My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 209KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #ifdef MESH_BED_LEVELING
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #ifdef BLINKM
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. bool Running = true;
  221. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  222. static float feedrate = 1500.0, saved_feedrate;
  223. float current_position[NUM_AXIS] = { 0.0 };
  224. static float destination[NUM_AXIS] = { 0.0 };
  225. bool axis_known_position[3] = { false };
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static char *current_command, *current_command_args;
  228. static int cmd_queue_index_r = 0;
  229. static int cmd_queue_index_w = 0;
  230. static int commands_in_queue = 0;
  231. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  232. const float homing_feedrate[] = HOMING_FEEDRATE;
  233. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  234. int feedrate_multiplier = 100; //100->1 200->2
  235. int saved_feedrate_multiplier;
  236. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  237. bool volumetric_enabled = false;
  238. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  239. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  240. float home_offset[3] = { 0 };
  241. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  242. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. bool cancel_heatup = false;
  246. const char errormagic[] PROGMEM = "Error:";
  247. const char echomagic[] PROGMEM = "echo:";
  248. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  249. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  250. static char serial_char;
  251. static int serial_count = 0;
  252. static boolean comment_mode = false;
  253. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  254. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  255. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  256. // Inactivity shutdown
  257. millis_t previous_cmd_ms = 0;
  258. static millis_t max_inactive_time = 0;
  259. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  260. millis_t print_job_start_ms = 0; ///< Print job start time
  261. millis_t print_job_stop_ms = 0; ///< Print job stop time
  262. static uint8_t target_extruder;
  263. bool no_wait_for_cooling = true;
  264. bool target_direction;
  265. #ifdef ENABLE_AUTO_BED_LEVELING
  266. int xy_travel_speed = XY_TRAVEL_SPEED;
  267. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  268. #endif
  269. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  270. float z_endstop_adj = 0;
  271. #endif
  272. // Extruder offsets
  273. #if EXTRUDERS > 1
  274. #ifndef EXTRUDER_OFFSET_X
  275. #define EXTRUDER_OFFSET_X { 0 }
  276. #endif
  277. #ifndef EXTRUDER_OFFSET_Y
  278. #define EXTRUDER_OFFSET_Y { 0 }
  279. #endif
  280. float extruder_offset[][EXTRUDERS] = {
  281. EXTRUDER_OFFSET_X,
  282. EXTRUDER_OFFSET_Y
  283. #ifdef DUAL_X_CARRIAGE
  284. , { 0 } // supports offsets in XYZ plane
  285. #endif
  286. };
  287. #endif
  288. #ifdef SERVO_ENDSTOPS
  289. const int servo_endstops[] = SERVO_ENDSTOPS;
  290. const int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  291. #endif
  292. #ifdef BARICUDA
  293. int ValvePressure = 0;
  294. int EtoPPressure = 0;
  295. #endif
  296. #ifdef FWRETRACT
  297. bool autoretract_enabled = false;
  298. bool retracted[EXTRUDERS] = { false };
  299. bool retracted_swap[EXTRUDERS] = { false };
  300. float retract_length = RETRACT_LENGTH;
  301. float retract_length_swap = RETRACT_LENGTH_SWAP;
  302. float retract_feedrate = RETRACT_FEEDRATE;
  303. float retract_zlift = RETRACT_ZLIFT;
  304. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  305. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  306. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  307. #endif // FWRETRACT
  308. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  309. bool powersupply =
  310. #ifdef PS_DEFAULT_OFF
  311. false
  312. #else
  313. true
  314. #endif
  315. ;
  316. #endif
  317. #ifdef DELTA
  318. float delta[3] = { 0 };
  319. #define SIN_60 0.8660254037844386
  320. #define COS_60 0.5
  321. float endstop_adj[3] = { 0 };
  322. // these are the default values, can be overriden with M665
  323. float delta_radius = DELTA_RADIUS;
  324. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  325. float delta_tower1_y = -COS_60 * delta_radius;
  326. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  327. float delta_tower2_y = -COS_60 * delta_radius;
  328. float delta_tower3_x = 0; // back middle tower
  329. float delta_tower3_y = delta_radius;
  330. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  331. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  332. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  333. #ifdef ENABLE_AUTO_BED_LEVELING
  334. int delta_grid_spacing[2] = { 0, 0 };
  335. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  336. #endif
  337. #else
  338. static bool home_all_axis = true;
  339. #endif
  340. #ifdef SCARA
  341. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  342. static float delta[3] = { 0 };
  343. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1 = 0; //index into ring buffer
  352. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist = 0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. #ifdef FILAMENT_RUNOUT_SENSOR
  357. static bool filrunoutEnqueued = false;
  358. #endif
  359. #ifdef SDSUPPORT
  360. static bool fromsd[BUFSIZE];
  361. #endif
  362. #if NUM_SERVOS > 0
  363. Servo servo[NUM_SERVOS];
  364. #endif
  365. #ifdef CHDK
  366. unsigned long chdkHigh = 0;
  367. boolean chdkActive = false;
  368. #endif
  369. //===========================================================================
  370. //================================ Functions ================================
  371. //===========================================================================
  372. void process_next_command();
  373. void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
  374. bool setTargetedHotend(int code);
  375. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  378. #ifdef PREVENT_DANGEROUS_EXTRUDE
  379. float extrude_min_temp = EXTRUDE_MINTEMP;
  380. #endif
  381. #ifdef SDSUPPORT
  382. #include "SdFatUtil.h"
  383. int freeMemory() { return SdFatUtil::FreeRam(); }
  384. #else
  385. extern "C" {
  386. extern unsigned int __bss_end;
  387. extern unsigned int __heap_start;
  388. extern void *__brkval;
  389. int freeMemory() {
  390. int free_memory;
  391. if ((int)__brkval == 0)
  392. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  393. else
  394. free_memory = ((int)&free_memory) - ((int)__brkval);
  395. return free_memory;
  396. }
  397. }
  398. #endif //!SDSUPPORT
  399. /**
  400. * Inject the next command from the command queue, when possible
  401. * Return false only if no command was pending
  402. */
  403. static bool drain_queued_commands_P() {
  404. if (!queued_commands_P) return false;
  405. // Get the next 30 chars from the sequence of gcodes to run
  406. char cmd[30];
  407. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  408. cmd[sizeof(cmd) - 1] = '\0';
  409. // Look for the end of line, or the end of sequence
  410. size_t i = 0;
  411. char c;
  412. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  413. cmd[i] = '\0';
  414. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  415. if (c)
  416. queued_commands_P += i + 1; // move to next command
  417. else
  418. queued_commands_P = NULL; // will have no more commands in the sequence
  419. }
  420. return true;
  421. }
  422. /**
  423. * Record one or many commands to run from program memory.
  424. * Aborts the current queue, if any.
  425. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  426. */
  427. void enqueuecommands_P(const char* pgcode) {
  428. queued_commands_P = pgcode;
  429. drain_queued_commands_P(); // first command executed asap (when possible)
  430. }
  431. /**
  432. * Copy a command directly into the main command buffer, from RAM.
  433. *
  434. * This is done in a non-safe way and needs a rework someday.
  435. * Returns false if it doesn't add any command
  436. */
  437. bool enqueuecommand(const char *cmd) {
  438. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  439. // This is dangerous if a mixing of serial and this happens
  440. char *command = command_queue[cmd_queue_index_w];
  441. strcpy(command, cmd);
  442. SERIAL_ECHO_START;
  443. SERIAL_ECHOPGM(MSG_Enqueueing);
  444. SERIAL_ECHO(command);
  445. SERIAL_ECHOLNPGM("\"");
  446. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  447. commands_in_queue++;
  448. return true;
  449. }
  450. void setup_killpin() {
  451. #if HAS_KILL
  452. SET_INPUT(KILL_PIN);
  453. WRITE(KILL_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_filrunoutpin() {
  457. #if HAS_FILRUNOUT
  458. pinMode(FILRUNOUT_PIN, INPUT);
  459. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  460. WRITE(FILRUNOUT_PIN, HIGH);
  461. #endif
  462. #endif
  463. }
  464. // Set home pin
  465. void setup_homepin(void) {
  466. #if HAS_HOME
  467. SET_INPUT(HOME_PIN);
  468. WRITE(HOME_PIN, HIGH);
  469. #endif
  470. }
  471. void setup_photpin() {
  472. #if HAS_PHOTOGRAPH
  473. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  474. #endif
  475. }
  476. void setup_powerhold() {
  477. #if HAS_SUICIDE
  478. OUT_WRITE(SUICIDE_PIN, HIGH);
  479. #endif
  480. #if HAS_POWER_SWITCH
  481. #ifdef PS_DEFAULT_OFF
  482. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  483. #else
  484. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  485. #endif
  486. #endif
  487. }
  488. void suicide() {
  489. #if HAS_SUICIDE
  490. OUT_WRITE(SUICIDE_PIN, LOW);
  491. #endif
  492. }
  493. void servo_init() {
  494. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  495. servo[0].attach(SERVO0_PIN);
  496. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  497. #endif
  498. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  499. servo[1].attach(SERVO1_PIN);
  500. servo[1].detach();
  501. #endif
  502. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  503. servo[2].attach(SERVO2_PIN);
  504. servo[2].detach();
  505. #endif
  506. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  507. servo[3].attach(SERVO3_PIN);
  508. servo[3].detach();
  509. #endif
  510. // Set position of Servo Endstops that are defined
  511. #ifdef SERVO_ENDSTOPS
  512. for (int i = 0; i < 3; i++)
  513. if (servo_endstops[i] >= 0)
  514. servo[servo_endstops[i]].move(servo_endstop_angles[i * 2 + 1]);
  515. #endif
  516. }
  517. /**
  518. * Stepper Reset (RigidBoard, et.al.)
  519. */
  520. #if HAS_STEPPER_RESET
  521. void disableStepperDrivers() {
  522. pinMode(STEPPER_RESET_PIN, OUTPUT);
  523. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  524. }
  525. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  526. #endif
  527. /**
  528. * Marlin entry-point: Set up before the program loop
  529. * - Set up the kill pin, filament runout, power hold
  530. * - Start the serial port
  531. * - Print startup messages and diagnostics
  532. * - Get EEPROM or default settings
  533. * - Initialize managers for:
  534. * • temperature
  535. * • planner
  536. * • watchdog
  537. * • stepper
  538. * • photo pin
  539. * • servos
  540. * • LCD controller
  541. * • Digipot I2C
  542. * • Z probe sled
  543. * • status LEDs
  544. */
  545. void setup() {
  546. setup_killpin();
  547. setup_filrunoutpin();
  548. setup_powerhold();
  549. #if HAS_STEPPER_RESET
  550. disableStepperDrivers();
  551. #endif
  552. MYSERIAL.begin(BAUDRATE);
  553. SERIAL_PROTOCOLLNPGM("start");
  554. SERIAL_ECHO_START;
  555. // Check startup - does nothing if bootloader sets MCUSR to 0
  556. byte mcu = MCUSR;
  557. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  558. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  559. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  560. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  561. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  562. MCUSR = 0;
  563. SERIAL_ECHOPGM(MSG_MARLIN);
  564. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  565. #ifdef STRING_DISTRIBUTION_DATE
  566. #ifdef STRING_CONFIG_H_AUTHOR
  567. SERIAL_ECHO_START;
  568. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  569. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  570. SERIAL_ECHOPGM(MSG_AUTHOR);
  571. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  572. SERIAL_ECHOPGM("Compiled: ");
  573. SERIAL_ECHOLNPGM(__DATE__);
  574. #endif // STRING_CONFIG_H_AUTHOR
  575. #endif // STRING_DISTRIBUTION_DATE
  576. SERIAL_ECHO_START;
  577. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  578. SERIAL_ECHO(freeMemory());
  579. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  580. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  581. #ifdef SDSUPPORT
  582. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  583. #endif
  584. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  585. Config_RetrieveSettings();
  586. lcd_init();
  587. _delay_ms(1000); // wait 1sec to display the splash screen
  588. tp_init(); // Initialize temperature loop
  589. plan_init(); // Initialize planner;
  590. watchdog_init();
  591. st_init(); // Initialize stepper, this enables interrupts!
  592. setup_photpin();
  593. servo_init();
  594. #if HAS_CONTROLLERFAN
  595. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  596. #endif
  597. #if HAS_STEPPER_RESET
  598. enableStepperDrivers();
  599. #endif
  600. #ifdef DIGIPOT_I2C
  601. digipot_i2c_init();
  602. #endif
  603. #ifdef Z_PROBE_SLED
  604. pinMode(SLED_PIN, OUTPUT);
  605. digitalWrite(SLED_PIN, LOW); // turn it off
  606. #endif // Z_PROBE_SLED
  607. setup_homepin();
  608. #ifdef STAT_LED_RED
  609. pinMode(STAT_LED_RED, OUTPUT);
  610. digitalWrite(STAT_LED_RED, LOW); // turn it off
  611. #endif
  612. #ifdef STAT_LED_BLUE
  613. pinMode(STAT_LED_BLUE, OUTPUT);
  614. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  615. #endif
  616. }
  617. /**
  618. * The main Marlin program loop
  619. *
  620. * - Save or log commands to SD
  621. * - Process available commands (if not saving)
  622. * - Call heater manager
  623. * - Call inactivity manager
  624. * - Call endstop manager
  625. * - Call LCD update
  626. */
  627. void loop() {
  628. if (commands_in_queue < BUFSIZE - 1) get_command();
  629. #ifdef SDSUPPORT
  630. card.checkautostart(false);
  631. #endif
  632. if (commands_in_queue) {
  633. #ifdef SDSUPPORT
  634. if (card.saving) {
  635. char *command = command_queue[cmd_queue_index_r];
  636. if (strstr_P(command, PSTR("M29"))) {
  637. // M29 closes the file
  638. card.closefile();
  639. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  640. }
  641. else {
  642. // Write the string from the read buffer to SD
  643. card.write_command(command);
  644. if (card.logging)
  645. process_next_command(); // The card is saving because it's logging
  646. else
  647. SERIAL_PROTOCOLLNPGM(MSG_OK);
  648. }
  649. }
  650. else
  651. process_next_command();
  652. #else
  653. process_next_command();
  654. #endif // SDSUPPORT
  655. commands_in_queue--;
  656. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  657. }
  658. checkHitEndstops();
  659. idle();
  660. }
  661. void gcode_line_error(const char *err, bool doFlush=true) {
  662. SERIAL_ERROR_START;
  663. serialprintPGM(err);
  664. SERIAL_ERRORLN(gcode_LastN);
  665. //Serial.println(gcode_N);
  666. if (doFlush) FlushSerialRequestResend();
  667. serial_count = 0;
  668. }
  669. /**
  670. * Add to the circular command queue the next command from:
  671. * - The command-injection queue (queued_commands_P)
  672. * - The active serial input (usually USB)
  673. * - The SD card file being actively printed
  674. */
  675. void get_command() {
  676. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  677. #ifdef NO_TIMEOUTS
  678. static millis_t last_command_time = 0;
  679. millis_t ms = millis();
  680. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  681. SERIAL_ECHOLNPGM(MSG_WAIT);
  682. last_command_time = ms;
  683. }
  684. #endif
  685. //
  686. // Loop while serial characters are incoming and the queue is not full
  687. //
  688. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  689. #ifdef NO_TIMEOUTS
  690. last_command_time = ms;
  691. #endif
  692. serial_char = MYSERIAL.read();
  693. //
  694. // If the character ends the line, or the line is full...
  695. //
  696. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  697. // end of line == end of comment
  698. comment_mode = false;
  699. if (!serial_count) return; // empty lines just exit
  700. char *command = command_queue[cmd_queue_index_w];
  701. command[serial_count] = 0; // terminate string
  702. // this item in the queue is not from sd
  703. #ifdef SDSUPPORT
  704. fromsd[cmd_queue_index_w] = false;
  705. #endif
  706. char *npos = strchr(command, 'N');
  707. char *apos = strchr(command, '*');
  708. if (npos) {
  709. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  710. if (M110) {
  711. char *n2pos = strchr(command + 4, 'N');
  712. if (n2pos) npos = n2pos;
  713. }
  714. gcode_N = strtol(npos + 1, NULL, 10);
  715. if (gcode_N != gcode_LastN + 1 && !M110) {
  716. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  717. return;
  718. }
  719. if (apos) {
  720. byte checksum = 0, count = 0;
  721. while (command[count] != '*') checksum ^= command[count++];
  722. if (strtol(apos + 1, NULL, 10) != checksum) {
  723. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  724. return;
  725. }
  726. // if no errors, continue parsing
  727. }
  728. else if (npos == command) {
  729. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  730. return;
  731. }
  732. gcode_LastN = gcode_N;
  733. // if no errors, continue parsing
  734. }
  735. else if (apos) { // No '*' without 'N'
  736. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  737. return;
  738. }
  739. // Movement commands alert when stopped
  740. if (IsStopped()) {
  741. char *gpos = strchr(command, 'G');
  742. if (gpos) {
  743. int codenum = strtol(gpos + 1, NULL, 10);
  744. switch (codenum) {
  745. case 0:
  746. case 1:
  747. case 2:
  748. case 3:
  749. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  750. LCD_MESSAGEPGM(MSG_STOPPED);
  751. break;
  752. }
  753. }
  754. }
  755. // If command was e-stop process now
  756. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  757. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  758. commands_in_queue += 1;
  759. serial_count = 0; //clear buffer
  760. }
  761. else if (serial_char == '\\') { // Handle escapes
  762. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  763. // if we have one more character, copy it over
  764. serial_char = MYSERIAL.read();
  765. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  766. }
  767. // otherwise do nothing
  768. }
  769. else { // its not a newline, carriage return or escape char
  770. if (serial_char == ';') comment_mode = true;
  771. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  772. }
  773. }
  774. #ifdef SDSUPPORT
  775. if (!card.sdprinting || serial_count) return;
  776. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  777. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  778. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  779. static bool stop_buffering = false;
  780. if (commands_in_queue == 0) stop_buffering = false;
  781. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  782. int16_t n = card.get();
  783. serial_char = (char)n;
  784. if (serial_char == '\n' || serial_char == '\r' ||
  785. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  786. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  787. ) {
  788. if (card.eof()) {
  789. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  790. print_job_stop_ms = millis();
  791. char time[30];
  792. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  793. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  794. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  795. SERIAL_ECHO_START;
  796. SERIAL_ECHOLN(time);
  797. lcd_setstatus(time, true);
  798. card.printingHasFinished();
  799. card.checkautostart(true);
  800. }
  801. if (serial_char == '#') stop_buffering = true;
  802. if (!serial_count) {
  803. comment_mode = false; //for new command
  804. return; //if empty line
  805. }
  806. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  807. // if (!comment_mode) {
  808. fromsd[cmd_queue_index_w] = true;
  809. commands_in_queue += 1;
  810. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  811. // }
  812. comment_mode = false; //for new command
  813. serial_count = 0; //clear buffer
  814. }
  815. else {
  816. if (serial_char == ';') comment_mode = true;
  817. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  818. }
  819. }
  820. #endif // SDSUPPORT
  821. }
  822. bool code_has_value() {
  823. int i = 1;
  824. char c = seen_pointer[i];
  825. if (c == '-' || c == '+') c = seen_pointer[++i];
  826. if (c == '.') c = seen_pointer[++i];
  827. return (c >= '0' && c <= '9');
  828. }
  829. float code_value() {
  830. float ret;
  831. char *e = strchr(seen_pointer, 'E');
  832. if (e) {
  833. *e = 0;
  834. ret = strtod(seen_pointer+1, NULL);
  835. *e = 'E';
  836. }
  837. else
  838. ret = strtod(seen_pointer+1, NULL);
  839. return ret;
  840. }
  841. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  842. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  843. bool code_seen(char code) {
  844. seen_pointer = strchr(current_command_args, code);
  845. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  846. }
  847. #define DEFINE_PGM_READ_ANY(type, reader) \
  848. static inline type pgm_read_any(const type *p) \
  849. { return pgm_read_##reader##_near(p); }
  850. DEFINE_PGM_READ_ANY(float, float);
  851. DEFINE_PGM_READ_ANY(signed char, byte);
  852. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  853. static const PROGMEM type array##_P[3] = \
  854. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  855. static inline type array(int axis) \
  856. { return pgm_read_any(&array##_P[axis]); }
  857. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  858. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  859. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  860. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  861. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  862. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  863. #ifdef DUAL_X_CARRIAGE
  864. #define DXC_FULL_CONTROL_MODE 0
  865. #define DXC_AUTO_PARK_MODE 1
  866. #define DXC_DUPLICATION_MODE 2
  867. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  868. static float x_home_pos(int extruder) {
  869. if (extruder == 0)
  870. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  871. else
  872. // In dual carriage mode the extruder offset provides an override of the
  873. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  874. // This allow soft recalibration of the second extruder offset position without firmware reflash
  875. // (through the M218 command).
