My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

configuration_store.cpp 51KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V33"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V33 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * Mesh bed leveling: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x 81) +288
  72. *
  73. * AUTO BED LEVELING 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR (or placeholder): 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 bed_level_grid[][] (float x9, up to float x256) +988
  85. *
  86. * DELTA (if deltabot): 48 bytes
  87. * 348 M666 XYZ endstop_adj (float x3)
  88. * 360 M665 R delta_radius (float)
  89. * 364 M665 L delta_diagonal_rod (float)
  90. * 368 M665 S delta_segments_per_second (float)
  91. * 372 M665 A delta_diagonal_rod_trim[A] (float)
  92. * 376 M665 B delta_diagonal_rod_trim[B] (float)
  93. * 380 M665 C delta_diagonal_rod_trim[C] (float)
  94. * 384 M665 I delta_tower_angle_trim[A] (float)
  95. * 388 M665 J delta_tower_angle_trim[B] (float)
  96. * 392 M665 K delta_tower_angle_trim[C] (float)
  97. *
  98. * Z_DUAL_ENDSTOPS (if not deltabot): 48 bytes
  99. * 348 M666 Z z_endstop_adj (float)
  100. * --- dummy data (float x11)
  101. *
  102. * ULTIPANEL: 6 bytes
  103. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  104. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  105. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  106. *
  107. * PIDTEMP: 66 bytes
  108. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  109. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  110. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  111. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  112. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  113. * 488 M301 L lpq_len (int)
  114. *
  115. * PIDTEMPBED: 12 bytes
  116. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  117. *
  118. * DOGLCD: 2 bytes
  119. * 502 M250 C lcd_contrast (int)
  120. *
  121. * FWRETRACT: 29 bytes
  122. * 504 M209 S autoretract_enabled (bool)
  123. * 505 M207 S retract_length (float)
  124. * 509 M207 W retract_length_swap (float)
  125. * 513 M207 F retract_feedrate_mm_s (float)
  126. * 517 M207 Z retract_zlift (float)
  127. * 521 M208 S retract_recover_length (float)
  128. * 525 M208 W retract_recover_length_swap (float)
  129. * 529 M208 F retract_recover_feedrate_mm_s (float)
  130. *
  131. * Volumetric Extrusion: 21 bytes
  132. * 533 M200 D volumetric_enabled (bool)
  133. * 534 M200 T D filament_size (float x5) (T0..3)
  134. *
  135. * TMC2130 Stepper Current: 20 bytes
  136. * 554 M906 X stepperX current (uint16_t)
  137. * 556 M906 Y stepperY current (uint16_t)
  138. * 558 M906 Z stepperZ current (uint16_t)
  139. * 560 M906 X2 stepperX2 current (uint16_t)
  140. * 562 M906 Y2 stepperY2 current (uint16_t)
  141. * 564 M906 Z2 stepperZ2 current (uint16_t)
  142. * 566 M906 E0 stepperE0 current (uint16_t)
  143. * 568 M906 E1 stepperE1 current (uint16_t)
  144. * 570 M906 E2 stepperE2 current (uint16_t)
  145. * 572 M906 E3 stepperE3 current (uint16_t)
  146. * 576 M906 E4 stepperE4 current (uint16_t)
  147. *
  148. * 580 Minimum end-point
  149. * 1901 (580 + 36 + 9 + 288 + 988) Maximum end-point
  150. */
  151. #include "Marlin.h"
  152. #include "language.h"
  153. #include "endstops.h"
  154. #include "planner.h"
  155. #include "temperature.h"
  156. #include "ultralcd.h"
  157. #include "configuration_store.h"
  158. #if ENABLED(MESH_BED_LEVELING)
  159. #include "mesh_bed_leveling.h"
  160. #endif
  161. #if ENABLED(HAVE_TMC2130)
  162. #include "stepper_indirection.h"
  163. #endif
  164. #if ENABLED(AUTO_BED_LEVELING_UBL)
  165. #include "ubl.h"
  166. #endif
  167. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  168. extern void bed_level_virt_interpolate();
  169. #endif
  170. /**
  171. * Post-process after Retrieve or Reset
  172. */
  173. void Config_Postprocess() {
  174. // steps per s2 needs to be updated to agree with units per s2
  175. planner.reset_acceleration_rates();
  176. // Make sure delta kinematics are updated before refreshing the
  177. // planner position so the stepper counts will be set correctly.
  178. #if ENABLED(DELTA)
  179. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  180. #endif
  181. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  182. // and init stepper.count[], planner.position[] with current_position
  183. planner.refresh_positioning();
  184. #if ENABLED(PIDTEMP)
  185. thermalManager.updatePID();
  186. #endif
  187. calculate_volumetric_multipliers();
  188. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  189. // Software endstops depend on home_offset
  190. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  191. #endif
  192. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  193. set_z_fade_height(
  194. //#if ENABLED(AUTO_BED_LEVELING_UBL)
  195. // ubl.state.g29_correction_fade_height
  196. //#else
  197. planner.z_fade_height
  198. //#endif
  199. );
  200. #endif
  201. }
  202. #if ENABLED(EEPROM_SETTINGS)
  203. uint16_t eeprom_checksum;
  204. const char version[4] = EEPROM_VERSION;
  205. bool eeprom_write_error;
  206. void _EEPROM_writeData(int &pos, const uint8_t* value, uint16_t size) {
  207. if (eeprom_write_error) return;
  208. while (size--) {
  209. uint8_t * const p = (uint8_t * const)pos;
  210. const uint8_t v = *value;
  211. // EEPROM has only ~100,000 write cycles,
  212. // so only write bytes that have changed!
