My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 188KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M112 - Emergency stop
  126. * M114 - Output current position to serial port
  127. * M115 - Capabilities string
  128. * M117 - display message
  129. * M119 - Output Endstop status to serial port
  130. * M120 - Enable endstop detection
  131. * M121 - Disable endstop detection
  132. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M140 - Set bed target temp
  137. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  141. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  145. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. * M206 - Set additional homing offset
  147. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. * M220 - Set speed factor override percentage: S<factor in percent>
  152. * M221 - Set extrude factor override percentage: S<factor in percent>
  153. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  154. * M240 - Trigger a camera to take a photograph
  155. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  157. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. * M301 - Set PID parameters P I and D
  159. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. * M304 - Set bed PID parameters P I and D
  162. * M380 - Activate solenoid on active extruder
  163. * M381 - Disable all solenoids
  164. * M400 - Finish all moves
  165. * M401 - Lower z-probe if present
  166. * M402 - Raise z-probe if present
  167. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. * M406 - Turn off Filament Sensor extrusion control
  170. * M407 - Display measured filament diameter
  171. * M410 - Quickstop. Abort all the planned moves
  172. * M500 - Store parameters in EEPROM
  173. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  174. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  175. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  176. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  179. * M666 - Set delta endstop adjustment
  180. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  181. * M907 - Set digital trimpot motor current using axis codes.
  182. * M908 - Control digital trimpot directly.
  183. * M350 - Set microstepping mode.
  184. * M351 - Toggle MS1 MS2 pins directly.
  185. *
  186. * ************ SCARA Specific - This can change to suit future G-code regulations
  187. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  188. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  189. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  190. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  191. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  192. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  193. * ************* SCARA End ***************
  194. *
  195. * M928 - Start SD logging (M928 filename.g) - ended by M29
  196. * M999 - Restart after being stopped by error
  197. */
  198. #ifdef SDSUPPORT
  199. CardReader card;
  200. #endif
  201. bool Running = true;
  202. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  203. float current_position[NUM_AXIS] = { 0.0 };
  204. static float destination[NUM_AXIS] = { 0.0 };
  205. bool axis_known_position[3] = { false };
  206. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  207. static int cmd_queue_index_r = 0;
  208. static int cmd_queue_index_w = 0;
  209. static int commands_in_queue = 0;
  210. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  211. float homing_feedrate[] = HOMING_FEEDRATE;
  212. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  213. int feedrate_multiplier = 100; //100->1 200->2
  214. int saved_feedrate_multiplier;
  215. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  216. bool volumetric_enabled = false;
  217. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  218. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  219. float home_offset[3] = { 0 };
  220. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  221. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. bool cancel_heatup = false;
  225. const char errormagic[] PROGMEM = "Error:";
  226. const char echomagic[] PROGMEM = "echo:";
  227. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  228. static float offset[3] = { 0 };
  229. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  230. static char serial_char;
  231. static int serial_count = 0;
  232. static boolean comment_mode = false;
  233. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  234. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  235. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  236. // Inactivity shutdown
  237. millis_t previous_cmd_ms = 0;
  238. static millis_t max_inactive_time = 0;
  239. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  240. millis_t print_job_start_ms = 0; ///< Print job start time
  241. millis_t print_job_stop_ms = 0; ///< Print job stop time
  242. static uint8_t target_extruder;
  243. bool no_wait_for_cooling = true;
  244. bool target_direction;
  245. #ifdef ENABLE_AUTO_BED_LEVELING
  246. int xy_travel_speed = XY_TRAVEL_SPEED;
  247. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  248. #endif
  249. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  250. float z_endstop_adj = 0;
  251. #endif
  252. // Extruder offsets
  253. #if EXTRUDERS > 1
  254. #ifndef EXTRUDER_OFFSET_X
  255. #define EXTRUDER_OFFSET_X { 0 }
  256. #endif
  257. #ifndef EXTRUDER_OFFSET_Y
  258. #define EXTRUDER_OFFSET_Y { 0 }
  259. #endif
  260. float extruder_offset[][EXTRUDERS] = {
  261. EXTRUDER_OFFSET_X,
  262. EXTRUDER_OFFSET_Y
  263. #ifdef DUAL_X_CARRIAGE
  264. , { 0 } // supports offsets in XYZ plane
  265. #endif
  266. };
  267. #endif
  268. #ifdef SERVO_ENDSTOPS
  269. int servo_endstops[] = SERVO_ENDSTOPS;
  270. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  271. #endif
  272. #ifdef BARICUDA
  273. int ValvePressure = 0;
  274. int EtoPPressure = 0;
  275. #endif
  276. #ifdef FWRETRACT
  277. bool autoretract_enabled = false;
  278. bool retracted[EXTRUDERS] = { false };
  279. bool retracted_swap[EXTRUDERS] = { false };
  280. float retract_length = RETRACT_LENGTH;
  281. float retract_length_swap = RETRACT_LENGTH_SWAP;
  282. float retract_feedrate = RETRACT_FEEDRATE;
  283. float retract_zlift = RETRACT_ZLIFT;
  284. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  285. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  286. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  287. #endif // FWRETRACT
  288. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  289. bool powersupply =
  290. #ifdef PS_DEFAULT_OFF
  291. false
  292. #else
  293. true
  294. #endif
  295. ;
  296. #endif
  297. #ifdef DELTA
  298. float delta[3] = { 0 };
  299. #define SIN_60 0.8660254037844386
  300. #define COS_60 0.5
  301. float endstop_adj[3] = { 0 };
  302. // these are the default values, can be overriden with M665
  303. float delta_radius = DELTA_RADIUS;
  304. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  305. float delta_tower1_y = -COS_60 * delta_radius;
  306. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  307. float delta_tower2_y = -COS_60 * delta_radius;
  308. float delta_tower3_x = 0; // back middle tower
  309. float delta_tower3_y = delta_radius;
  310. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  311. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  312. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  313. #ifdef ENABLE_AUTO_BED_LEVELING
  314. int delta_grid_spacing[2] = { 0, 0 };
  315. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  316. #endif
  317. #else
  318. static bool home_all_axis = true;
  319. #endif
  320. #ifdef SCARA
  321. static float delta[3] = { 0 };
  322. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  323. #endif
  324. #ifdef FILAMENT_SENSOR
  325. //Variables for Filament Sensor input
  326. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  327. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  328. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  329. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  330. int delay_index1 = 0; //index into ring buffer
  331. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  332. float delay_dist = 0; //delay distance counter
  333. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  334. #endif
  335. #ifdef FILAMENT_RUNOUT_SENSOR
  336. static bool filrunoutEnqueued = false;
  337. #endif
  338. #ifdef SDSUPPORT
  339. static bool fromsd[BUFSIZE];
  340. #endif
  341. #if NUM_SERVOS > 0
  342. Servo servo[NUM_SERVOS];
  343. #endif
  344. #ifdef CHDK
  345. unsigned long chdkHigh = 0;
  346. boolean chdkActive = false;
  347. #endif
  348. //===========================================================================
  349. //================================ Functions ================================
  350. //===========================================================================
  351. void get_arc_coordinates();
  352. bool setTargetedHotend(int code);
  353. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  354. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  355. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  356. #ifdef PREVENT_DANGEROUS_EXTRUDE
  357. float extrude_min_temp = EXTRUDE_MINTEMP;
  358. #endif
  359. #ifdef SDSUPPORT
  360. #include "SdFatUtil.h"
  361. int freeMemory() { return SdFatUtil::FreeRam(); }
  362. #else
  363. extern "C" {
  364. extern unsigned int __bss_end;
  365. extern unsigned int __heap_start;
  366. extern void *__brkval;
  367. int freeMemory() {
  368. int free_memory;
  369. if ((int)__brkval == 0)
  370. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  371. else
  372. free_memory = ((int)&free_memory) - ((int)__brkval);
  373. return free_memory;
  374. }
  375. }
  376. #endif //!SDSUPPORT
  377. /**
  378. * Inject the next command from the command queue, when possible
  379. * Return false only if no command was pending
  380. */
  381. static bool drain_queued_commands_P() {
  382. if (!queued_commands_P) return false;
  383. // Get the next 30 chars from the sequence of gcodes to run
  384. char cmd[30];
  385. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  386. cmd[sizeof(cmd) - 1] = '\0';
  387. // Look for the end of line, or the end of sequence
  388. size_t i = 0;
  389. char c;
  390. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  391. cmd[i] = '\0';
  392. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  393. if (c)
  394. queued_commands_P += i + 1; // move to next command
  395. else
  396. queued_commands_P = NULL; // will have no more commands in the sequence
  397. }
  398. return true;
  399. }
  400. /**
  401. * Record one or many commands to run from program memory.
  402. * Aborts the current queue, if any.
  403. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  404. */
  405. void enqueuecommands_P(const char* pgcode) {
  406. queued_commands_P = pgcode;
  407. drain_queued_commands_P(); // first command executed asap (when possible)
  408. }
  409. /**
  410. * Copy a command directly into the main command buffer, from RAM.
  411. *
  412. * This is done in a non-safe way and needs a rework someday.
  413. * Returns false if it doesn't add any command
  414. */
  415. bool enqueuecommand(const char *cmd) {
  416. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  417. // This is dangerous if a mixing of serial and this happens
  418. char *command = command_queue[cmd_queue_index_w];
  419. strcpy(command, cmd);
  420. SERIAL_ECHO_START;
  421. SERIAL_ECHOPGM(MSG_Enqueueing);
  422. SERIAL_ECHO(command);
  423. SERIAL_ECHOLNPGM("\"");
  424. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  425. commands_in_queue++;
  426. return true;
  427. }
  428. void setup_killpin() {
  429. #if HAS_KILL
  430. SET_INPUT(KILL_PIN);
  431. WRITE(KILL_PIN, HIGH);
  432. #endif
  433. }
  434. void setup_filrunoutpin() {
  435. #if HAS_FILRUNOUT
  436. pinMode(FILRUNOUT_PIN, INPUT);
  437. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  438. WRITE(FILLRUNOUT_PIN, HIGH);
  439. #endif
  440. #endif
  441. }
  442. // Set home pin
  443. void setup_homepin(void) {
  444. #if HAS_HOME
  445. SET_INPUT(HOME_PIN);
  446. WRITE(HOME_PIN, HIGH);
  447. #endif
  448. }
  449. void setup_photpin() {
  450. #if HAS_PHOTOGRAPH
  451. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  452. #endif
  453. }
  454. void setup_powerhold() {
  455. #if HAS_SUICIDE
  456. OUT_WRITE(SUICIDE_PIN, HIGH);
  457. #endif
  458. #if HAS_POWER_SWITCH
  459. #ifdef PS_DEFAULT_OFF
  460. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  461. #else
  462. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  463. #endif
  464. #endif
  465. }
  466. void suicide() {
  467. #if HAS_SUICIDE
  468. OUT_WRITE(SUICIDE_PIN, LOW);
  469. #endif
  470. }
  471. void servo_init() {
  472. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  473. servo[0].attach(SERVO0_PIN);
  474. #endif
  475. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  476. servo[1].attach(SERVO1_PIN);
  477. #endif
  478. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  479. servo[2].attach(SERVO2_PIN);
  480. #endif
  481. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  482. servo[3].attach(SERVO3_PIN);
  483. #endif
  484. // Set position of Servo Endstops that are defined
  485. #ifdef SERVO_ENDSTOPS
  486. for (int i = 0; i < 3; i++)
  487. if (servo_endstops[i] >= 0)
  488. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  489. #endif
  490. #if SERVO_LEVELING
  491. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  492. servo[servo_endstops[Z_AXIS]].detach();
  493. #endif
  494. }
  495. /**
  496. * Marlin entry-point: Set up before the program loop
  497. * - Set up the kill pin, filament runout, power hold
  498. * - Start the serial port
  499. * - Print startup messages and diagnostics
  500. * - Get EEPROM or default settings
  501. * - Initialize managers for:
  502. * • temperature
  503. * • planner
  504. * • watchdog
  505. * • stepper
  506. * • photo pin
  507. * • servos
  508. * • LCD controller
  509. * • Digipot I2C
  510. * • Z probe sled
  511. * • status LEDs
  512. */
  513. void setup() {
  514. setup_killpin();
  515. setup_filrunoutpin();
  516. setup_powerhold();
  517. MYSERIAL.begin(BAUDRATE);
  518. SERIAL_PROTOCOLLNPGM("start");
  519. SERIAL_ECHO_START;
  520. // Check startup - does nothing if bootloader sets MCUSR to 0
  521. byte mcu = MCUSR;
  522. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  523. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  524. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  525. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  526. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  527. MCUSR = 0;
  528. SERIAL_ECHOPGM(MSG_MARLIN);
  529. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  530. #ifdef STRING_VERSION_CONFIG_H
  531. #ifdef STRING_CONFIG_H_AUTHOR
  532. SERIAL_ECHO_START;
  533. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  534. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  535. SERIAL_ECHOPGM(MSG_AUTHOR);
  536. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  537. SERIAL_ECHOPGM("Compiled: ");
  538. SERIAL_ECHOLNPGM(__DATE__);
  539. #endif // STRING_CONFIG_H_AUTHOR
  540. #endif // STRING_VERSION_CONFIG_H
  541. SERIAL_ECHO_START;
  542. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  543. SERIAL_ECHO(freeMemory());
  544. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  545. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  546. #ifdef SDSUPPORT
  547. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  548. #endif
  549. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  550. Config_RetrieveSettings();
  551. tp_init(); // Initialize temperature loop
  552. plan_init(); // Initialize planner;
  553. watchdog_init();
  554. st_init(); // Initialize stepper, this enables interrupts!
  555. setup_photpin();
  556. servo_init();
  557. lcd_init();
  558. _delay_ms(1000); // wait 1sec to display the splash screen
  559. #if HAS_CONTROLLERFAN
  560. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  561. #endif
  562. #ifdef DIGIPOT_I2C
  563. digipot_i2c_init();
  564. #endif
  565. #ifdef Z_PROBE_SLED
  566. pinMode(SERVO0_PIN, OUTPUT);
  567. digitalWrite(SERVO0_PIN, LOW); // turn it off
  568. #endif // Z_PROBE_SLED
  569. setup_homepin();
  570. #ifdef STAT_LED_RED
  571. pinMode(STAT_LED_RED, OUTPUT);
  572. digitalWrite(STAT_LED_RED, LOW); // turn it off
  573. #endif
  574. #ifdef STAT_LED_BLUE
  575. pinMode(STAT_LED_BLUE, OUTPUT);
  576. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  577. #endif
  578. }
  579. /**
  580. * The main Marlin program loop
  581. *
  582. * - Save or log commands to SD
  583. * - Process available commands (if not saving)
  584. * - Call heater manager
  585. * - Call inactivity manager
  586. * - Call endstop manager
  587. * - Call LCD update
  588. */
  589. void loop() {
  590. if (commands_in_queue < BUFSIZE - 1) get_command();
  591. #ifdef SDSUPPORT
  592. card.checkautostart(false);
  593. #endif
  594. if (commands_in_queue) {
  595. #ifdef SDSUPPORT
  596. if (card.saving) {
  597. char *command = command_queue[cmd_queue_index_r];
  598. if (strstr_P(command, PSTR("M29"))) {
  599. // M29 closes the file
  600. card.closefile();
  601. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  602. }
  603. else {
  604. // Write the string from the read buffer to SD
  605. card.write_command(command);
  606. if (card.logging)
  607. process_commands(); // The card is saving because it's logging
  608. else
  609. SERIAL_PROTOCOLLNPGM(MSG_OK);
  610. }
  611. }
  612. else
  613. process_commands();
  614. #else
  615. process_commands();
  616. #endif // SDSUPPORT
  617. commands_in_queue--;
  618. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  619. }
  620. // Check heater every n milliseconds
  621. manage_heater();
  622. manage_inactivity();
  623. checkHitEndstops();
  624. lcd_update();
  625. }
  626. /**
  627. * Add to the circular command queue the next command from:
  628. * - The command-injection queue (queued_commands_P)
  629. * - The active serial input (usually USB)
  630. * - The SD card file being actively printed
  631. */
  632. void get_command() {
  633. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  634. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  635. serial_char = MYSERIAL.read();
  636. if (serial_char == '\n' || serial_char == '\r' ||
  637. serial_count >= (MAX_CMD_SIZE - 1)
  638. ) {
  639. // end of line == end of comment
  640. comment_mode = false;
  641. if (!serial_count) return; // shortcut for empty lines
  642. char *command = command_queue[cmd_queue_index_w];
  643. command[serial_count] = 0; // terminate string
  644. #ifdef SDSUPPORT
  645. fromsd[cmd_queue_index_w] = false;
  646. #endif
  647. if (strchr(command, 'N') != NULL) {
  648. strchr_pointer = strchr(command, 'N');
  649. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  650. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  651. SERIAL_ERROR_START;
  652. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  653. SERIAL_ERRORLN(gcode_LastN);
  654. //Serial.println(gcode_N);
  655. FlushSerialRequestResend();
  656. serial_count = 0;
  657. return;
  658. }
  659. if (strchr(command, '*') != NULL) {
  660. byte checksum = 0;
  661. byte count = 0;
  662. while (command[count] != '*') checksum ^= command[count++];
  663. strchr_pointer = strchr(command, '*');
  664. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  665. SERIAL_ERROR_START;
  666. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  667. SERIAL_ERRORLN(gcode_LastN);
  668. FlushSerialRequestResend();
  669. serial_count = 0;
  670. return;
  671. }
  672. //if no errors, continue parsing
  673. }
  674. else {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. gcode_LastN = gcode_N;
  683. //if no errors, continue parsing
  684. }
  685. else { // if we don't receive 'N' but still see '*'
  686. if ((strchr(command, '*') != NULL)) {
  687. SERIAL_ERROR_START;
  688. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  689. SERIAL_ERRORLN(gcode_LastN);
  690. serial_count = 0;
  691. return;
  692. }
  693. }
  694. if (strchr(command, 'G') != NULL) {
  695. strchr_pointer = strchr(command, 'G');
  696. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  697. case 0:
  698. case 1:
  699. case 2:
  700. case 3:
  701. if (IsStopped()) {
  702. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  703. LCD_MESSAGEPGM(MSG_STOPPED);
  704. }
  705. break;
  706. default:
  707. break;
  708. }
  709. }
  710. // If command was e-stop process now
  711. if (strcmp(command, "M112") == 0) kill();
  712. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  713. commands_in_queue += 1;
  714. serial_count = 0; //clear buffer
  715. }
  716. else if (serial_char == '\\') { // Handle escapes
  717. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  718. // if we have one more character, copy it over
  719. serial_char = MYSERIAL.read();
  720. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  721. }
  722. // otherwise do nothing
  723. }
  724. else { // its not a newline, carriage return or escape char
  725. if (serial_char == ';') comment_mode = true;
  726. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  727. }
  728. }
  729. #ifdef SDSUPPORT
  730. if (!card.sdprinting || serial_count) return;
  731. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  732. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  733. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  734. static bool stop_buffering = false;
  735. if (commands_in_queue == 0) stop_buffering = false;
  736. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  737. int16_t n = card.get();
  738. serial_char = (char)n;
  739. if (serial_char == '\n' || serial_char == '\r' ||
  740. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  741. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  742. ) {
  743. if (card.eof()) {
  744. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  745. print_job_stop_ms = millis();
  746. char time[30];
  747. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  748. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  749. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOLN(time);
  752. lcd_setstatus(time, true);
  753. card.printingHasFinished();
  754. card.checkautostart(true);
  755. }
  756. if (serial_char == '#') stop_buffering = true;
  757. if (!serial_count) {
  758. comment_mode = false; //for new command
  759. return; //if empty line
  760. }
  761. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  762. // if (!comment_mode) {
  763. fromsd[cmd_queue_index_w] = true;
  764. commands_in_queue += 1;
  765. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  766. // }
  767. comment_mode = false; //for new command
  768. serial_count = 0; //clear buffer
  769. }
  770. else {
  771. if (serial_char == ';') comment_mode = true;
  772. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  773. }
  774. }
  775. #endif // SDSUPPORT
  776. }
  777. bool code_has_value() {
  778. int i = 1;
  779. char c = strchr_pointer[i];
  780. if (c == '-' || c == '+') c = strchr_pointer[++i];
  781. if (c == '.') c = strchr_pointer[++i];
  782. return (c >= '0' && c <= '9');
  783. }
  784. float code_value() {
  785. float ret;
  786. char *e = strchr(strchr_pointer, 'E');
  787. if (e) {
  788. *e = 0;
  789. ret = strtod(strchr_pointer+1, NULL);
  790. *e = 'E';
  791. }
  792. else
  793. ret = strtod(strchr_pointer+1, NULL);
  794. return ret;
  795. }
  796. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  797. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  798. bool code_seen(char code) {
  799. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  800. return (strchr_pointer != NULL); //Return True if a character was found
  801. }
  802. #define DEFINE_PGM_READ_ANY(type, reader) \
  803. static inline type pgm_read_any(const type *p) \
  804. { return pgm_read_##reader##_near(p); }
  805. DEFINE_PGM_READ_ANY(float, float);
  806. DEFINE_PGM_READ_ANY(signed char, byte);
  807. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  808. static const PROGMEM type array##_P[3] = \
  809. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  810. static inline type array(int axis) \
  811. { return pgm_read_any(&array##_P[axis]); }
  812. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  813. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  814. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  815. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  816. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  817. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  818. #ifdef DUAL_X_CARRIAGE
  819. #define DXC_FULL_CONTROL_MODE 0
  820. #define DXC_AUTO_PARK_MODE 1
  821. #define DXC_DUPLICATION_MODE 2
  822. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  823. static float x_home_pos(int extruder) {
  824. if (extruder == 0)
  825. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  826. else
  827. // In dual carriage mode the extruder offset provides an override of the
  828. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  829. // This allow soft recalibration of the second extruder offset position without firmware reflash
  830. // (through the M218 command).
