCOLPGM(" d: ");
  3253. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3254. SERIAL_EOL;
  3255. if (verbose_level > 2) {
  3256. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3257. SERIAL_PROTOCOL_F(mean, 8);
  3258. SERIAL_EOL;
  3259. }
  3260. }
  3261. // Create the matrix but don't correct the position yet
  3262. if (!dryrun) {
  3263. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3264. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3265. );
  3266. }
  3267. // Show the Topography map if enabled
  3268. if (do_topography_map) {
  3269. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3270. " +--- BACK --+\n"
  3271. " | |\n"
  3272. " L | (+) | R\n"
  3273. " E | | I\n"
  3274. " F | (-) N (+) | G\n"
  3275. " T | | H\n"
  3276. " | (-) | T\n"
  3277. " | |\n"
  3278. " O-- FRONT --+\n"
  3279. " (0,0)");
  3280. float min_diff = 999;
  3281. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3282. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3283. int ind = indexIntoAB[xx][yy];
  3284. float diff = eqnBVector[ind] - mean,
  3285. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3286. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3287. z_tmp = 0;
  3288. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3289. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3290. if (diff >= 0.0)
  3291. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3292. else
  3293. SERIAL_PROTOCOLCHAR(' ');
  3294. SERIAL_PROTOCOL_F(diff, 5);
  3295. } // xx
  3296. SERIAL_EOL;
  3297. } // yy
  3298. SERIAL_EOL;
  3299. if (verbose_level > 3) {
  3300. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3301. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3302. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3303. int ind = indexIntoAB[xx][yy];
  3304. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3305. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3306. z_tmp = 0;
  3307. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3308. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3309. if (diff >= 0.0)
  3310. SERIAL_PROTOCOLPGM(" +");
  3311. // Include + for column alignment
  3312. else
  3313. SERIAL_PROTOCOLCHAR(' ');
  3314. SERIAL_PROTOCOL_F(diff, 5);
  3315. } // xx
  3316. SERIAL_EOL;
  3317. } // yy
  3318. SERIAL_EOL;
  3319. }
  3320. } //do_topography_map
  3321. #endif // AUTO_BED_LEVELING_LINEAR
  3322. #if ABL_PLANAR
  3323. // For LINEAR and 3POINT leveling correct the current position
  3324. if (verbose_level > 0)
  3325. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3326. if (!dryrun) {
  3327. //
  3328. // Correct the current XYZ position based on the tilted plane.
  3329. //
  3330. // 1. Get the distance from the current position to the reference point.
  3331. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3332. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3333. z_real = current_position[Z_AXIS],
  3334. z_zero = 0;
  3335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3336. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3337. #endif
  3338. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3339. // 2. Apply the inverse matrix to the distance
  3340. // from the reference point to X, Y, and zero.
  3341. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3342. // 3. Get the matrix-based corrected Z.
  3343. // (Even if not used, get it for comparison.)
  3344. float new_z = z_real + z_zero;
  3345. // 4. Use the last measured distance to the bed, if possible
  3346. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3347. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3348. ) {
  3349. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3351. if (DEBUGGING(LEVELING)) {
  3352. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3353. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3354. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3355. }
  3356. #endif
  3357. new_z = simple_z;
  3358. }
  3359. // 5. The rotated XY and corrected Z are now current_position
  3360. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3361. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3362. current_position[Z_AXIS] = new_z;
  3363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3364. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3365. #endif
  3366. SYNC_PLAN_POSITION_KINEMATIC();
  3367. abl_should_enable = true;
  3368. }
  3369. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3370. if (!dryrun) {
  3371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3372. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3373. #endif
  3374. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3376. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3377. #endif
  3378. SYNC_PLAN_POSITION_KINEMATIC();
  3379. abl_should_enable = true;
  3380. }
  3381. #endif // ABL_PLANAR
  3382. #ifdef Z_PROBE_END_SCRIPT
  3383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3384. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3385. #endif
  3386. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3387. stepper.synchronize();
  3388. #endif
  3389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3390. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3391. #endif
  3392. report_current_position();
  3393. KEEPALIVE_STATE(IN_HANDLER);
  3394. // Auto Bed Leveling is complete! Enable if possible.
  3395. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3396. }
  3397. #endif // HAS_ABL
  3398. #if HAS_BED_PROBE
  3399. /**
  3400. * G30: Do a single Z probe at the current XY
  3401. */
  3402. inline void gcode_G30() {
  3403. #if HAS_ABL
  3404. reset_bed_level();
  3405. #endif
  3406. setup_for_endstop_or_probe_move();
  3407. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3408. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3409. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3410. true, 1);
  3411. SERIAL_PROTOCOLPGM("Bed X: ");
  3412. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3413. SERIAL_PROTOCOLPGM(" Y: ");
  3414. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3415. SERIAL_PROTOCOLPGM(" Z: ");
  3416. SERIAL_PROTOCOL(measured_z + 0.0001);
  3417. SERIAL_EOL;
  3418. clean_up_after_endstop_or_probe_move();
  3419. report_current_position();
  3420. }
  3421. #if ENABLED(Z_PROBE_SLED)
  3422. /**
  3423. * G31: Deploy the Z probe
  3424. */
  3425. inline void gcode_G31() { DEPLOY_PROBE(); }
  3426. /**
  3427. * G32: Stow the Z probe
  3428. */
  3429. inline void gcode_G32() { STOW_PROBE(); }
  3430. #endif // Z_PROBE_SLED
  3431. #endif // HAS_BED_PROBE
  3432. /**
  3433. * G92: Set current position to given X Y Z E
  3434. */
  3435. inline void gcode_G92() {
  3436. bool didXYZ = false,
  3437. didE = code_seen('E');
  3438. if (!didE) stepper.synchronize();
  3439. LOOP_XYZE(i) {
  3440. if (code_seen(axis_codes[i])) {
  3441. #if IS_SCARA
  3442. current_position[i] = code_value_axis_units(i);
  3443. if (i != E_AXIS) didXYZ = true;
  3444. #else
  3445. float p = current_position[i],
  3446. v = code_value_axis_units(i);
  3447. current_position[i] = v;
  3448. if (i != E_AXIS) {
  3449. didXYZ = true;
  3450. position_shift[i] += v - p; // Offset the coordinate space
  3451. update_software_endstops((AxisEnum)i);
  3452. }
  3453. #endif
  3454. }
  3455. }
  3456. if (didXYZ)
  3457. SYNC_PLAN_POSITION_KINEMATIC();
  3458. else if (didE)
  3459. sync_plan_position_e();
  3460. report_current_position();
  3461. }
  3462. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3463. /**
  3464. * M0: Unconditional stop - Wait for user button press on LCD
  3465. * M1: Conditional stop - Wait for user button press on LCD
  3466. */
  3467. inline void gcode_M0_M1() {
  3468. char* args = current_command_args;
  3469. millis_t codenum = 0;
  3470. bool hasP = false, hasS = false;
  3471. if (code_seen('P')) {
  3472. codenum = code_value_millis(); // milliseconds to wait
  3473. hasP = codenum > 0;
  3474. }
  3475. if (code_seen('S')) {
  3476. codenum = code_value_millis_from_seconds(); // seconds to wait
  3477. hasS = codenum > 0;
  3478. }
  3479. #if ENABLED(ULTIPANEL)
  3480. if (!hasP && !hasS && *args != '\0')
  3481. lcd_setstatus(args, true);
  3482. else {
  3483. LCD_MESSAGEPGM(MSG_USERWAIT);
  3484. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3485. dontExpireStatus();
  3486. #endif
  3487. }
  3488. lcd_ignore_click();
  3489. #else
  3490. if (!hasP && !hasS && *args != '\0') {
  3491. SERIAL_ECHO_START;
  3492. SERIAL_ECHOLN(args);
  3493. }
  3494. #endif
  3495. stepper.synchronize();
  3496. refresh_cmd_timeout();
  3497. #if ENABLED(ULTIPANEL)
  3498. if (codenum > 0) {
  3499. codenum += previous_cmd_ms; // wait until this time for a click
  3500. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3501. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3502. lcd_ignore_click(false);
  3503. }
  3504. else if (lcd_detected()) {
  3505. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3506. while (!lcd_clicked()) idle();
  3507. }
  3508. else return;
  3509. if (IS_SD_PRINTING)
  3510. LCD_MESSAGEPGM(MSG_RESUMING);
  3511. else
  3512. LCD_MESSAGEPGM(WELCOME_MSG);
  3513. #else
  3514. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3515. wait_for_user = true;
  3516. if (codenum > 0) {
  3517. codenum += previous_cmd_ms; // wait until this time for an M108
  3518. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3519. }
  3520. else while (wait_for_user) idle();
  3521. wait_for_user = false;
  3522. #endif
  3523. KEEPALIVE_STATE(IN_HANDLER);
  3524. }
  3525. #endif // ULTIPANEL || EMERGENCY_PARSER
  3526. /**
  3527. * M17: Enable power on all stepper motors
  3528. */
  3529. inline void gcode_M17() {
  3530. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3531. enable_all_steppers();
  3532. }
  3533. #if ENABLED(SDSUPPORT)
  3534. /**
  3535. * M20: List SD card to serial output
  3536. */
  3537. inline void gcode_M20() {
  3538. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3539. card.ls();
  3540. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3541. }
  3542. /**
  3543. * M21: Init SD Card
  3544. */
  3545. inline void gcode_M21() { card.initsd(); }
  3546. /**
  3547. * M22: Release SD Card
  3548. */
  3549. inline void gcode_M22() { card.release(); }
  3550. /**
  3551. * M23: Open a file
  3552. */
  3553. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3554. /**
  3555. * M24: Start SD Print
  3556. */
  3557. inline void gcode_M24() {
  3558. card.startFileprint();
  3559. print_job_timer.start();
  3560. }
  3561. /**
  3562. * M25: Pause SD Print
  3563. */
  3564. inline void gcode_M25() { card.pauseSDPrint(); }
  3565. /**
  3566. * M26: Set SD Card file index
  3567. */
  3568. inline void gcode_M26() {
  3569. if (card.cardOK && code_seen('S'))
  3570. card.setIndex(code_value_long());
  3571. }
  3572. /**
  3573. * M27: Get SD Card status
  3574. */
  3575. inline void gcode_M27() { card.getStatus(); }
  3576. /**
  3577. * M28: Start SD Write
  3578. */
  3579. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3580. /**
  3581. * M29: Stop SD Write
  3582. * Processed in write to file routine above
  3583. */
  3584. inline void gcode_M29() {
  3585. // card.saving = false;
  3586. }
  3587. /**
  3588. * M30 <filename>: Delete SD Card file
  3589. */
  3590. inline void gcode_M30() {
  3591. if (card.cardOK) {
  3592. card.closefile();
  3593. card.removeFile(current_command_args);
  3594. }
  3595. }
  3596. #endif // SDSUPPORT
  3597. /**
  3598. * M31: Get the time since the start of SD Print (or last M109)
  3599. */
  3600. inline void gcode_M31() {
  3601. char buffer[21];
  3602. duration_t elapsed = print_job_timer.duration();
  3603. elapsed.toString(buffer);
  3604. lcd_setstatus(buffer);
  3605. SERIAL_ECHO_START;
  3606. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3607. thermalManager.autotempShutdown();
  3608. }
  3609. #if ENABLED(SDSUPPORT)
  3610. /**
  3611. * M32: Select file and start SD Print
  3612. */
  3613. inline void gcode_M32() {
  3614. if (card.sdprinting)
  3615. stepper.synchronize();
  3616. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3617. if (!namestartpos)
  3618. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3619. else
  3620. namestartpos++; //to skip the '!'
  3621. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3622. if (card.cardOK) {
  3623. card.openFile(namestartpos, true, call_procedure);
  3624. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3625. card.setIndex(code_value_long());
  3626. card.startFileprint();
  3627. // Procedure calls count as normal print time.
  3628. if (!call_procedure) print_job_timer.start();
  3629. }
  3630. }
  3631. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3632. /**
  3633. * M33: Get the long full path of a file or folder
  3634. *
  3635. * Parameters:
  3636. * <dospath> Case-insensitive DOS-style path to a file or folder
  3637. *
  3638. * Example:
  3639. * M33 miscel~1/armchair/armcha~1.gco
  3640. *
  3641. * Output:
  3642. * /Miscellaneous/Armchair/Armchair.gcode
  3643. */
  3644. inline void gcode_M33() {
  3645. card.printLongPath(current_command_args);
  3646. }
  3647. #endif
  3648. /**
  3649. * M928: Start SD Write
  3650. */
  3651. inline void gcode_M928() {
  3652. card.openLogFile(current_command_args);
  3653. }
  3654. #endif // SDSUPPORT
  3655. /**
  3656. * M42: Change pin status via GCode
  3657. *
  3658. * P<pin> Pin number (LED if omitted)
  3659. * S<byte> Pin status from 0 - 255
  3660. */
  3661. inline void gcode_M42() {
  3662. if (!code_seen('S')) return;
  3663. int pin_status = code_value_int();
  3664. if (pin_status < 0 || pin_status > 255) return;
  3665. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3666. if (pin_number < 0) return;
  3667. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3668. if (pin_number == sensitive_pins[i]) {
  3669. SERIAL_ERROR_START;
  3670. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3671. return;
  3672. }
  3673. pinMode(pin_number, OUTPUT);
  3674. digitalWrite(pin_number, pin_status);
  3675. analogWrite(pin_number, pin_status);
  3676. #if FAN_COUNT > 0
  3677. switch (pin_number) {
  3678. #if HAS_FAN0
  3679. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3680. #endif
  3681. #if HAS_FAN1
  3682. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3683. #endif
  3684. #if HAS_FAN2
  3685. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3686. #endif
  3687. }
  3688. #endif
  3689. }
  3690. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3691. /**
  3692. * M48: Z probe repeatability measurement function.
  3693. *
  3694. * Usage:
  3695. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3696. * P = Number of sampled points (4-50, default 10)
  3697. * X = Sample X position
  3698. * Y = Sample Y position
  3699. * V = Verbose level (0-4, default=1)
  3700. * E = Engage Z probe for each reading
  3701. * L = Number of legs of movement before probe
  3702. * S = Schizoid (Or Star if you prefer)
  3703. *
  3704. * This function assumes the bed has been homed. Specifically, that a G28 command
  3705. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3706. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3707. * regenerated.
  3708. */
  3709. inline void gcode_M48() {
  3710. if (axis_unhomed_error(true, true, true)) return;
  3711. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3712. if (verbose_level < 0 || verbose_level > 4) {
  3713. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3714. return;
  3715. }
  3716. if (verbose_level > 0)
  3717. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3718. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3719. if (n_samples < 4 || n_samples > 50) {
  3720. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3721. return;
  3722. }
  3723. float X_current = current_position[X_AXIS],
  3724. Y_current = current_position[Y_AXIS];
  3725. bool stow_probe_after_each = code_seen('E');
  3726. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3727. #if DISABLED(DELTA)
  3728. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3729. out_of_range_error(PSTR("X"));
  3730. return;
  3731. }
  3732. #endif
  3733. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3734. #if DISABLED(DELTA)
  3735. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3736. out_of_range_error(PSTR("Y"));
  3737. return;
  3738. }
  3739. #else
  3740. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3741. if (!position_is_reachable(pos, true)) {
  3742. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3743. return;
  3744. }
  3745. #endif
  3746. bool seen_L = code_seen('L');
  3747. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3748. if (n_legs > 15) {
  3749. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3750. return;
  3751. }
  3752. if (n_legs == 1) n_legs = 2;
  3753. bool schizoid_flag = code_seen('S');
  3754. if (schizoid_flag && !seen_L) n_legs = 7;
  3755. /**
  3756. * Now get everything to the specified probe point So we can safely do a
  3757. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3758. * we don't want to use that as a starting point for each probe.
  3759. */
  3760. if (verbose_level > 2)
  3761. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3762. // Disable bed level correction in M48 because we want the raw data when we probe
  3763. #if HAS_ABL
  3764. reset_bed_level();
  3765. #endif
  3766. setup_for_endstop_or_probe_move();
  3767. // Move to the first point, deploy, and probe
  3768. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3769. randomSeed(millis());
  3770. double mean = 0, sigma = 0, sample_set[n_samples];
  3771. for (uint8_t n = 0; n < n_samples; n++) {
  3772. if (n_legs) {
  3773. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3774. float angle = random(0.0, 360.0),
  3775. radius = random(
  3776. #if ENABLED(DELTA)
  3777. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3778. #else
  3779. 5, X_MAX_LENGTH / 8
  3780. #endif
  3781. );
  3782. if (verbose_level > 3) {
  3783. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3784. SERIAL_ECHOPAIR(" angle: ", angle);
  3785. SERIAL_ECHOPGM(" Direction: ");
  3786. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3787. SERIAL_ECHOLNPGM("Clockwise");
  3788. }
  3789. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3790. double delta_angle;
  3791. if (schizoid_flag)
  3792. // The points of a 5 point star are 72 degrees apart. We need to
  3793. // skip a point and go to the next one on the star.
  3794. delta_angle = dir * 2.0 * 72.0;
  3795. else
  3796. // If we do this line, we are just trying to move further
  3797. // around the circle.
  3798. delta_angle = dir * (float) random(25, 45);
  3799. angle += delta_angle;
  3800. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3801. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3802. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3803. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3804. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3805. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3806. #if DISABLED(DELTA)
  3807. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3808. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3809. #else
  3810. // If we have gone out too far, we can do a simple fix and scale the numbers
  3811. // back in closer to the origin.
