My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 195KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "configuration_store.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #ifdef BLINKM
  47. #include "blinkm.h"
  48. #include "Wire.h"
  49. #endif
  50. #if NUM_SERVOS > 0
  51. #include "servo.h"
  52. #endif
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. /**
  57. * Look here for descriptions of G-codes:
  58. * - http://linuxcnc.org/handbook/gcode/g-code.html
  59. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. *
  61. * Help us document these G-codes online:
  62. * - http://reprap.org/wiki/G-code
  63. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  64. */
  65. /**
  66. * Implemented Codes
  67. * -------------------
  68. *
  69. * "G" Codes
  70. *
  71. * G0 -> G1
  72. * G1 - Coordinated Movement X Y Z E
  73. * G2 - CW ARC
  74. * G3 - CCW ARC
  75. * G4 - Dwell S<seconds> or P<milliseconds>
  76. * G10 - retract filament according to settings of M207
  77. * G11 - retract recover filament according to settings of M208
  78. * G28 - Home one or more axes
  79. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. * G30 - Single Z Probe, probes bed at current XY location.
  81. * G31 - Dock sled (Z_PROBE_SLED only)
  82. * G32 - Undock sled (Z_PROBE_SLED only)
  83. * G90 - Use Absolute Coordinates
  84. * G91 - Use Relative Coordinates
  85. * G92 - Set current position to coordinates given
  86. *
  87. * "M" Codes
  88. *
  89. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. * M1 - Same as M0
  91. * M17 - Enable/Power all stepper motors
  92. * M18 - Disable all stepper motors; same as M84
  93. * M20 - List SD card
  94. * M21 - Init SD card
  95. * M22 - Release SD card
  96. * M23 - Select SD file (M23 filename.g)
  97. * M24 - Start/resume SD print
  98. * M25 - Pause SD print
  99. * M26 - Set SD position in bytes (M26 S12345)
  100. * M27 - Report SD print status
  101. * M28 - Start SD write (M28 filename.g)
  102. * M29 - Stop SD write
  103. * M30 - Delete file from SD (M30 filename.g)
  104. * M31 - Output time since last M109 or SD card start to serial
  105. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  111. * M80 - Turn on Power Supply
  112. * M81 - Turn off Power Supply
  113. * M82 - Set E codes absolute (default)
  114. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  115. * M84 - Disable steppers until next move,
  116. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  117. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  118. * M92 - Set axis_steps_per_unit - same syntax as G92
  119. * M104 - Set extruder target temp
  120. * M105 - Read current temp
  121. * M106 - Fan on
  122. * M107 - Fan off
  123. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  124. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  125. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  126. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  127. * M112 - Emergency stop
  128. * M114 - Output current position to serial port
  129. * M115 - Capabilities string
  130. * M117 - display message
  131. * M119 - Output Endstop status to serial port
  132. * M120 - Enable endstop detection
  133. * M121 - Disable endstop detection
  134. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. * M140 - Set bed target temp
  139. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  140. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  144. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  148. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. * M206 - Set additional homing offset
  150. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. * M220 - Set speed factor override percentage: S<factor in percent>
  155. * M221 - Set extrude factor override percentage: S<factor in percent>
  156. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  157. * M240 - Trigger a camera to take a photograph
  158. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  160. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. * M301 - Set PID parameters P I and D
  162. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. * M304 - Set bed PID parameters P I and D
  165. * M380 - Activate solenoid on active extruder
  166. * M381 - Disable all solenoids
  167. * M400 - Finish all moves
  168. * M401 - Lower z-probe if present
  169. * M402 - Raise z-probe if present
  170. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  171. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  172. * M406 - Turn off Filament Sensor extrusion control
  173. * M407 - Display measured filament diameter
  174. * M410 - Quickstop. Abort all the planned moves
  175. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  176. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  177. * M428 - Set the home_offset logically based on the current_position
  178. * M500 - Store parameters in EEPROM
  179. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  180. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  181. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  182. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  183. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  184. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  185. * M666 - Set delta endstop adjustment
  186. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  187. * M907 - Set digital trimpot motor current using axis codes.
  188. * M908 - Control digital trimpot directly.
  189. * M350 - Set microstepping mode.
  190. * M351 - Toggle MS1 MS2 pins directly.
  191. *
  192. * ************ SCARA Specific - This can change to suit future G-code regulations
  193. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  194. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  195. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  196. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  197. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  198. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  199. * ************* SCARA End ***************
  200. *
  201. * M928 - Start SD logging (M928 filename.g) - ended by M29
  202. * M999 - Restart after being stopped by error
  203. */
  204. #ifdef SDSUPPORT
  205. CardReader card;
  206. #endif
  207. bool Running = true;
  208. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  209. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  210. float current_position[NUM_AXIS] = { 0.0 };
  211. static float destination[NUM_AXIS] = { 0.0 };
  212. bool axis_known_position[3] = { false };
  213. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  214. static int cmd_queue_index_r = 0;
  215. static int cmd_queue_index_w = 0;
  216. static int commands_in_queue = 0;
  217. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedrate_multiplier = 100; //100->1 200->2
  221. int saved_feedrate_multiplier;
  222. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  225. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  226. float home_offset[3] = { 0 };
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. uint8_t active_extruder = 0;
  230. int fanSpeed = 0;
  231. bool cancel_heatup = false;
  232. const char errormagic[] PROGMEM = "Error:";
  233. const char echomagic[] PROGMEM = "echo:";
  234. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  235. static float offset[3] = { 0 };
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char serial_char;
  238. static int serial_count = 0;
  239. static boolean comment_mode = false;
  240. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  241. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  242. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  243. // Inactivity shutdown
  244. millis_t previous_cmd_ms = 0;
  245. static millis_t max_inactive_time = 0;
  246. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  247. millis_t print_job_start_ms = 0; ///< Print job start time
  248. millis_t print_job_stop_ms = 0; ///< Print job stop time
  249. static uint8_t target_extruder;
  250. bool no_wait_for_cooling = true;
  251. bool target_direction;
  252. #ifdef ENABLE_AUTO_BED_LEVELING
  253. int xy_travel_speed = XY_TRAVEL_SPEED;
  254. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  255. #endif
  256. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  257. float z_endstop_adj = 0;
  258. #endif
  259. // Extruder offsets
  260. #if EXTRUDERS > 1
  261. #ifndef EXTRUDER_OFFSET_X
  262. #define EXTRUDER_OFFSET_X { 0 }
  263. #endif
  264. #ifndef EXTRUDER_OFFSET_Y
  265. #define EXTRUDER_OFFSET_Y { 0 }
  266. #endif
  267. float extruder_offset[][EXTRUDERS] = {
  268. EXTRUDER_OFFSET_X,
  269. EXTRUDER_OFFSET_Y
  270. #ifdef DUAL_X_CARRIAGE
  271. , { 0 } // supports offsets in XYZ plane
  272. #endif
  273. };
  274. #endif
  275. #ifdef SERVO_ENDSTOPS
  276. int servo_endstops[] = SERVO_ENDSTOPS;
  277. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  278. #endif
  279. #ifdef BARICUDA
  280. int ValvePressure = 0;
  281. int EtoPPressure = 0;
  282. #endif
  283. #ifdef FWRETRACT
  284. bool autoretract_enabled = false;
  285. bool retracted[EXTRUDERS] = { false };
  286. bool retracted_swap[EXTRUDERS] = { false };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. float endstop_adj[3] = { 0 };
  309. // these are the default values, can be overriden with M665
  310. float delta_radius = DELTA_RADIUS;
  311. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  312. float delta_tower1_y = -COS_60 * delta_radius;
  313. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  314. float delta_tower2_y = -COS_60 * delta_radius;
  315. float delta_tower3_x = 0; // back middle tower
  316. float delta_tower3_y = delta_radius;
  317. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  319. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  320. #ifdef ENABLE_AUTO_BED_LEVELING
  321. int delta_grid_spacing[2] = { 0, 0 };
  322. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  323. #endif
  324. #else
  325. static bool home_all_axis = true;
  326. #endif
  327. #ifdef SCARA
  328. static float delta[3] = { 0 };
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. #endif
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1 = 0; //index into ring buffer
  338. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist = 0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. #ifdef FILAMENT_RUNOUT_SENSOR
  343. static bool filrunoutEnqueued = false;
  344. #endif
  345. #ifdef SDSUPPORT
  346. static bool fromsd[BUFSIZE];
  347. #endif
  348. #if NUM_SERVOS > 0
  349. Servo servo[NUM_SERVOS];
  350. #endif
  351. #ifdef CHDK
  352. unsigned long chdkHigh = 0;
  353. boolean chdkActive = false;
  354. #endif
  355. //===========================================================================
  356. //================================ Functions ================================
  357. //===========================================================================
  358. void get_arc_coordinates();
  359. bool setTargetedHotend(int code);
  360. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  361. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. #ifdef PREVENT_DANGEROUS_EXTRUDE
  364. float extrude_min_temp = EXTRUDE_MINTEMP;
  365. #endif
  366. #ifdef SDSUPPORT
  367. #include "SdFatUtil.h"
  368. int freeMemory() { return SdFatUtil::FreeRam(); }
  369. #else
  370. extern "C" {
  371. extern unsigned int __bss_end;
  372. extern unsigned int __heap_start;
  373. extern void *__brkval;
  374. int freeMemory() {
  375. int free_memory;
  376. if ((int)__brkval == 0)
  377. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  378. else
  379. free_memory = ((int)&free_memory) - ((int)__brkval);
  380. return free_memory;
  381. }
  382. }
  383. #endif //!SDSUPPORT
  384. /**
  385. * Inject the next command from the command queue, when possible
  386. * Return false only if no command was pending
  387. */
  388. static bool drain_queued_commands_P() {
  389. if (!queued_commands_P) return false;
  390. // Get the next 30 chars from the sequence of gcodes to run
  391. char cmd[30];
  392. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  393. cmd[sizeof(cmd) - 1] = '\0';
  394. // Look for the end of line, or the end of sequence
  395. size_t i = 0;
  396. char c;
  397. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  398. cmd[i] = '\0';
  399. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  400. if (c)
  401. queued_commands_P += i + 1; // move to next command
  402. else
  403. queued_commands_P = NULL; // will have no more commands in the sequence
  404. }
  405. return true;
  406. }
  407. /**
  408. * Record one or many commands to run from program memory.
  409. * Aborts the current queue, if any.
  410. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  411. */
  412. void enqueuecommands_P(const char* pgcode) {
  413. queued_commands_P = pgcode;
  414. drain_queued_commands_P(); // first command executed asap (when possible)
  415. }
  416. /**
  417. * Copy a command directly into the main command buffer, from RAM.
  418. *
  419. * This is done in a non-safe way and needs a rework someday.
  420. * Returns false if it doesn't add any command
  421. */
  422. bool enqueuecommand(const char *cmd) {
  423. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  424. // This is dangerous if a mixing of serial and this happens
  425. char *command = command_queue[cmd_queue_index_w];
  426. strcpy(command, cmd);
  427. SERIAL_ECHO_START;
  428. SERIAL_ECHOPGM(MSG_Enqueueing);
  429. SERIAL_ECHO(command);
  430. SERIAL_ECHOLNPGM("\"");
  431. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  432. commands_in_queue++;
  433. return true;
  434. }
  435. void setup_killpin() {
  436. #if HAS_KILL
  437. SET_INPUT(KILL_PIN);
  438. WRITE(KILL_PIN, HIGH);
  439. #endif
  440. }
  441. void setup_filrunoutpin() {
  442. #if HAS_FILRUNOUT
  443. pinMode(FILRUNOUT_PIN, INPUT);
  444. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  445. WRITE(FILRUNOUT_PIN, HIGH);
  446. #endif
  447. #endif
  448. }
  449. // Set home pin
  450. void setup_homepin(void) {
  451. #if HAS_HOME
  452. SET_INPUT(HOME_PIN);
  453. WRITE(HOME_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_photpin() {
  457. #if HAS_PHOTOGRAPH
  458. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  459. #endif
  460. }
  461. void setup_powerhold() {
  462. #if HAS_SUICIDE
  463. OUT_WRITE(SUICIDE_PIN, HIGH);
  464. #endif
  465. #if HAS_POWER_SWITCH
  466. #ifdef PS_DEFAULT_OFF
  467. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  468. #else
  469. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  470. #endif
  471. #endif
  472. }
  473. void suicide() {
  474. #if HAS_SUICIDE
  475. OUT_WRITE(SUICIDE_PIN, LOW);
  476. #endif
  477. }
  478. void servo_init() {
  479. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  480. servo[0].attach(SERVO0_PIN);
  481. #endif
  482. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  483. servo[1].attach(SERVO1_PIN);
  484. #endif
  485. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  486. servo[2].attach(SERVO2_PIN);
  487. #endif
  488. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  489. servo[3].attach(SERVO3_PIN);
  490. #endif
  491. // Set position of Servo Endstops that are defined
  492. #ifdef SERVO_ENDSTOPS
  493. for (int i = 0; i < 3; i++)
  494. if (servo_endstops[i] >= 0)
  495. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  496. #endif
  497. #if SERVO_LEVELING
  498. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  499. servo[servo_endstops[Z_AXIS]].detach();
  500. #endif
  501. }
  502. /**
  503. * Marlin entry-point: Set up before the program loop
  504. * - Set up the kill pin, filament runout, power hold
  505. * - Start the serial port
  506. * - Print startup messages and diagnostics
  507. * - Get EEPROM or default settings
  508. * - Initialize managers for:
  509. * • temperature
  510. * • planner
  511. * • watchdog
  512. * • stepper
  513. * • photo pin
  514. * • servos
  515. * • LCD controller
  516. * • Digipot I2C
  517. * • Z probe sled
  518. * • status LEDs
  519. */
  520. void setup() {
  521. setup_killpin();
  522. setup_filrunoutpin();
  523. setup_powerhold();
  524. MYSERIAL.begin(BAUDRATE);
  525. SERIAL_PROTOCOLLNPGM("start");
  526. SERIAL_ECHO_START;
  527. // Check startup - does nothing if bootloader sets MCUSR to 0
  528. byte mcu = MCUSR;
  529. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  530. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  531. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  532. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  533. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  534. MCUSR = 0;
  535. SERIAL_ECHOPGM(MSG_MARLIN);
  536. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  537. #ifdef STRING_VERSION_CONFIG_H
  538. #ifdef STRING_CONFIG_H_AUTHOR
  539. SERIAL_ECHO_START;
  540. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  541. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  542. SERIAL_ECHOPGM(MSG_AUTHOR);
  543. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  544. SERIAL_ECHOPGM("Compiled: ");
  545. SERIAL_ECHOLNPGM(__DATE__);
  546. #endif // STRING_CONFIG_H_AUTHOR
  547. #endif // STRING_VERSION_CONFIG_H
  548. SERIAL_ECHO_START;
  549. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  550. SERIAL_ECHO(freeMemory());
  551. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  552. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  553. #ifdef SDSUPPORT
  554. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  555. #endif
  556. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  557. Config_RetrieveSettings();
  558. tp_init(); // Initialize temperature loop
  559. plan_init(); // Initialize planner;
  560. watchdog_init();
  561. st_init(); // Initialize stepper, this enables interrupts!
  562. setup_photpin();
  563. servo_init();
  564. lcd_init();
  565. _delay_ms(1000); // wait 1sec to display the splash screen
  566. #if HAS_CONTROLLERFAN
  567. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  568. #endif
  569. #ifdef DIGIPOT_I2C
  570. digipot_i2c_init();
  571. #endif
  572. #ifdef Z_PROBE_SLED
  573. pinMode(SERVO0_PIN, OUTPUT);
  574. digitalWrite(SERVO0_PIN, LOW); // turn it off
  575. #endif // Z_PROBE_SLED
  576. setup_homepin();
  577. #ifdef STAT_LED_RED
  578. pinMode(STAT_LED_RED, OUTPUT);
  579. digitalWrite(STAT_LED_RED, LOW); // turn it off
  580. #endif
  581. #ifdef STAT_LED_BLUE
  582. pinMode(STAT_LED_BLUE, OUTPUT);
  583. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  584. #endif
  585. }
  586. /**
  587. * The main Marlin program loop
  588. *
  589. * - Save or log commands to SD
  590. * - Process available commands (if not saving)
  591. * - Call heater manager
  592. * - Call inactivity manager
  593. * - Call endstop manager
  594. * - Call LCD update
  595. */
  596. void loop() {
  597. if (commands_in_queue < BUFSIZE - 1) get_command();
  598. #ifdef SDSUPPORT
  599. card.checkautostart(false);
  600. #endif
  601. if (commands_in_queue) {
  602. #ifdef SDSUPPORT
  603. if (card.saving) {
  604. char *command = command_queue[cmd_queue_index_r];
  605. if (strstr_P(command, PSTR("M29"))) {
  606. // M29 closes the file
  607. card.closefile();
  608. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  609. }
  610. else {
  611. // Write the string from the read buffer to SD
  612. card.write_command(command);
  613. if (card.logging)
  614. process_commands(); // The card is saving because it's logging
  615. else
  616. SERIAL_PROTOCOLLNPGM(MSG_OK);
  617. }
  618. }
  619. else
  620. process_commands();
  621. #else
  622. process_commands();
  623. #endif // SDSUPPORT
  624. commands_in_queue--;
  625. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  626. }
  627. // Check heater every n milliseconds
  628. manage_heater();
  629. manage_inactivity();
  630. checkHitEndstops();
  631. lcd_update();
  632. }
  633. /**
  634. * Add to the circular command queue the next command from:
  635. * - The command-injection queue (queued_commands_P)
  636. * - The active serial input (usually USB)
  637. * - The SD card file being actively printed
  638. */
  639. void get_command() {
  640. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  641. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  642. serial_char = MYSERIAL.read();
  643. if (serial_char == '\n' || serial_char == '\r' ||
  644. serial_count >= (MAX_CMD_SIZE - 1)
  645. ) {
  646. // end of line == end of comment
  647. comment_mode = false;
  648. if (!serial_count) return; // shortcut for empty lines
  649. char *command = command_queue[cmd_queue_index_w];
  650. command[serial_count] = 0; // terminate string
  651. #ifdef SDSUPPORT
  652. fromsd[cmd_queue_index_w] = false;
  653. #endif
  654. if (strchr(command, 'N') != NULL) {
  655. strchr_pointer = strchr(command, 'N');
  656. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  657. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  658. SERIAL_ERROR_START;
  659. SERIAL_ERRORPGM(MSG_ERR_LINE_NO1);
  660. SERIAL_ERROR(gcode_LastN + 1);
  661. SERIAL_ERRORPGM(MSG_ERR_LINE_NO2);
  662. SERIAL_ERRORLN(gcode_N);
  663. FlushSerialRequestResend();
  664. serial_count = 0;
  665. return;
  666. }
  667. if (strchr(command, '*') != NULL) {
  668. byte checksum = 0;
  669. byte count = 0;
  670. while (command[count] != '*') checksum ^= command[count++];
  671. strchr_pointer = strchr(command, '*');
  672. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  673. SERIAL_ERROR_START;
  674. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  675. SERIAL_ERRORLN(gcode_LastN);
  676. FlushSerialRequestResend();
  677. serial_count = 0;
  678. return;
  679. }
  680. //if no errors, continue parsing
  681. }
  682. else {
  683. SERIAL_ERROR_START;
  684. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  685. SERIAL_ERRORLN(gcode_LastN);
  686. FlushSerialRequestResend();
  687. serial_count = 0;
  688. return;
  689. }
  690. gcode_LastN = gcode_N;
  691. //if no errors, continue parsing
  692. }
  693. else { // if we don't receive 'N' but still see '*'
  694. if ((strchr(command, '*') != NULL)) {
  695. SERIAL_ERROR_START;
  696. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  697. SERIAL_ERRORLN(gcode_LastN);
  698. serial_count = 0;
  699. return;
  700. }
  701. }
  702. if (strchr(command, 'G') != NULL) {
  703. strchr_pointer = strchr(command, 'G');
  704. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  705. case 0:
  706. case 1:
  707. case 2:
  708. case 3:
  709. if (IsStopped()) {
  710. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  711. LCD_MESSAGEPGM(MSG_STOPPED);
  712. }
  713. break;
  714. default:
  715. break;
  716. }
  717. }
  718. // If command was e-stop process now
  719. if (strcmp(command, "M112") == 0) kill();
  720. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  721. commands_in_queue += 1;
  722. serial_count = 0; //clear buffer
  723. }
  724. else if (serial_char == '\\') { // Handle escapes
  725. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  726. // if we have one more character, copy it over
  727. serial_char = MYSERIAL.read();
  728. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  729. }
  730. // otherwise do nothing
  731. }
  732. else { // its not a newline, carriage return or escape char
  733. if (serial_char == ';') comment_mode = true;
  734. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  735. }
  736. }
  737. #ifdef SDSUPPORT
  738. if (!card.sdprinting || serial_count) return;
  739. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  740. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  741. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  742. static bool stop_buffering = false;
  743. if (commands_in_queue == 0) stop_buffering = false;
  744. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  745. int16_t n = card.get();
  746. serial_char = (char)n;
  747. if (serial_char == '\n' || serial_char == '\r' ||
  748. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  749. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  750. ) {
  751. if (card.eof()) {
  752. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  753. print_job_stop_ms = millis();
  754. char time[30];
  755. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  756. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  757. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  758. SERIAL_ECHO_START;
  759. SERIAL_ECHOLN(time);
  760. lcd_setstatus(time, true);
  761. card.printingHasFinished();
  762. card.checkautostart(true);
  763. }
  764. if (serial_char == '#') stop_buffering = true;
  765. if (!serial_count) {
  766. comment_mode = false; //for new command
  767. return; //if empty line
  768. }
  769. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  770. // if (!comment_mode) {
  771. fromsd[cmd_queue_index_w] = true;
  772. commands_in_queue += 1;
  773. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  774. // }
  775. comment_mode = false; //for new command
  776. serial_count = 0; //clear buffer
  777. }
  778. else {
  779. if (serial_char == ';') comment_mode = true;
  780. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  781. }
  782. }
  783. #endif // SDSUPPORT
  784. }
  785. bool code_has_value() {
  786. int i = 1;
  787. char c = strchr_pointer[i];
  788. if (c == '-' || c == '+') c = strchr_pointer[++i];
  789. if (c == '.') c = strchr_pointer[++i];
  790. return (c >= '0' && c <= '9');
  791. }
  792. float code_value() {
  793. float ret;
  794. char *e = strchr(strchr_pointer, 'E');
  795. if (e) {
  796. *e = 0;
  797. ret = strtod(strchr_pointer+1, NULL);
  798. *e = 'E';
  799. }
  800. else
  801. ret = strtod(strchr_pointer+1, NULL);
  802. return ret;
  803. }
  804. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  805. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  806. bool code_seen(char code) {
  807. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  808. return (strchr_pointer != NULL); //Return True if a character was found
  809. }
  810. #define DEFINE_PGM_READ_ANY(type, reader) \
  811. static inline type pgm_read_any(const type *p) \
  812. { return pgm_read_##reader##_near(p); }
  813. DEFINE_PGM_READ_ANY(float, float);
  814. DEFINE_PGM_READ_ANY(signed char, byte);
  815. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  816. static const PROGMEM type array##_P[3] = \
  817. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  818. static inline type array(int axis) \
  819. { return pgm_read_any(&array##_P[axis]); }
  820. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  821. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  822. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  823. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  824. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  825. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  826. #ifdef DUAL_X_CARRIAGE
  827. #define DXC_FULL_CONTROL_MODE 0
  828. #define DXC_AUTO_PARK_MODE 1
  829. #define DXC_DUPLICATION_MODE 2
  830. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  831. static float x_home_pos(int extruder) {
  832. if (extruder == 0)
  833. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  834. else
  835. // In dual carriage mode the extruder offset provides an override of the
  836. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  837. // This allow soft recalibration of the second extruder offset position without firmware reflash
  838. // (through the M218 command).