  831. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  832. }
  833. static int x_home_dir(int extruder) {
  834. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  835. }
  836. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  837. static bool active_extruder_parked = false; // used in mode 1 & 2
  838. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  839. static millis_t delayed_move_time = 0; // used in mode 1
  840. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  841. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  842. bool extruder_duplication_enabled = false; // used in mode 2
  843. #endif //DUAL_X_CARRIAGE
  844. static void axis_is_at_home(int axis) {
  845. #ifdef DUAL_X_CARRIAGE
  846. if (axis == X_AXIS) {
  847. if (active_extruder != 0) {
  848. current_position[X_AXIS] = x_home_pos(active_extruder);
  849. min_pos[X_AXIS] = X2_MIN_POS;
  850. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  851. return;
  852. }
  853. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  854. float xoff = home_offset[X_AXIS];
  855. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  856. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  857. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  858. return;
  859. }
  860. }
  861. #endif
  862. #ifdef SCARA
  863. if (axis == X_AXIS || axis == Y_AXIS) {
  864. float homeposition[3];
  865. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  866. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  867. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  868. // Works out real Homeposition angles using inverse kinematics,
  869. // and calculates homing offset using forward kinematics
  870. calculate_delta(homeposition);
  871. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  872. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  873. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  874. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  875. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  876. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  877. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  878. calculate_SCARA_forward_Transform(delta);
  879. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  880. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  881. current_position[axis] = delta[axis];
  882. // SCARA home positions are based on configuration since the actual limits are determined by the
  883. // inverse kinematic transform.
  884. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  885. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  886. }
  887. else
  888. #endif
  889. {
  890. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  891. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  892. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  893. }
  894. }
  895. /**
  896. * Some planner shorthand inline functions
  897. */
  898. inline void set_homing_bump_feedrate(AxisEnum axis) {
  899. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  900. if (homing_bump_divisor[axis] >= 1)
  901. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  902. else {
  903. feedrate = homing_feedrate[axis] / 10;
  904. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  905. }
  906. }
  907. inline void line_to_current_position() {
  908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  909. }
  910. inline void line_to_z(float zPosition) {
  911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  912. }
  913. inline void line_to_destination(float mm_m) {
  914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  915. }
  916. inline void line_to_destination() {
  917. line_to_destination(feedrate);
  918. }
  919. inline void sync_plan_position() {
  920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  921. }
  922. #if defined(DELTA) || defined(SCARA)
  923. inline void sync_plan_position_delta() {
  924. calculate_delta(current_position);
  925. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  926. }
  927. #endif
  928. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  929. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  930. #ifdef ENABLE_AUTO_BED_LEVELING
  931. #ifdef DELTA
  932. /**
  933. * Calculate delta, start a line, and set current_position to destination
  934. */
  935. void prepare_move_raw() {
  936. refresh_cmd_timeout();
  937. calculate_delta(destination);
  938. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  939. set_current_to_destination();
  940. }
  941. #endif
  942. #ifdef AUTO_BED_LEVELING_GRID
  943. #ifndef DELTA
  944. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  945. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  946. planeNormal.debug("planeNormal");
  947. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  948. //bedLevel.debug("bedLevel");
  949. //plan_bed_level_matrix.debug("bed level before");
  950. //vector_3 uncorrected_position = plan_get_position_mm();
  951. //uncorrected_position.debug("position before");
  952. vector_3 corrected_position = plan_get_position();
  953. //corrected_position.debug("position after");
  954. current_position[X_AXIS] = corrected_position.x;
  955. current_position[Y_AXIS] = corrected_position.y;
  956. current_position[Z_AXIS] = corrected_position.z;
  957. sync_plan_position();
  958. }
  959. #endif // !DELTA
  960. #else // !AUTO_BED_LEVELING_GRID
  961. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  962. plan_bed_level_matrix.set_to_identity();
  963. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  964. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  965. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  966. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  967. if (planeNormal.z < 0) {
  968. planeNormal.x = -planeNormal.x;
  969. planeNormal.y = -planeNormal.y;
  970. planeNormal.z = -planeNormal.z;
  971. }
  972. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  973. vector_3 corrected_position = plan_get_position();
  974. current_position[X_AXIS] = corrected_position.x;
  975. current_position[Y_AXIS] = corrected_position.y;
  976. current_position[Z_AXIS] = corrected_position.z;
  977. sync_plan_position();
  978. }
  979. #endif // !AUTO_BED_LEVELING_GRID
  980. static void run_z_probe() {
  981. #ifdef DELTA
  982. float start_z = current_position[Z_AXIS];
  983. long start_steps = st_get_position(Z_AXIS);
  984. // move down slowly until you find the bed
  985. feedrate = homing_feedrate[Z_AXIS] / 4;
  986. destination[Z_AXIS] = -10;
  987. prepare_move_raw(); // this will also set_current_to_destination
  988. st_synchronize();
  989. endstops_hit_on_purpose(); // clear endstop hit flags
  990. // we have to let the planner know where we are right now as it is not where we said to go.
  991. long stop_steps = st_get_position(Z_AXIS);
  992. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  993. current_position[Z_AXIS] = mm;
  994. sync_plan_position_delta();
  995. #else // !DELTA
  996. plan_bed_level_matrix.set_to_identity();
  997. feedrate = homing_feedrate[Z_AXIS];
  998. // move down until you find the bed
  999. float zPosition = -10;
  1000. line_to_z(zPosition);
  1001. st_synchronize();
  1002. // we have to let the planner know where we are right now as it is not where we said to go.
  1003. zPosition = st_get_position_mm(Z_AXIS);
  1004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1005. // move up the retract distance
  1006. zPosition += home_bump_mm(Z_AXIS);
  1007. line_to_z(zPosition);
  1008. st_synchronize();
  1009. endstops_hit_on_purpose(); // clear endstop hit flags
  1010. // move back down slowly to find bed
  1011. set_homing_bump_feedrate(Z_AXIS);
  1012. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1013. line_to_z(zPosition);
  1014. st_synchronize();
  1015. endstops_hit_on_purpose(); // clear endstop hit flags
  1016. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1017. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1018. sync_plan_position();
  1019. #endif // !DELTA
  1020. }
  1021. /**
  1022. * Plan a move to (X, Y, Z) and set the current_position
  1023. * The final current_position may not be the one that was requested
  1024. */
  1025. static void do_blocking_move_to(float x, float y, float z) {
  1026. float oldFeedRate = feedrate;
  1027. #ifdef DELTA
  1028. feedrate = XY_TRAVEL_SPEED;
  1029. destination[X_AXIS] = x;
  1030. destination[Y_AXIS] = y;
  1031. destination[Z_AXIS] = z;
  1032. prepare_move_raw(); // this will also set_current_to_destination
  1033. st_synchronize();
  1034. #else
  1035. feedrate = homing_feedrate[Z_AXIS];
  1036. current_position[Z_AXIS] = z;
  1037. line_to_current_position();
  1038. st_synchronize();
  1039. feedrate = xy_travel_speed;
  1040. current_position[X_AXIS] = x;
  1041. current_position[Y_AXIS] = y;
  1042. line_to_current_position();
  1043. st_synchronize();
  1044. #endif
  1045. feedrate = oldFeedRate;
  1046. }
  1047. static void setup_for_endstop_move() {
  1048. saved_feedrate = feedrate;
  1049. saved_feedrate_multiplier = feedrate_multiplier;
  1050. feedrate_multiplier = 100;
  1051. refresh_cmd_timeout();
  1052. enable_endstops(true);
  1053. }
  1054. static void clean_up_after_endstop_move() {
  1055. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1056. enable_endstops(false);
  1057. #endif
  1058. feedrate = saved_feedrate;
  1059. feedrate_multiplier = saved_feedrate_multiplier;
  1060. refresh_cmd_timeout();
  1061. }
  1062. static void deploy_z_probe() {
  1063. #ifdef SERVO_ENDSTOPS
  1064. // Engage Z Servo endstop if enabled
  1065. if (servo_endstops[Z_AXIS] >= 0) {
  1066. #if SERVO_LEVELING
  1067. servo[servo_endstops[Z_AXIS]].attach(0);
  1068. #endif
  1069. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1070. #if SERVO_LEVELING
  1071. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1072. servo[servo_endstops[Z_AXIS]].detach();
  1073. #endif
  1074. }
  1075. #elif defined(Z_PROBE_ALLEN_KEY)
  1076. feedrate = homing_feedrate[X_AXIS];
  1077. // Move to the start position to initiate deployment
  1078. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1079. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1080. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1081. prepare_move_raw(); // this will also set_current_to_destination
  1082. // Home X to touch the belt
  1083. feedrate = homing_feedrate[X_AXIS]/10;
  1084. destination[X_AXIS] = 0;
  1085. prepare_move_raw(); // this will also set_current_to_destination
  1086. // Home Y for safety
  1087. feedrate = homing_feedrate[X_AXIS]/2;
  1088. destination[Y_AXIS] = 0;
  1089. prepare_move_raw(); // this will also set_current_to_destination
  1090. st_synchronize();
  1091. #ifdef Z_PROBE_ENDSTOP
  1092. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1093. if (z_probe_endstop)
  1094. #else
  1095. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1096. if (z_min_endstop)
  1097. #endif
  1098. {
  1099. if (IsRunning()) {
  1100. SERIAL_ERROR_START;
  1101. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1102. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1103. }
  1104. Stop();
  1105. }
  1106. #endif // Z_PROBE_ALLEN_KEY
  1107. }
  1108. static void stow_z_probe() {
  1109. #ifdef SERVO_ENDSTOPS
  1110. // Retract Z Servo endstop if enabled
  1111. if (servo_endstops[Z_AXIS] >= 0) {
  1112. #if Z_RAISE_AFTER_PROBING > 0
  1113. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1114. st_synchronize();
  1115. #endif
  1116. #if SERVO_LEVELING
  1117. servo[servo_endstops[Z_AXIS]].attach(0);
  1118. #endif
  1119. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1120. #if SERVO_LEVELING
  1121. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1122. servo[servo_endstops[Z_AXIS]].detach();
  1123. #endif
  1124. }
  1125. #elif defined(Z_PROBE_ALLEN_KEY)
  1126. // Move up for safety
  1127. feedrate = homing_feedrate[X_AXIS];
  1128. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1129. prepare_move_raw(); // this will also set_current_to_destination
  1130. // Move to the start position to initiate retraction
  1131. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1132. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1133. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1134. prepare_move_raw(); // this will also set_current_to_destination
  1135. // Move the nozzle down to push the probe into retracted position
  1136. feedrate = homing_feedrate[Z_AXIS]/10;
  1137. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1138. prepare_move_raw(); // this will also set_current_to_destination
  1139. // Move up for safety
  1140. feedrate = homing_feedrate[Z_AXIS]/2;
  1141. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1142. prepare_move_raw(); // this will also set_current_to_destination
  1143. // Home XY for safety
  1144. feedrate = homing_feedrate[X_AXIS]/2;
  1145. destination[X_AXIS] = 0;
  1146. destination[Y_AXIS] = 0;
  1147. prepare_move_raw(); // this will also set_current_to_destination
  1148. st_synchronize();
  1149. #ifdef Z_PROBE_ENDSTOP
  1150. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1151. if (!z_probe_endstop)
  1152. #else
  1153. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1154. if (!z_min_endstop)
  1155. #endif
  1156. {
  1157. if (IsRunning()) {
  1158. SERIAL_ERROR_START;
  1159. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1160. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1161. }
  1162. Stop();
  1163. }
  1164. #endif
  1165. }
  1166. enum ProbeAction {
  1167. ProbeStay = 0,
  1168. ProbeDeploy = BIT(0),
  1169. ProbeStow = BIT(1),
  1170. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1171. };
  1172. // Probe bed height at position (x,y), returns the measured z value
  1173. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1174. // move to right place
  1175. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1176. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1177. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1178. if (retract_action & ProbeDeploy) deploy_z_probe();
  1179. #endif
  1180. run_z_probe();
  1181. float measured_z = current_position[Z_AXIS];
  1182. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1183. if (retract_action == ProbeStay) {
  1184. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1185. st_synchronize();
  1186. }
  1187. #endif
  1188. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1189. if (retract_action & ProbeStow) stow_z_probe();
  1190. #endif
  1191. if (verbose_level > 2) {
  1192. SERIAL_PROTOCOLPGM("Bed");
  1193. SERIAL_PROTOCOLPGM(" X: ");
  1194. SERIAL_PROTOCOL_F(x, 3);
  1195. SERIAL_PROTOCOLPGM(" Y: ");
  1196. SERIAL_PROTOCOL_F(y, 3);
  1197. SERIAL_PROTOCOLPGM(" Z: ");
  1198. SERIAL_PROTOCOL_F(measured_z, 3);
  1199. SERIAL_EOL;
  1200. }
  1201. return measured_z;
  1202. }
  1203. #ifdef DELTA
  1204. /**
  1205. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1206. */
  1207. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1208. if (bed_level[x][y] != 0.0) {
  1209. return; // Don't overwrite good values.
  1210. }
  1211. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1212. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1213. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1214. float median = c; // Median is robust (ignores outliers).
  1215. if (a < b) {
  1216. if (b < c) median = b;
  1217. if (c < a) median = a;
  1218. } else { // b <= a
  1219. if (c < b) median = b;
  1220. if (a < c) median = a;
  1221. }
  1222. bed_level[x][y] = median;
  1223. }
  1224. // Fill in the unprobed points (corners of circular print surface)
  1225. // using linear extrapolation, away from the center.
  1226. static void extrapolate_unprobed_bed_level() {
  1227. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1228. for (int y = 0; y <= half; y++) {
  1229. for (int x = 0; x <= half; x++) {
  1230. if (x + y < 3) continue;
  1231. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1232. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1233. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1234. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1235. }
  1236. }
  1237. }
  1238. // Print calibration results for plotting or manual frame adjustment.
  1239. static void print_bed_level() {
  1240. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1241. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1242. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1243. SERIAL_PROTOCOLCHAR(' ');
  1244. }
  1245. SERIAL_EOL;
  1246. }
  1247. }
  1248. // Reset calibration results to zero.
  1249. void reset_bed_level() {
  1250. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1251. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1252. bed_level[x][y] = 0.0;
  1253. }
  1254. }
  1255. }
  1256. #endif // DELTA
  1257. #endif // ENABLE_AUTO_BED_LEVELING
  1258. /**
  1259. * Home an individual axis
  1260. */
  1261. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1262. static void homeaxis(AxisEnum axis) {
  1263. #define HOMEAXIS_DO(LETTER) \
  1264. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1265. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1266. int axis_home_dir =
  1267. #ifdef DUAL_X_CARRIAGE
  1268. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1269. #endif
  1270. home_dir(axis);
  1271. // Set the axis position as setup for the move
  1272. current_position[axis] = 0;
  1273. sync_plan_position();
  1274. // Engage Servo endstop if enabled
  1275. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1276. #if SERVO_LEVELING
  1277. if (axis == Z_AXIS) deploy_z_probe(); else
  1278. #endif
  1279. {
  1280. if (servo_endstops[axis] > -1)
  1281. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1282. }
  1283. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1284. #ifdef Z_DUAL_ENDSTOPS
  1285. if (axis == Z_AXIS) In_Homing_Process(true);
  1286. #endif
  1287. // Move towards the endstop until an endstop is triggered
  1288. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1289. feedrate = homing_feedrate[axis];
  1290. line_to_destination();
  1291. st_synchronize();
  1292. // Set the axis position as setup for the move
  1293. current_position[axis] = 0;
  1294. sync_plan_position();
  1295. // Move away from the endstop by the axis HOME_BUMP_MM
  1296. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1297. line_to_destination();
  1298. st_synchronize();
  1299. // Slow down the feedrate for the next move
  1300. set_homing_bump_feedrate(axis);
  1301. // Move slowly towards the endstop until triggered
  1302. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1303. line_to_destination();
  1304. st_synchronize();
  1305. #ifdef Z_DUAL_ENDSTOPS
  1306. if (axis == Z_AXIS) {
  1307. float adj = fabs(z_endstop_adj);
  1308. bool lockZ1;
  1309. if (axis_home_dir > 0) {
  1310. adj = -adj;
  1311. lockZ1 = (z_endstop_adj > 0);
  1312. }
  1313. else
  1314. lockZ1 = (z_endstop_adj < 0);
  1315. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1316. sync_plan_position();
  1317. // Move to the adjusted endstop height
  1318. feedrate = homing_feedrate[axis];
  1319. destination[Z_AXIS] = adj;
  1320. line_to_destination();
  1321. st_synchronize();
  1322. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1323. In_Homing_Process(false);
  1324. } // Z_AXIS
  1325. #endif
  1326. #ifdef DELTA
  1327. // retrace by the amount specified in endstop_adj
  1328. if (endstop_adj[axis] * axis_home_dir < 0) {
  1329. sync_plan_position();
  1330. destination[axis] = endstop_adj[axis];
  1331. line_to_destination();
  1332. st_synchronize();
  1333. }
  1334. #endif
  1335. // Set the axis position to its home position (plus home offsets)
  1336. axis_is_at_home(axis);
  1337. destination[axis] = current_position[axis];
  1338. feedrate = 0.0;
  1339. endstops_hit_on_purpose(); // clear endstop hit flags
  1340. axis_known_position[axis] = true;
  1341. // Retract Servo endstop if enabled
  1342. #ifdef SERVO_ENDSTOPS
  1343. if (servo_endstops[axis] > -1)
  1344. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1345. #endif
  1346. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1347. if (axis == Z_AXIS) stow_z_probe();
  1348. #endif
  1349. }
  1350. }
  1351. #ifdef FWRETRACT
  1352. void retract(bool retracting, bool swapretract = false) {
  1353. if (retracting == retracted[active_extruder]) return;
  1354. float oldFeedrate = feedrate;
  1355. set_destination_to_current();
  1356. if (retracting) {
  1357. feedrate = retract_feedrate * 60;
  1358. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1359. plan_set_e_position(current_position[E_AXIS]);
  1360. prepare_move();
  1361. if (retract_zlift > 0.01) {
  1362. current_position[Z_AXIS] -= retract_zlift;
  1363. #ifdef DELTA
  1364. sync_plan_position_delta();
  1365. #else
  1366. sync_plan_position();
  1367. #endif
  1368. prepare_move();
  1369. }
  1370. }
  1371. else {
  1372. if (retract_zlift > 0.01) {
  1373. current_position[Z_AXIS] += retract_zlift;
  1374. #ifdef DELTA
  1375. sync_plan_position_delta();
  1376. #else
  1377. sync_plan_position();
  1378. #endif
  1379. //prepare_move();
  1380. }
  1381. feedrate = retract_recover_feedrate * 60;
  1382. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1383. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1384. plan_set_e_position(current_position[E_AXIS]);
  1385. prepare_move();
  1386. }
  1387. feedrate = oldFeedrate;
  1388. retracted[active_extruder] = retracting;
  1389. } // retract()
  1390. #endif // FWRETRACT
  1391. #ifdef Z_PROBE_SLED
  1392. #ifndef SLED_DOCKING_OFFSET
  1393. #define SLED_DOCKING_OFFSET 0
  1394. #endif
  1395. /**
  1396. * Method to dock/undock a sled designed by Charles Bell.
