My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * planner.h
  25. *
  26. * Buffer movement commands and manage the acceleration profile plan
  27. *
  28. * Derived from Grbl
  29. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  30. */
  31. #include "../Marlin.h"
  32. #include "motion.h"
  33. #include "../gcode/queue.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if ABL_PLANAR
  38. #include "../libs/vector_3.h"
  39. #endif
  40. #if ENABLED(FWRETRACT)
  41. #include "../feature/fwretract.h"
  42. #endif
  43. #if ENABLED(MIXING_EXTRUDER)
  44. #include "../feature/mixing.h"
  45. #endif
  46. enum BlockFlagBit : char {
  47. // Recalculate trapezoids on entry junction. For optimization.
  48. BLOCK_BIT_RECALCULATE,
  49. // Nominal speed always reached.
  50. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  51. // from a safe speed (in consideration of jerking from zero speed).
  52. BLOCK_BIT_NOMINAL_LENGTH,
  53. // The block is segment 2+ of a longer move
  54. BLOCK_BIT_CONTINUED,
  55. // Sync the stepper counts from the block
  56. BLOCK_BIT_SYNC_POSITION
  57. };
  58. enum BlockFlag : char {
  59. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  60. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  61. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
  62. BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
  63. };
  64. /**
  65. * struct block_t
  66. *
  67. * A single entry in the planner buffer.
  68. * Tracks linear movement over multiple axes.
  69. *
  70. * The "nominal" values are as-specified by gcode, and
  71. * may never actually be reached due to acceleration limits.
  72. */
  73. typedef struct block_t {
  74. volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
  75. // Fields used by the motion planner to manage acceleration
  76. float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
  77. entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
  78. max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
  79. millimeters, // The total travel of this block in mm
  80. acceleration; // acceleration mm/sec^2
  81. union {
  82. // Data used by all move blocks
  83. struct {
  84. // Fields used by the Bresenham algorithm for tracing the line
  85. uint32_t steps[NUM_AXIS]; // Step count along each axis
  86. };
  87. // Data used by all sync blocks
  88. struct {
  89. int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
  90. };
  91. };
  92. uint32_t step_event_count; // The number of step events required to complete this block
  93. #if EXTRUDERS > 1
  94. uint8_t extruder; // The extruder to move (if E move)
  95. #else
  96. static constexpr uint8_t extruder = 0;
  97. #endif
  98. #if ENABLED(MIXING_EXTRUDER)
  99. MIXER_BLOCK_FIELD; // Normalized color for the mixing steppers
  100. #endif
  101. // Settings for the trapezoid generator
  102. uint32_t accelerate_until, // The index of the step event on which to stop acceleration
  103. decelerate_after; // The index of the step event on which to start decelerating
  104. #if ENABLED(S_CURVE_ACCELERATION)
  105. uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
  106. acceleration_time, // Acceleration time and deceleration time in STEP timer counts
  107. deceleration_time,
  108. acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
  109. deceleration_time_inverse;
  110. #else
  111. uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  112. #endif
  113. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  114. // Advance extrusion
  115. #if ENABLED(LIN_ADVANCE)
  116. bool use_advance_lead;
  117. uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
  118. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  119. final_adv_steps; // advance steps due to exit speed
  120. float e_D_ratio;
  121. #endif
  122. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  123. initial_rate, // The jerk-adjusted step rate at start of block
  124. final_rate, // The minimal rate at exit
  125. acceleration_steps_per_s2; // acceleration steps/sec^2
  126. #if FAN_COUNT > 0
  127. uint8_t fan_speed[FAN_COUNT];
  128. #endif
  129. #if ENABLED(BARICUDA)
  130. uint8_t valve_pressure, e_to_p_pressure;
  131. #endif
  132. #if HAS_SPI_LCD
  133. uint32_t segment_time_us;
  134. #endif
  135. } block_t;
  136. #define HAS_POSITION_FLOAT ANY(LIN_ADVANCE, SCARA_FEEDRATE_SCALING, GRADIENT_MIX)
  137. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  138. typedef struct {
  139. uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
  140. min_segment_time_us; // (µs) M205 B
