My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 207KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  37. #ifdef MESH_BED_LEVELING
  38. #include "mesh_bed_leveling.h"
  39. #endif
  40. #include "ultralcd.h"
  41. #include "planner.h"
  42. #include "stepper.h"
  43. #include "temperature.h"
  44. #include "cardreader.h"
  45. #include "watchdog.h"
  46. #include "configuration_store.h"
  47. #include "language.h"
  48. #include "pins_arduino.h"
  49. #include "math.h"
  50. #include "buzzer.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. bool Running = true;
  221. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  222. static float feedrate = 1500.0, saved_feedrate;
  223. float current_position[NUM_AXIS] = { 0.0 };
  224. static float destination[NUM_AXIS] = { 0.0 };
  225. bool axis_known_position[3] = { false };
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static char *current_command, *current_command_args;
  228. static int cmd_queue_index_r = 0;
  229. static int cmd_queue_index_w = 0;
  230. static int commands_in_queue = 0;
  231. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  232. float homing_feedrate[] = HOMING_FEEDRATE;
  233. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  234. int feedrate_multiplier = 100; //100->1 200->2
  235. int saved_feedrate_multiplier;
  236. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  237. bool volumetric_enabled = false;
  238. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  239. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  240. float home_offset[3] = { 0 };
  241. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  242. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. bool cancel_heatup = false;
  246. const char errormagic[] PROGMEM = "Error:";
  247. const char echomagic[] PROGMEM = "echo:";
  248. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  249. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  250. static char serial_char;
  251. static int serial_count = 0;
  252. static boolean comment_mode = false;
  253. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  254. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  255. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  256. // Inactivity shutdown
  257. millis_t previous_cmd_ms = 0;
  258. static millis_t max_inactive_time = 0;
  259. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  260. millis_t print_job_start_ms = 0; ///< Print job start time
  261. millis_t print_job_stop_ms = 0; ///< Print job stop time
  262. static uint8_t target_extruder;
  263. bool no_wait_for_cooling = true;
  264. bool target_direction;
  265. #ifdef ENABLE_AUTO_BED_LEVELING
  266. int xy_travel_speed = XY_TRAVEL_SPEED;
  267. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  268. #endif
  269. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  270. float z_endstop_adj = 0;
  271. #endif
  272. // Extruder offsets
  273. #if EXTRUDERS > 1
  274. #ifndef EXTRUDER_OFFSET_X
  275. #define EXTRUDER_OFFSET_X { 0 }
  276. #endif
  277. #ifndef EXTRUDER_OFFSET_Y
  278. #define EXTRUDER_OFFSET_Y { 0 }
  279. #endif
  280. float extruder_offset[][EXTRUDERS] = {
  281. EXTRUDER_OFFSET_X,
  282. EXTRUDER_OFFSET_Y
  283. #ifdef DUAL_X_CARRIAGE
  284. , { 0 } // supports offsets in XYZ plane
  285. #endif
  286. };
  287. #endif
  288. #ifdef SERVO_ENDSTOPS
  289. int servo_endstops[] = SERVO_ENDSTOPS;
  290. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  291. #endif
  292. #ifdef BARICUDA
  293. int ValvePressure = 0;
  294. int EtoPPressure = 0;
  295. #endif
  296. #ifdef FWRETRACT
  297. bool autoretract_enabled = false;
  298. bool retracted[EXTRUDERS] = { false };
  299. bool retracted_swap[EXTRUDERS] = { false };
  300. float retract_length = RETRACT_LENGTH;
  301. float retract_length_swap = RETRACT_LENGTH_SWAP;
  302. float retract_feedrate = RETRACT_FEEDRATE;
  303. float retract_zlift = RETRACT_ZLIFT;
  304. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  305. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  306. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  307. #endif // FWRETRACT
  308. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  309. bool powersupply =
  310. #ifdef PS_DEFAULT_OFF
  311. false
  312. #else
  313. true
  314. #endif
  315. ;
  316. #endif
  317. #ifdef DELTA
  318. float delta[3] = { 0 };
  319. #define SIN_60 0.8660254037844386
  320. #define COS_60 0.5
  321. float endstop_adj[3] = { 0 };
  322. // these are the default values, can be overriden with M665
  323. float delta_radius = DELTA_RADIUS;
  324. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  325. float delta_tower1_y = -COS_60 * delta_radius;
  326. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  327. float delta_tower2_y = -COS_60 * delta_radius;
  328. float delta_tower3_x = 0; // back middle tower
  329. float delta_tower3_y = delta_radius;
  330. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  331. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  332. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  333. #ifdef ENABLE_AUTO_BED_LEVELING
  334. int delta_grid_spacing[2] = { 0, 0 };
  335. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  336. #endif
  337. #else
  338. static bool home_all_axis = true;
  339. #endif
  340. #ifdef SCARA
  341. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  342. static float delta[3] = { 0 };
  343. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1 = 0; //index into ring buffer
  352. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist = 0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. #ifdef FILAMENT_RUNOUT_SENSOR
  357. static bool filrunoutEnqueued = false;
  358. #endif
  359. #ifdef SDSUPPORT
  360. static bool fromsd[BUFSIZE];
  361. #endif
  362. #if NUM_SERVOS > 0
  363. Servo servo[NUM_SERVOS];
  364. #endif
  365. #ifdef CHDK
  366. unsigned long chdkHigh = 0;
  367. boolean chdkActive = false;
  368. #endif
  369. //===========================================================================
  370. //================================ Functions ================================
  371. //===========================================================================
  372. void process_next_command();
  373. bool setTargetedHotend(int code);
  374. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef PREVENT_DANGEROUS_EXTRUDE
  378. float extrude_min_temp = EXTRUDE_MINTEMP;
  379. #endif
  380. #ifdef SDSUPPORT
  381. #include "SdFatUtil.h"
  382. int freeMemory() { return SdFatUtil::FreeRam(); }
  383. #else
  384. extern "C" {
  385. extern unsigned int __bss_end;
  386. extern unsigned int __heap_start;
  387. extern void *__brkval;
  388. int freeMemory() {
  389. int free_memory;
  390. if ((int)__brkval == 0)
  391. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  392. else
  393. free_memory = ((int)&free_memory) - ((int)__brkval);
  394. return free_memory;
  395. }
  396. }
  397. #endif //!SDSUPPORT
  398. /**
  399. * Inject the next command from the command queue, when possible
  400. * Return false only if no command was pending
  401. */
  402. static bool drain_queued_commands_P() {
  403. if (!queued_commands_P) return false;
  404. // Get the next 30 chars from the sequence of gcodes to run
  405. char cmd[30];
  406. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  407. cmd[sizeof(cmd) - 1] = '\0';
  408. // Look for the end of line, or the end of sequence
  409. size_t i = 0;
  410. char c;
  411. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  412. cmd[i] = '\0';
  413. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  414. if (c)
  415. queued_commands_P += i + 1; // move to next command
  416. else
  417. queued_commands_P = NULL; // will have no more commands in the sequence
  418. }
  419. return true;
  420. }
  421. /**
  422. * Record one or many commands to run from program memory.
  423. * Aborts the current queue, if any.
  424. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  425. */
  426. void enqueuecommands_P(const char* pgcode) {
  427. queued_commands_P = pgcode;
  428. drain_queued_commands_P(); // first command executed asap (when possible)
  429. }
  430. /**
  431. * Copy a command directly into the main command buffer, from RAM.
  432. *
  433. * This is done in a non-safe way and needs a rework someday.
  434. * Returns false if it doesn't add any command
  435. */
  436. bool enqueuecommand(const char *cmd) {
  437. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  438. // This is dangerous if a mixing of serial and this happens
  439. char *command = command_queue[cmd_queue_index_w];
  440. strcpy(command, cmd);
  441. SERIAL_ECHO_START;
  442. SERIAL_ECHOPGM(MSG_Enqueueing);
  443. SERIAL_ECHO(command);
  444. SERIAL_ECHOLNPGM("\"");
  445. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  446. commands_in_queue++;
  447. return true;
  448. }
  449. void setup_killpin() {
  450. #if HAS_KILL
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN, HIGH);
  453. #endif
  454. }
  455. void setup_filrunoutpin() {
  456. #if HAS_FILRUNOUT
  457. pinMode(FILRUNOUT_PIN, INPUT);
  458. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  459. WRITE(FILRUNOUT_PIN, HIGH);
  460. #endif
  461. #endif
  462. }
  463. // Set home pin
  464. void setup_homepin(void) {
  465. #if HAS_HOME
  466. SET_INPUT(HOME_PIN);
  467. WRITE(HOME_PIN, HIGH);
  468. #endif
  469. }
  470. void setup_photpin() {
  471. #if HAS_PHOTOGRAPH
  472. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  473. #endif
  474. }
  475. void setup_powerhold() {
  476. #if HAS_SUICIDE
  477. OUT_WRITE(SUICIDE_PIN, HIGH);
  478. #endif
  479. #if HAS_POWER_SWITCH
  480. #ifdef PS_DEFAULT_OFF
  481. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  482. #else
  483. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  484. #endif
  485. #endif
  486. }
  487. void suicide() {
  488. #if HAS_SUICIDE
  489. OUT_WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init() {
  493. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  494. servo[0].attach(SERVO0_PIN);
  495. #endif
  496. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  497. servo[1].attach(SERVO1_PIN);
  498. #endif
  499. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  500. servo[2].attach(SERVO2_PIN);
  501. #endif
  502. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  503. servo[3].attach(SERVO3_PIN);
  504. #endif
  505. // Set position of Servo Endstops that are defined
  506. #ifdef SERVO_ENDSTOPS
  507. for (int i = 0; i < 3; i++)
  508. if (servo_endstops[i] >= 0)
  509. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  510. #endif
  511. #if SERVO_LEVELING
  512. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  513. servo[servo_endstops[Z_AXIS]].detach();
  514. #endif
  515. }
  516. /**
  517. * Marlin entry-point: Set up before the program loop
  518. * - Set up the kill pin, filament runout, power hold
  519. * - Start the serial port
  520. * - Print startup messages and diagnostics
  521. * - Get EEPROM or default settings
  522. * - Initialize managers for:
  523. * • temperature
  524. * • planner
  525. * • watchdog
  526. * • stepper
  527. * • photo pin
  528. * • servos
  529. * • LCD controller
  530. * • Digipot I2C
  531. * • Z probe sled
  532. * • status LEDs
  533. */
  534. void setup() {
  535. setup_killpin();
  536. setup_filrunoutpin();
  537. setup_powerhold();
  538. MYSERIAL.begin(BAUDRATE);
  539. SERIAL_PROTOCOLLNPGM("start");
  540. SERIAL_ECHO_START;
  541. // Check startup - does nothing if bootloader sets MCUSR to 0
  542. byte mcu = MCUSR;
  543. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  544. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  545. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  546. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  547. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  548. MCUSR = 0;
  549. SERIAL_ECHOPGM(MSG_MARLIN);
  550. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  551. #ifdef STRING_DISTRIBUTION_DATE
  552. #ifdef STRING_CONFIG_H_AUTHOR
  553. SERIAL_ECHO_START;
  554. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  555. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  556. SERIAL_ECHOPGM(MSG_AUTHOR);
  557. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  558. SERIAL_ECHOPGM("Compiled: ");
  559. SERIAL_ECHOLNPGM(__DATE__);
  560. #endif // STRING_CONFIG_H_AUTHOR
  561. #endif // STRING_DISTRIBUTION_DATE
  562. SERIAL_ECHO_START;
  563. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  564. SERIAL_ECHO(freeMemory());
  565. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  566. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  567. #ifdef SDSUPPORT
  568. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  569. #endif
  570. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  571. Config_RetrieveSettings();
  572. lcd_init();
  573. _delay_ms(1000); // wait 1sec to display the splash screen
  574. tp_init(); // Initialize temperature loop
  575. plan_init(); // Initialize planner;
  576. watchdog_init();
  577. st_init(); // Initialize stepper, this enables interrupts!