  839. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  840. }
  841. static int x_home_dir(int extruder) {
  842. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  843. }
  844. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  845. static bool active_extruder_parked = false; // used in mode 1 & 2
  846. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  847. static millis_t delayed_move_time = 0; // used in mode 1
  848. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  849. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  850. bool extruder_duplication_enabled = false; // used in mode 2
  851. #endif //DUAL_X_CARRIAGE
  852. static void axis_is_at_home(int axis) {
  853. #ifdef DUAL_X_CARRIAGE
  854. if (axis == X_AXIS) {
  855. if (active_extruder != 0) {
  856. current_position[X_AXIS] = x_home_pos(active_extruder);
  857. min_pos[X_AXIS] = X2_MIN_POS;
  858. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  859. return;
  860. }
  861. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  862. float xoff = home_offset[X_AXIS];
  863. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  864. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  865. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  866. return;
  867. }
  868. }
  869. #endif
  870. #ifdef SCARA
  871. if (axis == X_AXIS || axis == Y_AXIS) {
  872. float homeposition[3];
  873. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  874. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  875. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  876. // Works out real Homeposition angles using inverse kinematics,
  877. // and calculates homing offset using forward kinematics
  878. calculate_delta(homeposition);
  879. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  880. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  881. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  882. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  883. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  884. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  885. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  886. calculate_SCARA_forward_Transform(delta);
  887. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  888. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  889. current_position[axis] = delta[axis];
  890. // SCARA home positions are based on configuration since the actual limits are determined by the
  891. // inverse kinematic transform.
  892. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  893. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  894. }
  895. else
  896. #endif
  897. {
  898. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  899. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  900. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  901. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  902. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  903. #endif
  904. }
  905. }
  906. /**
  907. * Some planner shorthand inline functions
  908. */
  909. inline void set_homing_bump_feedrate(AxisEnum axis) {
  910. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  911. if (homing_bump_divisor[axis] >= 1)
  912. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  913. else {
  914. feedrate = homing_feedrate[axis] / 10;
  915. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  916. }
  917. }
  918. inline void line_to_current_position() {
  919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  920. }
  921. inline void line_to_z(float zPosition) {
  922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  923. }
  924. inline void line_to_destination(float mm_m) {
  925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  926. }
  927. inline void line_to_destination() {
  928. line_to_destination(feedrate);
  929. }
  930. inline void sync_plan_position() {
  931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  932. }
  933. #if defined(DELTA) || defined(SCARA)
  934. inline void sync_plan_position_delta() {
  935. calculate_delta(current_position);
  936. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  937. }
  938. #endif
  939. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  940. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  941. #ifdef ENABLE_AUTO_BED_LEVELING
  942. #ifdef DELTA
  943. /**
  944. * Calculate delta, start a line, and set current_position to destination
  945. */
  946. void prepare_move_raw() {
  947. refresh_cmd_timeout();
  948. calculate_delta(destination);
  949. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  950. set_current_to_destination();
  951. }
  952. #endif
  953. #ifdef AUTO_BED_LEVELING_GRID
  954. #ifndef DELTA
  955. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  956. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  957. planeNormal.debug("planeNormal");
  958. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  959. //bedLevel.debug("bedLevel");
  960. //plan_bed_level_matrix.debug("bed level before");
  961. //vector_3 uncorrected_position = plan_get_position_mm();
  962. //uncorrected_position.debug("position before");
  963. vector_3 corrected_position = plan_get_position();
  964. //corrected_position.debug("position after");
  965. current_position[X_AXIS] = corrected_position.x;
  966. current_position[Y_AXIS] = corrected_position.y;
  967. current_position[Z_AXIS] = corrected_position.z;
  968. sync_plan_position();
  969. }
  970. #endif // !DELTA
  971. #else // !AUTO_BED_LEVELING_GRID
  972. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  973. plan_bed_level_matrix.set_to_identity();
  974. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  975. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  976. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  977. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  978. if (planeNormal.z < 0) {
  979. planeNormal.x = -planeNormal.x;
  980. planeNormal.y = -planeNormal.y;
  981. planeNormal.z = -planeNormal.z;
  982. }
  983. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  984. vector_3 corrected_position = plan_get_position();
  985. current_position[X_AXIS] = corrected_position.x;
  986. current_position[Y_AXIS] = corrected_position.y;
  987. current_position[Z_AXIS] = corrected_position.z;
  988. sync_plan_position();
  989. }
  990. #endif // !AUTO_BED_LEVELING_GRID
  991. static void run_z_probe() {
  992. #ifdef DELTA
  993. float start_z = current_position[Z_AXIS];
  994. long start_steps = st_get_position(Z_AXIS);
  995. // move down slowly until you find the bed
  996. feedrate = homing_feedrate[Z_AXIS] / 4;
  997. destination[Z_AXIS] = -10;
  998. prepare_move_raw(); // this will also set_current_to_destination
  999. st_synchronize();
  1000. endstops_hit_on_purpose(); // clear endstop hit flags
  1001. // we have to let the planner know where we are right now as it is not where we said to go.
  1002. long stop_steps = st_get_position(Z_AXIS);
  1003. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1004. current_position[Z_AXIS] = mm;
  1005. sync_plan_position_delta();
  1006. #else // !DELTA
  1007. plan_bed_level_matrix.set_to_identity();
  1008. feedrate = homing_feedrate[Z_AXIS];
  1009. // move down until you find the bed
  1010. float zPosition = -10;
  1011. line_to_z(zPosition);
  1012. st_synchronize();
  1013. // we have to let the planner know where we are right now as it is not where we said to go.
  1014. zPosition = st_get_position_mm(Z_AXIS);
  1015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1016. // move up the retract distance
  1017. zPosition += home_bump_mm(Z_AXIS);
  1018. line_to_z(zPosition);
  1019. st_synchronize();
  1020. endstops_hit_on_purpose(); // clear endstop hit flags
  1021. // move back down slowly to find bed
  1022. set_homing_bump_feedrate(Z_AXIS);
  1023. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1024. line_to_z(zPosition);
  1025. st_synchronize();
  1026. endstops_hit_on_purpose(); // clear endstop hit flags
  1027. // Get the current stepper position after bumping an endstop
  1028. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1029. sync_plan_position();
  1030. #endif // !DELTA
  1031. }
  1032. /**
  1033. * Plan a move to (X, Y, Z) and set the current_position
  1034. * The final current_position may not be the one that was requested
  1035. */
  1036. static void do_blocking_move_to(float x, float y, float z) {
  1037. float oldFeedRate = feedrate;
  1038. #ifdef DELTA
  1039. feedrate = XY_TRAVEL_SPEED;
  1040. destination[X_AXIS] = x;
  1041. destination[Y_AXIS] = y;
  1042. destination[Z_AXIS] = z;
  1043. prepare_move_raw(); // this will also set_current_to_destination
  1044. st_synchronize();
  1045. #else
  1046. feedrate = homing_feedrate[Z_AXIS];
  1047. current_position[Z_AXIS] = z;
  1048. line_to_current_position();
  1049. st_synchronize();
  1050. feedrate = xy_travel_speed;
  1051. current_position[X_AXIS] = x;
  1052. current_position[Y_AXIS] = y;
  1053. line_to_current_position();
  1054. st_synchronize();
  1055. #endif
  1056. feedrate = oldFeedRate;
  1057. }
  1058. static void setup_for_endstop_move() {
  1059. saved_feedrate = feedrate;
  1060. saved_feedrate_multiplier = feedrate_multiplier;
  1061. feedrate_multiplier = 100;
  1062. refresh_cmd_timeout();
  1063. enable_endstops(true);
  1064. }
  1065. static void clean_up_after_endstop_move() {
  1066. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1067. enable_endstops(false);
  1068. #endif
  1069. feedrate = saved_feedrate;
  1070. feedrate_multiplier = saved_feedrate_multiplier;
  1071. refresh_cmd_timeout();
  1072. }
  1073. static void deploy_z_probe() {
  1074. #ifdef SERVO_ENDSTOPS
  1075. // Engage Z Servo endstop if enabled
  1076. if (servo_endstops[Z_AXIS] >= 0) {
  1077. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1078. #if SERVO_LEVELING
  1079. srv->attach(0);
  1080. #endif
  1081. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1082. #if SERVO_LEVELING
  1083. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1084. srv->detach();
  1085. #endif
  1086. }
  1087. #elif defined(Z_PROBE_ALLEN_KEY)
  1088. feedrate = homing_feedrate[X_AXIS];
  1089. // Move to the start position to initiate deployment
  1090. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1091. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1092. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1093. prepare_move_raw(); // this will also set_current_to_destination
  1094. // Home X to touch the belt
  1095. feedrate = homing_feedrate[X_AXIS]/10;
  1096. destination[X_AXIS] = 0;
  1097. prepare_move_raw(); // this will also set_current_to_destination
  1098. // Home Y for safety
  1099. feedrate = homing_feedrate[X_AXIS]/2;
  1100. destination[Y_AXIS] = 0;
  1101. prepare_move_raw(); // this will also set_current_to_destination
  1102. st_synchronize();
  1103. #ifdef Z_PROBE_ENDSTOP
  1104. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1105. if (z_probe_endstop)
  1106. #else
  1107. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1108. if (z_min_endstop)
  1109. #endif
  1110. {
  1111. if (IsRunning()) {
  1112. SERIAL_ERROR_START;
  1113. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1114. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1115. }
  1116. Stop();
  1117. }
  1118. #endif // Z_PROBE_ALLEN_KEY
  1119. }
  1120. static void stow_z_probe(bool doRaise=true) {
  1121. #ifdef SERVO_ENDSTOPS
  1122. // Retract Z Servo endstop if enabled
  1123. if (servo_endstops[Z_AXIS] >= 0) {
  1124. #if Z_RAISE_AFTER_PROBING > 0
  1125. if (doRaise) {
  1126. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1127. st_synchronize();
  1128. }
  1129. #endif
  1130. // Change the Z servo angle
  1131. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1132. #if SERVO_LEVELING
  1133. srv->attach(0);
  1134. #endif
  1135. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1136. #if SERVO_LEVELING
  1137. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1138. srv->detach();
  1139. #endif
  1140. }
  1141. #elif defined(Z_PROBE_ALLEN_KEY)
  1142. // Move up for safety
  1143. feedrate = homing_feedrate[X_AXIS];
  1144. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1145. prepare_move_raw(); // this will also set_current_to_destination
  1146. // Move to the start position to initiate retraction
  1147. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1148. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1149. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1150. prepare_move_raw(); // this will also set_current_to_destination
  1151. // Move the nozzle down to push the probe into retracted position
  1152. feedrate = homing_feedrate[Z_AXIS]/10;
  1153. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1154. prepare_move_raw(); // this will also set_current_to_destination
  1155. // Move up for safety
  1156. feedrate = homing_feedrate[Z_AXIS]/2;
  1157. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1158. prepare_move_raw(); // this will also set_current_to_destination
  1159. // Home XY for safety
  1160. feedrate = homing_feedrate[X_AXIS]/2;
  1161. destination[X_AXIS] = 0;
  1162. destination[Y_AXIS] = 0;
  1163. prepare_move_raw(); // this will also set_current_to_destination
  1164. st_synchronize();
  1165. #ifdef Z_PROBE_ENDSTOP
  1166. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1167. if (!z_probe_endstop)
  1168. #else
  1169. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1170. if (!z_min_endstop)
  1171. #endif
  1172. {
  1173. if (IsRunning()) {
  1174. SERIAL_ERROR_START;
  1175. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1176. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1177. }
  1178. Stop();
  1179. }
  1180. #endif
  1181. }
  1182. enum ProbeAction {
  1183. ProbeStay = 0,
  1184. ProbeDeploy = BIT(0),
  1185. ProbeStow = BIT(1),
  1186. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1187. };
  1188. // Probe bed height at position (x,y), returns the measured z value
  1189. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1190. // move to right place
  1191. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1192. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1193. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1194. if (retract_action & ProbeDeploy) deploy_z_probe();
  1195. #endif
  1196. run_z_probe();
  1197. float measured_z = current_position[Z_AXIS];
  1198. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1199. if (retract_action == ProbeStay) {
  1200. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1201. st_synchronize();
  1202. }
  1203. #endif
  1204. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1205. if (retract_action & ProbeStow) stow_z_probe();
  1206. #endif
  1207. if (verbose_level > 2) {
  1208. SERIAL_PROTOCOLPGM("Bed");
  1209. SERIAL_PROTOCOLPGM(" X: ");
  1210. SERIAL_PROTOCOL_F(x, 3);
  1211. SERIAL_PROTOCOLPGM(" Y: ");
  1212. SERIAL_PROTOCOL_F(y, 3);
  1213. SERIAL_PROTOCOLPGM(" Z: ");
  1214. SERIAL_PROTOCOL_F(measured_z, 3);
  1215. SERIAL_EOL;
  1216. }
  1217. return measured_z;
  1218. }
  1219. #ifdef DELTA
  1220. /**
  1221. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1222. */
  1223. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1224. if (bed_level[x][y] != 0.0) {
  1225. return; // Don't overwrite good values.
  1226. }
  1227. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1228. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1229. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1230. float median = c; // Median is robust (ignores outliers).
  1231. if (a < b) {
  1232. if (b < c) median = b;
  1233. if (c < a) median = a;
  1234. } else { // b <= a
  1235. if (c < b) median = b;
  1236. if (a < c) median = a;
  1237. }
  1238. bed_level[x][y] = median;
  1239. }
  1240. // Fill in the unprobed points (corners of circular print surface)
  1241. // using linear extrapolation, away from the center.
  1242. static void extrapolate_unprobed_bed_level() {
  1243. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1244. for (int y = 0; y <= half; y++) {
  1245. for (int x = 0; x <= half; x++) {
  1246. if (x + y < 3) continue;
  1247. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1248. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1249. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1250. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1251. }
  1252. }
  1253. }
  1254. // Print calibration results for plotting or manual frame adjustment.
  1255. static void print_bed_level() {
  1256. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1257. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1258. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1259. SERIAL_PROTOCOLCHAR(' ');
  1260. }
  1261. SERIAL_EOL;
  1262. }
  1263. }
  1264. // Reset calibration results to zero.
  1265. void reset_bed_level() {
  1266. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1267. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1268. bed_level[x][y] = 0.0;
  1269. }
  1270. }
  1271. }
  1272. #endif // DELTA
  1273. #endif // ENABLE_AUTO_BED_LEVELING
  1274. /**
  1275. * Home an individual axis
  1276. */
  1277. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1278. static void homeaxis(AxisEnum axis) {
  1279. #define HOMEAXIS_DO(LETTER) \
  1280. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1281. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1282. int axis_home_dir =
  1283. #ifdef DUAL_X_CARRIAGE
  1284. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1285. #endif
  1286. home_dir(axis);
  1287. // Set the axis position as setup for the move
  1288. current_position[axis] = 0;
  1289. sync_plan_position();
  1290. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1291. // Deploy a probe if there is one, and homing towards the bed
  1292. if (axis == Z_AXIS) {
  1293. if (axis_home_dir < 0) deploy_z_probe();
  1294. }
  1295. else
  1296. #endif
  1297. #ifdef SERVO_ENDSTOPS
  1298. {
  1299. // Engage Servo endstop if enabled
  1300. if (servo_endstops[axis] > -1)
  1301. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1302. }
  1303. #endif
  1304. // Set a flag for Z motor locking
  1305. #ifdef Z_DUAL_ENDSTOPS
  1306. if (axis == Z_AXIS) In_Homing_Process(true);
  1307. #endif
  1308. // Move towards the endstop until an endstop is triggered
  1309. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1310. feedrate = homing_feedrate[axis];
  1311. line_to_destination();
  1312. st_synchronize();
  1313. // Set the axis position as setup for the move
  1314. current_position[axis] = 0;
  1315. sync_plan_position();
  1316. enable_endstops(false); // Disable endstops while moving away
  1317. // Move away from the endstop by the axis HOME_BUMP_MM
  1318. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1319. line_to_destination();
  1320. st_synchronize();
  1321. enable_endstops(true); // Enable endstops for next homing move
  1322. // Slow down the feedrate for the next move
  1323. set_homing_bump_feedrate(axis);
  1324. // Move slowly towards the endstop until triggered
  1325. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1326. line_to_destination();
  1327. st_synchronize();
  1328. #ifdef Z_DUAL_ENDSTOPS
  1329. if (axis == Z_AXIS) {
  1330. float adj = fabs(z_endstop_adj);
  1331. bool lockZ1;
  1332. if (axis_home_dir > 0) {
  1333. adj = -adj;
  1334. lockZ1 = (z_endstop_adj > 0);
  1335. }
  1336. else
  1337. lockZ1 = (z_endstop_adj < 0);
  1338. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1339. sync_plan_position();
  1340. // Move to the adjusted endstop height
  1341. feedrate = homing_feedrate[axis];
  1342. destination[Z_AXIS] = adj;
  1343. line_to_destination();
  1344. st_synchronize();
  1345. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1346. In_Homing_Process(false);
  1347. } // Z_AXIS
  1348. #endif
  1349. #ifdef DELTA
  1350. // retrace by the amount specified in endstop_adj
  1351. if (endstop_adj[axis] * axis_home_dir < 0) {
  1352. enable_endstops(false); // Disable endstops while moving away
  1353. sync_plan_position();
  1354. destination[axis] = endstop_adj[axis];
  1355. line_to_destination();
  1356. st_synchronize();
  1357. enable_endstops(true); // Enable endstops for next homing move
  1358. }
  1359. #endif
  1360. // Set the axis position to its home position (plus home offsets)
  1361. axis_is_at_home(axis);
  1362. sync_plan_position();
  1363. destination[axis] = current_position[axis];
  1364. feedrate = 0.0;
  1365. endstops_hit_on_purpose(); // clear endstop hit flags
  1366. axis_known_position[axis] = true;
  1367. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1368. // Deploy a probe if there is one, and homing towards the bed
  1369. if (axis == Z_AXIS) {
  1370. if (axis_home_dir < 0) stow_z_probe();
  1371. }
  1372. else
  1373. #endif
  1374. #ifdef SERVO_ENDSTOPS
  1375. {
  1376. // Retract Servo endstop if enabled
  1377. if (servo_endstops[axis] > -1)
  1378. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1379. }
  1380. #endif
  1381. }
  1382. }
  1383. #ifdef FWRETRACT
  1384. void retract(bool retracting, bool swapretract = false) {
  1385. if (retracting == retracted[active_extruder]) return;
  1386. float oldFeedrate = feedrate;
  1387. set_destination_to_current();
  1388. if (retracting) {
  1389. feedrate = retract_feedrate * 60;
  1390. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1391. plan_set_e_position(current_position[E_AXIS]);
  1392. prepare_move();
  1393. if (retract_zlift > 0.01) {
  1394. current_position[Z_AXIS] -= retract_zlift;
  1395. #ifdef DELTA
  1396. sync_plan_position_delta();
  1397. #else
  1398. sync_plan_position();
  1399. #endif
  1400. prepare_move();
  1401. }
  1402. }
  1403. else {
  1404. if (retract_zlift > 0.01) {
  1405. current_position[Z_AXIS] += retract_zlift;
  1406. #ifdef DELTA
  1407. sync_plan_position_delta();
  1408. #else
  1409. sync_plan_position();
  1410. #endif
  1411. //prepare_move();
  1412. }
  1413. feedrate = retract_recover_feedrate * 60;
  1414. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1415. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1416. plan_set_e_position(current_position[E_AXIS]);
  1417. prepare_move();
  1418. }
  1419. feedrate = oldFeedrate;
  1420. retracted[active_extruder] = retracting;
  1421. } // retract()
  1422. #endif // FWRETRACT
  1423. #ifdef Z_PROBE_SLED
  1424. #ifndef SLED_DOCKING_OFFSET
  1425. #define SLED_DOCKING_OFFSET 0
  1426. #endif
  1427. /**
  1428. * Method to dock/undock a sled designed by Charles Bell.