  141. float axis_steps_per_mm[XYZE_N], // (steps) M92 XYZE - Steps per millimeter
  142. max_feedrate_mm_s[XYZE_N], // (mm/s) M203 XYZE - Max speeds
  143. acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
  144. retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
  145. travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
  146. min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
  147. min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
  148. } planner_settings_t;
  149. #if DISABLED(SKEW_CORRECTION)
  150. #define XY_SKEW_FACTOR 0
  151. #define XZ_SKEW_FACTOR 0
  152. #define YZ_SKEW_FACTOR 0
  153. #endif
  154. typedef struct {
  155. #if ENABLED(SKEW_CORRECTION_GCODE)
  156. float xy;
  157. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  158. float xz, yz;
  159. #else
  160. const float xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  161. #endif
  162. #else
  163. const float xy = XY_SKEW_FACTOR,
  164. xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  165. #endif
  166. } skew_factor_t;
  167. class Planner {
  168. public:
  169. /**
  170. * The move buffer, calculated in stepper steps
  171. *
  172. * block_buffer is a ring buffer...
  173. *
  174. * head,tail : indexes for write,read
  175. * head==tail : the buffer is empty
  176. * head!=tail : blocks are in the buffer
  177. * head==(tail-1)%size : the buffer is full
  178. *
  179. * Writer of head is Planner::buffer_segment().
  180. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  181. */
  182. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  183. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  184. block_buffer_nonbusy, // Index of the first non busy block
  185. block_buffer_planned, // Index of the optimally planned block
  186. block_buffer_tail; // Index of the busy block, if any
  187. static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
  188. static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  189. #if ENABLED(DISTINCT_E_FACTORS)
  190. static uint8_t last_extruder; // Respond to extruder change
  191. #endif
  192. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  193. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  194. #if DISABLED(NO_VOLUMETRICS)
  195. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  196. volumetric_area_nominal, // Nominal cross-sectional area
  197. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  198. // May be auto-adjusted by a filament width sensor
  199. #endif
  200. static planner_settings_t settings;
  201. static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
  202. static float steps_to_mm[XYZE_N]; // Millimeters per step
  203. #if ENABLED(JUNCTION_DEVIATION)
  204. static float junction_deviation_mm; // (mm) M205 J
  205. #if ENABLED(LIN_ADVANCE)
  206. static float max_e_jerk // Calculated from junction_deviation_mm
  207. #if ENABLED(DISTINCT_E_FACTORS)
  208. [EXTRUDERS]
  209. #endif
  210. ;
  211. #endif
  212. #endif
  213. #if HAS_CLASSIC_JERK
  214. static float max_jerk[
  215. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  216. XYZ // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
  217. #else
  218. XYZE // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
  219. #endif
  220. ];
  221. #endif
  222. #if HAS_LEVELING
  223. static bool leveling_active; // Flag that bed leveling is enabled
  224. #if ABL_PLANAR
  225. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  226. #endif
  227. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  228. static float z_fade_height, inverse_z_fade_height;
  229. #endif
  230. #else
  231. static constexpr bool leveling_active = false;
  232. #endif
  233. #if ENABLED(LIN_ADVANCE)
  234. static float extruder_advance_K[EXTRUDERS];
  235. #endif
  236. #if HAS_POSITION_FLOAT
  237. static float position_float[XYZE];
  238. #endif
  239. #if IS_KINEMATIC
  240. static float position_cart[XYZE];
  241. #endif
  242. static skew_factor_t skew_factor;
  243. #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  244. static bool abort_on_endstop_hit;
  245. #endif
  246. private:
  247. /**
  248. * The current position of the tool in absolute steps
  249. * Recalculated if any axis_steps_per_mm are changed by gcode
  250. */
  251. static int32_t position[NUM_AXIS];
  252. /**
  253. * Speed of previous path line segment
  254. */
  255. static float previous_speed[NUM_AXIS];
  256. /**
  257. * Nominal speed of previous path line segment (mm/s)^2
  258. */
  259. static float previous_nominal_speed_sqr;
  260. /**
  261. * Limit where 64bit math is necessary for acceleration calculation