  3812. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3813. X_current /= 1.25;
  3814. Y_current /= 1.25;
  3815. if (verbose_level > 3) {
  3816. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3817. SERIAL_ECHOLNPAIR(", ", Y_current);
  3818. }
  3819. }
  3820. #endif
  3821. if (verbose_level > 3) {
  3822. SERIAL_PROTOCOLPGM("Going to:");
  3823. SERIAL_ECHOPAIR(" X", X_current);
  3824. SERIAL_ECHOPAIR(" Y", Y_current);
  3825. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3826. }
  3827. do_blocking_move_to_xy(X_current, Y_current);
  3828. } // n_legs loop
  3829. } // n_legs
  3830. // Probe a single point
  3831. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3832. /**
  3833. * Get the current mean for the data points we have so far
  3834. */
  3835. double sum = 0.0;
  3836. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3837. mean = sum / (n + 1);
  3838. /**
  3839. * Now, use that mean to calculate the standard deviation for the
  3840. * data points we have so far
  3841. */
  3842. sum = 0.0;
  3843. for (uint8_t j = 0; j <= n; j++)
  3844. sum += sq(sample_set[j] - mean);
  3845. sigma = sqrt(sum / (n + 1));
  3846. if (verbose_level > 0) {
  3847. if (verbose_level > 1) {
  3848. SERIAL_PROTOCOL(n + 1);
  3849. SERIAL_PROTOCOLPGM(" of ");
  3850. SERIAL_PROTOCOL((int)n_samples);
  3851. SERIAL_PROTOCOLPGM(" z: ");
  3852. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3853. if (verbose_level > 2) {
  3854. SERIAL_PROTOCOLPGM(" mean: ");
  3855. SERIAL_PROTOCOL_F(mean, 6);
  3856. SERIAL_PROTOCOLPGM(" sigma: ");
  3857. SERIAL_PROTOCOL_F(sigma, 6);
  3858. }
  3859. }
  3860. SERIAL_EOL;
  3861. }
  3862. } // End of probe loop
  3863. if (STOW_PROBE()) return;
  3864. if (verbose_level > 0) {
  3865. SERIAL_PROTOCOLPGM("Mean: ");
  3866. SERIAL_PROTOCOL_F(mean, 6);
  3867. SERIAL_EOL;
  3868. }
  3869. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3870. SERIAL_PROTOCOL_F(sigma, 6);
  3871. SERIAL_EOL; SERIAL_EOL;
  3872. clean_up_after_endstop_or_probe_move();
  3873. report_current_position();
  3874. }
  3875. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3876. /**
  3877. * M75: Start print timer
  3878. */
  3879. inline void gcode_M75() { print_job_timer.start(); }
  3880. /**
  3881. * M76: Pause print timer
  3882. */
  3883. inline void gcode_M76() { print_job_timer.pause(); }
  3884. /**
  3885. * M77: Stop print timer
  3886. */
  3887. inline void gcode_M77() { print_job_timer.stop(); }
  3888. #if ENABLED(PRINTCOUNTER)
  3889. /**
  3890. * M78: Show print statistics
  3891. */
  3892. inline void gcode_M78() {
  3893. // "M78 S78" will reset the statistics
  3894. if (code_seen('S') && code_value_int() == 78)
  3895. print_job_timer.initStats();
  3896. else
  3897. print_job_timer.showStats();
  3898. }
  3899. #endif
  3900. /**
  3901. * M104: Set hot end temperature
  3902. */
  3903. inline void gcode_M104() {
  3904. if (get_target_extruder_from_command(104)) return;
  3905. if (DEBUGGING(DRYRUN)) return;
  3906. #if ENABLED(SINGLENOZZLE)
  3907. if (target_extruder != active_extruder) return;
  3908. #endif
  3909. if (code_seen('S')) {
  3910. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3911. #if ENABLED(DUAL_X_CARRIAGE)
  3912. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3913. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3914. #endif
  3915. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3916. /**
  3917. * Stop the timer at the end of print, starting is managed by
  3918. * 'heat and wait' M109.
  3919. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3920. * stand by mode, for instance in a dual extruder setup, without affecting
  3921. * the running print timer.
  3922. */
  3923. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3924. print_job_timer.stop();
  3925. LCD_MESSAGEPGM(WELCOME_MSG);
  3926. }
  3927. #endif
  3928. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3929. }
  3930. }
  3931. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3932. void print_heaterstates() {
  3933. #if HAS_TEMP_HOTEND
  3934. SERIAL_PROTOCOLPGM(" T:");
  3935. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3936. SERIAL_PROTOCOLPGM(" /");
  3937. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3938. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3939. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3940. SERIAL_CHAR(')');
  3941. #endif
  3942. #endif
  3943. #if HAS_TEMP_BED
  3944. SERIAL_PROTOCOLPGM(" B:");
  3945. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3946. SERIAL_PROTOCOLPGM(" /");
  3947. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3948. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3949. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3950. SERIAL_CHAR(')');
  3951. #endif
  3952. #endif
  3953. #if HOTENDS > 1
  3954. HOTEND_LOOP() {
  3955. SERIAL_PROTOCOLPAIR(" T", e);
  3956. SERIAL_PROTOCOLCHAR(':');
  3957. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3958. SERIAL_PROTOCOLPGM(" /");
  3959. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3960. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3961. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3962. SERIAL_CHAR(')');
  3963. #endif
  3964. }
  3965. #endif
  3966. SERIAL_PROTOCOLPGM(" @:");
  3967. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3968. #if HAS_TEMP_BED
  3969. SERIAL_PROTOCOLPGM(" B@:");
  3970. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3971. #endif
  3972. #if HOTENDS > 1
  3973. HOTEND_LOOP() {
  3974. SERIAL_PROTOCOLPAIR(" @", e);
  3975. SERIAL_PROTOCOLCHAR(':');
  3976. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3977. }
  3978. #endif
  3979. }
  3980. #endif
  3981. /**
  3982. * M105: Read hot end and bed temperature
  3983. */
  3984. inline void gcode_M105() {
  3985. if (get_target_extruder_from_command(105)) return;
  3986. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3987. SERIAL_PROTOCOLPGM(MSG_OK);
  3988. print_heaterstates();
  3989. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3990. SERIAL_ERROR_START;
  3991. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3992. #endif
  3993. SERIAL_EOL;
  3994. }
  3995. #if FAN_COUNT > 0
  3996. /**
  3997. * M106: Set Fan Speed
  3998. *
  3999. * S<int> Speed between 0-255
  4000. * P<index> Fan index, if more than one fan
  4001. */
  4002. inline void gcode_M106() {
  4003. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4004. p = code_seen('P') ? code_value_ushort() : 0;
  4005. NOMORE(s, 255);
  4006. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4007. }
  4008. /**
  4009. * M107: Fan Off
  4010. */
  4011. inline void gcode_M107() {
  4012. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4013. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4014. }
  4015. #endif // FAN_COUNT > 0
  4016. #if DISABLED(EMERGENCY_PARSER)
  4017. /**
  4018. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4019. */
  4020. inline void gcode_M108() { wait_for_heatup = false; }
  4021. /**
  4022. * M112: Emergency Stop
  4023. */
  4024. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4025. /**
  4026. * M410: Quickstop - Abort all planned moves
  4027. *
  4028. * This will stop the carriages mid-move, so most likely they
  4029. * will be out of sync with the stepper position after this.
  4030. */
  4031. inline void gcode_M410() { quickstop_stepper(); }
  4032. #endif
  4033. #ifndef MIN_COOLING_SLOPE_DEG
  4034. #define MIN_COOLING_SLOPE_DEG 1.50
  4035. #endif
  4036. #ifndef MIN_COOLING_SLOPE_TIME
  4037. #define MIN_COOLING_SLOPE_TIME 60
  4038. #endif
  4039. /**
  4040. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4041. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4042. */
  4043. inline void gcode_M109() {
  4044. if (get_target_extruder_from_command(109)) return;
  4045. if (DEBUGGING(DRYRUN)) return;
  4046. #if ENABLED(SINGLENOZZLE)
  4047. if (target_extruder != active_extruder) return;
  4048. #endif
  4049. bool no_wait_for_cooling = code_seen('S');
  4050. if (no_wait_for_cooling || code_seen('R')) {
  4051. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4052. #if ENABLED(DUAL_X_CARRIAGE)
  4053. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4054. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4055. #endif
  4056. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4057. /**
  4058. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4059. * stand by mode, for instance in a dual extruder setup, without affecting
  4060. * the running print timer.
  4061. */
  4062. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4063. print_job_timer.stop();
  4064. LCD_MESSAGEPGM(WELCOME_MSG);
  4065. }
  4066. /**
  4067. * We do not check if the timer is already running because this check will
  4068. * be done for us inside the Stopwatch::start() method thus a running timer
  4069. * will not restart.
  4070. */
  4071. else print_job_timer.start();
  4072. #endif
  4073. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4074. }
  4075. #if ENABLED(AUTOTEMP)
  4076. planner.autotemp_M109();
  4077. #endif
  4078. #if TEMP_RESIDENCY_TIME > 0
  4079. millis_t residency_start_ms = 0;
  4080. // Loop until the temperature has stabilized
  4081. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4082. #else
  4083. // Loop until the temperature is very close target
  4084. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4085. #endif //TEMP_RESIDENCY_TIME > 0
  4086. float theTarget = -1.0, old_temp = 9999.0;
  4087. bool wants_to_cool = false;
  4088. wait_for_heatup = true;
  4089. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4090. KEEPALIVE_STATE(NOT_BUSY);
  4091. do {
  4092. // Target temperature might be changed during the loop
  4093. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4094. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4095. theTarget = thermalManager.degTargetHotend(target_extruder);
  4096. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4097. if (no_wait_for_cooling && wants_to_cool) break;
  4098. }
  4099. now = millis();
  4100. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4101. next_temp_ms = now + 1000UL;
  4102. print_heaterstates();
  4103. #if TEMP_RESIDENCY_TIME > 0
  4104. SERIAL_PROTOCOLPGM(" W:");
  4105. if (residency_start_ms) {
  4106. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4107. SERIAL_PROTOCOLLN(rem);
  4108. }
  4109. else {
  4110. SERIAL_PROTOCOLLNPGM("?");
  4111. }
  4112. #else
  4113. SERIAL_EOL;
  4114. #endif
  4115. }
  4116. idle();
  4117. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4118. float temp = thermalManager.degHotend(target_extruder);
  4119. #if TEMP_RESIDENCY_TIME > 0
  4120. float temp_diff = fabs(theTarget - temp);
  4121. if (!residency_start_ms) {
  4122. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4123. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4124. }
  4125. else if (temp_diff > TEMP_HYSTERESIS) {
  4126. // Restart the timer whenever the temperature falls outside the hysteresis.
  4127. residency_start_ms = now;
  4128. }
  4129. #endif //TEMP_RESIDENCY_TIME > 0
  4130. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4131. if (wants_to_cool) {
  4132. // break after MIN_COOLING_SLOPE_TIME seconds
  4133. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4134. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4135. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4136. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4137. old_temp = temp;
  4138. }
  4139. }
  4140. } while (wait_for_heatup && TEMP_CONDITIONS);
  4141. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4142. KEEPALIVE_STATE(IN_HANDLER);
  4143. }
  4144. #if HAS_TEMP_BED
  4145. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4146. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4147. #endif
  4148. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4149. #define MIN_COOLING_SLOPE_TIME_BED 60
  4150. #endif
  4151. /**
  4152. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4153. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4154. */
  4155. inline void gcode_M190() {
  4156. if (DEBUGGING(DRYRUN)) return;
  4157. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4158. bool no_wait_for_cooling = code_seen('S');
  4159. if (no_wait_for_cooling || code_seen('R')) {
  4160. thermalManager.setTargetBed(code_value_temp_abs());
  4161. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4162. if (code_value_temp_abs() > BED_MINTEMP) {
  4163. /**
  4164. * We start the timer when 'heating and waiting' command arrives, LCD
  4165. * functions never wait. Cooling down managed by extruders.
  4166. *
  4167. * We do not check if the timer is already running because this check will
  4168. * be done for us inside the Stopwatch::start() method thus a running timer
  4169. * will not restart.
  4170. */
  4171. print_job_timer.start();
  4172. }
  4173. #endif
  4174. }
  4175. #if TEMP_BED_RESIDENCY_TIME > 0
  4176. millis_t residency_start_ms = 0;
  4177. // Loop until the temperature has stabilized
  4178. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4179. #else
  4180. // Loop until the temperature is very close target
  4181. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4182. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4183. float theTarget = -1.0, old_temp = 9999.0;
  4184. bool wants_to_cool = false;
  4185. wait_for_heatup = true;
  4186. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4187. KEEPALIVE_STATE(NOT_BUSY);
  4188. target_extruder = active_extruder; // for print_heaterstates
  4189. do {
  4190. // Target temperature might be changed during the loop
  4191. if (theTarget != thermalManager.degTargetBed()) {
  4192. wants_to_cool = thermalManager.isCoolingBed();
  4193. theTarget = thermalManager.degTargetBed();
  4194. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4195. if (no_wait_for_cooling && wants_to_cool) break;
  4196. }
  4197. now = millis();
  4198. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4199. next_temp_ms = now + 1000UL;
  4200. print_heaterstates();
  4201. #if TEMP_BED_RESIDENCY_TIME > 0
  4202. SERIAL_PROTOCOLPGM(" W:");
  4203. if (residency_start_ms) {
  4204. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4205. SERIAL_PROTOCOLLN(rem);
  4206. }
  4207. else {
  4208. SERIAL_PROTOCOLLNPGM("?");
  4209. }
  4210. #else
  4211. SERIAL_EOL;
  4212. #endif
  4213. }
  4214. idle();
  4215. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4216. float temp = thermalManager.degBed();
  4217. #if TEMP_BED_RESIDENCY_TIME > 0
  4218. float temp_diff = fabs(theTarget - temp);
  4219. if (!residency_start_ms) {
  4220. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4221. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4222. }
  4223. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4224. // Restart the timer whenever the temperature falls outside the hysteresis.
  4225. residency_start_ms = now;
  4226. }
  4227. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4228. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4229. if (wants_to_cool) {
  4230. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4231. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4232. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4233. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4234. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4235. old_temp = temp;
  4236. }
  4237. }
  4238. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4239. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4240. KEEPALIVE_STATE(IN_HANDLER);
  4241. }
  4242. #endif // HAS_TEMP_BED
  4243. /**
  4244. * M110: Set Current Line Number
  4245. */
  4246. inline void gcode_M110() {
  4247. if (code_seen('N')) gcode_N = code_value_long();
  4248. }
  4249. /**
  4250. * M111: Set the debug level
  4251. */
  4252. inline void gcode_M111() {
  4253. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4254. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4255. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4256. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4257. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4258. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4260. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4261. #endif
  4262. const static char* const debug_strings[] PROGMEM = {
  4263. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4265. str_debug_32
  4266. #endif
  4267. };
  4268. SERIAL_ECHO_START;
  4269. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4270. if (marlin_debug_flags) {
  4271. uint8_t comma = 0;
  4272. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4273. if (TEST(marlin_debug_flags, i)) {
  4274. if (comma++) SERIAL_CHAR(',');
  4275. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4276. }
  4277. }
  4278. }
  4279. else {
  4280. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4281. }
  4282. SERIAL_EOL;
  4283. }
  4284. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4285. /**
  4286. * M113: Get or set Host Keepalive interval (0 to disable)
  4287. *
  4288. * S<seconds> Optional. Set the keepalive interval.
  4289. */
  4290. inline void gcode_M113() {
  4291. if (code_seen('S')) {
  4292. host_keepalive_interval = code_value_byte();
  4293. NOMORE(host_keepalive_interval, 60);
  4294. }
  4295. else {
  4296. SERIAL_ECHO_START;
  4297. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4298. }
  4299. }
  4300. #endif
  4301. #if ENABLED(BARICUDA)
  4302. #if HAS_HEATER_1
  4303. /**
  4304. * M126: Heater 1 valve open
  4305. */
  4306. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4307. /**
  4308. * M127: Heater 1 valve close
  4309. */
  4310. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4311. #endif
  4312. #if HAS_HEATER_2
  4313. /**
  4314. * M128: Heater 2 valve open
  4315. */
  4316. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4317. /**
  4318. * M129: Heater 2 valve close
  4319. */
  4320. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4321. #endif
  4322. #endif //BARICUDA
  4323. /**
  4324. * M140: Set bed temperature
  4325. */
  4326. inline void gcode_M140() {
  4327. if (DEBUGGING(DRYRUN)) return;
  4328. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4329. }
  4330. #if ENABLED(ULTIPANEL)
  4331. /**
  4332. * M145: Set the heatup state for a material in the LCD menu
  4333. * S<material> (0=PLA, 1=ABS)
  4334. * H<hotend temp>
  4335. * B<bed temp>
  4336. * F<fan speed>
  4337. */
  4338. inline void gcode_M145() {
  4339. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4340. if (material < 0 || material > 1) {
  4341. SERIAL_ERROR_START;
  4342. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4343. }
  4344. else {
  4345. int v;
  4346. switch (material) {
  4347. case 0:
  4348. if (code_seen('H')) {
  4349. v = code_value_int();
  4350. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4351. }
  4352. if (code_seen('F')) {
  4353. v = code_value_int();
  4354. preheatFanSpeed1 = constrain(v, 0, 255);
  4355. }
  4356. #if TEMP_SENSOR_BED != 0
  4357. if (code_seen('B')) {
  4358. v = code_value_int();
  4359. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4360. }
  4361. #endif
  4362. break;
  4363. case 1:
  4364. if (code_seen('H')) {
  4365. v = code_value_int();
  4366. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4367. }
  4368. if (code_seen('F')) {
  4369. v = code_value_int();
  4370. preheatFanSpeed2 = constrain(v, 0, 255);
  4371. }
  4372. #if TEMP_SENSOR_BED != 0
  4373. if (code_seen('B')) {
  4374. v = code_value_int();
  4375. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4376. }
  4377. #endif
  4378. break;
  4379. }
  4380. }
  4381. }
  4382. #endif // ULTIPANEL
  4383. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4384. /**
  4385. * M149: Set temperature units
  4386. */
  4387. inline void gcode_M149() {
  4388. if (code_seen('C')) {
  4389. set_input_temp_units(TEMPUNIT_C);
  4390. } else if (code_seen('K')) {
  4391. set_input_temp_units(TEMPUNIT_K);
  4392. } else if (code_seen('F')) {
  4393. set_input_temp_units(TEMPUNIT_F);
  4394. }
  4395. }
  4396. #endif
  4397. #if HAS_POWER_SWITCH
  4398. /**
  4399. * M80: Turn on Power Supply
  4400. */
  4401. inline void gcode_M80() {
  4402. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4403. /**
  4404. * If you have a switch on suicide pin, this is useful
  4405. * if you want to start another print with suicide feature after
  4406. * a print without suicide...
  4407. */
  4408. #if HAS_SUICIDE
  4409. OUT_WRITE(SUICIDE_PIN, HIGH);
  4410. #endif
  4411. #if ENABLED(ULTIPANEL)
  4412. powersupply = true;
  4413. LCD_MESSAGEPGM(WELCOME_MSG);
  4414. lcd_update();
  4415. #endif
  4416. }
  4417. #endif // HAS_POWER_SWITCH
  4418. /**
  4419. * M81: Turn off Power, including Power Supply, if there is one.