  1429. *
  1430. * dock[in] If true, move to MAX_X and engage the electromagnet
  1431. * offset[in] The additional distance to move to adjust docking location
  1432. */
  1433. static void dock_sled(bool dock, int offset=0) {
  1434. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1435. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1438. return;
  1439. }
  1440. if (dock) {
  1441. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1442. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1443. } else {
  1444. float z_loc = current_position[Z_AXIS];
  1445. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1446. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1447. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1448. }
  1449. }
  1450. #endif // Z_PROBE_SLED
  1451. /**
  1452. *
  1453. * G-Code Handler functions
  1454. *
  1455. */
  1456. /**
  1457. * G0, G1: Coordinated movement of X Y Z E axes
  1458. */
  1459. inline void gcode_G0_G1() {
  1460. if (IsRunning()) {
  1461. get_coordinates(); // For X Y Z E F
  1462. #ifdef FWRETRACT
  1463. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1464. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1465. // Is this move an attempt to retract or recover?
  1466. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1467. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1468. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1469. retract(!retracted[active_extruder]);
  1470. return;
  1471. }
  1472. }
  1473. #endif //FWRETRACT
  1474. prepare_move();
  1475. //ClearToSend();
  1476. }
  1477. }
  1478. /**
  1479. * G2: Clockwise Arc
  1480. * G3: Counterclockwise Arc
  1481. */
  1482. inline void gcode_G2_G3(bool clockwise) {
  1483. if (IsRunning()) {
  1484. get_arc_coordinates();
  1485. prepare_arc_move(clockwise);
  1486. }
  1487. }
  1488. /**
  1489. * G4: Dwell S<seconds> or P<milliseconds>
  1490. */
  1491. inline void gcode_G4() {
  1492. millis_t codenum = 0;
  1493. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1494. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1495. st_synchronize();
  1496. refresh_cmd_timeout();
  1497. codenum += previous_cmd_ms; // keep track of when we started waiting
  1498. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1499. while (millis() < codenum) {
  1500. manage_heater();
  1501. manage_inactivity();
  1502. lcd_update();
  1503. }
  1504. }
  1505. #ifdef FWRETRACT
  1506. /**
  1507. * G10 - Retract filament according to settings of M207
  1508. * G11 - Recover filament according to settings of M208
  1509. */
  1510. inline void gcode_G10_G11(bool doRetract=false) {
  1511. #if EXTRUDERS > 1
  1512. if (doRetract) {
  1513. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1514. }
  1515. #endif
  1516. retract(doRetract
  1517. #if EXTRUDERS > 1
  1518. , retracted_swap[active_extruder]
  1519. #endif
  1520. );
  1521. }
  1522. #endif //FWRETRACT
  1523. /**
  1524. * G28: Home all axes according to settings
  1525. *
  1526. * Parameters
  1527. *
  1528. * None Home to all axes with no parameters.
  1529. * With QUICK_HOME enabled XY will home together, then Z.
  1530. *
  1531. * Cartesian parameters
  1532. *
  1533. * X Home to the X endstop
  1534. * Y Home to the Y endstop
  1535. * Z Home to the Z endstop
  1536. *
  1537. */
  1538. inline void gcode_G28() {
  1539. // For auto bed leveling, clear the level matrix
  1540. #ifdef ENABLE_AUTO_BED_LEVELING
  1541. plan_bed_level_matrix.set_to_identity();
  1542. #ifdef DELTA
  1543. reset_bed_level();
  1544. #endif
  1545. #endif
  1546. // For manual bed leveling deactivate the matrix temporarily
  1547. #ifdef MESH_BED_LEVELING
  1548. uint8_t mbl_was_active = mbl.active;
  1549. mbl.active = 0;
  1550. #endif
  1551. saved_feedrate = feedrate;
  1552. saved_feedrate_multiplier = feedrate_multiplier;
  1553. feedrate_multiplier = 100;
  1554. refresh_cmd_timeout();
  1555. enable_endstops(true);
  1556. set_destination_to_current();
  1557. feedrate = 0.0;
  1558. #ifdef DELTA
  1559. // A delta can only safely home all axis at the same time
  1560. // all axis have to home at the same time
  1561. // Pretend the current position is 0,0,0
  1562. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1563. sync_plan_position();
  1564. // Move all carriages up together until the first endstop is hit.
  1565. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1566. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1567. line_to_destination();
  1568. st_synchronize();
  1569. endstops_hit_on_purpose(); // clear endstop hit flags
  1570. // Destination reached
  1571. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1572. // take care of back off and rehome now we are all at the top
  1573. HOMEAXIS(X);
  1574. HOMEAXIS(Y);
  1575. HOMEAXIS(Z);
  1576. sync_plan_position_delta();
  1577. #else // NOT DELTA
  1578. bool homeX = code_seen(axis_codes[X_AXIS]),
  1579. homeY = code_seen(axis_codes[Y_AXIS]),
  1580. homeZ = code_seen(axis_codes[Z_AXIS]);
  1581. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1582. if (home_all_axis || homeZ) {
  1583. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1584. HOMEAXIS(Z);
  1585. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1586. // Raise Z before homing any other axes
  1587. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1588. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1589. feedrate = max_feedrate[Z_AXIS] * 60;
  1590. line_to_destination();
  1591. st_synchronize();
  1592. #endif
  1593. } // home_all_axis || homeZ
  1594. #ifdef QUICK_HOME
  1595. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1596. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1597. #ifdef DUAL_X_CARRIAGE
  1598. int x_axis_home_dir = x_home_dir(active_extruder);
  1599. extruder_duplication_enabled = false;
  1600. #else
  1601. int x_axis_home_dir = home_dir(X_AXIS);
  1602. #endif
  1603. sync_plan_position();
  1604. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1605. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1606. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1607. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1608. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1609. line_to_destination();
  1610. st_synchronize();
  1611. axis_is_at_home(X_AXIS);
  1612. axis_is_at_home(Y_AXIS);
  1613. sync_plan_position();
  1614. destination[X_AXIS] = current_position[X_AXIS];
  1615. destination[Y_AXIS] = current_position[Y_AXIS];
  1616. line_to_destination();
  1617. feedrate = 0.0;
  1618. st_synchronize();
  1619. endstops_hit_on_purpose(); // clear endstop hit flags
  1620. current_position[X_AXIS] = destination[X_AXIS];
  1621. current_position[Y_AXIS] = destination[Y_AXIS];
  1622. #ifndef SCARA
  1623. current_position[Z_AXIS] = destination[Z_AXIS];
  1624. #endif
  1625. }
  1626. #endif // QUICK_HOME
  1627. #ifdef HOME_Y_BEFORE_X
  1628. // Home Y
  1629. if (home_all_axis || homeY) HOMEAXIS(Y);
  1630. #endif
  1631. // Home X
  1632. if (home_all_axis || homeX) {
  1633. #ifdef DUAL_X_CARRIAGE
  1634. int tmp_extruder = active_extruder;
  1635. extruder_duplication_enabled = false;
  1636. active_extruder = !active_extruder;
  1637. HOMEAXIS(X);
  1638. inactive_extruder_x_pos = current_position[X_AXIS];
  1639. active_extruder = tmp_extruder;
  1640. HOMEAXIS(X);
  1641. // reset state used by the different modes
  1642. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1643. delayed_move_time = 0;
  1644. active_extruder_parked = true;
  1645. #else
  1646. HOMEAXIS(X);
  1647. #endif
  1648. }
  1649. #ifndef HOME_Y_BEFORE_X
  1650. // Home Y
  1651. if (home_all_axis || homeY) HOMEAXIS(Y);
  1652. #endif
  1653. // Home Z last if homing towards the bed
  1654. #if Z_HOME_DIR < 0
  1655. if (home_all_axis || homeZ) {
  1656. #ifdef Z_SAFE_HOMING
  1657. if (home_all_axis) {
  1658. current_position[Z_AXIS] = 0;
  1659. sync_plan_position();
  1660. //
  1661. // Set the probe (or just the nozzle) destination to the safe homing point
  1662. //
  1663. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1664. // then this may not work as expected.
  1665. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1666. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1667. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1668. feedrate = XY_TRAVEL_SPEED;
  1669. // This could potentially move X, Y, Z all together
  1670. line_to_destination();
  1671. st_synchronize();
  1672. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1673. current_position[X_AXIS] = destination[X_AXIS];
  1674. current_position[Y_AXIS] = destination[Y_AXIS];
  1675. // Home the Z axis
  1676. HOMEAXIS(Z);
  1677. }
  1678. else if (homeZ) { // Don't need to Home Z twice
  1679. // Let's see if X and Y are homed
  1680. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1681. // Make sure the probe is within the physical limits
  1682. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1683. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1684. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1685. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1686. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1687. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1688. // Set the plan current position to X, Y, 0
  1689. current_position[Z_AXIS] = 0;
  1690. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1691. // Set Z destination away from bed and raise the axis
  1692. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1693. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1694. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1695. line_to_destination();
  1696. st_synchronize();
  1697. // Home the Z axis
  1698. HOMEAXIS(Z);
  1699. }
  1700. else {
  1701. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1702. SERIAL_ECHO_START;
  1703. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1704. }
  1705. }
  1706. else {
  1707. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1708. SERIAL_ECHO_START;
  1709. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1710. }
  1711. } // !home_all_axes && homeZ
  1712. #else // !Z_SAFE_HOMING
  1713. HOMEAXIS(Z);
  1714. #endif // !Z_SAFE_HOMING
  1715. } // home_all_axis || homeZ
  1716. #endif // Z_HOME_DIR < 0
  1717. sync_plan_position();
  1718. #endif // else DELTA
  1719. #ifdef SCARA
  1720. sync_plan_position_delta();
  1721. #endif
  1722. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1723. enable_endstops(false);
  1724. #endif
  1725. // For manual leveling move back to 0,0
  1726. #ifdef MESH_BED_LEVELING
  1727. if (mbl_was_active) {
  1728. current_position[X_AXIS] = mbl.get_x(0);
  1729. current_position[Y_AXIS] = mbl.get_y(0);
  1730. set_destination_to_current();
  1731. feedrate = homing_feedrate[X_AXIS];
  1732. line_to_destination();
  1733. st_synchronize();
  1734. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1735. sync_plan_position();
  1736. mbl.active = 1;
  1737. }
  1738. #endif
  1739. feedrate = saved_feedrate;
  1740. feedrate_multiplier = saved_feedrate_multiplier;
  1741. refresh_cmd_timeout();
  1742. endstops_hit_on_purpose(); // clear endstop hit flags
  1743. }
  1744. #ifdef MESH_BED_LEVELING
  1745. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1746. /**
  1747. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1748. * mesh to compensate for variable bed height
  1749. *
  1750. * Parameters With MESH_BED_LEVELING:
  1751. *
  1752. * S0 Produce a mesh report
  1753. * S1 Start probing mesh points
  1754. * S2 Probe the next mesh point
  1755. * S3 Xn Yn Zn.nn Manually modify a single point
  1756. *
  1757. * The S0 report the points as below
  1758. *
  1759. * +----> X-axis
  1760. * |
  1761. * |
  1762. * v Y-axis
  1763. *
  1764. */
  1765. inline void gcode_G29() {
  1766. static int probe_point = -1;
  1767. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1768. if (state < 0 || state > 3) {
  1769. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1770. return;
  1771. }
  1772. int ix, iy;
  1773. float z;
  1774. switch(state) {
  1775. case MeshReport:
  1776. if (mbl.active) {
  1777. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1778. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1779. SERIAL_PROTOCOLCHAR(',');
  1780. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1781. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1782. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1783. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1784. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1785. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1786. SERIAL_PROTOCOLPGM(" ");
  1787. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1788. }
  1789. SERIAL_EOL;
  1790. }
  1791. }
  1792. else
  1793. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1794. break;
  1795. case MeshStart:
  1796. mbl.reset();
  1797. probe_point = 0;
  1798. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1799. break;
  1800. case MeshNext:
  1801. if (probe_point < 0) {
  1802. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1803. return;
  1804. }
  1805. if (probe_point == 0) {
  1806. // Set Z to a positive value before recording the first Z.
  1807. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1808. sync_plan_position();
  1809. }
  1810. else {
  1811. // For others, save the Z of the previous point, then raise Z again.
  1812. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1813. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1814. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1815. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1816. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1818. st_synchronize();
  1819. }
  1820. // Is there another point to sample? Move there.
  1821. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1822. ix = probe_point % MESH_NUM_X_POINTS;
  1823. iy = probe_point / MESH_NUM_X_POINTS;
  1824. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1825. current_position[X_AXIS] = mbl.get_x(ix);
  1826. current_position[Y_AXIS] = mbl.get_y(iy);
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1828. st_synchronize();
  1829. probe_point++;
  1830. }
  1831. else {
  1832. // After recording the last point, activate the mbl and home
  1833. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1834. probe_point = -1;
  1835. mbl.active = 1;
  1836. enqueuecommands_P(PSTR("G28"));
  1837. }
  1838. break;
  1839. case MeshSet:
  1840. if (code_seen('X') || code_seen('x')) {
  1841. ix = code_value_long()-1;
  1842. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1843. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1844. return;
  1845. }
  1846. } else {
  1847. SERIAL_PROTOCOLPGM("X not entered.\n");
  1848. return;
  1849. }
  1850. if (code_seen('Y') || code_seen('y')) {
  1851. iy = code_value_long()-1;
  1852. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1853. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1854. return;
  1855. }
  1856. } else {
  1857. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1858. return;
  1859. }
  1860. if (code_seen('Z') || code_seen('z')) {
  1861. z = code_value();
  1862. } else {
  1863. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1864. return;
  1865. }
  1866. mbl.z_values[iy][ix] = z;
  1867. } // switch(state)
  1868. }
  1869. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1870. /**
  1871. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1872. * Will fail if the printer has not been homed with G28.
  1873. *
  1874. * Enhanced G29 Auto Bed Leveling Probe Routine
  1875. *
  1876. * Parameters With AUTO_BED_LEVELING_GRID:
  1877. *
  1878. * P Set the size of the grid that will be probed (P x P points).
  1879. * Not supported by non-linear delta printer bed leveling.
  1880. * Example: "G29 P4"
  1881. *
  1882. * S Set the XY travel speed between probe points (in mm/min)
  1883. *
  1884. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1885. * or clean the rotation Matrix. Useful to check the topology
  1886. * after a first run of G29.
  1887. *
  1888. * V Set the verbose level (0-4). Example: "G29 V3"
  1889. *
  1890. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1891. * This is useful for manual bed leveling and finding flaws in the bed (to
  1892. * assist with part placement).
  1893. * Not supported by non-linear delta printer bed leveling.
  1894. *
  1895. * F Set the Front limit of the probing grid
  1896. * B Set the Back limit of the probing grid
  1897. * L Set the Left limit of the probing grid
  1898. * R Set the Right limit of the probing grid
  1899. *
  1900. * Global Parameters:
  1901. *
  1902. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1903. * Include "E" to engage/disengage the probe for each sample.
  1904. * There's no extra effect if you have a fixed probe.
  1905. * Usage: "G29 E" or "G29 e"
  1906. *
  1907. */
  1908. inline void gcode_G29() {
  1909. // Don't allow auto-leveling without homing first
  1910. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1911. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1912. SERIAL_ECHO_START;
  1913. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1914. return;
  1915. }
  1916. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1917. if (verbose_level < 0 || verbose_level > 4) {
  1918. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1919. return;
  1920. }
  1921. bool dryrun = code_seen('D') || code_seen('d'),
  1922. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1923. #ifdef AUTO_BED_LEVELING_GRID
  1924. #ifndef DELTA
  1925. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1926. #endif
  1927. if (verbose_level > 0) {
  1928. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1929. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1930. }
  1931. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1932. #ifndef DELTA
  1933. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1934. if (auto_bed_leveling_grid_points < 2) {
  1935. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1936. return;
  1937. }
  1938. #endif
  1939. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1940. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1941. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1942. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1943. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1944. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1945. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1946. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1947. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1948. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1949. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1950. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1951. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1952. if (left_out || right_out || front_out || back_out) {
  1953. if (left_out) {
  1954. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1955. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1956. }
  1957. if (right_out) {
  1958. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1959. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1960. }
  1961. if (front_out) {
  1962. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1963. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1964. }
  1965. if (back_out) {
  1966. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1967. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1968. }
  1969. return;
  1970. }
  1971. #endif // AUTO_BED_LEVELING_GRID
  1972. #ifdef Z_PROBE_SLED
  1973. dock_sled(false); // engage (un-dock) the probe
  1974. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1975. deploy_z_probe();
  1976. #endif
  1977. st_synchronize();
  1978. if (!dryrun) {
  1979. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1980. plan_bed_level_matrix.set_to_identity();
  1981. #ifdef DELTA
  1982. reset_bed_level();
  1983. #else //!DELTA
  1984. //vector_3 corrected_position = plan_get_position_mm();
  1985. //corrected_position.debug("position before G29");
  1986. vector_3 uncorrected_position = plan_get_position();
  1987. //uncorrected_position.debug("position during G29");
  1988. current_position[X_AXIS] = uncorrected_position.x;
  1989. current_position[Y_AXIS] = uncorrected_position.y;
  1990. current_position[Z_AXIS] = uncorrected_position.z;
  1991. sync_plan_position();
  1992. #endif // !DELTA
  1993. }
  1994. setup_for_endstop_move();
  1995. feedrate = homing_feedrate[Z_AXIS];
  1996. #ifdef AUTO_BED_LEVELING_GRID
  1997. // probe at the points of a lattice grid
  1998. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1999. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2000. #ifdef DELTA
  2001. delta_grid_spacing[0] = xGridSpacing;
  2002. delta_grid_spacing[1] = yGridSpacing;
  2003. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2004. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2005. #else // !DELTA
  2006. // solve the plane equation ax + by + d = z
  2007. // A is the matrix with rows [x y 1] for all the probed points
  2008. // B is the vector of the Z positions
  2009. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2010. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2011. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2012. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2013. eqnBVector[abl2], // "B" vector of Z points
  2014. mean = 0.0;
  2015. #endif // !DELTA
  2016. int probePointCounter = 0;
  2017. bool zig = true;
  2018. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2019. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2020. int xStart, xStop, xInc;
  2021. if (zig) {
  2022. xStart = 0;
  2023. xStop = auto_bed_leveling_grid_points;
  2024. xInc = 1;
  2025. }
  2026. else {
  2027. xStart = auto_bed_leveling_grid_points - 1;
  2028. xStop = -1;
  2029. xInc = -1;
  2030. }
  2031. #ifndef DELTA
  2032. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2033. // This gets the probe points in more readable order.