  262. */
  263. static uint32_t cutoff_long;
  264. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  265. static float last_fade_z;
  266. #endif
  267. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  268. /**
  269. * Counters to manage disabling inactive extruders
  270. */
  271. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  272. #endif // DISABLE_INACTIVE_EXTRUDER
  273. #ifdef XY_FREQUENCY_LIMIT
  274. // Used for the frequency limit
  275. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  276. // Old direction bits. Used for speed calculations
  277. static unsigned char old_direction_bits;
  278. // Segment times (in µs). Used for speed calculations
  279. static uint32_t axis_segment_time_us[2][3];
  280. #endif
  281. #if HAS_SPI_LCD
  282. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  283. #endif
  284. public:
  285. /**
  286. * Instance Methods
  287. */
  288. Planner();
  289. void init();
  290. /**
  291. * Static (class) Methods
  292. */
  293. static void reset_acceleration_rates();
  294. static void refresh_positioning();
  295. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  296. e_factor[e] = (flow_percentage[e] * 0.01f
  297. #if DISABLED(NO_VOLUMETRICS)
  298. * volumetric_multiplier[e]
  299. #endif
  300. );
  301. }
  302. // Manage fans, paste pressure, etc.
  303. static void check_axes_activity();
  304. // Update multipliers based on new diameter measurements
  305. static void calculate_volumetric_multipliers();
  306. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  307. void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
  308. #endif
  309. #if DISABLED(NO_VOLUMETRICS)
  310. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  311. filament_size[e] = v;
  312. // make sure all extruders have some sane value for the filament size
  313. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  314. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  315. }
  316. #endif
  317. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  318. /**
  319. * Get the Z leveling fade factor based on the given Z height,
  320. * re-calculating only when needed.
  321. *
  322. * Returns 1.0 if planner.z_fade_height is 0.0.
  323. * Returns 0.0 if Z is past the specified 'Fade Height'.
  324. */
  325. static inline float fade_scaling_factor_for_z(const float &rz) {
  326. static float z_fade_factor = 1;
  327. if (z_fade_height) {
  328. if (rz >= z_fade_height) return 0;
  329. if (last_fade_z != rz) {
  330. last_fade_z = rz;
  331. z_fade_factor = 1 - rz * inverse_z_fade_height;
  332. }
  333. return z_fade_factor;
  334. }
  335. return 1;
  336. }
  337. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
  338. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  339. z_fade_height = zfh > 0 ? zfh : 0;
  340. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  341. force_fade_recalc();
  342. }
  343. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  344. return !z_fade_height || rz < z_fade_height;
  345. }
  346. #else
  347. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  348. UNUSED(rz);
  349. return 1;
  350. }
  351. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  352. #endif
  353. #if ENABLED(SKEW_CORRECTION)
  354. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  355. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  356. const float sx = cx - cy * skew_factor.xy - cz * (skew_factor.xz - (skew_factor.xy * skew_factor.yz)),
  357. sy = cy - cz * skew_factor.yz;
  358. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  359. cx = sx; cy = sy;
  360. }
  361. }
  362. }
  363. FORCE_INLINE static void skew(float (&raw)[XYZ]) { skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  364. FORCE_INLINE static void skew(float (&raw)[XYZE]) { skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  365. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  366. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  367. const float sx = cx + cy * skew_factor.xy + cz * skew_factor.xz,
  368. sy = cy + cz * skew_factor.yz;
  369. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  370. cx = sx; cy = sy;
  371. }
  372. }
  373. }
  374. FORCE_INLINE static void unskew(float (&raw)[XYZ]) { unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  375. FORCE_INLINE static void unskew(float (&raw)[XYZE]) { unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  376. #endif // SKEW_CORRECTION
  377. #if HAS_LEVELING
  378. /**
  379. * Apply leveling to transform a cartesian position
  380. * as it will be given to the planner and steppers.