  4420. *
  4421. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4422. */
  4423. inline void gcode_M81() {
  4424. thermalManager.disable_all_heaters();
  4425. stepper.finish_and_disable();
  4426. #if FAN_COUNT > 0
  4427. #if FAN_COUNT > 1
  4428. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4429. #else
  4430. fanSpeeds[0] = 0;
  4431. #endif
  4432. #endif
  4433. delay(1000); // Wait 1 second before switching off
  4434. #if HAS_SUICIDE
  4435. stepper.synchronize();
  4436. suicide();
  4437. #elif HAS_POWER_SWITCH
  4438. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4439. #endif
  4440. #if ENABLED(ULTIPANEL)
  4441. #if HAS_POWER_SWITCH
  4442. powersupply = false;
  4443. #endif
  4444. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4445. lcd_update();
  4446. #endif
  4447. }
  4448. /**
  4449. * M82: Set E codes absolute (default)
  4450. */
  4451. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4452. /**
  4453. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4454. */
  4455. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4456. /**
  4457. * M18, M84: Disable all stepper motors
  4458. */
  4459. inline void gcode_M18_M84() {
  4460. if (code_seen('S')) {
  4461. stepper_inactive_time = code_value_millis_from_seconds();
  4462. }
  4463. else {
  4464. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4465. if (all_axis) {
  4466. stepper.finish_and_disable();
  4467. }
  4468. else {
  4469. stepper.synchronize();
  4470. if (code_seen('X')) disable_x();
  4471. if (code_seen('Y')) disable_y();
  4472. if (code_seen('Z')) disable_z();
  4473. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4474. if (code_seen('E')) {
  4475. disable_e0();
  4476. disable_e1();
  4477. disable_e2();
  4478. disable_e3();
  4479. }
  4480. #endif
  4481. }
  4482. }
  4483. }
  4484. /**
  4485. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4486. */
  4487. inline void gcode_M85() {
  4488. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4489. }
  4490. /**
  4491. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4492. * (Follows the same syntax as G92)
  4493. */
  4494. inline void gcode_M92() {
  4495. LOOP_XYZE(i) {
  4496. if (code_seen(axis_codes[i])) {
  4497. if (i == E_AXIS) {
  4498. float value = code_value_per_axis_unit(i);
  4499. if (value < 20.0) {
  4500. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4501. planner.max_e_jerk *= factor;
  4502. planner.max_feedrate_mm_s[i] *= factor;
  4503. planner.max_acceleration_steps_per_s2[i] *= factor;
  4504. }
  4505. planner.axis_steps_per_mm[i] = value;
  4506. }
  4507. else {
  4508. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4509. }
  4510. }
  4511. }
  4512. planner.refresh_positioning();
  4513. }
  4514. /**
  4515. * Output the current position to serial
  4516. */
  4517. static void report_current_position() {
  4518. SERIAL_PROTOCOLPGM("X:");
  4519. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4520. SERIAL_PROTOCOLPGM(" Y:");
  4521. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4522. SERIAL_PROTOCOLPGM(" Z:");
  4523. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4524. SERIAL_PROTOCOLPGM(" E:");
  4525. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4526. stepper.report_positions();
  4527. #if IS_SCARA
  4528. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4529. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4530. SERIAL_EOL;
  4531. #endif
  4532. }
  4533. /**
  4534. * M114: Output current position to serial port
  4535. */
  4536. inline void gcode_M114() { report_current_position(); }
  4537. /**
  4538. * M115: Capabilities string
  4539. */
  4540. inline void gcode_M115() {
  4541. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4542. }
  4543. /**
  4544. * M117: Set LCD Status Message
  4545. */
  4546. inline void gcode_M117() {
  4547. lcd_setstatus(current_command_args);
  4548. }
  4549. /**
  4550. * M119: Output endstop states to serial output
  4551. */
  4552. inline void gcode_M119() { endstops.M119(); }
  4553. /**
  4554. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4555. */
  4556. inline void gcode_M120() { endstops.enable_globally(true); }
  4557. /**
  4558. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4559. */
  4560. inline void gcode_M121() { endstops.enable_globally(false); }
  4561. #if ENABLED(BLINKM)
  4562. /**
  4563. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4564. */
  4565. inline void gcode_M150() {
  4566. SendColors(
  4567. code_seen('R') ? code_value_byte() : 0,
  4568. code_seen('U') ? code_value_byte() : 0,
  4569. code_seen('B') ? code_value_byte() : 0
  4570. );
  4571. }
  4572. #endif // BLINKM
  4573. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4574. /**
  4575. * M155: Send data to a I2C slave device
  4576. *
  4577. * This is a PoC, the formating and arguments for the GCODE will
  4578. * change to be more compatible, the current proposal is:
  4579. *
  4580. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4581. *
  4582. * M155 B<byte-1 value in base 10>
  4583. * M155 B<byte-2 value in base 10>
  4584. * M155 B<byte-3 value in base 10>
  4585. *
  4586. * M155 S1 ; Send the buffered data and reset the buffer
  4587. * M155 R1 ; Reset the buffer without sending data
  4588. *
  4589. */
  4590. inline void gcode_M155() {
  4591. // Set the target address
  4592. if (code_seen('A')) i2c.address(code_value_byte());
  4593. // Add a new byte to the buffer
  4594. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4595. // Flush the buffer to the bus
  4596. if (code_seen('S')) i2c.send();
  4597. // Reset and rewind the buffer
  4598. else if (code_seen('R')) i2c.reset();
  4599. }
  4600. /**
  4601. * M156: Request X bytes from I2C slave device
  4602. *
  4603. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4604. */
  4605. inline void gcode_M156() {
  4606. if (code_seen('A')) i2c.address(code_value_byte());
  4607. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4608. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4609. i2c.relay(bytes);
  4610. }
  4611. else {
  4612. SERIAL_ERROR_START;
  4613. SERIAL_ERRORLN("Bad i2c request");
  4614. }
  4615. }
  4616. #endif // EXPERIMENTAL_I2CBUS
  4617. /**
  4618. * M200: Set filament diameter and set E axis units to cubic units
  4619. *
  4620. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4621. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4622. */
  4623. inline void gcode_M200() {
  4624. if (get_target_extruder_from_command(200)) return;
  4625. if (code_seen('D')) {
  4626. // setting any extruder filament size disables volumetric on the assumption that
  4627. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4628. // for all extruders
  4629. volumetric_enabled = (code_value_linear_units() != 0.0);
  4630. if (volumetric_enabled) {
  4631. filament_size[target_extruder] = code_value_linear_units();
  4632. // make sure all extruders have some sane value for the filament size
  4633. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4634. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4635. }
  4636. }
  4637. else {
  4638. //reserved for setting filament diameter via UFID or filament measuring device
  4639. return;
  4640. }
  4641. calculate_volumetric_multipliers();
  4642. }
  4643. /**
  4644. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4645. */
  4646. inline void gcode_M201() {
  4647. LOOP_XYZE(i) {
  4648. if (code_seen(axis_codes[i])) {
  4649. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4650. }
  4651. }
  4652. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4653. planner.reset_acceleration_rates();
  4654. }
  4655. #if 0 // Not used for Sprinter/grbl gen6
  4656. inline void gcode_M202() {
  4657. LOOP_XYZE(i) {
  4658. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4659. }
  4660. }
  4661. #endif
  4662. /**
  4663. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4664. */
  4665. inline void gcode_M203() {
  4666. LOOP_XYZE(i)
  4667. if (code_seen(axis_codes[i]))
  4668. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4669. }
  4670. /**
  4671. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4672. *
  4673. * P = Printing moves
  4674. * R = Retract only (no X, Y, Z) moves
  4675. * T = Travel (non printing) moves
  4676. *
  4677. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4678. */
  4679. inline void gcode_M204() {
  4680. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4681. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4682. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4683. }
  4684. if (code_seen('P')) {
  4685. planner.acceleration = code_value_linear_units();
  4686. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4687. }
  4688. if (code_seen('R')) {
  4689. planner.retract_acceleration = code_value_linear_units();
  4690. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4691. }
  4692. if (code_seen('T')) {
  4693. planner.travel_acceleration = code_value_linear_units();
  4694. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4695. }
  4696. }
  4697. /**
  4698. * M205: Set Advanced Settings
  4699. *
  4700. * S = Min Feed Rate (units/s)
  4701. * T = Min Travel Feed Rate (units/s)
  4702. * B = Min Segment Time (µs)
  4703. * X = Max XY Jerk (units/sec^2)
  4704. * Z = Max Z Jerk (units/sec^2)
  4705. * E = Max E Jerk (units/sec^2)
  4706. */
  4707. inline void gcode_M205() {
  4708. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4709. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4710. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4711. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4712. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4713. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4714. }
  4715. /**
  4716. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4717. */
  4718. inline void gcode_M206() {
  4719. LOOP_XYZ(i)
  4720. if (code_seen(axis_codes[i]))
  4721. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4722. #if ENABLED(MORGAN_SCARA)
  4723. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4724. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4725. #endif
  4726. SYNC_PLAN_POSITION_KINEMATIC();
  4727. report_current_position();
  4728. }
  4729. #if ENABLED(DELTA)
  4730. /**
  4731. * M665: Set delta configurations
  4732. *
  4733. * L = diagonal rod
  4734. * R = delta radius
  4735. * S = segments per second
  4736. * A = Alpha (Tower 1) diagonal rod trim
  4737. * B = Beta (Tower 2) diagonal rod trim
  4738. * C = Gamma (Tower 3) diagonal rod trim
  4739. */
  4740. inline void gcode_M665() {
  4741. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4742. if (code_seen('R')) delta_radius = code_value_linear_units();
  4743. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4744. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4745. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4746. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4747. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4748. }
  4749. /**
  4750. * M666: Set delta endstop adjustment
  4751. */
  4752. inline void gcode_M666() {
  4753. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4754. if (DEBUGGING(LEVELING)) {
  4755. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4756. }
  4757. #endif
  4758. LOOP_XYZ(i) {
  4759. if (code_seen(axis_codes[i])) {
  4760. endstop_adj[i] = code_value_axis_units(i);
  4761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4762. if (DEBUGGING(LEVELING)) {
  4763. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4764. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4765. }
  4766. #endif
  4767. }
  4768. }
  4769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4770. if (DEBUGGING(LEVELING)) {
  4771. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4772. }
  4773. #endif
  4774. }
  4775. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4776. /**
  4777. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4778. */
  4779. inline void gcode_M666() {
  4780. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4781. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4782. }
  4783. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4784. #if ENABLED(FWRETRACT)
  4785. /**
  4786. * M207: Set firmware retraction values
  4787. *
  4788. * S[+units] retract_length
  4789. * W[+units] retract_length_swap (multi-extruder)
  4790. * F[units/min] retract_feedrate_mm_s
  4791. * Z[units] retract_zlift
  4792. */
  4793. inline void gcode_M207() {
  4794. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4795. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4796. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4797. #if EXTRUDERS > 1
  4798. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4799. #endif
  4800. }
  4801. /**
  4802. * M208: Set firmware un-retraction values
  4803. *
  4804. * S[+units] retract_recover_length (in addition to M207 S*)
  4805. * W[+units] retract_recover_length_swap (multi-extruder)
  4806. * F[units/min] retract_recover_feedrate_mm_s
  4807. */
  4808. inline void gcode_M208() {
  4809. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4810. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4811. #if EXTRUDERS > 1
  4812. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4813. #endif
  4814. }
  4815. /**
  4816. * M209: Enable automatic retract (M209 S1)
  4817. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4818. */
  4819. inline void gcode_M209() {
  4820. if (code_seen('S')) {
  4821. autoretract_enabled = code_value_bool();
  4822. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4823. }
  4824. }
  4825. #endif // FWRETRACT
  4826. /**
  4827. * M211: Enable, Disable, and/or Report software endstops
  4828. *
  4829. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4830. */
  4831. inline void gcode_M211() {
  4832. SERIAL_ECHO_START;
  4833. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4834. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4835. #endif
  4836. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4837. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4838. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4839. #else
  4840. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4841. SERIAL_ECHOPGM(MSG_OFF);
  4842. #endif
  4843. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4844. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4845. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4846. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4847. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4848. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4849. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4850. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4851. }
  4852. #if HOTENDS > 1
  4853. /**
  4854. * M218 - set hotend offset (in linear units)
  4855. *
  4856. * T<tool>
  4857. * X<xoffset>
  4858. * Y<yoffset>
  4859. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4860. */
  4861. inline void gcode_M218() {
  4862. if (get_target_extruder_from_command(218)) return;
  4863. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4864. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4865. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4866. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4867. #endif
  4868. SERIAL_ECHO_START;
  4869. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4870. HOTEND_LOOP() {
  4871. SERIAL_CHAR(' ');
  4872. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4873. SERIAL_CHAR(',');
  4874. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4875. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4876. SERIAL_CHAR(',');
  4877. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4878. #endif
  4879. }
  4880. SERIAL_EOL;
  4881. }
  4882. #endif // HOTENDS > 1
  4883. /**
  4884. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4885. */
  4886. inline void gcode_M220() {
  4887. if (code_seen('S')) feedrate_percentage = code_value_int();
  4888. }
  4889. /**
  4890. * M221: Set extrusion percentage (M221 T0 S95)
  4891. */
  4892. inline void gcode_M221() {
  4893. if (get_target_extruder_from_command(221)) return;
  4894. if (code_seen('S'))
  4895. flow_percentage[target_extruder] = code_value_int();
  4896. }
  4897. /**
  4898. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4899. */
  4900. inline void gcode_M226() {
  4901. if (code_seen('P')) {
  4902. int pin_number = code_value_int();
  4903. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4904. if (pin_state >= -1 && pin_state <= 1) {
  4905. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4906. if (sensitive_pins[i] == pin_number) {
  4907. pin_number = -1;
  4908. break;
  4909. }
  4910. }
  4911. if (pin_number > -1) {
  4912. int target = LOW;
  4913. stepper.synchronize();
  4914. pinMode(pin_number, INPUT);
  4915. switch (pin_state) {
  4916. case 1:
  4917. target = HIGH;
  4918. break;
  4919. case 0:
  4920. target = LOW;
  4921. break;
  4922. case -1:
  4923. target = !digitalRead(pin_number);
  4924. break;
  4925. }
  4926. while (digitalRead(pin_number) != target) idle();
  4927. } // pin_number > -1
  4928. } // pin_state -1 0 1
  4929. } // code_seen('P')
  4930. }
  4931. #if HAS_SERVOS
  4932. /**
  4933. * M280: Get or set servo position. P<index> [S<angle>]
  4934. */
  4935. inline void gcode_M280() {
  4936. if (!code_seen('P')) return;
  4937. int servo_index = code_value_int();
  4938. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4939. if (code_seen('S'))
  4940. MOVE_SERVO(servo_index, code_value_int());
  4941. else {
  4942. SERIAL_ECHO_START;
  4943. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4944. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4945. }
  4946. }
  4947. else {
  4948. SERIAL_ERROR_START;
  4949. SERIAL_ECHOPAIR("Servo ", servo_index);
  4950. SERIAL_ECHOLNPGM(" out of range");
  4951. }
  4952. }
  4953. #endif // HAS_SERVOS
  4954. #if HAS_BUZZER
  4955. /**
  4956. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4957. */
  4958. inline void gcode_M300() {
  4959. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4960. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4961. // Limits the tone duration to 0-5 seconds.