  1397. *
  1398. * dock[in] If true, move to MAX_X and engage the electromagnet
  1399. * offset[in] The additional distance to move to adjust docking location
  1400. */
  1401. static void dock_sled(bool dock, int offset=0) {
  1402. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1403. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1404. SERIAL_ECHO_START;
  1405. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1406. return;
  1407. }
  1408. if (dock) {
  1409. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1410. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1411. } else {
  1412. float z_loc = current_position[Z_AXIS];
  1413. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1414. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1415. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1416. }
  1417. }
  1418. #endif // Z_PROBE_SLED
  1419. /**
  1420. *
  1421. * G-Code Handler functions
  1422. *
  1423. */
  1424. /**
  1425. * G0, G1: Coordinated movement of X Y Z E axes
  1426. */
  1427. inline void gcode_G0_G1() {
  1428. if (IsRunning()) {
  1429. get_coordinates(); // For X Y Z E F
  1430. #ifdef FWRETRACT
  1431. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1432. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1433. // Is this move an attempt to retract or recover?
  1434. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1435. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1436. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1437. retract(!retracted[active_extruder]);
  1438. return;
  1439. }
  1440. }
  1441. #endif //FWRETRACT
  1442. prepare_move();
  1443. //ClearToSend();
  1444. }
  1445. }
  1446. /**
  1447. * G2: Clockwise Arc
  1448. * G3: Counterclockwise Arc
  1449. */
  1450. inline void gcode_G2_G3(bool clockwise) {
  1451. if (IsRunning()) {
  1452. get_arc_coordinates();
  1453. prepare_arc_move(clockwise);
  1454. }
  1455. }
  1456. /**
  1457. * G4: Dwell S<seconds> or P<milliseconds>
  1458. */
  1459. inline void gcode_G4() {
  1460. millis_t codenum = 0;
  1461. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1462. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1463. st_synchronize();
  1464. refresh_cmd_timeout();
  1465. codenum += previous_cmd_ms; // keep track of when we started waiting
  1466. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1467. while (millis() < codenum) {
  1468. manage_heater();
  1469. manage_inactivity();
  1470. lcd_update();
  1471. }
  1472. }
  1473. #ifdef FWRETRACT
  1474. /**
  1475. * G10 - Retract filament according to settings of M207
  1476. * G11 - Recover filament according to settings of M208
  1477. */
  1478. inline void gcode_G10_G11(bool doRetract=false) {
  1479. #if EXTRUDERS > 1
  1480. if (doRetract) {
  1481. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1482. }
  1483. #endif
  1484. retract(doRetract
  1485. #if EXTRUDERS > 1
  1486. , retracted_swap[active_extruder]
  1487. #endif
  1488. );
  1489. }
  1490. #endif //FWRETRACT
  1491. /**
  1492. * G28: Home all axes according to settings
  1493. *
  1494. * Parameters
  1495. *
  1496. * None Home to all axes with no parameters.
  1497. * With QUICK_HOME enabled XY will home together, then Z.
  1498. *
  1499. * Cartesian parameters
  1500. *
  1501. * X Home to the X endstop
  1502. * Y Home to the Y endstop
  1503. * Z Home to the Z endstop
  1504. *
  1505. */
  1506. inline void gcode_G28() {
  1507. // For auto bed leveling, clear the level matrix
  1508. #ifdef ENABLE_AUTO_BED_LEVELING
  1509. plan_bed_level_matrix.set_to_identity();
  1510. #ifdef DELTA
  1511. reset_bed_level();
  1512. #endif
  1513. #endif
  1514. // For manual bed leveling deactivate the matrix temporarily
  1515. #ifdef MESH_BED_LEVELING
  1516. uint8_t mbl_was_active = mbl.active;
  1517. mbl.active = 0;
  1518. #endif
  1519. saved_feedrate = feedrate;
  1520. saved_feedrate_multiplier = feedrate_multiplier;
  1521. feedrate_multiplier = 100;
  1522. refresh_cmd_timeout();
  1523. enable_endstops(true);
  1524. set_destination_to_current();
  1525. feedrate = 0.0;
  1526. #ifdef DELTA
  1527. // A delta can only safely home all axis at the same time
  1528. // all axis have to home at the same time
  1529. // Pretend the current position is 0,0,0
  1530. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1531. sync_plan_position();
  1532. // Move all carriages up together until the first endstop is hit.
  1533. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1534. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1535. line_to_destination();
  1536. st_synchronize();
  1537. endstops_hit_on_purpose(); // clear endstop hit flags
  1538. // Destination reached
  1539. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1540. // take care of back off and rehome now we are all at the top
  1541. HOMEAXIS(X);
  1542. HOMEAXIS(Y);
  1543. HOMEAXIS(Z);
  1544. sync_plan_position_delta();
  1545. #else // NOT DELTA
  1546. bool homeX = code_seen(axis_codes[X_AXIS]),
  1547. homeY = code_seen(axis_codes[Y_AXIS]),
  1548. homeZ = code_seen(axis_codes[Z_AXIS]);
  1549. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1550. if (home_all_axis || homeZ) {
  1551. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1552. HOMEAXIS(Z);
  1553. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1554. // Raise Z before homing any other axes
  1555. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1556. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1557. feedrate = max_feedrate[Z_AXIS] * 60;
  1558. line_to_destination();
  1559. st_synchronize();
  1560. #endif
  1561. } // home_all_axis || homeZ
  1562. #ifdef QUICK_HOME
  1563. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1564. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1565. #ifdef DUAL_X_CARRIAGE
  1566. int x_axis_home_dir = x_home_dir(active_extruder);
  1567. extruder_duplication_enabled = false;
  1568. #else
  1569. int x_axis_home_dir = home_dir(X_AXIS);
  1570. #endif
  1571. sync_plan_position();
  1572. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1573. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1574. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1575. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1576. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1577. line_to_destination();
  1578. st_synchronize();
  1579. axis_is_at_home(X_AXIS);
  1580. axis_is_at_home(Y_AXIS);
  1581. sync_plan_position();
  1582. destination[X_AXIS] = current_position[X_AXIS];
  1583. destination[Y_AXIS] = current_position[Y_AXIS];
  1584. line_to_destination();
  1585. feedrate = 0.0;
  1586. st_synchronize();
  1587. endstops_hit_on_purpose(); // clear endstop hit flags
  1588. current_position[X_AXIS] = destination[X_AXIS];
  1589. current_position[Y_AXIS] = destination[Y_AXIS];
  1590. #ifndef SCARA
  1591. current_position[Z_AXIS] = destination[Z_AXIS];
  1592. #endif
  1593. }
  1594. #endif // QUICK_HOME
  1595. // Home X
  1596. if (home_all_axis || homeX) {
  1597. #ifdef DUAL_X_CARRIAGE
  1598. int tmp_extruder = active_extruder;
  1599. extruder_duplication_enabled = false;
  1600. active_extruder = !active_extruder;
  1601. HOMEAXIS(X);
  1602. inactive_extruder_x_pos = current_position[X_AXIS];
  1603. active_extruder = tmp_extruder;
  1604. HOMEAXIS(X);
  1605. // reset state used by the different modes
  1606. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1607. delayed_move_time = 0;
  1608. active_extruder_parked = true;
  1609. #else
  1610. HOMEAXIS(X);
  1611. #endif
  1612. }
  1613. // Home Y
  1614. if (home_all_axis || homeY) HOMEAXIS(Y);
  1615. // Home Z last if homing towards the bed
  1616. #if Z_HOME_DIR < 0
  1617. if (home_all_axis || homeZ) {
  1618. #ifdef Z_SAFE_HOMING
  1619. if (home_all_axis) {
  1620. current_position[Z_AXIS] = 0;
  1621. sync_plan_position();
  1622. //
  1623. // Set the probe (or just the nozzle) destination to the safe homing point
  1624. //
  1625. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1626. // then this may not work as expected.
  1627. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1628. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1629. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1630. feedrate = XY_TRAVEL_SPEED;
  1631. // This could potentially move X, Y, Z all together
  1632. line_to_destination();
  1633. st_synchronize();
  1634. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1635. current_position[X_AXIS] = destination[X_AXIS];
  1636. current_position[Y_AXIS] = destination[Y_AXIS];
  1637. // Home the Z axis
  1638. HOMEAXIS(Z);
  1639. }
  1640. else if (homeZ) { // Don't need to Home Z twice
  1641. // Let's see if X and Y are homed
  1642. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1643. // Make sure the probe is within the physical limits
  1644. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1645. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1646. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1647. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1648. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1649. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1650. // Set the plan current position to X, Y, 0
  1651. current_position[Z_AXIS] = 0;
  1652. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1653. // Set Z destination away from bed and raise the axis
  1654. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1655. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1656. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1657. line_to_destination();
  1658. st_synchronize();
  1659. // Home the Z axis
  1660. HOMEAXIS(Z);
  1661. }
  1662. else {
  1663. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1664. SERIAL_ECHO_START;
  1665. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1666. }
  1667. }
  1668. else {
  1669. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1670. SERIAL_ECHO_START;
  1671. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1672. }
  1673. } // !home_all_axes && homeZ
  1674. #else // !Z_SAFE_HOMING
  1675. HOMEAXIS(Z);
  1676. #endif // !Z_SAFE_HOMING
  1677. } // home_all_axis || homeZ
  1678. #endif // Z_HOME_DIR < 0
  1679. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1680. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1681. #endif
  1682. sync_plan_position();
  1683. #endif // else DELTA
  1684. #ifdef SCARA
  1685. sync_plan_position_delta();
  1686. #endif
  1687. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1688. enable_endstops(false);
  1689. #endif
  1690. // For manual leveling move back to 0,0
  1691. #ifdef MESH_BED_LEVELING
  1692. if (mbl_was_active) {
  1693. current_position[X_AXIS] = mbl.get_x(0);
  1694. current_position[Y_AXIS] = mbl.get_y(0);
  1695. set_destination_to_current();
  1696. feedrate = homing_feedrate[X_AXIS];
  1697. line_to_destination();
  1698. st_synchronize();
  1699. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1700. sync_plan_position();
  1701. mbl.active = 1;
  1702. }
  1703. #endif
  1704. feedrate = saved_feedrate;
  1705. feedrate_multiplier = saved_feedrate_multiplier;
  1706. refresh_cmd_timeout();
  1707. endstops_hit_on_purpose(); // clear endstop hit flags
  1708. }
  1709. #ifdef MESH_BED_LEVELING
  1710. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1711. /**
  1712. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1713. * mesh to compensate for variable bed height
  1714. *
  1715. * Parameters With MESH_BED_LEVELING:
  1716. *
  1717. * S0 Produce a mesh report
  1718. * S1 Start probing mesh points
  1719. * S2 Probe the next mesh point
  1720. * S3 Xn Yn Zn.nn Manually modify a single point
  1721. *
  1722. * The S0 report the points as below
  1723. *
  1724. * +----> X-axis
  1725. * |
  1726. * |
  1727. * v Y-axis
  1728. *
  1729. */
  1730. inline void gcode_G29() {
  1731. static int probe_point = -1;
  1732. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1733. if (state < 0 || state > 3) {
  1734. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1735. return;
  1736. }
  1737. int ix, iy;
  1738. float z;
  1739. switch(state) {
  1740. case MeshReport:
  1741. if (mbl.active) {
  1742. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1743. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1744. SERIAL_PROTOCOLCHAR(',');
  1745. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1746. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1747. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1748. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1749. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1750. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1751. SERIAL_PROTOCOLPGM(" ");
  1752. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1753. }
  1754. SERIAL_EOL;
  1755. }
  1756. }
  1757. else
  1758. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1759. break;
  1760. case MeshStart:
  1761. mbl.reset();
  1762. probe_point = 0;
  1763. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1764. break;
  1765. case MeshNext:
  1766. if (probe_point < 0) {
  1767. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1768. return;
  1769. }
  1770. if (probe_point == 0) {
  1771. // Set Z to a positive value before recording the first Z.
  1772. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1773. sync_plan_position();
  1774. }
  1775. else {
  1776. // For others, save the Z of the previous point, then raise Z again.
  1777. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1778. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1779. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1780. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1781. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1783. st_synchronize();
  1784. }
  1785. // Is there another point to sample? Move there.
  1786. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1787. ix = probe_point % MESH_NUM_X_POINTS;
  1788. iy = probe_point / MESH_NUM_X_POINTS;
  1789. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1790. current_position[X_AXIS] = mbl.get_x(ix);
  1791. current_position[Y_AXIS] = mbl.get_y(iy);
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1793. st_synchronize();
  1794. probe_point++;
  1795. }
  1796. else {
  1797. // After recording the last point, activate the mbl and home
  1798. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1799. probe_point = -1;
  1800. mbl.active = 1;
  1801. enqueuecommands_P(PSTR("G28"));
  1802. }
  1803. break;
  1804. case MeshSet:
  1805. if (code_seen('X') || code_seen('x')) {
  1806. ix = code_value_long()-1;
  1807. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1808. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1809. return;
  1810. }
  1811. } else {
  1812. SERIAL_PROTOCOLPGM("X not entered.\n");
  1813. return;
  1814. }
  1815. if (code_seen('Y') || code_seen('y')) {
  1816. iy = code_value_long()-1;
  1817. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1818. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1819. return;
  1820. }
  1821. } else {
  1822. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1823. return;
  1824. }
  1825. if (code_seen('Z') || code_seen('z')) {
  1826. z = code_value();
  1827. } else {
  1828. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1829. return;
  1830. }
  1831. mbl.z_values[iy][ix] = z;
  1832. } // switch(state)
  1833. }
  1834. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1835. /**
  1836. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1837. * Will fail if the printer has not been homed with G28.
  1838. *
  1839. * Enhanced G29 Auto Bed Leveling Probe Routine
  1840. *
  1841. * Parameters With AUTO_BED_LEVELING_GRID:
  1842. *
  1843. * P Set the size of the grid that will be probed (P x P points).
  1844. * Not supported by non-linear delta printer bed leveling.
  1845. * Example: "G29 P4"
  1846. *
  1847. * S Set the XY travel speed between probe points (in mm/min)
  1848. *
  1849. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1850. * or clean the rotation Matrix. Useful to check the topology
  1851. * after a first run of G29.
  1852. *
  1853. * V Set the verbose level (0-4). Example: "G29 V3"
  1854. *
  1855. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1856. * This is useful for manual bed leveling and finding flaws in the bed (to
  1857. * assist with part placement).
  1858. * Not supported by non-linear delta printer bed leveling.
  1859. *
  1860. * F Set the Front limit of the probing grid
  1861. * B Set the Back limit of the probing grid
  1862. * L Set the Left limit of the probing grid
  1863. * R Set the Right limit of the probing grid
  1864. *
  1865. * Global Parameters:
  1866. *
  1867. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1868. * Include "E" to engage/disengage the probe for each sample.
  1869. * There's no extra effect if you have a fixed probe.
  1870. * Usage: "G29 E" or "G29 e"
  1871. *
  1872. */
  1873. inline void gcode_G29() {
  1874. // Don't allow auto-leveling without homing first
  1875. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1876. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1877. SERIAL_ECHO_START;
  1878. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1879. return;
  1880. }
  1881. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1882. if (verbose_level < 0 || verbose_level > 4) {
  1883. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1884. return;
  1885. }
  1886. bool dryrun = code_seen('D') || code_seen('d'),
  1887. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1888. #ifdef AUTO_BED_LEVELING_GRID
  1889. #ifndef DELTA
  1890. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1891. #endif
  1892. if (verbose_level > 0) {
  1893. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1894. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1895. }
  1896. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1897. #ifndef DELTA
  1898. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1899. if (auto_bed_leveling_grid_points < 2) {
  1900. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1901. return;
  1902. }
  1903. #endif
  1904. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1905. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1906. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1907. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1908. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1909. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1910. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1911. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1912. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1913. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1914. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1915. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1916. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1917. if (left_out || right_out || front_out || back_out) {
  1918. if (left_out) {
  1919. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1920. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1921. }
  1922. if (right_out) {
  1923. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1924. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1925. }
  1926. if (front_out) {
  1927. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1928. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1929. }
  1930. if (back_out) {
  1931. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1932. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1933. }
  1934. return;
  1935. }
  1936. #endif // AUTO_BED_LEVELING_GRID
  1937. #ifdef Z_PROBE_SLED
  1938. dock_sled(false); // engage (un-dock) the probe
  1939. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1940. deploy_z_probe();
  1941. #endif
  1942. st_synchronize();
  1943. if (!dryrun) {
  1944. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1945. plan_bed_level_matrix.set_to_identity();
  1946. #ifdef DELTA
  1947. reset_bed_level();
  1948. #else //!DELTA
  1949. //vector_3 corrected_position = plan_get_position_mm();
  1950. //corrected_position.debug("position before G29");
  1951. vector_3 uncorrected_position = plan_get_position();
  1952. //uncorrected_position.debug("position during G29");
  1953. current_position[X_AXIS] = uncorrected_position.x;
  1954. current_position[Y_AXIS] = uncorrected_position.y;
  1955. current_position[Z_AXIS] = uncorrected_position.z;
  1956. sync_plan_position();
  1957. #endif // !DELTA
  1958. }
  1959. setup_for_endstop_move();
  1960. feedrate = homing_feedrate[Z_AXIS];
  1961. #ifdef AUTO_BED_LEVELING_GRID
  1962. // probe at the points of a lattice grid
  1963. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1964. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1965. #ifdef DELTA
  1966. delta_grid_spacing[0] = xGridSpacing;
  1967. delta_grid_spacing[1] = yGridSpacing;
  1968. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1969. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1970. #else // !DELTA
  1971. // solve the plane equation ax + by + d = z
  1972. // A is the matrix with rows [x y 1] for all the probed points
  1973. // B is the vector of the Z positions
  1974. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1975. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1976. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1977. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1978. eqnBVector[abl2], // "B" vector of Z points
  1979. mean = 0.0;
  1980. #endif // !DELTA
  1981. int probePointCounter = 0;
  1982. bool zig = true;
  1983. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1984. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1985. int xStart, xStop, xInc;
  1986. if (zig) {
  1987. xStart = 0;
  1988. xStop = auto_bed_leveling_grid_points;
  1989. xInc = 1;
  1990. }
  1991. else {
  1992. xStart = auto_bed_leveling_grid_points - 1;
  1993. xStop = -1;
  1994. xInc = -1;
  1995. }
  1996. #ifndef DELTA
  1997. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1998. // This gets the probe points in more readable order.