  213. if (v != eeprom_read_byte(p)) {
  214. eeprom_write_byte(p, v);
  215. if (eeprom_read_byte(p) != v) {
  216. SERIAL_ECHO_START;
  217. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  218. eeprom_write_error = true;
  219. return;
  220. }
  221. }
  222. eeprom_checksum += v;
  223. pos++;
  224. value++;
  225. };
  226. }
  227. bool eeprom_read_error;
  228. void _EEPROM_readData(int &pos, uint8_t* value, uint16_t size) {
  229. do {
  230. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  231. if (!eeprom_read_error) *value = c;
  232. eeprom_checksum += c;
  233. pos++;
  234. value++;
  235. } while (--size);
  236. }
  237. #define DUMMY_PID_VALUE 3000.0f
  238. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  239. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  240. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  241. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  242. #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
  243. /**
  244. * M500 - Store Configuration
  245. */
  246. bool Config_StoreSettings() {
  247. float dummy = 0.0f;
  248. char ver[4] = "000";
  249. EEPROM_START();
  250. eeprom_write_error = false;
  251. EEPROM_WRITE(ver); // invalidate data first
  252. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  253. eeprom_checksum = 0; // clear before first "real data"
  254. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  255. EEPROM_WRITE(esteppers);
  256. EEPROM_WRITE(planner.axis_steps_per_mm);
  257. EEPROM_WRITE(planner.max_feedrate_mm_s);
  258. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  259. EEPROM_WRITE(planner.acceleration);
  260. EEPROM_WRITE(planner.retract_acceleration);
  261. EEPROM_WRITE(planner.travel_acceleration);
  262. EEPROM_WRITE(planner.min_feedrate_mm_s);
  263. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  264. EEPROM_WRITE(planner.min_segment_time);
  265. EEPROM_WRITE(planner.max_jerk);
  266. #if ENABLED(NO_WORKSPACE_OFFSETS)
  267. float home_offset[XYZ] = { 0 };
  268. #endif
  269. EEPROM_WRITE(home_offset);
  270. #if HOTENDS > 1
  271. // Skip hotend 0 which must be 0
  272. for (uint8_t e = 1; e < HOTENDS; e++)
  273. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  274. #endif
  275. //
  276. // General Leveling
  277. //
  278. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  279. EEPROM_WRITE(planner.z_fade_height);
  280. #else
  281. dummy = 10.0;
  282. EEPROM_WRITE(dummy);
  283. #endif
  284. //
  285. // Mesh Bed Leveling
  286. //
  287. #if ENABLED(MESH_BED_LEVELING)
  288. // Compile time test that sizeof(mbl.z_values) is as expected
  289. typedef char c_assert[(sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  290. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  291. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  292. EEPROM_WRITE(leveling_is_on);
  293. EEPROM_WRITE(mbl.z_offset);
  294. EEPROM_WRITE(mesh_num_x);
  295. EEPROM_WRITE(mesh_num_y);
  296. EEPROM_WRITE(mbl.z_values);
  297. #else
  298. // For disabled MBL write a default mesh
  299. const bool leveling_is_on = false;
  300. dummy = 0.0f;
  301. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  302. EEPROM_WRITE(leveling_is_on);
  303. EEPROM_WRITE(dummy); // z_offset
  304. EEPROM_WRITE(mesh_num_x);
  305. EEPROM_WRITE(mesh_num_y);
  306. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  307. #endif // MESH_BED_LEVELING
  308. #if !HAS_BED_PROBE
  309. float zprobe_zoffset = 0;
  310. #endif
  311. EEPROM_WRITE(zprobe_zoffset);
  312. //
  313. // Planar Bed Leveling matrix
  314. //
  315. #if ABL_PLANAR
  316. EEPROM_WRITE(planner.bed_level_matrix);
  317. #else
  318. dummy = 0.0;
  319. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  320. #endif
  321. //
  322. // Bilinear Auto Bed Leveling
  323. //
  324. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  325. // Compile time test that sizeof(bed_level_grid) is as expected
  326. typedef char c_assert[(sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  327. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  328. EEPROM_WRITE(grid_max_x); // 1 byte
  329. EEPROM_WRITE(grid_max_y); // 1 byte
  330. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  331. EEPROM_WRITE(bilinear_start); // 2 ints
  332. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  333. #else
  334. // For disabled Bilinear Grid write an empty 3x3 grid
  335. const uint8_t grid_max_x = 3, grid_max_y = 3;
  336. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  337. dummy = 0.0f;
  338. EEPROM_WRITE(grid_max_x);
  339. EEPROM_WRITE(grid_max_y);
  340. EEPROM_WRITE(bilinear_grid_spacing);
  341. EEPROM_WRITE(bilinear_start);
  342. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  343. #endif // AUTO_BED_LEVELING_BILINEAR
  344. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  345. #if ENABLED(DELTA)
  346. EEPROM_WRITE(endstop_adj); // 3 floats
  347. EEPROM_WRITE(delta_radius); // 1 float
  348. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  349. EEPROM_WRITE(delta_segments_per_second); // 1 float
  350. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  351. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  352. #elif ENABLED(Z_DUAL_ENDSTOPS)
  353. EEPROM_WRITE(z_endstop_adj); // 1 float
  354. dummy = 0.0f;
  355. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  356. #else
  357. dummy = 0.0f;
  358. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  359. #endif
  360. #if DISABLED(ULTIPANEL)
  361. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  362. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  363. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  364. #endif // !ULTIPANEL