  578. setup_photpin();
  579. servo_init();
  580. #if HAS_CONTROLLERFAN
  581. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  582. #endif
  583. #ifdef DIGIPOT_I2C
  584. digipot_i2c_init();
  585. #endif
  586. #ifdef Z_PROBE_SLED
  587. pinMode(SLED_PIN, OUTPUT);
  588. digitalWrite(SLED_PIN, LOW); // turn it off
  589. #endif // Z_PROBE_SLED
  590. setup_homepin();
  591. #ifdef STAT_LED_RED
  592. pinMode(STAT_LED_RED, OUTPUT);
  593. digitalWrite(STAT_LED_RED, LOW); // turn it off
  594. #endif
  595. #ifdef STAT_LED_BLUE
  596. pinMode(STAT_LED_BLUE, OUTPUT);
  597. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  598. #endif
  599. }
  600. /**
  601. * The main Marlin program loop
  602. *
  603. * - Save or log commands to SD
  604. * - Process available commands (if not saving)
  605. * - Call heater manager
  606. * - Call inactivity manager
  607. * - Call endstop manager
  608. * - Call LCD update
  609. */
  610. void loop() {
  611. if (commands_in_queue < BUFSIZE - 1) get_command();
  612. #ifdef SDSUPPORT
  613. card.checkautostart(false);
  614. #endif
  615. if (commands_in_queue) {
  616. #ifdef SDSUPPORT
  617. if (card.saving) {
  618. char *command = command_queue[cmd_queue_index_r];
  619. if (strstr_P(command, PSTR("M29"))) {
  620. // M29 closes the file
  621. card.closefile();
  622. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  623. }
  624. else {
  625. // Write the string from the read buffer to SD
  626. card.write_command(command);
  627. if (card.logging)
  628. process_next_command(); // The card is saving because it's logging
  629. else
  630. SERIAL_PROTOCOLLNPGM(MSG_OK);
  631. }
  632. }
  633. else
  634. process_next_command();
  635. #else
  636. process_next_command();
  637. #endif // SDSUPPORT
  638. commands_in_queue--;
  639. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  640. }
  641. checkHitEndstops();
  642. idle();
  643. }
  644. void gcode_line_error(const char *err, bool doFlush=true) {
  645. SERIAL_ERROR_START;
  646. serialprintPGM(err);
  647. SERIAL_ERRORLN(gcode_LastN);
  648. //Serial.println(gcode_N);
  649. if (doFlush) FlushSerialRequestResend();
  650. serial_count = 0;
  651. }
  652. /**
  653. * Add to the circular command queue the next command from:
  654. * - The command-injection queue (queued_commands_P)
  655. * - The active serial input (usually USB)
  656. * - The SD card file being actively printed
  657. */
  658. void get_command() {
  659. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  660. #ifdef NO_TIMEOUTS
  661. static millis_t last_command_time = 0;
  662. millis_t ms = millis();
  663. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  664. SERIAL_ECHOLNPGM(MSG_WAIT);
  665. last_command_time = ms;
  666. }
  667. #endif
  668. //
  669. // Loop while serial characters are incoming and the queue is not full
  670. //
  671. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  672. #ifdef NO_TIMEOUTS
  673. last_command_time = ms;
  674. #endif
  675. serial_char = MYSERIAL.read();
  676. //
  677. // If the character ends the line, or the line is full...
  678. //
  679. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  680. // end of line == end of comment
  681. comment_mode = false;
  682. if (!serial_count) return; // empty lines just exit
  683. char *command = command_queue[cmd_queue_index_w];
  684. command[serial_count] = 0; // terminate string
  685. // this item in the queue is not from sd
  686. #ifdef SDSUPPORT
  687. fromsd[cmd_queue_index_w] = false;
  688. #endif
  689. char *npos = strchr(command, 'N');
  690. char *apos = strchr(command, '*');
  691. if (npos) {
  692. gcode_N = strtol(npos + 1, NULL, 10);
  693. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  694. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  695. return;
  696. }
  697. if (apos) {
  698. byte checksum = 0, count = 0;
  699. while (command[count] != '*') checksum ^= command[count++];
  700. if (strtol(apos + 1, NULL, 10) != checksum) {
  701. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  702. return;
  703. }
  704. // if no errors, continue parsing
  705. }
  706. else {
  707. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  708. return;
  709. }
  710. gcode_LastN = gcode_N;
  711. // if no errors, continue parsing
  712. }
  713. else if (apos) { // No '*' without 'N'
  714. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  715. return;
  716. }
  717. // Movement commands alert when stopped
  718. if (IsStopped()) {
  719. char *gpos = strchr(command, 'G');
  720. if (gpos) {
  721. int codenum = strtol(gpos + 1, NULL, 10);
  722. switch (codenum) {
  723. case 0:
  724. case 1:
  725. case 2:
  726. case 3:
  727. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  728. LCD_MESSAGEPGM(MSG_STOPPED);
  729. break;
  730. }
  731. }
  732. }
  733. // If command was e-stop process now
  734. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  735. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  736. commands_in_queue += 1;
  737. serial_count = 0; //clear buffer
  738. }
  739. else if (serial_char == '\\') { // Handle escapes
  740. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  741. // if we have one more character, copy it over
  742. serial_char = MYSERIAL.read();
  743. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  744. }
  745. // otherwise do nothing
  746. }
  747. else { // its not a newline, carriage return or escape char
  748. if (serial_char == ';') comment_mode = true;
  749. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  750. }
  751. }
  752. #ifdef SDSUPPORT
  753. if (!card.sdprinting || serial_count) return;
  754. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  755. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  756. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  757. static bool stop_buffering = false;
  758. if (commands_in_queue == 0) stop_buffering = false;
  759. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  760. int16_t n = card.get();
  761. serial_char = (char)n;
  762. if (serial_char == '\n' || serial_char == '\r' ||
  763. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  764. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  765. ) {
  766. if (card.eof()) {
  767. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  768. print_job_stop_ms = millis();
  769. char time[30];
  770. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  771. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  772. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  773. SERIAL_ECHO_START;
  774. SERIAL_ECHOLN(time);
  775. lcd_setstatus(time, true);
  776. card.printingHasFinished();
  777. card.checkautostart(true);
  778. }
  779. if (serial_char == '#') stop_buffering = true;
  780. if (!serial_count) {
  781. comment_mode = false; //for new command
  782. return; //if empty line
  783. }
  784. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  785. // if (!comment_mode) {
  786. fromsd[cmd_queue_index_w] = true;
  787. commands_in_queue += 1;
  788. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  789. // }
  790. comment_mode = false; //for new command
  791. serial_count = 0; //clear buffer
  792. }
  793. else {
  794. if (serial_char == ';') comment_mode = true;
  795. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  796. }
  797. }
  798. #endif // SDSUPPORT
  799. }
  800. bool code_has_value() {
  801. int i = 1;
  802. char c = seen_pointer[i];
  803. if (c == '-' || c == '+') c = seen_pointer[++i];
  804. if (c == '.') c = seen_pointer[++i];
  805. return (c >= '0' && c <= '9');
  806. }
  807. float code_value() {
  808. float ret;
  809. char *e = strchr(seen_pointer, 'E');
  810. if (e) {
  811. *e = 0;
  812. ret = strtod(seen_pointer+1, NULL);
  813. *e = 'E';
  814. }
  815. else
  816. ret = strtod(seen_pointer+1, NULL);
  817. return ret;
  818. }
  819. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  820. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  821. bool code_seen(char code) {
  822. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  823. return (seen_pointer != NULL); //Return True if a character was found
  824. }
  825. #define DEFINE_PGM_READ_ANY(type, reader) \
  826. static inline type pgm_read_any(const type *p) \
  827. { return pgm_read_##reader##_near(p); }
  828. DEFINE_PGM_READ_ANY(float, float);
  829. DEFINE_PGM_READ_ANY(signed char, byte);
  830. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  831. static const PROGMEM type array##_P[3] = \
  832. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  833. static inline type array(int axis) \
  834. { return pgm_read_any(&array##_P[axis]); }
  835. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  836. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  837. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  838. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  839. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  840. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  841. #ifdef DUAL_X_CARRIAGE
  842. #define DXC_FULL_CONTROL_MODE 0
  843. #define DXC_AUTO_PARK_MODE 1
  844. #define DXC_DUPLICATION_MODE 2
  845. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  846. static float x_home_pos(int extruder) {
  847. if (extruder == 0)
  848. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  849. else
  850. // In dual carriage mode the extruder offset provides an override of the
  851. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  852. // This allow soft recalibration of the second extruder offset position without firmware reflash
  853. // (through the M218 command).
  854. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  855. }
  856. static int x_home_dir(int extruder) {
  857. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  858. }
  859. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  860. static bool active_extruder_parked = false; // used in mode 1 & 2
  861. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  862. static millis_t delayed_move_time = 0; // used in mode 1
  863. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  864. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  865. bool extruder_duplication_enabled = false; // used in mode 2
  866. #endif //DUAL_X_CARRIAGE
  867. static void axis_is_at_home(AxisEnum axis) {
  868. #ifdef DUAL_X_CARRIAGE
  869. if (axis == X_AXIS) {
  870. if (active_extruder != 0) {
  871. current_position[X_AXIS] = x_home_pos(active_extruder);
  872. min_pos[X_AXIS] = X2_MIN_POS;
  873. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  874. return;
  875. }
  876. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  877. float xoff = home_offset[X_AXIS];
  878. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  879. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  880. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  881. return;
  882. }
  883. }
  884. #endif
  885. #ifdef SCARA
  886. if (axis == X_AXIS || axis == Y_AXIS) {
  887. float homeposition[3];
  888. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  889. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  890. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  891. // Works out real Homeposition angles using inverse kinematics,
  892. // and calculates homing offset using forward kinematics
  893. calculate_delta(homeposition);
  894. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  895. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  896. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  897. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  900. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  901. calculate_SCARA_forward_Transform(delta);
  902. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. current_position[axis] = delta[axis];
  905. // SCARA home positions are based on configuration since the actual limits are determined by the
  906. // inverse kinematic transform.
