My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 24KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "../Marlin.h"
  33. #include "motion.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if HAS_ABL
  38. #include "../libs/vector_3.h"
  39. #endif
  40. enum BlockFlagBit : char {
  41. // Recalculate trapezoids on entry junction. For optimization.
  42. BLOCK_BIT_RECALCULATE,
  43. // Nominal speed always reached.
  44. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  45. // from a safe speed (in consideration of jerking from zero speed).
  46. BLOCK_BIT_NOMINAL_LENGTH,
  47. // The block is busy
  48. BLOCK_BIT_BUSY,
  49. // The block is segment 2+ of a longer move
  50. BLOCK_BIT_CONTINUED
  51. };
  52. enum BlockFlag : char {
  53. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  54. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  55. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY),
  56. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
  57. };
  58. /**
  59. * struct block_t
  60. *
  61. * A single entry in the planner buffer.
  62. * Tracks linear movement over multiple axes.
  63. *
  64. * The "nominal" values are as-specified by gcode, and
  65. * may never actually be reached due to acceleration limits.
  66. */
  67. typedef struct {
  68. uint8_t flag; // Block flags (See BlockFlag enum above)
  69. unsigned char active_extruder; // The extruder to move (if E move)
  70. // Fields used by the Bresenham algorithm for tracing the line
  71. int32_t steps[NUM_AXIS]; // Step count along each axis
  72. uint32_t step_event_count; // The number of step events required to complete this block
  73. #if ENABLED(MIXING_EXTRUDER)
  74. uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  75. #endif
  76. // Settings for the trapezoid generator
  77. int32_t accelerate_until, // The index of the step event on which to stop acceleration
  78. decelerate_after; // The index of the step event on which to start decelerating
  79. #if ENABLED(BEZIER_JERK_CONTROL)
  80. uint32_t cruise_rate; // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
  81. uint32_t acceleration_time, // Acceleration time and deceleration time in STEP timer counts
  82. deceleration_time;
  83. uint32_t acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
  84. deceleration_time_inverse;
  85. #else
  86. int32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  87. #endif
  88. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  89. // Advance extrusion
  90. #if ENABLED(LIN_ADVANCE)
  91. bool use_advance_lead;
  92. uint16_t advance_speed, // Timer value for extruder speed offset
  93. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  94. final_adv_steps; // advance steps due to exit speed
  95. float e_D_ratio;
  96. #endif
  97. // Fields used by the motion planner to manage acceleration
  98. float nominal_speed, // The nominal speed for this block in mm/sec
  99. entry_speed, // Entry speed at previous-current junction in mm/sec
  100. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  101. millimeters, // The total travel of this block in mm
  102. acceleration; // acceleration mm/sec^2
  103. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  104. initial_rate, // The jerk-adjusted step rate at start of block
  105. final_rate, // The minimal rate at exit
  106. acceleration_steps_per_s2; // acceleration steps/sec^2
  107. #if FAN_COUNT > 0
  108. uint16_t fan_speed[FAN_COUNT];
  109. #endif
  110. #if ENABLED(BARICUDA)
  111. uint8_t valve_pressure, e_to_p_pressure;
  112. #endif
  113. uint32_t segment_time_us;
  114. } block_t;
  115. #define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || ENABLED(SCARA_FEEDRATE_SCALING))
  116. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  117. class Planner {
  118. public:
  119. /**
  120. * The move buffer, calculated in stepper steps
  121. *
  122. * block_buffer is a ring buffer...
  123. *
  124. * head,tail : indexes for write,read
  125. * head==tail : the buffer is empty
  126. * head!=tail : blocks are in the buffer
  127. * head==(tail-1)%size : the buffer is full
  128. *
  129. * Writer of head is Planner::buffer_segment().