  876. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  877. }
  878. static int x_home_dir(int extruder) {
  879. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  880. }
  881. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  882. static bool active_extruder_parked = false; // used in mode 1 & 2
  883. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  884. static millis_t delayed_move_time = 0; // used in mode 1
  885. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  886. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  887. bool extruder_duplication_enabled = false; // used in mode 2
  888. #endif //DUAL_X_CARRIAGE
  889. static void set_axis_is_at_home(AxisEnum axis) {
  890. #ifdef DUAL_X_CARRIAGE
  891. if (axis == X_AXIS) {
  892. if (active_extruder != 0) {
  893. current_position[X_AXIS] = x_home_pos(active_extruder);
  894. min_pos[X_AXIS] = X2_MIN_POS;
  895. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  896. return;
  897. }
  898. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  899. float xoff = home_offset[X_AXIS];
  900. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  901. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  902. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  903. return;
  904. }
  905. }
  906. #endif
  907. #ifdef SCARA
  908. if (axis == X_AXIS || axis == Y_AXIS) {
  909. float homeposition[3];
  910. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  911. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  912. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  913. // Works out real Homeposition angles using inverse kinematics,
  914. // and calculates homing offset using forward kinematics
  915. calculate_delta(homeposition);
  916. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  917. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  918. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  919. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  920. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  921. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. calculate_SCARA_forward_Transform(delta);
  924. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  925. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  926. current_position[axis] = delta[axis];
  927. // SCARA home positions are based on configuration since the actual limits are determined by the
  928. // inverse kinematic transform.
  929. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  930. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  931. }
  932. else
  933. #endif
  934. {
  935. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  936. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  937. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  938. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  939. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  940. #endif
  941. }
  942. }
  943. /**
  944. * Some planner shorthand inline functions
  945. */
  946. inline void set_homing_bump_feedrate(AxisEnum axis) {
  947. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  948. int hbd = homing_bump_divisor[axis];
  949. if (hbd < 1) {
  950. hbd = 10;
  951. SERIAL_ECHO_START;
  952. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  953. }
  954. feedrate = homing_feedrate[axis] / hbd;
  955. }
  956. inline void line_to_current_position() {
  957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  958. }
  959. inline void line_to_z(float zPosition) {
  960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  961. }
  962. inline void line_to_destination(float mm_m) {
  963. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  964. }
  965. inline void line_to_destination() {
  966. line_to_destination(feedrate);
  967. }
  968. inline void sync_plan_position() {
  969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  970. }
  971. #if defined(DELTA) || defined(SCARA)
  972. inline void sync_plan_position_delta() {
  973. calculate_delta(current_position);
  974. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  975. }
  976. #endif
  977. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  978. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  979. static void setup_for_endstop_move() {
  980. saved_feedrate = feedrate;
  981. saved_feedrate_multiplier = feedrate_multiplier;
  982. feedrate_multiplier = 100;
  983. refresh_cmd_timeout();
  984. enable_endstops(true);
  985. }
  986. #ifdef ENABLE_AUTO_BED_LEVELING
  987. #ifdef DELTA
  988. /**
  989. * Calculate delta, start a line, and set current_position to destination
  990. */
  991. void prepare_move_raw() {
  992. refresh_cmd_timeout();
  993. calculate_delta(destination);
  994. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  995. set_current_to_destination();
  996. }
  997. #endif
  998. #ifdef AUTO_BED_LEVELING_GRID
  999. #ifndef DELTA
  1000. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  1001. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1002. planeNormal.debug("planeNormal");
  1003. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1004. //bedLevel.debug("bedLevel");
  1005. //plan_bed_level_matrix.debug("bed level before");
  1006. //vector_3 uncorrected_position = plan_get_position_mm();
  1007. //uncorrected_position.debug("position before");
  1008. vector_3 corrected_position = plan_get_position();
  1009. //corrected_position.debug("position after");
  1010. current_position[X_AXIS] = corrected_position.x;
  1011. current_position[Y_AXIS] = corrected_position.y;
  1012. current_position[Z_AXIS] = corrected_position.z;
  1013. sync_plan_position();
  1014. }
  1015. #endif // !DELTA
  1016. #else // !AUTO_BED_LEVELING_GRID
  1017. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1018. plan_bed_level_matrix.set_to_identity();
  1019. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1020. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1021. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1022. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1023. if (planeNormal.z < 0) {
  1024. planeNormal.x = -planeNormal.x;
  1025. planeNormal.y = -planeNormal.y;
  1026. planeNormal.z = -planeNormal.z;
  1027. }
  1028. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1029. vector_3 corrected_position = plan_get_position();
  1030. current_position[X_AXIS] = corrected_position.x;
  1031. current_position[Y_AXIS] = corrected_position.y;
  1032. current_position[Z_AXIS] = corrected_position.z;
  1033. sync_plan_position();
  1034. }
  1035. #endif // !AUTO_BED_LEVELING_GRID
  1036. static void run_z_probe() {
  1037. #ifdef DELTA
  1038. float start_z = current_position[Z_AXIS];
  1039. long start_steps = st_get_position(Z_AXIS);
  1040. // move down slowly until you find the bed
  1041. feedrate = homing_feedrate[Z_AXIS] / 4;
  1042. destination[Z_AXIS] = -10;
  1043. prepare_move_raw(); // this will also set_current_to_destination
  1044. st_synchronize();
  1045. endstops_hit_on_purpose(); // clear endstop hit flags
  1046. // we have to let the planner know where we are right now as it is not where we said to go.
  1047. long stop_steps = st_get_position(Z_AXIS);
  1048. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1049. current_position[Z_AXIS] = mm;
  1050. sync_plan_position_delta();
  1051. #else // !DELTA
  1052. plan_bed_level_matrix.set_to_identity();
  1053. feedrate = homing_feedrate[Z_AXIS];
  1054. // Move down until the probe (or endstop?) is triggered
  1055. float zPosition = -(Z_MAX_LENGTH + 10);
  1056. line_to_z(zPosition);
  1057. st_synchronize();
  1058. // Tell the planner where we ended up - Get this from the stepper handler
  1059. zPosition = st_get_position_mm(Z_AXIS);
  1060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1061. // move up the retract distance
  1062. zPosition += home_bump_mm(Z_AXIS);
  1063. line_to_z(zPosition);
  1064. st_synchronize();
  1065. endstops_hit_on_purpose(); // clear endstop hit flags
  1066. // move back down slowly to find bed
  1067. set_homing_bump_feedrate(Z_AXIS);
  1068. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1069. line_to_z(zPosition);
  1070. st_synchronize();
  1071. endstops_hit_on_purpose(); // clear endstop hit flags
  1072. // Get the current stepper position after bumping an endstop
  1073. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1074. sync_plan_position();
  1075. #endif // !DELTA
  1076. }
  1077. /**
  1078. * Plan a move to (X, Y, Z) and set the current_position
  1079. * The final current_position may not be the one that was requested
  1080. */
  1081. static void do_blocking_move_to(float x, float y, float z) {
  1082. float oldFeedRate = feedrate;
  1083. #ifdef DELTA
  1084. feedrate = XY_TRAVEL_SPEED;
  1085. destination[X_AXIS] = x;
  1086. destination[Y_AXIS] = y;
  1087. destination[Z_AXIS] = z;
  1088. prepare_move_raw(); // this will also set_current_to_destination
  1089. st_synchronize();
  1090. #else
  1091. feedrate = homing_feedrate[Z_AXIS];
  1092. current_position[Z_AXIS] = z;
  1093. line_to_current_position();
  1094. st_synchronize();
  1095. feedrate = xy_travel_speed;
  1096. current_position[X_AXIS] = x;
  1097. current_position[Y_AXIS] = y;
  1098. line_to_current_position();
  1099. st_synchronize();
  1100. #endif
  1101. feedrate = oldFeedRate;
  1102. }
  1103. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1104. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1105. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1106. static void clean_up_after_endstop_move() {
  1107. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1108. enable_endstops(false);
  1109. #endif
  1110. feedrate = saved_feedrate;
  1111. feedrate_multiplier = saved_feedrate_multiplier;
  1112. refresh_cmd_timeout();
  1113. }
  1114. static void deploy_z_probe() {
  1115. #ifdef SERVO_ENDSTOPS
  1116. // Engage Z Servo endstop if enabled
  1117. if (servo_endstops[Z_AXIS] >= 0) servo[servo_endstops[Z_AXIS]].move(servo_endstop_angles[Z_AXIS * 2]);
  1118. #elif defined(Z_PROBE_ALLEN_KEY)
  1119. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1120. // If endstop is already false, the probe is deployed
  1121. #ifdef Z_PROBE_ENDSTOP
  1122. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1123. if (z_probe_endstop)
  1124. #else
  1125. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1126. if (z_min_endstop)
  1127. #endif
  1128. {
  1129. // Move to the start position to initiate deployment
  1130. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1131. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1132. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1133. prepare_move_raw(); // this will also set_current_to_destination
  1134. // Move to engage deployment
  1135. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1136. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1137. }
  1138. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1139. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1140. }
  1141. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1142. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1143. }
  1144. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1145. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1146. }
  1147. prepare_move_raw();
  1148. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1149. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1150. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1151. }
  1152. // Move to trigger deployment
  1153. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1154. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1155. }
  1156. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1157. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1158. }
  1159. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1160. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1161. }
  1162. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1163. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1164. }
  1165. prepare_move_raw();
  1166. #endif
  1167. }
  1168. // Partially Home X,Y for safety
  1169. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1170. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1171. prepare_move_raw(); // this will also set_current_to_destination
  1172. st_synchronize();
  1173. #ifdef Z_PROBE_ENDSTOP
  1174. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1175. if (z_probe_endstop)
  1176. #else
  1177. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1178. if (z_min_endstop)
  1179. #endif
  1180. {
  1181. if (IsRunning()) {
  1182. SERIAL_ERROR_START;
  1183. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1184. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1185. }
  1186. Stop();
  1187. }
  1188. #endif // Z_PROBE_ALLEN_KEY
  1189. }
  1190. static void stow_z_probe(bool doRaise=true) {
  1191. #ifdef SERVO_ENDSTOPS
  1192. // Retract Z Servo endstop if enabled
  1193. if (servo_endstops[Z_AXIS] >= 0) {
  1194. #if Z_RAISE_AFTER_PROBING > 0
  1195. if (doRaise) {
  1196. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1197. st_synchronize();
  1198. }
  1199. #endif
  1200. // Change the Z servo angle
  1201. servo[servo_endstops[Z_AXIS]].move(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1202. }
  1203. #elif defined(Z_PROBE_ALLEN_KEY)
  1204. // Move up for safety
  1205. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1206. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1207. prepare_move_raw(); // this will also set_current_to_destination
  1208. // Move to the start position to initiate retraction
  1209. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1210. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1211. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1212. prepare_move_raw();
  1213. // Move the nozzle down to push the probe into retracted position
  1214. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1215. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1216. }
  1217. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1218. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1219. }
  1220. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1221. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1222. }
  1223. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1224. prepare_move_raw();
  1225. // Move up for safety
  1226. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1227. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1228. }
  1229. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1230. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1231. }
  1232. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1233. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1234. }
  1235. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1236. prepare_move_raw();
  1237. // Home XY for safety
  1238. feedrate = homing_feedrate[X_AXIS]/2;
  1239. destination[X_AXIS] = 0;
  1240. destination[Y_AXIS] = 0;
  1241. prepare_move_raw(); // this will also set_current_to_destination
  1242. st_synchronize();
  1243. #ifdef Z_PROBE_ENDSTOP
  1244. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1245. if (!z_probe_endstop)
  1246. #else
  1247. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1248. if (!z_min_endstop)
  1249. #endif
  1250. {
  1251. if (IsRunning()) {
  1252. SERIAL_ERROR_START;
  1253. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1254. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1255. }
  1256. Stop();
  1257. }
  1258. #endif // Z_PROBE_ALLEN_KEY
  1259. }
  1260. enum ProbeAction {
  1261. ProbeStay = 0,
  1262. ProbeDeploy = BIT(0),
  1263. ProbeStow = BIT(1),
  1264. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1265. };
  1266. // Probe bed height at position (x,y), returns the measured z value
  1267. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1268. // Move Z up to the z_before height, then move the probe to the given XY
  1269. do_blocking_move_to_z(z_before); // this also updates current_position
  1270. do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
  1271. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1272. if (probe_action & ProbeDeploy) deploy_z_probe();
  1273. #endif
  1274. run_z_probe();
  1275. float measured_z = current_position[Z_AXIS];
  1276. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1277. if (probe_action & ProbeStow) stow_z_probe();
  1278. #endif
  1279. if (verbose_level > 2) {
  1280. SERIAL_PROTOCOLPGM("Bed X: ");
  1281. SERIAL_PROTOCOL_F(x, 3);
  1282. SERIAL_PROTOCOLPGM(" Y: ");
  1283. SERIAL_PROTOCOL_F(y, 3);
  1284. SERIAL_PROTOCOLPGM(" Z: ");
  1285. SERIAL_PROTOCOL_F(measured_z, 3);
  1286. SERIAL_EOL;
  1287. }
  1288. return measured_z;
  1289. }
  1290. #ifdef DELTA
  1291. /**
  1292. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1293. */
  1294. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1295. if (bed_level[x][y] != 0.0) {
  1296. return; // Don't overwrite good values.
  1297. }
  1298. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1299. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1300. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1301. float median = c; // Median is robust (ignores outliers).
  1302. if (a < b) {
  1303. if (b < c) median = b;
  1304. if (c < a) median = a;
  1305. } else { // b <= a
  1306. if (c < b) median = b;
  1307. if (a < c) median = a;
  1308. }
  1309. bed_level[x][y] = median;
  1310. }
  1311. // Fill in the unprobed points (corners of circular print surface)
  1312. // using linear extrapolation, away from the center.
  1313. static void extrapolate_unprobed_bed_level() {
  1314. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1315. for (int y = 0; y <= half; y++) {
  1316. for (int x = 0; x <= half; x++) {
  1317. if (x + y < 3) continue;
  1318. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1319. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1320. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1321. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1322. }
  1323. }
  1324. }
  1325. // Print calibration results for plotting or manual frame adjustment.
  1326. static void print_bed_level() {
  1327. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1328. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1329. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1330. SERIAL_PROTOCOLCHAR(' ');
  1331. }
  1332. SERIAL_EOL;
  1333. }
  1334. }
  1335. // Reset calibration results to zero.
  1336. void reset_bed_level() {
  1337. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1338. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1339. bed_level[x][y] = 0.0;
  1340. }
  1341. }
  1342. }
  1343. #endif // DELTA
  1344. #endif // ENABLE_AUTO_BED_LEVELING
  1345. #ifdef Z_PROBE_SLED
  1346. #ifndef SLED_DOCKING_OFFSET
  1347. #define SLED_DOCKING_OFFSET 0
  1348. #endif
  1349. /**
  1350. * Method to dock/undock a sled designed by Charles Bell.
  1351. *
  1352. * dock[in] If true, move to MAX_X and engage the electromagnet
  1353. * offset[in] The additional distance to move to adjust docking location
  1354. */
  1355. static void dock_sled(bool dock, int offset=0) {
  1356. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1357. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1358. SERIAL_ECHO_START;
  1359. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1360. return;
  1361. }
  1362. float oldXpos = current_position[X_AXIS]; // save x position
  1363. if (dock) {
  1364. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // raise Z
  1365. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1366. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1367. } else {
  1368. float z_loc = current_position[Z_AXIS];
  1369. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1370. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1371. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1372. }
  1373. do_blocking_move_to_x(oldXpos); // return to position before docking
  1374. }
  1375. #endif // Z_PROBE_SLED
  1376. /**
  1377. * Home an individual axis
  1378. */
  1379. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1380. static void homeaxis(AxisEnum axis) {
  1381. #define HOMEAXIS_DO(LETTER) \
  1382. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1383. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1384. int axis_home_dir =
  1385. #ifdef DUAL_X_CARRIAGE
  1386. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1387. #endif
  1388. home_dir(axis);
  1389. // Set the axis position as setup for the move
  1390. current_position[axis] = 0;
  1391. sync_plan_position();
  1392. #ifdef Z_PROBE_SLED
  1393. // Get Probe
  1394. if (axis == Z_AXIS) {
  1395. if (axis_home_dir < 0) dock_sled(false);
  1396. }
  1397. #endif
  1398. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1399. // Deploy a probe if there is one, and homing towards the bed
  1400. if (axis == Z_AXIS) {
  1401. if (axis_home_dir < 0) deploy_z_probe();
  1402. }
  1403. #endif
  1404. #ifdef SERVO_ENDSTOPS
  1405. if (axis != Z_AXIS) {
  1406. // Engage Servo endstop if enabled
  1407. if (servo_endstops[axis] >= 0)
  1408. servo[servo_endstops[axis]].move(servo_endstop_angles[axis * 2]);
  1409. }
  1410. #endif
  1411. // Set a flag for Z motor locking
  1412. #ifdef Z_DUAL_ENDSTOPS
  1413. if (axis == Z_AXIS) In_Homing_Process(true);
  1414. #endif
  1415. // Move towards the endstop until an endstop is triggered
  1416. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1417. feedrate = homing_feedrate[axis];
  1418. line_to_destination();
  1419. st_synchronize();
  1420. // Set the axis position as setup for the move
  1421. current_position[axis] = 0;
  1422. sync_plan_position();
  1423. enable_endstops(false); // Disable endstops while moving away
  1424. // Move away from the endstop by the axis HOME_BUMP_MM
  1425. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1426. line_to_destination();
  1427. st_synchronize();
  1428. enable_endstops(true); // Enable endstops for next homing move
  1429. // Slow down the feedrate for the next move
  1430. set_homing_bump_feedrate(axis);
  1431. // Move slowly towards the endstop until triggered
  1432. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1433. line_to_destination();
  1434. st_synchronize();
  1435. #ifdef Z_DUAL_ENDSTOPS
  1436. if (axis == Z_AXIS) {
  1437. float adj = fabs(z_endstop_adj);
  1438. bool lockZ1;
  1439. if (axis_home_dir > 0) {
  1440. adj = -adj;
  1441. lockZ1 = (z_endstop_adj > 0);
  1442. }
  1443. else
  1444. lockZ1 = (z_endstop_adj < 0);
  1445. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1446. sync_plan_position();
  1447. // Move to the adjusted endstop height
  1448. feedrate = homing_feedrate[axis];
  1449. destination[Z_AXIS] = adj;
  1450. line_to_destination();
  1451. st_synchronize();
  1452. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1453. In_Homing_Process(false);
  1454. } // Z_AXIS
  1455. #endif
  1456. #ifdef DELTA
  1457. // retrace by the amount specified in endstop_adj
  1458. if (endstop_adj[axis] * axis_home_dir < 0) {
  1459. enable_endstops(false); // Disable endstops while moving away
  1460. sync_plan_position();
  1461. destination[axis] = endstop_adj[axis];
  1462. line_to_destination();
  1463. st_synchronize();
  1464. enable_endstops(true); // Enable endstops for next homing move
  1465. }
  1466. #endif
  1467. // Set the axis position to its home position (plus home offsets)
  1468. set_axis_is_at_home(axis);
  1469. sync_plan_position();
  1470. destination[axis] = current_position[axis];
  1471. feedrate = 0.0;
  1472. endstops_hit_on_purpose(); // clear endstop hit flags
  1473. axis_known_position[axis] = true;
  1474. #ifdef Z_PROBE_SLED
  1475. // bring probe back
  1476. if (axis == Z_AXIS) {
  1477. if (axis_home_dir < 0) dock_sled(true);
  1478. }
  1479. #endif
  1480. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1481. // Deploy a probe if there is one, and homing towards the bed
  1482. if (axis == Z_AXIS) {
  1483. if (axis_home_dir < 0) stow_z_probe();
  1484. }
  1485. else
  1486. #endif
  1487. {
  1488. #ifdef SERVO_ENDSTOPS
  1489. // Retract Servo endstop if enabled
  1490. if (servo_endstops[axis] >= 0)
  1491. servo[servo_endstops[axis]].move(servo_endstop_angles[axis * 2 + 1]);
  1492. #endif
  1493. }
  1494. }
  1495. }
  1496. #ifdef FWRETRACT
  1497. void retract(bool retracting, bool swapping=false) {
  1498. if (retracting == retracted[active_extruder]) return;
  1499. float oldFeedrate = feedrate;
  1500. set_destination_to_current();
  1501. if (retracting) {
  1502. feedrate = retract_feedrate * 60;
  1503. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1504. plan_set_e_position(current_position[E_AXIS]);
  1505. prepare_move();
  1506. if (retract_zlift > 0.01) {
  1507. current_position[Z_AXIS] -= retract_zlift;
  1508. #ifdef DELTA
  1509. sync_plan_position_delta();
  1510. #else
  1511. sync_plan_position();
  1512. #endif
  1513. prepare_move();
  1514. }
  1515. }
  1516. else {
  1517. if (retract_zlift > 0.01) {
  1518. current_position[Z_AXIS] += retract_zlift;
  1519. #ifdef DELTA
  1520. sync_plan_position_delta();
  1521. #else
  1522. sync_plan_position();
  1523. #endif
  1524. //prepare_move();
  1525. }
  1526. feedrate = retract_recover_feedrate * 60;
  1527. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1528. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1529. plan_set_e_position(current_position[E_AXIS]);
  1530. prepare_move();
  1531. }
  1532. feedrate = oldFeedrate;
  1533. retracted[active_extruder] = retracting;
  1534. } // retract()
  1535. #endif // FWRETRACT
  1536. /**
  1537. *
  1538. * G-Code Handler functions
  1539. *
  1540. */
  1541. /**
  1542. * Set XYZE destination and feedrate from the current GCode command
  1543. *
  1544. * - Set destination from included axis codes
  1545. * - Set to current for missing axis codes
  1546. * - Set the feedrate, if included
  1547. */
  1548. void gcode_get_destination() {
  1549. for (int i = 0; i < NUM_AXIS; i++) {
  1550. if (code_seen(axis_codes[i]))
  1551. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1552. else
  1553. destination[i] = current_position[i];
  1554. }
  1555. if (code_seen('F')) {
  1556. float next_feedrate = code_value();
  1557. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1558. }
  1559. }
  1560. void unknown_command_error() {
  1561. SERIAL_ECHO_START;
  1562. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1563. SERIAL_ECHO(current_command);
  1564. SERIAL_ECHOPGM("\"\n");
  1565. }
  1566. /**
  1567. * G0, G1: Coordinated movement of X Y Z E axes
  1568. */
  1569. inline void gcode_G0_G1() {
  1570. if (IsRunning()) {
  1571. gcode_get_destination(); // For X Y Z E F
  1572. #ifdef FWRETRACT
  1573. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1574. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1575. // Is this move an attempt to retract or recover?