  1999. if (!do_topography_map) zig = !zig;
  2000. #endif
  2001. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2002. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2003. // raise extruder
  2004. float measured_z,
  2005. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2006. #ifdef DELTA
  2007. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2008. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2009. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2010. #endif //DELTA
  2011. ProbeAction act;
  2012. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2013. act = ProbeDeployAndStow;
  2014. else if (yCount == 0 && xCount == xStart)
  2015. act = ProbeDeploy;
  2016. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2017. act = ProbeStow;
  2018. else
  2019. act = ProbeStay;
  2020. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2021. #ifndef DELTA
  2022. mean += measured_z;
  2023. eqnBVector[probePointCounter] = measured_z;
  2024. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2025. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2026. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2027. #else
  2028. bed_level[xCount][yCount] = measured_z + z_offset;
  2029. #endif
  2030. probePointCounter++;
  2031. manage_heater();
  2032. manage_inactivity();
  2033. lcd_update();
  2034. } //xProbe
  2035. } //yProbe
  2036. clean_up_after_endstop_move();
  2037. #ifdef DELTA
  2038. if (!dryrun) extrapolate_unprobed_bed_level();
  2039. print_bed_level();
  2040. #else // !DELTA
  2041. // solve lsq problem
  2042. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2043. mean /= abl2;
  2044. if (verbose_level) {
  2045. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2046. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2047. SERIAL_PROTOCOLPGM(" b: ");
  2048. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2049. SERIAL_PROTOCOLPGM(" d: ");
  2050. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2051. SERIAL_EOL;
  2052. if (verbose_level > 2) {
  2053. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2054. SERIAL_PROTOCOL_F(mean, 8);
  2055. SERIAL_EOL;
  2056. }
  2057. }
  2058. // Show the Topography map if enabled
  2059. if (do_topography_map) {
  2060. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2061. SERIAL_PROTOCOLPGM("+-----------+\n");
  2062. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2063. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2064. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2065. SERIAL_PROTOCOLPGM("+-----------+\n");
  2066. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2067. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2068. int ind = yy * auto_bed_leveling_grid_points + xx;
  2069. float diff = eqnBVector[ind] - mean;
  2070. if (diff >= 0.0)
  2071. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2072. else
  2073. SERIAL_PROTOCOLCHAR(' ');
  2074. SERIAL_PROTOCOL_F(diff, 5);
  2075. } // xx
  2076. SERIAL_EOL;
  2077. } // yy
  2078. SERIAL_EOL;
  2079. } //do_topography_map
  2080. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2081. free(plane_equation_coefficients);
  2082. #endif //!DELTA
  2083. #else // !AUTO_BED_LEVELING_GRID
  2084. // Actions for each probe
  2085. ProbeAction p1, p2, p3;
  2086. if (deploy_probe_for_each_reading)
  2087. p1 = p2 = p3 = ProbeDeployAndStow;
  2088. else
  2089. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2090. // Probe at 3 arbitrary points
  2091. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2092. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2093. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2094. clean_up_after_endstop_move();
  2095. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2096. #endif // !AUTO_BED_LEVELING_GRID
  2097. #ifndef DELTA
  2098. if (verbose_level > 0)
  2099. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2100. if (!dryrun) {
  2101. // Correct the Z height difference from z-probe position and hotend tip position.
  2102. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2103. // When the bed is uneven, this height must be corrected.
  2104. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2105. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2106. z_tmp = current_position[Z_AXIS],
  2107. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2108. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2109. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2110. sync_plan_position();
  2111. }
  2112. #endif // !DELTA
  2113. #ifdef Z_PROBE_SLED
  2114. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2115. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2116. stow_z_probe();
  2117. #endif
  2118. #ifdef Z_PROBE_END_SCRIPT
  2119. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2120. st_synchronize();
  2121. #endif
  2122. }
  2123. #ifndef Z_PROBE_SLED
  2124. inline void gcode_G30() {
  2125. deploy_z_probe(); // Engage Z Servo endstop if available
  2126. st_synchronize();
  2127. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2128. setup_for_endstop_move();
  2129. feedrate = homing_feedrate[Z_AXIS];
  2130. run_z_probe();
  2131. SERIAL_PROTOCOLPGM("Bed");
  2132. SERIAL_PROTOCOLPGM(" X: ");
  2133. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2134. SERIAL_PROTOCOLPGM(" Y: ");
  2135. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2136. SERIAL_PROTOCOLPGM(" Z: ");
  2137. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2138. SERIAL_EOL;
  2139. clean_up_after_endstop_move();
  2140. stow_z_probe(); // Retract Z Servo endstop if available
  2141. }
  2142. #endif //!Z_PROBE_SLED
  2143. #endif //ENABLE_AUTO_BED_LEVELING
  2144. /**
  2145. * G92: Set current position to given X Y Z E
  2146. */
  2147. inline void gcode_G92() {
  2148. if (!code_seen(axis_codes[E_AXIS]))
  2149. st_synchronize();
  2150. bool didXYZ = false;
  2151. for (int i = 0; i < NUM_AXIS; i++) {
  2152. if (code_seen(axis_codes[i])) {
  2153. float v = current_position[i] = code_value();
  2154. if (i == E_AXIS)
  2155. plan_set_e_position(v);
  2156. else
  2157. didXYZ = true;
  2158. }
  2159. }
  2160. if (didXYZ) sync_plan_position();
  2161. }
  2162. #ifdef ULTIPANEL
  2163. /**
  2164. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2165. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2166. */
  2167. inline void gcode_M0_M1() {
  2168. char *src = strchr_pointer + 2;
  2169. millis_t codenum = 0;
  2170. bool hasP = false, hasS = false;
  2171. if (code_seen('P')) {
  2172. codenum = code_value_short(); // milliseconds to wait
  2173. hasP = codenum > 0;
  2174. }
  2175. if (code_seen('S')) {
  2176. codenum = code_value_short() * 1000UL; // seconds to wait
  2177. hasS = codenum > 0;
  2178. }
  2179. char* starpos = strchr(src, '*');
  2180. if (starpos != NULL) *(starpos) = '\0';
  2181. while (*src == ' ') ++src;
  2182. if (!hasP && !hasS && *src != '\0')
  2183. lcd_setstatus(src, true);
  2184. else {
  2185. LCD_MESSAGEPGM(MSG_USERWAIT);
  2186. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2187. dontExpireStatus();
  2188. #endif
  2189. }
  2190. lcd_ignore_click();
  2191. st_synchronize();
  2192. refresh_cmd_timeout();
  2193. if (codenum > 0) {
  2194. codenum += previous_cmd_ms; // keep track of when we started waiting
  2195. while(millis() < codenum && !lcd_clicked()) {
  2196. manage_heater();
  2197. manage_inactivity();
  2198. lcd_update();
  2199. }
  2200. lcd_ignore_click(false);
  2201. }
  2202. else {
  2203. if (!lcd_detected()) return;
  2204. while (!lcd_clicked()) {
  2205. manage_heater();
  2206. manage_inactivity();
  2207. lcd_update();
  2208. }
  2209. }
  2210. if (IS_SD_PRINTING)
  2211. LCD_MESSAGEPGM(MSG_RESUMING);
  2212. else
  2213. LCD_MESSAGEPGM(WELCOME_MSG);
  2214. }
  2215. #endif // ULTIPANEL
  2216. /**
  2217. * M17: Enable power on all stepper motors
  2218. */
  2219. inline void gcode_M17() {
  2220. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2221. enable_all_steppers();
  2222. }
  2223. #ifdef SDSUPPORT
  2224. /**
  2225. * M20: List SD card to serial output
  2226. */
  2227. inline void gcode_M20() {
  2228. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2229. card.ls();
  2230. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2231. }
  2232. /**
  2233. * M21: Init SD Card
  2234. */
  2235. inline void gcode_M21() {
  2236. card.initsd();
  2237. }
  2238. /**
  2239. * M22: Release SD Card
  2240. */
  2241. inline void gcode_M22() {
  2242. card.release();
  2243. }
  2244. /**
  2245. * M23: Select a file
  2246. */
  2247. inline void gcode_M23() {
  2248. char* codepos = strchr_pointer + 4;
  2249. char* starpos = strchr(codepos, '*');
  2250. if (starpos) *starpos = '\0';
  2251. card.openFile(codepos, true);
  2252. }
  2253. /**
  2254. * M24: Start SD Print
  2255. */
  2256. inline void gcode_M24() {
  2257. card.startFileprint();
  2258. print_job_start_ms = millis();
  2259. }
  2260. /**
  2261. * M25: Pause SD Print
  2262. */
  2263. inline void gcode_M25() {
  2264. card.pauseSDPrint();
  2265. }
  2266. /**
  2267. * M26: Set SD Card file index
  2268. */
  2269. inline void gcode_M26() {
  2270. if (card.cardOK && code_seen('S'))
  2271. card.setIndex(code_value_short());
  2272. }
  2273. /**
  2274. * M27: Get SD Card status
  2275. */
  2276. inline void gcode_M27() {
  2277. card.getStatus();
  2278. }
  2279. /**
  2280. * M28: Start SD Write
  2281. */
  2282. inline void gcode_M28() {
  2283. char* codepos = strchr_pointer + 4;
  2284. char* starpos = strchr(codepos, '*');
  2285. if (starpos) {
  2286. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2287. strchr_pointer = strchr(npos, ' ') + 1;
  2288. *(starpos) = '\0';
  2289. }
  2290. card.openFile(codepos, false);
  2291. }
  2292. /**
  2293. * M29: Stop SD Write
  2294. * Processed in write to file routine above
  2295. */
  2296. inline void gcode_M29() {
  2297. // card.saving = false;
  2298. }
  2299. /**
  2300. * M30 <filename>: Delete SD Card file
  2301. */
  2302. inline void gcode_M30() {
  2303. if (card.cardOK) {
  2304. card.closefile();
  2305. char* starpos = strchr(strchr_pointer + 4, '*');
  2306. if (starpos) {
  2307. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2308. strchr_pointer = strchr(npos, ' ') + 1;
  2309. *(starpos) = '\0';
  2310. }
  2311. card.removeFile(strchr_pointer + 4);
  2312. }
  2313. }
  2314. #endif
  2315. /**
  2316. * M31: Get the time since the start of SD Print (or last M109)
  2317. */
  2318. inline void gcode_M31() {
  2319. print_job_stop_ms = millis();
  2320. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2321. int min = t / 60, sec = t % 60;
  2322. char time[30];
  2323. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2324. SERIAL_ECHO_START;
  2325. SERIAL_ECHOLN(time);
  2326. lcd_setstatus(time);
  2327. autotempShutdown();
  2328. }
  2329. #ifdef SDSUPPORT
  2330. /**
  2331. * M32: Select file and start SD Print
  2332. */
  2333. inline void gcode_M32() {
  2334. if (card.sdprinting)
  2335. st_synchronize();
  2336. char* codepos = strchr_pointer + 4;
  2337. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2338. if (! namestartpos)
  2339. namestartpos = codepos; //default name position, 4 letters after the M
  2340. else
  2341. namestartpos++; //to skip the '!'
  2342. char* starpos = strchr(codepos, '*');
  2343. if (starpos) *(starpos) = '\0';
  2344. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2345. if (card.cardOK) {
  2346. card.openFile(namestartpos, true, !call_procedure);
  2347. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2348. card.setIndex(code_value_short());
  2349. card.startFileprint();
  2350. if (!call_procedure)
  2351. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2352. }
  2353. }
  2354. /**
  2355. * M928: Start SD Write
  2356. */
  2357. inline void gcode_M928() {
  2358. char* starpos = strchr(strchr_pointer + 5, '*');
  2359. if (starpos) {
  2360. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2361. strchr_pointer = strchr(npos, ' ') + 1;
  2362. *(starpos) = '\0';
  2363. }
  2364. card.openLogFile(strchr_pointer + 5);
  2365. }
  2366. #endif // SDSUPPORT
  2367. /**
  2368. * M42: Change pin status via GCode
  2369. */
  2370. inline void gcode_M42() {
  2371. if (code_seen('S')) {
  2372. int pin_status = code_value_short(),
  2373. pin_number = LED_PIN;
  2374. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2375. pin_number = code_value_short();
  2376. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2377. if (sensitive_pins[i] == pin_number) {
  2378. pin_number = -1;
  2379. break;
  2380. }
  2381. }
  2382. #if HAS_FAN
  2383. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2384. #endif
  2385. if (pin_number > -1) {
  2386. pinMode(pin_number, OUTPUT);
  2387. digitalWrite(pin_number, pin_status);
  2388. analogWrite(pin_number, pin_status);
  2389. }
  2390. } // code_seen('S')
  2391. }
  2392. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2393. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2394. #ifdef Z_PROBE_ENDSTOP
  2395. #if !HAS_Z_PROBE
  2396. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2397. #endif
  2398. #elif !HAS_Z_MIN
  2399. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2400. #endif
  2401. /**
  2402. * M48: Z-Probe repeatability measurement function.
  2403. *
  2404. * Usage:
  2405. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2406. * P = Number of sampled points (4-50, default 10)
  2407. * X = Sample X position
  2408. * Y = Sample Y position
  2409. * V = Verbose level (0-4, default=1)
  2410. * E = Engage probe for each reading
  2411. * L = Number of legs of movement before probe
  2412. *
  2413. * This function assumes the bed has been homed. Specifically, that a G28 command
  2414. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2415. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2416. * regenerated.
  2417. */
  2418. inline void gcode_M48() {
  2419. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2420. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2421. if (code_seen('V') || code_seen('v')) {
  2422. verbose_level = code_value_short();
  2423. if (verbose_level < 0 || verbose_level > 4 ) {
  2424. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2425. return;
  2426. }
  2427. }
  2428. if (verbose_level > 0)
  2429. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2430. if (code_seen('P') || code_seen('p')) {
  2431. n_samples = code_value_short();
  2432. if (n_samples < 4 || n_samples > 50) {
  2433. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2434. return;
  2435. }
  2436. }
  2437. double X_probe_location, Y_probe_location,
  2438. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2439. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2440. Z_current = st_get_position_mm(Z_AXIS),
  2441. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2442. ext_position = st_get_position_mm(E_AXIS);
  2443. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2444. if (code_seen('X') || code_seen('x')) {
  2445. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2446. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2447. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2448. return;
  2449. }
  2450. }
  2451. if (code_seen('Y') || code_seen('y')) {
  2452. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2453. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2454. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2455. return;
  2456. }
  2457. }
  2458. if (code_seen('L') || code_seen('l')) {
  2459. n_legs = code_value_short();
  2460. if (n_legs == 1) n_legs = 2;
  2461. if (n_legs < 0 || n_legs > 15) {
  2462. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2463. return;
  2464. }
  2465. }
  2466. //
  2467. // Do all the preliminary setup work. First raise the probe.
  2468. //
  2469. st_synchronize();
  2470. plan_bed_level_matrix.set_to_identity();
  2471. plan_buffer_line(X_current, Y_current, Z_start_location,
  2472. ext_position,
  2473. homing_feedrate[Z_AXIS] / 60,
  2474. active_extruder);
  2475. st_synchronize();
  2476. //
  2477. // Now get everything to the specified probe point So we can safely do a probe to
  2478. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2479. // use that as a starting point for each probe.
  2480. //
  2481. if (verbose_level > 2)
  2482. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2483. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2484. ext_position,
  2485. homing_feedrate[X_AXIS]/60,
  2486. active_extruder);
  2487. st_synchronize();
  2488. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2489. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2490. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2491. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2492. //
  2493. // OK, do the inital probe to get us close to the bed.
