My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 33KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V27"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V27 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
  47. * 122 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
  48. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
  49. * 154 M204 P planner.acceleration (float)
  50. * 158 M204 R planner.retract_acceleration (float)
  51. * 162 M204 T planner.travel_acceleration (float)
  52. * 166 M205 S planner.min_feedrate_mm_s (float)
  53. * 170 M205 T planner.min_travel_feedrate_mm_s (float)
  54. * 174 M205 B planner.min_segment_time (ulong)
  55. * 178 M205 X planner.max_jerk[X_AXIS] (float)
  56. * 182 M205 Y planner.max_jerk[Y_AXIS] (float)
  57. * 186 M205 Z planner.max_jerk[Z_AXIS] (float)
  58. * 190 M205 E planner.max_jerk[E_AXIS] (float)
  59. * 194 M206 XYZ home_offset (float x3)
  60. * 206 M218 XYZ hotend_offset (float x3 per additional hotend)
  61. *
  62. * Mesh bed leveling:
  63. * 218 M420 S status (uint8)
  64. * 219 z_offset (float)
  65. * 223 mesh_num_x (uint8 as set in firmware)
  66. * 224 mesh_num_y (uint8 as set in firmware)
  67. * 225 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  68. *
  69. * AUTO BED LEVELING
  70. * 261 M851 zprobe_zoffset (float)
  71. *
  72. * DELTA:
  73. * 265 M666 XYZ endstop_adj (float x3)
  74. * 277 M665 R delta_radius (float)
  75. * 281 M665 L delta_diagonal_rod (float)
  76. * 285 M665 S delta_segments_per_second (float)
  77. * 289 M665 A delta_diagonal_rod_trim_tower_1 (float)
  78. * 293 M665 B delta_diagonal_rod_trim_tower_2 (float)
  79. * 297 M665 C delta_diagonal_rod_trim_tower_3 (float)
  80. *
  81. * Z_DUAL_ENDSTOPS:
  82. * 301 M666 Z z_endstop_adj (float)
  83. *
  84. * ULTIPANEL:
  85. * 305 M145 S0 H lcd_preheat_hotend_temp (int x2)
  86. * 309 M145 S0 B lcd_preheat_bed_temp (int x2)
  87. * 313 M145 S0 F lcd_preheat_fan_speed (int x2)
  88. *
  89. * PIDTEMP:
  90. * 317 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  91. * 333 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  92. * 349 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  93. * 365 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  94. * 381 M301 L lpq_len (int)
  95. *
  96. * PIDTEMPBED:
  97. * 383 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  98. *
  99. * DOGLCD:
  100. * 395 M250 C lcd_contrast (int)
  101. *
  102. * FWRETRACT:
  103. * 397 M209 S autoretract_enabled (bool)
  104. * 398 M207 S retract_length (float)
  105. * 402 M207 W retract_length_swap (float)
  106. * 406 M207 F retract_feedrate_mm_s (float)
  107. * 410 M207 Z retract_zlift (float)
  108. * 414 M208 S retract_recover_length (float)
  109. * 418 M208 W retract_recover_length_swap (float)
  110. * 422 M208 F retract_recover_feedrate_mm_s (float)
  111. *
  112. * Volumetric Extrusion:
  113. * 426 M200 D volumetric_enabled (bool)
  114. * 427 M200 T D filament_size (float x4) (T0..3)
  115. *
  116. * 443 This Slot is Available!
  117. *
  118. */
  119. #include "Marlin.h"
  120. #include "language.h"
  121. #include "endstops.h"
  122. #include "planner.h"
  123. #include "temperature.h"
  124. #include "ultralcd.h"
  125. #include "configuration_store.h"
  126. #if ENABLED(MESH_BED_LEVELING)
  127. #include "mesh_bed_leveling.h"
  128. #endif
  129. uint16_t eeprom_checksum;
  130. const char version[4] = EEPROM_VERSION;
  131. bool eeprom_write_error;
  132. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  133. if (eeprom_write_error) return;
  134. while (size--) {
  135. uint8_t * const p = (uint8_t * const)pos;
  136. const uint8_t v = *value;
  137. // EEPROM has only ~100,000 write cycles,
  138. // so only write bytes that have changed!