  365. EEPROM_WRITE(lcd_preheat_hotend_temp);
  366. EEPROM_WRITE(lcd_preheat_bed_temp);
  367. EEPROM_WRITE(lcd_preheat_fan_speed);
  368. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  369. #if ENABLED(PIDTEMP)
  370. if (e < HOTENDS) {
  371. EEPROM_WRITE(PID_PARAM(Kp, e));
  372. EEPROM_WRITE(PID_PARAM(Ki, e));
  373. EEPROM_WRITE(PID_PARAM(Kd, e));
  374. #if ENABLED(PID_EXTRUSION_SCALING)
  375. EEPROM_WRITE(PID_PARAM(Kc, e));
  376. #else
  377. dummy = 1.0f; // 1.0 = default kc
  378. EEPROM_WRITE(dummy);
  379. #endif
  380. }
  381. else
  382. #endif // !PIDTEMP
  383. {
  384. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  385. EEPROM_WRITE(dummy); // Kp
  386. dummy = 0.0f;
  387. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  388. }
  389. } // Hotends Loop
  390. #if DISABLED(PID_EXTRUSION_SCALING)
  391. int lpq_len = 20;
  392. #endif
  393. EEPROM_WRITE(lpq_len);
  394. #if DISABLED(PIDTEMPBED)
  395. dummy = DUMMY_PID_VALUE;
  396. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  397. #else
  398. EEPROM_WRITE(thermalManager.bedKp);
  399. EEPROM_WRITE(thermalManager.bedKi);
  400. EEPROM_WRITE(thermalManager.bedKd);
  401. #endif
  402. #if !HAS_LCD_CONTRAST
  403. const int lcd_contrast = 32;
  404. #endif
  405. EEPROM_WRITE(lcd_contrast);
  406. #if ENABLED(FWRETRACT)
  407. EEPROM_WRITE(autoretract_enabled);
  408. EEPROM_WRITE(retract_length);
  409. #if EXTRUDERS > 1
  410. EEPROM_WRITE(retract_length_swap);
  411. #else
  412. dummy = 0.0f;
  413. EEPROM_WRITE(dummy);
  414. #endif
  415. EEPROM_WRITE(retract_feedrate_mm_s);
  416. EEPROM_WRITE(retract_zlift);
  417. EEPROM_WRITE(retract_recover_length);
  418. #if EXTRUDERS > 1
  419. EEPROM_WRITE(retract_recover_length_swap);
  420. #else
  421. dummy = 0.0f;
  422. EEPROM_WRITE(dummy);
  423. #endif
  424. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  425. #endif // FWRETRACT
  426. EEPROM_WRITE(volumetric_enabled);
  427. // Save filament sizes
  428. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  429. if (q < COUNT(filament_size)) dummy = filament_size[q];
  430. EEPROM_WRITE(dummy);
  431. }
  432. // Save TCM2130 Configuration, and placeholder values
  433. uint16_t val;
  434. #if ENABLED(HAVE_TMC2130)
  435. #if ENABLED(X_IS_TMC2130)
  436. val = stepperX.getCurrent();
  437. #else
  438. val = 0;
  439. #endif
  440. EEPROM_WRITE(val);
  441. #if ENABLED(Y_IS_TMC2130)
  442. val = stepperY.getCurrent();
  443. #else
  444. val = 0;
  445. #endif
  446. EEPROM_WRITE(val);
  447. #if ENABLED(Z_IS_TMC2130)
  448. val = stepperZ.getCurrent();
  449. #else
  450. val = 0;
  451. #endif
  452. EEPROM_WRITE(val);
  453. #if ENABLED(X2_IS_TMC2130)
  454. val = stepperX2.getCurrent();
  455. #else
  456. val = 0;
  457. #endif
  458. EEPROM_WRITE(val);
  459. #if ENABLED(Y2_IS_TMC2130)
  460. val = stepperY2.getCurrent();
  461. #else
  462. val = 0;
  463. #endif
  464. EEPROM_WRITE(val);
  465. #if ENABLED(Z2_IS_TMC2130)
  466. val = stepperZ2.getCurrent();
  467. #else
  468. val = 0;
  469. #endif
  470. EEPROM_WRITE(val);
  471. #if ENABLED(E0_IS_TMC2130)
  472. val = stepperE0.getCurrent();
  473. #else
  474. val = 0;
  475. #endif
  476. EEPROM_WRITE(val);
  477. #if ENABLED(E1_IS_TMC2130)
  478. val = stepperE1.getCurrent();
  479. #else
  480. val = 0;
  481. #endif
  482. EEPROM_WRITE(val);
  483. #if ENABLED(E2_IS_TMC2130)
  484. val = stepperE2.getCurrent();
  485. #else
  486. val = 0;
  487. #endif
  488. EEPROM_WRITE(val);
  489. #if ENABLED(E3_IS_TMC2130)
  490. val = stepperE3.getCurrent();
  491. #else
  492. val = 0;
  493. #endif
  494. EEPROM_WRITE(val);
  495. #else
  496. val = 0;
  497. for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
  498. #endif
  499. if (!eeprom_write_error) {
  500. const uint16_t final_checksum = eeprom_checksum,
  501. eeprom_size = eeprom_index;
  502. // Write the EEPROM header
  503. eeprom_index = EEPROM_OFFSET;
  504. EEPROM_WRITE(version);
  505. EEPROM_WRITE(final_checksum);
  506. // Report storage size
  507. SERIAL_ECHO_START;
  508. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  509. SERIAL_ECHOLNPGM(" bytes)");
  510. }
  511. #if ENABLED(AUTO_BED_LEVELING_UBL)
  512. ubl.store_state();
  513. if (ubl.state.eeprom_storage_slot >= 0)
  514. ubl.store_mesh(ubl.state.eeprom_storage_slot);
  515. #endif
  516. return !eeprom_write_error;
  517. }
  518. /**
  519. * M501 - Retrieve Configuration
  520. */
  521. bool Config_RetrieveSettings() {
  522. EEPROM_START();
  523. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  524. char stored_ver[4];
  525. EEPROM_READ(stored_ver);
  526. uint16_t stored_checksum;
  527. EEPROM_READ(stored_checksum);
  528. // Version has to match or defaults are used
  529. if (strncmp(version, stored_ver, 3) != 0) {
  530. if (stored_ver[0] != 'V') {
  531. stored_ver[0] = '?';
  532. stored_ver[1] = '\0';
  533. }
  534. SERIAL_ECHO_START;
  535. SERIAL_ECHOPGM("EEPROM version mismatch ");
  536. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  537. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  538. Config_ResetDefault();
  539. }
  540. else {
  541. float dummy = 0;
  542. eeprom_checksum = 0; // clear before reading first "real data"
  543. // Number of esteppers may change
  544. uint8_t esteppers;
  545. EEPROM_READ(esteppers);
  546. // Get only the number of E stepper parameters previously stored
  547. // Any steppers added later are set to their defaults
  548. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  549. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  550. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  551. uint32_t tmp3[XYZ + esteppers];