  130. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  131. */
  132. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  133. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  134. block_buffer_tail; // Index of the busy block, if any
  135. #if ENABLED(DISTINCT_E_FACTORS)
  136. static uint8_t last_extruder; // Respond to extruder change
  137. #endif
  138. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  139. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  140. #if DISABLED(NO_VOLUMETRICS)
  141. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  142. volumetric_area_nominal, // Nominal cross-sectional area
  143. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  144. // May be auto-adjusted by a filament width sensor
  145. #endif
  146. static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  147. axis_steps_per_mm[XYZE_N],
  148. steps_to_mm[XYZE_N];
  149. static uint32_t max_acceleration_steps_per_s2[XYZE_N],
  150. max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
  151. static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
  152. static float min_feedrate_mm_s,
  153. acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  154. retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  155. travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  156. max_jerk[XYZE], // The largest speed change requiring no acceleration
  157. min_travel_feedrate_mm_s;
  158. #if HAS_LEVELING
  159. static bool leveling_active; // Flag that bed leveling is enabled
  160. #if ABL_PLANAR
  161. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  162. #endif
  163. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  164. static float z_fade_height, inverse_z_fade_height;
  165. #endif
  166. #else
  167. static constexpr bool leveling_active = false;
  168. #endif
  169. #if ENABLED(LIN_ADVANCE)
  170. static float extruder_advance_K;
  171. #endif
  172. #if HAS_POSITION_FLOAT
  173. static float position_float[XYZE];
  174. #endif
  175. #if ENABLED(SKEW_CORRECTION)
  176. #if ENABLED(SKEW_CORRECTION_GCODE)
  177. static float xy_skew_factor;
  178. #else
  179. static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
  180. #endif
  181. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  182. #if ENABLED(SKEW_CORRECTION_GCODE)
  183. static float xz_skew_factor, yz_skew_factor;
  184. #else
  185. static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
  186. #endif
  187. #else
  188. static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
  189. #endif
  190. #endif
  191. private:
  192. /**
  193. * The current position of the tool in absolute steps
  194. * Recalculated if any axis_steps_per_mm are changed by gcode
  195. */
  196. static int32_t position[NUM_AXIS];
  197. /**
  198. * Speed of previous path line segment
  199. */
  200. static float previous_speed[NUM_AXIS];
  201. /**
  202. * Nominal speed of previous path line segment
  203. */
  204. static float previous_nominal_speed;
  205. /**
  206. * Limit where 64bit math is necessary for acceleration calculation
  207. */
  208. static uint32_t cutoff_long;
  209. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  210. static float last_fade_z;
  211. #endif
  212. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  213. /**
  214. * Counters to manage disabling inactive extruders
  215. */
  216. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  217. #endif // DISABLE_INACTIVE_EXTRUDER
  218. #ifdef XY_FREQUENCY_LIMIT
  219. // Used for the frequency limit
  220. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  221. // Old direction bits. Used for speed calculations
  222. static unsigned char old_direction_bits;
  223. // Segment times (in µs). Used for speed calculations
  224. static uint32_t axis_segment_time_us[2][3];
  225. #endif
  226. #if ENABLED(ULTRA_LCD)
  227. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  228. #endif
  229. public:
  230. /**
  231. * Instance Methods
  232. */
  233. Planner();
  234. void init();
  235. /**
  236. * Static (class) Methods
  237. */
  238. static void reset_acceleration_rates();
  239. static void refresh_positioning();
  240. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  241. e_factor[e] = (flow_percentage[e] * 0.01
  242. #if DISABLED(NO_VOLUMETRICS)
  243. * volumetric_multiplier[e]
  244. #endif
  245. );
  246. }
  247. // Manage fans, paste pressure, etc.
  248. static void check_axes_activity();
  249. /**
  250. * Number of moves currently in the planner
  251. */
  252. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  253. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  254. // Update multipliers based on new diameter measurements
  255. static void calculate_volumetric_multipliers();
  256. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  257. void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
  258. #endif
  259. #if DISABLED(NO_VOLUMETRICS)
  260. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  261. filament_size[e] = v;
  262. // make sure all extruders have some sane value for the filament size
  263. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  264. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  265. }
  266. #endif
  267. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  268. /**
  269. * Get the Z leveling fade factor based on the given Z height,
  270. * re-calculating only when needed.
  271. *
  272. * Returns 1.0 if planner.z_fade_height is 0.0.
  273. * Returns 0.0 if Z is past the specified 'Fade Height'.