  139. if (v != eeprom_read_byte(p)) {
  140. eeprom_write_byte(p, v);
  141. if (eeprom_read_byte(p) != v) {
  142. SERIAL_ECHO_START;
  143. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  144. eeprom_write_error = true;
  145. return;
  146. }
  147. }
  148. eeprom_checksum += v;
  149. pos++;
  150. value++;
  151. };
  152. }
  153. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  154. do {
  155. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  156. *value = c;
  157. eeprom_checksum += c;
  158. pos++;
  159. value++;
  160. } while (--size);
  161. }
  162. /**
  163. * Post-process after Retrieve or Reset
  164. */
  165. void Config_Postprocess() {
  166. // steps per s2 needs to be updated to agree with units per s2
  167. planner.reset_acceleration_rates();
  168. // Make sure delta kinematics are updated before refreshing the
  169. // planner position so the stepper counts will be set correctly.
  170. #if ENABLED(DELTA)
  171. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  172. #endif
  173. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  174. // and init stepper.count[], planner.position[] with current_position
  175. planner.refresh_positioning();
  176. #if ENABLED(PIDTEMP)
  177. thermalManager.updatePID();
  178. #endif
  179. calculate_volumetric_multipliers();
  180. // Software endstops depend on home_offset
  181. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  182. }
  183. #if ENABLED(EEPROM_SETTINGS)
  184. #define DUMMY_PID_VALUE 3000.0f
  185. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  186. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  187. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  188. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  189. /**
  190. * M500 - Store Configuration
  191. */
  192. void Config_StoreSettings() {
  193. float dummy = 0.0f;
  194. char ver[4] = "000";
  195. EEPROM_START();
  196. eeprom_write_error = false;
  197. EEPROM_WRITE(ver); // invalidate data first
  198. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  199. eeprom_checksum = 0; // clear before first "real data"
  200. EEPROM_WRITE(planner.axis_steps_per_mm);
  201. EEPROM_WRITE(planner.max_feedrate_mm_s);
  202. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  203. EEPROM_WRITE(planner.acceleration);
  204. EEPROM_WRITE(planner.retract_acceleration);
  205. EEPROM_WRITE(planner.travel_acceleration);
  206. EEPROM_WRITE(planner.min_feedrate_mm_s);
  207. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  208. EEPROM_WRITE(planner.min_segment_time);
  209. EEPROM_WRITE(planner.max_jerk);
  210. EEPROM_WRITE(home_offset);
  211. #if HOTENDS > 1
  212. // Skip hotend 0 which must be 0
  213. for (uint8_t e = 1; e < HOTENDS; e++)
  214. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  215. #endif
  216. #if ENABLED(MESH_BED_LEVELING)
  217. // Compile time test that sizeof(mbl.z_values) is as expected
  218. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  219. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  220. mesh_num_y = MESH_NUM_Y_POINTS,
  221. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  222. EEPROM_WRITE(dummy_uint8);
  223. EEPROM_WRITE(mbl.z_offset);
  224. EEPROM_WRITE(mesh_num_x);
  225. EEPROM_WRITE(mesh_num_y);
  226. EEPROM_WRITE(mbl.z_values);
  227. #else
  228. // For disabled MBL write a default mesh
  229. uint8_t mesh_num_x = 3,
  230. mesh_num_y = 3,
  231. dummy_uint8 = 0;
  232. dummy = 0.0f;
  233. EEPROM_WRITE(dummy_uint8);
  234. EEPROM_WRITE(dummy);
  235. EEPROM_WRITE(mesh_num_x);
  236. EEPROM_WRITE(mesh_num_y);
  237. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
  238. #endif // MESH_BED_LEVELING
  239. #if !HAS_BED_PROBE
  240. float zprobe_zoffset = 0;
  241. #endif
  242. EEPROM_WRITE(zprobe_zoffset);
  243. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  244. #if ENABLED(DELTA)
  245. EEPROM_WRITE(endstop_adj); // 3 floats
  246. EEPROM_WRITE(delta_radius); // 1 float
  247. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  248. EEPROM_WRITE(delta_segments_per_second); // 1 float
  249. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  250. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  251. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  252. #elif ENABLED(Z_DUAL_ENDSTOPS)
  253. EEPROM_WRITE(z_endstop_adj); // 1 float
  254. dummy = 0.0f;
  255. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  256. #else
  257. dummy = 0.0f;
  258. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  259. #endif
  260. #if DISABLED(ULTIPANEL)