  552. EEPROM_READ(tmp1);
  553. EEPROM_READ(tmp2);
  554. EEPROM_READ(tmp3);
  555. LOOP_XYZE_N(i) {
  556. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  557. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  558. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  559. }
  560. EEPROM_READ(planner.acceleration);
  561. EEPROM_READ(planner.retract_acceleration);
  562. EEPROM_READ(planner.travel_acceleration);
  563. EEPROM_READ(planner.min_feedrate_mm_s);
  564. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  565. EEPROM_READ(planner.min_segment_time);
  566. EEPROM_READ(planner.max_jerk);
  567. #if ENABLED(NO_WORKSPACE_OFFSETS)
  568. float home_offset[XYZ];
  569. #endif
  570. EEPROM_READ(home_offset);
  571. #if HOTENDS > 1
  572. // Skip hotend 0 which must be 0
  573. for (uint8_t e = 1; e < HOTENDS; e++)
  574. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  575. #endif
  576. //
  577. // General Leveling
  578. //
  579. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  580. EEPROM_READ(planner.z_fade_height);
  581. #else
  582. EEPROM_READ(dummy);
  583. #endif
  584. //
  585. // Mesh (Manual) Bed Leveling
  586. //
  587. bool leveling_is_on;
  588. uint8_t mesh_num_x, mesh_num_y;
  589. EEPROM_READ(leveling_is_on);
  590. EEPROM_READ(dummy);
  591. EEPROM_READ(mesh_num_x);
  592. EEPROM_READ(mesh_num_y);
  593. #if ENABLED(MESH_BED_LEVELING)
  594. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  595. mbl.z_offset = dummy;
  596. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  597. // EEPROM data fits the current mesh
  598. EEPROM_READ(mbl.z_values);
  599. }
  600. else {
  601. // EEPROM data is stale
  602. mbl.reset();
  603. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  604. }
  605. #else
  606. // MBL is disabled - skip the stored data
  607. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  608. #endif // MESH_BED_LEVELING
  609. #if !HAS_BED_PROBE
  610. float zprobe_zoffset = 0;
  611. #endif
  612. EEPROM_READ(zprobe_zoffset);
  613. //
  614. // Planar Bed Leveling matrix
  615. //
  616. #if ABL_PLANAR
  617. EEPROM_READ(planner.bed_level_matrix);
  618. #else
  619. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  620. #endif
  621. //
  622. // Bilinear Auto Bed Leveling
  623. //
  624. uint8_t grid_max_x, grid_max_y;
  625. EEPROM_READ(grid_max_x); // 1 byte
  626. EEPROM_READ(grid_max_y); // 1 byte
  627. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  628. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  629. set_bed_leveling_enabled(false);
  630. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  631. EEPROM_READ(bilinear_start); // 2 ints
  632. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  633. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  634. bed_level_virt_interpolate();
  635. #endif
  636. //set_bed_leveling_enabled(leveling_is_on);
  637. }
  638. else // EEPROM data is stale
  639. #endif // AUTO_BED_LEVELING_BILINEAR
  640. {
  641. // Skip past disabled (or stale) Bilinear Grid data
  642. int bgs[2], bs[2];
  643. EEPROM_READ(bgs);
  644. EEPROM_READ(bs);
  645. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  646. }
  647. #if ENABLED(DELTA)
  648. EEPROM_READ(endstop_adj); // 3 floats
  649. EEPROM_READ(delta_radius); // 1 float
  650. EEPROM_READ(delta_diagonal_rod); // 1 float
  651. EEPROM_READ(delta_segments_per_second); // 1 float
  652. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  653. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  654. #elif ENABLED(Z_DUAL_ENDSTOPS)
  655. EEPROM_READ(z_endstop_adj);
  656. dummy = 0.0f;
  657. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  658. #else
  659. dummy = 0.0f;
  660. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  661. #endif
  662. #if DISABLED(ULTIPANEL)
  663. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  664. #endif
  665. EEPROM_READ(lcd_preheat_hotend_temp);
  666. EEPROM_READ(lcd_preheat_bed_temp);
  667. EEPROM_READ(lcd_preheat_fan_speed);
  668. #if ENABLED(PIDTEMP)
  669. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  670. EEPROM_READ(dummy); // Kp
  671. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  672. // do not need to scale PID values as the values in EEPROM are already scaled
  673. PID_PARAM(Kp, e) = dummy;
  674. EEPROM_READ(PID_PARAM(Ki, e));
  675. EEPROM_READ(PID_PARAM(Kd, e));
  676. #if ENABLED(PID_EXTRUSION_SCALING)
  677. EEPROM_READ(PID_PARAM(Kc, e));
  678. #else
  679. EEPROM_READ(dummy);
  680. #endif
  681. }
  682. else {
  683. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  684. }
  685. }
  686. #else // !PIDTEMP
  687. // 4 x 4 = 16 slots for PID parameters
  688. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  689. #endif // !PIDTEMP
  690. #if DISABLED(PID_EXTRUSION_SCALING)
  691. int lpq_len;
  692. #endif
  693. EEPROM_READ(lpq_len);
  694. #if ENABLED(PIDTEMPBED)
  695. EEPROM_READ(dummy); // bedKp
  696. if (dummy != DUMMY_PID_VALUE) {
  697. thermalManager.bedKp = dummy;
  698. EEPROM_READ(thermalManager.bedKi);
  699. EEPROM_READ(thermalManager.bedKd);
  700. }
  701. #else
  702. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  703. #endif
  704. #if !HAS_LCD_CONTRAST
  705. int lcd_contrast;
  706. #endif
  707. EEPROM_READ(lcd_contrast);
  708. #if ENABLED(FWRETRACT)
  709. EEPROM_READ(autoretract_enabled);
  710. EEPROM_READ(retract_length);
  711. #if EXTRUDERS > 1
  712. EEPROM_READ(retract_length_swap);
  713. #else
  714. EEPROM_READ(dummy);
  715. #endif
  716. EEPROM_READ(retract_feedrate_mm_s);
  717. EEPROM_READ(retract_zlift);
  718. EEPROM_READ(retract_recover_length);