  907. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  909. }
  910. else
  911. #endif
  912. {
  913. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  914. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  915. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  916. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  917. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  918. #endif
  919. }
  920. }
  921. /**
  922. * Some planner shorthand inline functions
  923. */
  924. inline void set_homing_bump_feedrate(AxisEnum axis) {
  925. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  926. if (homing_bump_divisor[axis] >= 1)
  927. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  928. else {
  929. feedrate = homing_feedrate[axis] / 10;
  930. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  931. }
  932. }
  933. inline void line_to_current_position() {
  934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  935. }
  936. inline void line_to_z(float zPosition) {
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  938. }
  939. inline void line_to_destination(float mm_m) {
  940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  941. }
  942. inline void line_to_destination() {
  943. line_to_destination(feedrate);
  944. }
  945. inline void sync_plan_position() {
  946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  947. }
  948. #if defined(DELTA) || defined(SCARA)
  949. inline void sync_plan_position_delta() {
  950. calculate_delta(current_position);
  951. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  952. }
  953. #endif
  954. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  955. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  956. static void setup_for_endstop_move() {
  957. saved_feedrate = feedrate;
  958. saved_feedrate_multiplier = feedrate_multiplier;
  959. feedrate_multiplier = 100;
  960. refresh_cmd_timeout();
  961. enable_endstops(true);
  962. }
  963. #ifdef ENABLE_AUTO_BED_LEVELING
  964. #ifdef DELTA
  965. /**
  966. * Calculate delta, start a line, and set current_position to destination
  967. */
  968. void prepare_move_raw() {
  969. refresh_cmd_timeout();
  970. calculate_delta(destination);
  971. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  972. set_current_to_destination();
  973. }
  974. #endif
  975. #ifdef AUTO_BED_LEVELING_GRID
  976. #ifndef DELTA
  977. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  978. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  979. planeNormal.debug("planeNormal");
  980. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  981. //bedLevel.debug("bedLevel");
  982. //plan_bed_level_matrix.debug("bed level before");
  983. //vector_3 uncorrected_position = plan_get_position_mm();
  984. //uncorrected_position.debug("position before");
  985. vector_3 corrected_position = plan_get_position();
  986. //corrected_position.debug("position after");
  987. current_position[X_AXIS] = corrected_position.x;
  988. current_position[Y_AXIS] = corrected_position.y;
  989. current_position[Z_AXIS] = corrected_position.z;
  990. sync_plan_position();
  991. }
  992. #endif // !DELTA
  993. #else // !AUTO_BED_LEVELING_GRID
  994. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  995. plan_bed_level_matrix.set_to_identity();
  996. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  997. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  998. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  999. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1000. if (planeNormal.z < 0) {
  1001. planeNormal.x = -planeNormal.x;
  1002. planeNormal.y = -planeNormal.y;
  1003. planeNormal.z = -planeNormal.z;
  1004. }
  1005. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1006. vector_3 corrected_position = plan_get_position();
  1007. current_position[X_AXIS] = corrected_position.x;
  1008. current_position[Y_AXIS] = corrected_position.y;
  1009. current_position[Z_AXIS] = corrected_position.z;
  1010. sync_plan_position();
  1011. }
  1012. #endif // !AUTO_BED_LEVELING_GRID
  1013. static void run_z_probe() {
  1014. #ifdef DELTA
  1015. float start_z = current_position[Z_AXIS];
  1016. long start_steps = st_get_position(Z_AXIS);
  1017. // move down slowly until you find the bed
  1018. feedrate = homing_feedrate[Z_AXIS] / 4;
  1019. destination[Z_AXIS] = -10;
  1020. prepare_move_raw(); // this will also set_current_to_destination
  1021. st_synchronize();
  1022. endstops_hit_on_purpose(); // clear endstop hit flags
  1023. // we have to let the planner know where we are right now as it is not where we said to go.
  1024. long stop_steps = st_get_position(Z_AXIS);
  1025. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1026. current_position[Z_AXIS] = mm;
  1027. sync_plan_position_delta();
  1028. #else // !DELTA
  1029. plan_bed_level_matrix.set_to_identity();
  1030. feedrate = homing_feedrate[Z_AXIS];
  1031. // Move down until the probe (or endstop?) is triggered
  1032. float zPosition = -10;
  1033. line_to_z(zPosition);
  1034. st_synchronize();
  1035. // Tell the planner where we ended up - Get this from the stepper handler
  1036. zPosition = st_get_position_mm(Z_AXIS);
  1037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1038. // move up the retract distance
  1039. zPosition += home_bump_mm(Z_AXIS);
  1040. line_to_z(zPosition);
  1041. st_synchronize();
  1042. endstops_hit_on_purpose(); // clear endstop hit flags
  1043. // move back down slowly to find bed
  1044. set_homing_bump_feedrate(Z_AXIS);
  1045. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1046. line_to_z(zPosition);
  1047. st_synchronize();
  1048. endstops_hit_on_purpose(); // clear endstop hit flags
  1049. // Get the current stepper position after bumping an endstop
  1050. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1051. sync_plan_position();
  1052. #endif // !DELTA
  1053. }
  1054. /**
  1055. * Plan a move to (X, Y, Z) and set the current_position
  1056. * The final current_position may not be the one that was requested
  1057. */
  1058. static void do_blocking_move_to(float x, float y, float z) {
  1059. float oldFeedRate = feedrate;
  1060. #ifdef DELTA
  1061. feedrate = XY_TRAVEL_SPEED;
  1062. destination[X_AXIS] = x;
  1063. destination[Y_AXIS] = y;
  1064. destination[Z_AXIS] = z;
  1065. prepare_move_raw(); // this will also set_current_to_destination
  1066. st_synchronize();
  1067. #else
  1068. feedrate = homing_feedrate[Z_AXIS];
  1069. current_position[Z_AXIS] = z;
  1070. line_to_current_position();
  1071. st_synchronize();
  1072. feedrate = xy_travel_speed;
  1073. current_position[X_AXIS] = x;
  1074. current_position[Y_AXIS] = y;
  1075. line_to_current_position();
  1076. st_synchronize();
  1077. #endif
  1078. feedrate = oldFeedRate;
  1079. }
  1080. static void clean_up_after_endstop_move() {
  1081. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1082. enable_endstops(false);
  1083. #endif
  1084. feedrate = saved_feedrate;
  1085. feedrate_multiplier = saved_feedrate_multiplier;
  1086. refresh_cmd_timeout();
  1087. }
  1088. static void deploy_z_probe() {
  1089. #ifdef SERVO_ENDSTOPS
  1090. // Engage Z Servo endstop if enabled
  1091. if (servo_endstops[Z_AXIS] >= 0) {
  1092. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1093. #if SERVO_LEVELING
  1094. srv->attach(0);
  1095. #endif
  1096. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1097. #if SERVO_LEVELING
  1098. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1099. srv->detach();
  1100. #endif
  1101. }
  1102. #elif defined(Z_PROBE_ALLEN_KEY)
  1103. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1104. // If endstop is already false, the probe is deployed
  1105. #ifdef Z_PROBE_ENDSTOP
  1106. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1107. if (z_probe_endstop)
  1108. #else
  1109. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1110. if (z_min_endstop)
  1111. #endif
  1112. {
  1113. // Move to the start position to initiate deployment
  1114. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1115. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1116. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1117. prepare_move_raw(); // this will also set_current_to_destination
  1118. // Move to engage deployment
  1119. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1120. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1121. }
  1122. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1123. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1124. }
  1125. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1126. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1127. }
  1128. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1129. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1130. }
  1131. prepare_move_raw();
  1132. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1133. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1134. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1135. }
  1136. // Move to trigger deployment
  1137. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1138. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1139. }
  1140. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1141. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1142. }
  1143. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1144. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1145. }
  1146. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1147. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1148. }
  1149. prepare_move_raw();
  1150. #endif
  1151. }
  1152. // Partially Home X,Y for safety
  1153. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1154. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1155. prepare_move_raw(); // this will also set_current_to_destination
  1156. st_synchronize();
  1157. #ifdef Z_PROBE_ENDSTOP
  1158. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1159. if (z_probe_endstop)
  1160. #else
  1161. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1162. if (z_min_endstop)
  1163. #endif
  1164. {
  1165. if (IsRunning()) {
  1166. SERIAL_ERROR_START;
  1167. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1168. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1169. }
  1170. Stop();
  1171. }
  1172. #endif // Z_PROBE_ALLEN_KEY
  1173. }
  1174. static void stow_z_probe(bool doRaise=true) {
  1175. #ifdef SERVO_ENDSTOPS
  1176. // Retract Z Servo endstop if enabled
  1177. if (servo_endstops[Z_AXIS] >= 0) {
  1178. #if Z_RAISE_AFTER_PROBING > 0
  1179. if (doRaise) {
  1180. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1181. st_synchronize();
  1182. }
  1183. #endif
  1184. // Change the Z servo angle
  1185. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1186. #if SERVO_LEVELING
  1187. srv->attach(0);
  1188. #endif
  1189. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1190. #if SERVO_LEVELING
  1191. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1192. srv->detach();
  1193. #endif
  1194. }
  1195. #elif defined(Z_PROBE_ALLEN_KEY)
  1196. // Move up for safety
  1197. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1198. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1199. prepare_move_raw(); // this will also set_current_to_destination
  1200. // Move to the start position to initiate retraction
  1201. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1202. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1203. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1204. prepare_move_raw();
  1205. // Move the nozzle down to push the probe into retracted position
  1206. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1207. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1208. }
  1209. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1210. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1211. }
  1212. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1213. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1214. }
  1215. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1216. prepare_move_raw();
  1217. // Move up for safety
  1218. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1219. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1220. }
  1221. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1222. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1223. }
  1224. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1225. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1226. }
  1227. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1228. prepare_move_raw();
  1229. // Home XY for safety
  1230. feedrate = homing_feedrate[X_AXIS]/2;
  1231. destination[X_AXIS] = 0;
  1232. destination[Y_AXIS] = 0;
  1233. prepare_move_raw(); // this will also set_current_to_destination
  1234. st_synchronize();
  1235. #ifdef Z_PROBE_ENDSTOP
  1236. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1237. if (!z_probe_endstop)
  1238. #else
  1239. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1240. if (!z_min_endstop)
  1241. #endif
  1242. {
  1243. if (IsRunning()) {
  1244. SERIAL_ERROR_START;
  1245. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1246. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1247. }
  1248. Stop();
  1249. }
  1250. #endif // Z_PROBE_ALLEN_KEY
  1251. }
  1252. enum ProbeAction {
  1253. ProbeStay = 0,
  1254. ProbeDeploy = BIT(0),
  1255. ProbeStow = BIT(1),
  1256. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1257. };
  1258. // Probe bed height at position (x,y), returns the measured z value
  1259. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1260. // Move Z up to the z_before height, then move the probe to the given XY
  1261. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1262. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1263. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1264. if (probe_action & ProbeDeploy) deploy_z_probe();
  1265. #endif
  1266. run_z_probe();
  1267. float measured_z = current_position[Z_AXIS];
  1268. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1269. if (probe_action & ProbeStow) stow_z_probe();
  1270. #endif
  1271. if (verbose_level > 2) {
  1272. SERIAL_PROTOCOLPGM("Bed X: ");
  1273. SERIAL_PROTOCOL_F(x, 3);
  1274. SERIAL_PROTOCOLPGM(" Y: ");
  1275. SERIAL_PROTOCOL_F(y, 3);
  1276. SERIAL_PROTOCOLPGM(" Z: ");
  1277. SERIAL_PROTOCOL_F(measured_z, 3);
  1278. SERIAL_EOL;
  1279. }
  1280. return measured_z;
  1281. }
  1282. #ifdef DELTA
  1283. /**
  1284. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1285. */
  1286. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1287. if (bed_level[x][y] != 0.0) {
  1288. return; // Don't overwrite good values.
  1289. }
  1290. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1291. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1292. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1293. float median = c; // Median is robust (ignores outliers).
  1294. if (a < b) {
  1295. if (b < c) median = b;
  1296. if (c < a) median = a;
  1297. } else { // b <= a
  1298. if (c < b) median = b;
  1299. if (a < c) median = a;
  1300. }
  1301. bed_level[x][y] = median;
  1302. }
  1303. // Fill in the unprobed points (corners of circular print surface)
  1304. // using linear extrapolation, away from the center.
  1305. static void extrapolate_unprobed_bed_level() {
  1306. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1307. for (int y = 0; y <= half; y++) {
  1308. for (int x = 0; x <= half; x++) {
  1309. if (x + y < 3) continue;
  1310. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1311. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1312. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1313. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1314. }
  1315. }
  1316. }
  1317. // Print calibration results for plotting or manual frame adjustment.
  1318. static void print_bed_level() {
  1319. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1320. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1321. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1322. SERIAL_PROTOCOLCHAR(' ');
  1323. }
  1324. SERIAL_EOL;
  1325. }
  1326. }
  1327. // Reset calibration results to zero.
  1328. void reset_bed_level() {
  1329. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1330. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1331. bed_level[x][y] = 0.0;
  1332. }
  1333. }
  1334. }
  1335. #endif // DELTA
  1336. #endif // ENABLE_AUTO_BED_LEVELING
  1337. #ifdef Z_PROBE_SLED
  1338. #ifndef SLED_DOCKING_OFFSET
  1339. #define SLED_DOCKING_OFFSET 0
  1340. #endif
  1341. /**
  1342. * Method to dock/undock a sled designed by Charles Bell.