  4962. NOMORE(duration, 5000);
  4963. BUZZ(duration, frequency);
  4964. }
  4965. #endif // HAS_BUZZER
  4966. #if ENABLED(PIDTEMP)
  4967. /**
  4968. * M301: Set PID parameters P I D (and optionally C, L)
  4969. *
  4970. * P[float] Kp term
  4971. * I[float] Ki term (unscaled)
  4972. * D[float] Kd term (unscaled)
  4973. *
  4974. * With PID_EXTRUSION_SCALING:
  4975. *
  4976. * C[float] Kc term
  4977. * L[float] LPQ length
  4978. */
  4979. inline void gcode_M301() {
  4980. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4981. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4982. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4983. if (e < HOTENDS) { // catch bad input value
  4984. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4985. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4986. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4987. #if ENABLED(PID_EXTRUSION_SCALING)
  4988. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4989. if (code_seen('L')) lpq_len = code_value_float();
  4990. NOMORE(lpq_len, LPQ_MAX_LEN);
  4991. #endif
  4992. thermalManager.updatePID();
  4993. SERIAL_ECHO_START;
  4994. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4995. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4996. #endif // PID_PARAMS_PER_HOTEND
  4997. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4998. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4999. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5000. #if ENABLED(PID_EXTRUSION_SCALING)
  5001. //Kc does not have scaling applied above, or in resetting defaults
  5002. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5003. #endif
  5004. SERIAL_EOL;
  5005. }
  5006. else {
  5007. SERIAL_ERROR_START;
  5008. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5009. }
  5010. }
  5011. #endif // PIDTEMP
  5012. #if ENABLED(PIDTEMPBED)
  5013. inline void gcode_M304() {
  5014. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5015. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5016. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5017. thermalManager.updatePID();
  5018. SERIAL_ECHO_START;
  5019. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5020. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5021. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5022. }
  5023. #endif // PIDTEMPBED
  5024. #if defined(CHDK) || HAS_PHOTOGRAPH
  5025. /**
  5026. * M240: Trigger a camera by emulating a Canon RC-1
  5027. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5028. */
  5029. inline void gcode_M240() {
  5030. #ifdef CHDK
  5031. OUT_WRITE(CHDK, HIGH);
  5032. chdkHigh = millis();
  5033. chdkActive = true;
  5034. #elif HAS_PHOTOGRAPH
  5035. const uint8_t NUM_PULSES = 16;
  5036. const float PULSE_LENGTH = 0.01524;
  5037. for (int i = 0; i < NUM_PULSES; i++) {
  5038. WRITE(PHOTOGRAPH_PIN, HIGH);
  5039. _delay_ms(PULSE_LENGTH);
  5040. WRITE(PHOTOGRAPH_PIN, LOW);
  5041. _delay_ms(PULSE_LENGTH);
  5042. }
  5043. delay(7.33);
  5044. for (int i = 0; i < NUM_PULSES; i++) {
  5045. WRITE(PHOTOGRAPH_PIN, HIGH);
  5046. _delay_ms(PULSE_LENGTH);
  5047. WRITE(PHOTOGRAPH_PIN, LOW);
  5048. _delay_ms(PULSE_LENGTH);
  5049. }
  5050. #endif // !CHDK && HAS_PHOTOGRAPH
  5051. }
  5052. #endif // CHDK || PHOTOGRAPH_PIN
  5053. #if HAS_LCD_CONTRAST
  5054. /**
  5055. * M250: Read and optionally set the LCD contrast
  5056. */
  5057. inline void gcode_M250() {
  5058. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5059. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5060. SERIAL_PROTOCOL(lcd_contrast);
  5061. SERIAL_EOL;
  5062. }
  5063. #endif // HAS_LCD_CONTRAST
  5064. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5065. /**
  5066. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5067. *
  5068. * S<temperature> sets the minimum extrude temperature
  5069. * P<bool> enables (1) or disables (0) cold extrusion
  5070. *
  5071. * Examples:
  5072. *
  5073. * M302 ; report current cold extrusion state
  5074. * M302 P0 ; enable cold extrusion checking
  5075. * M302 P1 ; disables cold extrusion checking
  5076. * M302 S0 ; always allow extrusion (disables checking)
  5077. * M302 S170 ; only allow extrusion above 170
  5078. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5079. */
  5080. inline void gcode_M302() {
  5081. bool seen_S = code_seen('S');
  5082. if (seen_S) {
  5083. thermalManager.extrude_min_temp = code_value_temp_abs();
  5084. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5085. }
  5086. if (code_seen('P'))
  5087. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5088. else if (!seen_S) {
  5089. // Report current state
  5090. SERIAL_ECHO_START;
  5091. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5092. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5093. SERIAL_ECHOLNPGM("C)");
  5094. }
  5095. }
  5096. #endif // PREVENT_COLD_EXTRUSION
  5097. /**
  5098. * M303: PID relay autotune
  5099. *
  5100. * S<temperature> sets the target temperature. (default 150C)
  5101. * E<extruder> (-1 for the bed) (default 0)
  5102. * C<cycles>
  5103. * U<bool> with a non-zero value will apply the result to current settings
  5104. */
  5105. inline void gcode_M303() {
  5106. #if HAS_PID_HEATING
  5107. int e = code_seen('E') ? code_value_int() : 0;
  5108. int c = code_seen('C') ? code_value_int() : 5;
  5109. bool u = code_seen('U') && code_value_bool();
  5110. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5111. if (e >= 0 && e < HOTENDS)
  5112. target_extruder = e;
  5113. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5114. thermalManager.PID_autotune(temp, e, c, u);
  5115. KEEPALIVE_STATE(IN_HANDLER);
  5116. #else
  5117. SERIAL_ERROR_START;
  5118. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5119. #endif
  5120. }
  5121. #if ENABLED(MORGAN_SCARA)
  5122. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5123. if (IsRunning()) {
  5124. forward_kinematics_SCARA(delta_a, delta_b);
  5125. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5126. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5127. destination[Z_AXIS] = current_position[Z_AXIS];
  5128. prepare_move_to_destination();
  5129. return true;
  5130. }
  5131. return false;
  5132. }
  5133. /**
  5134. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5135. */
  5136. inline bool gcode_M360() {
  5137. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5138. return SCARA_move_to_cal(0, 120);
  5139. }
  5140. /**
  5141. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5142. */
  5143. inline bool gcode_M361() {
  5144. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5145. return SCARA_move_to_cal(90, 130);
  5146. }
  5147. /**
  5148. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5149. */
  5150. inline bool gcode_M362() {
  5151. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5152. return SCARA_move_to_cal(60, 180);
  5153. }
  5154. /**
  5155. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5156. */
  5157. inline bool gcode_M363() {
  5158. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5159. return SCARA_move_to_cal(50, 90);
  5160. }
  5161. /**
  5162. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5163. */
  5164. inline bool gcode_M364() {
  5165. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5166. return SCARA_move_to_cal(45, 135);
  5167. }
  5168. #endif // SCARA
  5169. #if ENABLED(EXT_SOLENOID)
  5170. void enable_solenoid(uint8_t num) {
  5171. switch (num) {
  5172. case 0:
  5173. OUT_WRITE(SOL0_PIN, HIGH);
  5174. break;
  5175. #if HAS_SOLENOID_1
  5176. case 1:
  5177. OUT_WRITE(SOL1_PIN, HIGH);
  5178. break;
  5179. #endif
  5180. #if HAS_SOLENOID_2
  5181. case 2:
  5182. OUT_WRITE(SOL2_PIN, HIGH);
  5183. break;
  5184. #endif
  5185. #if HAS_SOLENOID_3
  5186. case 3:
  5187. OUT_WRITE(SOL3_PIN, HIGH);
  5188. break;
  5189. #endif
  5190. default:
  5191. SERIAL_ECHO_START;
  5192. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5193. break;
  5194. }
  5195. }
  5196. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5197. void disable_all_solenoids() {
  5198. OUT_WRITE(SOL0_PIN, LOW);
  5199. OUT_WRITE(SOL1_PIN, LOW);
  5200. OUT_WRITE(SOL2_PIN, LOW);
  5201. OUT_WRITE(SOL3_PIN, LOW);
  5202. }
  5203. /**
  5204. * M380: Enable solenoid on the active extruder
  5205. */
  5206. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5207. /**
  5208. * M381: Disable all solenoids
  5209. */
  5210. inline void gcode_M381() { disable_all_solenoids(); }
  5211. #endif // EXT_SOLENOID
  5212. /**
  5213. * M400: Finish all moves
  5214. */
  5215. inline void gcode_M400() { stepper.synchronize(); }
  5216. #if HAS_BED_PROBE
  5217. /**
  5218. * M401: Engage Z Servo endstop if available
  5219. */
  5220. inline void gcode_M401() { DEPLOY_PROBE(); }
  5221. /**
  5222. * M402: Retract Z Servo endstop if enabled
  5223. */
  5224. inline void gcode_M402() { STOW_PROBE(); }
  5225. #endif // HAS_BED_PROBE
  5226. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5227. /**
  5228. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5229. */
  5230. inline void gcode_M404() {
  5231. if (code_seen('W')) {
  5232. filament_width_nominal = code_value_linear_units();
  5233. }
  5234. else {
  5235. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5236. SERIAL_PROTOCOLLN(filament_width_nominal);
  5237. }
  5238. }
  5239. /**
  5240. * M405: Turn on filament sensor for control
  5241. */
  5242. inline void gcode_M405() {
  5243. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5244. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5245. if (code_seen('D')) meas_delay_cm = code_value_int();
  5246. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5247. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5248. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5249. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5250. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5251. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5252. }
  5253. filament_sensor = true;
  5254. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5255. //SERIAL_PROTOCOL(filament_width_meas);
  5256. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5257. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5258. }
  5259. /**
  5260. * M406: Turn off filament sensor for control
  5261. */
  5262. inline void gcode_M406() { filament_sensor = false; }
  5263. /**
  5264. * M407: Get measured filament diameter on serial output
  5265. */
  5266. inline void gcode_M407() {
  5267. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5268. SERIAL_PROTOCOLLN(filament_width_meas);
  5269. }
  5270. #endif // FILAMENT_WIDTH_SENSOR
  5271. void quickstop_stepper() {
  5272. stepper.quick_stop();
  5273. stepper.synchronize();
  5274. set_current_from_steppers_for_axis(ALL_AXES);
  5275. SYNC_PLAN_POSITION_KINEMATIC();
  5276. }
  5277. #if ENABLED(MESH_BED_LEVELING)
  5278. /**
  5279. * M420: Enable/Disable Mesh Bed Leveling
  5280. */
  5281. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5282. /**
  5283. * M421: Set a single Mesh Bed Leveling Z coordinate
  5284. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5285. */
  5286. inline void gcode_M421() {
  5287. int8_t px = 0, py = 0;
  5288. float z = 0;
  5289. bool hasX, hasY, hasZ, hasI, hasJ;
  5290. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5291. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5292. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5293. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5294. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5295. if (hasX && hasY && hasZ) {
  5296. if (px >= 0 && py >= 0)
  5297. mbl.set_z(px, py, z);
  5298. else {
  5299. SERIAL_ERROR_START;
  5300. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5301. }
  5302. }
  5303. else if (hasI && hasJ && hasZ) {
  5304. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5305. mbl.set_z(px, py, z);
  5306. else {
  5307. SERIAL_ERROR_START;
  5308. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5309. }
  5310. }
  5311. else {
  5312. SERIAL_ERROR_START;
  5313. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5314. }
  5315. }
  5316. #endif
  5317. /**
  5318. * M428: Set home_offset based on the distance between the
  5319. * current_position and the nearest "reference point."
  5320. * If an axis is past center its endstop position
  5321. * is the reference-point. Otherwise it uses 0. This allows
  5322. * the Z offset to be set near the bed when using a max endstop.
  5323. *
  5324. * M428 can't be used more than 2cm away from 0 or an endstop.
  5325. *
  5326. * Use M206 to set these values directly.
  5327. */
  5328. inline void gcode_M428() {
  5329. bool err = false;
  5330. LOOP_XYZ(i) {
  5331. if (axis_homed[i]) {
  5332. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5333. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5334. if (diff > -20 && diff < 20) {
  5335. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5336. }
  5337. else {
  5338. SERIAL_ERROR_START;
  5339. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5340. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5341. BUZZ(200, 40);
  5342. err = true;
  5343. break;
  5344. }
  5345. }
  5346. }
  5347. if (!err) {
  5348. SYNC_PLAN_POSITION_KINEMATIC();
  5349. report_current_position();
  5350. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5351. BUZZ(200, 659);
  5352. BUZZ(200, 698);
  5353. }
  5354. }
  5355. /**
  5356. * M500: Store settings in EEPROM
  5357. */
  5358. inline void gcode_M500() {
  5359. Config_StoreSettings();
  5360. }
  5361. /**
  5362. * M501: Read settings from EEPROM
  5363. */
  5364. inline void gcode_M501() {
  5365. Config_RetrieveSettings();
  5366. }
  5367. /**
  5368. * M502: Revert to default settings
  5369. */
  5370. inline void gcode_M502() {
  5371. Config_ResetDefault();
  5372. }
  5373. /**
  5374. * M503: print settings currently in memory
  5375. */
  5376. inline void gcode_M503() {
  5377. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5378. }
  5379. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5380. /**
  5381. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5382. */
  5383. inline void gcode_M540() {
  5384. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5385. }
  5386. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5387. #if HAS_BED_PROBE
  5388. inline void gcode_M851() {
  5389. SERIAL_ECHO_START;
  5390. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5391. SERIAL_CHAR(' ');
  5392. if (code_seen('Z')) {
  5393. float value = code_value_axis_units(Z_AXIS);
  5394. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5395. zprobe_zoffset = value;
  5396. SERIAL_ECHO(zprobe_zoffset);
  5397. }
  5398. else {
  5399. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5400. SERIAL_CHAR(' ');
  5401. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5402. }
  5403. }
  5404. else {
  5405. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5406. }
  5407. SERIAL_EOL;
  5408. }
  5409. #endif // HAS_BED_PROBE
  5410. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5411. /**
  5412. * M600: Pause for filament change
  5413. *
  5414. * E[distance] - Retract the filament this far (negative value)
  5415. * Z[distance] - Move the Z axis by this distance
  5416. * X[position] - Move to this X position, with Y
  5417. * Y[position] - Move to this Y position, with X
  5418. * L[distance] - Retract distance for removal (manual reload)
  5419. *
  5420. * Default values are used for omitted arguments.
  5421. *
  5422. */
  5423. inline void gcode_M600() {
  5424. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5425. SERIAL_ERROR_START;
  5426. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5427. return;
  5428. }
  5429. // Show initial message and wait for synchronize steppers
  5430. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5431. stepper.synchronize();
  5432. float lastpos[NUM_AXIS];
  5433. // Save current position of all axes
  5434. LOOP_XYZE(i)
  5435. lastpos[i] = destination[i] = current_position[i];
  5436. // Define runplan for move axes
  5437. #if IS_KINEMATIC
  5438. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5439. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5440. #else
  5441. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5442. #endif
  5443. KEEPALIVE_STATE(IN_HANDLER);
  5444. // Initial retract before move to filament change position
  5445. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5446. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5447. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5448. #endif
  5449. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5450. // Lift Z axis
  5451. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5452. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5453. FILAMENT_CHANGE_Z_ADD
  5454. #else
  5455. 0
  5456. #endif
  5457. ;
  5458. if (z_lift > 0) {
  5459. destination[Z_AXIS] += z_lift;
  5460. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5461. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5462. }
  5463. // Move XY axes to filament exchange position
  5464. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5465. #ifdef FILAMENT_CHANGE_X_POS
  5466. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5467. #endif
  5468. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5469. #ifdef FILAMENT_CHANGE_Y_POS
  5470. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5471. #endif
  5472. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5473. stepper.synchronize();
  5474. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5475. // Unload filament
  5476. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5477. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5478. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5479. #endif
  5480. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5481. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5482. stepper.synchronize();
  5483. disable_e0();
  5484. disable_e1();
  5485. disable_e2();
  5486. disable_e3();
  5487. delay(100);
  5488. #if HAS_BUZZER
  5489. millis_t next_tick = 0;
  5490. #endif
  5491. // Wait for filament insert by user and press button
  5492. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5493. while (!lcd_clicked()) {
  5494. #if HAS_BUZZER
  5495. millis_t ms = millis();
  5496. if (ms >= next_tick) {
  5497. BUZZ(300, 2000);
  5498. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5499. }
  5500. #endif
  5501. idle(true);
  5502. }
  5503. delay(100);
  5504. while (lcd_clicked()) idle(true);
  5505. delay(100);
  5506. // Show load message
  5507. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5508. // Load filament
  5509. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5510. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5511. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5512. #endif
  5513. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5514. stepper.synchronize();
  5515. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5516. do {
  5517. // Extrude filament to get into hotend
  5518. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5519. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5520. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5521. stepper.synchronize();
  5522. // Ask user if more filament should be extruded
  5523. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5524. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5525. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5526. KEEPALIVE_STATE(IN_HANDLER);
  5527. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5528. #endif
  5529. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5530. KEEPALIVE_STATE(IN_HANDLER);
  5531. // Set extruder to saved position
  5532. current_position[E_AXIS] = lastpos[E_AXIS];
  5533. destination[E_AXIS] = lastpos[E_AXIS];
  5534. planner.set_e_position_mm(current_position[E_AXIS]);
  5535. #if IS_KINEMATIC
  5536. // Move XYZ to starting position, then E
  5537. inverse_kinematics(lastpos);
  5538. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5539. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5540. #else
  5541. // Move XY to starting position, then Z, then E
  5542. destination[X_AXIS] = lastpos[X_AXIS];
  5543. destination[Y_AXIS] = lastpos[Y_AXIS];
  5544. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5545. destination[Z_AXIS] = lastpos[Z_AXIS];
  5546. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5547. #endif
  5548. stepper.synchronize();
  5549. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5550. filament_ran_out = false;
  5551. #endif
  5552. // Show status screen
  5553. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5554. }
  5555. #endif // FILAMENT_CHANGE_FEATURE
  5556. #if ENABLED(DUAL_X_CARRIAGE)
  5557. /**
  5558. * M605: Set dual x-carriage movement mode
  5559. *
  5560. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5561. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5562. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5563. * units x-offset and an optional differential hotend temperature of
  5564. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5565. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5566. *
  5567. * Note: the X axis should be homed after changing dual x-carriage mode.
  5568. */
  5569. inline void gcode_M605() {
  5570. stepper.synchronize();
  5571. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5572. switch (dual_x_carriage_mode) {
  5573. case DXC_DUPLICATION_MODE:
  5574. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5575. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5576. SERIAL_ECHO_START;
  5577. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5578. SERIAL_CHAR(' ');
  5579. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5580. SERIAL_CHAR(',');
  5581. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5582. SERIAL_CHAR(' ');
  5583. SERIAL_ECHO(duplicate_extruder_x_offset);
  5584. SERIAL_CHAR(',');
  5585. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5586. break;
  5587. case DXC_FULL_CONTROL_MODE:
  5588. case DXC_AUTO_PARK_MODE:
  5589. break;
  5590. default:
  5591. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5592. break;
  5593. }
  5594. active_extruder_parked = false;
  5595. extruder_duplication_enabled = false;
  5596. delayed_move_time = 0;
  5597. }
  5598. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5599. inline void gcode_M605() {
  5600. stepper.synchronize();
  5601. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5602. SERIAL_ECHO_START;
  5603. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5604. }
  5605. #endif // M605
  5606. #if ENABLED(LIN_ADVANCE)
  5607. /**
  5608. * M905: Set advance factor
  5609. */
  5610. inline void gcode_M905() {
  5611. stepper.synchronize();
  5612. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5613. }
  5614. #endif
  5615. /**
  5616. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5617. */
  5618. inline void gcode_M907() {
  5619. #if HAS_DIGIPOTSS
  5620. LOOP_XYZE(i)
  5621. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5622. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5623. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5624. #elif HAS_MOTOR_CURRENT_PWM
  5625. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5626. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5627. #endif
  5628. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5629. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5630. #endif
  5631. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5632. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5633. #endif
  5634. #endif
  5635. #if ENABLED(DIGIPOT_I2C)
  5636. // this one uses actual amps in floating point
  5637. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5638. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5639. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5640. #endif
  5641. #if ENABLED(DAC_STEPPER_CURRENT)
  5642. if (code_seen('S')) {
  5643. float dac_percent = code_value_float();
  5644. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5645. }
  5646. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5647. #endif
  5648. }
  5649. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5650. /**
  5651. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5652. */
  5653. inline void gcode_M908() {
  5654. #if HAS_DIGIPOTSS
  5655. stepper.digitalPotWrite(
  5656. code_seen('P') ? code_value_int() : 0,
  5657. code_seen('S') ? code_value_int() : 0
  5658. );
  5659. #endif
  5660. #ifdef DAC_STEPPER_CURRENT
  5661. dac_current_raw(
  5662. code_seen('P') ? code_value_byte() : -1,
  5663. code_seen('S') ? code_value_ushort() : 0
  5664. );
  5665. #endif
  5666. }
  5667. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5668. inline void gcode_M909() { dac_print_values(); }
  5669. inline void gcode_M910() { dac_commit_eeprom(); }
  5670. #endif
  5671. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5672. #if HAS_MICROSTEPS
  5673. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5674. inline void gcode_M350() {
  5675. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5676. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5677. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5678. stepper.microstep_readings();
  5679. }
  5680. /**
  5681. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5682. * S# determines MS1 or MS2, X# sets the pin high/low.