  2494. // Then retrace the right amount and use that in subsequent probes
  2495. //
  2496. deploy_z_probe();
  2497. setup_for_endstop_move();
  2498. run_z_probe();
  2499. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2500. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2501. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2502. ext_position,
  2503. homing_feedrate[X_AXIS]/60,
  2504. active_extruder);
  2505. st_synchronize();
  2506. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2507. if (deploy_probe_for_each_reading) stow_z_probe();
  2508. for (uint8_t n=0; n < n_samples; n++) {
  2509. // Make sure we are at the probe location
  2510. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2511. if (n_legs) {
  2512. millis_t ms = millis();
  2513. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2514. theta = RADIANS(ms % 360L);
  2515. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2516. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2517. //SERIAL_ECHOPAIR(" theta: ",theta);
  2518. //SERIAL_ECHOPAIR(" direction: ",dir);
  2519. //SERIAL_EOL;
  2520. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2521. ms = millis();
  2522. theta += RADIANS(dir * (ms % 20L));
  2523. radius += (ms % 10L) - 5L;
  2524. if (radius < 0.0) radius = -radius;
  2525. X_current = X_probe_location + cos(theta) * radius;
  2526. Y_current = Y_probe_location + sin(theta) * radius;
  2527. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2528. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2529. if (verbose_level > 3) {
  2530. SERIAL_ECHOPAIR("x: ", X_current);
  2531. SERIAL_ECHOPAIR("y: ", Y_current);
  2532. SERIAL_EOL;
  2533. }
  2534. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2535. } // n_legs loop
  2536. // Go back to the probe location
  2537. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2538. } // n_legs
  2539. if (deploy_probe_for_each_reading) {
  2540. deploy_z_probe();
  2541. delay(1000);
  2542. }
  2543. setup_for_endstop_move();
  2544. run_z_probe();
  2545. sample_set[n] = current_position[Z_AXIS];
  2546. //
  2547. // Get the current mean for the data points we have so far
  2548. //
  2549. sum = 0.0;
  2550. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2551. mean = sum / (n + 1);
  2552. //
  2553. // Now, use that mean to calculate the standard deviation for the
  2554. // data points we have so far
  2555. //
  2556. sum = 0.0;
  2557. for (uint8_t j = 0; j <= n; j++) {
  2558. float ss = sample_set[j] - mean;
  2559. sum += ss * ss;
  2560. }
  2561. sigma = sqrt(sum / (n + 1));
  2562. if (verbose_level > 1) {
  2563. SERIAL_PROTOCOL(n+1);
  2564. SERIAL_PROTOCOLPGM(" of ");
  2565. SERIAL_PROTOCOL(n_samples);
  2566. SERIAL_PROTOCOLPGM(" z: ");
  2567. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2568. if (verbose_level > 2) {
  2569. SERIAL_PROTOCOLPGM(" mean: ");
  2570. SERIAL_PROTOCOL_F(mean,6);
  2571. SERIAL_PROTOCOLPGM(" sigma: ");
  2572. SERIAL_PROTOCOL_F(sigma,6);
  2573. }
  2574. }
  2575. if (verbose_level > 0) SERIAL_EOL;
  2576. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2577. st_synchronize();
  2578. if (deploy_probe_for_each_reading) {
  2579. stow_z_probe();
  2580. delay(1000);
  2581. }
  2582. }
  2583. if (!deploy_probe_for_each_reading) {
  2584. stow_z_probe();
  2585. delay(1000);
  2586. }
  2587. clean_up_after_endstop_move();
  2588. // enable_endstops(true);
  2589. if (verbose_level > 0) {
  2590. SERIAL_PROTOCOLPGM("Mean: ");
  2591. SERIAL_PROTOCOL_F(mean, 6);
  2592. SERIAL_EOL;
  2593. }
  2594. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2595. SERIAL_PROTOCOL_F(sigma, 6);
  2596. SERIAL_EOL; SERIAL_EOL;
  2597. }
  2598. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2599. /**
  2600. * M104: Set hot end temperature
  2601. */
  2602. inline void gcode_M104() {
  2603. if (setTargetedHotend(104)) return;
  2604. if (code_seen('S')) {
  2605. float temp = code_value();
  2606. setTargetHotend(temp, target_extruder);
  2607. #ifdef DUAL_X_CARRIAGE
  2608. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2609. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2610. #endif
  2611. setWatch();
  2612. }
  2613. }
  2614. /**
  2615. * M105: Read hot end and bed temperature
  2616. */
  2617. inline void gcode_M105() {
  2618. if (setTargetedHotend(105)) return;
  2619. #if HAS_TEMP_0 || HAS_TEMP_BED
  2620. SERIAL_PROTOCOLPGM("ok");
  2621. #if HAS_TEMP_0
  2622. SERIAL_PROTOCOLPGM(" T:");
  2623. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2624. SERIAL_PROTOCOLPGM(" /");
  2625. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2626. #endif
  2627. #if HAS_TEMP_BED
  2628. SERIAL_PROTOCOLPGM(" B:");
  2629. SERIAL_PROTOCOL_F(degBed(), 1);
  2630. SERIAL_PROTOCOLPGM(" /");
  2631. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2632. #endif
  2633. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2634. SERIAL_PROTOCOLPGM(" T");
  2635. SERIAL_PROTOCOL(e);
  2636. SERIAL_PROTOCOLCHAR(':');
  2637. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2638. SERIAL_PROTOCOLPGM(" /");
  2639. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2640. }
  2641. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2642. SERIAL_ERROR_START;
  2643. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2644. #endif
  2645. SERIAL_PROTOCOLPGM(" @:");
  2646. #ifdef EXTRUDER_WATTS
  2647. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2648. SERIAL_PROTOCOLCHAR('W');
  2649. #else
  2650. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2651. #endif
  2652. SERIAL_PROTOCOLPGM(" B@:");
  2653. #ifdef BED_WATTS
  2654. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2655. SERIAL_PROTOCOLCHAR('W');
  2656. #else
  2657. SERIAL_PROTOCOL(getHeaterPower(-1));
  2658. #endif
  2659. #ifdef SHOW_TEMP_ADC_VALUES
  2660. #if HAS_TEMP_BED
  2661. SERIAL_PROTOCOLPGM(" ADC B:");
  2662. SERIAL_PROTOCOL_F(degBed(),1);
  2663. SERIAL_PROTOCOLPGM("C->");
  2664. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2665. #endif
  2666. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2667. SERIAL_PROTOCOLPGM(" T");
  2668. SERIAL_PROTOCOL(cur_extruder);
  2669. SERIAL_PROTOCOLCHAR(':');
  2670. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2671. SERIAL_PROTOCOLPGM("C->");
  2672. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2673. }
  2674. #endif
  2675. SERIAL_EOL;
  2676. }
  2677. #if HAS_FAN
  2678. /**
  2679. * M106: Set Fan Speed
  2680. */
  2681. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2682. /**
  2683. * M107: Fan Off
  2684. */
  2685. inline void gcode_M107() { fanSpeed = 0; }
  2686. #endif // HAS_FAN
  2687. /**
  2688. * M109: Wait for extruder(s) to reach temperature
  2689. */
  2690. inline void gcode_M109() {
  2691. if (setTargetedHotend(109)) return;
  2692. LCD_MESSAGEPGM(MSG_HEATING);
  2693. no_wait_for_cooling = code_seen('S');
  2694. if (no_wait_for_cooling || code_seen('R')) {
  2695. float temp = code_value();
  2696. setTargetHotend(temp, target_extruder);
  2697. #ifdef DUAL_X_CARRIAGE
  2698. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2699. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2700. #endif
  2701. }
  2702. #ifdef AUTOTEMP
  2703. autotemp_enabled = code_seen('F');
  2704. if (autotemp_enabled) autotemp_factor = code_value();
  2705. if (code_seen('S')) autotemp_min = code_value();
  2706. if (code_seen('B')) autotemp_max = code_value();
  2707. #endif
  2708. setWatch();
  2709. millis_t temp_ms = millis();
  2710. /* See if we are heating up or cooling down */
  2711. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2712. cancel_heatup = false;
  2713. #ifdef TEMP_RESIDENCY_TIME
  2714. long residency_start_ms = -1;
  2715. /* continue to loop until we have reached the target temp
  2716. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2717. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2718. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2719. #else
  2720. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2721. #endif //TEMP_RESIDENCY_TIME
  2722. { // while loop
  2723. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2724. SERIAL_PROTOCOLPGM("T:");
  2725. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2726. SERIAL_PROTOCOLPGM(" E:");
  2727. SERIAL_PROTOCOL((int)target_extruder);
  2728. #ifdef TEMP_RESIDENCY_TIME
  2729. SERIAL_PROTOCOLPGM(" W:");
  2730. if (residency_start_ms > -1) {
  2731. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2732. SERIAL_PROTOCOLLN(temp_ms);
  2733. }
  2734. else {
  2735. SERIAL_PROTOCOLLNPGM("?");
  2736. }
  2737. #else
  2738. SERIAL_EOL;
  2739. #endif
  2740. temp_ms = millis();
  2741. }
  2742. manage_heater();
  2743. manage_inactivity();
  2744. lcd_update();
  2745. #ifdef TEMP_RESIDENCY_TIME
  2746. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2747. // or when current temp falls outside the hysteresis after target temp was reached
  2748. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2749. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2750. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2751. {
  2752. residency_start_ms = millis();
  2753. }
  2754. #endif //TEMP_RESIDENCY_TIME
  2755. }
  2756. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2757. refresh_cmd_timeout();
  2758. print_job_start_ms = previous_cmd_ms;
  2759. }
  2760. #if HAS_TEMP_BED
  2761. /**
  2762. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2763. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2764. */
  2765. inline void gcode_M190() {
  2766. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2767. no_wait_for_cooling = code_seen('S');
  2768. if (no_wait_for_cooling || code_seen('R'))
  2769. setTargetBed(code_value());
  2770. millis_t temp_ms = millis();
  2771. cancel_heatup = false;
  2772. target_direction = isHeatingBed(); // true if heating, false if cooling
  2773. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2774. millis_t ms = millis();
  2775. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2776. temp_ms = ms;
  2777. float tt = degHotend(active_extruder);
  2778. SERIAL_PROTOCOLPGM("T:");
  2779. SERIAL_PROTOCOL(tt);
  2780. SERIAL_PROTOCOLPGM(" E:");
  2781. SERIAL_PROTOCOL((int)active_extruder);
  2782. SERIAL_PROTOCOLPGM(" B:");
  2783. SERIAL_PROTOCOL_F(degBed(), 1);
  2784. SERIAL_EOL;
  2785. }
  2786. manage_heater();
  2787. manage_inactivity();
  2788. lcd_update();
  2789. }
  2790. LCD_MESSAGEPGM(MSG_BED_DONE);
  2791. refresh_cmd_timeout();
  2792. }
  2793. #endif // HAS_TEMP_BED
  2794. /**
  2795. * M112: Emergency Stop
  2796. */
  2797. inline void gcode_M112() {
  2798. kill();
  2799. }
  2800. #ifdef BARICUDA
  2801. #if HAS_HEATER_1
  2802. /**
  2803. * M126: Heater 1 valve open
  2804. */
  2805. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2806. /**
  2807. * M127: Heater 1 valve close
  2808. */
  2809. inline void gcode_M127() { ValvePressure = 0; }
  2810. #endif
  2811. #if HAS_HEATER_2
  2812. /**
  2813. * M128: Heater 2 valve open
  2814. */
  2815. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2816. /**
  2817. * M129: Heater 2 valve close
  2818. */
  2819. inline void gcode_M129() { EtoPPressure = 0; }
  2820. #endif
  2821. #endif //BARICUDA
  2822. /**
  2823. * M140: Set bed temperature
  2824. */
  2825. inline void gcode_M140() {
  2826. if (code_seen('S')) setTargetBed(code_value());
  2827. }
  2828. #if HAS_POWER_SWITCH
  2829. /**
  2830. * M80: Turn on Power Supply
  2831. */
  2832. inline void gcode_M80() {
  2833. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2834. // If you have a switch on suicide pin, this is useful
  2835. // if you want to start another print with suicide feature after
  2836. // a print without suicide...
  2837. #if HAS_SUICIDE
  2838. OUT_WRITE(SUICIDE_PIN, HIGH);
  2839. #endif
  2840. #ifdef ULTIPANEL
  2841. powersupply = true;
  2842. LCD_MESSAGEPGM(WELCOME_MSG);
  2843. lcd_update();
  2844. #endif
  2845. }
  2846. #endif // HAS_POWER_SWITCH
  2847. /**
  2848. * M81: Turn off Power, including Power Supply, if there is one.
  2849. *
  2850. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2851. */
  2852. inline void gcode_M81() {
  2853. disable_all_heaters();
  2854. st_synchronize();
  2855. disable_e0();
  2856. disable_e1();
  2857. disable_e2();
  2858. disable_e3();
  2859. finishAndDisableSteppers();
  2860. fanSpeed = 0;
  2861. delay(1000); // Wait 1 second before switching off
  2862. #if HAS_SUICIDE
  2863. st_synchronize();
  2864. suicide();
  2865. #elif HAS_POWER_SWITCH
  2866. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2867. #endif
  2868. #ifdef ULTIPANEL
  2869. #if HAS_POWER_SWITCH
  2870. powersupply = false;
  2871. #endif
  2872. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2873. lcd_update();
  2874. #endif
  2875. }
  2876. /**
  2877. * M82: Set E codes absolute (default)
  2878. */
  2879. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2880. /**
  2881. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2882. */
  2883. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2884. /**
  2885. * M18, M84: Disable all stepper motors
  2886. */
  2887. inline void gcode_M18_M84() {
  2888. if (code_seen('S')) {
  2889. stepper_inactive_time = code_value() * 1000;
  2890. }
  2891. else {
  2892. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2893. if (all_axis) {
  2894. st_synchronize();
  2895. disable_e0();
  2896. disable_e1();
  2897. disable_e2();
  2898. disable_e3();
  2899. finishAndDisableSteppers();
  2900. }
  2901. else {
  2902. st_synchronize();
  2903. if (code_seen('X')) disable_x();
  2904. if (code_seen('Y')) disable_y();
  2905. if (code_seen('Z')) disable_z();
  2906. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2907. if (code_seen('E')) {
  2908. disable_e0();
  2909. disable_e1();
  2910. disable_e2();
  2911. disable_e3();
  2912. }
  2913. #endif
  2914. }
  2915. }
  2916. }
  2917. /**
  2918. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2919. */
  2920. inline void gcode_M85() {
  2921. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2922. }
  2923. /**
  2924. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2925. */
  2926. inline void gcode_M92() {
  2927. for(int8_t i=0; i < NUM_AXIS; i++) {
  2928. if (code_seen(axis_codes[i])) {
  2929. if (i == E_AXIS) {
  2930. float value = code_value();
  2931. if (value < 20.0) {
  2932. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2933. max_e_jerk *= factor;
  2934. max_feedrate[i] *= factor;
  2935. axis_steps_per_sqr_second[i] *= factor;
  2936. }
  2937. axis_steps_per_unit[i] = value;
  2938. }
  2939. else {
  2940. axis_steps_per_unit[i] = code_value();
  2941. }
  2942. }
  2943. }
  2944. }
  2945. /**
  2946. * M114: Output current position to serial port
  2947. */
  2948. inline void gcode_M114() {
  2949. SERIAL_PROTOCOLPGM("X:");
  2950. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2951. SERIAL_PROTOCOLPGM(" Y:");
  2952. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2953. SERIAL_PROTOCOLPGM(" Z:");
  2954. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2955. SERIAL_PROTOCOLPGM(" E:");
  2956. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2957. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2958. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2959. SERIAL_PROTOCOLPGM(" Y:");
  2960. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2961. SERIAL_PROTOCOLPGM(" Z:");
  2962. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2963. SERIAL_EOL;
  2964. #ifdef SCARA
  2965. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2966. SERIAL_PROTOCOL(delta[X_AXIS]);
  2967. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2968. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2969. SERIAL_EOL;
  2970. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2971. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2972. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2973. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2974. SERIAL_EOL;
  2975. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2976. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2977. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2978. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2979. SERIAL_EOL; SERIAL_EOL;
  2980. #endif
  2981. }
  2982. /**
  2983. * M115: Capabilities string
  2984. */
  2985. inline void gcode_M115() {
  2986. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2987. }
  2988. /**
  2989. * M117: Set LCD Status Message
  2990. */
  2991. inline void gcode_M117() {
  2992. char* codepos = strchr_pointer + 5;
  2993. char* starpos = strchr(codepos, '*');
  2994. if (starpos) *starpos = '\0';
  2995. lcd_setstatus(codepos);
  2996. }
  2997. /**
  2998. * M119: Output endstop states to serial output
  2999. */
  3000. inline void gcode_M119() {
  3001. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3002. #if HAS_X_MIN
  3003. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3004. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3005. #endif
  3006. #if HAS_X_MAX
  3007. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3008. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3009. #endif
  3010. #if HAS_Y_MIN
  3011. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3012. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3013. #endif
  3014. #if HAS_Y_MAX
  3015. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3016. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3017. #endif
  3018. #if HAS_Z_MIN
  3019. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3020. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3021. #endif
  3022. #if HAS_Z_MAX
  3023. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3024. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3025. #endif
  3026. #if HAS_Z2_MAX
  3027. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3028. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3029. #endif
  3030. #if HAS_Z_PROBE
  3031. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3032. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3033. #endif
  3034. }
  3035. /**
  3036. * M120: Enable endstops
  3037. */
  3038. inline void gcode_M120() { enable_endstops(false); }
  3039. /**
  3040. * M121: Disable endstops
  3041. */
  3042. inline void gcode_M121() { enable_endstops(true); }
  3043. #ifdef BLINKM
  3044. /**
  3045. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3046. */
  3047. inline void gcode_M150() {
  3048. SendColors(
  3049. code_seen('R') ? (byte)code_value_short() : 0,
  3050. code_seen('U') ? (byte)code_value_short() : 0,
  3051. code_seen('B') ? (byte)code_value_short() : 0
  3052. );
  3053. }
  3054. #endif // BLINKM
  3055. /**
  3056. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3057. * T<extruder>
  3058. * D<millimeters>
  3059. */
  3060. inline void gcode_M200() {
  3061. int tmp_extruder = active_extruder;
  3062. if (code_seen('T')) {
  3063. tmp_extruder = code_value_short();
  3064. if (tmp_extruder >= EXTRUDERS) {
  3065. SERIAL_ECHO_START;
  3066. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3067. return;
  3068. }
  3069. }
  3070. if (code_seen('D')) {
  3071. float diameter = code_value();
  3072. // setting any extruder filament size disables volumetric on the assumption that
  3073. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3074. // for all extruders
  3075. volumetric_enabled = (diameter != 0.0);
  3076. if (volumetric_enabled) {
  3077. filament_size[tmp_extruder] = diameter;
  3078. // make sure all extruders have some sane value for the filament size
  3079. for (int i=0; i<EXTRUDERS; i++)
  3080. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3081. }
  3082. }
  3083. else {
  3084. //reserved for setting filament diameter via UFID or filament measuring device
  3085. return;
  3086. }
  3087. calculate_volumetric_multipliers();
  3088. }
  3089. /**
  3090. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3091. */
  3092. inline void gcode_M201() {
  3093. for (int8_t i=0; i < NUM_AXIS; i++) {
  3094. if (code_seen(axis_codes[i])) {
  3095. max_acceleration_units_per_sq_second[i] = code_value();
  3096. }
  3097. }
  3098. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3099. reset_acceleration_rates();
  3100. }
  3101. #if 0 // Not used for Sprinter/grbl gen6
  3102. inline void gcode_M202() {
  3103. for(int8_t i=0; i < NUM_AXIS; i++) {
  3104. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3105. }
  3106. }
  3107. #endif
  3108. /**
  3109. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3110. */
  3111. inline void gcode_M203() {
  3112. for (int8_t i=0; i < NUM_AXIS; i++) {
  3113. if (code_seen(axis_codes[i])) {
  3114. max_feedrate[i] = code_value();
  3115. }
  3116. }
  3117. }
  3118. /**
  3119. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3120. *
  3121. * P = Printing moves
  3122. * R = Retract only (no X, Y, Z) moves
  3123. * T = Travel (non printing) moves
  3124. *
  3125. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3126. */
  3127. inline void gcode_M204() {
  3128. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3129. acceleration = code_value();
  3130. travel_acceleration = acceleration;
  3131. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3132. SERIAL_EOL;
  3133. }
  3134. if (code_seen('P')) {
  3135. acceleration = code_value();
  3136. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3137. SERIAL_EOL;
  3138. }
  3139. if (code_seen('R')) {
  3140. retract_acceleration = code_value();
  3141. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3142. SERIAL_EOL;
  3143. }
  3144. if (code_seen('T')) {
  3145. travel_acceleration = code_value();
  3146. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3147. SERIAL_EOL;
  3148. }
  3149. }
  3150. /**
  3151. * M205: Set Advanced Settings
  3152. *
  3153. * S = Min Feed Rate (mm/s)
  3154. * T = Min Travel Feed Rate (mm/s)
  3155. * B = Min Segment Time (µs)
  3156. * X = Max XY Jerk (mm/s/s)
  3157. * Z = Max Z Jerk (mm/s/s)
  3158. * E = Max E Jerk (mm/s/s)
  3159. */
  3160. inline void gcode_M205() {