  1343. *
  1344. * dock[in] If true, move to MAX_X and engage the electromagnet
  1345. * offset[in] The additional distance to move to adjust docking location
  1346. */
  1347. static void dock_sled(bool dock, int offset=0) {
  1348. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1349. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1350. SERIAL_ECHO_START;
  1351. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1352. return;
  1353. }
  1354. if (dock) {
  1355. float oldXpos = current_position[X_AXIS]; // save x position
  1356. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1357. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1358. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1359. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1360. } else {
  1361. float oldXpos = current_position[X_AXIS]; // save x position
  1362. float z_loc = current_position[Z_AXIS];
  1363. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1364. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1365. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1366. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1367. }
  1368. }
  1369. #endif // Z_PROBE_SLED
  1370. /**
  1371. * Home an individual axis
  1372. */
  1373. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1374. static void homeaxis(AxisEnum axis) {
  1375. #define HOMEAXIS_DO(LETTER) \
  1376. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1377. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1378. int axis_home_dir =
  1379. #ifdef DUAL_X_CARRIAGE
  1380. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1381. #endif
  1382. home_dir(axis);
  1383. // Set the axis position as setup for the move
  1384. current_position[axis] = 0;
  1385. sync_plan_position();
  1386. #ifdef Z_PROBE_SLED
  1387. // Get Probe
  1388. if (axis == Z_AXIS) {
  1389. if (axis_home_dir < 0) dock_sled(false);
  1390. }
  1391. #endif
  1392. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1393. // Deploy a probe if there is one, and homing towards the bed
  1394. if (axis == Z_AXIS) {
  1395. if (axis_home_dir < 0) deploy_z_probe();
  1396. }
  1397. #endif
  1398. #ifdef SERVO_ENDSTOPS
  1399. if (axis != Z_AXIS) {
  1400. // Engage Servo endstop if enabled
  1401. if (servo_endstops[axis] > -1)
  1402. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1403. }
  1404. #endif
  1405. // Set a flag for Z motor locking
  1406. #ifdef Z_DUAL_ENDSTOPS
  1407. if (axis == Z_AXIS) In_Homing_Process(true);
  1408. #endif
  1409. // Move towards the endstop until an endstop is triggered
  1410. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1411. feedrate = homing_feedrate[axis];
  1412. line_to_destination();
  1413. st_synchronize();
  1414. // Set the axis position as setup for the move
  1415. current_position[axis] = 0;
  1416. sync_plan_position();
  1417. enable_endstops(false); // Disable endstops while moving away
  1418. // Move away from the endstop by the axis HOME_BUMP_MM
  1419. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1420. line_to_destination();
  1421. st_synchronize();
  1422. enable_endstops(true); // Enable endstops for next homing move
  1423. // Slow down the feedrate for the next move
  1424. set_homing_bump_feedrate(axis);
  1425. // Move slowly towards the endstop until triggered
  1426. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1427. line_to_destination();
  1428. st_synchronize();
  1429. #ifdef Z_DUAL_ENDSTOPS
  1430. if (axis == Z_AXIS) {
  1431. float adj = fabs(z_endstop_adj);
  1432. bool lockZ1;
  1433. if (axis_home_dir > 0) {
  1434. adj = -adj;
  1435. lockZ1 = (z_endstop_adj > 0);
  1436. }
  1437. else
  1438. lockZ1 = (z_endstop_adj < 0);
  1439. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1440. sync_plan_position();
  1441. // Move to the adjusted endstop height
  1442. feedrate = homing_feedrate[axis];
  1443. destination[Z_AXIS] = adj;
  1444. line_to_destination();
  1445. st_synchronize();
  1446. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1447. In_Homing_Process(false);
  1448. } // Z_AXIS
  1449. #endif
  1450. #ifdef DELTA
  1451. // retrace by the amount specified in endstop_adj
  1452. if (endstop_adj[axis] * axis_home_dir < 0) {
  1453. enable_endstops(false); // Disable endstops while moving away
  1454. sync_plan_position();
  1455. destination[axis] = endstop_adj[axis];
  1456. line_to_destination();
  1457. st_synchronize();
  1458. enable_endstops(true); // Enable endstops for next homing move
  1459. }
  1460. #endif
  1461. // Set the axis position to its home position (plus home offsets)
  1462. axis_is_at_home(axis);
  1463. sync_plan_position();
  1464. destination[axis] = current_position[axis];
  1465. feedrate = 0.0;
  1466. endstops_hit_on_purpose(); // clear endstop hit flags
  1467. axis_known_position[axis] = true;
  1468. #ifdef Z_PROBE_SLED
  1469. // bring probe back
  1470. if (axis == Z_AXIS) {
  1471. if (axis_home_dir < 0) dock_sled(true);
  1472. }
  1473. #endif
  1474. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1475. // Deploy a probe if there is one, and homing towards the bed
  1476. if (axis == Z_AXIS) {
  1477. if (axis_home_dir < 0) stow_z_probe();
  1478. }
  1479. else
  1480. #endif
  1481. #ifdef SERVO_ENDSTOPS
  1482. {
  1483. // Retract Servo endstop if enabled
  1484. if (servo_endstops[axis] > -1)
  1485. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1486. }
  1487. #endif
  1488. }
  1489. }
  1490. #ifdef FWRETRACT
  1491. void retract(bool retracting, bool swapping=false) {
  1492. if (retracting == retracted[active_extruder]) return;
  1493. float oldFeedrate = feedrate;
  1494. set_destination_to_current();
  1495. if (retracting) {
  1496. feedrate = retract_feedrate * 60;
  1497. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1498. plan_set_e_position(current_position[E_AXIS]);
  1499. prepare_move();
  1500. if (retract_zlift > 0.01) {
  1501. current_position[Z_AXIS] -= retract_zlift;
  1502. #ifdef DELTA
  1503. sync_plan_position_delta();
  1504. #else
  1505. sync_plan_position();
  1506. #endif
  1507. prepare_move();
  1508. }
  1509. }
  1510. else {
  1511. if (retract_zlift > 0.01) {
  1512. current_position[Z_AXIS] += retract_zlift;
  1513. #ifdef DELTA
  1514. sync_plan_position_delta();
  1515. #else
  1516. sync_plan_position();
  1517. #endif
  1518. //prepare_move();
  1519. }
  1520. feedrate = retract_recover_feedrate * 60;
  1521. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1522. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1523. plan_set_e_position(current_position[E_AXIS]);
  1524. prepare_move();
  1525. }
  1526. feedrate = oldFeedrate;
  1527. retracted[active_extruder] = retracting;
  1528. } // retract()
  1529. #endif // FWRETRACT
  1530. /**
  1531. *
  1532. * G-Code Handler functions
  1533. *
  1534. */
  1535. /**
  1536. * Set XYZE destination and feedrate from the current GCode command
  1537. *
  1538. * - Set destination from included axis codes
  1539. * - Set to current for missing axis codes
  1540. * - Set the feedrate, if included
  1541. */
  1542. void gcode_get_destination() {
  1543. for (int i = 0; i < NUM_AXIS; i++) {
  1544. if (code_seen(axis_codes[i]))
  1545. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1546. else
  1547. destination[i] = current_position[i];
  1548. }
  1549. if (code_seen('F')) {
  1550. float next_feedrate = code_value();
  1551. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1552. }
  1553. }
  1554. void unknown_command_error() {
  1555. SERIAL_ECHO_START;
  1556. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1557. SERIAL_ECHO(current_command);
  1558. SERIAL_ECHOPGM("\"\n");
  1559. }
  1560. /**
  1561. * G0, G1: Coordinated movement of X Y Z E axes
  1562. */
  1563. inline void gcode_G0_G1() {
  1564. if (IsRunning()) {
  1565. gcode_get_destination(); // For X Y Z E F
  1566. #ifdef FWRETRACT
  1567. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1568. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1569. // Is this move an attempt to retract or recover?
  1570. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1571. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1572. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1573. retract(!retracted[active_extruder]);
  1574. return;
  1575. }
  1576. }
  1577. #endif //FWRETRACT
  1578. prepare_move();
  1579. }
  1580. }
  1581. /**
  1582. * Plan an arc in 2 dimensions
  1583. *
  1584. * The arc is approximated by generating many small linear segments.
  1585. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1586. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1587. * larger segments will tend to be more efficient. Your slicer should have
  1588. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1589. */
  1590. void plan_arc(
  1591. float *target, // Destination position
  1592. float *offset, // Center of rotation relative to current_position
  1593. uint8_t clockwise // Clockwise?
  1594. ) {
  1595. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1596. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1597. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1598. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1599. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1600. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1601. r_axis1 = -offset[Y_AXIS],
  1602. rt_axis0 = target[X_AXIS] - center_axis0,
  1603. rt_axis1 = target[Y_AXIS] - center_axis1;
  1604. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1605. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1606. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1607. if (clockwise) { angular_travel -= RADIANS(360); }
  1608. // Make a circle if the angular rotation is 0
  1609. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1610. angular_travel += RADIANS(360);
  1611. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1612. if (mm_of_travel < 0.001) { return; }
  1613. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1614. if (segments == 0) segments = 1;
  1615. float theta_per_segment = angular_travel/segments;
  1616. float linear_per_segment = linear_travel/segments;
  1617. float extruder_per_segment = extruder_travel/segments;
  1618. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1619. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1620. r_T = [cos(phi) -sin(phi);
  1621. sin(phi) cos(phi] * r ;
  1622. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1623. defined from the circle center to the initial position. Each line segment is formed by successive
  1624. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1625. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1626. all double numbers are single precision on the Arduino. (True double precision will not have
  1627. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1628. tool precision in some cases. Therefore, arc path correction is implemented.
  1629. Small angle approximation may be used to reduce computation overhead further. This approximation
  1630. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1631. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1632. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1633. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1634. issue for CNC machines with the single precision Arduino calculations.
  1635. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1636. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1637. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1638. This is important when there are successive arc motions.
  1639. */
  1640. // Vector rotation matrix values
  1641. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1642. float sin_T = theta_per_segment;
  1643. float arc_target[4];
  1644. float sin_Ti;
  1645. float cos_Ti;
  1646. float r_axisi;
  1647. uint16_t i;
  1648. int8_t count = 0;
  1649. // Initialize the linear axis
  1650. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1651. // Initialize the extruder axis
  1652. arc_target[E_AXIS] = current_position[E_AXIS];
  1653. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1654. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1655. if (count < N_ARC_CORRECTION) {
  1656. // Apply vector rotation matrix to previous r_axis0 / 1
  1657. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1658. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1659. r_axis1 = r_axisi;
  1660. count++;
  1661. }
  1662. else {
  1663. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1664. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1665. cos_Ti = cos(i*theta_per_segment);
  1666. sin_Ti = sin(i*theta_per_segment);
  1667. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1668. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1669. count = 0;
  1670. }
  1671. // Update arc_target location
  1672. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1673. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1674. arc_target[Z_AXIS] += linear_per_segment;
  1675. arc_target[E_AXIS] += extruder_per_segment;
  1676. clamp_to_software_endstops(arc_target);
  1677. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1678. }
  1679. // Ensure last segment arrives at target location.
  1680. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1681. // As far as the parser is concerned, the position is now == target. In reality the
  1682. // motion control system might still be processing the action and the real tool position
  1683. // in any intermediate location.