  1576. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1577. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1578. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1579. retract(!retracted[active_extruder]);
  1580. return;
  1581. }
  1582. }
  1583. #endif //FWRETRACT
  1584. prepare_move();
  1585. }
  1586. }
  1587. /**
  1588. * G2: Clockwise Arc
  1589. * G3: Counterclockwise Arc
  1590. */
  1591. inline void gcode_G2_G3(bool clockwise) {
  1592. if (IsRunning()) {
  1593. #ifdef SF_ARC_FIX
  1594. bool relative_mode_backup = relative_mode;
  1595. relative_mode = true;
  1596. #endif
  1597. gcode_get_destination();
  1598. #ifdef SF_ARC_FIX
  1599. relative_mode = relative_mode_backup;
  1600. #endif
  1601. // Center of arc as offset from current_position
  1602. float arc_offset[2] = {
  1603. code_seen('I') ? code_value() : 0,
  1604. code_seen('J') ? code_value() : 0
  1605. };
  1606. // Send an arc to the planner
  1607. plan_arc(destination, arc_offset, clockwise);
  1608. refresh_cmd_timeout();
  1609. }
  1610. }
  1611. /**
  1612. * G4: Dwell S<seconds> or P<milliseconds>
  1613. */
  1614. inline void gcode_G4() {
  1615. millis_t codenum = 0;
  1616. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1617. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1618. st_synchronize();
  1619. refresh_cmd_timeout();
  1620. codenum += previous_cmd_ms; // keep track of when we started waiting
  1621. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1622. while (millis() < codenum) idle();
  1623. }
  1624. #ifdef FWRETRACT
  1625. /**
  1626. * G10 - Retract filament according to settings of M207
  1627. * G11 - Recover filament according to settings of M208
  1628. */
  1629. inline void gcode_G10_G11(bool doRetract=false) {
  1630. #if EXTRUDERS > 1
  1631. if (doRetract) {
  1632. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1633. }
  1634. #endif
  1635. retract(doRetract
  1636. #if EXTRUDERS > 1
  1637. , retracted_swap[active_extruder]
  1638. #endif
  1639. );
  1640. }
  1641. #endif //FWRETRACT
  1642. /**
  1643. * G28: Home all axes according to settings
  1644. *
  1645. * Parameters
  1646. *
  1647. * None Home to all axes with no parameters.
  1648. * With QUICK_HOME enabled XY will home together, then Z.
  1649. *
  1650. * Cartesian parameters
  1651. *
  1652. * X Home to the X endstop
  1653. * Y Home to the Y endstop
  1654. * Z Home to the Z endstop
  1655. *
  1656. */
  1657. inline void gcode_G28() {
  1658. // Wait for planner moves to finish!
  1659. st_synchronize();
  1660. // For auto bed leveling, clear the level matrix
  1661. #ifdef ENABLE_AUTO_BED_LEVELING
  1662. plan_bed_level_matrix.set_to_identity();
  1663. #ifdef DELTA
  1664. reset_bed_level();
  1665. #endif
  1666. #endif
  1667. // For manual bed leveling deactivate the matrix temporarily
  1668. #ifdef MESH_BED_LEVELING
  1669. uint8_t mbl_was_active = mbl.active;
  1670. mbl.active = 0;
  1671. #endif
  1672. setup_for_endstop_move();
  1673. set_destination_to_current();
  1674. feedrate = 0.0;
  1675. #ifdef DELTA
  1676. // A delta can only safely home all axis at the same time
  1677. // all axis have to home at the same time
  1678. // Pretend the current position is 0,0,0
  1679. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1680. sync_plan_position();
  1681. // Move all carriages up together until the first endstop is hit.
  1682. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1683. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1684. line_to_destination();
  1685. st_synchronize();
  1686. endstops_hit_on_purpose(); // clear endstop hit flags
  1687. // Destination reached
  1688. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1689. // take care of back off and rehome now we are all at the top
  1690. HOMEAXIS(X);
  1691. HOMEAXIS(Y);
  1692. HOMEAXIS(Z);
  1693. sync_plan_position_delta();
  1694. #else // NOT DELTA
  1695. bool homeX = code_seen(axis_codes[X_AXIS]),
  1696. homeY = code_seen(axis_codes[Y_AXIS]),
  1697. homeZ = code_seen(axis_codes[Z_AXIS]);
  1698. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1699. if (home_all_axis || homeZ) {
  1700. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1701. HOMEAXIS(Z);
  1702. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1703. // Raise Z before homing any other axes
  1704. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1705. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1706. feedrate = max_feedrate[Z_AXIS] * 60;
  1707. line_to_destination();
  1708. st_synchronize();
  1709. #endif
  1710. } // home_all_axis || homeZ
  1711. #ifdef QUICK_HOME
  1712. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1713. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1714. #ifdef DUAL_X_CARRIAGE
  1715. int x_axis_home_dir = x_home_dir(active_extruder);
  1716. extruder_duplication_enabled = false;
  1717. #else
  1718. int x_axis_home_dir = home_dir(X_AXIS);
  1719. #endif
  1720. sync_plan_position();
  1721. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1722. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1723. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1724. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1725. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1726. line_to_destination();
  1727. st_synchronize();
  1728. set_axis_is_at_home(X_AXIS);
  1729. set_axis_is_at_home(Y_AXIS);
  1730. sync_plan_position();
  1731. destination[X_AXIS] = current_position[X_AXIS];
  1732. destination[Y_AXIS] = current_position[Y_AXIS];
  1733. line_to_destination();
  1734. feedrate = 0.0;
  1735. st_synchronize();
  1736. endstops_hit_on_purpose(); // clear endstop hit flags
  1737. current_position[X_AXIS] = destination[X_AXIS];
  1738. current_position[Y_AXIS] = destination[Y_AXIS];
  1739. #ifndef SCARA
  1740. current_position[Z_AXIS] = destination[Z_AXIS];
  1741. #endif
  1742. }
  1743. #endif // QUICK_HOME
  1744. #ifdef HOME_Y_BEFORE_X
  1745. // Home Y
  1746. if (home_all_axis || homeY) HOMEAXIS(Y);
  1747. #endif
  1748. // Home X
  1749. if (home_all_axis || homeX) {
  1750. #ifdef DUAL_X_CARRIAGE
  1751. int tmp_extruder = active_extruder;
  1752. extruder_duplication_enabled = false;
  1753. active_extruder = !active_extruder;
  1754. HOMEAXIS(X);
  1755. inactive_extruder_x_pos = current_position[X_AXIS];
  1756. active_extruder = tmp_extruder;
  1757. HOMEAXIS(X);
  1758. // reset state used by the different modes
  1759. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1760. delayed_move_time = 0;
  1761. active_extruder_parked = true;
  1762. #else
  1763. HOMEAXIS(X);
  1764. #endif
  1765. }
  1766. #ifndef HOME_Y_BEFORE_X
  1767. // Home Y
  1768. if (home_all_axis || homeY) HOMEAXIS(Y);
  1769. #endif
  1770. // Home Z last if homing towards the bed
  1771. #if Z_HOME_DIR < 0
  1772. if (home_all_axis || homeZ) {
  1773. #ifdef Z_SAFE_HOMING
  1774. if (home_all_axis) {
  1775. current_position[Z_AXIS] = 0;
  1776. sync_plan_position();
  1777. //
  1778. // Set the probe (or just the nozzle) destination to the safe homing point
  1779. //
  1780. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1781. // then this may not work as expected.
  1782. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1783. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1784. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1785. feedrate = XY_TRAVEL_SPEED;
  1786. // This could potentially move X, Y, Z all together
  1787. line_to_destination();
  1788. st_synchronize();
  1789. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1790. current_position[X_AXIS] = destination[X_AXIS];
  1791. current_position[Y_AXIS] = destination[Y_AXIS];
  1792. // Home the Z axis
  1793. HOMEAXIS(Z);
  1794. }
  1795. else if (homeZ) { // Don't need to Home Z twice
  1796. // Let's see if X and Y are homed
  1797. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1798. // Make sure the probe is within the physical limits
  1799. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1800. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1801. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1802. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1803. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1804. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1805. // Set the plan current position to X, Y, 0
  1806. current_position[Z_AXIS] = 0;
  1807. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1808. // Set Z destination away from bed and raise the axis
  1809. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1810. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1811. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1812. line_to_destination();
  1813. st_synchronize();
  1814. // Home the Z axis
  1815. HOMEAXIS(Z);
  1816. }
  1817. else {
  1818. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1819. SERIAL_ECHO_START;
  1820. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1821. }
  1822. }
  1823. else {
  1824. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1825. SERIAL_ECHO_START;
  1826. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1827. }
  1828. } // !home_all_axes && homeZ
  1829. #else // !Z_SAFE_HOMING
  1830. HOMEAXIS(Z);
  1831. #endif // !Z_SAFE_HOMING
  1832. } // home_all_axis || homeZ
  1833. #endif // Z_HOME_DIR < 0
  1834. sync_plan_position();
  1835. #endif // else DELTA
  1836. #ifdef SCARA
  1837. sync_plan_position_delta();
  1838. #endif
  1839. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1840. enable_endstops(false);
  1841. #endif
  1842. // For manual leveling move back to 0,0
  1843. #ifdef MESH_BED_LEVELING
  1844. if (mbl_was_active) {
  1845. current_position[X_AXIS] = mbl.get_x(0);
  1846. current_position[Y_AXIS] = mbl.get_y(0);
  1847. set_destination_to_current();
  1848. feedrate = homing_feedrate[X_AXIS];
  1849. line_to_destination();
  1850. st_synchronize();
  1851. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1852. sync_plan_position();
  1853. mbl.active = 1;
  1854. }
  1855. #endif
  1856. feedrate = saved_feedrate;
  1857. feedrate_multiplier = saved_feedrate_multiplier;
  1858. refresh_cmd_timeout();
  1859. endstops_hit_on_purpose(); // clear endstop hit flags
  1860. }
  1861. #ifdef MESH_BED_LEVELING
  1862. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1863. /**
  1864. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1865. * mesh to compensate for variable bed height
  1866. *
  1867. * Parameters With MESH_BED_LEVELING:
  1868. *
  1869. * S0 Produce a mesh report
  1870. * S1 Start probing mesh points
  1871. * S2 Probe the next mesh point
  1872. * S3 Xn Yn Zn.nn Manually modify a single point
  1873. *
  1874. * The S0 report the points as below
  1875. *
  1876. * +----> X-axis
  1877. * |
  1878. * |
  1879. * v Y-axis
  1880. *
  1881. */
  1882. inline void gcode_G29() {
  1883. static int probe_point = -1;
  1884. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  1885. if (state < 0 || state > 3) {
  1886. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1887. return;
  1888. }
  1889. int ix, iy;
  1890. float z;
  1891. switch(state) {
  1892. case MeshReport:
  1893. if (mbl.active) {
  1894. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1895. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1896. SERIAL_PROTOCOLCHAR(',');
  1897. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1898. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1899. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1900. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1901. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1902. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1903. SERIAL_PROTOCOLPGM(" ");
  1904. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1905. }
  1906. SERIAL_EOL;
  1907. }
  1908. }
  1909. else
  1910. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1911. break;
  1912. case MeshStart:
  1913. mbl.reset();
  1914. probe_point = 0;
  1915. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1916. break;
  1917. case MeshNext:
  1918. if (probe_point < 0) {
  1919. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1920. return;
  1921. }
  1922. if (probe_point == 0) {
  1923. // Set Z to a positive value before recording the first Z.
  1924. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1925. sync_plan_position();
  1926. }
  1927. else {
  1928. // For others, save the Z of the previous point, then raise Z again.
  1929. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1930. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1931. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1932. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1933. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1935. st_synchronize();
  1936. }
  1937. // Is there another point to sample? Move there.
  1938. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1939. ix = probe_point % MESH_NUM_X_POINTS;
  1940. iy = probe_point / MESH_NUM_X_POINTS;
  1941. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1942. current_position[X_AXIS] = mbl.get_x(ix);
  1943. current_position[Y_AXIS] = mbl.get_y(iy);
  1944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1945. st_synchronize();
  1946. probe_point++;
  1947. }
  1948. else {
  1949. // After recording the last point, activate the mbl and home
  1950. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1951. probe_point = -1;
  1952. mbl.active = 1;
  1953. enqueuecommands_P(PSTR("G28"));
  1954. }
  1955. break;
  1956. case MeshSet:
  1957. if (code_seen('X')) {
  1958. ix = code_value_long()-1;
  1959. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1960. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1961. return;
  1962. }
  1963. } else {
  1964. SERIAL_PROTOCOLPGM("X not entered.\n");
  1965. return;
  1966. }
  1967. if (code_seen('Y')) {
  1968. iy = code_value_long()-1;
  1969. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1970. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1971. return;
  1972. }
  1973. } else {
  1974. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1975. return;
  1976. }
  1977. if (code_seen('Z')) {
  1978. z = code_value();
  1979. } else {
  1980. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1981. return;
  1982. }
  1983. mbl.z_values[iy][ix] = z;
  1984. } // switch(state)
  1985. }
  1986. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1987. void out_of_range_error(const char *p_edge) {
  1988. SERIAL_PROTOCOLPGM("?Probe ");
  1989. serialprintPGM(p_edge);
  1990. SERIAL_PROTOCOLLNPGM(" position out of range.");
  1991. }
  1992. /**
  1993. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1994. * Will fail if the printer has not been homed with G28.
  1995. *
  1996. * Enhanced G29 Auto Bed Leveling Probe Routine
  1997. *
  1998. * Parameters With AUTO_BED_LEVELING_GRID:
  1999. *
  2000. * P Set the size of the grid that will be probed (P x P points).
  2001. * Not supported by non-linear delta printer bed leveling.
  2002. * Example: "G29 P4"
  2003. *
  2004. * S Set the XY travel speed between probe points (in mm/min)
  2005. *
  2006. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2007. * or clean the rotation Matrix. Useful to check the topology
  2008. * after a first run of G29.
  2009. *
  2010. * V Set the verbose level (0-4). Example: "G29 V3"
  2011. *
  2012. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2013. * This is useful for manual bed leveling and finding flaws in the bed (to
  2014. * assist with part placement).
  2015. * Not supported by non-linear delta printer bed leveling.
  2016. *
  2017. * F Set the Front limit of the probing grid
  2018. * B Set the Back limit of the probing grid
  2019. * L Set the Left limit of the probing grid
  2020. * R Set the Right limit of the probing grid
  2021. *
  2022. * Global Parameters:
  2023. *
  2024. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2025. * Include "E" to engage/disengage the probe for each sample.
  2026. * There's no extra effect if you have a fixed probe.
  2027. * Usage: "G29 E" or "G29 e"
  2028. *
  2029. */
  2030. inline void gcode_G29() {
  2031. // Don't allow auto-leveling without homing first
  2032. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2033. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2034. SERIAL_ECHO_START;
  2035. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2036. return;
  2037. }
  2038. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2039. if (verbose_level < 0 || verbose_level > 4) {
  2040. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2041. return;
  2042. }
  2043. bool dryrun = code_seen('D'),
  2044. deploy_probe_for_each_reading = code_seen('E');
  2045. #ifdef AUTO_BED_LEVELING_GRID
  2046. #ifndef DELTA
  2047. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2048. #endif
  2049. if (verbose_level > 0) {
  2050. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2051. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2052. }
  2053. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2054. #ifndef DELTA
  2055. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2056. if (auto_bed_leveling_grid_points < 2) {
  2057. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2058. return;
  2059. }
  2060. #endif
  2061. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2062. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2063. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2064. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2065. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2066. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2067. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2068. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2069. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2070. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2071. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2072. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2073. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2074. if (left_out || right_out || front_out || back_out) {
  2075. if (left_out) {
  2076. out_of_range_error(PSTR("(L)eft"));
  2077. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2078. }
  2079. if (right_out) {
  2080. out_of_range_error(PSTR("(R)ight"));
  2081. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2082. }
  2083. if (front_out) {
  2084. out_of_range_error(PSTR("(F)ront"));
  2085. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2086. }
  2087. if (back_out) {
  2088. out_of_range_error(PSTR("(B)ack"));
  2089. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2090. }
  2091. return;
  2092. }
  2093. #endif // AUTO_BED_LEVELING_GRID
  2094. #ifdef Z_PROBE_SLED
  2095. dock_sled(false); // engage (un-dock) the probe
  2096. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2097. deploy_z_probe();
  2098. #endif
  2099. st_synchronize();
  2100. if (!dryrun) {
  2101. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2102. plan_bed_level_matrix.set_to_identity();
  2103. #ifdef DELTA
  2104. reset_bed_level();
  2105. #else //!DELTA
  2106. //vector_3 corrected_position = plan_get_position_mm();
  2107. //corrected_position.debug("position before G29");
  2108. vector_3 uncorrected_position = plan_get_position();
  2109. //uncorrected_position.debug("position during G29");
  2110. current_position[X_AXIS] = uncorrected_position.x;
  2111. current_position[Y_AXIS] = uncorrected_position.y;
  2112. current_position[Z_AXIS] = uncorrected_position.z;
  2113. sync_plan_position();
  2114. #endif // !DELTA
  2115. }
  2116. setup_for_endstop_move();
  2117. feedrate = homing_feedrate[Z_AXIS];
  2118. #ifdef AUTO_BED_LEVELING_GRID
  2119. // probe at the points of a lattice grid
  2120. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2121. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2122. #ifdef DELTA
  2123. delta_grid_spacing[0] = xGridSpacing;
  2124. delta_grid_spacing[1] = yGridSpacing;
  2125. float z_offset = zprobe_zoffset;
  2126. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2127. #else // !DELTA
  2128. // solve the plane equation ax + by + d = z
  2129. // A is the matrix with rows [x y 1] for all the probed points
  2130. // B is the vector of the Z positions
  2131. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2132. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2133. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2134. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2135. eqnBVector[abl2], // "B" vector of Z points
  2136. mean = 0.0;
  2137. #endif // !DELTA
  2138. int probePointCounter = 0;
  2139. bool zig = true;
  2140. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2141. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2142. int xStart, xStop, xInc;
  2143. if (zig) {
  2144. xStart = 0;
  2145. xStop = auto_bed_leveling_grid_points;
  2146. xInc = 1;
  2147. }
  2148. else {
  2149. xStart = auto_bed_leveling_grid_points - 1;
  2150. xStop = -1;
  2151. xInc = -1;
  2152. }
  2153. #ifndef DELTA
  2154. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2155. // This gets the probe points in more readable order.
  2156. if (!do_topography_map) zig = !zig;
  2157. #else
  2158. zig = !zig;
  2159. #endif
  2160. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2161. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2162. // raise extruder
  2163. float measured_z,
  2164. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2165. #ifdef DELTA
  2166. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2167. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2168. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2169. #endif //DELTA
  2170. ProbeAction act;
  2171. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2172. act = ProbeDeployAndStow;
  2173. else if (yCount == 0 && xCount == xStart)
  2174. act = ProbeDeploy;
  2175. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2176. act = ProbeStow;
  2177. else
  2178. act = ProbeStay;
  2179. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2180. #ifndef DELTA
  2181. mean += measured_z;
  2182. eqnBVector[probePointCounter] = measured_z;
  2183. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2184. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2185. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2186. #else
  2187. bed_level[xCount][yCount] = measured_z + z_offset;
  2188. #endif
  2189. probePointCounter++;
  2190. idle();
  2191. } //xProbe
  2192. } //yProbe
  2193. clean_up_after_endstop_move();
  2194. #ifdef DELTA
  2195. if (!dryrun) extrapolate_unprobed_bed_level();
  2196. print_bed_level();
  2197. #else // !DELTA
  2198. // solve lsq problem
  2199. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2200. mean /= abl2;
  2201. if (verbose_level) {
  2202. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2203. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2204. SERIAL_PROTOCOLPGM(" b: ");
  2205. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2206. SERIAL_PROTOCOLPGM(" d: ");
  2207. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2208. SERIAL_EOL;
  2209. if (verbose_level > 2) {
  2210. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2211. SERIAL_PROTOCOL_F(mean, 8);
  2212. SERIAL_EOL;
  2213. }
  2214. }
  2215. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2216. free(plane_equation_coefficients);
  2217. // Show the Topography map if enabled
  2218. if (do_topography_map) {
  2219. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2220. SERIAL_PROTOCOLPGM("+-----------+\n");
  2221. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2222. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2223. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2224. SERIAL_PROTOCOLPGM("+-----------+\n");
  2225. float min_diff = 999;
  2226. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2227. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2228. int ind = yy * auto_bed_leveling_grid_points + xx;
  2229. float diff = eqnBVector[ind] - mean;
  2230. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2231. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2232. z_tmp = 0;
  2233. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2234. if (eqnBVector[ind] - z_tmp < min_diff)
  2235. min_diff = eqnBVector[ind] - z_tmp;
  2236. if (diff >= 0.0)
  2237. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2238. else
  2239. SERIAL_PROTOCOLCHAR(' ');
  2240. SERIAL_PROTOCOL_F(diff, 5);
  2241. } // xx
  2242. SERIAL_EOL;
  2243. } // yy
  2244. SERIAL_EOL;
  2245. if (verbose_level > 3) {
  2246. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2247. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2248. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2249. int ind = yy * auto_bed_leveling_grid_points + xx;
  2250. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2251. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2252. z_tmp = 0;
  2253. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2254. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2255. if (diff >= 0.0)
  2256. SERIAL_PROTOCOLPGM(" +");
  2257. // Include + for column alignment
  2258. else
  2259. SERIAL_PROTOCOLCHAR(' ');
  2260. SERIAL_PROTOCOL_F(diff, 5);
  2261. } // xx
  2262. SERIAL_EOL;
  2263. } // yy
  2264. SERIAL_EOL;
  2265. }
  2266. } //do_topography_map
  2267. #endif //!DELTA
  2268. #else // !AUTO_BED_LEVELING_GRID
  2269. // Actions for each probe
  2270. ProbeAction p1, p2, p3;
  2271. if (deploy_probe_for_each_reading)
  2272. p1 = p2 = p3 = ProbeDeployAndStow;
  2273. else
  2274. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2275. // Probe at 3 arbitrary points
  2276. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2277. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2278. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2279. clean_up_after_endstop_move();
  2280. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2281. #endif // !AUTO_BED_LEVELING_GRID
  2282. #ifndef DELTA
  2283. if (verbose_level > 0)
  2284. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2285. if (!dryrun) {
  2286. // Correct the Z height difference from z-probe position and hotend tip position.