  719. #if EXTRUDERS > 1
  720. EEPROM_READ(retract_recover_length_swap);
  721. #else
  722. EEPROM_READ(dummy);
  723. #endif
  724. EEPROM_READ(retract_recover_feedrate_mm_s);
  725. #endif // FWRETRACT
  726. EEPROM_READ(volumetric_enabled);
  727. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  728. EEPROM_READ(dummy);
  729. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  730. }
  731. uint16_t val;
  732. #if ENABLED(HAVE_TMC2130)
  733. EEPROM_READ(val);
  734. #if ENABLED(X_IS_TMC2130)
  735. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  736. #endif
  737. EEPROM_READ(val);
  738. #if ENABLED(Y_IS_TMC2130)
  739. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  740. #endif
  741. EEPROM_READ(val);
  742. #if ENABLED(Z_IS_TMC2130)
  743. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  744. #endif
  745. EEPROM_READ(val);
  746. #if ENABLED(X2_IS_TMC2130)
  747. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  748. #endif
  749. EEPROM_READ(val);
  750. #if ENABLED(Y2_IS_TMC2130)
  751. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  752. #endif
  753. EEPROM_READ(val);
  754. #if ENABLED(Z2_IS_TMC2130)
  755. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  756. #endif
  757. EEPROM_READ(val);
  758. #if ENABLED(E0_IS_TMC2130)
  759. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  760. #endif
  761. EEPROM_READ(val);
  762. #if ENABLED(E1_IS_TMC2130)
  763. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  764. #endif
  765. EEPROM_READ(val);
  766. #if ENABLED(E2_IS_TMC2130)
  767. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  768. #endif
  769. EEPROM_READ(val);
  770. #if ENABLED(E3_IS_TMC2130)
  771. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  772. #endif
  773. EEPROM_READ(val);
  774. #if ENABLED(E4_IS_TMC2130)
  775. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  776. #endif
  777. #else
  778. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  779. #endif
  780. if (eeprom_checksum == stored_checksum) {
  781. if (eeprom_read_error)
  782. Config_ResetDefault();
  783. else {
  784. Config_Postprocess();
  785. SERIAL_ECHO_START;
  786. SERIAL_ECHO(version);
  787. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  788. SERIAL_ECHOLNPGM(" bytes)");
  789. }
  790. }
  791. else {
  792. SERIAL_ERROR_START;
  793. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  794. Config_ResetDefault();
  795. }
  796. #if ENABLED(AUTO_BED_LEVELING_UBL)
  797. ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  798. // can float up or down a little bit without
  799. // disrupting the Unified Bed Leveling data
  800. ubl.load_state();
  801. SERIAL_ECHOPGM(" UBL ");
  802. if (!ubl.state.active) SERIAL_ECHO("not ");
  803. SERIAL_ECHOLNPGM("active!");
  804. if (!ubl.sanity_check()) {
  805. int tmp_mesh; // We want to preserve whether the UBL System is Active
  806. bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
  807. tmp_mesh = ubl.state.eeprom_storage_slot;
  808. tmp_active = ubl.state.active;
  809. SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
  810. ubl.state = ubl.pre_initialized; // Initialize with the pre_initialized data structure
  811. ubl.state.eeprom_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
  812. ubl.state.active = tmp_active;
  813. }
  814. else {
  815. SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
  816. ubl.state = ubl.pre_initialized;
  817. ubl.reset();
  818. ubl.store_state();
  819. }
  820. if (ubl.state.eeprom_storage_slot >= 0) {
  821. ubl.load_mesh(ubl.state.eeprom_storage_slot);
  822. SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  823. SERIAL_ECHOLNPGM(" loaded from storage.");
  824. }
  825. else {
  826. ubl.reset();
  827. SERIAL_ECHOLNPGM("UBL System reset()");
  828. }
  829. #endif
  830. }
  831. #if ENABLED(EEPROM_CHITCHAT)
  832. Config_PrintSettings();
  833. #endif
  834. return !eeprom_read_error;
  835. }
  836. #else // !EEPROM_SETTINGS
  837. bool Config_StoreSettings() {
  838. SERIAL_ERROR_START;
  839. SERIAL_ERRORLNPGM("EEPROM disabled");
  840. return false;
  841. }
  842. #endif // !EEPROM_SETTINGS
  843. /**
  844. * M502 - Reset Configuration
  845. */
  846. void Config_ResetDefault() {
  847. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  848. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  849. LOOP_XYZE_N(i) {
  850. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  851. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  852. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  853. }
  854. planner.acceleration = DEFAULT_ACCELERATION;
  855. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  856. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  857. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  858. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  859. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  860. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  861. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  862. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  863. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  864. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  865. planner.z_fade_height = 0.0;
  866. #endif
  867. #if DISABLED(NO_WORKSPACE_OFFSETS)
  868. ZERO(home_offset);
  869. #endif
  870. #if HOTENDS > 1
  871. constexpr float tmp4[XYZ][HOTENDS] = {
  872. HOTEND_OFFSET_X,
  873. HOTEND_OFFSET_Y
  874. #ifdef HOTEND_OFFSET_Z
  875. , HOTEND_OFFSET_Z
  876. #else
  877. , { 0 }
  878. #endif
  879. };
  880. static_assert(
  881. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  882. "Offsets for the first hotend must be 0.0."