  261. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  262. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  263. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  264. #endif // !ULTIPANEL
  265. EEPROM_WRITE(lcd_preheat_hotend_temp);
  266. EEPROM_WRITE(lcd_preheat_bed_temp);
  267. EEPROM_WRITE(lcd_preheat_fan_speed);
  268. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  269. #if ENABLED(PIDTEMP)
  270. if (e < HOTENDS) {
  271. EEPROM_WRITE(PID_PARAM(Kp, e));
  272. EEPROM_WRITE(PID_PARAM(Ki, e));
  273. EEPROM_WRITE(PID_PARAM(Kd, e));
  274. #if ENABLED(PID_EXTRUSION_SCALING)
  275. EEPROM_WRITE(PID_PARAM(Kc, e));
  276. #else
  277. dummy = 1.0f; // 1.0 = default kc
  278. EEPROM_WRITE(dummy);
  279. #endif
  280. }
  281. else
  282. #endif // !PIDTEMP
  283. {
  284. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  285. EEPROM_WRITE(dummy); // Kp
  286. dummy = 0.0f;
  287. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  288. }
  289. } // Hotends Loop
  290. #if DISABLED(PID_EXTRUSION_SCALING)
  291. int lpq_len = 20;
  292. #endif
  293. EEPROM_WRITE(lpq_len);
  294. #if DISABLED(PIDTEMPBED)
  295. dummy = DUMMY_PID_VALUE;
  296. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  297. #else
  298. EEPROM_WRITE(thermalManager.bedKp);
  299. EEPROM_WRITE(thermalManager.bedKi);
  300. EEPROM_WRITE(thermalManager.bedKd);
  301. #endif
  302. #if !HAS_LCD_CONTRAST
  303. const int lcd_contrast = 32;
  304. #endif
  305. EEPROM_WRITE(lcd_contrast);
  306. #if ENABLED(FWRETRACT)
  307. EEPROM_WRITE(autoretract_enabled);
  308. EEPROM_WRITE(retract_length);
  309. #if EXTRUDERS > 1
  310. EEPROM_WRITE(retract_length_swap);
  311. #else
  312. dummy = 0.0f;
  313. EEPROM_WRITE(dummy);
  314. #endif
  315. EEPROM_WRITE(retract_feedrate_mm_s);
  316. EEPROM_WRITE(retract_zlift);
  317. EEPROM_WRITE(retract_recover_length);
  318. #if EXTRUDERS > 1
  319. EEPROM_WRITE(retract_recover_length_swap);
  320. #else
  321. dummy = 0.0f;
  322. EEPROM_WRITE(dummy);
  323. #endif
  324. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  325. #endif // FWRETRACT
  326. EEPROM_WRITE(volumetric_enabled);
  327. // Save filament sizes
  328. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  329. if (q < COUNT(filament_size)) dummy = filament_size[q];
  330. EEPROM_WRITE(dummy);
  331. }
  332. uint16_t final_checksum = eeprom_checksum,
  333. eeprom_size = eeprom_index;
  334. eeprom_index = EEPROM_OFFSET;
  335. EEPROM_WRITE(version);
  336. EEPROM_WRITE(final_checksum);
  337. // Report storage size
  338. SERIAL_ECHO_START;
  339. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  340. SERIAL_ECHOLNPGM(" bytes)");
  341. }
  342. /**
  343. * M501 - Retrieve Configuration
  344. */
  345. void Config_RetrieveSettings() {
  346. EEPROM_START();
  347. char stored_ver[4];
  348. EEPROM_READ(stored_ver);
  349. uint16_t stored_checksum;
  350. EEPROM_READ(stored_checksum);
  351. // SERIAL_ECHOPAIR("Version: [", ver);
  352. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  353. // SERIAL_CHAR(']');
  354. // SERIAL_EOL;
  355. if (strncmp(version, stored_ver, 3) != 0) {
  356. Config_ResetDefault();
  357. }
  358. else {
  359. float dummy = 0;
  360. eeprom_checksum = 0; // clear before reading first "real data"
  361. // version number match
  362. EEPROM_READ(planner.axis_steps_per_mm);
  363. EEPROM_READ(planner.max_feedrate_mm_s);
  364. EEPROM_READ(planner.max_acceleration_mm_per_s2);
  365. EEPROM_READ(planner.acceleration);
  366. EEPROM_READ(planner.retract_acceleration);
  367. EEPROM_READ(planner.travel_acceleration);
  368. EEPROM_READ(planner.min_feedrate_mm_s);
  369. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  370. EEPROM_READ(planner.min_segment_time);
  371. EEPROM_READ(planner.max_jerk);
  372. EEPROM_READ(home_offset);
  373. #if HOTENDS > 1
  374. // Skip hotend 0 which must be 0
  375. for (uint8_t e = 1; e < HOTENDS; e++)
  376. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  377. #endif
  378. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  379. EEPROM_READ(dummy_uint8);
  380. EEPROM_READ(dummy);
  381. EEPROM_READ(mesh_num_x);
  382. EEPROM_READ(mesh_num_y);
  383. #if ENABLED(MESH_BED_LEVELING)
  384. mbl.status = dummy_uint8;
  385. mbl.z_offset = dummy;
  386. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  387. // EEPROM data fits the current mesh
  388. EEPROM_READ(mbl.z_values);
  389. }
  390. else {
  391. // EEPROM data is stale
  392. mbl.reset();
  393. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  394. }
  395. #else
  396. // MBL is disabled - skip the stored data
  397. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  398. #endif // MESH_BED_LEVELING