  381. */
  382. static void apply_leveling(float &rx, float &ry, float &rz);
  383. FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  384. FORCE_INLINE static void apply_leveling(float (&raw)[XYZE]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  385. static void unapply_leveling(float raw[XYZ]);
  386. #endif
  387. #if ENABLED(FWRETRACT)
  388. static void apply_retract(float &rz, float &e);
  389. FORCE_INLINE static void apply_retract(float (&raw)[XYZE]) { apply_retract(raw[Z_AXIS], raw[E_AXIS]); }
  390. static void unapply_retract(float &rz, float &e);
  391. FORCE_INLINE static void unapply_retract(float (&raw)[XYZE]) { unapply_retract(raw[Z_AXIS], raw[E_AXIS]); }
  392. #endif
  393. #if HAS_POSITION_MODIFIERS
  394. FORCE_INLINE static void apply_modifiers(float (&pos)[XYZE]
  395. #if HAS_LEVELING
  396. , bool leveling =
  397. #if PLANNER_LEVELING
  398. true
  399. #else
  400. false
  401. #endif
  402. #endif
  403. ) {
  404. #if ENABLED(SKEW_CORRECTION)
  405. skew(pos);
  406. #endif
  407. #if HAS_LEVELING
  408. if (leveling)
  409. apply_leveling(pos);
  410. #endif
  411. #if ENABLED(FWRETRACT)
  412. apply_retract(pos);
  413. #endif
  414. }
  415. FORCE_INLINE static void unapply_modifiers(float (&pos)[XYZE]
  416. #if HAS_LEVELING
  417. , bool leveling =
  418. #if PLANNER_LEVELING
  419. true
  420. #else
  421. false
  422. #endif
  423. #endif
  424. ) {
  425. #if ENABLED(FWRETRACT)
  426. unapply_retract(pos);
  427. #endif
  428. #if HAS_LEVELING
  429. if (leveling)
  430. unapply_leveling(pos);
  431. #endif
  432. #if ENABLED(SKEW_CORRECTION)
  433. unskew(pos);
  434. #endif
  435. }
  436. #endif // HAS_POSITION_MODIFIERS
  437. // Number of moves currently in the planner including the busy block, if any
  438. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
  439. // Number of nonbusy moves currently in the planner
  440. FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
  441. // Remove all blocks from the buffer
  442. FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
  443. // Check if movement queue is full
  444. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  445. // Get count of movement slots free
  446. FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
  447. /**
  448. * Planner::get_next_free_block
  449. *
  450. * - Get the next head indices (passed by reference)
  451. * - Wait for the number of spaces to open up in the planner
  452. * - Return the first head block
  453. */
  454. FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
  455. // Wait until there are enough slots free
  456. while (moves_free() < count) { idle(); }
  457. // Return the first available block
  458. next_buffer_head = next_block_index(block_buffer_head);
  459. return &block_buffer[block_buffer_head];
  460. }
  461. /**
  462. * Planner::_buffer_steps
  463. *
  464. * Add a new linear movement to the buffer (in terms of steps).
  465. *
  466. * target - target position in steps units
  467. * fr_mm_s - (target) speed of the move
  468. * extruder - target extruder
  469. * millimeters - the length of the movement, if known
  470. *
  471. * Returns true if movement was buffered, false otherwise
  472. */
  473. static bool _buffer_steps(const int32_t (&target)[XYZE]
  474. #if HAS_POSITION_FLOAT
  475. , const float (&target_float)[ABCE]
  476. #endif
  477. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  478. , const float (&delta_mm_cart)[XYZE]
  479. #endif
  480. , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  481. );
  482. /**
  483. * Planner::_populate_block
  484. *
  485. * Fills a new linear movement in the block (in terms of steps).