  5683. */
  5684. inline void gcode_M351() {
  5685. if (code_seen('S')) switch (code_value_byte()) {
  5686. case 1:
  5687. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5688. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5689. break;
  5690. case 2:
  5691. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5692. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5693. break;
  5694. }
  5695. stepper.microstep_readings();
  5696. }
  5697. #endif // HAS_MICROSTEPS
  5698. #if ENABLED(MIXING_EXTRUDER)
  5699. /**
  5700. * M163: Set a single mix factor for a mixing extruder
  5701. * This is called "weight" by some systems.
  5702. *
  5703. * S[index] The channel index to set
  5704. * P[float] The mix value
  5705. *
  5706. */
  5707. inline void gcode_M163() {
  5708. int mix_index = code_seen('S') ? code_value_int() : 0;
  5709. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5710. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5711. }
  5712. #if MIXING_VIRTUAL_TOOLS > 1
  5713. /**
  5714. * M164: Store the current mix factors as a virtual tool.
  5715. *
  5716. * S[index] The virtual tool to store
  5717. *
  5718. */
  5719. inline void gcode_M164() {
  5720. int tool_index = code_seen('S') ? code_value_int() : 0;
  5721. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5722. normalize_mix();
  5723. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5724. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5725. }
  5726. }
  5727. #endif
  5728. #if ENABLED(DIRECT_MIXING_IN_G1)
  5729. /**
  5730. * M165: Set multiple mix factors for a mixing extruder.
  5731. * Factors that are left out will be set to 0.
  5732. * All factors together must add up to 1.0.
  5733. *
  5734. * A[factor] Mix factor for extruder stepper 1
  5735. * B[factor] Mix factor for extruder stepper 2
  5736. * C[factor] Mix factor for extruder stepper 3
  5737. * D[factor] Mix factor for extruder stepper 4
  5738. * H[factor] Mix factor for extruder stepper 5
  5739. * I[factor] Mix factor for extruder stepper 6
  5740. *
  5741. */
  5742. inline void gcode_M165() { gcode_get_mix(); }
  5743. #endif
  5744. #endif // MIXING_EXTRUDER
  5745. /**
  5746. * M999: Restart after being stopped
  5747. *
  5748. * Default behaviour is to flush the serial buffer and request
  5749. * a resend to the host starting on the last N line received.
  5750. *
  5751. * Sending "M999 S1" will resume printing without flushing the
  5752. * existing command buffer.
  5753. *
  5754. */
  5755. inline void gcode_M999() {
  5756. Running = true;
  5757. lcd_reset_alert_level();
  5758. if (code_seen('S') && code_value_bool()) return;
  5759. // gcode_LastN = Stopped_gcode_LastN;
  5760. FlushSerialRequestResend();
  5761. }
  5762. #if ENABLED(SWITCHING_EXTRUDER)
  5763. inline void move_extruder_servo(uint8_t e) {
  5764. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5765. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5766. }
  5767. #endif
  5768. inline void invalid_extruder_error(const uint8_t &e) {
  5769. SERIAL_ECHO_START;
  5770. SERIAL_CHAR('T');
  5771. SERIAL_PROTOCOL_F(e, DEC);
  5772. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5773. }
  5774. /**
  5775. * Perform a tool-change, which may result in moving the
  5776. * previous tool out of the way and the new tool into place.
  5777. */
  5778. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5779. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5780. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5781. invalid_extruder_error(tmp_extruder);
  5782. return;
  5783. }
  5784. // T0-Tnnn: Switch virtual tool by changing the mix
  5785. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5786. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5787. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5788. #if HOTENDS > 1
  5789. if (tmp_extruder >= EXTRUDERS) {
  5790. invalid_extruder_error(tmp_extruder);
  5791. return;
  5792. }
  5793. float old_feedrate_mm_s = feedrate_mm_s;
  5794. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5795. if (tmp_extruder != active_extruder) {
  5796. if (!no_move && axis_unhomed_error(true, true, true)) {
  5797. SERIAL_ECHOLNPGM("No move on toolchange");
  5798. no_move = true;
  5799. }
  5800. // Save current position to destination, for use later
  5801. set_destination_to_current();
  5802. #if ENABLED(DUAL_X_CARRIAGE)
  5803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5804. if (DEBUGGING(LEVELING)) {
  5805. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5806. switch (dual_x_carriage_mode) {
  5807. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5808. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5809. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5810. }
  5811. }
  5812. #endif
  5813. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5814. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5815. ) {
  5816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5817. if (DEBUGGING(LEVELING)) {
  5818. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5819. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5820. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5821. }
  5822. #endif
  5823. // Park old head: 1) raise 2) move to park position 3) lower
  5824. for (uint8_t i = 0; i < 3; i++)
  5825. planner.buffer_line(
  5826. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5827. current_position[Y_AXIS],
  5828. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5829. current_position[E_AXIS],
  5830. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5831. active_extruder
  5832. );
  5833. stepper.synchronize();
  5834. }
  5835. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5836. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5837. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5838. active_extruder = tmp_extruder;
  5839. // This function resets the max/min values - the current position may be overwritten below.
  5840. set_axis_is_at_home(X_AXIS);
  5841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5842. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5843. #endif
  5844. switch (dual_x_carriage_mode) {
  5845. case DXC_FULL_CONTROL_MODE:
  5846. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5847. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5848. break;
  5849. case DXC_DUPLICATION_MODE:
  5850. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5851. if (active_extruder_parked)
  5852. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5853. else
  5854. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5855. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5856. extruder_duplication_enabled = false;
  5857. break;
  5858. default:
  5859. // record raised toolhead position for use by unpark
  5860. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5861. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5862. active_extruder_parked = true;
  5863. delayed_move_time = 0;
  5864. break;
  5865. }
  5866. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5867. if (DEBUGGING(LEVELING)) {
  5868. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5869. DEBUG_POS("New extruder (parked)", current_position);
  5870. }
  5871. #endif
  5872. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5873. #else // !DUAL_X_CARRIAGE
  5874. #if ENABLED(SWITCHING_EXTRUDER)
  5875. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5876. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5877. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5878. // Always raise by some amount
  5879. planner.buffer_line(
  5880. current_position[X_AXIS],
  5881. current_position[Y_AXIS],
  5882. current_position[Z_AXIS] + z_raise,
  5883. current_position[E_AXIS],
  5884. planner.max_feedrate_mm_s[Z_AXIS],
  5885. active_extruder
  5886. );
  5887. stepper.synchronize();
  5888. move_extruder_servo(active_extruder);
  5889. delay(500);
  5890. // Move back down, if needed
  5891. if (z_raise != z_diff) {
  5892. planner.buffer_line(
  5893. current_position[X_AXIS],
  5894. current_position[Y_AXIS],
  5895. current_position[Z_AXIS] + z_diff,
  5896. current_position[E_AXIS],
  5897. planner.max_feedrate_mm_s[Z_AXIS],
  5898. active_extruder
  5899. );
  5900. stepper.synchronize();
  5901. }
  5902. #endif
  5903. /**
  5904. * Set current_position to the position of the new nozzle.
  5905. * Offsets are based on linear distance, so we need to get
  5906. * the resulting position in coordinate space.
  5907. *
  5908. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5909. * - With mesh leveling, update Z for the new position
  5910. * - Otherwise, just use the raw linear distance
  5911. *
  5912. * Software endstops are altered here too. Consider a case where:
  5913. * E0 at X=0 ... E1 at X=10
  5914. * When we switch to E1 now X=10, but E1 can't move left.
  5915. * To express this we apply the change in XY to the software endstops.
  5916. * E1 can move farther right than E0, so the right limit is extended.
  5917. *
  5918. * Note that we don't adjust the Z software endstops. Why not?
  5919. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5920. * because the bed is 1mm lower at the new position. As long as
  5921. * the first nozzle is out of the way, the carriage should be
  5922. * allowed to move 1mm lower. This technically "breaks" the
  5923. * Z software endstop. But this is technically correct (and
  5924. * there is no viable alternative).
  5925. */
  5926. #if ABL_PLANAR
  5927. // Offset extruder, make sure to apply the bed level rotation matrix
  5928. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5929. hotend_offset[Y_AXIS][tmp_extruder],
  5930. 0),
  5931. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5932. hotend_offset[Y_AXIS][active_extruder],
  5933. 0),
  5934. offset_vec = tmp_offset_vec - act_offset_vec;
  5935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5936. if (DEBUGGING(LEVELING)) {
  5937. tmp_offset_vec.debug("tmp_offset_vec");
  5938. act_offset_vec.debug("act_offset_vec");
  5939. offset_vec.debug("offset_vec (BEFORE)");
  5940. }
  5941. #endif
  5942. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5944. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5945. #endif
  5946. // Adjustments to the current position
  5947. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5948. current_position[Z_AXIS] += offset_vec.z;
  5949. #else // !ABL_PLANAR
  5950. float xydiff[2] = {
  5951. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5952. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5953. };
  5954. #if ENABLED(MESH_BED_LEVELING)
  5955. if (mbl.active()) {
  5956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5957. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5958. #endif
  5959. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5960. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5961. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5962. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5963. if (DEBUGGING(LEVELING))
  5964. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5965. #endif
  5966. }
  5967. #endif // MESH_BED_LEVELING
  5968. #endif // !HAS_ABL
  5969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5970. if (DEBUGGING(LEVELING)) {
  5971. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5972. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5973. SERIAL_ECHOLNPGM(" }");
  5974. }
  5975. #endif
  5976. // The newly-selected extruder XY is actually at...
  5977. current_position[X_AXIS] += xydiff[X_AXIS];
  5978. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5979. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5980. position_shift[i] += xydiff[i];
  5981. update_software_endstops((AxisEnum)i);
  5982. }
  5983. // Set the new active extruder
  5984. active_extruder = tmp_extruder;
  5985. #endif // !DUAL_X_CARRIAGE
  5986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5987. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5988. #endif
  5989. // Tell the planner the new "current position"
  5990. SYNC_PLAN_POSITION_KINEMATIC();
  5991. // Move to the "old position" (move the extruder into place)
  5992. if (!no_move && IsRunning()) {
  5993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5994. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5995. #endif
  5996. prepare_move_to_destination();
  5997. }
  5998. } // (tmp_extruder != active_extruder)
  5999. stepper.synchronize();
  6000. #if ENABLED(EXT_SOLENOID)
  6001. disable_all_solenoids();
  6002. enable_solenoid_on_active_extruder();
  6003. #endif // EXT_SOLENOID
  6004. feedrate_mm_s = old_feedrate_mm_s;
  6005. #else // HOTENDS <= 1
  6006. // Set the new active extruder
  6007. active_extruder = tmp_extruder;
  6008. UNUSED(fr_mm_s);
  6009. UNUSED(no_move);
  6010. #endif // HOTENDS <= 1
  6011. SERIAL_ECHO_START;
  6012. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6013. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6014. }
  6015. /**
  6016. * T0-T3: Switch tool, usually switching extruders
  6017. *
  6018. * F[units/min] Set the movement feedrate
  6019. * S1 Don't move the tool in XY after change
  6020. */
  6021. inline void gcode_T(uint8_t tmp_extruder) {
  6022. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6023. if (DEBUGGING(LEVELING)) {
  6024. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6025. SERIAL_ECHOLNPGM(")");
  6026. DEBUG_POS("BEFORE", current_position);
  6027. }
  6028. #endif
  6029. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6030. tool_change(tmp_extruder);
  6031. #elif HOTENDS > 1
  6032. tool_change(
  6033. tmp_extruder,
  6034. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6035. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6036. );
  6037. #endif
  6038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6039. if (DEBUGGING(LEVELING)) {
  6040. DEBUG_POS("AFTER", current_position);
  6041. SERIAL_ECHOLNPGM("<<< gcode_T");
  6042. }
  6043. #endif
  6044. }
  6045. /**
  6046. * Process a single command and dispatch it to its handler
  6047. * This is called from the main loop()
  6048. */
  6049. void process_next_command() {
  6050. current_command = command_queue[cmd_queue_index_r];
  6051. if (DEBUGGING(ECHO)) {
  6052. SERIAL_ECHO_START;
  6053. SERIAL_ECHOLN(current_command);
  6054. }
  6055. // Sanitize the current command:
  6056. // - Skip leading spaces
  6057. // - Bypass N[-0-9][0-9]*[ ]*
  6058. // - Overwrite * with nul to mark the end
  6059. while (*current_command == ' ') ++current_command;
  6060. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6061. current_command += 2; // skip N[-0-9]
  6062. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6063. while (*current_command == ' ') ++current_command; // skip [ ]*
  6064. }
  6065. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6066. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6067. char *cmd_ptr = current_command;
  6068. // Get the command code, which must be G, M, or T
  6069. char command_code = *cmd_ptr++;
  6070. // Skip spaces to get the numeric part
  6071. while (*cmd_ptr == ' ') cmd_ptr++;
  6072. uint16_t codenum = 0; // define ahead of goto
  6073. // Bail early if there's no code
  6074. bool code_is_good = NUMERIC(*cmd_ptr);
  6075. if (!code_is_good) goto ExitUnknownCommand;
  6076. // Get and skip the code number
  6077. do {
  6078. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6079. cmd_ptr++;
  6080. } while (NUMERIC(*cmd_ptr));
  6081. // Skip all spaces to get to the first argument, or nul
  6082. while (*cmd_ptr == ' ') cmd_ptr++;
  6083. // The command's arguments (if any) start here, for sure!
  6084. current_command_args = cmd_ptr;
  6085. KEEPALIVE_STATE(IN_HANDLER);
  6086. // Handle a known G, M, or T
  6087. switch (command_code) {
  6088. case 'G': switch (codenum) {
  6089. // G0, G1
  6090. case 0:
  6091. case 1:
  6092. #if IS_SCARA
  6093. gcode_G0_G1(codenum == 0);
  6094. #else
  6095. gcode_G0_G1();
  6096. #endif
  6097. break;
  6098. // G2, G3
  6099. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6100. case 2: // G2 - CW ARC
  6101. case 3: // G3 - CCW ARC
  6102. gcode_G2_G3(codenum == 2);
  6103. break;
  6104. #endif
  6105. // G4 Dwell
  6106. case 4:
  6107. gcode_G4();
  6108. break;
  6109. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6110. // G5
  6111. case 5: // G5 - Cubic B_spline
  6112. gcode_G5();
  6113. break;
  6114. #endif // BEZIER_CURVE_SUPPORT
  6115. #if ENABLED(FWRETRACT)
  6116. case 10: // G10: retract
  6117. case 11: // G11: retract_recover
  6118. gcode_G10_G11(codenum == 10);
  6119. break;
  6120. #endif // FWRETRACT
  6121. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6122. case 12:
  6123. gcode_G12(); // G12: Nozzle Clean
  6124. break;
  6125. #endif // NOZZLE_CLEAN_FEATURE
  6126. #if ENABLED(INCH_MODE_SUPPORT)
  6127. case 20: //G20: Inch Mode
  6128. gcode_G20();
  6129. break;
  6130. case 21: //G21: MM Mode
  6131. gcode_G21();
  6132. break;
  6133. #endif // INCH_MODE_SUPPORT
  6134. #if ENABLED(NOZZLE_PARK_FEATURE)
  6135. case 27: // G27: Nozzle Park
  6136. gcode_G27();
  6137. break;
  6138. #endif // NOZZLE_PARK_FEATURE
  6139. case 28: // G28: Home all axes, one at a time
  6140. gcode_G28();
  6141. break;
  6142. #if HAS_ABL || ENABLED(MESH_BED_LEVELING)
  6143. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6144. gcode_G29();
  6145. break;
  6146. #endif // HAS_ABL
  6147. #if HAS_BED_PROBE
  6148. case 30: // G30 Single Z probe
  6149. gcode_G30();
  6150. break;
  6151. #if ENABLED(Z_PROBE_SLED)
  6152. case 31: // G31: dock the sled
  6153. gcode_G31();
  6154. break;
  6155. case 32: // G32: undock the sled
  6156. gcode_G32();
  6157. break;
  6158. #endif // Z_PROBE_SLED
  6159. #endif // HAS_BED_PROBE
  6160. case 90: // G90
  6161. relative_mode = false;
  6162. break;
  6163. case 91: // G91
  6164. relative_mode = true;
  6165. break;
  6166. case 92: // G92
  6167. gcode_G92();
  6168. break;
  6169. }
  6170. break;
  6171. case 'M': switch (codenum) {
  6172. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6173. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6174. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6175. gcode_M0_M1();
  6176. break;
  6177. #endif // ULTIPANEL
  6178. case 17:
  6179. gcode_M17();
  6180. break;
  6181. #if ENABLED(SDSUPPORT)
  6182. case 20: // M20 - list SD card
  6183. gcode_M20(); break;
  6184. case 21: // M21 - init SD card
  6185. gcode_M21(); break;
  6186. case 22: //M22 - release SD card
  6187. gcode_M22(); break;
  6188. case 23: //M23 - Select file
  6189. gcode_M23(); break;
  6190. case 24: //M24 - Start SD print
  6191. gcode_M24(); break;
  6192. case 25: //M25 - Pause SD print
  6193. gcode_M25(); break;
  6194. case 26: //M26 - Set SD index
  6195. gcode_M26(); break;
  6196. case 27: //M27 - Get SD status
  6197. gcode_M27(); break;
  6198. case 28: //M28 - Start SD write
  6199. gcode_M28(); break;
  6200. case 29: //M29 - Stop SD write
  6201. gcode_M29(); break;
  6202. case 30: //M30 <filename> Delete File
  6203. gcode_M30(); break;
  6204. case 32: //M32 - Select file and start SD print
  6205. gcode_M32(); break;
  6206. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6207. case 33: //M33 - Get the long full path to a file or folder
  6208. gcode_M33(); break;
  6209. #endif // LONG_FILENAME_HOST_SUPPORT
  6210. case 928: //M928 - Start SD write
  6211. gcode_M928(); break;
  6212. #endif //SDSUPPORT
  6213. case 31: //M31 take time since the start of the SD print or an M109 command
  6214. gcode_M31();
  6215. break;
  6216. case 42: //M42 -Change pin status via gcode
  6217. gcode_M42();
  6218. break;
  6219. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6220. case 48: // M48 Z probe repeatability
  6221. gcode_M48();
  6222. break;
  6223. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6224. case 75: // Start print timer
  6225. gcode_M75();
  6226. break;
  6227. case 76: // Pause print timer
  6228. gcode_M76();
  6229. break;
  6230. case 77: // Stop print timer
  6231. gcode_M77();
  6232. break;
  6233. #if ENABLED(PRINTCOUNTER)
  6234. case 78: // Show print statistics
  6235. gcode_M78();
  6236. break;
  6237. #endif
  6238. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6239. case 100:
  6240. gcode_M100();
  6241. break;
  6242. #endif
  6243. case 104: // M104
  6244. gcode_M104();
  6245. break;
  6246. case 110: // M110: Set Current Line Number
  6247. gcode_M110();
  6248. break;
  6249. case 111: // M111: Set debug level
  6250. gcode_M111();
  6251. break;
  6252. #if DISABLED(EMERGENCY_PARSER)
  6253. case 108: // M108: Cancel Waiting
  6254. gcode_M108();
  6255. break;
  6256. case 112: // M112: Emergency Stop
  6257. gcode_M112();
  6258. break;
  6259. case 410: // M410 quickstop - Abort all the planned moves.