  274. */
  275. inline static float fade_scaling_factor_for_z(const float &rz) {
  276. static float z_fade_factor = 1.0;
  277. if (z_fade_height) {
  278. if (rz >= z_fade_height) return 0.0;
  279. if (last_fade_z != rz) {
  280. last_fade_z = rz;
  281. z_fade_factor = 1.0 - rz * inverse_z_fade_height;
  282. }
  283. return z_fade_factor;
  284. }
  285. return 1.0;
  286. }
  287. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
  288. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  289. z_fade_height = zfh > 0 ? zfh : 0;
  290. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  291. force_fade_recalc();
  292. }
  293. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  294. return !z_fade_height || rz < z_fade_height;
  295. }
  296. #else
  297. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  298. UNUSED(rz);
  299. return 1.0;
  300. }
  301. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  302. #endif
  303. #if ENABLED(SKEW_CORRECTION)
  304. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  305. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  306. const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
  307. sy = cy - cz * yz_skew_factor;
  308. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  309. cx = sx; cy = sy;
  310. }
  311. }
  312. }
  313. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  314. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  315. const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
  316. sy = cy + cz * yz_skew_factor;
  317. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  318. cx = sx; cy = sy;
  319. }
  320. }
  321. }
  322. #endif // SKEW_CORRECTION
  323. #if PLANNER_LEVELING
  324. #define ARG_X float rx
  325. #define ARG_Y float ry
  326. #define ARG_Z float rz
  327. /**
  328. * Apply leveling to transform a cartesian position
  329. * as it will be given to the planner and steppers.
  330. */
  331. static void apply_leveling(float &rx, float &ry, float &rz);
  332. static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  333. static void unapply_leveling(float raw[XYZ]);
  334. #else
  335. #define ARG_X const float &rx
  336. #define ARG_Y const float &ry
  337. #define ARG_Z const float &rz
  338. #endif
  339. /**
  340. * Planner::_buffer_steps
  341. *
  342. * Add a new linear movement to the buffer (in terms of steps).
  343. *
  344. * target - target position in steps units
  345. * fr_mm_s - (target) speed of the move
  346. * extruder - target extruder
  347. * millimeters - the length of the movement, if known
  348. */
  349. static void _buffer_steps(const int32_t (&target)[XYZE]
  350. #if HAS_POSITION_FLOAT
  351. , const float (&target_float)[XYZE]
  352. #endif
  353. , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  354. );
  355. /**
  356. * Planner::buffer_segment
  357. *
  358. * Add a new linear movement to the buffer in axis units.
  359. *
  360. * Leveling and kinematics should be applied ahead of calling this.
  361. *
  362. * a,b,c,e - target positions in mm and/or degrees
  363. * fr_mm_s - (target) speed of the move
  364. * extruder - target extruder
  365. * millimeters - the length of the movement, if known
  366. */
  367. static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0);
  368. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  369. /**
  370. * Add a new linear movement to the buffer.
  371. * The target is NOT translated to delta/scara
  372. *
  373. * Leveling will be applied to input on cartesians.
  374. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  375. * (Cartesians may also call buffer_line_kinematic.)
  376. *
  377. * rx,ry,rz,e - target position in mm or degrees
  378. * fr_mm_s - (target) speed of the move (mm/s)
  379. * extruder - target extruder
  380. * millimeters - the length of the movement, if known
  381. */
  382. FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
  383. #if PLANNER_LEVELING && IS_CARTESIAN
  384. apply_leveling(rx, ry, rz);
  385. #endif
  386. buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
  387. }
  388. /**
  389. * Add a new linear movement to the buffer.
  390. * The target is cartesian, it's translated to delta/scara if
  391. * needed.
  392. *
  393. * cart - x,y,z,e CARTESIAN target in mm
  394. * fr_mm_s - (target) speed of the move (mm/s)
  395. * extruder - target extruder
  396. * millimeters - the length of the movement, if known
  397. */
  398. FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
  399. #if PLANNER_LEVELING
  400. float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
  401. apply_leveling(raw);
  402. #else
  403. const float (&raw)[XYZE] = cart;
  404. #endif
  405. #if IS_KINEMATIC
  406. inverse_kinematics(raw);
  407. buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
  408. #else
  409. buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
  410. #endif
  411. }
  412. /**
  413. * Set the planner.position and individual stepper positions.
  414. * Used by G92, G28, G29, and other procedures.
  415. *
  416. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  417. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  418. *
  419. * Clears previous speed values.
  420. */
  421. FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  422. #if PLANNER_LEVELING && IS_CARTESIAN
  423. apply_leveling(rx, ry, rz);
  424. #endif
  425. _set_position_mm(rx, ry, rz, e);
  426. }
  427. static void set_position_mm_kinematic(const float (&cart)[XYZE]);
  428. static void set_position_mm(const AxisEnum axis, const float &v);
  429. FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
  430. FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
  431. /**
  432. * Sync from the stepper positions. (e.g., after an interrupted move)
  433. */
  434. static void sync_from_steppers();
  435. /**
  436. * Does the buffer have any blocks queued?