  486. *
  487. * target - target position in steps units
  488. * fr_mm_s - (target) speed of the move
  489. * extruder - target extruder
  490. * millimeters - the length of the movement, if known
  491. *
  492. * Returns true is movement is acceptable, false otherwise
  493. */
  494. static bool _populate_block(block_t * const block, bool split_move,
  495. const int32_t (&target)[XYZE]
  496. #if HAS_POSITION_FLOAT
  497. , const float (&target_float)[XYZE]
  498. #endif
  499. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  500. , const float (&delta_mm_cart)[XYZE]
  501. #endif
  502. , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  503. );
  504. /**
  505. * Planner::buffer_sync_block
  506. * Add a block to the buffer that just updates the position
  507. */
  508. static void buffer_sync_block();
  509. #if IS_KINEMATIC
  510. private:
  511. // Allow do_homing_move to access internal functions, such as buffer_segment.
  512. friend void do_homing_move(const AxisEnum, const float, const float);
  513. #endif
  514. /**
  515. * Planner::buffer_segment
  516. *
  517. * Add a new linear movement to the buffer in axis units.
  518. *
  519. * Leveling and kinematics should be applied ahead of calling this.
  520. *
  521. * a,b,c,e - target positions in mm and/or degrees
  522. * fr_mm_s - (target) speed of the move
  523. * extruder - target extruder
  524. * millimeters - the length of the movement, if known
  525. */
  526. static bool buffer_segment(const float &a, const float &b, const float &c, const float &e
  527. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  528. , const float (&delta_mm_cart)[XYZE]
  529. #endif
  530. , const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  531. );
  532. FORCE_INLINE static bool buffer_segment(const float (&abce)[ABCE]
  533. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  534. , const float (&delta_mm_cart)[XYZE]
  535. #endif
  536. , const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  537. ) {
  538. return buffer_segment(abce[A_AXIS], abce[B_AXIS], abce[C_AXIS], abce[E_AXIS]
  539. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  540. , delta_mm_cart
  541. #endif
  542. , fr_mm_s, extruder, millimeters);
  543. }
  544. public:
  545. /**
  546. * Add a new linear movement to the buffer.
  547. * The target is cartesian, it's translated to delta/scara if
  548. * needed.
  549. *
  550. *
  551. * rx,ry,rz,e - target position in mm or degrees
  552. * fr_mm_s - (target) speed of the move (mm/s)
  553. * extruder - target extruder
  554. * millimeters - the length of the movement, if known
  555. * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
  556. */
  557. static bool buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  558. #if ENABLED(SCARA_FEEDRATE_SCALING)
  559. , const float &inv_duration=0.0
  560. #endif
  561. );
  562. FORCE_INLINE static bool buffer_line(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  563. #if ENABLED(SCARA_FEEDRATE_SCALING)
  564. , const float &inv_duration=0.0
  565. #endif
  566. ) {
  567. return buffer_line(cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters
  568. #if ENABLED(SCARA_FEEDRATE_SCALING)
  569. , inv_duration
  570. #endif
  571. );
  572. }
  573. /**
  574. * Set the planner.position and individual stepper positions.
  575. * Used by G92, G28, G29, and other procedures.
  576. *
  577. * The supplied position is in the cartesian coordinate space and is
  578. * translated in to machine space as needed. Modifiers such as leveling
  579. * and skew are also applied.
  580. *
  581. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  582. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  583. *
  584. * Clears previous speed values.
  585. */
  586. static void set_position_mm(const float &rx, const float &ry, const float &rz, const float &e);
  587. FORCE_INLINE static void set_position_mm(const float (&cart)[XYZE]) { set_position_mm(cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS], cart[E_AXIS]); }
  588. static void set_e_position_mm(const float &e);
  589. /**
  590. * Set the planner.position and individual stepper positions.