  6260. gcode_M410();
  6261. break;
  6262. #endif
  6263. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6264. case 113: // M113: Set Host Keepalive interval
  6265. gcode_M113();
  6266. break;
  6267. #endif
  6268. case 140: // M140: Set bed temp
  6269. gcode_M140();
  6270. break;
  6271. case 105: // M105: Read current temperature
  6272. gcode_M105();
  6273. KEEPALIVE_STATE(NOT_BUSY);
  6274. return; // "ok" already printed
  6275. case 109: // M109: Wait for temperature
  6276. gcode_M109();
  6277. break;
  6278. #if HAS_TEMP_BED
  6279. case 190: // M190: Wait for bed heater to reach target
  6280. gcode_M190();
  6281. break;
  6282. #endif // HAS_TEMP_BED
  6283. #if FAN_COUNT > 0
  6284. case 106: // M106: Fan On
  6285. gcode_M106();
  6286. break;
  6287. case 107: // M107: Fan Off
  6288. gcode_M107();
  6289. break;
  6290. #endif // FAN_COUNT > 0
  6291. #if ENABLED(BARICUDA)
  6292. // PWM for HEATER_1_PIN
  6293. #if HAS_HEATER_1
  6294. case 126: // M126: valve open
  6295. gcode_M126();
  6296. break;
  6297. case 127: // M127: valve closed
  6298. gcode_M127();
  6299. break;
  6300. #endif // HAS_HEATER_1
  6301. // PWM for HEATER_2_PIN
  6302. #if HAS_HEATER_2
  6303. case 128: // M128: valve open
  6304. gcode_M128();
  6305. break;
  6306. case 129: // M129: valve closed
  6307. gcode_M129();
  6308. break;
  6309. #endif // HAS_HEATER_2
  6310. #endif // BARICUDA
  6311. #if HAS_POWER_SWITCH
  6312. case 80: // M80: Turn on Power Supply
  6313. gcode_M80();
  6314. break;
  6315. #endif // HAS_POWER_SWITCH
  6316. case 81: // M81: Turn off Power, including Power Supply, if possible
  6317. gcode_M81();
  6318. break;
  6319. case 82:
  6320. gcode_M82();
  6321. break;
  6322. case 83:
  6323. gcode_M83();
  6324. break;
  6325. case 18: // (for compatibility)
  6326. case 84: // M84
  6327. gcode_M18_M84();
  6328. break;
  6329. case 85: // M85
  6330. gcode_M85();
  6331. break;
  6332. case 92: // M92: Set the steps-per-unit for one or more axes
  6333. gcode_M92();
  6334. break;
  6335. case 115: // M115: Report capabilities
  6336. gcode_M115();
  6337. break;
  6338. case 117: // M117: Set LCD message text, if possible
  6339. gcode_M117();
  6340. break;
  6341. case 114: // M114: Report current position
  6342. gcode_M114();
  6343. break;
  6344. case 120: // M120: Enable endstops
  6345. gcode_M120();
  6346. break;
  6347. case 121: // M121: Disable endstops
  6348. gcode_M121();
  6349. break;
  6350. case 119: // M119: Report endstop states
  6351. gcode_M119();
  6352. break;
  6353. #if ENABLED(ULTIPANEL)
  6354. case 145: // M145: Set material heatup parameters
  6355. gcode_M145();
  6356. break;
  6357. #endif
  6358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6359. case 149:
  6360. gcode_M149();
  6361. break;
  6362. #endif
  6363. #if ENABLED(BLINKM)
  6364. case 150: // M150
  6365. gcode_M150();
  6366. break;
  6367. #endif //BLINKM
  6368. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6369. case 155:
  6370. gcode_M155();
  6371. break;
  6372. case 156:
  6373. gcode_M156();
  6374. break;
  6375. #endif //EXPERIMENTAL_I2CBUS
  6376. #if ENABLED(MIXING_EXTRUDER)
  6377. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6378. gcode_M163();
  6379. break;
  6380. #if MIXING_VIRTUAL_TOOLS > 1
  6381. case 164: // M164 S<int> save current mix as a virtual extruder
  6382. gcode_M164();
  6383. break;
  6384. #endif
  6385. #if ENABLED(DIRECT_MIXING_IN_G1)
  6386. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6387. gcode_M165();
  6388. break;
  6389. #endif
  6390. #endif
  6391. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6392. gcode_M200();
  6393. break;
  6394. case 201: // M201
  6395. gcode_M201();
  6396. break;
  6397. #if 0 // Not used for Sprinter/grbl gen6
  6398. case 202: // M202
  6399. gcode_M202();
  6400. break;
  6401. #endif
  6402. case 203: // M203 max feedrate units/sec
  6403. gcode_M203();
  6404. break;
  6405. case 204: // M204 acclereration S normal moves T filmanent only moves
  6406. gcode_M204();
  6407. break;
  6408. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6409. gcode_M205();
  6410. break;
  6411. case 206: // M206 additional homing offset
  6412. gcode_M206();
  6413. break;
  6414. #if ENABLED(DELTA)
  6415. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6416. gcode_M665();
  6417. break;
  6418. #endif
  6419. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6420. case 666: // M666 set delta / dual endstop adjustment
  6421. gcode_M666();
  6422. break;
  6423. #endif
  6424. #if ENABLED(FWRETRACT)
  6425. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6426. gcode_M207();
  6427. break;
  6428. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6429. gcode_M208();
  6430. break;
  6431. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6432. gcode_M209();
  6433. break;
  6434. #endif // FWRETRACT
  6435. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6436. gcode_M211();
  6437. break;
  6438. #if HOTENDS > 1
  6439. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6440. gcode_M218();
  6441. break;
  6442. #endif
  6443. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6444. gcode_M220();
  6445. break;
  6446. case 221: // M221 - Set Flow Percentage: S<percent>
  6447. gcode_M221();
  6448. break;
  6449. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6450. gcode_M226();
  6451. break;
  6452. #if HAS_SERVOS
  6453. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6454. gcode_M280();
  6455. break;
  6456. #endif // HAS_SERVOS
  6457. #if HAS_BUZZER
  6458. case 300: // M300 - Play beep tone
  6459. gcode_M300();
  6460. break;
  6461. #endif // HAS_BUZZER
  6462. #if ENABLED(PIDTEMP)
  6463. case 301: // M301
  6464. gcode_M301();
  6465. break;
  6466. #endif // PIDTEMP
  6467. #if ENABLED(PIDTEMPBED)
  6468. case 304: // M304
  6469. gcode_M304();
  6470. break;
  6471. #endif // PIDTEMPBED
  6472. #if defined(CHDK) || HAS_PHOTOGRAPH
  6473. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6474. gcode_M240();
  6475. break;
  6476. #endif // CHDK || PHOTOGRAPH_PIN
  6477. #if HAS_LCD_CONTRAST
  6478. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6479. gcode_M250();
  6480. break;
  6481. #endif // HAS_LCD_CONTRAST
  6482. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6483. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6484. gcode_M302();
  6485. break;
  6486. #endif // PREVENT_COLD_EXTRUSION
  6487. case 303: // M303 PID autotune
  6488. gcode_M303();
  6489. break;
  6490. #if ENABLED(MORGAN_SCARA)
  6491. case 360: // M360 SCARA Theta pos1
  6492. if (gcode_M360()) return;
  6493. break;
  6494. case 361: // M361 SCARA Theta pos2
  6495. if (gcode_M361()) return;
  6496. break;
  6497. case 362: // M362 SCARA Psi pos1
  6498. if (gcode_M362()) return;
  6499. break;
  6500. case 363: // M363 SCARA Psi pos2
  6501. if (gcode_M363()) return;
  6502. break;
  6503. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6504. if (gcode_M364()) return;
  6505. break;
  6506. #endif // SCARA
  6507. case 400: // M400 finish all moves
  6508. gcode_M400();
  6509. break;
  6510. #if HAS_BED_PROBE
  6511. case 401:
  6512. gcode_M401();
  6513. break;
  6514. case 402:
  6515. gcode_M402();
  6516. break;
  6517. #endif // HAS_BED_PROBE
  6518. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6519. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6520. gcode_M404();
  6521. break;
  6522. case 405: //M405 Turn on filament sensor for control
  6523. gcode_M405();
  6524. break;
  6525. case 406: //M406 Turn off filament sensor for control
  6526. gcode_M406();
  6527. break;
  6528. case 407: //M407 Display measured filament diameter
  6529. gcode_M407();
  6530. break;
  6531. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6532. #if ENABLED(MESH_BED_LEVELING)
  6533. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6534. gcode_M420();
  6535. break;
  6536. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6537. gcode_M421();
  6538. break;
  6539. #endif
  6540. case 428: // M428 Apply current_position to home_offset
  6541. gcode_M428();
  6542. break;
  6543. case 500: // M500 Store settings in EEPROM
  6544. gcode_M500();
  6545. break;
  6546. case 501: // M501 Read settings from EEPROM
  6547. gcode_M501();
  6548. break;
  6549. case 502: // M502 Revert to default settings
  6550. gcode_M502();
  6551. break;
  6552. case 503: // M503 print settings currently in memory
  6553. gcode_M503();
  6554. break;
  6555. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6556. case 540:
  6557. gcode_M540();
  6558. break;
  6559. #endif
  6560. #if HAS_BED_PROBE
  6561. case 851: // Set Z Probe Z Offset
  6562. gcode_M851();
  6563. break;
  6564. #endif // HAS_BED_PROBE
  6565. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6566. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6567. gcode_M600();
  6568. break;
  6569. #endif // FILAMENT_CHANGE_FEATURE
  6570. #if ENABLED(DUAL_X_CARRIAGE)
  6571. case 605:
  6572. gcode_M605();
  6573. break;
  6574. #endif // DUAL_X_CARRIAGE
  6575. #if ENABLED(LIN_ADVANCE)
  6576. case 905: // M905 Set advance factor.
  6577. gcode_M905();
  6578. break;
  6579. #endif
  6580. case 907: // M907 Set digital trimpot motor current using axis codes.
  6581. gcode_M907();
  6582. break;
  6583. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6584. case 908: // M908 Control digital trimpot directly.
  6585. gcode_M908();
  6586. break;
  6587. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6588. case 909: // M909 Print digipot/DAC current value
  6589. gcode_M909();
  6590. break;
  6591. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6592. gcode_M910();
  6593. break;
  6594. #endif
  6595. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6596. #if HAS_MICROSTEPS
  6597. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6598. gcode_M350();
  6599. break;
  6600. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6601. gcode_M351();
  6602. break;
  6603. #endif // HAS_MICROSTEPS
  6604. case 999: // M999: Restart after being Stopped
  6605. gcode_M999();
  6606. break;
  6607. }
  6608. break;
  6609. case 'T':
  6610. gcode_T(codenum);
  6611. break;
  6612. default: code_is_good = false;
  6613. }
  6614. KEEPALIVE_STATE(NOT_BUSY);
  6615. ExitUnknownCommand:
  6616. // Still unknown command? Throw an error
  6617. if (!code_is_good) unknown_command_error();
  6618. ok_to_send();
  6619. }
  6620. /**
  6621. * Send a "Resend: nnn" message to the host to
  6622. * indicate that a command needs to be re-sent.
  6623. */
  6624. void FlushSerialRequestResend() {
  6625. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6626. MYSERIAL.flush();
  6627. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6628. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6629. ok_to_send();
  6630. }
  6631. /**
  6632. * Send an "ok" message to the host, indicating
  6633. * that a command was successfully processed.
  6634. *
  6635. * If ADVANCED_OK is enabled also include:
  6636. * N<int> Line number of the command, if any
  6637. * P<int> Planner space remaining
  6638. * B<int> Block queue space remaining
  6639. */
  6640. void ok_to_send() {
  6641. refresh_cmd_timeout();
  6642. if (!send_ok[cmd_queue_index_r]) return;
  6643. SERIAL_PROTOCOLPGM(MSG_OK);
  6644. #if ENABLED(ADVANCED_OK)
  6645. char* p = command_queue[cmd_queue_index_r];
  6646. if (*p == 'N') {
  6647. SERIAL_PROTOCOL(' ');
  6648. SERIAL_ECHO(*p++);
  6649. while (NUMERIC_SIGNED(*p))
  6650. SERIAL_ECHO(*p++);
  6651. }
  6652. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6653. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6654. #endif
  6655. SERIAL_EOL;
  6656. }
  6657. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6658. /**
  6659. * Constrain the given coordinates to the software endstops.
  6660. */
  6661. void clamp_to_software_endstops(float target[XYZ]) {
  6662. #if ENABLED(min_software_endstops)
  6663. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6664. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6665. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6666. #endif
  6667. #if ENABLED(max_software_endstops)
  6668. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6669. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6670. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6671. #endif
  6672. }
  6673. #endif
  6674. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6675. // Get the Z adjustment for non-linear bed leveling
  6676. float bilinear_z_offset(float cartesian[XYZ]) {
  6677. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6678. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6679. float hx2 = half_x - 0.001, hx1 = -hx2,
  6680. hy2 = half_y - 0.001, hy1 = -hy2,
  6681. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / bilinear_grid_spacing[X_AXIS])),
  6682. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / bilinear_grid_spacing[Y_AXIS]));
  6683. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6684. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6685. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6686. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6687. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6688. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6689. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6690. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6691. /*
  6692. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6693. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6694. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6695. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6696. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6697. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6698. SERIAL_ECHOPAIR(" z1=", z1);
  6699. SERIAL_ECHOPAIR(" z2=", z2);
  6700. SERIAL_ECHOPAIR(" z3=", z3);
  6701. SERIAL_ECHOPAIR(" z4=", z4);
  6702. SERIAL_ECHOPAIR(" left=", left);
  6703. SERIAL_ECHOPAIR(" right=", right);
  6704. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6705. //*/
  6706. return (1 - ratio_x) * left + ratio_x * right;
  6707. }
  6708. #endif // AUTO_BED_LEVELING_BILINEAR
  6709. #if ENABLED(DELTA)
  6710. /**
  6711. * Recalculate factors used for delta kinematics whenever
  6712. * settings have been changed (e.g., by M665).
  6713. */
  6714. void recalc_delta_settings(float radius, float diagonal_rod) {
  6715. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6716. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6717. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6718. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6719. delta_tower3_x = 0.0; // back middle tower
  6720. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6721. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6722. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6723. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6724. }
  6725. #if ENABLED(DELTA_FAST_SQRT)
  6726. /**
  6727. * Fast inverse sqrt from Quake III Arena
  6728. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6729. */
  6730. float Q_rsqrt(float number) {
  6731. long i;
  6732. float x2, y;
  6733. const float threehalfs = 1.5f;
  6734. x2 = number * 0.5f;
  6735. y = number;
  6736. i = * ( long * ) &y; // evil floating point bit level hacking
  6737. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6738. y = * ( float * ) &i;
  6739. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6740. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6741. return y;
  6742. }
  6743. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6744. #else
  6745. #define _SQRT(n) sqrt(n)
  6746. #endif
  6747. /**
  6748. * Delta Inverse Kinematics
  6749. *
  6750. * Calculate the tower positions for a given logical
  6751. * position, storing the result in the delta[] array.
  6752. *
  6753. * This is an expensive calculation, requiring 3 square
  6754. * roots per segmented linear move, and strains the limits
  6755. * of a Mega2560 with a Graphical Display.
  6756. *
  6757. * Suggested optimizations include:
  6758. *
  6759. * - Disable the home_offset (M206) and/or position_shift (G92)
  6760. * features to remove up to 12 float additions.
  6761. *
  6762. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6763. * (see above)
  6764. */
  6765. // Macro to obtain the Z position of an individual tower
  6766. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6767. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6768. delta_tower##T##_x - raw[X_AXIS], \
  6769. delta_tower##T##_y - raw[Y_AXIS] \
  6770. ) \
  6771. )
  6772. #define DELTA_RAW_IK() do { \
  6773. delta[A_AXIS] = DELTA_Z(1); \
  6774. delta[B_AXIS] = DELTA_Z(2); \
  6775. delta[C_AXIS] = DELTA_Z(3); \
  6776. } while(0)
  6777. #define DELTA_LOGICAL_IK() do { \
  6778. const float raw[XYZ] = { \
  6779. RAW_X_POSITION(logical[X_AXIS]), \
  6780. RAW_Y_POSITION(logical[Y_AXIS]), \
  6781. RAW_Z_POSITION(logical[Z_AXIS]) \
  6782. }; \
  6783. DELTA_RAW_IK(); \
  6784. } while(0)
  6785. #define DELTA_DEBUG() do { \
  6786. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6787. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6788. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6789. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6790. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6791. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6792. } while(0)
  6793. void inverse_kinematics(const float logical[XYZ]) {
  6794. DELTA_LOGICAL_IK();
  6795. // DELTA_DEBUG();
  6796. }
  6797. /**
  6798. * Calculate the highest Z position where the
  6799. * effector has the full range of XY motion.