  1684. set_current_to_destination();
  1685. }
  1686. /**
  1687. * G2: Clockwise Arc
  1688. * G3: Counterclockwise Arc
  1689. */
  1690. inline void gcode_G2_G3(bool clockwise) {
  1691. if (IsRunning()) {
  1692. #ifdef SF_ARC_FIX
  1693. bool relative_mode_backup = relative_mode;
  1694. relative_mode = true;
  1695. #endif
  1696. gcode_get_destination();
  1697. #ifdef SF_ARC_FIX
  1698. relative_mode = relative_mode_backup;
  1699. #endif
  1700. // Center of arc as offset from current_position
  1701. float arc_offset[2] = {
  1702. code_seen('I') ? code_value() : 0,
  1703. code_seen('J') ? code_value() : 0
  1704. };
  1705. // Send an arc to the planner
  1706. plan_arc(destination, arc_offset, clockwise);
  1707. refresh_cmd_timeout();
  1708. }
  1709. }
  1710. /**
  1711. * G4: Dwell S<seconds> or P<milliseconds>
  1712. */
  1713. inline void gcode_G4() {
  1714. millis_t codenum = 0;
  1715. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1716. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1717. st_synchronize();
  1718. refresh_cmd_timeout();
  1719. codenum += previous_cmd_ms; // keep track of when we started waiting
  1720. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1721. while (millis() < codenum) idle();
  1722. }
  1723. #ifdef FWRETRACT
  1724. /**
  1725. * G10 - Retract filament according to settings of M207
  1726. * G11 - Recover filament according to settings of M208
  1727. */
  1728. inline void gcode_G10_G11(bool doRetract=false) {
  1729. #if EXTRUDERS > 1
  1730. if (doRetract) {
  1731. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1732. }
  1733. #endif
  1734. retract(doRetract
  1735. #if EXTRUDERS > 1
  1736. , retracted_swap[active_extruder]
  1737. #endif
  1738. );
  1739. }
  1740. #endif //FWRETRACT
  1741. /**
  1742. * G28: Home all axes according to settings
  1743. *
  1744. * Parameters
  1745. *
  1746. * None Home to all axes with no parameters.
  1747. * With QUICK_HOME enabled XY will home together, then Z.
  1748. *
  1749. * Cartesian parameters
  1750. *
  1751. * X Home to the X endstop
  1752. * Y Home to the Y endstop
  1753. * Z Home to the Z endstop
  1754. *
  1755. */
  1756. inline void gcode_G28() {
  1757. // Wait for planner moves to finish!
  1758. st_synchronize();
  1759. // For auto bed leveling, clear the level matrix
  1760. #ifdef ENABLE_AUTO_BED_LEVELING
  1761. plan_bed_level_matrix.set_to_identity();
  1762. #ifdef DELTA
  1763. reset_bed_level();
  1764. #endif
  1765. #endif
  1766. // For manual bed leveling deactivate the matrix temporarily
  1767. #ifdef MESH_BED_LEVELING
  1768. uint8_t mbl_was_active = mbl.active;
  1769. mbl.active = 0;
  1770. #endif
  1771. setup_for_endstop_move();
  1772. set_destination_to_current();
  1773. feedrate = 0.0;
  1774. #ifdef DELTA
  1775. // A delta can only safely home all axis at the same time
  1776. // all axis have to home at the same time
  1777. // Pretend the current position is 0,0,0
  1778. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1779. sync_plan_position();
  1780. // Move all carriages up together until the first endstop is hit.
  1781. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1782. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1783. line_to_destination();
  1784. st_synchronize();
  1785. endstops_hit_on_purpose(); // clear endstop hit flags
  1786. // Destination reached
  1787. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1788. // take care of back off and rehome now we are all at the top
  1789. HOMEAXIS(X);
  1790. HOMEAXIS(Y);
  1791. HOMEAXIS(Z);
  1792. sync_plan_position_delta();
  1793. #else // NOT DELTA
  1794. bool homeX = code_seen(axis_codes[X_AXIS]),
  1795. homeY = code_seen(axis_codes[Y_AXIS]),
  1796. homeZ = code_seen(axis_codes[Z_AXIS]);
  1797. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1798. if (home_all_axis || homeZ) {
  1799. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1800. HOMEAXIS(Z);
  1801. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1802. // Raise Z before homing any other axes
  1803. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1804. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1805. feedrate = max_feedrate[Z_AXIS] * 60;
  1806. line_to_destination();
  1807. st_synchronize();
  1808. #endif
  1809. } // home_all_axis || homeZ
  1810. #ifdef QUICK_HOME
  1811. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1812. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1813. #ifdef DUAL_X_CARRIAGE
  1814. int x_axis_home_dir = x_home_dir(active_extruder);
  1815. extruder_duplication_enabled = false;
  1816. #else
  1817. int x_axis_home_dir = home_dir(X_AXIS);
  1818. #endif
  1819. sync_plan_position();
  1820. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1821. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1822. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1823. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1824. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1825. line_to_destination();
  1826. st_synchronize();
  1827. axis_is_at_home(X_AXIS);
  1828. axis_is_at_home(Y_AXIS);
  1829. sync_plan_position();
  1830. destination[X_AXIS] = current_position[X_AXIS];
  1831. destination[Y_AXIS] = current_position[Y_AXIS];
  1832. line_to_destination();
  1833. feedrate = 0.0;
  1834. st_synchronize();
  1835. endstops_hit_on_purpose(); // clear endstop hit flags
  1836. current_position[X_AXIS] = destination[X_AXIS];
  1837. current_position[Y_AXIS] = destination[Y_AXIS];
  1838. #ifndef SCARA
  1839. current_position[Z_AXIS] = destination[Z_AXIS];
  1840. #endif
  1841. }
  1842. #endif // QUICK_HOME
  1843. #ifdef HOME_Y_BEFORE_X
  1844. // Home Y
  1845. if (home_all_axis || homeY) HOMEAXIS(Y);
  1846. #endif
  1847. // Home X
  1848. if (home_all_axis || homeX) {
  1849. #ifdef DUAL_X_CARRIAGE
  1850. int tmp_extruder = active_extruder;
  1851. extruder_duplication_enabled = false;
  1852. active_extruder = !active_extruder;
  1853. HOMEAXIS(X);
  1854. inactive_extruder_x_pos = current_position[X_AXIS];
  1855. active_extruder = tmp_extruder;
  1856. HOMEAXIS(X);
  1857. // reset state used by the different modes
  1858. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1859. delayed_move_time = 0;
  1860. active_extruder_parked = true;
  1861. #else
  1862. HOMEAXIS(X);
  1863. #endif
  1864. }
  1865. #ifndef HOME_Y_BEFORE_X
  1866. // Home Y
  1867. if (home_all_axis || homeY) HOMEAXIS(Y);
  1868. #endif
  1869. // Home Z last if homing towards the bed
  1870. #if Z_HOME_DIR < 0
  1871. if (home_all_axis || homeZ) {
  1872. #ifdef Z_SAFE_HOMING
  1873. if (home_all_axis) {
  1874. current_position[Z_AXIS] = 0;
  1875. sync_plan_position();
  1876. //
  1877. // Set the probe (or just the nozzle) destination to the safe homing point
  1878. //
  1879. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1880. // then this may not work as expected.
  1881. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1882. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1883. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1884. feedrate = XY_TRAVEL_SPEED;
  1885. // This could potentially move X, Y, Z all together
  1886. line_to_destination();
  1887. st_synchronize();
  1888. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1889. current_position[X_AXIS] = destination[X_AXIS];
  1890. current_position[Y_AXIS] = destination[Y_AXIS];
  1891. // Home the Z axis
  1892. HOMEAXIS(Z);
  1893. }
  1894. else if (homeZ) { // Don't need to Home Z twice
  1895. // Let's see if X and Y are homed
  1896. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1897. // Make sure the probe is within the physical limits
  1898. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1899. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1900. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1901. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1902. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1903. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1904. // Set the plan current position to X, Y, 0
  1905. current_position[Z_AXIS] = 0;
  1906. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1907. // Set Z destination away from bed and raise the axis
  1908. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1909. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1910. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1911. line_to_destination();
  1912. st_synchronize();
  1913. // Home the Z axis
  1914. HOMEAXIS(Z);
  1915. }
  1916. else {
  1917. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1918. SERIAL_ECHO_START;
  1919. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1920. }
  1921. }
  1922. else {
  1923. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1924. SERIAL_ECHO_START;
  1925. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1926. }
  1927. } // !home_all_axes && homeZ
  1928. #else // !Z_SAFE_HOMING
  1929. HOMEAXIS(Z);
  1930. #endif // !Z_SAFE_HOMING
  1931. } // home_all_axis || homeZ
  1932. #endif // Z_HOME_DIR < 0
  1933. sync_plan_position();
  1934. #endif // else DELTA
  1935. #ifdef SCARA
  1936. sync_plan_position_delta();
  1937. #endif
  1938. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1939. enable_endstops(false);
  1940. #endif
  1941. // For manual leveling move back to 0,0
  1942. #ifdef MESH_BED_LEVELING
  1943. if (mbl_was_active) {
  1944. current_position[X_AXIS] = mbl.get_x(0);
  1945. current_position[Y_AXIS] = mbl.get_y(0);
  1946. set_destination_to_current();
  1947. feedrate = homing_feedrate[X_AXIS];
  1948. line_to_destination();
  1949. st_synchronize();
  1950. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1951. sync_plan_position();
  1952. mbl.active = 1;
  1953. }
  1954. #endif
  1955. feedrate = saved_feedrate;
  1956. feedrate_multiplier = saved_feedrate_multiplier;
  1957. refresh_cmd_timeout();
  1958. endstops_hit_on_purpose(); // clear endstop hit flags
  1959. }
  1960. #ifdef MESH_BED_LEVELING
  1961. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1962. /**
  1963. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1964. * mesh to compensate for variable bed height
  1965. *
  1966. * Parameters With MESH_BED_LEVELING:
  1967. *
  1968. * S0 Produce a mesh report
  1969. * S1 Start probing mesh points
  1970. * S2 Probe the next mesh point
  1971. * S3 Xn Yn Zn.nn Manually modify a single point
  1972. *
  1973. * The S0 report the points as below
  1974. *
  1975. * +----> X-axis
  1976. * |
  1977. * |
  1978. * v Y-axis
  1979. *
  1980. */
  1981. inline void gcode_G29() {
  1982. static int probe_point = -1;
  1983. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1984. if (state < 0 || state > 3) {
  1985. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1986. return;
  1987. }
  1988. int ix, iy;
  1989. float z;
  1990. switch(state) {
  1991. case MeshReport:
  1992. if (mbl.active) {
  1993. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1994. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1995. SERIAL_PROTOCOLCHAR(',');
  1996. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1997. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1998. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1999. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2000. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2001. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2002. SERIAL_PROTOCOLPGM(" ");
  2003. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2004. }
  2005. SERIAL_EOL;
  2006. }
  2007. }
  2008. else
  2009. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2010. break;
  2011. case MeshStart:
  2012. mbl.reset();
  2013. probe_point = 0;
  2014. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2015. break;
  2016. case MeshNext:
  2017. if (probe_point < 0) {
  2018. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2019. return;
  2020. }
  2021. if (probe_point == 0) {
  2022. // Set Z to a positive value before recording the first Z.
  2023. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2024. sync_plan_position();
  2025. }
  2026. else {
  2027. // For others, save the Z of the previous point, then raise Z again.
  2028. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2029. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2030. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2031. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2032. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2034. st_synchronize();
  2035. }
  2036. // Is there another point to sample? Move there.
  2037. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2038. ix = probe_point % MESH_NUM_X_POINTS;
  2039. iy = probe_point / MESH_NUM_X_POINTS;
  2040. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2041. current_position[X_AXIS] = mbl.get_x(ix);
  2042. current_position[Y_AXIS] = mbl.get_y(iy);
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2044. st_synchronize();
  2045. probe_point++;
  2046. }
  2047. else {
  2048. // After recording the last point, activate the mbl and home
  2049. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2050. probe_point = -1;
  2051. mbl.active = 1;
  2052. enqueuecommands_P(PSTR("G28"));
  2053. }
  2054. break;
  2055. case MeshSet:
  2056. if (code_seen('X') || code_seen('x')) {
  2057. ix = code_value_long()-1;
  2058. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2059. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2060. return;
  2061. }
  2062. } else {
  2063. SERIAL_PROTOCOLPGM("X not entered.\n");
  2064. return;
  2065. }
  2066. if (code_seen('Y') || code_seen('y')) {
  2067. iy = code_value_long()-1;
  2068. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2069. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2070. return;
  2071. }
  2072. } else {
  2073. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2074. return;
  2075. }
  2076. if (code_seen('Z') || code_seen('z')) {
  2077. z = code_value();
  2078. } else {
  2079. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2080. return;
  2081. }
  2082. mbl.z_values[iy][ix] = z;
  2083. } // switch(state)
  2084. }
  2085. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2086. void out_of_range_error(const char *p_edge) {
  2087. SERIAL_PROTOCOLPGM("?Probe ");
  2088. serialprintPGM(p_edge);
  2089. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2090. }
  2091. /**
  2092. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2093. * Will fail if the printer has not been homed with G28.