  591. *
  592. * The supplied position is in machine space, and no additional
  593. * conversions are applied.
  594. */
  595. static void set_machine_position_mm(const float &a, const float &b, const float &c, const float &e);
  596. FORCE_INLINE static void set_machine_position_mm(const float (&abce)[ABCE]) { set_machine_position_mm(abce[A_AXIS], abce[B_AXIS], abce[C_AXIS], abce[E_AXIS]); }
  597. /**
  598. * Get an axis position according to stepper position(s)
  599. * For CORE machines apply translation from ABC to XYZ.
  600. */
  601. static float get_axis_position_mm(const AxisEnum axis);
  602. // SCARA AB axes are in degrees, not mm
  603. #if IS_SCARA
  604. FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
  605. #endif
  606. // Called to force a quick stop of the machine (for example, when
  607. // a Full Shutdown is required, or when endstops are hit)
  608. static void quick_stop();
  609. // Called when an endstop is triggered. Causes the machine to stop inmediately
  610. static void endstop_triggered(const AxisEnum axis);
  611. // Triggered position of an axis in mm (not core-savvy)
  612. static float triggered_position_mm(const AxisEnum axis);
  613. // Block until all buffered steps are executed / cleaned
  614. static void synchronize();
  615. // Wait for moves to finish and disable all steppers
  616. static void finish_and_disable();
  617. // Periodic tick to handle cleaning timeouts
  618. // Called from the Temperature ISR at ~1kHz
  619. static void tick() {
  620. if (cleaning_buffer_counter) {
  621. --cleaning_buffer_counter;
  622. #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
  623. if (!cleaning_buffer_counter) queue.inject_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  624. #endif
  625. }
  626. }
  627. /**
  628. * Does the buffer have any blocks queued?
  629. */
  630. FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  631. /**
  632. * The current block. nullptr if the buffer is empty.
  633. * This also marks the block as busy.
  634. * WARNING: Called from Stepper ISR context!
  635. */
  636. static block_t* get_current_block() {
  637. // Get the number of moves in the planner queue so far
  638. const uint8_t nr_moves = movesplanned();
  639. // If there are any moves queued ...
  640. if (nr_moves) {
  641. // If there is still delay of delivery of blocks running, decrement it
  642. if (delay_before_delivering) {
  643. --delay_before_delivering;
  644. // If the number of movements queued is less than 3, and there is still time
  645. // to wait, do not deliver anything
  646. if (nr_moves < 3 && delay_before_delivering) return nullptr;
  647. delay_before_delivering = 0;
  648. }
  649. // If we are here, there is no excuse to deliver the block
  650. block_t * const block = &block_buffer[block_buffer_tail];
  651. // No trapezoid calculated? Don't execute yet.
  652. if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr;
  653. #if HAS_SPI_LCD
  654. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  655. #endif
  656. // As this block is busy, advance the nonbusy block pointer
  657. block_buffer_nonbusy = next_block_index(block_buffer_tail);
  658. // Push block_buffer_planned pointer, if encountered.
  659. if (block_buffer_tail == block_buffer_planned)
  660. block_buffer_planned = block_buffer_nonbusy;
  661. // Return the block
  662. return block;
  663. }
  664. // The queue became empty
  665. #if HAS_SPI_LCD
  666. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  667. #endif
  668. return nullptr;
  669. }
  670. /**
  671. * "Discard" the block and "release" the memory.
  672. * Called when the current block is no longer needed.
  673. * NB: There MUST be a current block to call this function!!