  2034. if (!do_topography_map) zig = !zig;
  2035. #endif
  2036. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2037. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2038. // raise extruder
  2039. float measured_z,
  2040. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2041. #ifdef DELTA
  2042. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2043. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2044. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2045. #endif //DELTA
  2046. ProbeAction act;
  2047. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2048. act = ProbeDeployAndStow;
  2049. else if (yCount == 0 && xCount == xStart)
  2050. act = ProbeDeploy;
  2051. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2052. act = ProbeStow;
  2053. else
  2054. act = ProbeStay;
  2055. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2056. #ifndef DELTA
  2057. mean += measured_z;
  2058. eqnBVector[probePointCounter] = measured_z;
  2059. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2060. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2061. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2062. #else
  2063. bed_level[xCount][yCount] = measured_z + z_offset;
  2064. #endif
  2065. probePointCounter++;
  2066. manage_heater();
  2067. manage_inactivity();
  2068. lcd_update();
  2069. } //xProbe
  2070. } //yProbe
  2071. clean_up_after_endstop_move();
  2072. #ifdef DELTA
  2073. if (!dryrun) extrapolate_unprobed_bed_level();
  2074. print_bed_level();
  2075. #else // !DELTA
  2076. // solve lsq problem
  2077. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2078. mean /= abl2;
  2079. if (verbose_level) {
  2080. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2081. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2082. SERIAL_PROTOCOLPGM(" b: ");
  2083. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2084. SERIAL_PROTOCOLPGM(" d: ");
  2085. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2086. SERIAL_EOL;
  2087. if (verbose_level > 2) {
  2088. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2089. SERIAL_PROTOCOL_F(mean, 8);
  2090. SERIAL_EOL;
  2091. }
  2092. }
  2093. // Show the Topography map if enabled
  2094. if (do_topography_map) {
  2095. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2096. SERIAL_PROTOCOLPGM("+-----------+\n");
  2097. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2098. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2099. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2100. SERIAL_PROTOCOLPGM("+-----------+\n");
  2101. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2102. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2103. int ind = yy * auto_bed_leveling_grid_points + xx;
  2104. float diff = eqnBVector[ind] - mean;
  2105. if (diff >= 0.0)
  2106. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2107. else
  2108. SERIAL_PROTOCOLCHAR(' ');
  2109. SERIAL_PROTOCOL_F(diff, 5);
  2110. } // xx
  2111. SERIAL_EOL;
  2112. } // yy
  2113. SERIAL_EOL;
  2114. } //do_topography_map
  2115. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2116. free(plane_equation_coefficients);
  2117. #endif //!DELTA
  2118. #else // !AUTO_BED_LEVELING_GRID
  2119. // Actions for each probe
  2120. ProbeAction p1, p2, p3;
  2121. if (deploy_probe_for_each_reading)
  2122. p1 = p2 = p3 = ProbeDeployAndStow;
  2123. else
  2124. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2125. // Probe at 3 arbitrary points
  2126. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2127. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2128. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2129. clean_up_after_endstop_move();
  2130. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2131. #endif // !AUTO_BED_LEVELING_GRID
  2132. #ifndef DELTA
  2133. if (verbose_level > 0)
  2134. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2135. if (!dryrun) {
  2136. // Correct the Z height difference from z-probe position and hotend tip position.
  2137. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2138. // When the bed is uneven, this height must be corrected.
  2139. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2140. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2141. z_tmp = current_position[Z_AXIS],
  2142. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2143. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2144. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2145. sync_plan_position();
  2146. }
  2147. #endif // !DELTA
  2148. #ifdef Z_PROBE_SLED
  2149. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2150. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2151. stow_z_probe();
  2152. #endif
  2153. #ifdef Z_PROBE_END_SCRIPT
  2154. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2155. st_synchronize();
  2156. #endif
  2157. }
  2158. #ifndef Z_PROBE_SLED
  2159. inline void gcode_G30() {
  2160. deploy_z_probe(); // Engage Z Servo endstop if available
  2161. st_synchronize();
  2162. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2163. setup_for_endstop_move();
  2164. feedrate = homing_feedrate[Z_AXIS];
  2165. run_z_probe();
  2166. SERIAL_PROTOCOLPGM("Bed");
  2167. SERIAL_PROTOCOLPGM(" X: ");
  2168. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2169. SERIAL_PROTOCOLPGM(" Y: ");
  2170. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2171. SERIAL_PROTOCOLPGM(" Z: ");
  2172. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2173. SERIAL_EOL;
  2174. clean_up_after_endstop_move();
  2175. stow_z_probe(); // Retract Z Servo endstop if available
  2176. }
  2177. #endif //!Z_PROBE_SLED
  2178. #endif //ENABLE_AUTO_BED_LEVELING
  2179. /**
  2180. * G92: Set current position to given X Y Z E
  2181. */
  2182. inline void gcode_G92() {
  2183. if (!code_seen(axis_codes[E_AXIS]))
  2184. st_synchronize();
  2185. bool didXYZ = false;
  2186. for (int i = 0; i < NUM_AXIS; i++) {
  2187. if (code_seen(axis_codes[i])) {
  2188. float v = current_position[i] = code_value();
  2189. if (i == E_AXIS)
  2190. plan_set_e_position(v);
  2191. else
  2192. didXYZ = true;
  2193. }
  2194. }
  2195. if (didXYZ) sync_plan_position();
  2196. }
  2197. #ifdef ULTIPANEL
  2198. /**
  2199. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2200. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2201. */
  2202. inline void gcode_M0_M1() {
  2203. char *src = strchr_pointer + 2;
  2204. millis_t codenum = 0;
  2205. bool hasP = false, hasS = false;
  2206. if (code_seen('P')) {
  2207. codenum = code_value_short(); // milliseconds to wait
  2208. hasP = codenum > 0;
  2209. }
  2210. if (code_seen('S')) {
  2211. codenum = code_value_short() * 1000UL; // seconds to wait
  2212. hasS = codenum > 0;
  2213. }
  2214. char* starpos = strchr(src, '*');
  2215. if (starpos != NULL) *(starpos) = '\0';
  2216. while (*src == ' ') ++src;
  2217. if (!hasP && !hasS && *src != '\0')
  2218. lcd_setstatus(src, true);
  2219. else {
  2220. LCD_MESSAGEPGM(MSG_USERWAIT);
  2221. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2222. dontExpireStatus();
  2223. #endif
  2224. }
  2225. lcd_ignore_click();
  2226. st_synchronize();
  2227. refresh_cmd_timeout();
  2228. if (codenum > 0) {
  2229. codenum += previous_cmd_ms; // keep track of when we started waiting
  2230. while(millis() < codenum && !lcd_clicked()) {
  2231. manage_heater();
  2232. manage_inactivity();
  2233. lcd_update();
  2234. }
  2235. lcd_ignore_click(false);
  2236. }
  2237. else {
  2238. if (!lcd_detected()) return;
  2239. while (!lcd_clicked()) {
  2240. manage_heater();
  2241. manage_inactivity();
  2242. lcd_update();
  2243. }
  2244. }
  2245. if (IS_SD_PRINTING)
  2246. LCD_MESSAGEPGM(MSG_RESUMING);
  2247. else
  2248. LCD_MESSAGEPGM(WELCOME_MSG);
  2249. }
  2250. #endif // ULTIPANEL
  2251. /**
  2252. * M17: Enable power on all stepper motors
  2253. */
  2254. inline void gcode_M17() {
  2255. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2256. enable_all_steppers();
  2257. }
  2258. #ifdef SDSUPPORT
  2259. /**
  2260. * M20: List SD card to serial output
  2261. */
  2262. inline void gcode_M20() {
  2263. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2264. card.ls();
  2265. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2266. }
  2267. /**
  2268. * M21: Init SD Card
  2269. */
  2270. inline void gcode_M21() {
  2271. card.initsd();
  2272. }
  2273. /**
  2274. * M22: Release SD Card
  2275. */
  2276. inline void gcode_M22() {
  2277. card.release();
  2278. }
  2279. /**
  2280. * M23: Select a file
  2281. */
  2282. inline void gcode_M23() {
  2283. char* codepos = strchr_pointer + 4;
  2284. char* starpos = strchr(codepos, '*');
  2285. if (starpos) *starpos = '\0';
  2286. card.openFile(codepos, true);
  2287. }
  2288. /**
  2289. * M24: Start SD Print
  2290. */
  2291. inline void gcode_M24() {
  2292. card.startFileprint();
  2293. print_job_start_ms = millis();
  2294. }
  2295. /**
  2296. * M25: Pause SD Print
  2297. */
  2298. inline void gcode_M25() {
  2299. card.pauseSDPrint();
  2300. }
  2301. /**
  2302. * M26: Set SD Card file index
  2303. */
  2304. inline void gcode_M26() {
  2305. if (card.cardOK && code_seen('S'))
  2306. card.setIndex(code_value_short());
  2307. }
  2308. /**
  2309. * M27: Get SD Card status
  2310. */
  2311. inline void gcode_M27() {
  2312. card.getStatus();
  2313. }
  2314. /**
  2315. * M28: Start SD Write
  2316. */
  2317. inline void gcode_M28() {
  2318. char* codepos = strchr_pointer + 4;
  2319. char* starpos = strchr(codepos, '*');
  2320. if (starpos) {
  2321. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2322. strchr_pointer = strchr(npos, ' ') + 1;
  2323. *(starpos) = '\0';
  2324. }
  2325. card.openFile(codepos, false);
  2326. }
  2327. /**
  2328. * M29: Stop SD Write
  2329. * Processed in write to file routine above
  2330. */
  2331. inline void gcode_M29() {
  2332. // card.saving = false;
  2333. }
  2334. /**
  2335. * M30 <filename>: Delete SD Card file
  2336. */
  2337. inline void gcode_M30() {
  2338. if (card.cardOK) {
  2339. card.closefile();
  2340. char* starpos = strchr(strchr_pointer + 4, '*');
  2341. if (starpos) {
  2342. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2343. strchr_pointer = strchr(npos, ' ') + 1;
  2344. *(starpos) = '\0';
  2345. }
  2346. card.removeFile(strchr_pointer + 4);
  2347. }
  2348. }
  2349. #endif
  2350. /**
  2351. * M31: Get the time since the start of SD Print (or last M109)
  2352. */
  2353. inline void gcode_M31() {
  2354. print_job_stop_ms = millis();
  2355. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2356. int min = t / 60, sec = t % 60;
  2357. char time[30];
  2358. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2359. SERIAL_ECHO_START;
  2360. SERIAL_ECHOLN(time);
  2361. lcd_setstatus(time);
  2362. autotempShutdown();
  2363. }
  2364. #ifdef SDSUPPORT
  2365. /**
  2366. * M32: Select file and start SD Print
  2367. */
  2368. inline void gcode_M32() {
  2369. if (card.sdprinting)
  2370. st_synchronize();
  2371. char* codepos = strchr_pointer + 4;
  2372. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2373. if (! namestartpos)
  2374. namestartpos = codepos; //default name position, 4 letters after the M
  2375. else
  2376. namestartpos++; //to skip the '!'
  2377. char* starpos = strchr(codepos, '*');
  2378. if (starpos) *(starpos) = '\0';
  2379. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2380. if (card.cardOK) {
  2381. card.openFile(namestartpos, true, !call_procedure);
  2382. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2383. card.setIndex(code_value_short());
  2384. card.startFileprint();
  2385. if (!call_procedure)
  2386. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2387. }
  2388. }
  2389. /**
  2390. * M928: Start SD Write
  2391. */
  2392. inline void gcode_M928() {
  2393. char* starpos = strchr(strchr_pointer + 5, '*');
  2394. if (starpos) {
  2395. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2396. strchr_pointer = strchr(npos, ' ') + 1;
  2397. *(starpos) = '\0';
  2398. }
  2399. card.openLogFile(strchr_pointer + 5);
  2400. }
  2401. #endif // SDSUPPORT
  2402. /**
  2403. * M42: Change pin status via GCode
  2404. */
  2405. inline void gcode_M42() {
  2406. if (code_seen('S')) {
  2407. int pin_status = code_value_short(),
  2408. pin_number = LED_PIN;
  2409. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2410. pin_number = code_value_short();
  2411. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2412. if (sensitive_pins[i] == pin_number) {
  2413. pin_number = -1;
  2414. break;
  2415. }
  2416. }
  2417. #if HAS_FAN
  2418. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2419. #endif
  2420. if (pin_number > -1) {
  2421. pinMode(pin_number, OUTPUT);
  2422. digitalWrite(pin_number, pin_status);
  2423. analogWrite(pin_number, pin_status);
  2424. }
  2425. } // code_seen('S')
  2426. }
  2427. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2428. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2429. #ifdef Z_PROBE_ENDSTOP
  2430. #if !HAS_Z_PROBE
  2431. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2432. #endif
  2433. #elif !HAS_Z_MIN
  2434. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2435. #endif
  2436. /**
  2437. * M48: Z-Probe repeatability measurement function.
  2438. *
  2439. * Usage:
  2440. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2441. * P = Number of sampled points (4-50, default 10)
  2442. * X = Sample X position
  2443. * Y = Sample Y position
  2444. * V = Verbose level (0-4, default=1)
  2445. * E = Engage probe for each reading
  2446. * L = Number of legs of movement before probe
  2447. *
  2448. * This function assumes the bed has been homed. Specifically, that a G28 command
  2449. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2450. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2451. * regenerated.
  2452. */
  2453. inline void gcode_M48() {
  2454. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2455. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2456. if (code_seen('V') || code_seen('v')) {
  2457. verbose_level = code_value_short();
  2458. if (verbose_level < 0 || verbose_level > 4 ) {
  2459. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2460. return;
  2461. }
  2462. }
  2463. if (verbose_level > 0)
  2464. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2465. if (code_seen('P') || code_seen('p')) {
  2466. n_samples = code_value_short();
  2467. if (n_samples < 4 || n_samples > 50) {
  2468. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2469. return;
  2470. }
  2471. }
  2472. double X_current = st_get_position_mm(X_AXIS),
  2473. Y_current = st_get_position_mm(Y_AXIS),
  2474. Z_current = st_get_position_mm(Z_AXIS),
  2475. E_current = st_get_position_mm(E_AXIS),
  2476. X_probe_location = X_current, Y_probe_location = Y_current,
  2477. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2478. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2479. if (code_seen('X') || code_seen('x')) {
  2480. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2481. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2482. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2483. return;
  2484. }
  2485. }
  2486. if (code_seen('Y') || code_seen('y')) {
  2487. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2488. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2489. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2490. return;
  2491. }
  2492. }
  2493. if (code_seen('L') || code_seen('l')) {
  2494. n_legs = code_value_short();
  2495. if (n_legs == 1) n_legs = 2;
  2496. if (n_legs < 0 || n_legs > 15) {
  2497. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2498. return;
  2499. }
  2500. }
  2501. //
  2502. // Do all the preliminary setup work. First raise the probe.
  2503. //
  2504. st_synchronize();
  2505. plan_bed_level_matrix.set_to_identity();
  2506. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2507. st_synchronize();
  2508. //
  2509. // Now get everything to the specified probe point So we can safely do a probe to
  2510. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2511. // use that as a starting point for each probe.
  2512. //
  2513. if (verbose_level > 2)
  2514. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2515. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2516. E_current,
  2517. homing_feedrate[X_AXIS]/60,
  2518. active_extruder);
  2519. st_synchronize();
  2520. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2521. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2522. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2523. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2524. //
  2525. // OK, do the initial probe to get us close to the bed.