  2094. *
  2095. * Enhanced G29 Auto Bed Leveling Probe Routine
  2096. *
  2097. * Parameters With AUTO_BED_LEVELING_GRID:
  2098. *
  2099. * P Set the size of the grid that will be probed (P x P points).
  2100. * Not supported by non-linear delta printer bed leveling.
  2101. * Example: "G29 P4"
  2102. *
  2103. * S Set the XY travel speed between probe points (in mm/min)
  2104. *
  2105. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2106. * or clean the rotation Matrix. Useful to check the topology
  2107. * after a first run of G29.
  2108. *
  2109. * V Set the verbose level (0-4). Example: "G29 V3"
  2110. *
  2111. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2112. * This is useful for manual bed leveling and finding flaws in the bed (to
  2113. * assist with part placement).
  2114. * Not supported by non-linear delta printer bed leveling.
  2115. *
  2116. * F Set the Front limit of the probing grid
  2117. * B Set the Back limit of the probing grid
  2118. * L Set the Left limit of the probing grid
  2119. * R Set the Right limit of the probing grid
  2120. *
  2121. * Global Parameters:
  2122. *
  2123. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2124. * Include "E" to engage/disengage the probe for each sample.
  2125. * There's no extra effect if you have a fixed probe.
  2126. * Usage: "G29 E" or "G29 e"
  2127. *
  2128. */
  2129. inline void gcode_G29() {
  2130. // Don't allow auto-leveling without homing first
  2131. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2132. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2133. SERIAL_ECHO_START;
  2134. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2135. return;
  2136. }
  2137. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2138. if (verbose_level < 0 || verbose_level > 4) {
  2139. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2140. return;
  2141. }
  2142. bool dryrun = code_seen('D') || code_seen('d'),
  2143. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2144. #ifdef AUTO_BED_LEVELING_GRID
  2145. #ifndef DELTA
  2146. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2147. #endif
  2148. if (verbose_level > 0) {
  2149. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2150. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2151. }
  2152. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2153. #ifndef DELTA
  2154. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2155. if (auto_bed_leveling_grid_points < 2) {
  2156. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2157. return;
  2158. }
  2159. #endif
  2160. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2161. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2162. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2163. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2164. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2165. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2166. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2167. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2168. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2169. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2170. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2171. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2172. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2173. if (left_out || right_out || front_out || back_out) {
  2174. if (left_out) {
  2175. out_of_range_error(PSTR("(L)eft"));
  2176. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2177. }
  2178. if (right_out) {
  2179. out_of_range_error(PSTR("(R)ight"));
  2180. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2181. }
  2182. if (front_out) {
  2183. out_of_range_error(PSTR("(F)ront"));
  2184. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2185. }
  2186. if (back_out) {
  2187. out_of_range_error(PSTR("(B)ack"));
  2188. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2189. }
  2190. return;
  2191. }
  2192. #endif // AUTO_BED_LEVELING_GRID
  2193. #ifdef Z_PROBE_SLED
  2194. dock_sled(false); // engage (un-dock) the probe
  2195. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2196. deploy_z_probe();
  2197. #endif
  2198. st_synchronize();
  2199. if (!dryrun) {
  2200. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2201. plan_bed_level_matrix.set_to_identity();
  2202. #ifdef DELTA
  2203. reset_bed_level();
  2204. #else //!DELTA
  2205. //vector_3 corrected_position = plan_get_position_mm();
  2206. //corrected_position.debug("position before G29");
  2207. vector_3 uncorrected_position = plan_get_position();
  2208. //uncorrected_position.debug("position during G29");
  2209. current_position[X_AXIS] = uncorrected_position.x;
  2210. current_position[Y_AXIS] = uncorrected_position.y;
  2211. current_position[Z_AXIS] = uncorrected_position.z;
  2212. sync_plan_position();
  2213. #endif // !DELTA
  2214. }
  2215. setup_for_endstop_move();
  2216. feedrate = homing_feedrate[Z_AXIS];
  2217. #ifdef AUTO_BED_LEVELING_GRID
  2218. // probe at the points of a lattice grid
  2219. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2220. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2221. #ifdef DELTA
  2222. delta_grid_spacing[0] = xGridSpacing;
  2223. delta_grid_spacing[1] = yGridSpacing;
  2224. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2225. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2226. #else // !DELTA
  2227. // solve the plane equation ax + by + d = z
  2228. // A is the matrix with rows [x y 1] for all the probed points
  2229. // B is the vector of the Z positions
  2230. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2231. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2232. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2233. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2234. eqnBVector[abl2], // "B" vector of Z points
  2235. mean = 0.0;
  2236. #endif // !DELTA
  2237. int probePointCounter = 0;
  2238. bool zig = true;
  2239. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2240. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2241. int xStart, xStop, xInc;
  2242. if (zig) {
  2243. xStart = 0;
  2244. xStop = auto_bed_leveling_grid_points;
  2245. xInc = 1;
  2246. }
  2247. else {
  2248. xStart = auto_bed_leveling_grid_points - 1;
  2249. xStop = -1;
  2250. xInc = -1;
  2251. }
  2252. #ifndef DELTA
  2253. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2254. // This gets the probe points in more readable order.
  2255. if (!do_topography_map) zig = !zig;
  2256. #else
  2257. zig = !zig;
  2258. #endif
  2259. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2260. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2261. // raise extruder
  2262. float measured_z,
  2263. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2264. #ifdef DELTA
  2265. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2266. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2267. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2268. #endif //DELTA
  2269. ProbeAction act;
  2270. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2271. act = ProbeDeployAndStow;
  2272. else if (yCount == 0 && xCount == xStart)
  2273. act = ProbeDeploy;
  2274. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2275. act = ProbeStow;
  2276. else
  2277. act = ProbeStay;
  2278. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2279. #ifndef DELTA
  2280. mean += measured_z;
  2281. eqnBVector[probePointCounter] = measured_z;
  2282. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2283. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2284. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2285. #else
  2286. bed_level[xCount][yCount] = measured_z + z_offset;
  2287. #endif
  2288. probePointCounter++;
  2289. idle();
  2290. } //xProbe
  2291. } //yProbe
  2292. clean_up_after_endstop_move();
  2293. #ifdef DELTA
  2294. if (!dryrun) extrapolate_unprobed_bed_level();
  2295. print_bed_level();
  2296. #else // !DELTA
  2297. // solve lsq problem
  2298. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2299. mean /= abl2;
  2300. if (verbose_level) {
  2301. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2302. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2303. SERIAL_PROTOCOLPGM(" b: ");
  2304. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2305. SERIAL_PROTOCOLPGM(" d: ");
  2306. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2307. SERIAL_EOL;
  2308. if (verbose_level > 2) {
  2309. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2310. SERIAL_PROTOCOL_F(mean, 8);
  2311. SERIAL_EOL;
  2312. }
  2313. }
  2314. // Show the Topography map if enabled
  2315. if (do_topography_map) {
  2316. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2317. SERIAL_PROTOCOLPGM("+-----------+\n");
  2318. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2319. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2320. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2321. SERIAL_PROTOCOLPGM("+-----------+\n");
  2322. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2323. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2324. int ind = yy * auto_bed_leveling_grid_points + xx;
  2325. float diff = eqnBVector[ind] - mean;
  2326. if (diff >= 0.0)
  2327. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2328. else
  2329. SERIAL_PROTOCOLCHAR(' ');
  2330. SERIAL_PROTOCOL_F(diff, 5);
  2331. } // xx
  2332. SERIAL_EOL;
  2333. } // yy
  2334. SERIAL_EOL;
  2335. } //do_topography_map
  2336. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2337. free(plane_equation_coefficients);
  2338. #endif //!DELTA
  2339. #else // !AUTO_BED_LEVELING_GRID
  2340. // Actions for each probe
  2341. ProbeAction p1, p2, p3;
  2342. if (deploy_probe_for_each_reading)
  2343. p1 = p2 = p3 = ProbeDeployAndStow;
  2344. else
  2345. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2346. // Probe at 3 arbitrary points
  2347. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2348. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2349. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2350. clean_up_after_endstop_move();
  2351. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2352. #endif // !AUTO_BED_LEVELING_GRID
  2353. #ifndef DELTA
  2354. if (verbose_level > 0)
  2355. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2356. if (!dryrun) {
  2357. // Correct the Z height difference from z-probe position and hotend tip position.
  2358. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2359. // When the bed is uneven, this height must be corrected.