  3161. if (code_seen('S')) minimumfeedrate = code_value();
  3162. if (code_seen('T')) mintravelfeedrate = code_value();
  3163. if (code_seen('B')) minsegmenttime = code_value();
  3164. if (code_seen('X')) max_xy_jerk = code_value();
  3165. if (code_seen('Z')) max_z_jerk = code_value();
  3166. if (code_seen('E')) max_e_jerk = code_value();
  3167. }
  3168. /**
  3169. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3170. */
  3171. inline void gcode_M206() {
  3172. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3173. if (code_seen(axis_codes[i])) {
  3174. home_offset[i] = code_value();
  3175. }
  3176. }
  3177. #ifdef SCARA
  3178. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3179. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3180. #endif
  3181. }
  3182. #ifdef DELTA
  3183. /**
  3184. * M665: Set delta configurations
  3185. *
  3186. * L = diagonal rod
  3187. * R = delta radius
  3188. * S = segments per second
  3189. */
  3190. inline void gcode_M665() {
  3191. if (code_seen('L')) delta_diagonal_rod = code_value();
  3192. if (code_seen('R')) delta_radius = code_value();
  3193. if (code_seen('S')) delta_segments_per_second = code_value();
  3194. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3195. }
  3196. /**
  3197. * M666: Set delta endstop adjustment
  3198. */
  3199. inline void gcode_M666() {
  3200. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3201. if (code_seen(axis_codes[i])) {
  3202. endstop_adj[i] = code_value();
  3203. }
  3204. }
  3205. }
  3206. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3207. /**
  3208. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3209. */
  3210. inline void gcode_M666() {
  3211. if (code_seen('Z')) z_endstop_adj = code_value();
  3212. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3213. SERIAL_EOL;
  3214. }
  3215. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3216. #ifdef FWRETRACT
  3217. /**
  3218. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3219. */
  3220. inline void gcode_M207() {
  3221. if (code_seen('S')) retract_length = code_value();
  3222. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3223. if (code_seen('Z')) retract_zlift = code_value();
  3224. }
  3225. /**
  3226. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3227. */
  3228. inline void gcode_M208() {
  3229. if (code_seen('S')) retract_recover_length = code_value();
  3230. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3231. }
  3232. /**
  3233. * M209: Enable automatic retract (M209 S1)
  3234. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3235. */
  3236. inline void gcode_M209() {
  3237. if (code_seen('S')) {
  3238. int t = code_value_short();
  3239. switch(t) {
  3240. case 0:
  3241. autoretract_enabled = false;
  3242. break;
  3243. case 1:
  3244. autoretract_enabled = true;
  3245. break;
  3246. default:
  3247. SERIAL_ECHO_START;
  3248. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3249. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3250. SERIAL_ECHOLNPGM("\"");
  3251. return;
  3252. }
  3253. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3254. }
  3255. }
  3256. #endif // FWRETRACT
  3257. #if EXTRUDERS > 1
  3258. /**
  3259. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3260. */
  3261. inline void gcode_M218() {
  3262. if (setTargetedHotend(218)) return;
  3263. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3264. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3265. #ifdef DUAL_X_CARRIAGE
  3266. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3267. #endif
  3268. SERIAL_ECHO_START;
  3269. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3270. for (int e = 0; e < EXTRUDERS; e++) {
  3271. SERIAL_CHAR(' ');
  3272. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3273. SERIAL_CHAR(',');
  3274. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3275. #ifdef DUAL_X_CARRIAGE
  3276. SERIAL_CHAR(',');
  3277. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3278. #endif
  3279. }
  3280. SERIAL_EOL;
  3281. }
  3282. #endif // EXTRUDERS > 1
  3283. /**
  3284. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3285. */
  3286. inline void gcode_M220() {
  3287. if (code_seen('S')) feedrate_multiplier = code_value();
  3288. }
  3289. /**
  3290. * M221: Set extrusion percentage (M221 T0 S95)
  3291. */
  3292. inline void gcode_M221() {
  3293. if (code_seen('S')) {
  3294. int sval = code_value();
  3295. if (code_seen('T')) {
  3296. if (setTargetedHotend(221)) return;
  3297. extruder_multiply[target_extruder] = sval;
  3298. }
  3299. else {
  3300. extruder_multiply[active_extruder] = sval;
  3301. }
  3302. }
  3303. }
  3304. /**
  3305. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3306. */
  3307. inline void gcode_M226() {
  3308. if (code_seen('P')) {
  3309. int pin_number = code_value();
  3310. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3311. if (pin_state >= -1 && pin_state <= 1) {
  3312. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3313. if (sensitive_pins[i] == pin_number) {
  3314. pin_number = -1;
  3315. break;
  3316. }
  3317. }
  3318. if (pin_number > -1) {
  3319. int target = LOW;
  3320. st_synchronize();
  3321. pinMode(pin_number, INPUT);
  3322. switch(pin_state){
  3323. case 1:
  3324. target = HIGH;
  3325. break;
  3326. case 0:
  3327. target = LOW;
  3328. break;
  3329. case -1:
  3330. target = !digitalRead(pin_number);
  3331. break;
  3332. }
  3333. while(digitalRead(pin_number) != target) {
  3334. manage_heater();
  3335. manage_inactivity();
  3336. lcd_update();
  3337. }
  3338. } // pin_number > -1
  3339. } // pin_state -1 0 1
  3340. } // code_seen('P')
  3341. }
  3342. #if NUM_SERVOS > 0
  3343. /**
  3344. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3345. */
  3346. inline void gcode_M280() {
  3347. int servo_index = code_seen('P') ? code_value() : -1;
  3348. int servo_position = 0;
  3349. if (code_seen('S')) {
  3350. servo_position = code_value();
  3351. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3352. #if SERVO_LEVELING
  3353. servo[servo_index].attach(0);
  3354. #endif
  3355. servo[servo_index].write(servo_position);
  3356. #if SERVO_LEVELING
  3357. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3358. servo[servo_index].detach();
  3359. #endif
  3360. }
  3361. else {
  3362. SERIAL_ECHO_START;
  3363. SERIAL_ECHO("Servo ");
  3364. SERIAL_ECHO(servo_index);
  3365. SERIAL_ECHOLN(" out of range");
  3366. }
  3367. }
  3368. else if (servo_index >= 0) {
  3369. SERIAL_PROTOCOL(MSG_OK);
  3370. SERIAL_PROTOCOL(" Servo ");
  3371. SERIAL_PROTOCOL(servo_index);
  3372. SERIAL_PROTOCOL(": ");
  3373. SERIAL_PROTOCOL(servo[servo_index].read());
  3374. SERIAL_EOL;
  3375. }
  3376. }
  3377. #endif // NUM_SERVOS > 0
  3378. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3379. /**
  3380. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3381. */
  3382. inline void gcode_M300() {
  3383. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3384. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3385. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3386. lcd_buzz(beepP, beepS);
  3387. }
  3388. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3389. #ifdef PIDTEMP
  3390. /**
  3391. * M301: Set PID parameters P I D (and optionally C)
  3392. */
  3393. inline void gcode_M301() {
  3394. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3395. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3396. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3397. if (e < EXTRUDERS) { // catch bad input value
  3398. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3399. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3400. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3401. #ifdef PID_ADD_EXTRUSION_RATE
  3402. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3403. #endif
  3404. updatePID();
  3405. SERIAL_PROTOCOL(MSG_OK);
  3406. #ifdef PID_PARAMS_PER_EXTRUDER
  3407. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3408. SERIAL_PROTOCOL(e);
  3409. #endif // PID_PARAMS_PER_EXTRUDER
  3410. SERIAL_PROTOCOL(" p:");
  3411. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3412. SERIAL_PROTOCOL(" i:");
  3413. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3414. SERIAL_PROTOCOL(" d:");
  3415. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3416. #ifdef PID_ADD_EXTRUSION_RATE
  3417. SERIAL_PROTOCOL(" c:");
  3418. //Kc does not have scaling applied above, or in resetting defaults
  3419. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3420. #endif
  3421. SERIAL_EOL;
  3422. }
  3423. else {
  3424. SERIAL_ECHO_START;
  3425. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3426. }
  3427. }
  3428. #endif // PIDTEMP
  3429. #ifdef PIDTEMPBED
  3430. inline void gcode_M304() {
  3431. if (code_seen('P')) bedKp = code_value();
  3432. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3433. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3434. updatePID();
  3435. SERIAL_PROTOCOL(MSG_OK);
  3436. SERIAL_PROTOCOL(" p:");
  3437. SERIAL_PROTOCOL(bedKp);
  3438. SERIAL_PROTOCOL(" i:");
  3439. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3440. SERIAL_PROTOCOL(" d:");
  3441. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3442. SERIAL_EOL;
  3443. }
  3444. #endif // PIDTEMPBED
  3445. #if defined(CHDK) || HAS_PHOTOGRAPH
  3446. /**
  3447. * M240: Trigger a camera by emulating a Canon RC-1
  3448. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3449. */
  3450. inline void gcode_M240() {
  3451. #ifdef CHDK
  3452. OUT_WRITE(CHDK, HIGH);
  3453. chdkHigh = millis();
  3454. chdkActive = true;
  3455. #elif HAS_PHOTOGRAPH
  3456. const uint8_t NUM_PULSES = 16;
  3457. const float PULSE_LENGTH = 0.01524;
  3458. for (int i = 0; i < NUM_PULSES; i++) {
  3459. WRITE(PHOTOGRAPH_PIN, HIGH);
  3460. _delay_ms(PULSE_LENGTH);
  3461. WRITE(PHOTOGRAPH_PIN, LOW);
  3462. _delay_ms(PULSE_LENGTH);
  3463. }
  3464. delay(7.33);
  3465. for (int i = 0; i < NUM_PULSES; i++) {
  3466. WRITE(PHOTOGRAPH_PIN, HIGH);
  3467. _delay_ms(PULSE_LENGTH);
  3468. WRITE(PHOTOGRAPH_PIN, LOW);
  3469. _delay_ms(PULSE_LENGTH);
  3470. }
  3471. #endif // !CHDK && HAS_PHOTOGRAPH
  3472. }
  3473. #endif // CHDK || PHOTOGRAPH_PIN
  3474. #ifdef HAS_LCD_CONTRAST
  3475. /**
  3476. * M250: Read and optionally set the LCD contrast
  3477. */
  3478. inline void gcode_M250() {
  3479. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3480. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3481. SERIAL_PROTOCOL(lcd_contrast);
  3482. SERIAL_EOL;
  3483. }
  3484. #endif // HAS_LCD_CONTRAST
  3485. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3486. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3487. /**
  3488. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3489. */
  3490. inline void gcode_M302() {
  3491. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3492. }
  3493. #endif // PREVENT_DANGEROUS_EXTRUDE
  3494. /**
  3495. * M303: PID relay autotune
  3496. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3497. * E<extruder> (-1 for the bed)
  3498. * C<cycles>
  3499. */
  3500. inline void gcode_M303() {
  3501. int e = code_seen('E') ? code_value_short() : 0;
  3502. int c = code_seen('C') ? code_value_short() : 5;
  3503. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3504. PID_autotune(temp, e, c);
  3505. }
  3506. #ifdef SCARA
  3507. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3508. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3509. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3510. if (IsRunning()) {
  3511. //get_coordinates(); // For X Y Z E F
  3512. delta[X_AXIS] = delta_x;
  3513. delta[Y_AXIS] = delta_y;
  3514. calculate_SCARA_forward_Transform(delta);
  3515. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3516. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3517. prepare_move();
  3518. //ClearToSend();
  3519. return true;
  3520. }
  3521. return false;
  3522. }
  3523. /**
  3524. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3525. */
  3526. inline bool gcode_M360() {
  3527. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3528. return SCARA_move_to_cal(0, 120);
  3529. }
  3530. /**
  3531. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3532. */
  3533. inline bool gcode_M361() {
  3534. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3535. return SCARA_move_to_cal(90, 130);
  3536. }
  3537. /**
  3538. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3539. */
  3540. inline bool gcode_M362() {
  3541. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3542. return SCARA_move_to_cal(60, 180);
  3543. }
  3544. /**
  3545. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3546. */
  3547. inline bool gcode_M363() {
  3548. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3549. return SCARA_move_to_cal(50, 90);
  3550. }
  3551. /**
  3552. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3553. */
  3554. inline bool gcode_M364() {
  3555. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3556. return SCARA_move_to_cal(45, 135);
  3557. }
  3558. /**
  3559. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3560. */
  3561. inline void gcode_M365() {
  3562. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3563. if (code_seen(axis_codes[i])) {
  3564. axis_scaling[i] = code_value();
  3565. }
  3566. }
  3567. }
  3568. #endif // SCARA
  3569. #ifdef EXT_SOLENOID
  3570. void enable_solenoid(uint8_t num) {
  3571. switch(num) {
  3572. case 0:
  3573. OUT_WRITE(SOL0_PIN, HIGH);
  3574. break;
  3575. #if HAS_SOLENOID_1
  3576. case 1:
  3577. OUT_WRITE(SOL1_PIN, HIGH);
  3578. break;
  3579. #endif
  3580. #if HAS_SOLENOID_2
  3581. case 2:
  3582. OUT_WRITE(SOL2_PIN, HIGH);
  3583. break;
  3584. #endif
  3585. #if HAS_SOLENOID_3
  3586. case 3:
  3587. OUT_WRITE(SOL3_PIN, HIGH);
  3588. break;
  3589. #endif
  3590. default:
  3591. SERIAL_ECHO_START;
  3592. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3593. break;
  3594. }
  3595. }
  3596. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3597. void disable_all_solenoids() {
  3598. OUT_WRITE(SOL0_PIN, LOW);
  3599. OUT_WRITE(SOL1_PIN, LOW);
  3600. OUT_WRITE(SOL2_PIN, LOW);
  3601. OUT_WRITE(SOL3_PIN, LOW);
  3602. }
  3603. /**
  3604. * M380: Enable solenoid on the active extruder
  3605. */
  3606. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3607. /**
  3608. * M381: Disable all solenoids
  3609. */
  3610. inline void gcode_M381() { disable_all_solenoids(); }
  3611. #endif // EXT_SOLENOID
  3612. /**
  3613. * M400: Finish all moves
  3614. */
  3615. inline void gcode_M400() { st_synchronize(); }
  3616. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3617. /**
  3618. * M401: Engage Z Servo endstop if available
  3619. */
  3620. inline void gcode_M401() { deploy_z_probe(); }
  3621. /**
  3622. * M402: Retract Z Servo endstop if enabled
  3623. */
  3624. inline void gcode_M402() { stow_z_probe(); }
  3625. #endif
  3626. #ifdef FILAMENT_SENSOR
  3627. /**
  3628. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3629. */
  3630. inline void gcode_M404() {
  3631. #if HAS_FILWIDTH
  3632. if (code_seen('W')) {
  3633. filament_width_nominal = code_value();
  3634. }
  3635. else {
  3636. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3637. SERIAL_PROTOCOLLN(filament_width_nominal);
  3638. }
  3639. #endif
  3640. }
  3641. /**
  3642. * M405: Turn on filament sensor for control
  3643. */
  3644. inline void gcode_M405() {
  3645. if (code_seen('D')) meas_delay_cm = code_value();
  3646. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3647. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3648. int temp_ratio = widthFil_to_size_ratio();
  3649. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3650. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3651. delay_index1 = delay_index2 = 0;
  3652. }
  3653. filament_sensor = true;
  3654. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3655. //SERIAL_PROTOCOL(filament_width_meas);
  3656. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3657. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3658. }
  3659. /**
  3660. * M406: Turn off filament sensor for control
  3661. */
  3662. inline void gcode_M406() { filament_sensor = false; }
  3663. /**
  3664. * M407: Get measured filament diameter on serial output
  3665. */
  3666. inline void gcode_M407() {
  3667. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3668. SERIAL_PROTOCOLLN(filament_width_meas);
  3669. }
  3670. #endif // FILAMENT_SENSOR
  3671. /**
  3672. * M410: Quickstop - Abort all planned moves
  3673. *
  3674. * This will stop the carriages mid-move, so most likely they
  3675. * will be out of sync with the stepper position after this.
  3676. */
  3677. inline void gcode_M410() { quickStop(); }
  3678. /**
  3679. * M500: Store settings in EEPROM
  3680. */
  3681. inline void gcode_M500() {
  3682. Config_StoreSettings();
  3683. }
  3684. /**
  3685. * M501: Read settings from EEPROM
  3686. */
  3687. inline void gcode_M501() {
  3688. Config_RetrieveSettings();
  3689. }
  3690. /**
  3691. * M502: Revert to default settings
  3692. */
  3693. inline void gcode_M502() {
  3694. Config_ResetDefault();
  3695. }
  3696. /**
  3697. * M503: print settings currently in memory
  3698. */
  3699. inline void gcode_M503() {
  3700. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3701. }
  3702. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3703. /**
  3704. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3705. */
  3706. inline void gcode_M540() {
  3707. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3708. }
  3709. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3710. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3711. inline void gcode_SET_Z_PROBE_OFFSET() {
  3712. float value;
  3713. if (code_seen('Z')) {
  3714. value = code_value();
  3715. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3716. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3717. SERIAL_ECHO_START;
  3718. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3719. SERIAL_EOL;
  3720. }
  3721. else {
  3722. SERIAL_ECHO_START;
  3723. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3724. SERIAL_ECHOPGM(MSG_Z_MIN);
  3725. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3726. SERIAL_ECHOPGM(MSG_Z_MAX);
  3727. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3728. SERIAL_EOL;
  3729. }
  3730. }
  3731. else {
  3732. SERIAL_ECHO_START;
  3733. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3734. SERIAL_ECHO(-zprobe_zoffset);
  3735. SERIAL_EOL;
  3736. }
  3737. }
  3738. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3739. #ifdef FILAMENTCHANGEENABLE
  3740. /**
  3741. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3742. */
  3743. inline void gcode_M600() {
  3744. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3745. for (int i=0; i<NUM_AXIS; i++)
  3746. target[i] = lastpos[i] = current_position[i];
  3747. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3748. #ifdef DELTA
  3749. #define RUNPLAN calculate_delta(target); BASICPLAN
  3750. #else
  3751. #define RUNPLAN BASICPLAN
  3752. #endif
  3753. //retract by E
  3754. if (code_seen('E')) target[E_AXIS] += code_value();
  3755. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3756. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3757. #endif
  3758. RUNPLAN;
  3759. //lift Z
  3760. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3761. #ifdef FILAMENTCHANGE_ZADD
  3762. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3763. #endif
  3764. RUNPLAN;
  3765. //move xy
  3766. if (code_seen('X')) target[X_AXIS] = code_value();
  3767. #ifdef FILAMENTCHANGE_XPOS
  3768. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3769. #endif
  3770. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3771. #ifdef FILAMENTCHANGE_YPOS
  3772. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3773. #endif
  3774. RUNPLAN;
  3775. if (code_seen('L')) target[E_AXIS] += code_value();
  3776. #ifdef FILAMENTCHANGE_FINALRETRACT
  3777. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3778. #endif
  3779. RUNPLAN;
  3780. //finish moves
  3781. st_synchronize();
  3782. //disable extruder steppers so filament can be removed
  3783. disable_e0();
  3784. disable_e1();
  3785. disable_e2();
  3786. disable_e3();
  3787. delay(100);
  3788. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3789. uint8_t cnt = 0;
  3790. while (!lcd_clicked()) {
  3791. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3792. manage_heater();
  3793. manage_inactivity(true);
  3794. lcd_update();
  3795. } // while(!lcd_clicked)
  3796. //return to normal
  3797. if (code_seen('L')) target[E_AXIS] -= code_value();
  3798. #ifdef FILAMENTCHANGE_FINALRETRACT
  3799. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3800. #endif
  3801. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3802. plan_set_e_position(current_position[E_AXIS]);
  3803. RUNPLAN; //should do nothing
  3804. lcd_reset_alert_level();
  3805. #ifdef DELTA
  3806. calculate_delta(lastpos);
  3807. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3808. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3809. #else
  3810. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3811. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3812. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3813. #endif
  3814. #ifdef FILAMENT_RUNOUT_SENSOR
  3815. filrunoutEnqueued = false;
  3816. #endif
  3817. }
  3818. #endif // FILAMENTCHANGEENABLE
  3819. #ifdef DUAL_X_CARRIAGE
  3820. /**
  3821. * M605: Set dual x-carriage movement mode
  3822. *
  3823. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3824. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3825. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3826. * millimeters x-offset and an optional differential hotend temperature of
  3827. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3828. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3829. *
  3830. * Note: the X axis should be homed after changing dual x-carriage mode.