  2526. // Then retrace the right amount and use that in subsequent probes
  2527. //
  2528. deploy_z_probe();
  2529. setup_for_endstop_move();
  2530. run_z_probe();
  2531. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2532. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2533. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2534. E_current,
  2535. homing_feedrate[X_AXIS]/60,
  2536. active_extruder);
  2537. st_synchronize();
  2538. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2539. if (deploy_probe_for_each_reading) stow_z_probe();
  2540. for (uint8_t n=0; n < n_samples; n++) {
  2541. // Make sure we are at the probe location
  2542. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2543. if (n_legs) {
  2544. millis_t ms = millis();
  2545. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2546. theta = RADIANS(ms % 360L);
  2547. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2548. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2549. //SERIAL_ECHOPAIR(" theta: ",theta);
  2550. //SERIAL_ECHOPAIR(" direction: ",dir);
  2551. //SERIAL_EOL;
  2552. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2553. ms = millis();
  2554. theta += RADIANS(dir * (ms % 20L));
  2555. radius += (ms % 10L) - 5L;
  2556. if (radius < 0.0) radius = -radius;
  2557. X_current = X_probe_location + cos(theta) * radius;
  2558. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2559. Y_current = Y_probe_location + sin(theta) * radius;
  2560. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2561. if (verbose_level > 3) {
  2562. SERIAL_ECHOPAIR("x: ", X_current);
  2563. SERIAL_ECHOPAIR("y: ", Y_current);
  2564. SERIAL_EOL;
  2565. }
  2566. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2567. } // n_legs loop
  2568. // Go back to the probe location
  2569. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2570. } // n_legs
  2571. if (deploy_probe_for_each_reading) {
  2572. deploy_z_probe();
  2573. delay(1000);
  2574. }
  2575. setup_for_endstop_move();
  2576. run_z_probe();
  2577. sample_set[n] = current_position[Z_AXIS];
  2578. //
  2579. // Get the current mean for the data points we have so far
  2580. //
  2581. sum = 0.0;
  2582. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2583. mean = sum / (n + 1);
  2584. //
  2585. // Now, use that mean to calculate the standard deviation for the
  2586. // data points we have so far
  2587. //
  2588. sum = 0.0;
  2589. for (uint8_t j = 0; j <= n; j++) {
  2590. float ss = sample_set[j] - mean;
  2591. sum += ss * ss;
  2592. }
  2593. sigma = sqrt(sum / (n + 1));
  2594. if (verbose_level > 1) {
  2595. SERIAL_PROTOCOL(n+1);
  2596. SERIAL_PROTOCOLPGM(" of ");
  2597. SERIAL_PROTOCOL(n_samples);
  2598. SERIAL_PROTOCOLPGM(" z: ");
  2599. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2600. if (verbose_level > 2) {
  2601. SERIAL_PROTOCOLPGM(" mean: ");
  2602. SERIAL_PROTOCOL_F(mean,6);
  2603. SERIAL_PROTOCOLPGM(" sigma: ");
  2604. SERIAL_PROTOCOL_F(sigma,6);
  2605. }
  2606. }
  2607. if (verbose_level > 0) SERIAL_EOL;
  2608. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2609. st_synchronize();
  2610. // Stow between
  2611. if (deploy_probe_for_each_reading) {
  2612. stow_z_probe();
  2613. delay(1000);
  2614. }
  2615. }
  2616. // Stow after
  2617. if (!deploy_probe_for_each_reading) {
  2618. stow_z_probe();
  2619. delay(1000);
  2620. }
  2621. clean_up_after_endstop_move();
  2622. // enable_endstops(true);
  2623. if (verbose_level > 0) {
  2624. SERIAL_PROTOCOLPGM("Mean: ");
  2625. SERIAL_PROTOCOL_F(mean, 6);
  2626. SERIAL_EOL;
  2627. }
  2628. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2629. SERIAL_PROTOCOL_F(sigma, 6);
  2630. SERIAL_EOL; SERIAL_EOL;
  2631. }
  2632. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2633. /**
  2634. * M104: Set hot end temperature
  2635. */
  2636. inline void gcode_M104() {
  2637. if (setTargetedHotend(104)) return;
  2638. if (code_seen('S')) {
  2639. float temp = code_value();
  2640. setTargetHotend(temp, target_extruder);
  2641. #ifdef DUAL_X_CARRIAGE
  2642. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2643. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2644. #endif
  2645. setWatch();
  2646. }
  2647. }
  2648. /**
  2649. * M105: Read hot end and bed temperature
  2650. */
  2651. inline void gcode_M105() {
  2652. if (setTargetedHotend(105)) return;
  2653. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2654. SERIAL_PROTOCOLPGM("ok");
  2655. #if HAS_TEMP_0
  2656. SERIAL_PROTOCOLPGM(" T:");
  2657. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2658. SERIAL_PROTOCOLPGM(" /");
  2659. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2660. #endif
  2661. #if HAS_TEMP_BED
  2662. SERIAL_PROTOCOLPGM(" B:");
  2663. SERIAL_PROTOCOL_F(degBed(), 1);
  2664. SERIAL_PROTOCOLPGM(" /");
  2665. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2666. #endif
  2667. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2668. SERIAL_PROTOCOLPGM(" T");
  2669. SERIAL_PROTOCOL(e);
  2670. SERIAL_PROTOCOLCHAR(':');
  2671. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2672. SERIAL_PROTOCOLPGM(" /");
  2673. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2674. }
  2675. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2676. SERIAL_ERROR_START;
  2677. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2678. #endif
  2679. SERIAL_PROTOCOLPGM(" @:");
  2680. #ifdef EXTRUDER_WATTS
  2681. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2682. SERIAL_PROTOCOLCHAR('W');
  2683. #else
  2684. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2685. #endif
  2686. SERIAL_PROTOCOLPGM(" B@:");
  2687. #ifdef BED_WATTS
  2688. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2689. SERIAL_PROTOCOLCHAR('W');
  2690. #else
  2691. SERIAL_PROTOCOL(getHeaterPower(-1));
  2692. #endif
  2693. #ifdef SHOW_TEMP_ADC_VALUES
  2694. #if HAS_TEMP_BED
  2695. SERIAL_PROTOCOLPGM(" ADC B:");
  2696. SERIAL_PROTOCOL_F(degBed(),1);
  2697. SERIAL_PROTOCOLPGM("C->");
  2698. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2699. #endif
  2700. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2701. SERIAL_PROTOCOLPGM(" T");
  2702. SERIAL_PROTOCOL(cur_extruder);
  2703. SERIAL_PROTOCOLCHAR(':');
  2704. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2705. SERIAL_PROTOCOLPGM("C->");
  2706. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2707. }
  2708. #endif
  2709. SERIAL_EOL;
  2710. }
  2711. #if HAS_FAN
  2712. /**
  2713. * M106: Set Fan Speed
  2714. */
  2715. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2716. /**
  2717. * M107: Fan Off
  2718. */
  2719. inline void gcode_M107() { fanSpeed = 0; }
  2720. #endif // HAS_FAN
  2721. /**
  2722. * M109: Wait for extruder(s) to reach temperature
  2723. */
  2724. inline void gcode_M109() {
  2725. if (setTargetedHotend(109)) return;
  2726. LCD_MESSAGEPGM(MSG_HEATING);
  2727. no_wait_for_cooling = code_seen('S');
  2728. if (no_wait_for_cooling || code_seen('R')) {
  2729. float temp = code_value();
  2730. setTargetHotend(temp, target_extruder);
  2731. #ifdef DUAL_X_CARRIAGE
  2732. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2733. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2734. #endif
  2735. }
  2736. #ifdef AUTOTEMP
  2737. autotemp_enabled = code_seen('F');
  2738. if (autotemp_enabled) autotemp_factor = code_value();
  2739. if (code_seen('S')) autotemp_min = code_value();
  2740. if (code_seen('B')) autotemp_max = code_value();
  2741. #endif
  2742. setWatch();
  2743. millis_t temp_ms = millis();
  2744. /* See if we are heating up or cooling down */
  2745. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2746. cancel_heatup = false;
  2747. #ifdef TEMP_RESIDENCY_TIME
  2748. long residency_start_ms = -1;
  2749. /* continue to loop until we have reached the target temp
  2750. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2751. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2752. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2753. #else
  2754. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2755. #endif //TEMP_RESIDENCY_TIME
  2756. { // while loop
  2757. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2758. SERIAL_PROTOCOLPGM("T:");
  2759. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2760. SERIAL_PROTOCOLPGM(" E:");
  2761. SERIAL_PROTOCOL((int)target_extruder);
  2762. #ifdef TEMP_RESIDENCY_TIME
  2763. SERIAL_PROTOCOLPGM(" W:");
  2764. if (residency_start_ms > -1) {
  2765. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2766. SERIAL_PROTOCOLLN(temp_ms);
  2767. }
  2768. else {
  2769. SERIAL_PROTOCOLLNPGM("?");
  2770. }
  2771. #else
  2772. SERIAL_EOL;
  2773. #endif
  2774. temp_ms = millis();
  2775. }
  2776. manage_heater();
  2777. manage_inactivity();
  2778. lcd_update();
  2779. #ifdef TEMP_RESIDENCY_TIME
  2780. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2781. // or when current temp falls outside the hysteresis after target temp was reached
  2782. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2783. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2784. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2785. {
  2786. residency_start_ms = millis();
  2787. }
  2788. #endif //TEMP_RESIDENCY_TIME
  2789. }
  2790. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2791. refresh_cmd_timeout();
  2792. print_job_start_ms = previous_cmd_ms;
  2793. }
  2794. #if HAS_TEMP_BED
  2795. /**
  2796. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2797. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2798. */
  2799. inline void gcode_M190() {
  2800. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2801. no_wait_for_cooling = code_seen('S');
  2802. if (no_wait_for_cooling || code_seen('R'))
  2803. setTargetBed(code_value());
  2804. millis_t temp_ms = millis();
  2805. cancel_heatup = false;
  2806. target_direction = isHeatingBed(); // true if heating, false if cooling
  2807. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2808. millis_t ms = millis();
  2809. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2810. temp_ms = ms;
  2811. float tt = degHotend(active_extruder);
  2812. SERIAL_PROTOCOLPGM("T:");
  2813. SERIAL_PROTOCOL(tt);
  2814. SERIAL_PROTOCOLPGM(" E:");
  2815. SERIAL_PROTOCOL((int)active_extruder);
  2816. SERIAL_PROTOCOLPGM(" B:");
  2817. SERIAL_PROTOCOL_F(degBed(), 1);
  2818. SERIAL_EOL;
  2819. }
  2820. manage_heater();
  2821. manage_inactivity();
  2822. lcd_update();
  2823. }
  2824. LCD_MESSAGEPGM(MSG_BED_DONE);
  2825. refresh_cmd_timeout();
  2826. }
  2827. #endif // HAS_TEMP_BED
  2828. /**
  2829. * M111: Set the debug level
  2830. */
  2831. inline void gcode_M111() {
  2832. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2833. }
  2834. /**
  2835. * M112: Emergency Stop
  2836. */
  2837. inline void gcode_M112() { kill(); }
  2838. #ifdef BARICUDA
  2839. #if HAS_HEATER_1
  2840. /**
  2841. * M126: Heater 1 valve open
  2842. */
  2843. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2844. /**
  2845. * M127: Heater 1 valve close
  2846. */
  2847. inline void gcode_M127() { ValvePressure = 0; }
  2848. #endif
  2849. #if HAS_HEATER_2
  2850. /**
  2851. * M128: Heater 2 valve open
  2852. */
  2853. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2854. /**
  2855. * M129: Heater 2 valve close
  2856. */
  2857. inline void gcode_M129() { EtoPPressure = 0; }
  2858. #endif
  2859. #endif //BARICUDA
  2860. /**
  2861. * M140: Set bed temperature
  2862. */
  2863. inline void gcode_M140() {
  2864. if (code_seen('S')) setTargetBed(code_value());
  2865. }
  2866. #ifdef ULTIPANEL
  2867. /**
  2868. * M145: Set the heatup state for a material in the LCD menu
  2869. * S<material> (0=PLA, 1=ABS)
  2870. * H<hotend temp>
  2871. * B<bed temp>
  2872. * F<fan speed>
  2873. */
  2874. inline void gcode_M145() {
  2875. uint8_t material = code_seen('S') ? code_value_short() : 0;
  2876. if (material < 0 || material > 1) {
  2877. SERIAL_ERROR_START;
  2878. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  2879. }
  2880. else {
  2881. int v;
  2882. switch (material) {
  2883. case 0:
  2884. if (code_seen('H')) {
  2885. v = code_value_short();
  2886. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2887. }
  2888. if (code_seen('F')) {
  2889. v = code_value_short();
  2890. plaPreheatFanSpeed = constrain(v, 0, 255);
  2891. }
  2892. #if TEMP_SENSOR_BED != 0
  2893. if (code_seen('B')) {
  2894. v = code_value_short();
  2895. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2896. }
  2897. #endif
  2898. break;
  2899. case 1:
  2900. if (code_seen('H')) {
  2901. v = code_value_short();
  2902. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2903. }
  2904. if (code_seen('F')) {
  2905. v = code_value_short();
  2906. absPreheatFanSpeed = constrain(v, 0, 255);
  2907. }
  2908. #if TEMP_SENSOR_BED != 0
  2909. if (code_seen('B')) {
  2910. v = code_value_short();
  2911. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2912. }
  2913. #endif
  2914. break;
  2915. }
  2916. }
  2917. }
  2918. #endif
  2919. #if HAS_POWER_SWITCH
  2920. /**
  2921. * M80: Turn on Power Supply
  2922. */
  2923. inline void gcode_M80() {
  2924. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2925. // If you have a switch on suicide pin, this is useful
  2926. // if you want to start another print with suicide feature after
  2927. // a print without suicide...
  2928. #if HAS_SUICIDE
  2929. OUT_WRITE(SUICIDE_PIN, HIGH);
  2930. #endif
  2931. #ifdef ULTIPANEL
  2932. powersupply = true;
  2933. LCD_MESSAGEPGM(WELCOME_MSG);
  2934. lcd_update();
  2935. #endif
  2936. }
  2937. #endif // HAS_POWER_SWITCH
  2938. /**
  2939. * M81: Turn off Power, including Power Supply, if there is one.
  2940. *
  2941. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2942. */
  2943. inline void gcode_M81() {
  2944. disable_all_heaters();
  2945. st_synchronize();
  2946. disable_e0();
  2947. disable_e1();
  2948. disable_e2();
  2949. disable_e3();
  2950. finishAndDisableSteppers();
  2951. fanSpeed = 0;
  2952. delay(1000); // Wait 1 second before switching off
  2953. #if HAS_SUICIDE
  2954. st_synchronize();
  2955. suicide();
  2956. #elif HAS_POWER_SWITCH
  2957. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2958. #endif
  2959. #ifdef ULTIPANEL
  2960. #if HAS_POWER_SWITCH
  2961. powersupply = false;
  2962. #endif
  2963. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2964. lcd_update();
  2965. #endif
  2966. }
  2967. /**
  2968. * M82: Set E codes absolute (default)
  2969. */
  2970. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2971. /**
  2972. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2973. */
  2974. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2975. /**
  2976. * M18, M84: Disable all stepper motors
  2977. */
  2978. inline void gcode_M18_M84() {
  2979. if (code_seen('S')) {
  2980. stepper_inactive_time = code_value() * 1000;
  2981. }
  2982. else {
  2983. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2984. if (all_axis) {
  2985. st_synchronize();
  2986. disable_e0();
  2987. disable_e1();
  2988. disable_e2();
  2989. disable_e3();
  2990. finishAndDisableSteppers();
  2991. }
  2992. else {
  2993. st_synchronize();
  2994. if (code_seen('X')) disable_x();
  2995. if (code_seen('Y')) disable_y();
  2996. if (code_seen('Z')) disable_z();
  2997. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2998. if (code_seen('E')) {
  2999. disable_e0();
  3000. disable_e1();
  3001. disable_e2();
  3002. disable_e3();
  3003. }
  3004. #endif
  3005. }
  3006. }
  3007. }
  3008. /**
  3009. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3010. */
  3011. inline void gcode_M85() {
  3012. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3013. }
  3014. /**
  3015. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3016. * (Follows the same syntax as G92)
  3017. */
  3018. inline void gcode_M92() {
  3019. for(int8_t i=0; i < NUM_AXIS; i++) {
  3020. if (code_seen(axis_codes[i])) {
  3021. if (i == E_AXIS) {
  3022. float value = code_value();
  3023. if (value < 20.0) {
  3024. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3025. max_e_jerk *= factor;
  3026. max_feedrate[i] *= factor;
  3027. axis_steps_per_sqr_second[i] *= factor;
  3028. }
  3029. axis_steps_per_unit[i] = value;
  3030. }
  3031. else {
  3032. axis_steps_per_unit[i] = code_value();
  3033. }
  3034. }
  3035. }
  3036. }
  3037. /**
  3038. * M114: Output current position to serial port
  3039. */
  3040. inline void gcode_M114() {
  3041. SERIAL_PROTOCOLPGM("X:");
  3042. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3043. SERIAL_PROTOCOLPGM(" Y:");
  3044. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3045. SERIAL_PROTOCOLPGM(" Z:");
  3046. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3047. SERIAL_PROTOCOLPGM(" E:");
  3048. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3049. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3050. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3051. SERIAL_PROTOCOLPGM(" Y:");
  3052. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3053. SERIAL_PROTOCOLPGM(" Z:");
  3054. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3055. SERIAL_EOL;
  3056. #ifdef SCARA
  3057. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3058. SERIAL_PROTOCOL(delta[X_AXIS]);
  3059. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3060. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3061. SERIAL_EOL;
  3062. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3063. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3064. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3065. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3066. SERIAL_EOL;
  3067. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3068. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3069. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3070. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3071. SERIAL_EOL; SERIAL_EOL;
  3072. #endif
  3073. }
  3074. /**
  3075. * M115: Capabilities string
  3076. */
  3077. inline void gcode_M115() {
  3078. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3079. }
  3080. /**
  3081. * M117: Set LCD Status Message
  3082. */
  3083. inline void gcode_M117() {
  3084. char* codepos = strchr_pointer + 5;
  3085. char* starpos = strchr(codepos, '*');
  3086. if (starpos) *starpos = '\0';
  3087. lcd_setstatus(codepos);
  3088. }
  3089. /**
  3090. * M119: Output endstop states to serial output
  3091. */
  3092. inline void gcode_M119() {
  3093. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3094. #if HAS_X_MIN
  3095. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3096. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3097. #endif
  3098. #if HAS_X_MAX
  3099. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3100. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3101. #endif
  3102. #if HAS_Y_MIN
  3103. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3104. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3105. #endif
  3106. #if HAS_Y_MAX
  3107. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3108. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3109. #endif
  3110. #if HAS_Z_MIN
  3111. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3112. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3113. #endif
  3114. #if HAS_Z_MAX
  3115. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3116. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3117. #endif
  3118. #if HAS_Z2_MAX
  3119. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3120. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3121. #endif
  3122. #if HAS_Z_PROBE
  3123. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3124. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3125. #endif
  3126. }
  3127. /**
  3128. * M120: Enable endstops
  3129. */
  3130. inline void gcode_M120() { enable_endstops(false); }
  3131. /**
  3132. * M121: Disable endstops
  3133. */
  3134. inline void gcode_M121() { enable_endstops(true); }
  3135. #ifdef BLINKM
  3136. /**
  3137. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3138. */
  3139. inline void gcode_M150() {
  3140. SendColors(
  3141. code_seen('R') ? (byte)code_value_short() : 0,
  3142. code_seen('U') ? (byte)code_value_short() : 0,
  3143. code_seen('B') ? (byte)code_value_short() : 0
  3144. );
  3145. }
  3146. #endif // BLINKM
  3147. /**
  3148. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3149. * T<extruder>
  3150. * D<millimeters>
  3151. */
  3152. inline void gcode_M200() {
  3153. int tmp_extruder = active_extruder;
  3154. if (code_seen('T')) {
  3155. tmp_extruder = code_value_short();
  3156. if (tmp_extruder >= EXTRUDERS) {
  3157. SERIAL_ECHO_START;
  3158. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3159. return;
  3160. }
  3161. }
  3162. if (code_seen('D')) {
  3163. float diameter = code_value();
  3164. // setting any extruder filament size disables volumetric on the assumption that
  3165. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3166. // for all extruders
  3167. volumetric_enabled = (diameter != 0.0);
  3168. if (volumetric_enabled) {
  3169. filament_size[tmp_extruder] = diameter;
  3170. // make sure all extruders have some sane value for the filament size
  3171. for (int i=0; i<EXTRUDERS; i++)
  3172. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3173. }
  3174. }
  3175. else {
  3176. //reserved for setting filament diameter via UFID or filament measuring device
  3177. return;
  3178. }
  3179. calculate_volumetric_multipliers();
  3180. }
  3181. /**
  3182. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3183. */
  3184. inline void gcode_M201() {
  3185. for (int8_t i=0; i < NUM_AXIS; i++) {
  3186. if (code_seen(axis_codes[i])) {
  3187. max_acceleration_units_per_sq_second[i] = code_value();
  3188. }
  3189. }
  3190. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3191. reset_acceleration_rates();
  3192. }
  3193. #if 0 // Not used for Sprinter/grbl gen6
  3194. inline void gcode_M202() {
  3195. for(int8_t i=0; i < NUM_AXIS; i++) {
  3196. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3197. }
  3198. }
  3199. #endif
  3200. /**
  3201. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3202. */
  3203. inline void gcode_M203() {
  3204. for (int8_t i=0; i < NUM_AXIS; i++) {
  3205. if (code_seen(axis_codes[i])) {
  3206. max_feedrate[i] = code_value();
  3207. }
  3208. }
  3209. }
  3210. /**
  3211. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3212. *
  3213. * P = Printing moves
  3214. * R = Retract only (no X, Y, Z) moves
  3215. * T = Travel (non printing) moves
  3216. *
  3217. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3218. */
  3219. inline void gcode_M204() {
  3220. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3221. acceleration = code_value();
  3222. travel_acceleration = acceleration;
  3223. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3224. SERIAL_EOL;
  3225. }
  3226. if (code_seen('P')) {
  3227. acceleration = code_value();
  3228. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3229. SERIAL_EOL;
  3230. }
  3231. if (code_seen('R')) {
  3232. retract_acceleration = code_value();
  3233. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3234. SERIAL_EOL;
  3235. }
  3236. if (code_seen('T')) {
  3237. travel_acceleration = code_value();
  3238. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3239. SERIAL_EOL;
  3240. }
  3241. }
  3242. /**
  3243. * M205: Set Advanced Settings
  3244. *
  3245. * S = Min Feed Rate (mm/s)
  3246. * T = Min Travel Feed Rate (mm/s)
  3247. * B = Min Segment Time (µs)
  3248. * X = Max XY Jerk (mm/s/s)
  3249. * Z = Max Z Jerk (mm/s/s)
  3250. * E = Max E Jerk (mm/s/s)
  3251. */
  3252. inline void gcode_M205() {
  3253. if (code_seen('S')) minimumfeedrate = code_value();
  3254. if (code_seen('T')) mintravelfeedrate = code_value();
  3255. if (code_seen('B')) minsegmenttime = code_value();
  3256. if (code_seen('X')) max_xy_jerk = code_value();
  3257. if (code_seen('Z')) max_z_jerk = code_value();
  3258. if (code_seen('E')) max_e_jerk = code_value();
  3259. }
  3260. /**
  3261. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3262. */
  3263. inline void gcode_M206() {
  3264. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3265. if (code_seen(axis_codes[i])) {
  3266. home_offset[i] = code_value();
  3267. }
  3268. }
  3269. #ifdef SCARA
  3270. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3271. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3272. #endif
  3273. }
  3274. #ifdef DELTA
  3275. /**
  3276. * M665: Set delta configurations
  3277. *
  3278. * L = diagonal rod