  399. #if !HAS_BED_PROBE
  400. float zprobe_zoffset = 0;
  401. #endif
  402. EEPROM_READ(zprobe_zoffset);
  403. #if ENABLED(DELTA)
  404. EEPROM_READ(endstop_adj); // 3 floats
  405. EEPROM_READ(delta_radius); // 1 float
  406. EEPROM_READ(delta_diagonal_rod); // 1 float
  407. EEPROM_READ(delta_segments_per_second); // 1 float
  408. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  409. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  410. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  411. #elif ENABLED(Z_DUAL_ENDSTOPS)
  412. EEPROM_READ(z_endstop_adj);
  413. dummy = 0.0f;
  414. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  415. #else
  416. dummy = 0.0f;
  417. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  418. #endif
  419. #if DISABLED(ULTIPANEL)
  420. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  421. #endif
  422. EEPROM_READ(lcd_preheat_hotend_temp);
  423. EEPROM_READ(lcd_preheat_bed_temp);
  424. EEPROM_READ(lcd_preheat_fan_speed);
  425. #if ENABLED(PIDTEMP)
  426. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  427. EEPROM_READ(dummy); // Kp
  428. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  429. // do not need to scale PID values as the values in EEPROM are already scaled
  430. PID_PARAM(Kp, e) = dummy;
  431. EEPROM_READ(PID_PARAM(Ki, e));
  432. EEPROM_READ(PID_PARAM(Kd, e));
  433. #if ENABLED(PID_EXTRUSION_SCALING)
  434. EEPROM_READ(PID_PARAM(Kc, e));
  435. #else
  436. EEPROM_READ(dummy);
  437. #endif
  438. }
  439. else {
  440. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  441. }
  442. }
  443. #else // !PIDTEMP
  444. // 4 x 4 = 16 slots for PID parameters
  445. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  446. #endif // !PIDTEMP
  447. #if DISABLED(PID_EXTRUSION_SCALING)
  448. int lpq_len;
  449. #endif
  450. EEPROM_READ(lpq_len);
  451. #if ENABLED(PIDTEMPBED)
  452. EEPROM_READ(dummy); // bedKp
  453. if (dummy != DUMMY_PID_VALUE) {
  454. thermalManager.bedKp = dummy;
  455. EEPROM_READ(thermalManager.bedKi);
  456. EEPROM_READ(thermalManager.bedKd);
  457. }
  458. #else
  459. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  460. #endif
  461. #if !HAS_LCD_CONTRAST
  462. int lcd_contrast;
  463. #endif
  464. EEPROM_READ(lcd_contrast);
  465. #if ENABLED(FWRETRACT)
  466. EEPROM_READ(autoretract_enabled);
  467. EEPROM_READ(retract_length);
  468. #if EXTRUDERS > 1
  469. EEPROM_READ(retract_length_swap);
  470. #else
  471. EEPROM_READ(dummy);
  472. #endif
  473. EEPROM_READ(retract_feedrate_mm_s);
  474. EEPROM_READ(retract_zlift);
  475. EEPROM_READ(retract_recover_length);
  476. #if EXTRUDERS > 1
  477. EEPROM_READ(retract_recover_length_swap);
  478. #else
  479. EEPROM_READ(dummy);
  480. #endif
  481. EEPROM_READ(retract_recover_feedrate_mm_s);
  482. #endif // FWRETRACT
  483. EEPROM_READ(volumetric_enabled);
  484. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  485. EEPROM_READ(dummy);
  486. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  487. }
  488. if (eeprom_checksum == stored_checksum) {
  489. Config_Postprocess();
  490. SERIAL_ECHO_START;
  491. SERIAL_ECHO(version);
  492. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  493. SERIAL_ECHOLNPGM(" bytes)");
  494. }
  495. else {
  496. SERIAL_ERROR_START;
  497. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  498. Config_ResetDefault();
  499. }
  500. }
  501. #if ENABLED(EEPROM_CHITCHAT)
  502. Config_PrintSettings();
  503. #endif
  504. }
  505. #else // !EEPROM_SETTINGS
  506. void Config_StoreSettings() {
  507. SERIAL_ERROR_START;
  508. SERIAL_ERRORLNPGM("EEPROM disabled");
  509. }
  510. #endif // !EEPROM_SETTINGS
  511. /**
  512. * M502 - Reset Configuration
  513. */
  514. void Config_ResetDefault() {
  515. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  516. const long tmp3[] = DEFAULT_MAX_ACCELERATION;
  517. LOOP_XYZE_N(i) {
  518. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  519. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  520. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  521. }
  522. planner.acceleration = DEFAULT_ACCELERATION;
  523. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  524. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  525. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  526. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  527. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  528. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  529. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  530. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  531. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  532. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  533. #if HOTENDS > 1