  883. );
  884. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  885. #endif
  886. // Applies to all MBL and ABL
  887. #if PLANNER_LEVELING
  888. reset_bed_level();
  889. #endif
  890. #if HAS_BED_PROBE
  891. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  892. #endif
  893. #if ENABLED(DELTA)
  894. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  895. drt[ABC] = { DELTA_DIAGONAL_ROD_TRIM_TOWER_1, DELTA_DIAGONAL_ROD_TRIM_TOWER_2, DELTA_DIAGONAL_ROD_TRIM_TOWER_3 },
  896. dta[ABC] = { DELTA_TOWER_ANGLE_TRIM_1, DELTA_TOWER_ANGLE_TRIM_2, DELTA_TOWER_ANGLE_TRIM_3 };
  897. COPY(endstop_adj, adj);
  898. delta_radius = DELTA_RADIUS;
  899. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  900. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  901. COPY(delta_diagonal_rod_trim, drt);
  902. COPY(delta_tower_angle_trim, dta);
  903. #elif ENABLED(Z_DUAL_ENDSTOPS)
  904. float z_endstop_adj =
  905. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  906. Z_DUAL_ENDSTOPS_ADJUSTMENT
  907. #else
  908. 0
  909. #endif
  910. ;
  911. #endif
  912. #if ENABLED(ULTIPANEL)
  913. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  914. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  915. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  916. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  917. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  918. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  919. #endif
  920. #if HAS_LCD_CONTRAST
  921. lcd_contrast = DEFAULT_LCD_CONTRAST;
  922. #endif
  923. #if ENABLED(PIDTEMP)
  924. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  925. HOTEND_LOOP()
  926. #endif
  927. {
  928. PID_PARAM(Kp, e) = DEFAULT_Kp;
  929. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  930. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  931. #if ENABLED(PID_EXTRUSION_SCALING)
  932. PID_PARAM(Kc, e) = DEFAULT_Kc;
  933. #endif
  934. }
  935. #if ENABLED(PID_EXTRUSION_SCALING)
  936. lpq_len = 20; // default last-position-queue size
  937. #endif
  938. #endif // PIDTEMP
  939. #if ENABLED(PIDTEMPBED)
  940. thermalManager.bedKp = DEFAULT_bedKp;
  941. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  942. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  943. #endif
  944. #if ENABLED(FWRETRACT)
  945. autoretract_enabled = false;
  946. retract_length = RETRACT_LENGTH;
  947. #if EXTRUDERS > 1
  948. retract_length_swap = RETRACT_LENGTH_SWAP;
  949. #endif
  950. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  951. retract_zlift = RETRACT_ZLIFT;
  952. retract_recover_length = RETRACT_RECOVER_LENGTH;
  953. #if EXTRUDERS > 1
  954. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  955. #endif
  956. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  957. #endif
  958. volumetric_enabled =
  959. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  960. true
  961. #else
  962. false
  963. #endif
  964. ;
  965. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  966. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  967. endstops.enable_globally(
  968. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  969. (true)
  970. #else
  971. (false)
  972. #endif
  973. );
  974. #if ENABLED(HAVE_TMC2130)
  975. #if ENABLED(X_IS_TMC2130)
  976. stepperX.setCurrent(X_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  977. #endif
  978. #if ENABLED(Y_IS_TMC2130)
  979. stepperY.setCurrent(Y_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  980. #endif
  981. #if ENABLED(Z_IS_TMC2130)
  982. stepperZ.setCurrent(Z_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  983. #endif
  984. #if ENABLED(X2_IS_TMC2130)
  985. stepperX2.setCurrent(X2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  986. #endif
  987. #if ENABLED(Y2_IS_TMC2130)
  988. stepperY2.setCurrent(Y2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  989. #endif
  990. #if ENABLED(Z2_IS_TMC2130)
  991. stepperZ2.setCurrent(Z2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  992. #endif
  993. #if ENABLED(E0_IS_TMC2130)
  994. stepperE0.setCurrent(E0_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  995. #endif
  996. #if ENABLED(E1_IS_TMC2130)
  997. stepperE1.setCurrent(E1_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  998. #endif
  999. #if ENABLED(E2_IS_TMC2130)
  1000. stepperE2.setCurrent(E2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1001. #endif
  1002. #if ENABLED(E3_IS_TMC2130)
  1003. stepperE3.setCurrent(E3_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1004. #endif
  1005. #endif
  1006. Config_Postprocess();
  1007. SERIAL_ECHO_START;
  1008. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1009. }
  1010. #if DISABLED(DISABLE_M503)
  1011. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  1012. /**
  1013. * M503 - Print Configuration
  1014. */
  1015. void Config_PrintSettings(bool forReplay) {
  1016. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  1017. CONFIG_ECHO_START;
  1018. if (!forReplay) {
  1019. SERIAL_ECHOLNPGM("Steps per unit:");
  1020. CONFIG_ECHO_START;
  1021. }
  1022. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  1023. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  1024. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  1025. #if DISABLED(DISTINCT_E_FACTORS)
  1026. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  1027. #endif
  1028. SERIAL_EOL;
  1029. #if ENABLED(DISTINCT_E_FACTORS)
  1030. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1031. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1032. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  1033. }
  1034. #endif
  1035. CONFIG_ECHO_START;
  1036. if (!forReplay) {
  1037. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  1038. CONFIG_ECHO_START;
  1039. }
  1040. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  1041. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  1042. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  1043. #if DISABLED(DISTINCT_E_FACTORS)
  1044. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  1045. #endif
  1046. SERIAL_EOL;
  1047. #if ENABLED(DISTINCT_E_FACTORS)
  1048. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1049. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1050. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  1051. }
  1052. #endif
  1053. CONFIG_ECHO_START;
  1054. if (!forReplay) {