  2360. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2361. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2362. z_tmp = current_position[Z_AXIS],
  2363. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2364. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2365. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2366. sync_plan_position();
  2367. }
  2368. #endif // !DELTA
  2369. #ifdef Z_PROBE_SLED
  2370. dock_sled(true); // dock the probe
  2371. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2372. stow_z_probe();
  2373. #endif
  2374. #ifdef Z_PROBE_END_SCRIPT
  2375. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2376. st_synchronize();
  2377. #endif
  2378. }
  2379. #ifndef Z_PROBE_SLED
  2380. inline void gcode_G30() {
  2381. deploy_z_probe(); // Engage Z Servo endstop if available
  2382. st_synchronize();
  2383. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2384. setup_for_endstop_move();
  2385. feedrate = homing_feedrate[Z_AXIS];
  2386. run_z_probe();
  2387. SERIAL_PROTOCOLPGM("Bed X: ");
  2388. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2389. SERIAL_PROTOCOLPGM(" Y: ");
  2390. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2391. SERIAL_PROTOCOLPGM(" Z: ");
  2392. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2393. SERIAL_EOL;
  2394. clean_up_after_endstop_move();
  2395. stow_z_probe(); // Retract Z Servo endstop if available
  2396. }
  2397. #endif //!Z_PROBE_SLED
  2398. #endif //ENABLE_AUTO_BED_LEVELING
  2399. /**
  2400. * G92: Set current position to given X Y Z E
  2401. */
  2402. inline void gcode_G92() {
  2403. if (!code_seen(axis_codes[E_AXIS]))
  2404. st_synchronize();
  2405. bool didXYZ = false;
  2406. for (int i = 0; i < NUM_AXIS; i++) {
  2407. if (code_seen(axis_codes[i])) {
  2408. float v = current_position[i] = code_value();
  2409. if (i == E_AXIS)
  2410. plan_set_e_position(v);
  2411. else
  2412. didXYZ = true;
  2413. }
  2414. }
  2415. if (didXYZ) {
  2416. #if defined(DELTA) || defined(SCARA)
  2417. sync_plan_position_delta();
  2418. #else
  2419. sync_plan_position();
  2420. #endif
  2421. }
  2422. }
  2423. #ifdef ULTIPANEL
  2424. /**
  2425. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2426. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2427. */
  2428. inline void gcode_M0_M1() {
  2429. char *args = current_command_args;
  2430. millis_t codenum = 0;
  2431. bool hasP = false, hasS = false;
  2432. if (code_seen('P')) {
  2433. codenum = code_value_short(); // milliseconds to wait
  2434. hasP = codenum > 0;
  2435. }
  2436. if (code_seen('S')) {
  2437. codenum = code_value() * 1000; // seconds to wait
  2438. hasS = codenum > 0;
  2439. }
  2440. if (!hasP && !hasS && *args != '\0')
  2441. lcd_setstatus(args, true);
  2442. else {
  2443. LCD_MESSAGEPGM(MSG_USERWAIT);
  2444. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2445. dontExpireStatus();
  2446. #endif
  2447. }
  2448. lcd_ignore_click();
  2449. st_synchronize();
  2450. refresh_cmd_timeout();
  2451. if (codenum > 0) {
  2452. codenum += previous_cmd_ms; // wait until this time for a click
  2453. while (millis() < codenum && !lcd_clicked()) idle();
  2454. lcd_ignore_click(false);
  2455. }
  2456. else {
  2457. if (!lcd_detected()) return;
  2458. while (!lcd_clicked()) idle();
  2459. }
  2460. if (IS_SD_PRINTING)
  2461. LCD_MESSAGEPGM(MSG_RESUMING);
  2462. else
  2463. LCD_MESSAGEPGM(WELCOME_MSG);
  2464. }
  2465. #endif // ULTIPANEL
  2466. /**
  2467. * M17: Enable power on all stepper motors
  2468. */
  2469. inline void gcode_M17() {
  2470. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2471. enable_all_steppers();
  2472. }
  2473. #ifdef SDSUPPORT
  2474. /**
  2475. * M20: List SD card to serial output
  2476. */
  2477. inline void gcode_M20() {
  2478. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2479. card.ls();
  2480. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2481. }
  2482. /**
  2483. * M21: Init SD Card
  2484. */
  2485. inline void gcode_M21() {
  2486. card.initsd();
  2487. }
  2488. /**
  2489. * M22: Release SD Card
  2490. */
  2491. inline void gcode_M22() {
  2492. card.release();
  2493. }
  2494. /**
  2495. * M23: Select a file
  2496. */
  2497. inline void gcode_M23() {
  2498. card.openFile(current_command_args, true);
  2499. }
  2500. /**
  2501. * M24: Start SD Print
  2502. */
  2503. inline void gcode_M24() {
  2504. card.startFileprint();
  2505. print_job_start_ms = millis();
  2506. }
  2507. /**
  2508. * M25: Pause SD Print
  2509. */
  2510. inline void gcode_M25() {
  2511. card.pauseSDPrint();
  2512. }
  2513. /**
  2514. * M26: Set SD Card file index
  2515. */
  2516. inline void gcode_M26() {
  2517. if (card.cardOK && code_seen('S'))
  2518. card.setIndex(code_value_short());
  2519. }
  2520. /**
  2521. * M27: Get SD Card status
  2522. */
  2523. inline void gcode_M27() {
  2524. card.getStatus();
  2525. }
  2526. /**
  2527. * M28: Start SD Write
  2528. */
  2529. inline void gcode_M28() {
  2530. card.openFile(current_command_args, false);
  2531. }
  2532. /**
  2533. * M29: Stop SD Write
  2534. * Processed in write to file routine above
  2535. */
  2536. inline void gcode_M29() {
  2537. // card.saving = false;
  2538. }
  2539. /**
  2540. * M30 <filename>: Delete SD Card file
  2541. */
  2542. inline void gcode_M30() {
  2543. if (card.cardOK) {
  2544. card.closefile();
  2545. card.removeFile(current_command_args);
  2546. }
  2547. }
  2548. #endif
  2549. /**
  2550. * M31: Get the time since the start of SD Print (or last M109)
  2551. */
  2552. inline void gcode_M31() {
  2553. print_job_stop_ms = millis();
  2554. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2555. int min = t / 60, sec = t % 60;
  2556. char time[30];
  2557. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2558. SERIAL_ECHO_START;
  2559. SERIAL_ECHOLN(time);
  2560. lcd_setstatus(time);
  2561. autotempShutdown();
  2562. }
  2563. #ifdef SDSUPPORT
  2564. /**
  2565. * M32: Select file and start SD Print
  2566. */
  2567. inline void gcode_M32() {
  2568. if (card.sdprinting)
  2569. st_synchronize();
  2570. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2571. if (!namestartpos)
  2572. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2573. else
  2574. namestartpos++; //to skip the '!'
  2575. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2576. if (card.cardOK) {
  2577. card.openFile(namestartpos, true, !call_procedure);
  2578. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2579. card.setIndex(code_value_short());
  2580. card.startFileprint();
  2581. if (!call_procedure)
  2582. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2583. }
  2584. }
  2585. #ifdef LONG_FILENAME_HOST_SUPPORT
  2586. /**
  2587. * M33: Get the long full path of a file or folder
  2588. *
  2589. * Parameters:
  2590. * <dospath> Case-insensitive DOS-style path to a file or folder
  2591. *
  2592. * Example:
  2593. * M33 miscel~1/armchair/armcha~1.gco
  2594. *
  2595. * Output:
  2596. * /Miscellaneous/Armchair/Armchair.gcode
  2597. */
  2598. inline void gcode_M33() {
  2599. card.printLongPath(current_command_args);
  2600. }
  2601. #endif
  2602. /**
  2603. * M928: Start SD Write
  2604. */
  2605. inline void gcode_M928() {
  2606. card.openLogFile(current_command_args);
  2607. }
  2608. #endif // SDSUPPORT
  2609. /**
  2610. * M42: Change pin status via GCode
  2611. */
  2612. inline void gcode_M42() {
  2613. if (code_seen('S')) {
  2614. int pin_status = code_value_short(),
  2615. pin_number = LED_PIN;
  2616. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2617. pin_number = code_value_short();
  2618. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2619. if (sensitive_pins[i] == pin_number) {
  2620. pin_number = -1;
  2621. break;
  2622. }
  2623. }
  2624. #if HAS_FAN
  2625. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2626. #endif
  2627. if (pin_number > -1) {
  2628. pinMode(pin_number, OUTPUT);
  2629. digitalWrite(pin_number, pin_status);
  2630. analogWrite(pin_number, pin_status);
  2631. }
  2632. } // code_seen('S')
  2633. }
  2634. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2635. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2636. #ifdef Z_PROBE_ENDSTOP
  2637. #if !HAS_Z_PROBE
  2638. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2639. #endif
  2640. #elif !HAS_Z_MIN
  2641. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2642. #endif
  2643. /**
  2644. * M48: Z-Probe repeatability measurement function.
  2645. *
  2646. * Usage:
  2647. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2648. * P = Number of sampled points (4-50, default 10)
  2649. * X = Sample X position
  2650. * Y = Sample Y position
  2651. * V = Verbose level (0-4, default=1)
  2652. * E = Engage probe for each reading
  2653. * L = Number of legs of movement before probe
  2654. *
  2655. * This function assumes the bed has been homed. Specifically, that a G28 command
  2656. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2657. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2658. * regenerated.
  2659. */
  2660. inline void gcode_M48() {
  2661. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2662. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2663. if (code_seen('V') || code_seen('v')) {
  2664. verbose_level = code_value_short();
  2665. if (verbose_level < 0 || verbose_level > 4 ) {
  2666. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2667. return;
  2668. }
  2669. }
  2670. if (verbose_level > 0)
  2671. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2672. if (code_seen('P') || code_seen('p')) {
  2673. n_samples = code_value_short();
  2674. if (n_samples < 4 || n_samples > 50) {
  2675. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2676. return;
  2677. }
  2678. }
  2679. double X_current = st_get_position_mm(X_AXIS),
  2680. Y_current = st_get_position_mm(Y_AXIS),
  2681. Z_current = st_get_position_mm(Z_AXIS),
  2682. E_current = st_get_position_mm(E_AXIS),
  2683. X_probe_location = X_current, Y_probe_location = Y_current,
  2684. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2685. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2686. if (code_seen('X') || code_seen('x')) {
  2687. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2688. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2689. out_of_range_error(PSTR("X"));
  2690. return;
  2691. }
  2692. }
  2693. if (code_seen('Y') || code_seen('y')) {
  2694. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2695. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2696. out_of_range_error(PSTR("Y"));
  2697. return;
  2698. }
  2699. }
  2700. if (code_seen('L') || code_seen('l')) {
  2701. n_legs = code_value_short();
  2702. if (n_legs == 1) n_legs = 2;
  2703. if (n_legs < 0 || n_legs > 15) {
  2704. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2705. return;
  2706. }
  2707. }
  2708. //
  2709. // Do all the preliminary setup work. First raise the probe.
  2710. //
  2711. st_synchronize();
  2712. plan_bed_level_matrix.set_to_identity();
  2713. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2714. st_synchronize();
  2715. //
  2716. // Now get everything to the specified probe point So we can safely do a probe to
  2717. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2718. // use that as a starting point for each probe.
  2719. //
  2720. if (verbose_level > 2)
  2721. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2722. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2723. E_current,
  2724. homing_feedrate[X_AXIS]/60,
  2725. active_extruder);
  2726. st_synchronize();
  2727. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2728. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2729. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2730. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2731. //
  2732. // OK, do the initial probe to get us close to the bed.