  437. */
  438. static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  439. /**
  440. * "Discard" the block and "release" the memory.
  441. * Called when the current block is no longer needed.
  442. */
  443. FORCE_INLINE static void discard_current_block() {
  444. if (has_blocks_queued())
  445. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  446. }
  447. /**
  448. * "Discard" the next block if it's continued.
  449. * Called after an interrupted move to throw away the rest of the move.
  450. */
  451. FORCE_INLINE static bool discard_continued_block() {
  452. const bool discard = has_blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
  453. if (discard) discard_current_block();
  454. return discard;
  455. }
  456. /**
  457. * The current block. NULL if the buffer is empty.
  458. * This also marks the block as busy.
  459. * WARNING: Called from Stepper ISR context!
  460. */
  461. static block_t* get_current_block() {
  462. if (has_blocks_queued()) {
  463. block_t * const block = &block_buffer[block_buffer_tail];
  464. // If the block has no trapezoid calculated, it's unsafe to execute.
  465. if (movesplanned() > 1) {
  466. const block_t * const next = &block_buffer[next_block_index(block_buffer_tail)];
  467. if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE))
  468. return NULL;
  469. }
  470. else if (TEST(block->flag, BLOCK_BIT_RECALCULATE))
  471. return NULL;
  472. #if ENABLED(ULTRA_LCD)
  473. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  474. #endif
  475. SBI(block->flag, BLOCK_BIT_BUSY);
  476. return block;
  477. }
  478. else {
  479. #if ENABLED(ULTRA_LCD)
  480. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  481. #endif
  482. return NULL;
  483. }
  484. }
  485. #if ENABLED(ULTRA_LCD)
  486. static uint16_t block_buffer_runtime() {
  487. CRITICAL_SECTION_START
  488. millis_t bbru = block_buffer_runtime_us;
  489. CRITICAL_SECTION_END
  490. // To translate µs to ms a division by 1000 would be required.
  491. // We introduce 2.4% error here by dividing by 1024.
  492. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  493. bbru >>= 10;
  494. // limit to about a minute.
  495. NOMORE(bbru, 0xFFFFul);
  496. return bbru;
  497. }
  498. static void clear_block_buffer_runtime(){
  499. CRITICAL_SECTION_START
  500. block_buffer_runtime_us = 0;
  501. CRITICAL_SECTION_END
  502. }
  503. #endif
  504. #if ENABLED(AUTOTEMP)
  505. static float autotemp_min, autotemp_max, autotemp_factor;
  506. static bool autotemp_enabled;
  507. static void getHighESpeed();
  508. static void autotemp_M104_M109();
  509. #endif
  510. private:
  511. /**
  512. * Get the index of the next / previous block in the ring buffer
  513. */
  514. static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  515. static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  516. /**
  517. * Calculate the distance (not time) it takes to accelerate
  518. * from initial_rate to target_rate using the given acceleration:
  519. */
  520. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  521. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  522. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  523. }
  524. /**
  525. * Return the point at which you must start braking (at the rate of -'accel') if
  526. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  527. * 'final_rate' after traveling 'distance'.
  528. *
  529. * This is used to compute the intersection point between acceleration and deceleration
  530. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  531. */
  532. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  533. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  534. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  535. }
  536. /**
  537. * Calculate the maximum allowable speed at this point, in order
  538. * to reach 'target_velocity' using 'acceleration' within a given
  539. * 'distance'.
  540. */
  541. static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
  542. return SQRT(sq(target_velocity) - 2 * accel * distance);
  543. }
  544. #if ENABLED(BEZIER_JERK_CONTROL)
  545. /**
  546. * Calculate the speed reached given initial speed, acceleration and distance
  547. */
  548. static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
  549. return SQRT(sq(initial_velocity) + 2 * accel * distance);
  550. }
  551. #endif
  552. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  553. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  554. static void forward_pass_kernel(const block_t * const previous, block_t* const current);
  555. static void reverse_pass();
  556. static void forward_pass();
  557. static void recalculate_trapezoids();
  558. static void recalculate();
  559. };
  560. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  561. extern Planner planner;
  562. #endif // PLANNER_H