  1055. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  1056. CONFIG_ECHO_START;
  1057. }
  1058. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  1059. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  1060. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  1061. #if DISABLED(DISTINCT_E_FACTORS)
  1062. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  1063. #endif
  1064. SERIAL_EOL;
  1065. #if ENABLED(DISTINCT_E_FACTORS)
  1066. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1067. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1068. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  1069. }
  1070. #endif
  1071. CONFIG_ECHO_START;
  1072. if (!forReplay) {
  1073. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  1074. CONFIG_ECHO_START;
  1075. }
  1076. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  1077. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  1078. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  1079. SERIAL_EOL;
  1080. CONFIG_ECHO_START;
  1081. if (!forReplay) {
  1082. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  1083. CONFIG_ECHO_START;
  1084. }
  1085. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  1086. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  1087. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1088. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  1089. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  1090. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  1091. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  1092. SERIAL_EOL;
  1093. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1094. CONFIG_ECHO_START;
  1095. if (!forReplay) {
  1096. SERIAL_ECHOLNPGM("Home offset (mm)");
  1097. CONFIG_ECHO_START;
  1098. }
  1099. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  1100. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  1101. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  1102. SERIAL_EOL;
  1103. #endif
  1104. #if HOTENDS > 1
  1105. CONFIG_ECHO_START;
  1106. if (!forReplay) {
  1107. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  1108. CONFIG_ECHO_START;
  1109. }
  1110. for (uint8_t e = 1; e < HOTENDS; e++) {
  1111. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1112. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  1113. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  1114. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  1115. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  1116. #endif
  1117. SERIAL_EOL;
  1118. }
  1119. #endif
  1120. #if ENABLED(MESH_BED_LEVELING)
  1121. if (!forReplay) {
  1122. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1123. CONFIG_ECHO_START;
  1124. }
  1125. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  1126. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1127. SERIAL_ECHOLNPAIR(" Z", planner.z_fade_height);
  1128. #endif
  1129. SERIAL_EOL;
  1130. for (uint8_t py = 1; py <= GRID_MAX_POINTS_Y; py++) {
  1131. for (uint8_t px = 1; px <= GRID_MAX_POINTS_X; px++) {
  1132. CONFIG_ECHO_START;
  1133. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  1134. SERIAL_ECHOPAIR(" Y", (int)py);
  1135. SERIAL_ECHOPGM(" Z");
  1136. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  1137. SERIAL_EOL;
  1138. }
  1139. }
  1140. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1141. if (!forReplay) {
  1142. SERIAL_ECHOLNPGM("Unified Bed Leveling:");
  1143. CONFIG_ECHO_START;
  1144. }
  1145. SERIAL_ECHOPAIR(" M420 S", ubl.state.active ? 1 : 0);
  1146. //#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1147. // SERIAL_ECHOLNPAIR(" Z", ubl.state.g29_correction_fade_height);
  1148. //#endif
  1149. SERIAL_EOL;
  1150. if (!forReplay) {
  1151. SERIAL_ECHOPGM("\nUBL is ");
  1152. ubl.state.active ? SERIAL_CHAR('A') : SERIAL_ECHOPGM("Ina");
  1153. SERIAL_ECHOLNPAIR("ctive\n\nActive Mesh Slot: ", ubl.state.eeprom_storage_slot);
  1154. SERIAL_ECHOPGM("z_offset: ");
  1155. SERIAL_ECHO_F(ubl.state.z_offset, 6);
  1156. SERIAL_EOL;
  1157. SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values)));
  1158. SERIAL_ECHOLNPGM(" meshes.\n");
  1159. SERIAL_ECHOLNPGM("GRID_MAX_POINTS_X " STRINGIFY(GRID_MAX_POINTS_X));
  1160. SERIAL_ECHOLNPGM("GRID_MAX_POINTS_Y " STRINGIFY(GRID_MAX_POINTS_Y));
  1161. SERIAL_ECHOLNPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
  1162. SERIAL_ECHOLNPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
  1163. SERIAL_ECHOLNPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
  1164. SERIAL_ECHOLNPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
  1165. SERIAL_ECHOLNPGM("MESH_X_DIST " STRINGIFY(MESH_X_DIST));
  1166. SERIAL_ECHOLNPGM("MESH_Y_DIST " STRINGIFY(MESH_Y_DIST));
  1167. SERIAL_EOL;
  1168. }
  1169. #elif HAS_ABL
  1170. if (!forReplay) {
  1171. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1172. CONFIG_ECHO_START;
  1173. }
  1174. SERIAL_ECHOPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  1175. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1176. SERIAL_ECHOLNPAIR(" Z", planner.z_fade_height);
  1177. #endif
  1178. SERIAL_EOL;
  1179. #endif
  1180. #if ENABLED(DELTA)
  1181. CONFIG_ECHO_START;
  1182. if (!forReplay) {
  1183. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  1184. CONFIG_ECHO_START;
  1185. }
  1186. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  1187. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  1188. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  1189. SERIAL_EOL;
  1190. CONFIG_ECHO_START;
  1191. if (!forReplay) {
  1192. SERIAL_ECHOLNPGM("Delta settings: L=diagonal rod, R=radius, S=segments-per-second, ABC=diagonal rod trim, IJK=tower angle trim");
  1193. CONFIG_ECHO_START;
  1194. }
  1195. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  1196. SERIAL_ECHOPAIR(" R", delta_radius);
  1197. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1198. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim[A_AXIS]);
  1199. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim[B_AXIS]);
  1200. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim[C_AXIS]);
  1201. SERIAL_ECHOPAIR(" I", delta_tower_angle_trim[A_AXIS]);
  1202. SERIAL_ECHOPAIR(" J", delta_tower_angle_trim[B_AXIS]);
  1203. SERIAL_ECHOPAIR(" K", delta_tower_angle_trim[C_AXIS]);
  1204. SERIAL_EOL;
  1205. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1206. CONFIG_ECHO_START;
  1207. if (!forReplay) {