  2287. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2288. // When the bed is uneven, this height must be corrected.
  2289. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2290. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2291. z_tmp = current_position[Z_AXIS],
  2292. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2293. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2294. // Get the current Z position and send it to the planner.
  2295. //
  2296. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2297. //
  2298. // >> zprobe_zoffset : Z distance from nozzle to probe (set by default, M851, EEPROM, or Menu)
  2299. //
  2300. // >> Z_RAISE_AFTER_PROBING : The distance the probe will have lifted after the last probe
  2301. //
  2302. // >> Should home_offset[Z_AXIS] be included?
  2303. //
  2304. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2305. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2306. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2307. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2308. // added here, it could be seen as a compensating factor for the Z probe.
  2309. //
  2310. current_position[Z_AXIS] = -zprobe_zoffset + Z_RAISE_AFTER_PROBING + (z_tmp - real_z);
  2311. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The probe determines Z=0, not "Z home"
  2312. sync_plan_position();
  2313. }
  2314. #endif // !DELTA
  2315. #ifdef Z_PROBE_SLED
  2316. dock_sled(true); // dock the probe
  2317. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2318. stow_z_probe();
  2319. #endif
  2320. #ifdef Z_PROBE_END_SCRIPT
  2321. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2322. st_synchronize();
  2323. #endif
  2324. }
  2325. #ifndef Z_PROBE_SLED
  2326. inline void gcode_G30() {
  2327. deploy_z_probe(); // Engage Z Servo endstop if available
  2328. st_synchronize();
  2329. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2330. setup_for_endstop_move();
  2331. feedrate = homing_feedrate[Z_AXIS];
  2332. run_z_probe();
  2333. SERIAL_PROTOCOLPGM("Bed X: ");
  2334. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2335. SERIAL_PROTOCOLPGM(" Y: ");
  2336. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2337. SERIAL_PROTOCOLPGM(" Z: ");
  2338. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2339. SERIAL_EOL;
  2340. clean_up_after_endstop_move();
  2341. stow_z_probe(); // Retract Z Servo endstop if available
  2342. }
  2343. #endif //!Z_PROBE_SLED
  2344. #endif //ENABLE_AUTO_BED_LEVELING
  2345. /**
  2346. * G92: Set current position to given X Y Z E
  2347. */
  2348. inline void gcode_G92() {
  2349. if (!code_seen(axis_codes[E_AXIS]))
  2350. st_synchronize();
  2351. bool didXYZ = false;
  2352. for (int i = 0; i < NUM_AXIS; i++) {
  2353. if (code_seen(axis_codes[i])) {
  2354. float v = current_position[i] = code_value();
  2355. if (i == E_AXIS)
  2356. plan_set_e_position(v);
  2357. else
  2358. didXYZ = true;
  2359. }
  2360. }
  2361. if (didXYZ) {
  2362. #if defined(DELTA) || defined(SCARA)
  2363. sync_plan_position_delta();
  2364. #else
  2365. sync_plan_position();
  2366. #endif
  2367. }
  2368. }
  2369. #ifdef ULTIPANEL
  2370. /**
  2371. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2372. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2373. */
  2374. inline void gcode_M0_M1() {
  2375. char *args = current_command_args;
  2376. millis_t codenum = 0;
  2377. bool hasP = false, hasS = false;
  2378. if (code_seen('P')) {
  2379. codenum = code_value_short(); // milliseconds to wait
  2380. hasP = codenum > 0;
  2381. }
  2382. if (code_seen('S')) {
  2383. codenum = code_value() * 1000; // seconds to wait
  2384. hasS = codenum > 0;
  2385. }
  2386. if (!hasP && !hasS && *args != '\0')
  2387. lcd_setstatus(args, true);
  2388. else {
  2389. LCD_MESSAGEPGM(MSG_USERWAIT);
  2390. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2391. dontExpireStatus();
  2392. #endif
  2393. }
  2394. lcd_ignore_click();
  2395. st_synchronize();
  2396. refresh_cmd_timeout();
  2397. if (codenum > 0) {
  2398. codenum += previous_cmd_ms; // wait until this time for a click
  2399. while (millis() < codenum && !lcd_clicked()) idle();
  2400. lcd_ignore_click(false);
  2401. }
  2402. else {
  2403. if (!lcd_detected()) return;
  2404. while (!lcd_clicked()) idle();
  2405. }
  2406. if (IS_SD_PRINTING)
  2407. LCD_MESSAGEPGM(MSG_RESUMING);
  2408. else
  2409. LCD_MESSAGEPGM(WELCOME_MSG);
  2410. }
  2411. #endif // ULTIPANEL
  2412. /**
  2413. * M17: Enable power on all stepper motors
  2414. */
  2415. inline void gcode_M17() {
  2416. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2417. enable_all_steppers();
  2418. }
  2419. #ifdef SDSUPPORT
  2420. /**
  2421. * M20: List SD card to serial output
  2422. */
  2423. inline void gcode_M20() {
  2424. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2425. card.ls();
  2426. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2427. }
  2428. /**
  2429. * M21: Init SD Card
  2430. */
  2431. inline void gcode_M21() {
  2432. card.initsd();
  2433. }
  2434. /**
  2435. * M22: Release SD Card
  2436. */
  2437. inline void gcode_M22() {
  2438. card.release();
  2439. }
  2440. /**
  2441. * M23: Select a file
  2442. */
  2443. inline void gcode_M23() {
  2444. card.openFile(current_command_args, true);
  2445. }
  2446. /**
  2447. * M24: Start SD Print
  2448. */
  2449. inline void gcode_M24() {
  2450. card.startFileprint();
  2451. print_job_start_ms = millis();
  2452. }
  2453. /**
  2454. * M25: Pause SD Print
  2455. */
  2456. inline void gcode_M25() {
  2457. card.pauseSDPrint();
  2458. }
  2459. /**
  2460. * M26: Set SD Card file index
  2461. */
  2462. inline void gcode_M26() {
  2463. if (card.cardOK && code_seen('S'))
  2464. card.setIndex(code_value_short());
  2465. }
  2466. /**
  2467. * M27: Get SD Card status
  2468. */
  2469. inline void gcode_M27() {
  2470. card.getStatus();
  2471. }
  2472. /**
  2473. * M28: Start SD Write
  2474. */
  2475. inline void gcode_M28() {
  2476. card.openFile(current_command_args, false);
  2477. }
  2478. /**
  2479. * M29: Stop SD Write
  2480. * Processed in write to file routine above
  2481. */
  2482. inline void gcode_M29() {
  2483. // card.saving = false;
  2484. }
  2485. /**
  2486. * M30 <filename>: Delete SD Card file
  2487. */
  2488. inline void gcode_M30() {
  2489. if (card.cardOK) {
  2490. card.closefile();
  2491. card.removeFile(current_command_args);
  2492. }
  2493. }
  2494. #endif
  2495. /**
  2496. * M31: Get the time since the start of SD Print (or last M109)
  2497. */
  2498. inline void gcode_M31() {
  2499. print_job_stop_ms = millis();
  2500. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2501. int min = t / 60, sec = t % 60;
  2502. char time[30];
  2503. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2504. SERIAL_ECHO_START;
  2505. SERIAL_ECHOLN(time);
  2506. lcd_setstatus(time);
  2507. autotempShutdown();
  2508. }
  2509. #ifdef SDSUPPORT
  2510. /**
  2511. * M32: Select file and start SD Print
  2512. */
  2513. inline void gcode_M32() {
  2514. if (card.sdprinting)
  2515. st_synchronize();
  2516. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2517. if (!namestartpos)
  2518. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2519. else
  2520. namestartpos++; //to skip the '!'
  2521. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2522. if (card.cardOK) {
  2523. card.openFile(namestartpos, true, !call_procedure);
  2524. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2525. card.setIndex(code_value_short());
  2526. card.startFileprint();
  2527. if (!call_procedure)
  2528. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2529. }
  2530. }
  2531. #ifdef LONG_FILENAME_HOST_SUPPORT
  2532. /**
  2533. * M33: Get the long full path of a file or folder
  2534. *
  2535. * Parameters:
  2536. * <dospath> Case-insensitive DOS-style path to a file or folder
  2537. *
  2538. * Example:
  2539. * M33 miscel~1/armchair/armcha~1.gco
  2540. *
  2541. * Output:
  2542. * /Miscellaneous/Armchair/Armchair.gcode
  2543. */
  2544. inline void gcode_M33() {
  2545. card.printLongPath(current_command_args);
  2546. }
  2547. #endif
  2548. /**
  2549. * M928: Start SD Write
  2550. */
  2551. inline void gcode_M928() {
  2552. card.openLogFile(current_command_args);
  2553. }
  2554. #endif // SDSUPPORT
  2555. /**
  2556. * M42: Change pin status via GCode
  2557. */
  2558. inline void gcode_M42() {
  2559. if (code_seen('S')) {
  2560. int pin_status = code_value_short(),
  2561. pin_number = LED_PIN;
  2562. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2563. pin_number = code_value_short();
  2564. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2565. if (sensitive_pins[i] == pin_number) {
  2566. pin_number = -1;
  2567. break;
  2568. }
  2569. }
  2570. #if HAS_FAN
  2571. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2572. #endif
  2573. if (pin_number > -1) {
  2574. pinMode(pin_number, OUTPUT);
  2575. digitalWrite(pin_number, pin_status);
  2576. analogWrite(pin_number, pin_status);
  2577. }
  2578. } // code_seen('S')
  2579. }
  2580. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2581. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2582. #ifdef Z_PROBE_ENDSTOP
  2583. #if !HAS_Z_PROBE
  2584. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2585. #endif
  2586. #elif !HAS_Z_MIN
  2587. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2588. #endif
  2589. /**
  2590. * M48: Z-Probe repeatability measurement function.
  2591. *
  2592. * Usage:
  2593. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2594. * P = Number of sampled points (4-50, default 10)
  2595. * X = Sample X position
  2596. * Y = Sample Y position
  2597. * V = Verbose level (0-4, default=1)
  2598. * E = Engage probe for each reading
  2599. * L = Number of legs of movement before probe
  2600. *
  2601. * This function assumes the bed has been homed. Specifically, that a G28 command
  2602. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2603. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2604. * regenerated.
  2605. */
  2606. inline void gcode_M48() {
  2607. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2608. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2609. if (code_seen('V')) {
  2610. verbose_level = code_value_short();
  2611. if (verbose_level < 0 || verbose_level > 4 ) {
  2612. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2613. return;
  2614. }
  2615. }
  2616. if (verbose_level > 0)
  2617. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2618. if (code_seen('P')) {
  2619. n_samples = code_value_short();
  2620. if (n_samples < 4 || n_samples > 50) {
  2621. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2622. return;
  2623. }
  2624. }
  2625. double X_current = st_get_position_mm(X_AXIS),
  2626. Y_current = st_get_position_mm(Y_AXIS),
  2627. Z_current = st_get_position_mm(Z_AXIS),
  2628. E_current = st_get_position_mm(E_AXIS),
  2629. X_probe_location = X_current, Y_probe_location = Y_current,
  2630. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2631. bool deploy_probe_for_each_reading = code_seen('E');
  2632. if (code_seen('X')) {
  2633. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2634. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2635. out_of_range_error(PSTR("X"));
  2636. return;
  2637. }
  2638. }
  2639. if (code_seen('Y')) {
  2640. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2641. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2642. out_of_range_error(PSTR("Y"));
  2643. return;
  2644. }
  2645. }
  2646. if (code_seen('L')) {
  2647. n_legs = code_value_short();
  2648. if (n_legs == 1) n_legs = 2;
  2649. if (n_legs < 0 || n_legs > 15) {
  2650. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2651. return;
  2652. }
  2653. }
  2654. //
  2655. // Do all the preliminary setup work. First raise the probe.
  2656. //
  2657. st_synchronize();
  2658. plan_bed_level_matrix.set_to_identity();
  2659. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2660. st_synchronize();
  2661. //
  2662. // Now get everything to the specified probe point So we can safely do a probe to
  2663. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2664. // use that as a starting point for each probe.
  2665. //
  2666. if (verbose_level > 2)
  2667. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2668. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2669. E_current,
  2670. homing_feedrate[X_AXIS]/60,
  2671. active_extruder);
  2672. st_synchronize();
  2673. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2674. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2675. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2676. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2677. //
  2678. // OK, do the initial probe to get us close to the bed.
  2679. // Then retrace the right amount and use that in subsequent probes
  2680. //
  2681. deploy_z_probe();
  2682. setup_for_endstop_move();
  2683. run_z_probe();
  2684. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2685. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2686. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2687. E_current,
  2688. homing_feedrate[X_AXIS]/60,
  2689. active_extruder);
  2690. st_synchronize();
  2691. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2692. if (deploy_probe_for_each_reading) stow_z_probe();
  2693. for (uint8_t n=0; n < n_samples; n++) {
  2694. // Make sure we are at the probe location
  2695. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2696. if (n_legs) {
  2697. millis_t ms = millis();
  2698. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2699. theta = RADIANS(ms % 360L);
  2700. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2701. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2702. //SERIAL_ECHOPAIR(" theta: ",theta);
  2703. //SERIAL_ECHOPAIR(" direction: ",dir);
  2704. //SERIAL_EOL;
  2705. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2706. ms = millis();
  2707. theta += RADIANS(dir * (ms % 20L));
  2708. radius += (ms % 10L) - 5L;
  2709. if (radius < 0.0) radius = -radius;
  2710. X_current = X_probe_location + cos(theta) * radius;
  2711. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2712. Y_current = Y_probe_location + sin(theta) * radius;
  2713. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2714. if (verbose_level > 3) {
  2715. SERIAL_ECHOPAIR("x: ", X_current);
  2716. SERIAL_ECHOPAIR("y: ", Y_current);
  2717. SERIAL_EOL;
  2718. }
  2719. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2720. } // n_legs loop
  2721. // Go back to the probe location
  2722. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2723. } // n_legs
  2724. if (deploy_probe_for_each_reading) {
  2725. deploy_z_probe();
  2726. delay(1000);
  2727. }
  2728. setup_for_endstop_move();
  2729. run_z_probe();
  2730. sample_set[n] = current_position[Z_AXIS];
  2731. //
  2732. // Get the current mean for the data points we have so far
  2733. //
  2734. sum = 0.0;
  2735. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2736. mean = sum / (n + 1);
  2737. //
  2738. // Now, use that mean to calculate the standard deviation for the
  2739. // data points we have so far
  2740. //
  2741. sum = 0.0;
  2742. for (uint8_t j = 0; j <= n; j++) {
  2743. float ss = sample_set[j] - mean;
  2744. sum += ss * ss;
  2745. }
  2746. sigma = sqrt(sum / (n + 1));
  2747. if (verbose_level > 1) {
  2748. SERIAL_PROTOCOL(n+1);
  2749. SERIAL_PROTOCOLPGM(" of ");
  2750. SERIAL_PROTOCOL((int)n_samples);
  2751. SERIAL_PROTOCOLPGM(" z: ");
  2752. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2753. if (verbose_level > 2) {
  2754. SERIAL_PROTOCOLPGM(" mean: ");
  2755. SERIAL_PROTOCOL_F(mean,6);
  2756. SERIAL_PROTOCOLPGM(" sigma: ");
  2757. SERIAL_PROTOCOL_F(sigma,6);
  2758. }
  2759. }
  2760. if (verbose_level > 0) SERIAL_EOL;
  2761. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2762. st_synchronize();
  2763. // Stow between
  2764. if (deploy_probe_for_each_reading) {
  2765. stow_z_probe();
  2766. delay(1000);
  2767. }
  2768. }
  2769. // Stow after
  2770. if (!deploy_probe_for_each_reading) {
  2771. stow_z_probe();
  2772. delay(1000);
  2773. }
  2774. clean_up_after_endstop_move();
  2775. if (verbose_level > 0) {
  2776. SERIAL_PROTOCOLPGM("Mean: ");
  2777. SERIAL_PROTOCOL_F(mean, 6);
  2778. SERIAL_EOL;
  2779. }
  2780. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2781. SERIAL_PROTOCOL_F(sigma, 6);
  2782. SERIAL_EOL; SERIAL_EOL;
  2783. }
  2784. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2785. /**
  2786. * M104: Set hot end temperature
  2787. */
  2788. inline void gcode_M104() {
  2789. if (setTargetedHotend(104)) return;
  2790. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2791. if (code_seen('S')) {
  2792. float temp = code_value();
  2793. setTargetHotend(temp, target_extruder);
  2794. #ifdef DUAL_X_CARRIAGE
  2795. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2796. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2797. #endif
  2798. }
  2799. }
  2800. /**
  2801. * M105: Read hot end and bed temperature
  2802. */
  2803. inline void gcode_M105() {
  2804. if (setTargetedHotend(105)) return;
  2805. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2806. SERIAL_PROTOCOLPGM(MSG_OK);
  2807. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2808. SERIAL_PROTOCOLPGM(" T:");
  2809. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2810. SERIAL_PROTOCOLPGM(" /");
  2811. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2812. #endif
  2813. #if HAS_TEMP_BED
  2814. SERIAL_PROTOCOLPGM(" B:");
  2815. SERIAL_PROTOCOL_F(degBed(), 1);
  2816. SERIAL_PROTOCOLPGM(" /");
  2817. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2818. #endif
  2819. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2820. SERIAL_PROTOCOLPGM(" T");
  2821. SERIAL_PROTOCOL(e);
  2822. SERIAL_PROTOCOLCHAR(':');
  2823. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2824. SERIAL_PROTOCOLPGM(" /");
  2825. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2826. }
  2827. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2828. SERIAL_ERROR_START;
  2829. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2830. #endif
  2831. SERIAL_PROTOCOLPGM(" @:");
  2832. #ifdef EXTRUDER_WATTS
  2833. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2834. SERIAL_PROTOCOLCHAR('W');
  2835. #else
  2836. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2837. #endif
  2838. SERIAL_PROTOCOLPGM(" B@:");
  2839. #ifdef BED_WATTS
  2840. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2841. SERIAL_PROTOCOLCHAR('W');
  2842. #else
  2843. SERIAL_PROTOCOL(getHeaterPower(-1));
  2844. #endif
  2845. #ifdef SHOW_TEMP_ADC_VALUES
  2846. #if HAS_TEMP_BED
  2847. SERIAL_PROTOCOLPGM(" ADC B:");
  2848. SERIAL_PROTOCOL_F(degBed(),1);
  2849. SERIAL_PROTOCOLPGM("C->");
  2850. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2851. #endif
  2852. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2853. SERIAL_PROTOCOLPGM(" T");
  2854. SERIAL_PROTOCOL(cur_extruder);
  2855. SERIAL_PROTOCOLCHAR(':');
  2856. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2857. SERIAL_PROTOCOLPGM("C->");
  2858. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2859. }
  2860. #endif
  2861. SERIAL_EOL;
  2862. }
  2863. #if HAS_FAN
  2864. /**
  2865. * M106: Set Fan Speed
  2866. */
  2867. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2868. /**
  2869. * M107: Fan Off
  2870. */
  2871. inline void gcode_M107() { fanSpeed = 0; }
  2872. #endif // HAS_FAN
  2873. /**
  2874. * M109: Wait for extruder(s) to reach temperature
  2875. */
  2876. inline void gcode_M109() {
  2877. if (setTargetedHotend(109)) return;
  2878. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2879. LCD_MESSAGEPGM(MSG_HEATING);
  2880. no_wait_for_cooling = code_seen('S');
  2881. if (no_wait_for_cooling || code_seen('R')) {
  2882. float temp = code_value();
  2883. setTargetHotend(temp, target_extruder);
  2884. #ifdef DUAL_X_CARRIAGE
  2885. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2886. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2887. #endif
  2888. }
  2889. #ifdef AUTOTEMP
  2890. autotemp_enabled = code_seen('F');
  2891. if (autotemp_enabled) autotemp_factor = code_value();
  2892. if (code_seen('S')) autotemp_min = code_value();
  2893. if (code_seen('B')) autotemp_max = code_value();
  2894. #endif
  2895. millis_t temp_ms = millis();
  2896. /* See if we are heating up or cooling down */
  2897. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2898. cancel_heatup = false;
  2899. #ifdef TEMP_RESIDENCY_TIME
  2900. long residency_start_ms = -1;
  2901. /* continue to loop until we have reached the target temp
  2902. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2903. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2904. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2905. #else
  2906. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2907. #endif //TEMP_RESIDENCY_TIME
  2908. { // while loop
  2909. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2910. SERIAL_PROTOCOLPGM("T:");
  2911. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2912. SERIAL_PROTOCOLPGM(" E:");
  2913. SERIAL_PROTOCOL((int)target_extruder);
  2914. #ifdef TEMP_RESIDENCY_TIME
  2915. SERIAL_PROTOCOLPGM(" W:");
  2916. if (residency_start_ms > -1) {
  2917. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2918. SERIAL_PROTOCOLLN(temp_ms);
  2919. }
  2920. else {
  2921. SERIAL_PROTOCOLLNPGM("?");
  2922. }
  2923. #else
  2924. SERIAL_EOL;
  2925. #endif
  2926. temp_ms = millis();
  2927. }
  2928. idle();
  2929. #ifdef TEMP_RESIDENCY_TIME
  2930. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2931. // or when current temp falls outside the hysteresis after target temp was reached
  2932. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2933. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2934. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2935. {
  2936. residency_start_ms = millis();
  2937. }
  2938. #endif //TEMP_RESIDENCY_TIME
  2939. }
  2940. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2941. refresh_cmd_timeout();
  2942. print_job_start_ms = previous_cmd_ms;
  2943. }
  2944. #if HAS_TEMP_BED
  2945. /**
  2946. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2947. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2948. */
  2949. inline void gcode_M190() {
  2950. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2951. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2952. no_wait_for_cooling = code_seen('S');
  2953. if (no_wait_for_cooling || code_seen('R'))
  2954. setTargetBed(code_value());
  2955. millis_t temp_ms = millis();
  2956. cancel_heatup = false;
  2957. target_direction = isHeatingBed(); // true if heating, false if cooling
  2958. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2959. millis_t ms = millis();
  2960. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2961. temp_ms = ms;
  2962. float tt = degHotend(active_extruder);
  2963. SERIAL_PROTOCOLPGM("T:");
  2964. SERIAL_PROTOCOL(tt);
  2965. SERIAL_PROTOCOLPGM(" E:");
  2966. SERIAL_PROTOCOL((int)active_extruder);
  2967. SERIAL_PROTOCOLPGM(" B:");
  2968. SERIAL_PROTOCOL_F(degBed(), 1);
  2969. SERIAL_EOL;
  2970. }
  2971. idle();
  2972. }
  2973. LCD_MESSAGEPGM(MSG_BED_DONE);
  2974. refresh_cmd_timeout();
  2975. }
  2976. #endif // HAS_TEMP_BED
  2977. /**
  2978. * M111: Set the debug level
  2979. */
  2980. inline void gcode_M111() {
  2981. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  2982. if (marlin_debug_flags & DEBUG_ECHO) {
  2983. SERIAL_ECHO_START;
  2984. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  2985. }
  2986. // FOR MOMENT NOT ACTIVE
  2987. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  2988. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  2989. if (marlin_debug_flags & DEBUG_DRYRUN) {
  2990. SERIAL_ECHO_START;
  2991. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  2992. disable_all_heaters();
  2993. }
  2994. }
  2995. /**
  2996. * M112: Emergency Stop
  2997. */
  2998. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  2999. #ifdef BARICUDA
  3000. #if HAS_HEATER_1
  3001. /**
  3002. * M126: Heater 1 valve open
  3003. */
  3004. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3005. /**
  3006. * M127: Heater 1 valve close
  3007. */
  3008. inline void gcode_M127() { ValvePressure = 0; }
  3009. #endif
  3010. #if HAS_HEATER_2
  3011. /**
  3012. * M128: Heater 2 valve open
  3013. */
  3014. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3015. /**
  3016. * M129: Heater 2 valve close
  3017. */
  3018. inline void gcode_M129() { EtoPPressure = 0; }
  3019. #endif
  3020. #endif //BARICUDA
  3021. /**
  3022. * M140: Set bed temperature
  3023. */
  3024. inline void gcode_M140() {
  3025. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3026. if (code_seen('S')) setTargetBed(code_value());
  3027. }
  3028. #ifdef ULTIPANEL
  3029. /**
  3030. * M145: Set the heatup state for a material in the LCD menu
  3031. * S<material> (0=PLA, 1=ABS)
  3032. * H<hotend temp>
  3033. * B<bed temp>
  3034. * F<fan speed>
  3035. */
  3036. inline void gcode_M145() {
  3037. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3038. if (material < 0 || material > 1) {
  3039. SERIAL_ERROR_START;
  3040. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3041. }
  3042. else {
  3043. int v;
  3044. switch (material) {
  3045. case 0:
  3046. if (code_seen('H')) {
  3047. v = code_value_short();
  3048. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3049. }
  3050. if (code_seen('F')) {
  3051. v = code_value_short();
  3052. plaPreheatFanSpeed = constrain(v, 0, 255);
  3053. }
  3054. #if TEMP_SENSOR_BED != 0
  3055. if (code_seen('B')) {
  3056. v = code_value_short();
  3057. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3058. }
  3059. #endif
  3060. break;
  3061. case 1:
  3062. if (code_seen('H')) {
  3063. v = code_value_short();
  3064. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3065. }
  3066. if (code_seen('F')) {
  3067. v = code_value_short();
  3068. absPreheatFanSpeed = constrain(v, 0, 255);
  3069. }
  3070. #if TEMP_SENSOR_BED != 0
  3071. if (code_seen('B')) {
  3072. v = code_value_short();
  3073. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3074. }
  3075. #endif
  3076. break;
  3077. }
  3078. }
  3079. }
  3080. #endif
  3081. #if HAS_POWER_SWITCH
  3082. /**
  3083. * M80: Turn on Power Supply
  3084. */
  3085. inline void gcode_M80() {
  3086. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3087. // If you have a switch on suicide pin, this is useful
  3088. // if you want to start another print with suicide feature after
  3089. // a print without suicide...