  3279. * R = delta radius
  3280. * S = segments per second
  3281. */
  3282. inline void gcode_M665() {
  3283. if (code_seen('L')) delta_diagonal_rod = code_value();
  3284. if (code_seen('R')) delta_radius = code_value();
  3285. if (code_seen('S')) delta_segments_per_second = code_value();
  3286. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3287. }
  3288. /**
  3289. * M666: Set delta endstop adjustment
  3290. */
  3291. inline void gcode_M666() {
  3292. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3293. if (code_seen(axis_codes[i])) {
  3294. endstop_adj[i] = code_value();
  3295. }
  3296. }
  3297. }
  3298. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3299. /**
  3300. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3301. */
  3302. inline void gcode_M666() {
  3303. if (code_seen('Z')) z_endstop_adj = code_value();
  3304. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3305. SERIAL_EOL;
  3306. }
  3307. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3308. #ifdef FWRETRACT
  3309. /**
  3310. * M207: Set firmware retraction values
  3311. *
  3312. * S[+mm] retract_length
  3313. * W[+mm] retract_length_swap (multi-extruder)
  3314. * F[mm/min] retract_feedrate
  3315. * Z[mm] retract_zlift
  3316. */
  3317. inline void gcode_M207() {
  3318. if (code_seen('S')) retract_length = code_value();
  3319. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3320. if (code_seen('Z')) retract_zlift = code_value();
  3321. #if EXTRUDERS > 1
  3322. if (code_seen('W')) retract_length_swap = code_value();
  3323. #endif
  3324. }
  3325. /**
  3326. * M208: Set firmware un-retraction values
  3327. *
  3328. * S[+mm] retract_recover_length (in addition to M207 S*)
  3329. * W[+mm] retract_recover_length_swap (multi-extruder)
  3330. * F[mm/min] retract_recover_feedrate
  3331. */
  3332. inline void gcode_M208() {
  3333. if (code_seen('S')) retract_recover_length = code_value();
  3334. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3335. #if EXTRUDERS > 1
  3336. if (code_seen('W')) retract_recover_length_swap = code_value();
  3337. #endif
  3338. }
  3339. /**
  3340. * M209: Enable automatic retract (M209 S1)
  3341. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3342. */
  3343. inline void gcode_M209() {
  3344. if (code_seen('S')) {
  3345. int t = code_value_short();
  3346. switch(t) {
  3347. case 0:
  3348. autoretract_enabled = false;
  3349. break;
  3350. case 1:
  3351. autoretract_enabled = true;
  3352. break;
  3353. default:
  3354. SERIAL_ECHO_START;
  3355. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3356. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3357. SERIAL_ECHOLNPGM("\"");
  3358. return;
  3359. }
  3360. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3361. }
  3362. }
  3363. #endif // FWRETRACT
  3364. #if EXTRUDERS > 1
  3365. /**
  3366. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3367. */
  3368. inline void gcode_M218() {
  3369. if (setTargetedHotend(218)) return;
  3370. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3371. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3372. #ifdef DUAL_X_CARRIAGE
  3373. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3374. #endif
  3375. SERIAL_ECHO_START;
  3376. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3377. for (int e = 0; e < EXTRUDERS; e++) {
  3378. SERIAL_CHAR(' ');
  3379. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3380. SERIAL_CHAR(',');
  3381. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3382. #ifdef DUAL_X_CARRIAGE
  3383. SERIAL_CHAR(',');
  3384. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3385. #endif
  3386. }
  3387. SERIAL_EOL;
  3388. }
  3389. #endif // EXTRUDERS > 1
  3390. /**
  3391. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3392. */
  3393. inline void gcode_M220() {
  3394. if (code_seen('S')) feedrate_multiplier = code_value();
  3395. }
  3396. /**
  3397. * M221: Set extrusion percentage (M221 T0 S95)
  3398. */
  3399. inline void gcode_M221() {
  3400. if (code_seen('S')) {
  3401. int sval = code_value();
  3402. if (code_seen('T')) {
  3403. if (setTargetedHotend(221)) return;
  3404. extruder_multiply[target_extruder] = sval;
  3405. }
  3406. else {
  3407. extruder_multiply[active_extruder] = sval;
  3408. }
  3409. }
  3410. }
  3411. /**
  3412. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3413. */
  3414. inline void gcode_M226() {
  3415. if (code_seen('P')) {
  3416. int pin_number = code_value();
  3417. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3418. if (pin_state >= -1 && pin_state <= 1) {
  3419. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3420. if (sensitive_pins[i] == pin_number) {
  3421. pin_number = -1;
  3422. break;
  3423. }
  3424. }
  3425. if (pin_number > -1) {
  3426. int target = LOW;
  3427. st_synchronize();
  3428. pinMode(pin_number, INPUT);
  3429. switch(pin_state){
  3430. case 1:
  3431. target = HIGH;
  3432. break;
  3433. case 0:
  3434. target = LOW;
  3435. break;
  3436. case -1:
  3437. target = !digitalRead(pin_number);
  3438. break;
  3439. }
  3440. while(digitalRead(pin_number) != target) {
  3441. manage_heater();
  3442. manage_inactivity();
  3443. lcd_update();
  3444. }
  3445. } // pin_number > -1
  3446. } // pin_state -1 0 1
  3447. } // code_seen('P')
  3448. }
  3449. #if NUM_SERVOS > 0
  3450. /**
  3451. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3452. */
  3453. inline void gcode_M280() {
  3454. int servo_index = code_seen('P') ? code_value() : -1;
  3455. int servo_position = 0;
  3456. if (code_seen('S')) {
  3457. servo_position = code_value();
  3458. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3459. Servo *srv = &servo[servo_index];
  3460. #if SERVO_LEVELING
  3461. srv->attach(0);
  3462. #endif
  3463. srv->write(servo_position);
  3464. #if SERVO_LEVELING
  3465. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3466. srv->detach();
  3467. #endif
  3468. }
  3469. else {
  3470. SERIAL_ECHO_START;
  3471. SERIAL_ECHO("Servo ");
  3472. SERIAL_ECHO(servo_index);
  3473. SERIAL_ECHOLN(" out of range");
  3474. }
  3475. }
  3476. else if (servo_index >= 0) {
  3477. SERIAL_PROTOCOL(MSG_OK);
  3478. SERIAL_PROTOCOL(" Servo ");
  3479. SERIAL_PROTOCOL(servo_index);
  3480. SERIAL_PROTOCOL(": ");
  3481. SERIAL_PROTOCOL(servo[servo_index].read());
  3482. SERIAL_EOL;
  3483. }
  3484. }
  3485. #endif // NUM_SERVOS > 0
  3486. #if HAS_LCD_BUZZ
  3487. /**
  3488. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3489. */
  3490. inline void gcode_M300() {
  3491. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3492. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3493. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3494. lcd_buzz(beepP, beepS);
  3495. }
  3496. #endif // HAS_LCD_BUZZ
  3497. #ifdef PIDTEMP
  3498. /**
  3499. * M301: Set PID parameters P I D (and optionally C)
  3500. */
  3501. inline void gcode_M301() {
  3502. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3503. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3504. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3505. if (e < EXTRUDERS) { // catch bad input value
  3506. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3507. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3508. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3509. #ifdef PID_ADD_EXTRUSION_RATE
  3510. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3511. #endif
  3512. updatePID();
  3513. SERIAL_PROTOCOL(MSG_OK);
  3514. #ifdef PID_PARAMS_PER_EXTRUDER
  3515. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3516. SERIAL_PROTOCOL(e);
  3517. #endif // PID_PARAMS_PER_EXTRUDER
  3518. SERIAL_PROTOCOL(" p:");
  3519. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3520. SERIAL_PROTOCOL(" i:");
  3521. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3522. SERIAL_PROTOCOL(" d:");
  3523. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3524. #ifdef PID_ADD_EXTRUSION_RATE
  3525. SERIAL_PROTOCOL(" c:");
  3526. //Kc does not have scaling applied above, or in resetting defaults
  3527. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3528. #endif
  3529. SERIAL_EOL;
  3530. }
  3531. else {
  3532. SERIAL_ECHO_START;
  3533. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3534. }
  3535. }
  3536. #endif // PIDTEMP
  3537. #ifdef PIDTEMPBED
  3538. inline void gcode_M304() {
  3539. if (code_seen('P')) bedKp = code_value();
  3540. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3541. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3542. updatePID();
  3543. SERIAL_PROTOCOL(MSG_OK);
  3544. SERIAL_PROTOCOL(" p:");
  3545. SERIAL_PROTOCOL(bedKp);
  3546. SERIAL_PROTOCOL(" i:");
  3547. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3548. SERIAL_PROTOCOL(" d:");
  3549. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3550. SERIAL_EOL;
  3551. }
  3552. #endif // PIDTEMPBED
  3553. #if defined(CHDK) || HAS_PHOTOGRAPH
  3554. /**
  3555. * M240: Trigger a camera by emulating a Canon RC-1
  3556. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3557. */
  3558. inline void gcode_M240() {
  3559. #ifdef CHDK
  3560. OUT_WRITE(CHDK, HIGH);
  3561. chdkHigh = millis();
  3562. chdkActive = true;
  3563. #elif HAS_PHOTOGRAPH
  3564. const uint8_t NUM_PULSES = 16;
  3565. const float PULSE_LENGTH = 0.01524;
  3566. for (int i = 0; i < NUM_PULSES; i++) {
  3567. WRITE(PHOTOGRAPH_PIN, HIGH);
  3568. _delay_ms(PULSE_LENGTH);
  3569. WRITE(PHOTOGRAPH_PIN, LOW);
  3570. _delay_ms(PULSE_LENGTH);
  3571. }
  3572. delay(7.33);
  3573. for (int i = 0; i < NUM_PULSES; i++) {
  3574. WRITE(PHOTOGRAPH_PIN, HIGH);
  3575. _delay_ms(PULSE_LENGTH);
  3576. WRITE(PHOTOGRAPH_PIN, LOW);
  3577. _delay_ms(PULSE_LENGTH);
  3578. }
  3579. #endif // !CHDK && HAS_PHOTOGRAPH
  3580. }
  3581. #endif // CHDK || PHOTOGRAPH_PIN
  3582. #ifdef HAS_LCD_CONTRAST
  3583. /**
  3584. * M250: Read and optionally set the LCD contrast
  3585. */
  3586. inline void gcode_M250() {
  3587. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3588. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3589. SERIAL_PROTOCOL(lcd_contrast);
  3590. SERIAL_EOL;
  3591. }
  3592. #endif // HAS_LCD_CONTRAST
  3593. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3594. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3595. /**
  3596. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3597. */
  3598. inline void gcode_M302() {
  3599. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3600. }
  3601. #endif // PREVENT_DANGEROUS_EXTRUDE
  3602. /**
  3603. * M303: PID relay autotune
  3604. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3605. * E<extruder> (-1 for the bed)
  3606. * C<cycles>
  3607. */
  3608. inline void gcode_M303() {
  3609. int e = code_seen('E') ? code_value_short() : 0;
  3610. int c = code_seen('C') ? code_value_short() : 5;
  3611. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3612. PID_autotune(temp, e, c);
  3613. }
  3614. #ifdef SCARA
  3615. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3616. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3617. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3618. if (IsRunning()) {
  3619. //get_coordinates(); // For X Y Z E F
  3620. delta[X_AXIS] = delta_x;
  3621. delta[Y_AXIS] = delta_y;
  3622. calculate_SCARA_forward_Transform(delta);
  3623. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3624. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3625. prepare_move();
  3626. //ClearToSend();
  3627. return true;
  3628. }
  3629. return false;
  3630. }
  3631. /**
  3632. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3633. */
  3634. inline bool gcode_M360() {
  3635. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3636. return SCARA_move_to_cal(0, 120);
  3637. }
  3638. /**
  3639. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3640. */
  3641. inline bool gcode_M361() {
  3642. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3643. return SCARA_move_to_cal(90, 130);
  3644. }
  3645. /**
  3646. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3647. */
  3648. inline bool gcode_M362() {
  3649. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3650. return SCARA_move_to_cal(60, 180);
  3651. }
  3652. /**
  3653. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3654. */
  3655. inline bool gcode_M363() {
  3656. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3657. return SCARA_move_to_cal(50, 90);
  3658. }
  3659. /**
  3660. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3661. */
  3662. inline bool gcode_M364() {
  3663. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3664. return SCARA_move_to_cal(45, 135);
  3665. }
  3666. /**
  3667. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3668. */
  3669. inline void gcode_M365() {
  3670. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3671. if (code_seen(axis_codes[i])) {
  3672. axis_scaling[i] = code_value();
  3673. }
  3674. }
  3675. }
  3676. #endif // SCARA
  3677. #ifdef EXT_SOLENOID
  3678. void enable_solenoid(uint8_t num) {
  3679. switch(num) {
  3680. case 0:
  3681. OUT_WRITE(SOL0_PIN, HIGH);
  3682. break;
  3683. #if HAS_SOLENOID_1
  3684. case 1:
  3685. OUT_WRITE(SOL1_PIN, HIGH);
  3686. break;
  3687. #endif
  3688. #if HAS_SOLENOID_2
  3689. case 2:
  3690. OUT_WRITE(SOL2_PIN, HIGH);
  3691. break;
  3692. #endif
  3693. #if HAS_SOLENOID_3
  3694. case 3:
  3695. OUT_WRITE(SOL3_PIN, HIGH);
  3696. break;
  3697. #endif
  3698. default:
  3699. SERIAL_ECHO_START;
  3700. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3701. break;
  3702. }
  3703. }
  3704. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3705. void disable_all_solenoids() {
  3706. OUT_WRITE(SOL0_PIN, LOW);
  3707. OUT_WRITE(SOL1_PIN, LOW);
  3708. OUT_WRITE(SOL2_PIN, LOW);
  3709. OUT_WRITE(SOL3_PIN, LOW);
  3710. }
  3711. /**
  3712. * M380: Enable solenoid on the active extruder
  3713. */
  3714. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3715. /**
  3716. * M381: Disable all solenoids
  3717. */
  3718. inline void gcode_M381() { disable_all_solenoids(); }
  3719. #endif // EXT_SOLENOID
  3720. /**
  3721. * M400: Finish all moves
  3722. */
  3723. inline void gcode_M400() { st_synchronize(); }
  3724. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3725. #ifdef SERVO_ENDSTOPS
  3726. void raise_z_for_servo() {
  3727. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3728. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3729. if (zpos < z_dest)
  3730. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3731. }
  3732. #endif
  3733. /**
  3734. * M401: Engage Z Servo endstop if available
  3735. */
  3736. inline void gcode_M401() {
  3737. #ifdef SERVO_ENDSTOPS
  3738. raise_z_for_servo();
  3739. #endif
  3740. deploy_z_probe();
  3741. }
  3742. /**
  3743. * M402: Retract Z Servo endstop if enabled
  3744. */
  3745. inline void gcode_M402() {
  3746. #ifdef SERVO_ENDSTOPS
  3747. raise_z_for_servo();
  3748. #endif
  3749. stow_z_probe(false);
  3750. }
  3751. #endif
  3752. #ifdef FILAMENT_SENSOR
  3753. /**
  3754. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3755. */
  3756. inline void gcode_M404() {
  3757. #if HAS_FILWIDTH
  3758. if (code_seen('W')) {
  3759. filament_width_nominal = code_value();
  3760. }
  3761. else {
  3762. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3763. SERIAL_PROTOCOLLN(filament_width_nominal);
  3764. }
  3765. #endif
  3766. }
  3767. /**
  3768. * M405: Turn on filament sensor for control
  3769. */
  3770. inline void gcode_M405() {
  3771. if (code_seen('D')) meas_delay_cm = code_value();
  3772. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3773. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3774. int temp_ratio = widthFil_to_size_ratio();
  3775. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3776. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3777. delay_index1 = delay_index2 = 0;
  3778. }
  3779. filament_sensor = true;
  3780. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3781. //SERIAL_PROTOCOL(filament_width_meas);
  3782. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3783. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3784. }
  3785. /**
  3786. * M406: Turn off filament sensor for control
  3787. */
  3788. inline void gcode_M406() { filament_sensor = false; }
  3789. /**
  3790. * M407: Get measured filament diameter on serial output
  3791. */
  3792. inline void gcode_M407() {
  3793. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3794. SERIAL_PROTOCOLLN(filament_width_meas);
  3795. }
  3796. #endif // FILAMENT_SENSOR
  3797. /**
  3798. * M410: Quickstop - Abort all planned moves
  3799. *
  3800. * This will stop the carriages mid-move, so most likely they
  3801. * will be out of sync with the stepper position after this.
  3802. */
  3803. inline void gcode_M410() { quickStop(); }
  3804. #ifdef MESH_BED_LEVELING
  3805. /**
  3806. * M420: Enable/Disable Mesh Bed Leveling
  3807. */
  3808. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3809. /**
  3810. * M421: Set a single Mesh Bed Leveling Z coordinate
  3811. */
  3812. inline void gcode_M421() {
  3813. float x, y, z;
  3814. bool err = false, hasX, hasY, hasZ;
  3815. if ((hasX = code_seen('X'))) x = code_value();
  3816. if ((hasY = code_seen('Y'))) y = code_value();
  3817. if ((hasZ = code_seen('Z'))) z = code_value();
  3818. if (!hasX || !hasY || !hasZ) {
  3819. SERIAL_ERROR_START;
  3820. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3821. err = true;
  3822. }
  3823. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3824. SERIAL_ERROR_START;
  3825. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3826. err = true;
  3827. }
  3828. if (!err) mbl.set_z(select_x_index(x), select_y_index(y), z);
  3829. }
  3830. #endif
  3831. /**
  3832. * M428: Set home_offset based on the distance between the
  3833. * current_position and the nearest "reference point."
  3834. * If an axis is past center its endstop position
  3835. * is the reference-point. Otherwise it uses 0. This allows
  3836. * the Z offset to be set near the bed when using a max endstop.
  3837. *
  3838. * M428 can't be used more than 2cm away from 0 or an endstop.
  3839. *
  3840. * Use M206 to set these values directly.
  3841. */
  3842. inline void gcode_M428() {
  3843. bool err = false;
  3844. float new_offs[3], new_pos[3];
  3845. memcpy(new_pos, current_position, sizeof(new_pos));
  3846. memcpy(new_offs, home_offset, sizeof(new_offs));
  3847. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3848. if (axis_known_position[i]) {
  3849. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3850. diff = new_pos[i] - base;
  3851. if (diff > -20 && diff < 20) {
  3852. new_offs[i] -= diff;
  3853. new_pos[i] = base;
  3854. }
  3855. else {
  3856. SERIAL_ERROR_START;
  3857. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3858. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3859. #if HAS_LCD_BUZZ
  3860. enqueuecommands_P(PSTR("M300 S40 P200"));
  3861. #endif
  3862. err = true;
  3863. break;
  3864. }
  3865. }
  3866. }
  3867. if (!err) {
  3868. memcpy(current_position, new_pos, sizeof(new_pos));
  3869. memcpy(home_offset, new_offs, sizeof(new_offs));
  3870. sync_plan_position();
  3871. LCD_ALERTMESSAGEPGM("Offset applied.");
  3872. #if HAS_LCD_BUZZ
  3873. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3874. #endif
  3875. }
  3876. }
  3877. /**
  3878. * M500: Store settings in EEPROM
  3879. */
  3880. inline void gcode_M500() {
  3881. Config_StoreSettings();
  3882. }
  3883. /**
  3884. * M501: Read settings from EEPROM
  3885. */
  3886. inline void gcode_M501() {
  3887. Config_RetrieveSettings();
  3888. }
  3889. /**
  3890. * M502: Revert to default settings
  3891. */
  3892. inline void gcode_M502() {
  3893. Config_ResetDefault();
  3894. }
  3895. /**
  3896. * M503: print settings currently in memory
  3897. */
  3898. inline void gcode_M503() {
  3899. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3900. }
  3901. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3902. /**
  3903. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3904. */
  3905. inline void gcode_M540() {
  3906. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3907. }
  3908. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3909. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3910. inline void gcode_SET_Z_PROBE_OFFSET() {
  3911. float value;
  3912. if (code_seen('Z')) {
  3913. value = code_value();
  3914. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3915. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3916. SERIAL_ECHO_START;
  3917. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3918. SERIAL_EOL;
  3919. }
  3920. else {
  3921. SERIAL_ECHO_START;
  3922. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3923. SERIAL_ECHOPGM(MSG_Z_MIN);
  3924. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3925. SERIAL_ECHOPGM(MSG_Z_MAX);
  3926. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3927. SERIAL_EOL;
  3928. }
  3929. }
  3930. else {
  3931. SERIAL_ECHO_START;
  3932. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3933. SERIAL_ECHO(-zprobe_zoffset);
  3934. SERIAL_EOL;
  3935. }
  3936. }
  3937. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3938. #ifdef FILAMENTCHANGEENABLE
  3939. /**
  3940. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3941. */
  3942. inline void gcode_M600() {
  3943. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3944. for (int i=0; i<NUM_AXIS; i++)
  3945. target[i] = lastpos[i] = current_position[i];
  3946. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3947. #ifdef DELTA
  3948. #define RUNPLAN calculate_delta(target); BASICPLAN
  3949. #else
  3950. #define RUNPLAN BASICPLAN
  3951. #endif
  3952. //retract by E
  3953. if (code_seen('E')) target[E_AXIS] += code_value();
  3954. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3955. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3956. #endif
  3957. RUNPLAN;
  3958. //lift Z
  3959. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3960. #ifdef FILAMENTCHANGE_ZADD
  3961. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3962. #endif
  3963. RUNPLAN;
  3964. //move xy
  3965. if (code_seen('X')) target[X_AXIS] = code_value();
  3966. #ifdef FILAMENTCHANGE_XPOS
  3967. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3968. #endif
  3969. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3970. #ifdef FILAMENTCHANGE_YPOS
  3971. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3972. #endif
  3973. RUNPLAN;
  3974. if (code_seen('L')) target[E_AXIS] += code_value();
  3975. #ifdef FILAMENTCHANGE_FINALRETRACT
  3976. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3977. #endif
  3978. RUNPLAN;
  3979. //finish moves
  3980. st_synchronize();
  3981. //disable extruder steppers so filament can be removed
  3982. disable_e0();
  3983. disable_e1();
  3984. disable_e2();
  3985. disable_e3();
  3986. delay(100);
  3987. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3988. uint8_t cnt = 0;
  3989. while (!lcd_clicked()) {
  3990. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3991. manage_heater();
  3992. manage_inactivity(true);
  3993. lcd_update();
  3994. } // while(!lcd_clicked)
  3995. //return to normal
  3996. if (code_seen('L')) target[E_AXIS] -= code_value();
  3997. #ifdef FILAMENTCHANGE_FINALRETRACT
  3998. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3999. #endif
  4000. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4001. plan_set_e_position(current_position[E_AXIS]);
  4002. RUNPLAN; //should do nothing
  4003. lcd_reset_alert_level();
  4004. #ifdef DELTA
  4005. calculate_delta(lastpos);
  4006. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4007. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4008. #else
  4009. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4010. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4011. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4012. #endif
  4013. #ifdef FILAMENT_RUNOUT_SENSOR
  4014. filrunoutEnqueued = false;
  4015. #endif
  4016. }
  4017. #endif // FILAMENTCHANGEENABLE
  4018. #ifdef DUAL_X_CARRIAGE
  4019. /**
  4020. * M605: Set dual x-carriage movement mode
  4021. *
  4022. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4023. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4024. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4025. * millimeters x-offset and an optional differential hotend temperature of
  4026. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4027. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4028. *
  4029. * Note: the X axis should be homed after changing dual x-carriage mode.