  534. constexpr float tmp4[XYZ][HOTENDS] = {
  535. HOTEND_OFFSET_X,
  536. HOTEND_OFFSET_Y
  537. #ifdef HOTEND_OFFSET_Z
  538. , HOTEND_OFFSET_Z
  539. #else
  540. , { 0 }
  541. #endif
  542. };
  543. static_assert(
  544. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  545. "Offsets for the first hotend must be 0.0."
  546. );
  547. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  548. #endif
  549. #if ENABLED(MESH_BED_LEVELING)
  550. mbl.reset();
  551. #endif
  552. #if HAS_BED_PROBE
  553. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  554. #endif
  555. #if ENABLED(DELTA)
  556. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  557. endstop_adj[A_AXIS] = adj[A_AXIS];
  558. endstop_adj[B_AXIS] = adj[B_AXIS];
  559. endstop_adj[C_AXIS] = adj[C_AXIS];
  560. delta_radius = DELTA_RADIUS;
  561. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  562. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  563. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  564. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  565. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  566. #elif ENABLED(Z_DUAL_ENDSTOPS)
  567. z_endstop_adj = 0;
  568. #endif
  569. #if ENABLED(ULTIPANEL)
  570. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  571. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  572. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  573. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  574. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  575. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  576. #endif
  577. #if HAS_LCD_CONTRAST
  578. lcd_contrast = DEFAULT_LCD_CONTRAST;
  579. #endif
  580. #if ENABLED(PIDTEMP)
  581. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  582. HOTEND_LOOP()
  583. #else
  584. int e = 0; UNUSED(e); // only need to write once
  585. #endif
  586. {
  587. PID_PARAM(Kp, e) = DEFAULT_Kp;
  588. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  589. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  590. #if ENABLED(PID_EXTRUSION_SCALING)
  591. PID_PARAM(Kc, e) = DEFAULT_Kc;
  592. #endif
  593. }
  594. #if ENABLED(PID_EXTRUSION_SCALING)
  595. lpq_len = 20; // default last-position-queue size
  596. #endif
  597. #endif // PIDTEMP
  598. #if ENABLED(PIDTEMPBED)
  599. thermalManager.bedKp = DEFAULT_bedKp;
  600. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  601. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  602. #endif
  603. #if ENABLED(FWRETRACT)
  604. autoretract_enabled = false;
  605. retract_length = RETRACT_LENGTH;
  606. #if EXTRUDERS > 1
  607. retract_length_swap = RETRACT_LENGTH_SWAP;
  608. #endif
  609. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  610. retract_zlift = RETRACT_ZLIFT;
  611. retract_recover_length = RETRACT_RECOVER_LENGTH;
  612. #if EXTRUDERS > 1
  613. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  614. #endif
  615. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  616. #endif
  617. volumetric_enabled = false;
  618. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  619. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  620. endstops.enable_globally(
  621. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  622. (true)
  623. #else
  624. (false)
  625. #endif
  626. );
  627. Config_Postprocess();
  628. SERIAL_ECHO_START;
  629. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  630. }
  631. #if DISABLED(DISABLE_M503)
  632. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  633. /**
  634. * M503 - Print Configuration
  635. */
  636. void Config_PrintSettings(bool forReplay) {
  637. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  638. CONFIG_ECHO_START;
  639. if (!forReplay) {
  640. SERIAL_ECHOLNPGM("Steps per unit:");
  641. CONFIG_ECHO_START;
  642. }
  643. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  644. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  645. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  646. #if E_STEPPERS == 1
  647. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  648. #endif
  649. SERIAL_EOL;
  650. #if ENABLED(DISTINCT_E_FACTORS)
  651. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  652. SERIAL_ECHOPAIR(" M92 T", (int)i);
  653. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  654. }
  655. #endif
  656. CONFIG_ECHO_START;
  657. if (!forReplay) {
  658. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  659. CONFIG_ECHO_START;
  660. }