  674. */
  675. FORCE_INLINE static void discard_current_block() {
  676. if (has_blocks_queued())
  677. block_buffer_tail = next_block_index(block_buffer_tail);
  678. }
  679. #if HAS_SPI_LCD
  680. static uint16_t block_buffer_runtime() {
  681. #ifdef __AVR__
  682. // Protect the access to the variable. Only required for AVR, as
  683. // any 32bit CPU offers atomic access to 32bit variables
  684. bool was_enabled = STEPPER_ISR_ENABLED();
  685. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  686. #endif
  687. millis_t bbru = block_buffer_runtime_us;
  688. #ifdef __AVR__
  689. // Reenable Stepper ISR
  690. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  691. #endif
  692. // To translate µs to ms a division by 1000 would be required.
  693. // We introduce 2.4% error here by dividing by 1024.
  694. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  695. bbru >>= 10;
  696. // limit to about a minute.
  697. NOMORE(bbru, 0xFFFFul);
  698. return bbru;
  699. }
  700. static void clear_block_buffer_runtime() {
  701. #ifdef __AVR__
  702. // Protect the access to the variable. Only required for AVR, as
  703. // any 32bit CPU offers atomic access to 32bit variables
  704. bool was_enabled = STEPPER_ISR_ENABLED();
  705. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  706. #endif
  707. block_buffer_runtime_us = 0;
  708. #ifdef __AVR__
  709. // Reenable Stepper ISR
  710. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  711. #endif
  712. }
  713. #endif
  714. #if ENABLED(AUTOTEMP)
  715. static float autotemp_min, autotemp_max, autotemp_factor;
  716. static bool autotemp_enabled;
  717. static void getHighESpeed();
  718. static void autotemp_M104_M109();
  719. #endif
  720. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  721. FORCE_INLINE static void recalculate_max_e_jerk() {
  722. #define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
  723. #if ENABLED(DISTINCT_E_FACTORS)
  724. for (uint8_t i = 0; i < EXTRUDERS; i++)
  725. max_e_jerk[i] = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]);
  726. #else
  727. max_e_jerk = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS]);
  728. #endif
  729. }
  730. #endif
  731. private:
  732. /**
  733. * Get the index of the next / previous block in the ring buffer
  734. */
  735. static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
  736. static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
  737. /**
  738. * Calculate the distance (not time) it takes to accelerate
  739. * from initial_rate to target_rate using the given acceleration:
  740. */
  741. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  742. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  743. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  744. }
  745. /**
  746. * Return the point at which you must start braking (at the rate of -'accel') if
  747. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  748. * 'final_rate' after traveling 'distance'.
  749. *
  750. * This is used to compute the intersection point between acceleration and deceleration
  751. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  752. */
  753. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  754. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  755. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  756. }
  757. /**
  758. * Calculate the maximum allowable speed squared at this point, in order
  759. * to reach 'target_velocity_sqr' using 'acceleration' within a given
  760. * 'distance'.
  761. */
  762. static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
  763. return target_velocity_sqr - 2 * accel * distance;
  764. }
  765. #if ENABLED(S_CURVE_ACCELERATION)
  766. /**
  767. * Calculate the speed reached given initial speed, acceleration and distance
  768. */
  769. static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
  770. return SQRT(sq(initial_velocity) + 2 * accel * distance);
  771. }
  772. #endif
  773. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  774. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  775. static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
  776. static void reverse_pass();
  777. static void forward_pass();
  778. static void recalculate_trapezoids();
  779. static void recalculate();
  780. #if ENABLED(JUNCTION_DEVIATION)
  781. FORCE_INLINE static void normalize_junction_vector(float (&vector)[XYZE]) {
  782. float magnitude_sq = 0;
  783. LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
  784. const float inv_magnitude = RSQRT(magnitude_sq);
  785. LOOP_XYZE(idx) vector[idx] *= inv_magnitude;
  786. }
  787. FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[XYZE]) {
  788. float limit_value = max_value;
  789. LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
  790. NOMORE(limit_value, ABS(settings.max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
  791. return limit_value;
  792. }
  793. #endif // JUNCTION_DEVIATION
  794. };
  795. #define PLANNER_XY_FEEDRATE() (_MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]))
  796. extern Planner planner;