  6800. */
  6801. float delta_safe_distance_from_top() {
  6802. float cartesian[XYZ] = {
  6803. LOGICAL_X_POSITION(0),
  6804. LOGICAL_Y_POSITION(0),
  6805. LOGICAL_Z_POSITION(0)
  6806. };
  6807. inverse_kinematics(cartesian);
  6808. float distance = delta[A_AXIS];
  6809. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6810. inverse_kinematics(cartesian);
  6811. return abs(distance - delta[A_AXIS]);
  6812. }
  6813. /**
  6814. * Delta Forward Kinematics
  6815. *
  6816. * See the Wikipedia article "Trilateration"
  6817. * https://en.wikipedia.org/wiki/Trilateration
  6818. *
  6819. * Establish a new coordinate system in the plane of the
  6820. * three carriage points. This system has its origin at
  6821. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6822. * plane with a Z component of zero.
  6823. * We will define unit vectors in this coordinate system
  6824. * in our original coordinate system. Then when we calculate
  6825. * the Xnew, Ynew and Znew values, we can translate back into
  6826. * the original system by moving along those unit vectors
  6827. * by the corresponding values.
  6828. *
  6829. * Variable names matched to Marlin, c-version, and avoid the
  6830. * use of any vector library.
  6831. *
  6832. * by Andreas Hardtung 2016-06-07
  6833. * based on a Java function from "Delta Robot Kinematics V3"
  6834. * by Steve Graves
  6835. *
  6836. * The result is stored in the cartes[] array.
  6837. */
  6838. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6839. // Create a vector in old coordinates along x axis of new coordinate
  6840. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6841. // Get the Magnitude of vector.
  6842. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6843. // Create unit vector by dividing by magnitude.
  6844. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6845. // Get the vector from the origin of the new system to the third point.
  6846. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6847. // Use the dot product to find the component of this vector on the X axis.
  6848. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6849. // Create a vector along the x axis that represents the x component of p13.
  6850. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6851. // Subtract the X component from the original vector leaving only Y. We use the
  6852. // variable that will be the unit vector after we scale it.
  6853. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6854. // The magnitude of Y component
  6855. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6856. // Convert to a unit vector
  6857. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6858. // The cross product of the unit x and y is the unit z
  6859. // float[] ez = vectorCrossProd(ex, ey);
  6860. float ez[3] = {
  6861. ex[1] * ey[2] - ex[2] * ey[1],
  6862. ex[2] * ey[0] - ex[0] * ey[2],
  6863. ex[0] * ey[1] - ex[1] * ey[0]
  6864. };
  6865. // We now have the d, i and j values defined in Wikipedia.
  6866. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6867. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6868. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6869. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6870. // Start from the origin of the old coordinates and add vectors in the
  6871. // old coords that represent the Xnew, Ynew and Znew to find the point
  6872. // in the old system.
  6873. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6874. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6875. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6876. };
  6877. void forward_kinematics_DELTA(float point[ABC]) {
  6878. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6879. }
  6880. #endif // DELTA
  6881. /**
  6882. * Get the stepper positions in the cartes[] array.
  6883. * Forward kinematics are applied for DELTA and SCARA.
  6884. *
  6885. * The result is in the current coordinate space with
  6886. * leveling applied. The coordinates need to be run through
  6887. * unapply_leveling to obtain the "ideal" coordinates
  6888. * suitable for current_position, etc.
  6889. */
  6890. void get_cartesian_from_steppers() {
  6891. #if ENABLED(DELTA)
  6892. forward_kinematics_DELTA(
  6893. stepper.get_axis_position_mm(A_AXIS),
  6894. stepper.get_axis_position_mm(B_AXIS),
  6895. stepper.get_axis_position_mm(C_AXIS)
  6896. );
  6897. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6898. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6899. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6900. #elif IS_SCARA
  6901. forward_kinematics_SCARA(
  6902. stepper.get_axis_position_degrees(A_AXIS),
  6903. stepper.get_axis_position_degrees(B_AXIS)
  6904. );
  6905. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6906. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6907. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6908. #else
  6909. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6910. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6911. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6912. #endif
  6913. }
  6914. /**
  6915. * Set the current_position for an axis based on
  6916. * the stepper positions, removing any leveling that
  6917. * may have been applied.
  6918. */
  6919. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6920. get_cartesian_from_steppers();
  6921. #if PLANNER_LEVELING
  6922. planner.unapply_leveling(cartes);
  6923. #endif
  6924. if (axis == ALL_AXES)
  6925. memcpy(current_position, cartes, sizeof(cartes));
  6926. else
  6927. current_position[axis] = cartes[axis];
  6928. }
  6929. #if ENABLED(MESH_BED_LEVELING)
  6930. /**
  6931. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6932. * splitting the move where it crosses mesh borders.
  6933. */
  6934. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6935. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6936. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6937. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6938. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6939. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6940. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6941. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6942. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6943. if (cx1 == cx2 && cy1 == cy2) {
  6944. // Start and end on same mesh square
  6945. line_to_destination(fr_mm_s);
  6946. set_current_to_destination();
  6947. return;
  6948. }
  6949. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6950. float normalized_dist, end[NUM_AXIS];
  6951. // Split at the left/front border of the right/top square
  6952. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6953. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6954. memcpy(end, destination, sizeof(end));
  6955. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6956. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6957. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6958. CBI(x_splits, gcx);
  6959. }
  6960. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6961. memcpy(end, destination, sizeof(end));
  6962. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6963. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6964. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6965. CBI(y_splits, gcy);
  6966. }
  6967. else {
  6968. // Already split on a border
  6969. line_to_destination(fr_mm_s);
  6970. set_current_to_destination();
  6971. return;
  6972. }
  6973. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6974. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6975. // Do the split and look for more borders
  6976. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6977. // Restore destination from stack
  6978. memcpy(destination, end, sizeof(end));
  6979. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6980. }
  6981. #endif // MESH_BED_LEVELING
  6982. #if IS_KINEMATIC
  6983. /**
  6984. * Prepare a linear move in a DELTA or SCARA setup.
  6985. *
  6986. * This calls planner.buffer_line several times, adding
  6987. * small incremental moves for DELTA or SCARA.
  6988. */
  6989. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  6990. // Get the top feedrate of the move in the XY plane
  6991. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6992. // If the move is only in Z/E don't split up the move
  6993. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  6994. inverse_kinematics(ltarget);
  6995. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6996. return true;
  6997. }
  6998. // Get the cartesian distances moved in XYZE
  6999. float difference[NUM_AXIS];
  7000. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7001. // Get the linear distance in XYZ
  7002. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7003. // If the move is very short, check the E move distance
  7004. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7005. // No E move either? Game over.
  7006. if (UNEAR_ZERO(cartesian_mm)) return false;
  7007. // Minimum number of seconds to move the given distance
  7008. float seconds = cartesian_mm / _feedrate_mm_s;
  7009. // The number of segments-per-second times the duration
  7010. // gives the number of segments
  7011. uint16_t segments = delta_segments_per_second * seconds;
  7012. // For SCARA minimum segment size is 0.5mm
  7013. #if IS_SCARA
  7014. NOMORE(segments, cartesian_mm * 2);
  7015. #endif
  7016. // At least one segment is required
  7017. NOLESS(segments, 1);
  7018. // The approximate length of each segment
  7019. float segment_distance[XYZE] = {
  7020. difference[X_AXIS] / segments,
  7021. difference[Y_AXIS] / segments,
  7022. difference[Z_AXIS] / segments,
  7023. difference[E_AXIS] / segments
  7024. };
  7025. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7026. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7027. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7028. // Drop one segment so the last move is to the exact target.
  7029. // If there's only 1 segment, loops will be skipped entirely.
  7030. --segments;
  7031. // Using "raw" coordinates saves 6 float subtractions
  7032. // per segment, saving valuable CPU cycles
  7033. #if ENABLED(USE_RAW_KINEMATICS)
  7034. // Get the raw current position as starting point
  7035. float raw[XYZE] = {
  7036. RAW_CURRENT_POSITION(X_AXIS),
  7037. RAW_CURRENT_POSITION(Y_AXIS),
  7038. RAW_CURRENT_POSITION(Z_AXIS),
  7039. current_position[E_AXIS]
  7040. };
  7041. #define DELTA_VAR raw
  7042. // Delta can inline its kinematics
  7043. #if ENABLED(DELTA)
  7044. #define DELTA_IK() DELTA_RAW_IK()
  7045. #else
  7046. #define DELTA_IK() inverse_kinematics(raw)
  7047. #endif
  7048. #else
  7049. // Get the logical current position as starting point
  7050. float logical[XYZE];
  7051. memcpy(logical, current_position, sizeof(logical));
  7052. #define DELTA_VAR logical
  7053. // Delta can inline its kinematics
  7054. #if ENABLED(DELTA)
  7055. #define DELTA_IK() DELTA_LOGICAL_IK()
  7056. #else
  7057. #define DELTA_IK() inverse_kinematics(logical)
  7058. #endif
  7059. #endif
  7060. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7061. // Only interpolate XYZ. Advance E normally.
  7062. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7063. // Get the starting delta if interpolation is possible
  7064. if (segments >= 2) DELTA_IK();
  7065. // Loop using decrement
  7066. for (uint16_t s = segments + 1; --s;) {
  7067. // Are there at least 2 moves left?
  7068. if (s >= 2) {
  7069. // Save the previous delta for interpolation
  7070. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7071. // Get the delta 2 segments ahead (rather than the next)
  7072. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7073. // Advance E normally
  7074. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7075. // Get the exact delta for the move after this
  7076. DELTA_IK();
  7077. // Move to the interpolated delta position first
  7078. planner.buffer_line(
  7079. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7080. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7081. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7082. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7083. );
  7084. // Advance E once more for the next move
  7085. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7086. // Do an extra decrement of the loop
  7087. --s;
  7088. }
  7089. else {
  7090. // Get the last segment delta. (Used when segments is odd)
  7091. DELTA_NEXT(segment_distance[i]);
  7092. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7093. DELTA_IK();
  7094. }
  7095. // Move to the non-interpolated position
  7096. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7097. }
  7098. #else
  7099. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7100. // For non-interpolated delta calculate every segment
  7101. for (uint16_t s = segments + 1; --s;) {
  7102. DELTA_NEXT(segment_distance[i]);
  7103. DELTA_IK();
  7104. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7105. }
  7106. #endif
  7107. // Since segment_distance is only approximate,
  7108. // the final move must be to the exact destination.
  7109. inverse_kinematics(ltarget);
  7110. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7111. return true;
  7112. }
  7113. #else
  7114. /**
  7115. * Prepare a linear move in a Cartesian setup.
  7116. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7117. */
  7118. inline bool prepare_move_to_destination_cartesian() {
  7119. // Do not use feedrate_percentage for E or Z only moves
  7120. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7121. line_to_destination();
  7122. }
  7123. else {
  7124. #if ENABLED(MESH_BED_LEVELING)
  7125. if (mbl.active()) {
  7126. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7127. return false;
  7128. }
  7129. else
  7130. #endif
  7131. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7132. }
  7133. return true;
  7134. }
  7135. #endif // !IS_KINEMATIC
  7136. #if ENABLED(DUAL_X_CARRIAGE)
  7137. /**
  7138. * Prepare a linear move in a dual X axis setup
  7139. */
  7140. inline bool prepare_move_to_destination_dualx() {
  7141. if (active_extruder_parked) {
  7142. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7143. // move duplicate extruder into correct duplication position.
  7144. planner.set_position_mm(
  7145. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7146. current_position[Y_AXIS],
  7147. current_position[Z_AXIS],
  7148. current_position[E_AXIS]
  7149. );
  7150. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7151. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7152. SYNC_PLAN_POSITION_KINEMATIC();
  7153. stepper.synchronize();
  7154. extruder_duplication_enabled = true;
  7155. active_extruder_parked = false;
  7156. }
  7157. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7158. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7159. // This is a travel move (with no extrusion)
  7160. // Skip it, but keep track of the current position
  7161. // (so it can be used as the start of the next non-travel move)
  7162. if (delayed_move_time != 0xFFFFFFFFUL) {
  7163. set_current_to_destination();
  7164. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7165. delayed_move_time = millis();
  7166. return false;
  7167. }
  7168. }
  7169. delayed_move_time = 0;
  7170. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7171. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7172. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7173. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7174. active_extruder_parked = false;
  7175. }
  7176. }
  7177. return true;
  7178. }
  7179. #endif // DUAL_X_CARRIAGE
  7180. /**
  7181. * Prepare a single move and get ready for the next one
  7182. *
  7183. * This may result in several calls to planner.buffer_line to
  7184. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7185. */
  7186. void prepare_move_to_destination() {
  7187. clamp_to_software_endstops(destination);
  7188. refresh_cmd_timeout();
  7189. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7190. if (!DEBUGGING(DRYRUN)) {
  7191. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7192. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7193. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7194. SERIAL_ECHO_START;
  7195. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7196. }
  7197. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7198. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7199. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7200. SERIAL_ECHO_START;
  7201. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7202. }
  7203. #endif
  7204. }
  7205. }
  7206. #endif
  7207. #if IS_KINEMATIC
  7208. if (!prepare_kinematic_move_to(destination)) return;
  7209. #else
  7210. #if ENABLED(DUAL_X_CARRIAGE)
  7211. if (!prepare_move_to_destination_dualx()) return;
  7212. #endif
  7213. if (!prepare_move_to_destination_cartesian()) return;
  7214. #endif
  7215. set_current_to_destination();
  7216. }
  7217. #if ENABLED(ARC_SUPPORT)
  7218. /**
  7219. * Plan an arc in 2 dimensions
  7220. *
  7221. * The arc is approximated by generating many small linear segments.
  7222. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7223. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7224. * larger segments will tend to be more efficient. Your slicer should have
  7225. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7226. */
  7227. void plan_arc(
  7228. float logical[NUM_AXIS], // Destination position
  7229. float* offset, // Center of rotation relative to current_position
  7230. uint8_t clockwise // Clockwise?
  7231. ) {
  7232. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7233. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7234. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7235. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7236. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7237. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7238. r_Y = -offset[Y_AXIS],
  7239. rt_X = logical[X_AXIS] - center_X,
  7240. rt_Y = logical[Y_AXIS] - center_Y;
  7241. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7242. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7243. if (angular_travel < 0) angular_travel += RADIANS(360);
  7244. if (clockwise) angular_travel -= RADIANS(360);
  7245. // Make a circle if the angular rotation is 0
  7246. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7247. angular_travel += RADIANS(360);
  7248. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7249. if (mm_of_travel < 0.001) return;
  7250. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7251. if (segments == 0) segments = 1;
  7252. float theta_per_segment = angular_travel / segments;
  7253. float linear_per_segment = linear_travel / segments;
  7254. float extruder_per_segment = extruder_travel / segments;
  7255. /**
  7256. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7257. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7258. * r_T = [cos(phi) -sin(phi);
  7259. * sin(phi) cos(phi] * r ;
  7260. *
  7261. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7262. * defined from the circle center to the initial position. Each line segment is formed by successive
  7263. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7264. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7265. * all double numbers are single precision on the Arduino. (True double precision will not have
  7266. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7267. * tool precision in some cases. Therefore, arc path correction is implemented.
  7268. *
  7269. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7270. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7271. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7272. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7273. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7274. * issue for CNC machines with the single precision Arduino calculations.
  7275. *
  7276. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7277. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7278. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7279. * This is important when there are successive arc motions.
  7280. */
  7281. // Vector rotation matrix values
  7282. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7283. float sin_T = theta_per_segment;
  7284. float arc_target[NUM_AXIS];
  7285. float sin_Ti, cos_Ti, r_new_Y;
  7286. uint16_t i;
  7287. int8_t count = 0;
  7288. // Initialize the linear axis
  7289. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7290. // Initialize the extruder axis
  7291. arc_target[E_AXIS] = current_position[E_AXIS];
  7292. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7293. millis_t next_idle_ms = millis() + 200UL;
  7294. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7295. thermalManager.manage_heater();
  7296. millis_t now = millis();
  7297. if (ELAPSED(now, next_idle_ms)) {
  7298. next_idle_ms = now + 200UL;
  7299. idle();
  7300. }
  7301. if (++count < N_ARC_CORRECTION) {
  7302. // Apply vector rotation matrix to previous r_X / 1
  7303. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7304. r_X = r_X * cos_T - r_Y * sin_T;
  7305. r_Y = r_new_Y;
  7306. }
  7307. else {
  7308. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7309. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7310. // To reduce stuttering, the sin and cos could be computed at different times.
  7311. // For now, compute both at the same time.
  7312. cos_Ti = cos(i * theta_per_segment);
  7313. sin_Ti = sin(i * theta_per_segment);
  7314. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7315. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7316. count = 0;
  7317. }
  7318. // Update arc_target location
  7319. arc_target[X_AXIS] = center_X + r_X;
  7320. arc_target[Y_AXIS] = center_Y + r_Y;
  7321. arc_target[Z_AXIS] += linear_per_segment;
  7322. arc_target[E_AXIS] += extruder_per_segment;
  7323. clamp_to_software_endstops(arc_target);
  7324. #if IS_KINEMATIC
  7325. inverse_kinematics(arc_target);
  7326. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7327. #else
  7328. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7329. #endif
  7330. }
  7331. // Ensure last segment arrives at target location.
  7332. #if IS_KINEMATIC
  7333. inverse_kinematics(logical);
  7334. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7335. #else
  7336. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7337. #endif
  7338. // As far as the parser is concerned, the position is now == target. In reality the
  7339. // motion control system might still be processing the action and the real tool position
  7340. // in any intermediate location.
  7341. set_current_to_destination();
  7342. }
  7343. #endif
  7344. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7345. void plan_cubic_move(const float offset[4]) {
  7346. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7347. // As far as the parser is concerned, the position is now == destination. In reality the
  7348. // motion control system might still be processing the action and the real tool position
  7349. // in any intermediate location.
  7350. set_current_to_destination();
  7351. }
  7352. #endif // BEZIER_CURVE_SUPPORT
  7353. #if HAS_CONTROLLERFAN
  7354. void controllerFan() {
  7355. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7356. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7357. millis_t ms = millis();
  7358. if (ELAPSED(ms, nextMotorCheck)) {
  7359. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7360. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7361. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7362. #if E_STEPPERS > 1
  7363. || E1_ENABLE_READ == E_ENABLE_ON
  7364. #if HAS_X2_ENABLE
  7365. || X2_ENABLE_READ == X_ENABLE_ON
  7366. #endif
  7367. #if E_STEPPERS > 2
  7368. || E2_ENABLE_READ == E_ENABLE_ON
  7369. #if E_STEPPERS > 3
  7370. || E3_ENABLE_READ == E_ENABLE_ON
  7371. #endif
  7372. #endif
  7373. #endif
  7374. ) {
  7375. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7376. }
  7377. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7378. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7379. // allows digital or PWM fan output to be used (see M42 handling)
  7380. digitalWrite(CONTROLLERFAN_PIN, speed);
  7381. analogWrite(CONTROLLERFAN_PIN, speed);
  7382. }
  7383. }
  7384. #endif // HAS_CONTROLLERFAN
  7385. #if ENABLED(MORGAN_SCARA)
  7386. /**
  7387. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7388. * Maths and first version by QHARLEY.