  661. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  662. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  663. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  664. #if E_STEPPERS == 1
  665. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  666. #endif
  667. SERIAL_EOL;
  668. #if ENABLED(DISTINCT_E_FACTORS)
  669. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  670. SERIAL_ECHOPAIR(" M203 T", (int)i);
  671. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  672. }
  673. #endif
  674. CONFIG_ECHO_START;
  675. if (!forReplay) {
  676. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  677. CONFIG_ECHO_START;
  678. }
  679. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  680. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  681. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  682. #if E_STEPPERS == 1
  683. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  684. #endif
  685. SERIAL_EOL;
  686. #if ENABLED(DISTINCT_E_FACTORS)
  687. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  688. SERIAL_ECHOPAIR(" M201 T", (int)i);
  689. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  690. }
  691. #endif
  692. CONFIG_ECHO_START;
  693. if (!forReplay) {
  694. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  695. CONFIG_ECHO_START;
  696. }
  697. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  698. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  699. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  700. SERIAL_EOL;
  701. CONFIG_ECHO_START;
  702. if (!forReplay) {
  703. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  704. CONFIG_ECHO_START;
  705. }
  706. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  707. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  708. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  709. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  710. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  711. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  712. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  713. SERIAL_EOL;
  714. CONFIG_ECHO_START;
  715. if (!forReplay) {
  716. SERIAL_ECHOLNPGM("Home offset (mm)");
  717. CONFIG_ECHO_START;
  718. }
  719. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  720. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  721. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  722. SERIAL_EOL;
  723. #if HOTENDS > 1
  724. CONFIG_ECHO_START;
  725. if (!forReplay) {
  726. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  727. CONFIG_ECHO_START;
  728. }
  729. for (uint8_t e = 1; e < HOTENDS; e++) {
  730. SERIAL_ECHOPAIR(" M218 T", (int)e);
  731. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  732. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  733. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  734. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  735. #endif
  736. SERIAL_EOL;
  737. }
  738. #endif
  739. #if ENABLED(MESH_BED_LEVELING)
  740. if (!forReplay) {
  741. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  742. CONFIG_ECHO_START;
  743. }
  744. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  745. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  746. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  747. SERIAL_EOL;
  748. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  749. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  750. CONFIG_ECHO_START;
  751. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  752. SERIAL_ECHOPAIR(" Y", (int)py);
  753. SERIAL_ECHOPGM(" Z");
  754. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  755. SERIAL_EOL;
  756. }
  757. }
  758. #endif
  759. #if ENABLED(DELTA)
  760. CONFIG_ECHO_START;
  761. if (!forReplay) {
  762. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  763. CONFIG_ECHO_START;
  764. }
  765. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  766. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  767. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  768. SERIAL_EOL;
  769. CONFIG_ECHO_START;
  770. if (!forReplay) {
  771. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  772. CONFIG_ECHO_START;
  773. }
  774. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  775. SERIAL_ECHOPAIR(" R", delta_radius);
  776. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  777. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  778. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  779. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  780. SERIAL_EOL;
  781. #elif ENABLED(Z_DUAL_ENDSTOPS)
  782. CONFIG_ECHO_START;
  783. if (!forReplay) {
  784. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  785. CONFIG_ECHO_START;