  4030. */
  4031. inline void gcode_M605() {
  4032. st_synchronize();
  4033. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4034. switch(dual_x_carriage_mode) {
  4035. case DXC_DUPLICATION_MODE:
  4036. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4037. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4038. SERIAL_ECHO_START;
  4039. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4040. SERIAL_CHAR(' ');
  4041. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4042. SERIAL_CHAR(',');
  4043. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4044. SERIAL_CHAR(' ');
  4045. SERIAL_ECHO(duplicate_extruder_x_offset);
  4046. SERIAL_CHAR(',');
  4047. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4048. break;
  4049. case DXC_FULL_CONTROL_MODE:
  4050. case DXC_AUTO_PARK_MODE:
  4051. break;
  4052. default:
  4053. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4054. break;
  4055. }
  4056. active_extruder_parked = false;
  4057. extruder_duplication_enabled = false;
  4058. delayed_move_time = 0;
  4059. }
  4060. #endif // DUAL_X_CARRIAGE
  4061. /**
  4062. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4063. */
  4064. inline void gcode_M907() {
  4065. #if HAS_DIGIPOTSS
  4066. for (int i=0;i<NUM_AXIS;i++)
  4067. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4068. if (code_seen('B')) digipot_current(4, code_value());
  4069. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4070. #endif
  4071. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4072. if (code_seen('X')) digipot_current(0, code_value());
  4073. #endif
  4074. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4075. if (code_seen('Z')) digipot_current(1, code_value());
  4076. #endif
  4077. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4078. if (code_seen('E')) digipot_current(2, code_value());
  4079. #endif
  4080. #ifdef DIGIPOT_I2C
  4081. // this one uses actual amps in floating point
  4082. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4083. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4084. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4085. #endif
  4086. }
  4087. #if HAS_DIGIPOTSS
  4088. /**
  4089. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4090. */
  4091. inline void gcode_M908() {
  4092. digitalPotWrite(
  4093. code_seen('P') ? code_value() : 0,
  4094. code_seen('S') ? code_value() : 0
  4095. );
  4096. }
  4097. #endif // HAS_DIGIPOTSS
  4098. #if HAS_MICROSTEPS
  4099. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4100. inline void gcode_M350() {
  4101. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4102. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4103. if(code_seen('B')) microstep_mode(4,code_value());
  4104. microstep_readings();
  4105. }
  4106. /**
  4107. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4108. * S# determines MS1 or MS2, X# sets the pin high/low.
  4109. */
  4110. inline void gcode_M351() {
  4111. if (code_seen('S')) switch(code_value_short()) {
  4112. case 1:
  4113. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4114. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4115. break;
  4116. case 2:
  4117. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4118. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4119. break;
  4120. }
  4121. microstep_readings();
  4122. }
  4123. #endif // HAS_MICROSTEPS
  4124. /**
  4125. * M999: Restart after being stopped
  4126. */
  4127. inline void gcode_M999() {
  4128. Running = true;
  4129. lcd_reset_alert_level();
  4130. gcode_LastN = Stopped_gcode_LastN;
  4131. FlushSerialRequestResend();
  4132. }
  4133. /**
  4134. * T0-T3: Switch tool, usually switching extruders
  4135. */
  4136. inline void gcode_T() {
  4137. int tmp_extruder = code_value();
  4138. if (tmp_extruder >= EXTRUDERS) {
  4139. SERIAL_ECHO_START;
  4140. SERIAL_CHAR('T');
  4141. SERIAL_ECHO(tmp_extruder);
  4142. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4143. }
  4144. else {
  4145. target_extruder = tmp_extruder;
  4146. #if EXTRUDERS > 1
  4147. bool make_move = false;
  4148. #endif
  4149. if (code_seen('F')) {
  4150. #if EXTRUDERS > 1
  4151. make_move = true;
  4152. #endif
  4153. next_feedrate = code_value();
  4154. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4155. }
  4156. #if EXTRUDERS > 1
  4157. if (tmp_extruder != active_extruder) {
  4158. // Save current position to return to after applying extruder offset
  4159. set_destination_to_current();
  4160. #ifdef DUAL_X_CARRIAGE
  4161. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4162. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4163. // Park old head: 1) raise 2) move to park position 3) lower
  4164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4165. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4166. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4167. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4168. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4169. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4170. st_synchronize();
  4171. }
  4172. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4173. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4174. extruder_offset[Y_AXIS][active_extruder] +
  4175. extruder_offset[Y_AXIS][tmp_extruder];
  4176. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4177. extruder_offset[Z_AXIS][active_extruder] +
  4178. extruder_offset[Z_AXIS][tmp_extruder];
  4179. active_extruder = tmp_extruder;
  4180. // This function resets the max/min values - the current position may be overwritten below.
  4181. axis_is_at_home(X_AXIS);
  4182. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4183. current_position[X_AXIS] = inactive_extruder_x_pos;
  4184. inactive_extruder_x_pos = destination[X_AXIS];
  4185. }
  4186. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4187. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4188. if (active_extruder == 0 || active_extruder_parked)
  4189. current_position[X_AXIS] = inactive_extruder_x_pos;
  4190. else
  4191. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4192. inactive_extruder_x_pos = destination[X_AXIS];
  4193. extruder_duplication_enabled = false;
  4194. }
  4195. else {
  4196. // record raised toolhead position for use by unpark
  4197. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4198. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4199. active_extruder_parked = true;
  4200. delayed_move_time = 0;
  4201. }
  4202. #else // !DUAL_X_CARRIAGE
  4203. // Offset extruder (only by XY)
  4204. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4205. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4206. // Set the new active extruder and position
  4207. active_extruder = tmp_extruder;
  4208. #endif // !DUAL_X_CARRIAGE
  4209. #ifdef DELTA
  4210. sync_plan_position_delta();
  4211. #else
  4212. sync_plan_position();
  4213. #endif
  4214. // Move to the old position if 'F' was in the parameters
  4215. if (make_move && IsRunning()) prepare_move();
  4216. }
  4217. #ifdef EXT_SOLENOID
  4218. st_synchronize();
  4219. disable_all_solenoids();
  4220. enable_solenoid_on_active_extruder();
  4221. #endif // EXT_SOLENOID
  4222. #endif // EXTRUDERS > 1
  4223. SERIAL_ECHO_START;
  4224. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4225. SERIAL_PROTOCOLLN((int)active_extruder);
  4226. }
  4227. }
  4228. /**
  4229. * Process Commands and dispatch them to handlers
  4230. * This is called from the main loop()
  4231. */
  4232. void process_commands() {
  4233. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4234. SERIAL_ECHO_START;
  4235. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4236. }
  4237. if (code_seen('G')) {
  4238. int gCode = code_value_short();
  4239. switch(gCode) {
  4240. // G0, G1
  4241. case 0:
  4242. case 1:
  4243. gcode_G0_G1();
  4244. break;
  4245. // G2, G3
  4246. #ifndef SCARA
  4247. case 2: // G2 - CW ARC
  4248. case 3: // G3 - CCW ARC
  4249. gcode_G2_G3(gCode == 2);
  4250. break;
  4251. #endif
  4252. // G4 Dwell
  4253. case 4:
  4254. gcode_G4();
  4255. break;
  4256. #ifdef FWRETRACT
  4257. case 10: // G10: retract
  4258. case 11: // G11: retract_recover
  4259. gcode_G10_G11(gCode == 10);
  4260. break;
  4261. #endif //FWRETRACT
  4262. case 28: // G28: Home all axes, one at a time
  4263. gcode_G28();
  4264. break;
  4265. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4266. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4267. gcode_G29();
  4268. break;
  4269. #endif
  4270. #ifdef ENABLE_AUTO_BED_LEVELING
  4271. #ifndef Z_PROBE_SLED
  4272. case 30: // G30 Single Z Probe
  4273. gcode_G30();
  4274. break;
  4275. #else // Z_PROBE_SLED
  4276. case 31: // G31: dock the sled
  4277. case 32: // G32: undock the sled
  4278. dock_sled(gCode == 31);
  4279. break;
  4280. #endif // Z_PROBE_SLED
  4281. #endif // ENABLE_AUTO_BED_LEVELING
  4282. case 90: // G90
  4283. relative_mode = false;
  4284. break;
  4285. case 91: // G91
  4286. relative_mode = true;
  4287. break;
  4288. case 92: // G92
  4289. gcode_G92();
  4290. break;
  4291. }
  4292. }
  4293. else if (code_seen('M')) {
  4294. switch(code_value_short()) {
  4295. #ifdef ULTIPANEL
  4296. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4297. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4298. gcode_M0_M1();
  4299. break;
  4300. #endif // ULTIPANEL
  4301. case 17:
  4302. gcode_M17();
  4303. break;
  4304. #ifdef SDSUPPORT
  4305. case 20: // M20 - list SD card
  4306. gcode_M20(); break;
  4307. case 21: // M21 - init SD card
  4308. gcode_M21(); break;
  4309. case 22: //M22 - release SD card
  4310. gcode_M22(); break;
  4311. case 23: //M23 - Select file
  4312. gcode_M23(); break;
  4313. case 24: //M24 - Start SD print
  4314. gcode_M24(); break;
  4315. case 25: //M25 - Pause SD print
  4316. gcode_M25(); break;
  4317. case 26: //M26 - Set SD index
  4318. gcode_M26(); break;
  4319. case 27: //M27 - Get SD status
  4320. gcode_M27(); break;
  4321. case 28: //M28 - Start SD write
  4322. gcode_M28(); break;
  4323. case 29: //M29 - Stop SD write
  4324. gcode_M29(); break;
  4325. case 30: //M30 <filename> Delete File
  4326. gcode_M30(); break;
  4327. case 32: //M32 - Select file and start SD print
  4328. gcode_M32(); break;
  4329. case 928: //M928 - Start SD write
  4330. gcode_M928(); break;
  4331. #endif //SDSUPPORT
  4332. case 31: //M31 take time since the start of the SD print or an M109 command
  4333. gcode_M31();
  4334. break;
  4335. case 42: //M42 -Change pin status via gcode
  4336. gcode_M42();
  4337. break;
  4338. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4339. case 48: // M48 Z-Probe repeatability
  4340. gcode_M48();
  4341. break;
  4342. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4343. case 104: // M104
  4344. gcode_M104();
  4345. break;
  4346. case 111: // M111: Set debug level
  4347. gcode_M111();
  4348. break;
  4349. case 112: // M112: Emergency Stop
  4350. gcode_M112();
  4351. break;
  4352. case 140: // M140: Set bed temp
  4353. gcode_M140();
  4354. break;
  4355. case 105: // M105: Read current temperature
  4356. gcode_M105();
  4357. return;
  4358. break;
  4359. case 109: // M109: Wait for temperature
  4360. gcode_M109();
  4361. break;
  4362. #if HAS_TEMP_BED
  4363. case 190: // M190: Wait for bed heater to reach target
  4364. gcode_M190();
  4365. break;
  4366. #endif // HAS_TEMP_BED
  4367. #if HAS_FAN
  4368. case 106: // M106: Fan On
  4369. gcode_M106();
  4370. break;
  4371. case 107: // M107: Fan Off
  4372. gcode_M107();
  4373. break;
  4374. #endif // HAS_FAN
  4375. #ifdef BARICUDA
  4376. // PWM for HEATER_1_PIN
  4377. #if HAS_HEATER_1
  4378. case 126: // M126: valve open
  4379. gcode_M126();
  4380. break;
  4381. case 127: // M127: valve closed
  4382. gcode_M127();
  4383. break;
  4384. #endif // HAS_HEATER_1
  4385. // PWM for HEATER_2_PIN
  4386. #if HAS_HEATER_2
  4387. case 128: // M128: valve open
  4388. gcode_M128();
  4389. break;
  4390. case 129: // M129: valve closed
  4391. gcode_M129();
  4392. break;
  4393. #endif // HAS_HEATER_2
  4394. #endif // BARICUDA
  4395. #if HAS_POWER_SWITCH
  4396. case 80: // M80: Turn on Power Supply
  4397. gcode_M80();
  4398. break;
  4399. #endif // HAS_POWER_SWITCH
  4400. case 81: // M81: Turn off Power, including Power Supply, if possible
  4401. gcode_M81();
  4402. break;
  4403. case 82:
  4404. gcode_M82();
  4405. break;
  4406. case 83:
  4407. gcode_M83();
  4408. break;
  4409. case 18: // (for compatibility)
  4410. case 84: // M84
  4411. gcode_M18_M84();
  4412. break;
  4413. case 85: // M85
  4414. gcode_M85();
  4415. break;
  4416. case 92: // M92: Set the steps-per-unit for one or more axes
  4417. gcode_M92();
  4418. break;
  4419. case 115: // M115: Report capabilities
  4420. gcode_M115();
  4421. break;
  4422. case 117: // M117: Set LCD message text
  4423. gcode_M117();
  4424. break;
  4425. case 114: // M114: Report current position
  4426. gcode_M114();
  4427. break;
  4428. case 120: // M120: Enable endstops
  4429. gcode_M120();
  4430. break;
  4431. case 121: // M121: Disable endstops
  4432. gcode_M121();
  4433. break;
  4434. case 119: // M119: Report endstop states
  4435. gcode_M119();
  4436. break;
  4437. #ifdef ULTIPANEL
  4438. case 145: // M145: Set material heatup parameters
  4439. gcode_M145();
  4440. break;
  4441. #endif
  4442. #ifdef BLINKM
  4443. case 150: // M150
  4444. gcode_M150();
  4445. break;
  4446. #endif //BLINKM
  4447. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4448. gcode_M200();
  4449. break;
  4450. case 201: // M201
  4451. gcode_M201();
  4452. break;
  4453. #if 0 // Not used for Sprinter/grbl gen6
  4454. case 202: // M202
  4455. gcode_M202();
  4456. break;
  4457. #endif
  4458. case 203: // M203 max feedrate mm/sec
  4459. gcode_M203();
  4460. break;
  4461. case 204: // M204 acclereration S normal moves T filmanent only moves
  4462. gcode_M204();
  4463. break;
  4464. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4465. gcode_M205();
  4466. break;
  4467. case 206: // M206 additional homing offset
  4468. gcode_M206();
  4469. break;
  4470. #ifdef DELTA
  4471. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4472. gcode_M665();
  4473. break;
  4474. #endif
  4475. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4476. case 666: // M666 set delta / dual endstop adjustment
  4477. gcode_M666();
  4478. break;
  4479. #endif
  4480. #ifdef FWRETRACT
  4481. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4482. gcode_M207();
  4483. break;
  4484. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4485. gcode_M208();
  4486. break;
  4487. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4488. gcode_M209();
  4489. break;
  4490. #endif // FWRETRACT
  4491. #if EXTRUDERS > 1
  4492. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4493. gcode_M218();
  4494. break;
  4495. #endif
  4496. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4497. gcode_M220();
  4498. break;
  4499. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4500. gcode_M221();
  4501. break;
  4502. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4503. gcode_M226();
  4504. break;
  4505. #if NUM_SERVOS > 0
  4506. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4507. gcode_M280();
  4508. break;
  4509. #endif // NUM_SERVOS > 0
  4510. #if HAS_LCD_BUZZ
  4511. case 300: // M300 - Play beep tone
  4512. gcode_M300();
  4513. break;
  4514. #endif // HAS_LCD_BUZZ
  4515. #ifdef PIDTEMP
  4516. case 301: // M301
  4517. gcode_M301();
  4518. break;
  4519. #endif // PIDTEMP
  4520. #ifdef PIDTEMPBED
  4521. case 304: // M304
  4522. gcode_M304();
  4523. break;
  4524. #endif // PIDTEMPBED
  4525. #if defined(CHDK) || HAS_PHOTOGRAPH
  4526. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4527. gcode_M240();
  4528. break;
  4529. #endif // CHDK || PHOTOGRAPH_PIN
  4530. #ifdef HAS_LCD_CONTRAST
  4531. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4532. gcode_M250();
  4533. break;
  4534. #endif // HAS_LCD_CONTRAST
  4535. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4536. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4537. gcode_M302();
  4538. break;
  4539. #endif // PREVENT_DANGEROUS_EXTRUDE
  4540. case 303: // M303 PID autotune
  4541. gcode_M303();
  4542. break;
  4543. #ifdef SCARA
  4544. case 360: // M360 SCARA Theta pos1
  4545. if (gcode_M360()) return;
  4546. break;
  4547. case 361: // M361 SCARA Theta pos2
  4548. if (gcode_M361()) return;
  4549. break;
  4550. case 362: // M362 SCARA Psi pos1
  4551. if (gcode_M362()) return;
  4552. break;
  4553. case 363: // M363 SCARA Psi pos2
  4554. if (gcode_M363()) return;
  4555. break;
  4556. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4557. if (gcode_M364()) return;
  4558. break;
  4559. case 365: // M365 Set SCARA scaling for X Y Z
  4560. gcode_M365();
  4561. break;
  4562. #endif // SCARA
  4563. case 400: // M400 finish all moves
  4564. gcode_M400();
  4565. break;
  4566. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4567. case 401:
  4568. gcode_M401();
  4569. break;
  4570. case 402:
  4571. gcode_M402();
  4572. break;
  4573. #endif
  4574. #ifdef FILAMENT_SENSOR
  4575. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4576. gcode_M404();
  4577. break;
  4578. case 405: //M405 Turn on filament sensor for control
  4579. gcode_M405();
  4580. break;
  4581. case 406: //M406 Turn off filament sensor for control
  4582. gcode_M406();
  4583. break;
  4584. case 407: //M407 Display measured filament diameter
  4585. gcode_M407();
  4586. break;
  4587. #endif // FILAMENT_SENSOR
  4588. case 410: // M410 quickstop - Abort all the planned moves.
  4589. gcode_M410();
  4590. break;
  4591. #ifdef MESH_BED_LEVELING
  4592. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4593. gcode_M420();
  4594. break;
  4595. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4596. gcode_M421();
  4597. break;
  4598. #endif
  4599. case 428: // M428 Apply current_position to home_offset
  4600. gcode_M428();
  4601. break;
  4602. case 500: // M500 Store settings in EEPROM
  4603. gcode_M500();
  4604. break;
  4605. case 501: // M501 Read settings from EEPROM
  4606. gcode_M501();
  4607. break;
  4608. case 502: // M502 Revert to default settings
  4609. gcode_M502();
  4610. break;
  4611. case 503: // M503 print settings currently in memory
  4612. gcode_M503();
  4613. break;
  4614. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4615. case 540:
  4616. gcode_M540();
  4617. break;
  4618. #endif
  4619. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4620. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4621. gcode_SET_Z_PROBE_OFFSET();
  4622. break;
  4623. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4624. #ifdef FILAMENTCHANGEENABLE
  4625. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4626. gcode_M600();
  4627. break;
  4628. #endif // FILAMENTCHANGEENABLE
  4629. #ifdef DUAL_X_CARRIAGE
  4630. case 605:
  4631. gcode_M605();
  4632. break;
  4633. #endif // DUAL_X_CARRIAGE
  4634. case 907: // M907 Set digital trimpot motor current using axis codes.
  4635. gcode_M907();
  4636. break;
  4637. #if HAS_DIGIPOTSS
  4638. case 908: // M908 Control digital trimpot directly.