  1208. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  1209. CONFIG_ECHO_START;
  1210. }
  1211. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  1212. SERIAL_EOL;
  1213. #endif // DELTA
  1214. #if ENABLED(ULTIPANEL)
  1215. CONFIG_ECHO_START;
  1216. if (!forReplay) {
  1217. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1218. CONFIG_ECHO_START;
  1219. }
  1220. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1221. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1222. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  1223. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  1224. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  1225. SERIAL_EOL;
  1226. }
  1227. #endif // ULTIPANEL
  1228. #if HAS_PID_HEATING
  1229. CONFIG_ECHO_START;
  1230. if (!forReplay) {
  1231. SERIAL_ECHOLNPGM("PID settings:");
  1232. }
  1233. #if ENABLED(PIDTEMP)
  1234. #if HOTENDS > 1
  1235. if (forReplay) {
  1236. HOTEND_LOOP() {
  1237. CONFIG_ECHO_START;
  1238. SERIAL_ECHOPAIR(" M301 E", e);
  1239. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1240. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1241. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1242. #if ENABLED(PID_EXTRUSION_SCALING)
  1243. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1244. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1245. #endif
  1246. SERIAL_EOL;
  1247. }
  1248. }
  1249. else
  1250. #endif // HOTENDS > 1
  1251. // !forReplay || HOTENDS == 1
  1252. {
  1253. CONFIG_ECHO_START;
  1254. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1255. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1256. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1257. #if ENABLED(PID_EXTRUSION_SCALING)
  1258. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1259. SERIAL_ECHOPAIR(" L", lpq_len);
  1260. #endif
  1261. SERIAL_EOL;
  1262. }
  1263. #endif // PIDTEMP
  1264. #if ENABLED(PIDTEMPBED)
  1265. CONFIG_ECHO_START;
  1266. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1267. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1268. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1269. SERIAL_EOL;
  1270. #endif
  1271. #endif // PIDTEMP || PIDTEMPBED
  1272. #if HAS_LCD_CONTRAST
  1273. CONFIG_ECHO_START;
  1274. if (!forReplay) {
  1275. SERIAL_ECHOLNPGM("LCD Contrast:");
  1276. CONFIG_ECHO_START;
  1277. }
  1278. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  1279. SERIAL_EOL;
  1280. #endif
  1281. #if ENABLED(FWRETRACT)
  1282. CONFIG_ECHO_START;
  1283. if (!forReplay) {
  1284. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  1285. CONFIG_ECHO_START;
  1286. }
  1287. SERIAL_ECHOPAIR(" M207 S", retract_length);
  1288. #if EXTRUDERS > 1
  1289. SERIAL_ECHOPAIR(" W", retract_length_swap);
  1290. #endif
  1291. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  1292. SERIAL_ECHOPAIR(" Z", retract_zlift);
  1293. SERIAL_EOL;
  1294. CONFIG_ECHO_START;
  1295. if (!forReplay) {
  1296. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  1297. CONFIG_ECHO_START;
  1298. }
  1299. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  1300. #if EXTRUDERS > 1
  1301. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  1302. #endif
  1303. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  1304. SERIAL_EOL;
  1305. CONFIG_ECHO_START;
  1306. if (!forReplay) {
  1307. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1308. CONFIG_ECHO_START;
  1309. }
  1310. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1311. SERIAL_EOL;
  1312. #endif // FWRETRACT
  1313. /**
  1314. * Volumetric extrusion M200
  1315. */
  1316. if (!forReplay) {
  1317. CONFIG_ECHO_START;
  1318. SERIAL_ECHOPGM("Filament settings:");
  1319. if (volumetric_enabled)
  1320. SERIAL_EOL;
  1321. else
  1322. SERIAL_ECHOLNPGM(" Disabled");
  1323. }
  1324. CONFIG_ECHO_START;
  1325. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1326. SERIAL_EOL;
  1327. #if EXTRUDERS > 1
  1328. CONFIG_ECHO_START;
  1329. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1330. SERIAL_EOL;
  1331. #if EXTRUDERS > 2
  1332. CONFIG_ECHO_START;
  1333. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1334. SERIAL_EOL;
  1335. #if EXTRUDERS > 3
  1336. CONFIG_ECHO_START;
  1337. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1338. SERIAL_EOL;
  1339. #if EXTRUDERS > 4
  1340. CONFIG_ECHO_START;
  1341. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1342. SERIAL_EOL;
  1343. #endif // EXTRUDERS > 4
  1344. #endif // EXTRUDERS > 3
  1345. #endif // EXTRUDERS > 2
  1346. #endif // EXTRUDERS > 1
  1347. if (!volumetric_enabled) {
  1348. CONFIG_ECHO_START;
  1349. SERIAL_ECHOLNPGM(" M200 D0");
  1350. }
  1351. /**
  1352. * Auto Bed Leveling
  1353. */
  1354. #if HAS_BED_PROBE
  1355. CONFIG_ECHO_START;
  1356. if (!forReplay) {
  1357. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1358. CONFIG_ECHO_START;
  1359. }
  1360. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  1361. SERIAL_EOL;
  1362. #endif
  1363. /**
  1364. * TMC2130 stepper driver current
  1365. */
  1366. #if ENABLED(HAVE_TMC2130)
  1367. CONFIG_ECHO_START;
  1368. if (!forReplay) {
  1369. SERIAL_ECHOLNPGM("Stepper driver current:");
  1370. CONFIG_ECHO_START;
  1371. }
  1372. SERIAL_ECHO(" M906");
  1373. #if ENABLED(X_IS_TMC2130)
  1374. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1375. #endif
  1376. #if ENABLED(Y_IS_TMC2130)
  1377. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1378. #endif
  1379. #if ENABLED(Z_IS_TMC2130)
  1380. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1381. #endif
  1382. #if ENABLED(X2_IS_TMC2130)
  1383. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1384. #endif
  1385. #if ENABLED(Y2_IS_TMC2130)
  1386. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1387. #endif
  1388. #if ENABLED(Z2_IS_TMC2130)
  1389. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1390. #endif
  1391. #if ENABLED(E0_IS_TMC2130)
  1392. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1393. #endif
  1394. #if ENABLED(E1_IS_TMC2130)
  1395. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1396. #endif
  1397. #if ENABLED(E2_IS_TMC2130)
  1398. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1399. #endif
  1400. #if ENABLED(E3_IS_TMC2130)
  1401. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1402. #endif
  1403. SERIAL_EOL;
  1404. #endif
  1405. }
  1406. #endif // !DISABLE_M503