  3090. #if HAS_SUICIDE
  3091. OUT_WRITE(SUICIDE_PIN, HIGH);
  3092. #endif
  3093. #ifdef ULTIPANEL
  3094. powersupply = true;
  3095. LCD_MESSAGEPGM(WELCOME_MSG);
  3096. lcd_update();
  3097. #endif
  3098. }
  3099. #endif // HAS_POWER_SWITCH
  3100. /**
  3101. * M81: Turn off Power, including Power Supply, if there is one.
  3102. *
  3103. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3104. */
  3105. inline void gcode_M81() {
  3106. disable_all_heaters();
  3107. finishAndDisableSteppers();
  3108. fanSpeed = 0;
  3109. delay(1000); // Wait 1 second before switching off
  3110. #if HAS_SUICIDE
  3111. st_synchronize();
  3112. suicide();
  3113. #elif HAS_POWER_SWITCH
  3114. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3115. #endif
  3116. #ifdef ULTIPANEL
  3117. #if HAS_POWER_SWITCH
  3118. powersupply = false;
  3119. #endif
  3120. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3121. lcd_update();
  3122. #endif
  3123. }
  3124. /**
  3125. * M82: Set E codes absolute (default)
  3126. */
  3127. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3128. /**
  3129. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3130. */
  3131. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3132. /**
  3133. * M18, M84: Disable all stepper motors
  3134. */
  3135. inline void gcode_M18_M84() {
  3136. if (code_seen('S')) {
  3137. stepper_inactive_time = code_value() * 1000;
  3138. }
  3139. else {
  3140. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3141. if (all_axis) {
  3142. finishAndDisableSteppers();
  3143. }
  3144. else {
  3145. st_synchronize();
  3146. if (code_seen('X')) disable_x();
  3147. if (code_seen('Y')) disable_y();
  3148. if (code_seen('Z')) disable_z();
  3149. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3150. if (code_seen('E')) {
  3151. disable_e0();
  3152. disable_e1();
  3153. disable_e2();
  3154. disable_e3();
  3155. }
  3156. #endif
  3157. }
  3158. }
  3159. }
  3160. /**
  3161. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3162. */
  3163. inline void gcode_M85() {
  3164. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3165. }
  3166. /**
  3167. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3168. * (Follows the same syntax as G92)
  3169. */
  3170. inline void gcode_M92() {
  3171. for(int8_t i=0; i < NUM_AXIS; i++) {
  3172. if (code_seen(axis_codes[i])) {
  3173. if (i == E_AXIS) {
  3174. float value = code_value();
  3175. if (value < 20.0) {
  3176. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3177. max_e_jerk *= factor;
  3178. max_feedrate[i] *= factor;
  3179. axis_steps_per_sqr_second[i] *= factor;
  3180. }
  3181. axis_steps_per_unit[i] = value;
  3182. }
  3183. else {
  3184. axis_steps_per_unit[i] = code_value();
  3185. }
  3186. }
  3187. }
  3188. }
  3189. /**
  3190. * M114: Output current position to serial port
  3191. */
  3192. inline void gcode_M114() {
  3193. SERIAL_PROTOCOLPGM("X:");
  3194. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3195. SERIAL_PROTOCOLPGM(" Y:");
  3196. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3197. SERIAL_PROTOCOLPGM(" Z:");
  3198. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3199. SERIAL_PROTOCOLPGM(" E:");
  3200. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3201. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3202. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3203. SERIAL_PROTOCOLPGM(" Y:");
  3204. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3205. SERIAL_PROTOCOLPGM(" Z:");
  3206. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3207. SERIAL_EOL;
  3208. #ifdef SCARA
  3209. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3210. SERIAL_PROTOCOL(delta[X_AXIS]);
  3211. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3212. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3213. SERIAL_EOL;
  3214. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3215. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3216. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3217. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3218. SERIAL_EOL;
  3219. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3220. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3221. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3222. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3223. SERIAL_EOL; SERIAL_EOL;
  3224. #endif
  3225. }
  3226. /**
  3227. * M115: Capabilities string
  3228. */
  3229. inline void gcode_M115() {
  3230. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3231. }
  3232. /**
  3233. * M117: Set LCD Status Message
  3234. */
  3235. inline void gcode_M117() {
  3236. lcd_setstatus(current_command_args);
  3237. }
  3238. /**
  3239. * M119: Output endstop states to serial output
  3240. */
  3241. inline void gcode_M119() {
  3242. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3243. #if HAS_X_MIN
  3244. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3245. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3246. #endif
  3247. #if HAS_X_MAX
  3248. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3249. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3250. #endif
  3251. #if HAS_Y_MIN
  3252. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3253. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3254. #endif
  3255. #if HAS_Y_MAX
  3256. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3257. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3258. #endif
  3259. #if HAS_Z_MIN
  3260. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3261. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3262. #endif
  3263. #if HAS_Z_MAX
  3264. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3265. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3266. #endif
  3267. #if HAS_Z2_MAX
  3268. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3269. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3270. #endif
  3271. #if HAS_Z_PROBE
  3272. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3273. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3274. #endif
  3275. }
  3276. /**
  3277. * M120: Enable endstops
  3278. */
  3279. inline void gcode_M120() { enable_endstops(true); }
  3280. /**
  3281. * M121: Disable endstops
  3282. */
  3283. inline void gcode_M121() { enable_endstops(false); }
  3284. #ifdef BLINKM
  3285. /**
  3286. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3287. */
  3288. inline void gcode_M150() {
  3289. SendColors(
  3290. code_seen('R') ? (byte)code_value_short() : 0,
  3291. code_seen('U') ? (byte)code_value_short() : 0,
  3292. code_seen('B') ? (byte)code_value_short() : 0
  3293. );
  3294. }
  3295. #endif // BLINKM
  3296. /**
  3297. * M200: Set filament diameter and set E axis units to cubic millimeters
  3298. *
  3299. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3300. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3301. */
  3302. inline void gcode_M200() {
  3303. if (setTargetedHotend(200)) return;
  3304. if (code_seen('D')) {
  3305. float diameter = code_value();
  3306. // setting any extruder filament size disables volumetric on the assumption that
  3307. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3308. // for all extruders
  3309. volumetric_enabled = (diameter != 0.0);
  3310. if (volumetric_enabled) {
  3311. filament_size[target_extruder] = diameter;
  3312. // make sure all extruders have some sane value for the filament size
  3313. for (int i=0; i<EXTRUDERS; i++)
  3314. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3315. }
  3316. }
  3317. else {
  3318. //reserved for setting filament diameter via UFID or filament measuring device
  3319. return;
  3320. }
  3321. calculate_volumetric_multipliers();
  3322. }
  3323. /**
  3324. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3325. */
  3326. inline void gcode_M201() {
  3327. for (int8_t i=0; i < NUM_AXIS; i++) {
  3328. if (code_seen(axis_codes[i])) {
  3329. max_acceleration_units_per_sq_second[i] = code_value();
  3330. }
  3331. }
  3332. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3333. reset_acceleration_rates();
  3334. }
  3335. #if 0 // Not used for Sprinter/grbl gen6
  3336. inline void gcode_M202() {
  3337. for(int8_t i=0; i < NUM_AXIS; i++) {
  3338. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3339. }
  3340. }
  3341. #endif
  3342. /**
  3343. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3344. */
  3345. inline void gcode_M203() {
  3346. for (int8_t i=0; i < NUM_AXIS; i++) {
  3347. if (code_seen(axis_codes[i])) {
  3348. max_feedrate[i] = code_value();
  3349. }
  3350. }
  3351. }
  3352. /**
  3353. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3354. *
  3355. * P = Printing moves
  3356. * R = Retract only (no X, Y, Z) moves
  3357. * T = Travel (non printing) moves
  3358. *
  3359. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3360. */
  3361. inline void gcode_M204() {
  3362. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3363. travel_acceleration = acceleration = code_value();
  3364. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3365. SERIAL_EOL;
  3366. }
  3367. if (code_seen('P')) {
  3368. acceleration = code_value();
  3369. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3370. SERIAL_EOL;
  3371. }
  3372. if (code_seen('R')) {
  3373. retract_acceleration = code_value();
  3374. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3375. SERIAL_EOL;
  3376. }
  3377. if (code_seen('T')) {
  3378. travel_acceleration = code_value();
  3379. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3380. SERIAL_EOL;
  3381. }
  3382. }
  3383. /**
  3384. * M205: Set Advanced Settings
  3385. *
  3386. * S = Min Feed Rate (mm/s)
  3387. * T = Min Travel Feed Rate (mm/s)
  3388. * B = Min Segment Time (µs)
  3389. * X = Max XY Jerk (mm/s/s)
  3390. * Z = Max Z Jerk (mm/s/s)
  3391. * E = Max E Jerk (mm/s/s)
  3392. */
  3393. inline void gcode_M205() {
  3394. if (code_seen('S')) minimumfeedrate = code_value();
  3395. if (code_seen('T')) mintravelfeedrate = code_value();
  3396. if (code_seen('B')) minsegmenttime = code_value();
  3397. if (code_seen('X')) max_xy_jerk = code_value();
  3398. if (code_seen('Z')) max_z_jerk = code_value();
  3399. if (code_seen('E')) max_e_jerk = code_value();
  3400. }
  3401. /**
  3402. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3403. */
  3404. inline void gcode_M206() {
  3405. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3406. if (code_seen(axis_codes[i])) {
  3407. home_offset[i] = code_value();
  3408. }
  3409. }
  3410. #ifdef SCARA
  3411. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3412. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3413. #endif
  3414. }
  3415. #ifdef DELTA
  3416. /**
  3417. * M665: Set delta configurations
  3418. *
  3419. * L = diagonal rod
  3420. * R = delta radius
  3421. * S = segments per second
  3422. */
  3423. inline void gcode_M665() {
  3424. if (code_seen('L')) delta_diagonal_rod = code_value();
  3425. if (code_seen('R')) delta_radius = code_value();
  3426. if (code_seen('S')) delta_segments_per_second = code_value();
  3427. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3428. }
  3429. /**
  3430. * M666: Set delta endstop adjustment
  3431. */
  3432. inline void gcode_M666() {
  3433. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3434. if (code_seen(axis_codes[i])) {
  3435. endstop_adj[i] = code_value();
  3436. }
  3437. }
  3438. }
  3439. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3440. /**
  3441. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3442. */
  3443. inline void gcode_M666() {
  3444. if (code_seen('Z')) z_endstop_adj = code_value();
  3445. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3446. SERIAL_EOL;
  3447. }
  3448. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3449. #ifdef FWRETRACT
  3450. /**
  3451. * M207: Set firmware retraction values
  3452. *
  3453. * S[+mm] retract_length
  3454. * W[+mm] retract_length_swap (multi-extruder)
  3455. * F[mm/min] retract_feedrate
  3456. * Z[mm] retract_zlift
  3457. */
  3458. inline void gcode_M207() {
  3459. if (code_seen('S')) retract_length = code_value();
  3460. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3461. if (code_seen('Z')) retract_zlift = code_value();
  3462. #if EXTRUDERS > 1
  3463. if (code_seen('W')) retract_length_swap = code_value();
  3464. #endif
  3465. }
  3466. /**
  3467. * M208: Set firmware un-retraction values
  3468. *
  3469. * S[+mm] retract_recover_length (in addition to M207 S*)
  3470. * W[+mm] retract_recover_length_swap (multi-extruder)
  3471. * F[mm/min] retract_recover_feedrate
  3472. */
  3473. inline void gcode_M208() {
  3474. if (code_seen('S')) retract_recover_length = code_value();
  3475. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3476. #if EXTRUDERS > 1
  3477. if (code_seen('W')) retract_recover_length_swap = code_value();
  3478. #endif
  3479. }
  3480. /**
  3481. * M209: Enable automatic retract (M209 S1)
  3482. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3483. */
  3484. inline void gcode_M209() {
  3485. if (code_seen('S')) {
  3486. int t = code_value_short();
  3487. switch(t) {
  3488. case 0:
  3489. autoretract_enabled = false;
  3490. break;
  3491. case 1:
  3492. autoretract_enabled = true;
  3493. break;
  3494. default:
  3495. unknown_command_error();
  3496. return;
  3497. }
  3498. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3499. }
  3500. }
  3501. #endif // FWRETRACT
  3502. #if EXTRUDERS > 1
  3503. /**
  3504. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3505. */
  3506. inline void gcode_M218() {
  3507. if (setTargetedHotend(218)) return;
  3508. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3509. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3510. #ifdef DUAL_X_CARRIAGE
  3511. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3512. #endif
  3513. SERIAL_ECHO_START;
  3514. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3515. for (int e = 0; e < EXTRUDERS; e++) {
  3516. SERIAL_CHAR(' ');
  3517. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3518. SERIAL_CHAR(',');
  3519. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3520. #ifdef DUAL_X_CARRIAGE
  3521. SERIAL_CHAR(',');
  3522. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3523. #endif
  3524. }
  3525. SERIAL_EOL;
  3526. }
  3527. #endif // EXTRUDERS > 1
  3528. /**
  3529. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3530. */
  3531. inline void gcode_M220() {
  3532. if (code_seen('S')) feedrate_multiplier = code_value();
  3533. }
  3534. /**
  3535. * M221: Set extrusion percentage (M221 T0 S95)
  3536. */
  3537. inline void gcode_M221() {
  3538. if (code_seen('S')) {
  3539. int sval = code_value();
  3540. if (code_seen('T')) {
  3541. if (setTargetedHotend(221)) return;
  3542. extruder_multiplier[target_extruder] = sval;
  3543. }
  3544. else {
  3545. extruder_multiplier[active_extruder] = sval;
  3546. }
  3547. }
  3548. }
  3549. /**
  3550. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3551. */
  3552. inline void gcode_M226() {
  3553. if (code_seen('P')) {
  3554. int pin_number = code_value();
  3555. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3556. if (pin_state >= -1 && pin_state <= 1) {
  3557. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  3558. if (sensitive_pins[i] == pin_number) {
  3559. pin_number = -1;
  3560. break;
  3561. }
  3562. }
  3563. if (pin_number > -1) {
  3564. int target = LOW;
  3565. st_synchronize();
  3566. pinMode(pin_number, INPUT);
  3567. switch(pin_state){
  3568. case 1:
  3569. target = HIGH;
  3570. break;
  3571. case 0:
  3572. target = LOW;
  3573. break;
  3574. case -1:
  3575. target = !digitalRead(pin_number);
  3576. break;
  3577. }
  3578. while (digitalRead(pin_number) != target) idle();
  3579. } // pin_number > -1
  3580. } // pin_state -1 0 1
  3581. } // code_seen('P')
  3582. }
  3583. #if NUM_SERVOS > 0
  3584. /**
  3585. * M280: Get or set servo position. P<index> S<angle>
  3586. */
  3587. inline void gcode_M280() {
  3588. int servo_index = code_seen('P') ? code_value_short() : -1;
  3589. int servo_position = 0;
  3590. if (code_seen('S')) {
  3591. servo_position = code_value_short();
  3592. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  3593. servo[servo_index].move(servo_position);
  3594. else {
  3595. SERIAL_ECHO_START;
  3596. SERIAL_ECHO("Servo ");
  3597. SERIAL_ECHO(servo_index);
  3598. SERIAL_ECHOLN(" out of range");
  3599. }
  3600. }
  3601. else if (servo_index >= 0) {
  3602. SERIAL_PROTOCOL(MSG_OK);
  3603. SERIAL_PROTOCOL(" Servo ");
  3604. SERIAL_PROTOCOL(servo_index);
  3605. SERIAL_PROTOCOL(": ");
  3606. SERIAL_PROTOCOL(servo[servo_index].read());
  3607. SERIAL_EOL;
  3608. }
  3609. }
  3610. #endif // NUM_SERVOS > 0
  3611. #if HAS_BUZZER
  3612. /**
  3613. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3614. */
  3615. inline void gcode_M300() {
  3616. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3617. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3618. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3619. buzz(beepP, beepS);
  3620. }
  3621. #endif // HAS_BUZZER
  3622. #ifdef PIDTEMP
  3623. /**
  3624. * M301: Set PID parameters P I D (and optionally C)
  3625. */
  3626. inline void gcode_M301() {
  3627. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3628. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3629. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3630. if (e < EXTRUDERS) { // catch bad input value
  3631. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3632. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3633. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3634. #ifdef PID_ADD_EXTRUSION_RATE
  3635. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3636. #endif
  3637. updatePID();
  3638. SERIAL_PROTOCOL(MSG_OK);
  3639. #ifdef PID_PARAMS_PER_EXTRUDER
  3640. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3641. SERIAL_PROTOCOL(e);
  3642. #endif // PID_PARAMS_PER_EXTRUDER
  3643. SERIAL_PROTOCOL(" p:");
  3644. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3645. SERIAL_PROTOCOL(" i:");
  3646. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3647. SERIAL_PROTOCOL(" d:");
  3648. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3649. #ifdef PID_ADD_EXTRUSION_RATE
  3650. SERIAL_PROTOCOL(" c:");
  3651. //Kc does not have scaling applied above, or in resetting defaults
  3652. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3653. #endif
  3654. SERIAL_EOL;
  3655. }
  3656. else {
  3657. SERIAL_ECHO_START;
  3658. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3659. }
  3660. }
  3661. #endif // PIDTEMP
  3662. #ifdef PIDTEMPBED
  3663. inline void gcode_M304() {
  3664. if (code_seen('P')) bedKp = code_value();
  3665. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3666. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3667. updatePID();
  3668. SERIAL_PROTOCOL(MSG_OK);
  3669. SERIAL_PROTOCOL(" p:");
  3670. SERIAL_PROTOCOL(bedKp);
  3671. SERIAL_PROTOCOL(" i:");
  3672. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3673. SERIAL_PROTOCOL(" d:");
  3674. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3675. SERIAL_EOL;
  3676. }
  3677. #endif // PIDTEMPBED
  3678. #if defined(CHDK) || HAS_PHOTOGRAPH
  3679. /**
  3680. * M240: Trigger a camera by emulating a Canon RC-1
  3681. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3682. */
  3683. inline void gcode_M240() {
  3684. #ifdef CHDK
  3685. OUT_WRITE(CHDK, HIGH);
  3686. chdkHigh = millis();
  3687. chdkActive = true;
  3688. #elif HAS_PHOTOGRAPH