  4639. gcode_M908();
  4640. break;
  4641. #endif // HAS_DIGIPOTSS
  4642. #if HAS_MICROSTEPS
  4643. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4644. gcode_M350();
  4645. break;
  4646. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4647. gcode_M351();
  4648. break;
  4649. #endif // HAS_MICROSTEPS
  4650. case 999: // M999: Restart after being Stopped
  4651. gcode_M999();
  4652. break;
  4653. }
  4654. }
  4655. else if (code_seen('T')) {
  4656. gcode_T();
  4657. }
  4658. else {
  4659. SERIAL_ECHO_START;
  4660. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4661. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4662. SERIAL_ECHOLNPGM("\"");
  4663. }
  4664. ClearToSend();
  4665. }
  4666. void FlushSerialRequestResend() {
  4667. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4668. MYSERIAL.flush();
  4669. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4670. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4671. ClearToSend();
  4672. }
  4673. void ClearToSend() {
  4674. refresh_cmd_timeout();
  4675. #ifdef SDSUPPORT
  4676. if (fromsd[cmd_queue_index_r]) return;
  4677. #endif
  4678. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4679. }
  4680. void get_coordinates() {
  4681. for (int i = 0; i < NUM_AXIS; i++) {
  4682. if (code_seen(axis_codes[i]))
  4683. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4684. else
  4685. destination[i] = current_position[i];
  4686. }
  4687. if (code_seen('F')) {
  4688. next_feedrate = code_value();
  4689. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4690. }
  4691. }
  4692. void get_arc_coordinates() {
  4693. #ifdef SF_ARC_FIX
  4694. bool relative_mode_backup = relative_mode;
  4695. relative_mode = true;
  4696. #endif
  4697. get_coordinates();
  4698. #ifdef SF_ARC_FIX
  4699. relative_mode = relative_mode_backup;
  4700. #endif
  4701. offset[0] = code_seen('I') ? code_value() : 0;
  4702. offset[1] = code_seen('J') ? code_value() : 0;
  4703. }
  4704. void clamp_to_software_endstops(float target[3]) {
  4705. if (min_software_endstops) {
  4706. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4707. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4708. float negative_z_offset = 0;
  4709. #ifdef ENABLE_AUTO_BED_LEVELING
  4710. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4711. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4712. #endif
  4713. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4714. }
  4715. if (max_software_endstops) {
  4716. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4717. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4718. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4719. }
  4720. }
  4721. #ifdef DELTA
  4722. void recalc_delta_settings(float radius, float diagonal_rod) {
  4723. delta_tower1_x = -SIN_60 * radius; // front left tower
  4724. delta_tower1_y = -COS_60 * radius;
  4725. delta_tower2_x = SIN_60 * radius; // front right tower
  4726. delta_tower2_y = -COS_60 * radius;
  4727. delta_tower3_x = 0.0; // back middle tower
  4728. delta_tower3_y = radius;
  4729. delta_diagonal_rod_2 = sq(diagonal_rod);
  4730. }
  4731. void calculate_delta(float cartesian[3]) {
  4732. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4733. - sq(delta_tower1_x-cartesian[X_AXIS])
  4734. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4735. ) + cartesian[Z_AXIS];
  4736. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4737. - sq(delta_tower2_x-cartesian[X_AXIS])
  4738. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4739. ) + cartesian[Z_AXIS];
  4740. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4741. - sq(delta_tower3_x-cartesian[X_AXIS])
  4742. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4743. ) + cartesian[Z_AXIS];
  4744. /*
  4745. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4746. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4747. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4748. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4749. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4750. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4751. */
  4752. }
  4753. #ifdef ENABLE_AUTO_BED_LEVELING
  4754. // Adjust print surface height by linear interpolation over the bed_level array.
  4755. void adjust_delta(float cartesian[3]) {
  4756. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4757. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4758. float h1 = 0.001 - half, h2 = half - 0.001,
  4759. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4760. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4761. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4762. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4763. z1 = bed_level[floor_x + half][floor_y + half],
  4764. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4765. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4766. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4767. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4768. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4769. offset = (1 - ratio_x) * left + ratio_x * right;
  4770. delta[X_AXIS] += offset;
  4771. delta[Y_AXIS] += offset;
  4772. delta[Z_AXIS] += offset;
  4773. /*
  4774. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4775. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4776. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4777. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4778. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4779. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4780. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4781. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4782. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4783. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4784. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4785. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4786. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4787. */
  4788. }
  4789. #endif // ENABLE_AUTO_BED_LEVELING
  4790. #endif // DELTA
  4791. #ifdef MESH_BED_LEVELING
  4792. #if !defined(MIN)
  4793. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4794. #endif // ! MIN
  4795. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4796. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4797. {
  4798. if (!mbl.active) {
  4799. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4800. set_current_to_destination();
  4801. return;
  4802. }
  4803. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4804. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4805. int ix = mbl.select_x_index(x);
  4806. int iy = mbl.select_y_index(y);
  4807. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4808. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4809. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4810. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4811. if (pix == ix && piy == iy) {
  4812. // Start and end on same mesh square
  4813. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4814. set_current_to_destination();
  4815. return;
  4816. }
  4817. float nx, ny, ne, normalized_dist;
  4818. if (ix > pix && (x_splits) & BIT(ix)) {
  4819. nx = mbl.get_x(ix);
  4820. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4821. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4822. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4823. x_splits ^= BIT(ix);
  4824. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4825. nx = mbl.get_x(pix);
  4826. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4827. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4828. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4829. x_splits ^= BIT(pix);
  4830. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4831. ny = mbl.get_y(iy);
  4832. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4833. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4834. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4835. y_splits ^= BIT(iy);
  4836. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4837. ny = mbl.get_y(piy);
  4838. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4839. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4840. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4841. y_splits ^= BIT(piy);
  4842. } else {
  4843. // Already split on a border
  4844. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4845. set_current_to_destination();
  4846. return;
  4847. }
  4848. // Do the split and look for more borders
  4849. destination[X_AXIS] = nx;
  4850. destination[Y_AXIS] = ny;
  4851. destination[E_AXIS] = ne;
  4852. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4853. destination[X_AXIS] = x;
  4854. destination[Y_AXIS] = y;
  4855. destination[E_AXIS] = e;
  4856. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4857. }
  4858. #endif // MESH_BED_LEVELING
  4859. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4860. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4861. float de = dest_e - curr_e;
  4862. if (de) {
  4863. if (degHotend(active_extruder) < extrude_min_temp) {
  4864. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4865. SERIAL_ECHO_START;
  4866. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4867. return 0;
  4868. }
  4869. #ifdef PREVENT_LENGTHY_EXTRUDE
  4870. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4871. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4872. SERIAL_ECHO_START;
  4873. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4874. return 0;
  4875. }
  4876. #endif
  4877. }
  4878. return de;
  4879. }
  4880. #endif // PREVENT_DANGEROUS_EXTRUDE
  4881. void prepare_move() {
  4882. clamp_to_software_endstops(destination);
  4883. refresh_cmd_timeout();
  4884. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4885. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4886. #endif
  4887. #ifdef SCARA //for now same as delta-code
  4888. float difference[NUM_AXIS];
  4889. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4890. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4891. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4892. if (cartesian_mm < 0.000001) { return; }
  4893. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4894. int steps = max(1, int(scara_segments_per_second * seconds));
  4895. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4896. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4897. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4898. for (int s = 1; s <= steps; s++) {
  4899. float fraction = float(s) / float(steps);
  4900. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4901. calculate_delta(destination);
  4902. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4903. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4904. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4905. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4906. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4907. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4908. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4909. }
  4910. #endif // SCARA
  4911. #ifdef DELTA
  4912. float difference[NUM_AXIS];
  4913. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4914. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4915. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4916. if (cartesian_mm < 0.000001) return;
  4917. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4918. int steps = max(1, int(delta_segments_per_second * seconds));
  4919. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4920. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4921. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4922. for (int s = 1; s <= steps; s++) {
  4923. float fraction = float(s) / float(steps);
  4924. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4925. calculate_delta(destination);
  4926. #ifdef ENABLE_AUTO_BED_LEVELING
  4927. adjust_delta(destination);
  4928. #endif
  4929. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4930. }
  4931. #endif // DELTA
  4932. #ifdef DUAL_X_CARRIAGE
  4933. if (active_extruder_parked) {
  4934. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4935. // move duplicate extruder into correct duplication position.
  4936. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4937. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4938. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4939. sync_plan_position();
  4940. st_synchronize();
  4941. extruder_duplication_enabled = true;
  4942. active_extruder_parked = false;
  4943. }
  4944. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4945. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4946. // This is a travel move (with no extrusion)
  4947. // Skip it, but keep track of the current position
  4948. // (so it can be used as the start of the next non-travel move)
  4949. if (delayed_move_time != 0xFFFFFFFFUL) {
  4950. set_current_to_destination();
  4951. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4952. delayed_move_time = millis();
  4953. return;
  4954. }
  4955. }
  4956. delayed_move_time = 0;
  4957. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4958. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4961. active_extruder_parked = false;
  4962. }
  4963. }
  4964. #endif // DUAL_X_CARRIAGE
  4965. #if !defined(DELTA) && !defined(SCARA)
  4966. // Do not use feedrate_multiplier for E or Z only moves
  4967. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4968. line_to_destination();
  4969. }
  4970. else {
  4971. #ifdef MESH_BED_LEVELING
  4972. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4973. return;
  4974. #else
  4975. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4976. #endif // MESH_BED_LEVELING
  4977. }
  4978. #endif // !(DELTA || SCARA)
  4979. set_current_to_destination();
  4980. }
  4981. void prepare_arc_move(char isclockwise) {
  4982. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4983. // Trace the arc
  4984. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4985. // As far as the parser is concerned, the position is now == target. In reality the
  4986. // motion control system might still be processing the action and the real tool position
  4987. // in any intermediate location.
  4988. set_current_to_destination();
  4989. refresh_cmd_timeout();
  4990. }
  4991. #if HAS_CONTROLLERFAN
  4992. millis_t lastMotor = 0; // Last time a motor was turned on
  4993. millis_t lastMotorCheck = 0; // Last time the state was checked
  4994. void controllerFan() {
  4995. millis_t ms = millis();
  4996. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4997. lastMotorCheck = ms;
  4998. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4999. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5000. #if EXTRUDERS > 1
  5001. || E1_ENABLE_READ == E_ENABLE_ON
  5002. #if HAS_X2_ENABLE
  5003. || X2_ENABLE_READ == X_ENABLE_ON
  5004. #endif
  5005. #if EXTRUDERS > 2
  5006. || E2_ENABLE_READ == E_ENABLE_ON
  5007. #if EXTRUDERS > 3
  5008. || E3_ENABLE_READ == E_ENABLE_ON
  5009. #endif
  5010. #endif
  5011. #endif
  5012. ) {
  5013. lastMotor = ms; //... set time to NOW so the fan will turn on
  5014. }
  5015. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5016. // allows digital or PWM fan output to be used (see M42 handling)
  5017. digitalWrite(CONTROLLERFAN_PIN, speed);
  5018. analogWrite(CONTROLLERFAN_PIN, speed);
  5019. }
  5020. }
  5021. #endif
  5022. #ifdef SCARA
  5023. void calculate_SCARA_forward_Transform(float f_scara[3])
  5024. {
  5025. // Perform forward kinematics, and place results in delta[3]
  5026. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5027. float x_sin, x_cos, y_sin, y_cos;
  5028. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5029. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5030. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5031. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5032. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5033. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5034. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5035. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5036. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5037. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5038. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5039. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5040. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5041. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5042. }
  5043. void calculate_delta(float cartesian[3]){
  5044. //reverse kinematics.
  5045. // Perform reversed kinematics, and place results in delta[3]
  5046. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5047. float SCARA_pos[2];
  5048. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5049. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5050. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5051. #if (Linkage_1 == Linkage_2)
  5052. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5053. #else
  5054. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5055. #endif
  5056. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5057. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5058. SCARA_K2 = Linkage_2 * SCARA_S2;
  5059. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5060. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5061. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5062. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5063. delta[Z_AXIS] = cartesian[Z_AXIS];
  5064. /*
  5065. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5066. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5067. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5068. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5069. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5070. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5071. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5072. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5073. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5074. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5075. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5076. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5077. SERIAL_ECHOLN(" ");*/
  5078. }
  5079. #endif
  5080. #ifdef TEMP_STAT_LEDS
  5081. static bool red_led = false;
  5082. static millis_t next_status_led_update_ms = 0;
  5083. void handle_status_leds(void) {
  5084. float max_temp = 0.0;
  5085. if (millis() > next_status_led_update_ms) {
  5086. next_status_led_update_ms += 500; // Update every 0.5s
  5087. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5088. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5089. #if HAS_TEMP_BED
  5090. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5091. #endif
  5092. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5093. if (new_led != red_led) {
  5094. red_led = new_led;
  5095. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5096. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5097. }
  5098. }
  5099. }
  5100. #endif
  5101. void enable_all_steppers() {
  5102. enable_x();
  5103. enable_y();
  5104. enable_z();
  5105. enable_e0();
  5106. enable_e1();
  5107. enable_e2();
  5108. enable_e3();
  5109. }
  5110. void disable_all_steppers() {
  5111. disable_x();
  5112. disable_y();
  5113. disable_z();
  5114. disable_e0();
  5115. disable_e1();
  5116. disable_e2();
  5117. disable_e3();
  5118. }
  5119. /**
  5120. * Manage several activities:
  5121. * - Check for Filament Runout
  5122. * - Keep the command buffer full
  5123. * - Check for maximum inactive time between commands
  5124. * - Check for maximum inactive time between stepper commands
  5125. * - Check if pin CHDK needs to go LOW
  5126. * - Check for KILL button held down
  5127. * - Check for HOME button held down
  5128. * - Check if cooling fan needs to be switched on
  5129. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5130. */
  5131. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5132. #if HAS_FILRUNOUT
  5133. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5134. filrunout();
  5135. #endif
  5136. if (commands_in_queue < BUFSIZE - 1) get_command();
  5137. millis_t ms = millis();
  5138. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5139. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5140. && !ignore_stepper_queue && !blocks_queued())
  5141. disable_all_steppers();
  5142. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5143. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5144. chdkActive = false;
  5145. WRITE(CHDK, LOW);
  5146. }
  5147. #endif
  5148. #if HAS_KILL
  5149. // Check if the kill button was pressed and wait just in case it was an accidental
  5150. // key kill key press
  5151. // -------------------------------------------------------------------------------
  5152. static int killCount = 0; // make the inactivity button a bit less responsive
  5153. const int KILL_DELAY = 750;
  5154. if (!READ(KILL_PIN))
  5155. killCount++;
  5156. else if (killCount > 0)
  5157. killCount--;
  5158. // Exceeded threshold and we can confirm that it was not accidental
  5159. // KILL the machine
  5160. // ----------------------------------------------------------------
  5161. if (killCount >= KILL_DELAY) kill();
  5162. #endif
  5163. #if HAS_HOME
  5164. // Check to see if we have to home, use poor man's debouncer
  5165. // ---------------------------------------------------------
  5166. static int homeDebounceCount = 0; // poor man's debouncing count
  5167. const int HOME_DEBOUNCE_DELAY = 750;
  5168. if (!READ(HOME_PIN)) {
  5169. if (!homeDebounceCount) {
  5170. enqueuecommands_P(PSTR("G28"));
  5171. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5172. }
  5173. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5174. homeDebounceCount++;
  5175. else
  5176. homeDebounceCount = 0;
  5177. }
  5178. #endif
  5179. #if HAS_CONTROLLERFAN
  5180. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5181. #endif
  5182. #ifdef EXTRUDER_RUNOUT_PREVENT
  5183. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5184. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5185. bool oldstatus;
  5186. switch(active_extruder) {
  5187. case 0:
  5188. oldstatus = E0_ENABLE_READ;
  5189. enable_e0();
  5190. break;
  5191. #if EXTRUDERS > 1
  5192. case 1:
  5193. oldstatus = E1_ENABLE_READ;
  5194. enable_e1();
  5195. break;
  5196. #if EXTRUDERS > 2
  5197. case 2:
  5198. oldstatus = E2_ENABLE_READ;
  5199. enable_e2();
  5200. break;
  5201. #if EXTRUDERS > 3
  5202. case 3:
  5203. oldstatus = E3_ENABLE_READ;
  5204. enable_e3();
  5205. break;
  5206. #endif
  5207. #endif
  5208. #endif
  5209. }
  5210. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5211. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5212. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5213. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5214. current_position[E_AXIS] = oldepos;
  5215. destination[E_AXIS] = oldedes;
  5216. plan_set_e_position(oldepos);
  5217. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5218. st_synchronize();
  5219. switch(active_extruder) {
  5220. case 0:
  5221. E0_ENABLE_WRITE(oldstatus);
  5222. break;
  5223. #if EXTRUDERS > 1
  5224. case 1:
  5225. E1_ENABLE_WRITE(oldstatus);
  5226. break;
  5227. #if EXTRUDERS > 2
  5228. case 2:
  5229. E2_ENABLE_WRITE(oldstatus);
  5230. break;
  5231. #if EXTRUDERS > 3
  5232. case 3:
  5233. E3_ENABLE_WRITE(oldstatus);
  5234. break;
  5235. #endif
  5236. #endif
  5237. #endif
  5238. }
  5239. }
  5240. #endif
  5241. #ifdef DUAL_X_CARRIAGE
  5242. // handle delayed move timeout
  5243. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5244. // travel moves have been received so enact them
  5245. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5246. set_destination_to_current();
  5247. prepare_move();
  5248. }
  5249. #endif
  5250. #ifdef TEMP_STAT_LEDS
  5251. handle_status_leds();
  5252. #endif
  5253. check_axes_activity();
  5254. }
  5255. void kill()
  5256. {
  5257. cli(); // Stop interrupts
  5258. disable_all_heaters();
  5259. disable_all_steppers();
  5260. #if HAS_POWER_SWITCH
  5261. pinMode(PS_ON_PIN, INPUT);
  5262. #endif
  5263. SERIAL_ERROR_START;
  5264. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5265. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5266. // FMC small patch to update the LCD before ending
  5267. sei(); // enable interrupts
  5268. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5269. cli(); // disable interrupts
  5270. suicide();
  5271. while(1) { /* Intentionally left empty */ } // Wait for reset
  5272. }
  5273. #ifdef FILAMENT_RUNOUT_SENSOR
  5274. void filrunout() {
  5275. if (!filrunoutEnqueued) {
  5276. filrunoutEnqueued = true;
  5277. enqueuecommand("M600");
  5278. }
  5279. }
  5280. #endif
  5281. void Stop() {
  5282. disable_all_heaters();
  5283. if (IsRunning()) {
  5284. Running = false;
  5285. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5286. SERIAL_ERROR_START;
  5287. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5288. LCD_MESSAGEPGM(MSG_STOPPED);
  5289. }
  5290. }
  5291. #ifdef FAST_PWM_FAN
  5292. void setPwmFrequency(uint8_t pin, int val)
  5293. {
  5294. val &= 0x07;
  5295. switch(digitalPinToTimer(pin))
  5296. {
  5297. #if defined(TCCR0A)
  5298. case TIMER0A:
  5299. case TIMER0B:
  5300. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5301. // TCCR0B |= val;
  5302. break;
  5303. #endif
  5304. #if defined(TCCR1A)
  5305. case TIMER1A:
  5306. case TIMER1B:
  5307. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5308. // TCCR1B |= val;
  5309. break;
  5310. #endif
  5311. #if defined(TCCR2)
  5312. case TIMER2:
  5313. case TIMER2:
  5314. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5315. TCCR2 |= val;
  5316. break;
  5317. #endif
  5318. #if defined(TCCR2A)
  5319. case TIMER2A:
  5320. case TIMER2B:
  5321. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5322. TCCR2B |= val;
  5323. break;
  5324. #endif
  5325. #if defined(TCCR3A)
  5326. case TIMER3A:
  5327. case TIMER3B:
  5328. case TIMER3C:
  5329. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5330. TCCR3B |= val;
  5331. break;
  5332. #endif
  5333. #if defined(TCCR4A)
  5334. case TIMER4A:
  5335. case TIMER4B:
  5336. case TIMER4C:
  5337. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5338. TCCR4B |= val;
  5339. break;
  5340. #endif
  5341. #if defined(TCCR5A)
  5342. case TIMER5A:
  5343. case TIMER5B:
  5344. case TIMER5C:
  5345. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5346. TCCR5B |= val;
  5347. break;
  5348. #endif
  5349. }
  5350. }
  5351. #endif //FAST_PWM_FAN
  5352. bool setTargetedHotend(int code){
  5353. target_extruder = active_extruder;
  5354. if (code_seen('T')) {
  5355. target_extruder = code_value_short();
  5356. if (target_extruder >= EXTRUDERS) {
  5357. SERIAL_ECHO_START;
  5358. switch(code){
  5359. case 104:
  5360. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5361. break;
  5362. case 105:
  5363. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5364. break;
  5365. case 109:
  5366. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5367. break;
  5368. case 218:
  5369. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5370. break;
  5371. case 221:
  5372. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5373. break;
  5374. }
  5375. SERIAL_ECHOLN(target_extruder);
  5376. return true;
  5377. }
  5378. }
  5379. return false;
  5380. }
  5381. float calculate_volumetric_multiplier(float diameter) {
  5382. if (!volumetric_enabled || diameter == 0) return 1.0;
  5383. float d2 = diameter * 0.5;
  5384. return 1.0 / (M_PI * d2 * d2);
  5385. }
  5386. void calculate_volumetric_multipliers() {
  5387. for (int i=0; i<EXTRUDERS; i++)
  5388. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5389. }