  7389. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7390. */
  7391. void forward_kinematics_SCARA(const float &a, const float &b) {
  7392. float a_sin = sin(RADIANS(a)) * L1,
  7393. a_cos = cos(RADIANS(a)) * L1,
  7394. b_sin = sin(RADIANS(b)) * L2,
  7395. b_cos = cos(RADIANS(b)) * L2;
  7396. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7397. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7398. /*
  7399. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7400. SERIAL_ECHOPAIR(" b=", b);
  7401. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7402. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7403. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7404. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7405. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7406. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7407. //*/
  7408. }
  7409. /**
  7410. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7411. *
  7412. * See http://forums.reprap.org/read.php?185,283327
  7413. *
  7414. * Maths and first version by QHARLEY.
  7415. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7416. */
  7417. void inverse_kinematics(const float logical[XYZ]) {
  7418. static float C2, S2, SK1, SK2, THETA, PSI;
  7419. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7420. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7421. if (L1 == L2)
  7422. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7423. else
  7424. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7425. S2 = sqrt(sq(C2) - 1);
  7426. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7427. SK1 = L1 + L2 * C2;
  7428. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7429. SK2 = L2 * S2;
  7430. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7431. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7432. // Angle of Arm2
  7433. PSI = atan2(S2, C2);
  7434. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7435. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7436. delta[C_AXIS] = logical[Z_AXIS];
  7437. /*
  7438. DEBUG_POS("SCARA IK", logical);
  7439. DEBUG_POS("SCARA IK", delta);
  7440. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7441. SERIAL_ECHOPAIR(",", sy);
  7442. SERIAL_ECHOPAIR(" C2=", C2);
  7443. SERIAL_ECHOPAIR(" S2=", S2);
  7444. SERIAL_ECHOPAIR(" Theta=", THETA);
  7445. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7446. //*/
  7447. }
  7448. #endif // MORGAN_SCARA
  7449. #if ENABLED(TEMP_STAT_LEDS)
  7450. static bool red_led = false;
  7451. static millis_t next_status_led_update_ms = 0;
  7452. void handle_status_leds(void) {
  7453. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7454. next_status_led_update_ms += 500; // Update every 0.5s
  7455. float max_temp = 0.0;
  7456. #if HAS_TEMP_BED
  7457. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7458. #endif
  7459. HOTEND_LOOP() {
  7460. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7461. }
  7462. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7463. if (new_led != red_led) {
  7464. red_led = new_led;
  7465. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7466. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7467. }
  7468. }
  7469. }
  7470. #endif
  7471. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7472. void handle_filament_runout() {
  7473. if (!filament_ran_out) {
  7474. filament_ran_out = true;
  7475. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7476. stepper.synchronize();
  7477. }
  7478. }
  7479. #endif // FILAMENT_RUNOUT_SENSOR
  7480. #if ENABLED(FAST_PWM_FAN)
  7481. void setPwmFrequency(uint8_t pin, int val) {
  7482. val &= 0x07;
  7483. switch (digitalPinToTimer(pin)) {
  7484. #if defined(TCCR0A)
  7485. case TIMER0A:
  7486. case TIMER0B:
  7487. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7488. // TCCR0B |= val;
  7489. break;
  7490. #endif
  7491. #if defined(TCCR1A)
  7492. case TIMER1A:
  7493. case TIMER1B:
  7494. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7495. // TCCR1B |= val;
  7496. break;
  7497. #endif
  7498. #if defined(TCCR2)
  7499. case TIMER2:
  7500. case TIMER2:
  7501. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7502. TCCR2 |= val;
  7503. break;
  7504. #endif
  7505. #if defined(TCCR2A)
  7506. case TIMER2A:
  7507. case TIMER2B:
  7508. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7509. TCCR2B |= val;
  7510. break;
  7511. #endif
  7512. #if defined(TCCR3A)
  7513. case TIMER3A:
  7514. case TIMER3B:
  7515. case TIMER3C:
  7516. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7517. TCCR3B |= val;
  7518. break;
  7519. #endif
  7520. #if defined(TCCR4A)
  7521. case TIMER4A:
  7522. case TIMER4B:
  7523. case TIMER4C:
  7524. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7525. TCCR4B |= val;
  7526. break;
  7527. #endif
  7528. #if defined(TCCR5A)
  7529. case TIMER5A:
  7530. case TIMER5B:
  7531. case TIMER5C:
  7532. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7533. TCCR5B |= val;
  7534. break;
  7535. #endif
  7536. }
  7537. }
  7538. #endif // FAST_PWM_FAN
  7539. float calculate_volumetric_multiplier(float diameter) {
  7540. if (!volumetric_enabled || diameter == 0) return 1.0;
  7541. float d2 = diameter * 0.5;
  7542. return 1.0 / (M_PI * d2 * d2);
  7543. }
  7544. void calculate_volumetric_multipliers() {
  7545. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7546. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7547. }
  7548. void enable_all_steppers() {
  7549. enable_x();
  7550. enable_y();
  7551. enable_z();
  7552. enable_e0();
  7553. enable_e1();
  7554. enable_e2();
  7555. enable_e3();
  7556. }
  7557. void disable_all_steppers() {
  7558. disable_x();
  7559. disable_y();
  7560. disable_z();
  7561. disable_e0();
  7562. disable_e1();
  7563. disable_e2();
  7564. disable_e3();
  7565. }
  7566. /**
  7567. * Manage several activities:
  7568. * - Check for Filament Runout
  7569. * - Keep the command buffer full
  7570. * - Check for maximum inactive time between commands
  7571. * - Check for maximum inactive time between stepper commands
  7572. * - Check if pin CHDK needs to go LOW
  7573. * - Check for KILL button held down
  7574. * - Check for HOME button held down
  7575. * - Check if cooling fan needs to be switched on
  7576. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7577. */
  7578. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7579. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7580. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7581. handle_filament_runout();
  7582. #endif
  7583. if (commands_in_queue < BUFSIZE) get_available_commands();
  7584. millis_t ms = millis();
  7585. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7586. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7587. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7588. #if ENABLED(DISABLE_INACTIVE_X)
  7589. disable_x();
  7590. #endif
  7591. #if ENABLED(DISABLE_INACTIVE_Y)
  7592. disable_y();
  7593. #endif
  7594. #if ENABLED(DISABLE_INACTIVE_Z)
  7595. disable_z();
  7596. #endif
  7597. #if ENABLED(DISABLE_INACTIVE_E)
  7598. disable_e0();
  7599. disable_e1();
  7600. disable_e2();
  7601. disable_e3();
  7602. #endif
  7603. }
  7604. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7605. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7606. chdkActive = false;
  7607. WRITE(CHDK, LOW);
  7608. }
  7609. #endif
  7610. #if HAS_KILL
  7611. // Check if the kill button was pressed and wait just in case it was an accidental
  7612. // key kill key press
  7613. // -------------------------------------------------------------------------------
  7614. static int killCount = 0; // make the inactivity button a bit less responsive
  7615. const int KILL_DELAY = 750;
  7616. if (!READ(KILL_PIN))
  7617. killCount++;
  7618. else if (killCount > 0)
  7619. killCount--;
  7620. // Exceeded threshold and we can confirm that it was not accidental
  7621. // KILL the machine
  7622. // ----------------------------------------------------------------
  7623. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7624. #endif
  7625. #if HAS_HOME
  7626. // Check to see if we have to home, use poor man's debouncer
  7627. // ---------------------------------------------------------
  7628. static int homeDebounceCount = 0; // poor man's debouncing count
  7629. const int HOME_DEBOUNCE_DELAY = 2500;
  7630. if (!READ(HOME_PIN)) {
  7631. if (!homeDebounceCount) {
  7632. enqueue_and_echo_commands_P(PSTR("G28"));
  7633. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7634. }
  7635. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7636. homeDebounceCount++;
  7637. else
  7638. homeDebounceCount = 0;
  7639. }
  7640. #endif
  7641. #if HAS_CONTROLLERFAN
  7642. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7643. #endif
  7644. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7645. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7646. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7647. bool oldstatus;
  7648. #if ENABLED(SWITCHING_EXTRUDER)
  7649. oldstatus = E0_ENABLE_READ;
  7650. enable_e0();
  7651. #else // !SWITCHING_EXTRUDER
  7652. switch (active_extruder) {
  7653. case 0:
  7654. oldstatus = E0_ENABLE_READ;
  7655. enable_e0();
  7656. break;
  7657. #if E_STEPPERS > 1
  7658. case 1:
  7659. oldstatus = E1_ENABLE_READ;
  7660. enable_e1();
  7661. break;
  7662. #if E_STEPPERS > 2
  7663. case 2:
  7664. oldstatus = E2_ENABLE_READ;
  7665. enable_e2();
  7666. break;
  7667. #if E_STEPPERS > 3
  7668. case 3:
  7669. oldstatus = E3_ENABLE_READ;
  7670. enable_e3();
  7671. break;
  7672. #endif
  7673. #endif
  7674. #endif
  7675. }
  7676. #endif // !SWITCHING_EXTRUDER
  7677. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7678. planner.buffer_line(
  7679. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7680. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7681. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7682. );
  7683. stepper.synchronize();
  7684. planner.set_e_position_mm(current_position[E_AXIS]);
  7685. #if ENABLED(SWITCHING_EXTRUDER)
  7686. E0_ENABLE_WRITE(oldstatus);
  7687. #else
  7688. switch (active_extruder) {
  7689. case 0:
  7690. E0_ENABLE_WRITE(oldstatus);
  7691. break;
  7692. #if E_STEPPERS > 1
  7693. case 1:
  7694. E1_ENABLE_WRITE(oldstatus);
  7695. break;
  7696. #if E_STEPPERS > 2
  7697. case 2:
  7698. E2_ENABLE_WRITE(oldstatus);
  7699. break;
  7700. #if E_STEPPERS > 3
  7701. case 3:
  7702. E3_ENABLE_WRITE(oldstatus);
  7703. break;
  7704. #endif
  7705. #endif
  7706. #endif
  7707. }
  7708. #endif // !SWITCHING_EXTRUDER
  7709. }
  7710. #endif // EXTRUDER_RUNOUT_PREVENT
  7711. #if ENABLED(DUAL_X_CARRIAGE)
  7712. // handle delayed move timeout
  7713. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7714. // travel moves have been received so enact them
  7715. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7716. set_destination_to_current();
  7717. prepare_move_to_destination();
  7718. }
  7719. #endif
  7720. #if ENABLED(TEMP_STAT_LEDS)
  7721. handle_status_leds();
  7722. #endif
  7723. planner.check_axes_activity();
  7724. }
  7725. /**
  7726. * Standard idle routine keeps the machine alive
  7727. */
  7728. void idle(
  7729. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7730. bool no_stepper_sleep/*=false*/
  7731. #endif
  7732. ) {
  7733. lcd_update();
  7734. host_keepalive();
  7735. manage_inactivity(
  7736. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7737. no_stepper_sleep
  7738. #endif
  7739. );
  7740. thermalManager.manage_heater();
  7741. #if ENABLED(PRINTCOUNTER)
  7742. print_job_timer.tick();
  7743. #endif
  7744. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7745. buzzer.tick();
  7746. #endif
  7747. }
  7748. /**
  7749. * Kill all activity and lock the machine.
  7750. * After this the machine will need to be reset.
  7751. */
  7752. void kill(const char* lcd_msg) {
  7753. SERIAL_ERROR_START;
  7754. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7755. #if ENABLED(ULTRA_LCD)
  7756. kill_screen(lcd_msg);
  7757. #else
  7758. UNUSED(lcd_msg);
  7759. #endif
  7760. delay(500); // Wait a short time
  7761. cli(); // Stop interrupts
  7762. thermalManager.disable_all_heaters();
  7763. disable_all_steppers();
  7764. #if HAS_POWER_SWITCH
  7765. pinMode(PS_ON_PIN, INPUT);
  7766. #endif
  7767. suicide();
  7768. while (1) {
  7769. #if ENABLED(USE_WATCHDOG)
  7770. watchdog_reset();
  7771. #endif
  7772. } // Wait for reset
  7773. }
  7774. /**
  7775. * Turn off heaters and stop the print in progress
  7776. * After a stop the machine may be resumed with M999
  7777. */
  7778. void stop() {
  7779. thermalManager.disable_all_heaters();
  7780. if (IsRunning()) {
  7781. Running = false;
  7782. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7783. SERIAL_ERROR_START;
  7784. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7785. LCD_MESSAGEPGM(MSG_STOPPED);
  7786. }
  7787. }
  7788. /**
  7789. * Marlin entry-point: Set up before the program loop
  7790. * - Set up the kill pin, filament runout, power hold
  7791. * - Start the serial port
  7792. * - Print startup messages and diagnostics
  7793. * - Get EEPROM or default settings
  7794. * - Initialize managers for:
  7795. * • temperature
  7796. * • planner
  7797. * • watchdog
  7798. * • stepper
  7799. * • photo pin
  7800. * • servos
  7801. * • LCD controller
  7802. * • Digipot I2C
  7803. * • Z probe sled
  7804. * • status LEDs
  7805. */
  7806. void setup() {
  7807. #ifdef DISABLE_JTAG
  7808. // Disable JTAG on AT90USB chips to free up pins for IO
  7809. MCUCR = 0x80;
  7810. MCUCR = 0x80;
  7811. #endif
  7812. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7813. setup_filrunoutpin();
  7814. #endif
  7815. setup_killpin();
  7816. setup_powerhold();
  7817. #if HAS_STEPPER_RESET
  7818. disableStepperDrivers();
  7819. #endif
  7820. MYSERIAL.begin(BAUDRATE);
  7821. SERIAL_PROTOCOLLNPGM("start");
  7822. SERIAL_ECHO_START;
  7823. // Check startup - does nothing if bootloader sets MCUSR to 0
  7824. byte mcu = MCUSR;
  7825. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7826. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7827. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7828. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7829. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7830. MCUSR = 0;
  7831. SERIAL_ECHOPGM(MSG_MARLIN);
  7832. SERIAL_CHAR(' ');
  7833. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7834. SERIAL_EOL;
  7835. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7836. SERIAL_ECHO_START;
  7837. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7838. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7839. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7840. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7841. #endif
  7842. SERIAL_ECHO_START;
  7843. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7844. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7845. // Send "ok" after commands by default
  7846. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7847. // Load data from EEPROM if available (or use defaults)
  7848. // This also updates variables in the planner, elsewhere
  7849. Config_RetrieveSettings();
  7850. // Initialize current position based on home_offset
  7851. memcpy(current_position, home_offset, sizeof(home_offset));
  7852. // Vital to init stepper/planner equivalent for current_position
  7853. SYNC_PLAN_POSITION_KINEMATIC();
  7854. thermalManager.init(); // Initialize temperature loop
  7855. #if ENABLED(USE_WATCHDOG)
  7856. watchdog_init();
  7857. #endif
  7858. stepper.init(); // Initialize stepper, this enables interrupts!
  7859. setup_photpin();
  7860. servo_init();
  7861. #if HAS_BED_PROBE
  7862. endstops.enable_z_probe(false);
  7863. #endif
  7864. #if HAS_CONTROLLERFAN
  7865. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7866. #endif
  7867. #if HAS_STEPPER_RESET
  7868. enableStepperDrivers();
  7869. #endif
  7870. #if ENABLED(DIGIPOT_I2C)
  7871. digipot_i2c_init();
  7872. #endif
  7873. #if ENABLED(DAC_STEPPER_CURRENT)
  7874. dac_init();
  7875. #endif
  7876. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7877. OUT_WRITE(SLED_PIN, LOW); // turn it off
  7878. #endif // Z_PROBE_SLED
  7879. setup_homepin();
  7880. #if PIN_EXISTS(STAT_LED_RED)
  7881. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  7882. #endif
  7883. #if PIN_EXISTS(STAT_LED_BLUE)
  7884. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  7885. #endif
  7886. lcd_init();
  7887. #if ENABLED(SHOW_BOOTSCREEN)
  7888. #if ENABLED(DOGLCD)
  7889. safe_delay(BOOTSCREEN_TIMEOUT);
  7890. #elif ENABLED(ULTRA_LCD)
  7891. bootscreen();
  7892. lcd_init();
  7893. #endif
  7894. #endif
  7895. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7896. // Initialize mixing to 100% color 1
  7897. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7898. mixing_factor[i] = (i == 0) ? 1 : 0;
  7899. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7900. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7901. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7902. #endif
  7903. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7904. i2c.onReceive(i2c_on_receive);
  7905. i2c.onRequest(i2c_on_request);
  7906. #endif
  7907. }
  7908. /**
  7909. * The main Marlin program loop
  7910. *
  7911. * - Save or log commands to SD
  7912. * - Process available commands (if not saving)
  7913. * - Call heater manager
  7914. * - Call inactivity manager
  7915. * - Call endstop manager
  7916. * - Call LCD update
  7917. */
  7918. void loop() {
  7919. if (commands_in_queue < BUFSIZE) get_available_commands();
  7920. #if ENABLED(SDSUPPORT)
  7921. card.checkautostart(false);
  7922. #endif
  7923. if (commands_in_queue) {
  7924. #if ENABLED(SDSUPPORT)
  7925. if (card.saving) {
  7926. char* command = command_queue[cmd_queue_index_r];
  7927. if (strstr_P(command, PSTR("M29"))) {
  7928. // M29 closes the file
  7929. card.closefile();
  7930. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7931. ok_to_send();
  7932. }
  7933. else {
  7934. // Write the string from the read buffer to SD
  7935. card.write_command(command);
  7936. if (card.logging)
  7937. process_next_command(); // The card is saving because it's logging
  7938. else
  7939. ok_to_send();
  7940. }
  7941. }
  7942. else
  7943. process_next_command();
  7944. #else
  7945. process_next_command();
  7946. #endif // SDSUPPORT
  7947. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7948. if (commands_in_queue) {
  7949. --commands_in_queue;
  7950. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7951. }
  7952. }
  7953. endstops.report_state();
  7954. idle();
  7955. }