  3689. const uint8_t NUM_PULSES = 16;
  3690. const float PULSE_LENGTH = 0.01524;
  3691. for (int i = 0; i < NUM_PULSES; i++) {
  3692. WRITE(PHOTOGRAPH_PIN, HIGH);
  3693. _delay_ms(PULSE_LENGTH);
  3694. WRITE(PHOTOGRAPH_PIN, LOW);
  3695. _delay_ms(PULSE_LENGTH);
  3696. }
  3697. delay(7.33);
  3698. for (int i = 0; i < NUM_PULSES; i++) {
  3699. WRITE(PHOTOGRAPH_PIN, HIGH);
  3700. _delay_ms(PULSE_LENGTH);
  3701. WRITE(PHOTOGRAPH_PIN, LOW);
  3702. _delay_ms(PULSE_LENGTH);
  3703. }
  3704. #endif // !CHDK && HAS_PHOTOGRAPH
  3705. }
  3706. #endif // CHDK || PHOTOGRAPH_PIN
  3707. #ifdef HAS_LCD_CONTRAST
  3708. /**
  3709. * M250: Read and optionally set the LCD contrast
  3710. */
  3711. inline void gcode_M250() {
  3712. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3713. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3714. SERIAL_PROTOCOL(lcd_contrast);
  3715. SERIAL_EOL;
  3716. }
  3717. #endif // HAS_LCD_CONTRAST
  3718. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3719. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3720. /**
  3721. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3722. */
  3723. inline void gcode_M302() {
  3724. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3725. }
  3726. #endif // PREVENT_DANGEROUS_EXTRUDE
  3727. /**
  3728. * M303: PID relay autotune
  3729. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3730. * E<extruder> (-1 for the bed)
  3731. * C<cycles>
  3732. */
  3733. inline void gcode_M303() {
  3734. int e = code_seen('E') ? code_value_short() : 0;
  3735. int c = code_seen('C') ? code_value_short() : 5;
  3736. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3737. PID_autotune(temp, e, c);
  3738. }
  3739. #ifdef SCARA
  3740. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3741. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3742. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3743. if (IsRunning()) {
  3744. //gcode_get_destination(); // For X Y Z E F
  3745. delta[X_AXIS] = delta_x;
  3746. delta[Y_AXIS] = delta_y;
  3747. calculate_SCARA_forward_Transform(delta);
  3748. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3749. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3750. prepare_move();
  3751. //ok_to_send();
  3752. return true;
  3753. }
  3754. return false;
  3755. }
  3756. /**
  3757. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3758. */
  3759. inline bool gcode_M360() {
  3760. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3761. return SCARA_move_to_cal(0, 120);
  3762. }
  3763. /**
  3764. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3765. */
  3766. inline bool gcode_M361() {
  3767. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3768. return SCARA_move_to_cal(90, 130);
  3769. }
  3770. /**
  3771. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3772. */
  3773. inline bool gcode_M362() {
  3774. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3775. return SCARA_move_to_cal(60, 180);
  3776. }
  3777. /**
  3778. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3779. */
  3780. inline bool gcode_M363() {
  3781. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3782. return SCARA_move_to_cal(50, 90);
  3783. }
  3784. /**
  3785. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3786. */
  3787. inline bool gcode_M364() {
  3788. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3789. return SCARA_move_to_cal(45, 135);
  3790. }
  3791. /**
  3792. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3793. */
  3794. inline void gcode_M365() {
  3795. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3796. if (code_seen(axis_codes[i])) {
  3797. axis_scaling[i] = code_value();
  3798. }
  3799. }
  3800. }
  3801. #endif // SCARA
  3802. #ifdef EXT_SOLENOID
  3803. void enable_solenoid(uint8_t num) {
  3804. switch(num) {
  3805. case 0:
  3806. OUT_WRITE(SOL0_PIN, HIGH);
  3807. break;
  3808. #if HAS_SOLENOID_1
  3809. case 1:
  3810. OUT_WRITE(SOL1_PIN, HIGH);
  3811. break;
  3812. #endif
  3813. #if HAS_SOLENOID_2
  3814. case 2:
  3815. OUT_WRITE(SOL2_PIN, HIGH);
  3816. break;
  3817. #endif
  3818. #if HAS_SOLENOID_3
  3819. case 3:
  3820. OUT_WRITE(SOL3_PIN, HIGH);
  3821. break;
  3822. #endif
  3823. default:
  3824. SERIAL_ECHO_START;
  3825. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3826. break;
  3827. }
  3828. }
  3829. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3830. void disable_all_solenoids() {
  3831. OUT_WRITE(SOL0_PIN, LOW);
  3832. OUT_WRITE(SOL1_PIN, LOW);
  3833. OUT_WRITE(SOL2_PIN, LOW);
  3834. OUT_WRITE(SOL3_PIN, LOW);
  3835. }
  3836. /**
  3837. * M380: Enable solenoid on the active extruder
  3838. */
  3839. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3840. /**
  3841. * M381: Disable all solenoids
  3842. */
  3843. inline void gcode_M381() { disable_all_solenoids(); }
  3844. #endif // EXT_SOLENOID
  3845. /**
  3846. * M400: Finish all moves
  3847. */
  3848. inline void gcode_M400() { st_synchronize(); }
  3849. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3850. #ifdef SERVO_ENDSTOPS
  3851. void raise_z_for_servo() {
  3852. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3853. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3854. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  3855. }
  3856. #endif
  3857. /**
  3858. * M401: Engage Z Servo endstop if available
  3859. */
  3860. inline void gcode_M401() {
  3861. #ifdef SERVO_ENDSTOPS
  3862. raise_z_for_servo();
  3863. #endif
  3864. deploy_z_probe();
  3865. }
  3866. /**
  3867. * M402: Retract Z Servo endstop if enabled
  3868. */
  3869. inline void gcode_M402() {
  3870. #ifdef SERVO_ENDSTOPS
  3871. raise_z_for_servo();
  3872. #endif
  3873. stow_z_probe(false);
  3874. }
  3875. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3876. #ifdef FILAMENT_SENSOR
  3877. /**
  3878. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3879. */
  3880. inline void gcode_M404() {
  3881. #if HAS_FILWIDTH
  3882. if (code_seen('W')) {
  3883. filament_width_nominal = code_value();
  3884. }
  3885. else {
  3886. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3887. SERIAL_PROTOCOLLN(filament_width_nominal);
  3888. }
  3889. #endif
  3890. }
  3891. /**
  3892. * M405: Turn on filament sensor for control
  3893. */
  3894. inline void gcode_M405() {
  3895. if (code_seen('D')) meas_delay_cm = code_value();
  3896. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3897. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3898. int temp_ratio = widthFil_to_size_ratio();
  3899. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3900. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3901. delay_index1 = delay_index2 = 0;
  3902. }
  3903. filament_sensor = true;
  3904. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3905. //SERIAL_PROTOCOL(filament_width_meas);
  3906. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3907. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3908. }
  3909. /**
  3910. * M406: Turn off filament sensor for control
  3911. */
  3912. inline void gcode_M406() { filament_sensor = false; }
  3913. /**
  3914. * M407: Get measured filament diameter on serial output
  3915. */
  3916. inline void gcode_M407() {
  3917. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3918. SERIAL_PROTOCOLLN(filament_width_meas);
  3919. }
  3920. #endif // FILAMENT_SENSOR
  3921. /**
  3922. * M410: Quickstop - Abort all planned moves
  3923. *
  3924. * This will stop the carriages mid-move, so most likely they
  3925. * will be out of sync with the stepper position after this.
  3926. */
  3927. inline void gcode_M410() { quickStop(); }
  3928. #ifdef MESH_BED_LEVELING
  3929. /**
  3930. * M420: Enable/Disable Mesh Bed Leveling
  3931. */
  3932. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3933. /**
  3934. * M421: Set a single Mesh Bed Leveling Z coordinate
  3935. */
  3936. inline void gcode_M421() {
  3937. float x, y, z;
  3938. bool err = false, hasX, hasY, hasZ;
  3939. if ((hasX = code_seen('X'))) x = code_value();
  3940. if ((hasY = code_seen('Y'))) y = code_value();
  3941. if ((hasZ = code_seen('Z'))) z = code_value();
  3942. if (!hasX || !hasY || !hasZ) {
  3943. SERIAL_ERROR_START;
  3944. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3945. err = true;
  3946. }
  3947. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3948. SERIAL_ERROR_START;
  3949. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3950. err = true;
  3951. }
  3952. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3953. }
  3954. #endif
  3955. /**
  3956. * M428: Set home_offset based on the distance between the
  3957. * current_position and the nearest "reference point."
  3958. * If an axis is past center its endstop position
  3959. * is the reference-point. Otherwise it uses 0. This allows
  3960. * the Z offset to be set near the bed when using a max endstop.
  3961. *
  3962. * M428 can't be used more than 2cm away from 0 or an endstop.
  3963. *
  3964. * Use M206 to set these values directly.
  3965. */
  3966. inline void gcode_M428() {
  3967. bool err = false;
  3968. float new_offs[3], new_pos[3];
  3969. memcpy(new_pos, current_position, sizeof(new_pos));
  3970. memcpy(new_offs, home_offset, sizeof(new_offs));
  3971. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3972. if (axis_known_position[i]) {
  3973. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3974. diff = new_pos[i] - base;
  3975. if (diff > -20 && diff < 20) {
  3976. new_offs[i] -= diff;
  3977. new_pos[i] = base;
  3978. }
  3979. else {
  3980. SERIAL_ERROR_START;
  3981. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3982. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3983. #if HAS_BUZZER
  3984. enqueuecommands_P(PSTR("M300 S40 P200"));
  3985. #endif
  3986. err = true;
  3987. break;
  3988. }
  3989. }
  3990. }
  3991. if (!err) {
  3992. memcpy(current_position, new_pos, sizeof(new_pos));
  3993. memcpy(home_offset, new_offs, sizeof(new_offs));
  3994. sync_plan_position();
  3995. LCD_ALERTMESSAGEPGM("Offset applied.");
  3996. #if HAS_BUZZER
  3997. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3998. #endif
  3999. }
  4000. }
  4001. /**
  4002. * M500: Store settings in EEPROM
  4003. */
  4004. inline void gcode_M500() {
  4005. Config_StoreSettings();
  4006. }
  4007. /**
  4008. * M501: Read settings from EEPROM
  4009. */
  4010. inline void gcode_M501() {
  4011. Config_RetrieveSettings();
  4012. }
  4013. /**
  4014. * M502: Revert to default settings
  4015. */
  4016. inline void gcode_M502() {
  4017. Config_ResetDefault();
  4018. }
  4019. /**
  4020. * M503: print settings currently in memory
  4021. */
  4022. inline void gcode_M503() {
  4023. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4024. }
  4025. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4026. /**
  4027. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4028. */
  4029. inline void gcode_M540() {
  4030. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4031. }
  4032. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4033. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4034. inline void gcode_SET_Z_PROBE_OFFSET() {
  4035. float value;
  4036. if (code_seen('Z')) {
  4037. value = code_value();
  4038. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4039. zprobe_zoffset = value;
  4040. SERIAL_ECHO_START;
  4041. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4042. SERIAL_EOL;
  4043. }
  4044. else {
  4045. SERIAL_ECHO_START;
  4046. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4047. SERIAL_ECHOPGM(MSG_Z_MIN);
  4048. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4049. SERIAL_ECHOPGM(MSG_Z_MAX);
  4050. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4051. SERIAL_EOL;
  4052. }
  4053. }
  4054. else {
  4055. SERIAL_ECHO_START;
  4056. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4057. SERIAL_ECHO(zprobe_zoffset);
  4058. SERIAL_EOL;
  4059. }
  4060. }
  4061. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4062. #ifdef FILAMENTCHANGEENABLE
  4063. /**
  4064. * M600: Pause for filament change
  4065. *
  4066. * E[distance] - Retract the filament this far (negative value)
  4067. * Z[distance] - Move the Z axis by this distance
  4068. * X[position] - Move to this X position, with Y
  4069. * Y[position] - Move to this Y position, with X
  4070. * L[distance] - Retract distance for removal (manual reload)
  4071. *
  4072. * Default values are used for omitted arguments.
  4073. *
  4074. */
  4075. inline void gcode_M600() {
  4076. if (degHotend(active_extruder) < extrude_min_temp) {
  4077. SERIAL_ERROR_START;
  4078. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4079. return;
  4080. }
  4081. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4082. for (int i=0; i<NUM_AXIS; i++)
  4083. lastpos[i] = destination[i] = current_position[i];
  4084. #ifdef DELTA
  4085. #define RUNPLAN calculate_delta(destination); \
  4086. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4087. #else
  4088. #define RUNPLAN line_to_destination();
  4089. #endif
  4090. //retract by E
  4091. if (code_seen('E')) destination[E_AXIS] += code_value();
  4092. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4093. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4094. #endif
  4095. RUNPLAN;
  4096. //lift Z
  4097. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4098. #ifdef FILAMENTCHANGE_ZADD
  4099. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4100. #endif
  4101. RUNPLAN;
  4102. //move xy
  4103. if (code_seen('X')) destination[X_AXIS] = code_value();
  4104. #ifdef FILAMENTCHANGE_XPOS
  4105. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4106. #endif
  4107. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4108. #ifdef FILAMENTCHANGE_YPOS
  4109. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4110. #endif
  4111. RUNPLAN;
  4112. if (code_seen('L')) destination[E_AXIS] += code_value();
  4113. #ifdef FILAMENTCHANGE_FINALRETRACT
  4114. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4115. #endif
  4116. RUNPLAN;
  4117. //finish moves
  4118. st_synchronize();
  4119. //disable extruder steppers so filament can be removed
  4120. disable_e0();
  4121. disable_e1();
  4122. disable_e2();
  4123. disable_e3();
  4124. delay(100);
  4125. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4126. millis_t next_tick = 0;
  4127. while (!lcd_clicked()) {
  4128. #ifndef AUTO_FILAMENT_CHANGE
  4129. millis_t ms = millis();
  4130. if (ms >= next_tick) {
  4131. lcd_quick_feedback();
  4132. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4133. }
  4134. manage_heater();
  4135. manage_inactivity(true);
  4136. lcd_update();
  4137. #else
  4138. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4139. destination[E_AXIS] = current_position[E_AXIS];
  4140. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4141. st_synchronize();
  4142. #endif
  4143. } // while(!lcd_clicked)
  4144. lcd_quick_feedback(); // click sound feedback
  4145. #ifdef AUTO_FILAMENT_CHANGE
  4146. current_position[E_AXIS] = 0;
  4147. st_synchronize();
  4148. #endif
  4149. //return to normal
  4150. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4151. #ifdef FILAMENTCHANGE_FINALRETRACT
  4152. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4153. #endif
  4154. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4155. plan_set_e_position(current_position[E_AXIS]);
  4156. RUNPLAN; //should do nothing
  4157. lcd_reset_alert_level();
  4158. #ifdef DELTA
  4159. // Move XYZ to starting position, then E
  4160. calculate_delta(lastpos);
  4161. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4162. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4163. #else
  4164. // Move XY to starting position, then Z, then E
  4165. destination[X_AXIS] = lastpos[X_AXIS];
  4166. destination[Y_AXIS] = lastpos[Y_AXIS];
  4167. line_to_destination();
  4168. destination[Z_AXIS] = lastpos[Z_AXIS];
  4169. line_to_destination();
  4170. destination[E_AXIS] = lastpos[E_AXIS];
  4171. line_to_destination();
  4172. #endif
  4173. #ifdef FILAMENT_RUNOUT_SENSOR
  4174. filrunoutEnqueued = false;
  4175. #endif
  4176. }
  4177. #endif // FILAMENTCHANGEENABLE
  4178. #ifdef DUAL_X_CARRIAGE
  4179. /**
  4180. * M605: Set dual x-carriage movement mode
  4181. *
  4182. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4183. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4184. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4185. * millimeters x-offset and an optional differential hotend temperature of
  4186. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4187. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4188. *
  4189. * Note: the X axis should be homed after changing dual x-carriage mode.
  4190. */
  4191. inline void gcode_M605() {
  4192. st_synchronize();
  4193. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4194. switch(dual_x_carriage_mode) {
  4195. case DXC_DUPLICATION_MODE:
  4196. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4197. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4198. SERIAL_ECHO_START;
  4199. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4200. SERIAL_CHAR(' ');
  4201. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4202. SERIAL_CHAR(',');
  4203. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4204. SERIAL_CHAR(' ');
  4205. SERIAL_ECHO(duplicate_extruder_x_offset);
  4206. SERIAL_CHAR(',');
  4207. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4208. break;
  4209. case DXC_FULL_CONTROL_MODE:
  4210. case DXC_AUTO_PARK_MODE:
  4211. break;
  4212. default:
  4213. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4214. break;
  4215. }
  4216. active_extruder_parked = false;
  4217. extruder_duplication_enabled = false;
  4218. delayed_move_time = 0;
  4219. }
  4220. #endif // DUAL_X_CARRIAGE
  4221. /**
  4222. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4223. */
  4224. inline void gcode_M907() {
  4225. #if HAS_DIGIPOTSS
  4226. for (int i=0;i<NUM_AXIS;i++)
  4227. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4228. if (code_seen('B')) digipot_current(4, code_value());
  4229. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4230. #endif
  4231. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4232. if (code_seen('X')) digipot_current(0, code_value());
  4233. #endif
  4234. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4235. if (code_seen('Z')) digipot_current(1, code_value());
  4236. #endif
  4237. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4238. if (code_seen('E')) digipot_current(2, code_value());
  4239. #endif
  4240. #ifdef DIGIPOT_I2C
  4241. // this one uses actual amps in floating point
  4242. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4243. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4244. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4245. #endif
  4246. }
  4247. #if HAS_DIGIPOTSS
  4248. /**
  4249. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4250. */
  4251. inline void gcode_M908() {
  4252. digitalPotWrite(
  4253. code_seen('P') ? code_value() : 0,
  4254. code_seen('S') ? code_value() : 0
  4255. );
  4256. }
  4257. #endif // HAS_DIGIPOTSS
  4258. #if HAS_MICROSTEPS
  4259. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4260. inline void gcode_M350() {
  4261. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4262. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4263. if(code_seen('B')) microstep_mode(4,code_value());
  4264. microstep_readings();
  4265. }
  4266. /**
  4267. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4268. * S# determines MS1 or MS2, X# sets the pin high/low.