  786. }
  787. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  788. SERIAL_EOL;
  789. #endif // DELTA
  790. #if ENABLED(ULTIPANEL)
  791. CONFIG_ECHO_START;
  792. if (!forReplay) {
  793. SERIAL_ECHOLNPGM("Material heatup parameters:");
  794. CONFIG_ECHO_START;
  795. }
  796. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  797. SERIAL_ECHOPAIR(" M145 S", (int)i);
  798. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  799. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  800. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  801. SERIAL_EOL;
  802. }
  803. #endif // ULTIPANEL
  804. #if HAS_PID_HEATING
  805. CONFIG_ECHO_START;
  806. if (!forReplay) {
  807. SERIAL_ECHOLNPGM("PID settings:");
  808. }
  809. #if ENABLED(PIDTEMP)
  810. #if HOTENDS > 1
  811. if (forReplay) {
  812. HOTEND_LOOP() {
  813. CONFIG_ECHO_START;
  814. SERIAL_ECHOPAIR(" M301 E", e);
  815. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  816. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  817. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  818. #if ENABLED(PID_EXTRUSION_SCALING)
  819. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  820. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  821. #endif
  822. SERIAL_EOL;
  823. }
  824. }
  825. else
  826. #endif // HOTENDS > 1
  827. // !forReplay || HOTENDS == 1
  828. {
  829. CONFIG_ECHO_START;
  830. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  831. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  832. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  833. #if ENABLED(PID_EXTRUSION_SCALING)
  834. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  835. SERIAL_ECHOPAIR(" L", lpq_len);
  836. #endif
  837. SERIAL_EOL;
  838. }
  839. #endif // PIDTEMP
  840. #if ENABLED(PIDTEMPBED)
  841. CONFIG_ECHO_START;
  842. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  843. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  844. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  845. SERIAL_EOL;
  846. #endif
  847. #endif // PIDTEMP || PIDTEMPBED
  848. #if HAS_LCD_CONTRAST
  849. CONFIG_ECHO_START;
  850. if (!forReplay) {
  851. SERIAL_ECHOLNPGM("LCD Contrast:");
  852. CONFIG_ECHO_START;
  853. }
  854. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  855. SERIAL_EOL;
  856. #endif
  857. #if ENABLED(FWRETRACT)
  858. CONFIG_ECHO_START;
  859. if (!forReplay) {
  860. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  861. CONFIG_ECHO_START;
  862. }
  863. SERIAL_ECHOPAIR(" M207 S", retract_length);
  864. #if EXTRUDERS > 1
  865. SERIAL_ECHOPAIR(" W", retract_length_swap);
  866. #endif
  867. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  868. SERIAL_ECHOPAIR(" Z", retract_zlift);
  869. SERIAL_EOL;
  870. CONFIG_ECHO_START;
  871. if (!forReplay) {
  872. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  873. CONFIG_ECHO_START;
  874. }
  875. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  876. #if EXTRUDERS > 1
  877. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  878. #endif
  879. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  880. SERIAL_EOL;
  881. CONFIG_ECHO_START;
  882. if (!forReplay) {
  883. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  884. CONFIG_ECHO_START;
  885. }
  886. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  887. SERIAL_EOL;
  888. #endif // FWRETRACT
  889. /**
  890. * Volumetric extrusion M200
  891. */
  892. if (!forReplay) {
  893. CONFIG_ECHO_START;
  894. SERIAL_ECHOPGM("Filament settings:");
  895. if (volumetric_enabled)
  896. SERIAL_EOL;
  897. else
  898. SERIAL_ECHOLNPGM(" Disabled");
  899. }
  900. CONFIG_ECHO_START;
  901. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  902. SERIAL_EOL;
  903. #if EXTRUDERS > 1
  904. CONFIG_ECHO_START;
  905. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  906. SERIAL_EOL;
  907. #if EXTRUDERS > 2
  908. CONFIG_ECHO_START;
  909. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  910. SERIAL_EOL;
  911. #if EXTRUDERS > 3
  912. CONFIG_ECHO_START;
  913. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  914. SERIAL_EOL;
  915. #endif
  916. #endif
  917. #endif
  918. if (!volumetric_enabled) {
  919. CONFIG_ECHO_START;
  920. SERIAL_ECHOLNPGM(" M200 D0");
  921. }
  922. /**
  923. * Auto Bed Leveling
  924. */
  925. #if HAS_BED_PROBE
  926. if (!forReplay) {
  927. CONFIG_ECHO_START;
  928. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  929. }
  930. CONFIG_ECHO_START;
  931. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  932. SERIAL_EOL;
  933. #endif
  934. }
  935. #endif // !DISABLE_M503