  3831. */
  3832. inline void gcode_M605() {
  3833. st_synchronize();
  3834. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3835. switch(dual_x_carriage_mode) {
  3836. case DXC_DUPLICATION_MODE:
  3837. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3838. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3839. SERIAL_ECHO_START;
  3840. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3841. SERIAL_CHAR(' ');
  3842. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3843. SERIAL_CHAR(',');
  3844. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3845. SERIAL_CHAR(' ');
  3846. SERIAL_ECHO(duplicate_extruder_x_offset);
  3847. SERIAL_CHAR(',');
  3848. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3849. break;
  3850. case DXC_FULL_CONTROL_MODE:
  3851. case DXC_AUTO_PARK_MODE:
  3852. break;
  3853. default:
  3854. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3855. break;
  3856. }
  3857. active_extruder_parked = false;
  3858. extruder_duplication_enabled = false;
  3859. delayed_move_time = 0;
  3860. }
  3861. #endif // DUAL_X_CARRIAGE
  3862. /**
  3863. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3864. */
  3865. inline void gcode_M907() {
  3866. #if HAS_DIGIPOTSS
  3867. for (int i=0;i<NUM_AXIS;i++)
  3868. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3869. if (code_seen('B')) digipot_current(4, code_value());
  3870. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3871. #endif
  3872. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3873. if (code_seen('X')) digipot_current(0, code_value());
  3874. #endif
  3875. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3876. if (code_seen('Z')) digipot_current(1, code_value());
  3877. #endif
  3878. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3879. if (code_seen('E')) digipot_current(2, code_value());
  3880. #endif
  3881. #ifdef DIGIPOT_I2C
  3882. // this one uses actual amps in floating point
  3883. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3884. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3885. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3886. #endif
  3887. }
  3888. #if HAS_DIGIPOTSS
  3889. /**
  3890. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3891. */
  3892. inline void gcode_M908() {
  3893. digitalPotWrite(
  3894. code_seen('P') ? code_value() : 0,
  3895. code_seen('S') ? code_value() : 0
  3896. );
  3897. }
  3898. #endif // HAS_DIGIPOTSS
  3899. #if HAS_MICROSTEPS
  3900. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3901. inline void gcode_M350() {
  3902. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3903. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3904. if(code_seen('B')) microstep_mode(4,code_value());
  3905. microstep_readings();
  3906. }
  3907. /**
  3908. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3909. * S# determines MS1 or MS2, X# sets the pin high/low.
  3910. */
  3911. inline void gcode_M351() {
  3912. if (code_seen('S')) switch(code_value_short()) {
  3913. case 1:
  3914. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3915. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3916. break;
  3917. case 2:
  3918. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3919. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3920. break;
  3921. }
  3922. microstep_readings();
  3923. }
  3924. #endif // HAS_MICROSTEPS
  3925. /**
  3926. * M999: Restart after being stopped
  3927. */
  3928. inline void gcode_M999() {
  3929. Running = true;
  3930. lcd_reset_alert_level();
  3931. gcode_LastN = Stopped_gcode_LastN;
  3932. FlushSerialRequestResend();
  3933. }
  3934. /**
  3935. * T0-T3: Switch tool, usually switching extruders
  3936. */
  3937. inline void gcode_T() {
  3938. int tmp_extruder = code_value();
  3939. if (tmp_extruder >= EXTRUDERS) {
  3940. SERIAL_ECHO_START;
  3941. SERIAL_CHAR('T');
  3942. SERIAL_ECHO(tmp_extruder);
  3943. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3944. }
  3945. else {
  3946. target_extruder = tmp_extruder;
  3947. #if EXTRUDERS > 1
  3948. bool make_move = false;
  3949. #endif
  3950. if (code_seen('F')) {
  3951. #if EXTRUDERS > 1
  3952. make_move = true;
  3953. #endif
  3954. next_feedrate = code_value();
  3955. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3956. }
  3957. #if EXTRUDERS > 1
  3958. if (tmp_extruder != active_extruder) {
  3959. // Save current position to return to after applying extruder offset
  3960. set_destination_to_current();
  3961. #ifdef DUAL_X_CARRIAGE
  3962. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3963. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3964. // Park old head: 1) raise 2) move to park position 3) lower
  3965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3966. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3967. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3968. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3969. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3970. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3971. st_synchronize();
  3972. }
  3973. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3974. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3975. extruder_offset[Y_AXIS][active_extruder] +
  3976. extruder_offset[Y_AXIS][tmp_extruder];
  3977. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3978. extruder_offset[Z_AXIS][active_extruder] +
  3979. extruder_offset[Z_AXIS][tmp_extruder];
  3980. active_extruder = tmp_extruder;
  3981. // This function resets the max/min values - the current position may be overwritten below.
  3982. axis_is_at_home(X_AXIS);
  3983. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3984. current_position[X_AXIS] = inactive_extruder_x_pos;
  3985. inactive_extruder_x_pos = destination[X_AXIS];
  3986. }
  3987. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3988. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3989. if (active_extruder == 0 || active_extruder_parked)
  3990. current_position[X_AXIS] = inactive_extruder_x_pos;
  3991. else
  3992. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3993. inactive_extruder_x_pos = destination[X_AXIS];
  3994. extruder_duplication_enabled = false;
  3995. }
  3996. else {
  3997. // record raised toolhead position for use by unpark
  3998. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3999. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4000. active_extruder_parked = true;
  4001. delayed_move_time = 0;
  4002. }
  4003. #else // !DUAL_X_CARRIAGE
  4004. // Offset extruder (only by XY)
  4005. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4006. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4007. // Set the new active extruder and position
  4008. active_extruder = tmp_extruder;
  4009. #endif // !DUAL_X_CARRIAGE
  4010. #ifdef DELTA
  4011. sync_plan_position_delta();
  4012. #else
  4013. sync_plan_position();
  4014. #endif
  4015. // Move to the old position if 'F' was in the parameters
  4016. if (make_move && IsRunning()) prepare_move();
  4017. }
  4018. #ifdef EXT_SOLENOID
  4019. st_synchronize();
  4020. disable_all_solenoids();
  4021. enable_solenoid_on_active_extruder();
  4022. #endif // EXT_SOLENOID
  4023. #endif // EXTRUDERS > 1
  4024. SERIAL_ECHO_START;
  4025. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4026. SERIAL_PROTOCOLLN((int)active_extruder);
  4027. }
  4028. }
  4029. /**
  4030. * Process Commands and dispatch them to handlers
  4031. * This is called from the main loop()
  4032. */
  4033. void process_commands() {
  4034. if (code_seen('G')) {
  4035. int gCode = code_value_short();
  4036. switch(gCode) {
  4037. // G0, G1
  4038. case 0:
  4039. case 1:
  4040. gcode_G0_G1();
  4041. break;
  4042. // G2, G3
  4043. #ifndef SCARA
  4044. case 2: // G2 - CW ARC
  4045. case 3: // G3 - CCW ARC
  4046. gcode_G2_G3(gCode == 2);
  4047. break;
  4048. #endif
  4049. // G4 Dwell
  4050. case 4:
  4051. gcode_G4();
  4052. break;
  4053. #ifdef FWRETRACT
  4054. case 10: // G10: retract
  4055. case 11: // G11: retract_recover
  4056. gcode_G10_G11(gCode == 10);
  4057. break;
  4058. #endif //FWRETRACT
  4059. case 28: // G28: Home all axes, one at a time
  4060. gcode_G28();
  4061. break;
  4062. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4063. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4064. gcode_G29();
  4065. break;
  4066. #endif
  4067. #ifdef ENABLE_AUTO_BED_LEVELING
  4068. #ifndef Z_PROBE_SLED
  4069. case 30: // G30 Single Z Probe
  4070. gcode_G30();
  4071. break;
  4072. #else // Z_PROBE_SLED
  4073. case 31: // G31: dock the sled
  4074. case 32: // G32: undock the sled
  4075. dock_sled(gCode == 31);
  4076. break;
  4077. #endif // Z_PROBE_SLED
  4078. #endif // ENABLE_AUTO_BED_LEVELING
  4079. case 90: // G90
  4080. relative_mode = false;
  4081. break;
  4082. case 91: // G91
  4083. relative_mode = true;
  4084. break;
  4085. case 92: // G92
  4086. gcode_G92();
  4087. break;
  4088. }
  4089. }
  4090. else if (code_seen('M')) {
  4091. switch(code_value_short()) {
  4092. #ifdef ULTIPANEL
  4093. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4094. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4095. gcode_M0_M1();
  4096. break;
  4097. #endif // ULTIPANEL
  4098. case 17:
  4099. gcode_M17();
  4100. break;
  4101. #ifdef SDSUPPORT
  4102. case 20: // M20 - list SD card
  4103. gcode_M20(); break;
  4104. case 21: // M21 - init SD card
  4105. gcode_M21(); break;
  4106. case 22: //M22 - release SD card
  4107. gcode_M22(); break;
  4108. case 23: //M23 - Select file
  4109. gcode_M23(); break;
  4110. case 24: //M24 - Start SD print
  4111. gcode_M24(); break;
  4112. case 25: //M25 - Pause SD print
  4113. gcode_M25(); break;
  4114. case 26: //M26 - Set SD index
  4115. gcode_M26(); break;
  4116. case 27: //M27 - Get SD status
  4117. gcode_M27(); break;
  4118. case 28: //M28 - Start SD write
  4119. gcode_M28(); break;
  4120. case 29: //M29 - Stop SD write
  4121. gcode_M29(); break;
  4122. case 30: //M30 <filename> Delete File
  4123. gcode_M30(); break;
  4124. case 32: //M32 - Select file and start SD print
  4125. gcode_M32(); break;
  4126. case 928: //M928 - Start SD write
  4127. gcode_M928(); break;
  4128. #endif //SDSUPPORT
  4129. case 31: //M31 take time since the start of the SD print or an M109 command
  4130. gcode_M31();
  4131. break;
  4132. case 42: //M42 -Change pin status via gcode
  4133. gcode_M42();
  4134. break;
  4135. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4136. case 48: // M48 Z-Probe repeatability
  4137. gcode_M48();
  4138. break;
  4139. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4140. case 104: // M104
  4141. gcode_M104();
  4142. break;
  4143. case 112: // M112 Emergency Stop
  4144. gcode_M112();
  4145. break;
  4146. case 140: // M140 Set bed temp
  4147. gcode_M140();
  4148. break;
  4149. case 105: // M105 Read current temperature
  4150. gcode_M105();
  4151. return;
  4152. break;
  4153. case 109: // M109 Wait for temperature
  4154. gcode_M109();
  4155. break;
  4156. #if HAS_TEMP_BED
  4157. case 190: // M190 - Wait for bed heater to reach target.
  4158. gcode_M190();
  4159. break;
  4160. #endif // HAS_TEMP_BED
  4161. #if HAS_FAN
  4162. case 106: //M106 Fan On
  4163. gcode_M106();
  4164. break;
  4165. case 107: //M107 Fan Off
  4166. gcode_M107();
  4167. break;
  4168. #endif // HAS_FAN
  4169. #ifdef BARICUDA
  4170. // PWM for HEATER_1_PIN
  4171. #if HAS_HEATER_1
  4172. case 126: // M126 valve open
  4173. gcode_M126();
  4174. break;
  4175. case 127: // M127 valve closed
  4176. gcode_M127();
  4177. break;
  4178. #endif // HAS_HEATER_1
  4179. // PWM for HEATER_2_PIN
  4180. #if HAS_HEATER_2
  4181. case 128: // M128 valve open
  4182. gcode_M128();
  4183. break;
  4184. case 129: // M129 valve closed
  4185. gcode_M129();
  4186. break;
  4187. #endif // HAS_HEATER_2
  4188. #endif // BARICUDA
  4189. #if HAS_POWER_SWITCH
  4190. case 80: // M80 - Turn on Power Supply
  4191. gcode_M80();
  4192. break;
  4193. #endif // HAS_POWER_SWITCH
  4194. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4195. gcode_M81();
  4196. break;
  4197. case 82:
  4198. gcode_M82();
  4199. break;
  4200. case 83:
  4201. gcode_M83();
  4202. break;
  4203. case 18: //compatibility
  4204. case 84: // M84
  4205. gcode_M18_M84();
  4206. break;
  4207. case 85: // M85
  4208. gcode_M85();
  4209. break;
  4210. case 92: // M92
  4211. gcode_M92();
  4212. break;
  4213. case 115: // M115
  4214. gcode_M115();
  4215. break;
  4216. case 117: // M117 display message
  4217. gcode_M117();
  4218. break;
  4219. case 114: // M114
  4220. gcode_M114();
  4221. break;
  4222. case 120: // M120
  4223. gcode_M120();
  4224. break;
  4225. case 121: // M121
  4226. gcode_M121();
  4227. break;
  4228. case 119: // M119
  4229. gcode_M119();
  4230. break;
  4231. //TODO: update for all axis, use for loop
  4232. #ifdef BLINKM
  4233. case 150: // M150
  4234. gcode_M150();
  4235. break;
  4236. #endif //BLINKM
  4237. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4238. gcode_M200();
  4239. break;
  4240. case 201: // M201
  4241. gcode_M201();
  4242. break;
  4243. #if 0 // Not used for Sprinter/grbl gen6
  4244. case 202: // M202
  4245. gcode_M202();
  4246. break;
  4247. #endif
  4248. case 203: // M203 max feedrate mm/sec
  4249. gcode_M203();
  4250. break;
  4251. case 204: // M204 acclereration S normal moves T filmanent only moves
  4252. gcode_M204();
  4253. break;
  4254. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4255. gcode_M205();
  4256. break;
  4257. case 206: // M206 additional homing offset
  4258. gcode_M206();
  4259. break;
  4260. #ifdef DELTA
  4261. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4262. gcode_M665();
  4263. break;
  4264. #endif
  4265. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4266. case 666: // M666 set delta / dual endstop adjustment
  4267. gcode_M666();
  4268. break;
  4269. #endif
  4270. #ifdef FWRETRACT
  4271. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4272. gcode_M207();
  4273. break;
  4274. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4275. gcode_M208();
  4276. break;
  4277. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4278. gcode_M209();
  4279. break;
  4280. #endif // FWRETRACT
  4281. #if EXTRUDERS > 1
  4282. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4283. gcode_M218();
  4284. break;
  4285. #endif
  4286. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4287. gcode_M220();
  4288. break;
  4289. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4290. gcode_M221();
  4291. break;
  4292. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4293. gcode_M226();
  4294. break;
  4295. #if NUM_SERVOS > 0
  4296. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4297. gcode_M280();
  4298. break;
  4299. #endif // NUM_SERVOS > 0
  4300. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4301. case 300: // M300 - Play beep tone
  4302. gcode_M300();
  4303. break;
  4304. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4305. #ifdef PIDTEMP
  4306. case 301: // M301
  4307. gcode_M301();
  4308. break;
  4309. #endif // PIDTEMP
  4310. #ifdef PIDTEMPBED
  4311. case 304: // M304
  4312. gcode_M304();
  4313. break;
  4314. #endif // PIDTEMPBED
  4315. #if defined(CHDK) || HAS_PHOTOGRAPH
  4316. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4317. gcode_M240();
  4318. break;
  4319. #endif // CHDK || PHOTOGRAPH_PIN
  4320. #ifdef HAS_LCD_CONTRAST
  4321. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4322. gcode_M250();
  4323. break;
  4324. #endif // HAS_LCD_CONTRAST
  4325. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4326. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4327. gcode_M302();
  4328. break;
  4329. #endif // PREVENT_DANGEROUS_EXTRUDE
  4330. case 303: // M303 PID autotune
  4331. gcode_M303();
  4332. break;
  4333. #ifdef SCARA
  4334. case 360: // M360 SCARA Theta pos1
  4335. if (gcode_M360()) return;
  4336. break;
  4337. case 361: // M361 SCARA Theta pos2
  4338. if (gcode_M361()) return;
  4339. break;
  4340. case 362: // M362 SCARA Psi pos1
  4341. if (gcode_M362()) return;
  4342. break;
  4343. case 363: // M363 SCARA Psi pos2
  4344. if (gcode_M363()) return;
  4345. break;
  4346. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4347. if (gcode_M364()) return;
  4348. break;
  4349. case 365: // M365 Set SCARA scaling for X Y Z
  4350. gcode_M365();
  4351. break;
  4352. #endif // SCARA
  4353. case 400: // M400 finish all moves
  4354. gcode_M400();
  4355. break;
  4356. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4357. case 401:
  4358. gcode_M401();
  4359. break;
  4360. case 402:
  4361. gcode_M402();
  4362. break;
  4363. #endif
  4364. #ifdef FILAMENT_SENSOR
  4365. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4366. gcode_M404();
  4367. break;
  4368. case 405: //M405 Turn on filament sensor for control
  4369. gcode_M405();
  4370. break;
  4371. case 406: //M406 Turn off filament sensor for control
  4372. gcode_M406();
  4373. break;
  4374. case 407: //M407 Display measured filament diameter
  4375. gcode_M407();
  4376. break;
  4377. #endif // FILAMENT_SENSOR
  4378. case 410: // M410 quickstop - Abort all the planned moves.
  4379. gcode_M410();
  4380. break;
  4381. case 500: // M500 Store settings in EEPROM
  4382. gcode_M500();
  4383. break;
  4384. case 501: // M501 Read settings from EEPROM
  4385. gcode_M501();
  4386. break;
  4387. case 502: // M502 Revert to default settings
  4388. gcode_M502();
  4389. break;
  4390. case 503: // M503 print settings currently in memory
  4391. gcode_M503();
  4392. break;
  4393. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4394. case 540:
  4395. gcode_M540();
  4396. break;
  4397. #endif
  4398. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4399. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4400. gcode_SET_Z_PROBE_OFFSET();
  4401. break;
  4402. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4403. #ifdef FILAMENTCHANGEENABLE
  4404. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4405. gcode_M600();
  4406. break;
  4407. #endif // FILAMENTCHANGEENABLE
  4408. #ifdef DUAL_X_CARRIAGE
  4409. case 605:
  4410. gcode_M605();
  4411. break;
  4412. #endif // DUAL_X_CARRIAGE
  4413. case 907: // M907 Set digital trimpot motor current using axis codes.
  4414. gcode_M907();
  4415. break;
  4416. #if HAS_DIGIPOTSS
  4417. case 908: // M908 Control digital trimpot directly.
  4418. gcode_M908();
  4419. break;
  4420. #endif // HAS_DIGIPOTSS
  4421. #if HAS_MICROSTEPS
  4422. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4423. gcode_M350();
  4424. break;
  4425. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4426. gcode_M351();
  4427. break;
  4428. #endif // HAS_MICROSTEPS
  4429. case 999: // M999: Restart after being Stopped
  4430. gcode_M999();
  4431. break;
  4432. }
  4433. }
  4434. else if (code_seen('T')) {
  4435. gcode_T();
  4436. }
  4437. else {
  4438. SERIAL_ECHO_START;
  4439. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4440. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4441. SERIAL_ECHOLNPGM("\"");
  4442. }
  4443. ClearToSend();
  4444. }
  4445. void FlushSerialRequestResend() {
  4446. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4447. MYSERIAL.flush();
  4448. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4449. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4450. ClearToSend();
  4451. }
  4452. void ClearToSend() {
  4453. refresh_cmd_timeout();
  4454. #ifdef SDSUPPORT
  4455. if (fromsd[cmd_queue_index_r]) return;
  4456. #endif
  4457. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4458. }
  4459. void get_coordinates() {
  4460. for (int i = 0; i < NUM_AXIS; i++) {
  4461. if (code_seen(axis_codes[i]))
  4462. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4463. else
  4464. destination[i] = current_position[i];
  4465. }
  4466. if (code_seen('F')) {
  4467. next_feedrate = code_value();
  4468. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4469. }
  4470. }
  4471. void get_arc_coordinates() {
  4472. #ifdef SF_ARC_FIX
  4473. bool relative_mode_backup = relative_mode;
  4474. relative_mode = true;
  4475. #endif
  4476. get_coordinates();
  4477. #ifdef SF_ARC_FIX
  4478. relative_mode = relative_mode_backup;
  4479. #endif
  4480. offset[0] = code_seen('I') ? code_value() : 0;
  4481. offset[1] = code_seen('J') ? code_value() : 0;
  4482. }
  4483. void clamp_to_software_endstops(float target[3]) {
  4484. if (min_software_endstops) {
  4485. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4486. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4487. float negative_z_offset = 0;
  4488. #ifdef ENABLE_AUTO_BED_LEVELING
  4489. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4490. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4491. #endif
  4492. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4493. }
  4494. if (max_software_endstops) {
  4495. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4496. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4497. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4498. }
  4499. }
  4500. #ifdef DELTA
  4501. void recalc_delta_settings(float radius, float diagonal_rod) {
  4502. delta_tower1_x = -SIN_60 * radius; // front left tower
  4503. delta_tower1_y = -COS_60 * radius;
  4504. delta_tower2_x = SIN_60 * radius; // front right tower
  4505. delta_tower2_y = -COS_60 * radius;
  4506. delta_tower3_x = 0.0; // back middle tower
  4507. delta_tower3_y = radius;
  4508. delta_diagonal_rod_2 = sq(diagonal_rod);
  4509. }
  4510. void calculate_delta(float cartesian[3]) {
  4511. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4512. - sq(delta_tower1_x-cartesian[X_AXIS])
  4513. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4514. ) + cartesian[Z_AXIS];
  4515. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4516. - sq(delta_tower2_x-cartesian[X_AXIS])
  4517. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4518. ) + cartesian[Z_AXIS];
  4519. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4520. - sq(delta_tower3_x-cartesian[X_AXIS])
  4521. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4522. ) + cartesian[Z_AXIS];
  4523. /*
  4524. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4525. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4526. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4527. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4528. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4529. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4530. */
  4531. }
  4532. #ifdef ENABLE_AUTO_BED_LEVELING
  4533. // Adjust print surface height by linear interpolation over the bed_level array.