  4269. */
  4270. inline void gcode_M351() {
  4271. if (code_seen('S')) switch(code_value_short()) {
  4272. case 1:
  4273. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4274. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4275. break;
  4276. case 2:
  4277. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4278. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4279. break;
  4280. }
  4281. microstep_readings();
  4282. }
  4283. #endif // HAS_MICROSTEPS
  4284. /**
  4285. * M999: Restart after being stopped
  4286. */
  4287. inline void gcode_M999() {
  4288. Running = true;
  4289. lcd_reset_alert_level();
  4290. gcode_LastN = Stopped_gcode_LastN;
  4291. FlushSerialRequestResend();
  4292. }
  4293. /**
  4294. * T0-T3: Switch tool, usually switching extruders
  4295. *
  4296. * F[mm/min] Set the movement feedrate
  4297. */
  4298. inline void gcode_T(uint8_t tmp_extruder) {
  4299. if (tmp_extruder >= EXTRUDERS) {
  4300. SERIAL_ECHO_START;
  4301. SERIAL_CHAR('T');
  4302. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4303. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4304. }
  4305. else {
  4306. target_extruder = tmp_extruder;
  4307. #if EXTRUDERS > 1
  4308. bool make_move = false;
  4309. #endif
  4310. if (code_seen('F')) {
  4311. #if EXTRUDERS > 1
  4312. make_move = true;
  4313. #endif
  4314. float next_feedrate = code_value();
  4315. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4316. }
  4317. #if EXTRUDERS > 1
  4318. if (tmp_extruder != active_extruder) {
  4319. // Save current position to return to after applying extruder offset
  4320. set_destination_to_current();
  4321. #ifdef DUAL_X_CARRIAGE
  4322. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4323. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4324. // Park old head: 1) raise 2) move to park position 3) lower
  4325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4326. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4327. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4328. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4329. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4330. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4331. st_synchronize();
  4332. }
  4333. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4334. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4335. extruder_offset[Y_AXIS][active_extruder] +
  4336. extruder_offset[Y_AXIS][tmp_extruder];
  4337. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4338. extruder_offset[Z_AXIS][active_extruder] +
  4339. extruder_offset[Z_AXIS][tmp_extruder];
  4340. active_extruder = tmp_extruder;
  4341. // This function resets the max/min values - the current position may be overwritten below.
  4342. set_axis_is_at_home(X_AXIS);
  4343. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4344. current_position[X_AXIS] = inactive_extruder_x_pos;
  4345. inactive_extruder_x_pos = destination[X_AXIS];
  4346. }
  4347. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4348. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4349. if (active_extruder == 0 || active_extruder_parked)
  4350. current_position[X_AXIS] = inactive_extruder_x_pos;
  4351. else
  4352. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4353. inactive_extruder_x_pos = destination[X_AXIS];
  4354. extruder_duplication_enabled = false;
  4355. }
  4356. else {
  4357. // record raised toolhead position for use by unpark
  4358. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4359. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4360. active_extruder_parked = true;
  4361. delayed_move_time = 0;
  4362. }
  4363. #else // !DUAL_X_CARRIAGE
  4364. // Offset extruder (only by XY)
  4365. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4366. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4367. // Set the new active extruder and position
  4368. active_extruder = tmp_extruder;
  4369. #endif // !DUAL_X_CARRIAGE
  4370. #ifdef DELTA
  4371. sync_plan_position_delta();
  4372. #else
  4373. sync_plan_position();
  4374. #endif
  4375. // Move to the old position if 'F' was in the parameters
  4376. if (make_move && IsRunning()) prepare_move();
  4377. }
  4378. #ifdef EXT_SOLENOID
  4379. st_synchronize();
  4380. disable_all_solenoids();
  4381. enable_solenoid_on_active_extruder();
  4382. #endif // EXT_SOLENOID
  4383. #endif // EXTRUDERS > 1
  4384. SERIAL_ECHO_START;
  4385. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4386. SERIAL_PROTOCOLLN((int)active_extruder);
  4387. }
  4388. }
  4389. /**
  4390. * Process a single command and dispatch it to its handler
  4391. * This is called from the main loop()
  4392. */
  4393. void process_next_command() {
  4394. current_command = command_queue[cmd_queue_index_r];
  4395. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4396. SERIAL_ECHO_START;
  4397. SERIAL_ECHOLN(current_command);
  4398. }
  4399. // Sanitize the current command:
  4400. // - Skip leading spaces
  4401. // - Bypass N[0-9][0-9]*[ ]*
  4402. // - Overwrite * with nul to mark the end
  4403. while (*current_command == ' ') ++current_command;
  4404. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4405. current_command += 2; // skip N[-0-9]
  4406. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4407. while (*current_command == ' ') ++current_command; // skip [ ]*
  4408. }
  4409. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4410. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4411. // Get the command code, which must be G, M, or T
  4412. char command_code = *current_command;
  4413. // The code must have a numeric value
  4414. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4415. int codenum; // define ahead of goto
  4416. // Bail early if there's no code
  4417. if (!code_is_good) goto ExitUnknownCommand;
  4418. // Args pointer optimizes code_seen, especially those taking XYZEF
  4419. // This wastes a little cpu on commands that expect no arguments.
  4420. current_command_args = current_command;
  4421. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4422. while (*current_command_args == ' ') ++current_command_args;
  4423. // Interpret the code int
  4424. seen_pointer = current_command;
  4425. codenum = code_value_short();
  4426. // Handle a known G, M, or T
  4427. switch(command_code) {
  4428. case 'G': switch (codenum) {
  4429. // G0, G1
  4430. case 0:
  4431. case 1:
  4432. gcode_G0_G1();
  4433. break;
  4434. // G2, G3
  4435. #ifndef SCARA
  4436. case 2: // G2 - CW ARC
  4437. case 3: // G3 - CCW ARC
  4438. gcode_G2_G3(codenum == 2);
  4439. break;
  4440. #endif
  4441. // G4 Dwell
  4442. case 4:
  4443. gcode_G4();
  4444. break;
  4445. #ifdef FWRETRACT
  4446. case 10: // G10: retract
  4447. case 11: // G11: retract_recover
  4448. gcode_G10_G11(codenum == 10);
  4449. break;
  4450. #endif //FWRETRACT
  4451. case 28: // G28: Home all axes, one at a time
  4452. gcode_G28();
  4453. break;
  4454. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4455. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4456. gcode_G29();
  4457. break;
  4458. #endif
  4459. #ifdef ENABLE_AUTO_BED_LEVELING
  4460. #ifndef Z_PROBE_SLED
  4461. case 30: // G30 Single Z Probe
  4462. gcode_G30();
  4463. break;
  4464. #else // Z_PROBE_SLED
  4465. case 31: // G31: dock the sled
  4466. case 32: // G32: undock the sled
  4467. dock_sled(codenum == 31);
  4468. break;
  4469. #endif // Z_PROBE_SLED
  4470. #endif // ENABLE_AUTO_BED_LEVELING
  4471. case 90: // G90
  4472. relative_mode = false;
  4473. break;
  4474. case 91: // G91
  4475. relative_mode = true;
  4476. break;
  4477. case 92: // G92
  4478. gcode_G92();
  4479. break;
  4480. }
  4481. break;
  4482. case 'M': switch (codenum) {
  4483. #ifdef ULTIPANEL
  4484. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4485. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4486. gcode_M0_M1();
  4487. break;
  4488. #endif // ULTIPANEL
  4489. case 17:
  4490. gcode_M17();
  4491. break;
  4492. #ifdef SDSUPPORT
  4493. case 20: // M20 - list SD card
  4494. gcode_M20(); break;
  4495. case 21: // M21 - init SD card
  4496. gcode_M21(); break;
  4497. case 22: //M22 - release SD card
  4498. gcode_M22(); break;
  4499. case 23: //M23 - Select file
  4500. gcode_M23(); break;
  4501. case 24: //M24 - Start SD print
  4502. gcode_M24(); break;
  4503. case 25: //M25 - Pause SD print
  4504. gcode_M25(); break;
  4505. case 26: //M26 - Set SD index
  4506. gcode_M26(); break;
  4507. case 27: //M27 - Get SD status
  4508. gcode_M27(); break;
  4509. case 28: //M28 - Start SD write
  4510. gcode_M28(); break;
  4511. case 29: //M29 - Stop SD write
  4512. gcode_M29(); break;
  4513. case 30: //M30 <filename> Delete File
  4514. gcode_M30(); break;
  4515. case 32: //M32 - Select file and start SD print
  4516. gcode_M32(); break;
  4517. #ifdef LONG_FILENAME_HOST_SUPPORT
  4518. case 33: //M33 - Get the long full path to a file or folder
  4519. gcode_M33(); break;
  4520. #endif // LONG_FILENAME_HOST_SUPPORT
  4521. case 928: //M928 - Start SD write
  4522. gcode_M928(); break;
  4523. #endif //SDSUPPORT
  4524. case 31: //M31 take time since the start of the SD print or an M109 command
  4525. gcode_M31();
  4526. break;
  4527. case 42: //M42 -Change pin status via gcode
  4528. gcode_M42();
  4529. break;
  4530. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4531. case 48: // M48 Z-Probe repeatability
  4532. gcode_M48();
  4533. break;
  4534. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4535. case 104: // M104
  4536. gcode_M104();
  4537. break;
  4538. case 111: // M111: Set debug level
  4539. gcode_M111();
  4540. break;
  4541. case 112: // M112: Emergency Stop
  4542. gcode_M112();
  4543. break;
  4544. case 140: // M140: Set bed temp
  4545. gcode_M140();
  4546. break;
  4547. case 105: // M105: Read current temperature
  4548. gcode_M105();
  4549. return; // "ok" already printed
  4550. case 109: // M109: Wait for temperature
  4551. gcode_M109();
  4552. break;
  4553. #if HAS_TEMP_BED
  4554. case 190: // M190: Wait for bed heater to reach target
  4555. gcode_M190();
  4556. break;
  4557. #endif // HAS_TEMP_BED
  4558. #if HAS_FAN
  4559. case 106: // M106: Fan On
  4560. gcode_M106();
  4561. break;
  4562. case 107: // M107: Fan Off
  4563. gcode_M107();
  4564. break;
  4565. #endif // HAS_FAN
  4566. #ifdef BARICUDA
  4567. // PWM for HEATER_1_PIN
  4568. #if HAS_HEATER_1
  4569. case 126: // M126: valve open
  4570. gcode_M126();
  4571. break;
  4572. case 127: // M127: valve closed
  4573. gcode_M127();
  4574. break;
  4575. #endif // HAS_HEATER_1
  4576. // PWM for HEATER_2_PIN
  4577. #if HAS_HEATER_2
  4578. case 128: // M128: valve open
  4579. gcode_M128();
  4580. break;
  4581. case 129: // M129: valve closed
  4582. gcode_M129();
  4583. break;
  4584. #endif // HAS_HEATER_2
  4585. #endif // BARICUDA
  4586. #if HAS_POWER_SWITCH
  4587. case 80: // M80: Turn on Power Supply
  4588. gcode_M80();
  4589. break;
  4590. #endif // HAS_POWER_SWITCH
  4591. case 81: // M81: Turn off Power, including Power Supply, if possible
  4592. gcode_M81();
  4593. break;
  4594. case 82:
  4595. gcode_M82();
  4596. break;
  4597. case 83:
  4598. gcode_M83();
  4599. break;
  4600. case 18: // (for compatibility)
  4601. case 84: // M84
  4602. gcode_M18_M84();
  4603. break;
  4604. case 85: // M85
  4605. gcode_M85();
  4606. break;
  4607. case 92: // M92: Set the steps-per-unit for one or more axes
  4608. gcode_M92();
  4609. break;
  4610. case 115: // M115: Report capabilities
  4611. gcode_M115();
  4612. break;
  4613. case 117: // M117: Set LCD message text, if possible
  4614. gcode_M117();
  4615. break;
  4616. case 114: // M114: Report current position
  4617. gcode_M114();
  4618. break;
  4619. case 120: // M120: Enable endstops
  4620. gcode_M120();
  4621. break;
  4622. case 121: // M121: Disable endstops
  4623. gcode_M121();
  4624. break;
  4625. case 119: // M119: Report endstop states
  4626. gcode_M119();
  4627. break;
  4628. #ifdef ULTIPANEL
  4629. case 145: // M145: Set material heatup parameters
  4630. gcode_M145();
  4631. break;
  4632. #endif
  4633. #ifdef BLINKM
  4634. case 150: // M150
  4635. gcode_M150();
  4636. break;
  4637. #endif //BLINKM
  4638. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4639. gcode_M200();
  4640. break;
  4641. case 201: // M201
  4642. gcode_M201();
  4643. break;
  4644. #if 0 // Not used for Sprinter/grbl gen6
  4645. case 202: // M202
  4646. gcode_M202();
  4647. break;
  4648. #endif
  4649. case 203: // M203 max feedrate mm/sec
  4650. gcode_M203();
  4651. break;
  4652. case 204: // M204 acclereration S normal moves T filmanent only moves
  4653. gcode_M204();
  4654. break;
  4655. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4656. gcode_M205();
  4657. break;
  4658. case 206: // M206 additional homing offset
  4659. gcode_M206();
  4660. break;
  4661. #ifdef DELTA
  4662. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4663. gcode_M665();
  4664. break;
  4665. #endif
  4666. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4667. case 666: // M666 set delta / dual endstop adjustment
  4668. gcode_M666();
  4669. break;
  4670. #endif
  4671. #ifdef FWRETRACT
  4672. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4673. gcode_M207();
  4674. break;
  4675. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4676. gcode_M208();
  4677. break;
  4678. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4679. gcode_M209();
  4680. break;
  4681. #endif // FWRETRACT
  4682. #if EXTRUDERS > 1
  4683. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4684. gcode_M218();
  4685. break;
  4686. #endif
  4687. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4688. gcode_M220();
  4689. break;
  4690. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4691. gcode_M221();
  4692. break;
  4693. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4694. gcode_M226();
  4695. break;
  4696. #if NUM_SERVOS > 0
  4697. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4698. gcode_M280();
  4699. break;
  4700. #endif // NUM_SERVOS > 0
  4701. #if HAS_BUZZER
  4702. case 300: // M300 - Play beep tone
  4703. gcode_M300();
  4704. break;
  4705. #endif // HAS_BUZZER
  4706. #ifdef PIDTEMP
  4707. case 301: // M301
  4708. gcode_M301();
  4709. break;
  4710. #endif // PIDTEMP
  4711. #ifdef PIDTEMPBED
  4712. case 304: // M304
  4713. gcode_M304();
  4714. break;
  4715. #endif // PIDTEMPBED
  4716. #if defined(CHDK) || HAS_PHOTOGRAPH
  4717. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4718. gcode_M240();
  4719. break;
  4720. #endif // CHDK || PHOTOGRAPH_PIN
  4721. #ifdef HAS_LCD_CONTRAST
  4722. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4723. gcode_M250();
  4724. break;
  4725. #endif // HAS_LCD_CONTRAST
  4726. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4727. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4728. gcode_M302();
  4729. break;
  4730. #endif // PREVENT_DANGEROUS_EXTRUDE
  4731. case 303: // M303 PID autotune
  4732. gcode_M303();
  4733. break;
  4734. #ifdef SCARA
  4735. case 360: // M360 SCARA Theta pos1
  4736. if (gcode_M360()) return;
  4737. break;
  4738. case 361: // M361 SCARA Theta pos2
  4739. if (gcode_M361()) return;
  4740. break;
  4741. case 362: // M362 SCARA Psi pos1
  4742. if (gcode_M362()) return;
  4743. break;
  4744. case 363: // M363 SCARA Psi pos2
  4745. if (gcode_M363()) return;
  4746. break;
  4747. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4748. if (gcode_M364()) return;
  4749. break;
  4750. case 365: // M365 Set SCARA scaling for X Y Z
  4751. gcode_M365();
  4752. break;
  4753. #endif // SCARA
  4754. case 400: // M400 finish all moves
  4755. gcode_M400();
  4756. break;
  4757. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4758. case 401:
  4759. gcode_M401();
  4760. break;
  4761. case 402:
  4762. gcode_M402();
  4763. break;
  4764. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4765. #ifdef FILAMENT_SENSOR
  4766. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4767. gcode_M404();
  4768. break;
  4769. case 405: //M405 Turn on filament sensor for control
  4770. gcode_M405();
  4771. break;
  4772. case 406: //M406 Turn off filament sensor for control
  4773. gcode_M406();
  4774. break;
  4775. case 407: //M407 Display measured filament diameter
  4776. gcode_M407();
  4777. break;
  4778. #endif // FILAMENT_SENSOR
  4779. case 410: // M410 quickstop - Abort all the planned moves.
  4780. gcode_M410();
  4781. break;
  4782. #ifdef MESH_BED_LEVELING
  4783. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4784. gcode_M420();
  4785. break;
  4786. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4787. gcode_M421();
  4788. break;
  4789. #endif
  4790. case 428: // M428 Apply current_position to home_offset
  4791. gcode_M428();
  4792. break;
  4793. case 500: // M500 Store settings in EEPROM
  4794. gcode_M500();
  4795. break;
  4796. case 501: // M501 Read settings from EEPROM
  4797. gcode_M501();
  4798. break;
  4799. case 502: // M502 Revert to default settings
  4800. gcode_M502();
  4801. break;
  4802. case 503: // M503 print settings currently in memory
  4803. gcode_M503();
  4804. break;
  4805. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4806. case 540:
  4807. gcode_M540();
  4808. break;
  4809. #endif
  4810. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4811. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4812. gcode_SET_Z_PROBE_OFFSET();
  4813. break;
  4814. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4815. #ifdef FILAMENTCHANGEENABLE
  4816. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4817. gcode_M600();
  4818. break;
  4819. #endif // FILAMENTCHANGEENABLE
  4820. #ifdef DUAL_X_CARRIAGE
  4821. case 605:
  4822. gcode_M605();
  4823. break;
  4824. #endif // DUAL_X_CARRIAGE
  4825. case 907: // M907 Set digital trimpot motor current using axis codes.
  4826. gcode_M907();
  4827. break;
  4828. #if HAS_DIGIPOTSS
  4829. case 908: // M908 Control digital trimpot directly.
  4830. gcode_M908();
  4831. break;
  4832. #endif // HAS_DIGIPOTSS
  4833. #if HAS_MICROSTEPS
  4834. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4835. gcode_M350();
  4836. break;
  4837. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4838. gcode_M351();
  4839. break;
  4840. #endif // HAS_MICROSTEPS
  4841. case 999: // M999: Restart after being Stopped
  4842. gcode_M999();
  4843. break;
  4844. }
  4845. break;
  4846. case 'T':
  4847. gcode_T(codenum);
  4848. break;
  4849. default: code_is_good = false;
  4850. }
  4851. ExitUnknownCommand:
  4852. // Still unknown command? Throw an error
  4853. if (!code_is_good) unknown_command_error();
  4854. ok_to_send();
  4855. }
  4856. void FlushSerialRequestResend() {
  4857. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4858. MYSERIAL.flush();
  4859. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4860. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4861. ok_to_send();
  4862. }
  4863. void ok_to_send() {
  4864. refresh_cmd_timeout();
  4865. #ifdef SDSUPPORT
  4866. if (fromsd[cmd_queue_index_r]) return;
  4867. #endif
  4868. SERIAL_PROTOCOLPGM(MSG_OK);
  4869. #ifdef ADVANCED_OK
  4870. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4871. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4872. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4873. #endif
  4874. SERIAL_EOL;
  4875. }
  4876. void clamp_to_software_endstops(float target[3]) {
  4877. if (min_software_endstops) {
  4878. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4879. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4880. float negative_z_offset = 0;
  4881. #ifdef ENABLE_AUTO_BED_LEVELING
  4882. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4883. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4884. #endif
  4885. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4886. }
  4887. if (max_software_endstops) {
  4888. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4889. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4890. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4891. }
  4892. }
  4893. #ifdef DELTA
  4894. void recalc_delta_settings(float radius, float diagonal_rod) {
  4895. delta_tower1_x = -SIN_60 * radius; // front left tower
  4896. delta_tower1_y = -COS_60 * radius;
  4897. delta_tower2_x = SIN_60 * radius; // front right tower
  4898. delta_tower2_y = -COS_60 * radius;
  4899. delta_tower3_x = 0.0; // back middle tower
  4900. delta_tower3_y = radius;
  4901. delta_diagonal_rod_2 = sq(diagonal_rod);
  4902. }
  4903. void calculate_delta(float cartesian[3]) {
  4904. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4905. - sq(delta_tower1_x-cartesian[X_AXIS])
  4906. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4907. ) + cartesian[Z_AXIS];
  4908. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4909. - sq(delta_tower2_x-cartesian[X_AXIS])
  4910. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4911. ) + cartesian[Z_AXIS];
  4912. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4913. - sq(delta_tower3_x-cartesian[X_AXIS])
  4914. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4915. ) + cartesian[Z_AXIS];
  4916. /*
  4917. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4918. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4919. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4920. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4921. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4922. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4923. */
  4924. }
  4925. #ifdef ENABLE_AUTO_BED_LEVELING
  4926. // Adjust print surface height by linear interpolation over the bed_level array.