  4534. void adjust_delta(float cartesian[3]) {
  4535. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4536. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4537. float h1 = 0.001 - half, h2 = half - 0.001,
  4538. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4539. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4540. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4541. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4542. z1 = bed_level[floor_x + half][floor_y + half],
  4543. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4544. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4545. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4546. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4547. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4548. offset = (1 - ratio_x) * left + ratio_x * right;
  4549. delta[X_AXIS] += offset;
  4550. delta[Y_AXIS] += offset;
  4551. delta[Z_AXIS] += offset;
  4552. /*
  4553. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4554. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4555. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4556. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4557. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4558. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4559. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4560. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4561. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4562. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4563. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4564. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4565. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4566. */
  4567. }
  4568. #endif // ENABLE_AUTO_BED_LEVELING
  4569. #endif // DELTA
  4570. #ifdef MESH_BED_LEVELING
  4571. #if !defined(MIN)
  4572. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4573. #endif // ! MIN
  4574. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4575. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4576. {
  4577. if (!mbl.active) {
  4578. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4579. set_current_to_destination();
  4580. return;
  4581. }
  4582. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4583. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4584. int ix = mbl.select_x_index(x);
  4585. int iy = mbl.select_y_index(y);
  4586. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4587. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4588. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4589. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4590. if (pix == ix && piy == iy) {
  4591. // Start and end on same mesh square
  4592. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4593. set_current_to_destination();
  4594. return;
  4595. }
  4596. float nx, ny, ne, normalized_dist;
  4597. if (ix > pix && (x_splits) & BIT(ix)) {
  4598. nx = mbl.get_x(ix);
  4599. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4600. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4601. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4602. x_splits ^= BIT(ix);
  4603. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4604. nx = mbl.get_x(pix);
  4605. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4606. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4607. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4608. x_splits ^= BIT(pix);
  4609. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4610. ny = mbl.get_y(iy);
  4611. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4612. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4613. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4614. y_splits ^= BIT(iy);
  4615. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4616. ny = mbl.get_y(piy);
  4617. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4618. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4619. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4620. y_splits ^= BIT(piy);
  4621. } else {
  4622. // Already split on a border
  4623. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4624. set_current_to_destination();
  4625. return;
  4626. }
  4627. // Do the split and look for more borders
  4628. destination[X_AXIS] = nx;
  4629. destination[Y_AXIS] = ny;
  4630. destination[E_AXIS] = ne;
  4631. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4632. destination[X_AXIS] = x;
  4633. destination[Y_AXIS] = y;
  4634. destination[E_AXIS] = e;
  4635. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4636. }
  4637. #endif // MESH_BED_LEVELING
  4638. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4639. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4640. float de = dest_e - curr_e;
  4641. if (de) {
  4642. if (degHotend(active_extruder) < extrude_min_temp) {
  4643. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4644. SERIAL_ECHO_START;
  4645. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4646. return 0;
  4647. }
  4648. #ifdef PREVENT_LENGTHY_EXTRUDE
  4649. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4650. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4651. SERIAL_ECHO_START;
  4652. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4653. return 0;
  4654. }
  4655. #endif
  4656. }
  4657. return de;
  4658. }
  4659. #endif // PREVENT_DANGEROUS_EXTRUDE
  4660. void prepare_move() {
  4661. clamp_to_software_endstops(destination);
  4662. refresh_cmd_timeout();
  4663. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4664. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4665. #endif
  4666. #ifdef SCARA //for now same as delta-code
  4667. float difference[NUM_AXIS];
  4668. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4669. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4670. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4671. if (cartesian_mm < 0.000001) { return; }
  4672. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4673. int steps = max(1, int(scara_segments_per_second * seconds));
  4674. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4675. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4676. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4677. for (int s = 1; s <= steps; s++) {
  4678. float fraction = float(s) / float(steps);
  4679. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4680. calculate_delta(destination);
  4681. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4682. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4683. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4684. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4685. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4686. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4687. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4688. }
  4689. #endif // SCARA
  4690. #ifdef DELTA
  4691. float difference[NUM_AXIS];
  4692. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4693. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4694. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4695. if (cartesian_mm < 0.000001) return;
  4696. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4697. int steps = max(1, int(delta_segments_per_second * seconds));
  4698. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4699. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4700. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4701. for (int s = 1; s <= steps; s++) {
  4702. float fraction = float(s) / float(steps);
  4703. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4704. calculate_delta(destination);
  4705. #ifdef ENABLE_AUTO_BED_LEVELING
  4706. adjust_delta(destination);
  4707. #endif
  4708. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4709. }
  4710. #endif // DELTA
  4711. #ifdef DUAL_X_CARRIAGE
  4712. if (active_extruder_parked) {
  4713. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4714. // move duplicate extruder into correct duplication position.
  4715. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4716. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4717. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4718. sync_plan_position();
  4719. st_synchronize();
  4720. extruder_duplication_enabled = true;
  4721. active_extruder_parked = false;
  4722. }
  4723. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4724. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4725. // This is a travel move (with no extrusion)
  4726. // Skip it, but keep track of the current position
  4727. // (so it can be used as the start of the next non-travel move)
  4728. if (delayed_move_time != 0xFFFFFFFFUL) {
  4729. set_current_to_destination();
  4730. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4731. delayed_move_time = millis();
  4732. return;
  4733. }
  4734. }
  4735. delayed_move_time = 0;
  4736. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4737. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4740. active_extruder_parked = false;
  4741. }
  4742. }
  4743. #endif // DUAL_X_CARRIAGE
  4744. #if !defined(DELTA) && !defined(SCARA)
  4745. // Do not use feedrate_multiplier for E or Z only moves
  4746. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4747. line_to_destination();
  4748. }
  4749. else {
  4750. #ifdef MESH_BED_LEVELING
  4751. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4752. return;
  4753. #else
  4754. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4755. #endif // MESH_BED_LEVELING
  4756. }
  4757. #endif // !(DELTA || SCARA)
  4758. set_current_to_destination();
  4759. }
  4760. void prepare_arc_move(char isclockwise) {
  4761. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4762. // Trace the arc
  4763. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4764. // As far as the parser is concerned, the position is now == target. In reality the
  4765. // motion control system might still be processing the action and the real tool position
  4766. // in any intermediate location.
  4767. set_current_to_destination();
  4768. refresh_cmd_timeout();
  4769. }
  4770. #if HAS_CONTROLLERFAN
  4771. millis_t lastMotor = 0; // Last time a motor was turned on
  4772. millis_t lastMotorCheck = 0; // Last time the state was checked
  4773. void controllerFan() {
  4774. millis_t ms = millis();
  4775. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4776. lastMotorCheck = ms;
  4777. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4778. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4779. #if EXTRUDERS > 1
  4780. || E1_ENABLE_READ == E_ENABLE_ON
  4781. #if HAS_X2_ENABLE
  4782. || X2_ENABLE_READ == X_ENABLE_ON
  4783. #endif
  4784. #if EXTRUDERS > 2
  4785. || E2_ENABLE_READ == E_ENABLE_ON
  4786. #if EXTRUDERS > 3
  4787. || E3_ENABLE_READ == E_ENABLE_ON
  4788. #endif
  4789. #endif
  4790. #endif
  4791. ) {
  4792. lastMotor = ms; //... set time to NOW so the fan will turn on
  4793. }
  4794. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4795. // allows digital or PWM fan output to be used (see M42 handling)
  4796. digitalWrite(CONTROLLERFAN_PIN, speed);
  4797. analogWrite(CONTROLLERFAN_PIN, speed);
  4798. }
  4799. }
  4800. #endif
  4801. #ifdef SCARA
  4802. void calculate_SCARA_forward_Transform(float f_scara[3])
  4803. {
  4804. // Perform forward kinematics, and place results in delta[3]
  4805. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4806. float x_sin, x_cos, y_sin, y_cos;
  4807. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4808. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4809. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4810. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4811. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4812. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4813. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4814. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4815. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4816. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4817. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4818. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4819. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4820. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4821. }
  4822. void calculate_delta(float cartesian[3]){
  4823. //reverse kinematics.
  4824. // Perform reversed kinematics, and place results in delta[3]
  4825. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4826. float SCARA_pos[2];
  4827. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4828. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4829. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4830. #if (Linkage_1 == Linkage_2)
  4831. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4832. #else
  4833. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4834. #endif
  4835. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4836. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4837. SCARA_K2 = Linkage_2 * SCARA_S2;
  4838. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4839. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4840. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4841. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4842. delta[Z_AXIS] = cartesian[Z_AXIS];
  4843. /*
  4844. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4845. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4846. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4847. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4848. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4849. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4850. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4851. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4852. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4853. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4854. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4855. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4856. SERIAL_ECHOLN(" ");*/
  4857. }
  4858. #endif
  4859. #ifdef TEMP_STAT_LEDS
  4860. static bool red_led = false;
  4861. static millis_t next_status_led_update_ms = 0;
  4862. void handle_status_leds(void) {
  4863. float max_temp = 0.0;
  4864. if (millis() > next_status_led_update_ms) {
  4865. next_status_led_update_ms += 500; // Update every 0.5s
  4866. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  4867. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  4868. #if HAS_TEMP_BED
  4869. max_temp = max(max(max_temp, degTargetBed()), degBed());
  4870. #endif
  4871. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  4872. if (new_led != red_led) {
  4873. red_led = new_led;
  4874. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  4875. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  4876. }
  4877. }
  4878. }
  4879. #endif
  4880. void enable_all_steppers() {
  4881. enable_x();
  4882. enable_y();
  4883. enable_z();
  4884. enable_e0();
  4885. enable_e1();
  4886. enable_e2();
  4887. enable_e3();
  4888. }
  4889. void disable_all_steppers() {
  4890. disable_x();
  4891. disable_y();
  4892. disable_z();
  4893. disable_e0();
  4894. disable_e1();
  4895. disable_e2();
  4896. disable_e3();
  4897. }
  4898. /**
  4899. * Manage several activities:
  4900. * - Check for Filament Runout
  4901. * - Keep the command buffer full
  4902. * - Check for maximum inactive time between commands
  4903. * - Check for maximum inactive time between stepper commands
  4904. * - Check if pin CHDK needs to go LOW
  4905. * - Check for KILL button held down
  4906. * - Check for HOME button held down
  4907. * - Check if cooling fan needs to be switched on
  4908. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4909. */
  4910. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4911. #if HAS_FILRUNOUT
  4912. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4913. filrunout();
  4914. #endif
  4915. if (commands_in_queue < BUFSIZE - 1) get_command();
  4916. millis_t ms = millis();
  4917. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  4918. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  4919. && !ignore_stepper_queue && !blocks_queued())
  4920. disable_all_steppers();
  4921. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4922. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4923. chdkActive = false;
  4924. WRITE(CHDK, LOW);
  4925. }
  4926. #endif
  4927. #if HAS_KILL
  4928. // Check if the kill button was pressed and wait just in case it was an accidental
  4929. // key kill key press
  4930. // -------------------------------------------------------------------------------
  4931. static int killCount = 0; // make the inactivity button a bit less responsive
  4932. const int KILL_DELAY = 750;
  4933. if (!READ(KILL_PIN))
  4934. killCount++;
  4935. else if (killCount > 0)
  4936. killCount--;
  4937. // Exceeded threshold and we can confirm that it was not accidental
  4938. // KILL the machine
  4939. // ----------------------------------------------------------------
  4940. if (killCount >= KILL_DELAY) kill();
  4941. #endif
  4942. #if HAS_HOME
  4943. // Check to see if we have to home, use poor man's debouncer
  4944. // ---------------------------------------------------------
  4945. static int homeDebounceCount = 0; // poor man's debouncing count
  4946. const int HOME_DEBOUNCE_DELAY = 750;
  4947. if (!READ(HOME_PIN)) {
  4948. if (!homeDebounceCount) {
  4949. enqueuecommands_P(PSTR("G28"));
  4950. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4951. }
  4952. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4953. homeDebounceCount++;
  4954. else
  4955. homeDebounceCount = 0;
  4956. }
  4957. #endif
  4958. #if HAS_CONTROLLERFAN
  4959. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4960. #endif
  4961. #ifdef EXTRUDER_RUNOUT_PREVENT
  4962. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  4963. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4964. bool oldstatus;
  4965. switch(active_extruder) {
  4966. case 0:
  4967. oldstatus = E0_ENABLE_READ;
  4968. enable_e0();
  4969. break;
  4970. #if EXTRUDERS > 1
  4971. case 1:
  4972. oldstatus = E1_ENABLE_READ;
  4973. enable_e1();
  4974. break;
  4975. #if EXTRUDERS > 2
  4976. case 2:
  4977. oldstatus = E2_ENABLE_READ;
  4978. enable_e2();
  4979. break;
  4980. #if EXTRUDERS > 3
  4981. case 3:
  4982. oldstatus = E3_ENABLE_READ;
  4983. enable_e3();
  4984. break;
  4985. #endif
  4986. #endif
  4987. #endif
  4988. }
  4989. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4991. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4992. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4993. current_position[E_AXIS] = oldepos;
  4994. destination[E_AXIS] = oldedes;
  4995. plan_set_e_position(oldepos);
  4996. previous_cmd_ms = ms; // refresh_cmd_timeout()
  4997. st_synchronize();
  4998. switch(active_extruder) {
  4999. case 0:
  5000. E0_ENABLE_WRITE(oldstatus);
  5001. break;
  5002. #if EXTRUDERS > 1
  5003. case 1:
  5004. E1_ENABLE_WRITE(oldstatus);
  5005. break;
  5006. #if EXTRUDERS > 2
  5007. case 2:
  5008. E2_ENABLE_WRITE(oldstatus);
  5009. break;
  5010. #if EXTRUDERS > 3
  5011. case 3:
  5012. E3_ENABLE_WRITE(oldstatus);
  5013. break;
  5014. #endif
  5015. #endif
  5016. #endif
  5017. }
  5018. }
  5019. #endif
  5020. #ifdef DUAL_X_CARRIAGE
  5021. // handle delayed move timeout
  5022. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5023. // travel moves have been received so enact them
  5024. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5025. set_destination_to_current();
  5026. prepare_move();
  5027. }
  5028. #endif
  5029. #ifdef TEMP_STAT_LEDS
  5030. handle_status_leds();
  5031. #endif
  5032. check_axes_activity();
  5033. }
  5034. void kill()
  5035. {
  5036. cli(); // Stop interrupts
  5037. disable_all_heaters();
  5038. disable_all_steppers();
  5039. #if HAS_POWER_SWITCH
  5040. pinMode(PS_ON_PIN, INPUT);
  5041. #endif
  5042. SERIAL_ERROR_START;
  5043. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5044. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5045. // FMC small patch to update the LCD before ending
  5046. sei(); // enable interrupts
  5047. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5048. cli(); // disable interrupts
  5049. suicide();
  5050. while(1) { /* Intentionally left empty */ } // Wait for reset
  5051. }
  5052. #ifdef FILAMENT_RUNOUT_SENSOR
  5053. void filrunout() {
  5054. if (!filrunoutEnqueued) {
  5055. filrunoutEnqueued = true;
  5056. enqueuecommand("M600");
  5057. }
  5058. }
  5059. #endif
  5060. void Stop() {
  5061. disable_all_heaters();
  5062. if (IsRunning()) {
  5063. Running = false;
  5064. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5065. SERIAL_ERROR_START;
  5066. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5067. LCD_MESSAGEPGM(MSG_STOPPED);
  5068. }
  5069. }
  5070. #ifdef FAST_PWM_FAN
  5071. void setPwmFrequency(uint8_t pin, int val)
  5072. {
  5073. val &= 0x07;
  5074. switch(digitalPinToTimer(pin))
  5075. {
  5076. #if defined(TCCR0A)
  5077. case TIMER0A:
  5078. case TIMER0B:
  5079. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5080. // TCCR0B |= val;
  5081. break;
  5082. #endif
  5083. #if defined(TCCR1A)
  5084. case TIMER1A:
  5085. case TIMER1B:
  5086. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5087. // TCCR1B |= val;
  5088. break;
  5089. #endif
  5090. #if defined(TCCR2)
  5091. case TIMER2:
  5092. case TIMER2:
  5093. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5094. TCCR2 |= val;
  5095. break;
  5096. #endif
  5097. #if defined(TCCR2A)
  5098. case TIMER2A:
  5099. case TIMER2B:
  5100. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5101. TCCR2B |= val;
  5102. break;
  5103. #endif
  5104. #if defined(TCCR3A)
  5105. case TIMER3A:
  5106. case TIMER3B:
  5107. case TIMER3C:
  5108. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5109. TCCR3B |= val;
  5110. break;
  5111. #endif
  5112. #if defined(TCCR4A)
  5113. case TIMER4A:
  5114. case TIMER4B:
  5115. case TIMER4C:
  5116. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5117. TCCR4B |= val;
  5118. break;
  5119. #endif
  5120. #if defined(TCCR5A)
  5121. case TIMER5A:
  5122. case TIMER5B:
  5123. case TIMER5C:
  5124. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5125. TCCR5B |= val;
  5126. break;
  5127. #endif
  5128. }
  5129. }
  5130. #endif //FAST_PWM_FAN
  5131. bool setTargetedHotend(int code){
  5132. target_extruder = active_extruder;
  5133. if (code_seen('T')) {
  5134. target_extruder = code_value_short();
  5135. if (target_extruder >= EXTRUDERS) {
  5136. SERIAL_ECHO_START;
  5137. switch(code){
  5138. case 104:
  5139. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5140. break;
  5141. case 105:
  5142. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5143. break;
  5144. case 109:
  5145. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5146. break;
  5147. case 218:
  5148. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5149. break;
  5150. case 221:
  5151. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5152. break;
  5153. }
  5154. SERIAL_ECHOLN(target_extruder);
  5155. return true;
  5156. }
  5157. }
  5158. return false;
  5159. }
  5160. float calculate_volumetric_multiplier(float diameter) {
  5161. if (!volumetric_enabled || diameter == 0) return 1.0;
  5162. float d2 = diameter * 0.5;
  5163. return 1.0 / (M_PI * d2 * d2);
  5164. }
  5165. void calculate_volumetric_multipliers() {
  5166. for (int i=0; i<EXTRUDERS; i++)
  5167. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5168. }