  4927. void adjust_delta(float cartesian[3]) {
  4928. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4929. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4930. float h1 = 0.001 - half, h2 = half - 0.001,
  4931. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4932. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4933. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4934. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4935. z1 = bed_level[floor_x + half][floor_y + half],
  4936. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4937. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4938. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4939. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4940. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4941. offset = (1 - ratio_x) * left + ratio_x * right;
  4942. delta[X_AXIS] += offset;
  4943. delta[Y_AXIS] += offset;
  4944. delta[Z_AXIS] += offset;
  4945. /*
  4946. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4947. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4948. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4949. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4950. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4951. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4952. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4953. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4954. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4955. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4956. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4957. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4958. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4959. */
  4960. }
  4961. #endif // ENABLE_AUTO_BED_LEVELING
  4962. #endif // DELTA
  4963. #ifdef MESH_BED_LEVELING
  4964. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4965. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4966. {
  4967. if (!mbl.active) {
  4968. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4969. set_current_to_destination();
  4970. return;
  4971. }
  4972. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4973. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4974. int ix = mbl.select_x_index(x);
  4975. int iy = mbl.select_y_index(y);
  4976. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4977. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4978. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4979. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4980. if (pix == ix && piy == iy) {
  4981. // Start and end on same mesh square
  4982. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4983. set_current_to_destination();
  4984. return;
  4985. }
  4986. float nx, ny, ne, normalized_dist;
  4987. if (ix > pix && (x_splits) & BIT(ix)) {
  4988. nx = mbl.get_x(ix);
  4989. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4990. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4991. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4992. x_splits ^= BIT(ix);
  4993. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4994. nx = mbl.get_x(pix);
  4995. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4996. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4997. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4998. x_splits ^= BIT(pix);
  4999. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5000. ny = mbl.get_y(iy);
  5001. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5002. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5003. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5004. y_splits ^= BIT(iy);
  5005. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5006. ny = mbl.get_y(piy);
  5007. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5008. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5009. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5010. y_splits ^= BIT(piy);
  5011. } else {
  5012. // Already split on a border
  5013. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5014. set_current_to_destination();
  5015. return;
  5016. }
  5017. // Do the split and look for more borders
  5018. destination[X_AXIS] = nx;
  5019. destination[Y_AXIS] = ny;
  5020. destination[E_AXIS] = ne;
  5021. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5022. destination[X_AXIS] = x;
  5023. destination[Y_AXIS] = y;
  5024. destination[E_AXIS] = e;
  5025. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5026. }
  5027. #endif // MESH_BED_LEVELING
  5028. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5029. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5030. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5031. float de = dest_e - curr_e;
  5032. if (de) {
  5033. if (degHotend(active_extruder) < extrude_min_temp) {
  5034. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5035. SERIAL_ECHO_START;
  5036. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5037. }
  5038. #ifdef PREVENT_LENGTHY_EXTRUDE
  5039. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5040. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5041. SERIAL_ECHO_START;
  5042. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5043. }
  5044. #endif
  5045. }
  5046. }
  5047. #endif // PREVENT_DANGEROUS_EXTRUDE
  5048. #if defined(DELTA) || defined(SCARA)
  5049. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5050. float difference[NUM_AXIS];
  5051. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5052. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5053. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5054. if (cartesian_mm < 0.000001) return false;
  5055. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5056. int steps = max(1, int(delta_segments_per_second * seconds));
  5057. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5058. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5059. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5060. for (int s = 1; s <= steps; s++) {
  5061. float fraction = float(s) / float(steps);
  5062. for (int8_t i = 0; i < NUM_AXIS; i++)
  5063. target[i] = current_position[i] + difference[i] * fraction;
  5064. calculate_delta(target);
  5065. #ifdef ENABLE_AUTO_BED_LEVELING
  5066. adjust_delta(target);
  5067. #endif
  5068. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5069. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5070. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5071. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5072. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5073. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5074. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5075. }
  5076. return true;
  5077. }
  5078. #endif // DELTA || SCARA
  5079. #ifdef SCARA
  5080. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5081. #endif
  5082. #ifdef DUAL_X_CARRIAGE
  5083. inline bool prepare_move_dual_x_carriage() {
  5084. if (active_extruder_parked) {
  5085. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5086. // move duplicate extruder into correct duplication position.
  5087. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5088. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5089. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5090. sync_plan_position();
  5091. st_synchronize();
  5092. extruder_duplication_enabled = true;
  5093. active_extruder_parked = false;
  5094. }
  5095. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5096. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5097. // This is a travel move (with no extrusion)
  5098. // Skip it, but keep track of the current position
  5099. // (so it can be used as the start of the next non-travel move)
  5100. if (delayed_move_time != 0xFFFFFFFFUL) {
  5101. set_current_to_destination();
  5102. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5103. delayed_move_time = millis();
  5104. return false;
  5105. }
  5106. }
  5107. delayed_move_time = 0;
  5108. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5109. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5112. active_extruder_parked = false;
  5113. }
  5114. }
  5115. return true;
  5116. }
  5117. #endif // DUAL_X_CARRIAGE
  5118. #if !defined(DELTA) && !defined(SCARA)
  5119. inline bool prepare_move_cartesian() {
  5120. // Do not use feedrate_multiplier for E or Z only moves
  5121. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5122. line_to_destination();
  5123. }
  5124. else {
  5125. #ifdef MESH_BED_LEVELING
  5126. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5127. return false;
  5128. #else
  5129. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5130. #endif
  5131. }
  5132. return true;
  5133. }
  5134. #endif // !DELTA && !SCARA
  5135. /**
  5136. * Prepare a single move and get ready for the next one
  5137. *
  5138. * (This may call plan_buffer_line several times to put
  5139. * smaller moves into the planner for DELTA or SCARA.)
  5140. */
  5141. void prepare_move() {
  5142. clamp_to_software_endstops(destination);
  5143. refresh_cmd_timeout();
  5144. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5145. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5146. #endif
  5147. #ifdef SCARA
  5148. if (!prepare_move_scara(destination)) return;
  5149. #elif defined(DELTA)
  5150. if (!prepare_move_delta(destination)) return;
  5151. #endif
  5152. #ifdef DUAL_X_CARRIAGE
  5153. if (!prepare_move_dual_x_carriage()) return;
  5154. #endif
  5155. #if !defined(DELTA) && !defined(SCARA)
  5156. if (!prepare_move_cartesian()) return;
  5157. #endif
  5158. set_current_to_destination();
  5159. }
  5160. /**
  5161. * Plan an arc in 2 dimensions
  5162. *
  5163. * The arc is approximated by generating many small linear segments.
  5164. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5165. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5166. * larger segments will tend to be more efficient. Your slicer should have
  5167. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5168. */
  5169. void plan_arc(
  5170. float target[NUM_AXIS], // Destination position
  5171. float *offset, // Center of rotation relative to current_position
  5172. uint8_t clockwise // Clockwise?
  5173. ) {
  5174. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5175. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5176. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5177. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5178. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5179. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5180. r_axis1 = -offset[Y_AXIS],
  5181. rt_axis0 = target[X_AXIS] - center_axis0,
  5182. rt_axis1 = target[Y_AXIS] - center_axis1;
  5183. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5184. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  5185. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  5186. if (clockwise) { angular_travel -= RADIANS(360); }
  5187. // Make a circle if the angular rotation is 0
  5188. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5189. angular_travel += RADIANS(360);
  5190. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  5191. if (mm_of_travel < 0.001) { return; }
  5192. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5193. if (segments == 0) segments = 1;
  5194. float theta_per_segment = angular_travel/segments;
  5195. float linear_per_segment = linear_travel/segments;
  5196. float extruder_per_segment = extruder_travel/segments;
  5197. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5198. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5199. r_T = [cos(phi) -sin(phi);
  5200. sin(phi) cos(phi] * r ;
  5201. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5202. defined from the circle center to the initial position. Each line segment is formed by successive
  5203. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5204. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5205. all double numbers are single precision on the Arduino. (True double precision will not have
  5206. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5207. tool precision in some cases. Therefore, arc path correction is implemented.
  5208. Small angle approximation may be used to reduce computation overhead further. This approximation
  5209. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5210. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5211. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5212. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5213. issue for CNC machines with the single precision Arduino calculations.
  5214. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5215. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5216. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5217. This is important when there are successive arc motions.
  5218. */
  5219. // Vector rotation matrix values
  5220. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  5221. float sin_T = theta_per_segment;
  5222. float arc_target[NUM_AXIS];
  5223. float sin_Ti;
  5224. float cos_Ti;
  5225. float r_axisi;
  5226. uint16_t i;
  5227. int8_t count = 0;
  5228. // Initialize the linear axis
  5229. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5230. // Initialize the extruder axis
  5231. arc_target[E_AXIS] = current_position[E_AXIS];
  5232. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  5233. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5234. if (count < N_ARC_CORRECTION) {
  5235. // Apply vector rotation matrix to previous r_axis0 / 1
  5236. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  5237. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  5238. r_axis1 = r_axisi;
  5239. count++;
  5240. }
  5241. else {
  5242. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5243. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5244. cos_Ti = cos(i*theta_per_segment);
  5245. sin_Ti = sin(i*theta_per_segment);
  5246. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  5247. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  5248. count = 0;
  5249. }
  5250. // Update arc_target location
  5251. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5252. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5253. arc_target[Z_AXIS] += linear_per_segment;
  5254. arc_target[E_AXIS] += extruder_per_segment;
  5255. clamp_to_software_endstops(arc_target);
  5256. #if defined(DELTA) || defined(SCARA)
  5257. calculate_delta(arc_target);
  5258. #ifdef ENABLE_AUTO_BED_LEVELING
  5259. adjust_delta(arc_target);
  5260. #endif
  5261. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5262. #else
  5263. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5264. #endif
  5265. }
  5266. // Ensure last segment arrives at target location.
  5267. #if defined(DELTA) || defined(SCARA)
  5268. calculate_delta(target);
  5269. #ifdef ENABLE_AUTO_BED_LEVELING
  5270. adjust_delta(target);
  5271. #endif
  5272. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5273. #else
  5274. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5275. #endif
  5276. // As far as the parser is concerned, the position is now == target. In reality the
  5277. // motion control system might still be processing the action and the real tool position
  5278. // in any intermediate location.
  5279. set_current_to_destination();
  5280. }
  5281. #if HAS_CONTROLLERFAN
  5282. void controllerFan() {
  5283. static millis_t lastMotor = 0; // Last time a motor was turned on
  5284. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5285. millis_t ms = millis();
  5286. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5287. lastMotorCheck = ms;
  5288. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5289. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5290. #if EXTRUDERS > 1
  5291. || E1_ENABLE_READ == E_ENABLE_ON
  5292. #if HAS_X2_ENABLE
  5293. || X2_ENABLE_READ == X_ENABLE_ON
  5294. #endif
  5295. #if EXTRUDERS > 2
  5296. || E2_ENABLE_READ == E_ENABLE_ON
  5297. #if EXTRUDERS > 3
  5298. || E3_ENABLE_READ == E_ENABLE_ON
  5299. #endif
  5300. #endif
  5301. #endif
  5302. ) {
  5303. lastMotor = ms; //... set time to NOW so the fan will turn on
  5304. }
  5305. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5306. // allows digital or PWM fan output to be used (see M42 handling)
  5307. digitalWrite(CONTROLLERFAN_PIN, speed);
  5308. analogWrite(CONTROLLERFAN_PIN, speed);
  5309. }
  5310. }
  5311. #endif // HAS_CONTROLLERFAN
  5312. #ifdef SCARA
  5313. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5314. // Perform forward kinematics, and place results in delta[3]
  5315. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5316. float x_sin, x_cos, y_sin, y_cos;
  5317. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5318. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5319. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5320. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5321. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5322. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5323. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5324. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5325. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5326. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5327. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5328. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5329. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5330. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5331. }
  5332. void calculate_delta(float cartesian[3]){
  5333. //reverse kinematics.
  5334. // Perform reversed kinematics, and place results in delta[3]
  5335. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5336. float SCARA_pos[2];
  5337. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5338. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5339. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5340. #if (Linkage_1 == Linkage_2)
  5341. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5342. #else
  5343. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5344. #endif
  5345. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5346. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5347. SCARA_K2 = Linkage_2 * SCARA_S2;
  5348. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5349. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5350. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5351. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5352. delta[Z_AXIS] = cartesian[Z_AXIS];
  5353. /*
  5354. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5355. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5356. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5357. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5358. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5359. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5360. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5361. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5362. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5363. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5364. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5365. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5366. SERIAL_EOL;
  5367. */
  5368. }
  5369. #endif // SCARA
  5370. #ifdef TEMP_STAT_LEDS
  5371. static bool red_led = false;
  5372. static millis_t next_status_led_update_ms = 0;
  5373. void handle_status_leds(void) {
  5374. float max_temp = 0.0;
  5375. if (millis() > next_status_led_update_ms) {
  5376. next_status_led_update_ms += 500; // Update every 0.5s
  5377. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5378. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5379. #if HAS_TEMP_BED
  5380. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5381. #endif
  5382. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5383. if (new_led != red_led) {
  5384. red_led = new_led;
  5385. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5386. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5387. }
  5388. }
  5389. }
  5390. #endif
  5391. void enable_all_steppers() {
  5392. enable_x();
  5393. enable_y();
  5394. enable_z();
  5395. enable_e0();
  5396. enable_e1();
  5397. enable_e2();
  5398. enable_e3();
  5399. }
  5400. void disable_all_steppers() {
  5401. disable_x();
  5402. disable_y();
  5403. disable_z();
  5404. disable_e0();
  5405. disable_e1();
  5406. disable_e2();
  5407. disable_e3();
  5408. }
  5409. /**
  5410. * Standard idle routine keeps the machine alive
  5411. */
  5412. void idle() {
  5413. manage_heater();
  5414. manage_inactivity();
  5415. lcd_update();
  5416. }
  5417. /**
  5418. * Manage several activities:
  5419. * - Check for Filament Runout
  5420. * - Keep the command buffer full
  5421. * - Check for maximum inactive time between commands
  5422. * - Check for maximum inactive time between stepper commands
  5423. * - Check if pin CHDK needs to go LOW
  5424. * - Check for KILL button held down
  5425. * - Check for HOME button held down
  5426. * - Check if cooling fan needs to be switched on
  5427. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5428. */
  5429. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5430. #if HAS_FILRUNOUT
  5431. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5432. filrunout();
  5433. #endif
  5434. if (commands_in_queue < BUFSIZE - 1) get_command();
  5435. millis_t ms = millis();
  5436. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5437. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5438. && !ignore_stepper_queue && !blocks_queued()) {
  5439. #if DISABLE_X == true
  5440. disable_x();
  5441. #endif
  5442. #if DISABLE_Y == true
  5443. disable_y();
  5444. #endif
  5445. #if DISABLE_Z == true
  5446. disable_z();
  5447. #endif
  5448. #if DISABLE_E == true
  5449. disable_e0();
  5450. disable_e1();
  5451. disable_e2();
  5452. disable_e3();
  5453. #endif
  5454. }
  5455. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5456. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5457. chdkActive = false;
  5458. WRITE(CHDK, LOW);
  5459. }
  5460. #endif
  5461. #if HAS_KILL
  5462. // Check if the kill button was pressed and wait just in case it was an accidental
  5463. // key kill key press
  5464. // -------------------------------------------------------------------------------
  5465. static int killCount = 0; // make the inactivity button a bit less responsive
  5466. const int KILL_DELAY = 750;
  5467. if (!READ(KILL_PIN))
  5468. killCount++;
  5469. else if (killCount > 0)
  5470. killCount--;
  5471. // Exceeded threshold and we can confirm that it was not accidental
  5472. // KILL the machine
  5473. // ----------------------------------------------------------------
  5474. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5475. #endif
  5476. #if HAS_HOME
  5477. // Check to see if we have to home, use poor man's debouncer
  5478. // ---------------------------------------------------------
  5479. static int homeDebounceCount = 0; // poor man's debouncing count
  5480. const int HOME_DEBOUNCE_DELAY = 750;
  5481. if (!READ(HOME_PIN)) {
  5482. if (!homeDebounceCount) {
  5483. enqueuecommands_P(PSTR("G28"));
  5484. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5485. }
  5486. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5487. homeDebounceCount++;
  5488. else
  5489. homeDebounceCount = 0;
  5490. }
  5491. #endif
  5492. #if HAS_CONTROLLERFAN
  5493. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5494. #endif
  5495. #ifdef EXTRUDER_RUNOUT_PREVENT
  5496. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5497. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5498. bool oldstatus;
  5499. switch(active_extruder) {
  5500. case 0:
  5501. oldstatus = E0_ENABLE_READ;
  5502. enable_e0();
  5503. break;
  5504. #if EXTRUDERS > 1
  5505. case 1:
  5506. oldstatus = E1_ENABLE_READ;
  5507. enable_e1();
  5508. break;
  5509. #if EXTRUDERS > 2
  5510. case 2:
  5511. oldstatus = E2_ENABLE_READ;
  5512. enable_e2();
  5513. break;
  5514. #if EXTRUDERS > 3
  5515. case 3:
  5516. oldstatus = E3_ENABLE_READ;
  5517. enable_e3();
  5518. break;
  5519. #endif
  5520. #endif
  5521. #endif
  5522. }
  5523. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5524. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5525. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5526. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5527. current_position[E_AXIS] = oldepos;
  5528. destination[E_AXIS] = oldedes;
  5529. plan_set_e_position(oldepos);
  5530. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5531. st_synchronize();
  5532. switch(active_extruder) {
  5533. case 0:
  5534. E0_ENABLE_WRITE(oldstatus);
  5535. break;
  5536. #if EXTRUDERS > 1
  5537. case 1:
  5538. E1_ENABLE_WRITE(oldstatus);
  5539. break;
  5540. #if EXTRUDERS > 2
  5541. case 2:
  5542. E2_ENABLE_WRITE(oldstatus);
  5543. break;
  5544. #if EXTRUDERS > 3
  5545. case 3:
  5546. E3_ENABLE_WRITE(oldstatus);
  5547. break;
  5548. #endif
  5549. #endif
  5550. #endif
  5551. }
  5552. }
  5553. #endif
  5554. #ifdef DUAL_X_CARRIAGE
  5555. // handle delayed move timeout
  5556. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5557. // travel moves have been received so enact them
  5558. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5559. set_destination_to_current();
  5560. prepare_move();
  5561. }
  5562. #endif
  5563. #ifdef TEMP_STAT_LEDS
  5564. handle_status_leds();
  5565. #endif
  5566. check_axes_activity();
  5567. }
  5568. void kill(const char *lcd_msg) {
  5569. #ifdef ULTRA_LCD
  5570. lcd_setalertstatuspgm(lcd_msg);
  5571. #endif
  5572. cli(); // Stop interrupts
  5573. disable_all_heaters();
  5574. disable_all_steppers();
  5575. #if HAS_POWER_SWITCH
  5576. pinMode(PS_ON_PIN, INPUT);
  5577. #endif
  5578. SERIAL_ERROR_START;
  5579. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5580. // FMC small patch to update the LCD before ending
  5581. sei(); // enable interrupts
  5582. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5583. cli(); // disable interrupts
  5584. suicide();
  5585. while(1) { /* Intentionally left empty */ } // Wait for reset
  5586. }
  5587. #ifdef FILAMENT_RUNOUT_SENSOR
  5588. void filrunout() {
  5589. if (!filrunoutEnqueued) {
  5590. filrunoutEnqueued = true;
  5591. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5592. st_synchronize();
  5593. }
  5594. }
  5595. #endif // FILAMENT_RUNOUT_SENSOR
  5596. #ifdef FAST_PWM_FAN
  5597. void setPwmFrequency(uint8_t pin, int val) {
  5598. val &= 0x07;
  5599. switch (digitalPinToTimer(pin)) {
  5600. #if defined(TCCR0A)
  5601. case TIMER0A:
  5602. case TIMER0B:
  5603. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5604. // TCCR0B |= val;
  5605. break;
  5606. #endif
  5607. #if defined(TCCR1A)
  5608. case TIMER1A:
  5609. case TIMER1B:
  5610. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5611. // TCCR1B |= val;
  5612. break;
  5613. #endif
  5614. #if defined(TCCR2)
  5615. case TIMER2:
  5616. case TIMER2:
  5617. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5618. TCCR2 |= val;
  5619. break;
  5620. #endif
  5621. #if defined(TCCR2A)
  5622. case TIMER2A:
  5623. case TIMER2B:
  5624. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5625. TCCR2B |= val;
  5626. break;
  5627. #endif
  5628. #if defined(TCCR3A)
  5629. case TIMER3A:
  5630. case TIMER3B:
  5631. case TIMER3C:
  5632. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5633. TCCR3B |= val;
  5634. break;
  5635. #endif
  5636. #if defined(TCCR4A)
  5637. case TIMER4A:
  5638. case TIMER4B:
  5639. case TIMER4C:
  5640. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5641. TCCR4B |= val;
  5642. break;
  5643. #endif
  5644. #if defined(TCCR5A)
  5645. case TIMER5A:
  5646. case TIMER5B:
  5647. case TIMER5C:
  5648. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5649. TCCR5B |= val;
  5650. break;
  5651. #endif
  5652. }
  5653. }
  5654. #endif // FAST_PWM_FAN
  5655. void Stop() {
  5656. disable_all_heaters();
  5657. if (IsRunning()) {
  5658. Running = false;
  5659. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5660. SERIAL_ERROR_START;
  5661. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5662. LCD_MESSAGEPGM(MSG_STOPPED);
  5663. }
  5664. }
  5665. /**
  5666. * Set target_extruder from the T parameter or the active_extruder
  5667. *
  5668. * Returns TRUE if the target is invalid
  5669. */
  5670. bool setTargetedHotend(int code) {
  5671. target_extruder = active_extruder;
  5672. if (code_seen('T')) {
  5673. target_extruder = code_value_short();
  5674. if (target_extruder >= EXTRUDERS) {
  5675. SERIAL_ECHO_START;
  5676. SERIAL_CHAR('M');
  5677. SERIAL_ECHO(code);
  5678. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5679. SERIAL_ECHOLN(target_extruder);
  5680. return true;
  5681. }
  5682. }
  5683. return false;
  5684. }
  5685. float calculate_volumetric_multiplier(float diameter) {
  5686. if (!volumetric_enabled || diameter == 0) return 1.0;
  5687. float d2 = diameter * 0.5;
  5688. return 1.0 / (M_PI * d2 * d2);
  5689. }
  5690. void calculate_volumetric_multipliers() {
  5691. for (int i=0; i<EXTRUDERS; i++)
  5692. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5693. }