  2733. // Then retrace the right amount and use that in subsequent probes
  2734. //
  2735. deploy_z_probe();
  2736. setup_for_endstop_move();
  2737. run_z_probe();
  2738. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2739. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2740. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2741. E_current,
  2742. homing_feedrate[X_AXIS]/60,
  2743. active_extruder);
  2744. st_synchronize();
  2745. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2746. if (deploy_probe_for_each_reading) stow_z_probe();
  2747. for (uint8_t n=0; n < n_samples; n++) {
  2748. // Make sure we are at the probe location
  2749. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2750. if (n_legs) {
  2751. millis_t ms = millis();
  2752. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2753. theta = RADIANS(ms % 360L);
  2754. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2755. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2756. //SERIAL_ECHOPAIR(" theta: ",theta);
  2757. //SERIAL_ECHOPAIR(" direction: ",dir);
  2758. //SERIAL_EOL;
  2759. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2760. ms = millis();
  2761. theta += RADIANS(dir * (ms % 20L));
  2762. radius += (ms % 10L) - 5L;
  2763. if (radius < 0.0) radius = -radius;
  2764. X_current = X_probe_location + cos(theta) * radius;
  2765. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2766. Y_current = Y_probe_location + sin(theta) * radius;
  2767. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2768. if (verbose_level > 3) {
  2769. SERIAL_ECHOPAIR("x: ", X_current);
  2770. SERIAL_ECHOPAIR("y: ", Y_current);
  2771. SERIAL_EOL;
  2772. }
  2773. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2774. } // n_legs loop
  2775. // Go back to the probe location
  2776. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2777. } // n_legs
  2778. if (deploy_probe_for_each_reading) {
  2779. deploy_z_probe();
  2780. delay(1000);
  2781. }
  2782. setup_for_endstop_move();
  2783. run_z_probe();
  2784. sample_set[n] = current_position[Z_AXIS];
  2785. //
  2786. // Get the current mean for the data points we have so far
  2787. //
  2788. sum = 0.0;
  2789. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2790. mean = sum / (n + 1);
  2791. //
  2792. // Now, use that mean to calculate the standard deviation for the
  2793. // data points we have so far
  2794. //
  2795. sum = 0.0;
  2796. for (uint8_t j = 0; j <= n; j++) {
  2797. float ss = sample_set[j] - mean;
  2798. sum += ss * ss;
  2799. }
  2800. sigma = sqrt(sum / (n + 1));
  2801. if (verbose_level > 1) {
  2802. SERIAL_PROTOCOL(n+1);
  2803. SERIAL_PROTOCOLPGM(" of ");
  2804. SERIAL_PROTOCOL(n_samples);
  2805. SERIAL_PROTOCOLPGM(" z: ");
  2806. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2807. if (verbose_level > 2) {
  2808. SERIAL_PROTOCOLPGM(" mean: ");
  2809. SERIAL_PROTOCOL_F(mean,6);
  2810. SERIAL_PROTOCOLPGM(" sigma: ");
  2811. SERIAL_PROTOCOL_F(sigma,6);
  2812. }
  2813. }
  2814. if (verbose_level > 0) SERIAL_EOL;
  2815. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2816. st_synchronize();
  2817. // Stow between
  2818. if (deploy_probe_for_each_reading) {
  2819. stow_z_probe();
  2820. delay(1000);
  2821. }
  2822. }
  2823. // Stow after
  2824. if (!deploy_probe_for_each_reading) {
  2825. stow_z_probe();
  2826. delay(1000);
  2827. }
  2828. clean_up_after_endstop_move();
  2829. if (verbose_level > 0) {
  2830. SERIAL_PROTOCOLPGM("Mean: ");
  2831. SERIAL_PROTOCOL_F(mean, 6);
  2832. SERIAL_EOL;
  2833. }
  2834. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2835. SERIAL_PROTOCOL_F(sigma, 6);
  2836. SERIAL_EOL; SERIAL_EOL;
  2837. }
  2838. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2839. /**
  2840. * M104: Set hot end temperature
  2841. */
  2842. inline void gcode_M104() {
  2843. if (setTargetedHotend(104)) return;
  2844. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2845. if (code_seen('S')) {
  2846. float temp = code_value();
  2847. setTargetHotend(temp, target_extruder);
  2848. #ifdef DUAL_X_CARRIAGE
  2849. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2850. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2851. #endif
  2852. }
  2853. }
  2854. /**
  2855. * M105: Read hot end and bed temperature
  2856. */
  2857. inline void gcode_M105() {
  2858. if (setTargetedHotend(105)) return;
  2859. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2860. SERIAL_PROTOCOLPGM(MSG_OK);
  2861. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2862. SERIAL_PROTOCOLPGM(" T:");
  2863. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2864. SERIAL_PROTOCOLPGM(" /");
  2865. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2866. #endif
  2867. #if HAS_TEMP_BED
  2868. SERIAL_PROTOCOLPGM(" B:");
  2869. SERIAL_PROTOCOL_F(degBed(), 1);
  2870. SERIAL_PROTOCOLPGM(" /");
  2871. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2872. #endif
  2873. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2874. SERIAL_PROTOCOLPGM(" T");
  2875. SERIAL_PROTOCOL(e);
  2876. SERIAL_PROTOCOLCHAR(':');
  2877. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2878. SERIAL_PROTOCOLPGM(" /");
  2879. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2880. }
  2881. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2882. SERIAL_ERROR_START;
  2883. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2884. #endif
  2885. SERIAL_PROTOCOLPGM(" @:");
  2886. #ifdef EXTRUDER_WATTS
  2887. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2888. SERIAL_PROTOCOLCHAR('W');
  2889. #else
  2890. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2891. #endif
  2892. SERIAL_PROTOCOLPGM(" B@:");
  2893. #ifdef BED_WATTS
  2894. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2895. SERIAL_PROTOCOLCHAR('W');
  2896. #else
  2897. SERIAL_PROTOCOL(getHeaterPower(-1));
  2898. #endif
  2899. #ifdef SHOW_TEMP_ADC_VALUES
  2900. #if HAS_TEMP_BED
  2901. SERIAL_PROTOCOLPGM(" ADC B:");
  2902. SERIAL_PROTOCOL_F(degBed(),1);
  2903. SERIAL_PROTOCOLPGM("C->");
  2904. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2905. #endif
  2906. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2907. SERIAL_PROTOCOLPGM(" T");
  2908. SERIAL_PROTOCOL(cur_extruder);
  2909. SERIAL_PROTOCOLCHAR(':');
  2910. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2911. SERIAL_PROTOCOLPGM("C->");
  2912. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2913. }
  2914. #endif
  2915. SERIAL_EOL;
  2916. }
  2917. #if HAS_FAN
  2918. /**
  2919. * M106: Set Fan Speed
  2920. */
  2921. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2922. /**
  2923. * M107: Fan Off
  2924. */
  2925. inline void gcode_M107() { fanSpeed = 0; }
  2926. #endif // HAS_FAN
  2927. /**
  2928. * M109: Wait for extruder(s) to reach temperature
  2929. */
  2930. inline void gcode_M109() {
  2931. if (setTargetedHotend(109)) return;
  2932. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2933. LCD_MESSAGEPGM(MSG_HEATING);
  2934. no_wait_for_cooling = code_seen('S');
  2935. if (no_wait_for_cooling || code_seen('R')) {
  2936. float temp = code_value();
  2937. setTargetHotend(temp, target_extruder);
  2938. #ifdef DUAL_X_CARRIAGE
  2939. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2940. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2941. #endif
  2942. }
  2943. #ifdef AUTOTEMP
  2944. autotemp_enabled = code_seen('F');
  2945. if (autotemp_enabled) autotemp_factor = code_value();
  2946. if (code_seen('S')) autotemp_min = code_value();
  2947. if (code_seen('B')) autotemp_max = code_value();
  2948. #endif
  2949. millis_t temp_ms = millis();
  2950. /* See if we are heating up or cooling down */
  2951. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2952. cancel_heatup = false;
  2953. #ifdef TEMP_RESIDENCY_TIME
  2954. long residency_start_ms = -1;
  2955. /* continue to loop until we have reached the target temp
  2956. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2957. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2958. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2959. #else
  2960. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2961. #endif //TEMP_RESIDENCY_TIME
  2962. { // while loop
  2963. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2964. SERIAL_PROTOCOLPGM("T:");
  2965. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2966. SERIAL_PROTOCOLPGM(" E:");
  2967. SERIAL_PROTOCOL((int)target_extruder);
  2968. #ifdef TEMP_RESIDENCY_TIME
  2969. SERIAL_PROTOCOLPGM(" W:");
  2970. if (residency_start_ms > -1) {
  2971. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2972. SERIAL_PROTOCOLLN(temp_ms);
  2973. }
  2974. else {
  2975. SERIAL_PROTOCOLLNPGM("?");
  2976. }
  2977. #else
  2978. SERIAL_EOL;
  2979. #endif
  2980. temp_ms = millis();
  2981. }
  2982. idle();
  2983. #ifdef TEMP_RESIDENCY_TIME
  2984. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2985. // or when current temp falls outside the hysteresis after target temp was reached
  2986. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2987. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2988. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2989. {
  2990. residency_start_ms = millis();
  2991. }
  2992. #endif //TEMP_RESIDENCY_TIME
  2993. }
  2994. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2995. refresh_cmd_timeout();
  2996. print_job_start_ms = previous_cmd_ms;
  2997. }
  2998. #if HAS_TEMP_BED
  2999. /**
  3000. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3001. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3002. */
  3003. inline void gcode_M190() {
  3004. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3005. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3006. no_wait_for_cooling = code_seen('S');
  3007. if (no_wait_for_cooling || code_seen('R'))
  3008. setTargetBed(code_value());
  3009. millis_t temp_ms = millis();
  3010. cancel_heatup = false;
  3011. target_direction = isHeatingBed(); // true if heating, false if cooling
  3012. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3013. millis_t ms = millis();
  3014. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3015. temp_ms = ms;
  3016. float tt = degHotend(active_extruder);
  3017. SERIAL_PROTOCOLPGM("T:");
  3018. SERIAL_PROTOCOL(tt);
  3019. SERIAL_PROTOCOLPGM(" E:");
  3020. SERIAL_PROTOCOL((int)active_extruder);
  3021. SERIAL_PROTOCOLPGM(" B:");
  3022. SERIAL_PROTOCOL_F(degBed(), 1);
  3023. SERIAL_EOL;
  3024. }
  3025. idle();
  3026. }
  3027. LCD_MESSAGEPGM(MSG_BED_DONE);
  3028. refresh_cmd_timeout();
  3029. }
  3030. #endif // HAS_TEMP_BED
  3031. /**
  3032. * M111: Set the debug level
  3033. */
  3034. inline void gcode_M111() {
  3035. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  3036. SERIAL_ECHO_START;
  3037. if (marlin_debug_flags & DEBUG_ECHO) SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3038. // FOR MOMENT NOT ACTIVE
  3039. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3040. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3041. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3042. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3043. setTargetBed(0);
  3044. for (int8_t cur_hotend = 0; cur_hotend < EXTRUDERS; ++cur_hotend) {
  3045. setTargetHotend(0, cur_hotend);
  3046. }
  3047. }
  3048. }
  3049. /**
  3050. * M112: Emergency Stop
  3051. */
  3052. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3053. #ifdef BARICUDA
  3054. #if HAS_HEATER_1
  3055. /**
  3056. * M126: Heater 1 valve open
  3057. */
  3058. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3059. /**
  3060. * M127: Heater 1 valve close
  3061. */
  3062. inline void gcode_M127() { ValvePressure = 0; }
  3063. #endif
  3064. #if HAS_HEATER_2
  3065. /**
  3066. * M128: Heater 2 valve open
  3067. */
  3068. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3069. /**
  3070. * M129: Heater 2 valve close
  3071. */
  3072. inline void gcode_M129() { EtoPPressure = 0; }
  3073. #endif
  3074. #endif //BARICUDA
  3075. /**
  3076. * M140: Set bed temperature
  3077. */
  3078. inline void gcode_M140() {
  3079. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3080. if (code_seen('S')) setTargetBed(code_value());
  3081. }
  3082. #ifdef ULTIPANEL
  3083. /**
  3084. * M145: Set the heatup state for a material in the LCD menu
  3085. * S<material> (0=PLA, 1=ABS)
  3086. * H<hotend temp>
  3087. * B<bed temp>
  3088. * F<fan speed>
  3089. */
  3090. inline void gcode_M145() {
  3091. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3092. if (material < 0 || material > 1) {
  3093. SERIAL_ERROR_START;
  3094. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3095. }
  3096. else {
  3097. int v;
  3098. switch (material) {
  3099. case 0:
  3100. if (code_seen('H')) {
  3101. v = code_value_short();
  3102. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3103. }
  3104. if (code_seen('F')) {
  3105. v = code_value_short();
  3106. plaPreheatFanSpeed = constrain(v, 0, 255);
  3107. }
  3108. #if TEMP_SENSOR_BED != 0
  3109. if (code_seen('B')) {
  3110. v = code_value_short();
  3111. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3112. }
  3113. #endif
  3114. break;
  3115. case 1:
  3116. if (code_seen('H')) {
  3117. v = code_value_short();
  3118. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3119. }
  3120. if (code_seen('F')) {
  3121. v = code_value_short();
  3122. absPreheatFanSpeed = constrain(v, 0, 255);
  3123. }
  3124. #if TEMP_SENSOR_BED != 0
  3125. if (code_seen('B')) {
  3126. v = code_value_short();
  3127. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3128. }
  3129. #endif
  3130. break;
  3131. }
  3132. }
  3133. }
  3134. #endif
  3135. #if HAS_POWER_SWITCH
  3136. /**
  3137. * M80: Turn on Power Supply
  3138. */
  3139. inline void gcode_M80() {
  3140. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3141. // If you have a switch on suicide pin, this is useful
  3142. // if you want to start another print with suicide feature after
  3143. // a print without suicide...
  3144. #if HAS_SUICIDE
  3145. OUT_WRITE(SUICIDE_PIN, HIGH);
  3146. #endif
  3147. #ifdef ULTIPANEL
  3148. powersupply = true;
  3149. LCD_MESSAGEPGM(WELCOME_MSG);
  3150. lcd_update();
  3151. #endif
  3152. }
  3153. #endif // HAS_POWER_SWITCH
  3154. /**
  3155. * M81: Turn off Power, including Power Supply, if there is one.
  3156. *
  3157. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3158. */
  3159. inline void gcode_M81() {
  3160. disable_all_heaters();
  3161. st_synchronize();
  3162. disable_e0();
  3163. disable_e1();
  3164. disable_e2();
  3165. disable_e3();
  3166. finishAndDisableSteppers();
  3167. fanSpeed = 0;
  3168. delay(1000); // Wait 1 second before switching off
  3169. #if HAS_SUICIDE
  3170. st_synchronize();
  3171. suicide();
  3172. #elif HAS_POWER_SWITCH
  3173. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3174. #endif
  3175. #ifdef ULTIPANEL
  3176. #if HAS_POWER_SWITCH
  3177. powersupply = false;
  3178. #endif
  3179. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3180. lcd_update();
  3181. #endif
  3182. }
  3183. /**
  3184. * M82: Set E codes absolute (default)
  3185. */
  3186. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3187. /**
  3188. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3189. */
  3190. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3191. /**
  3192. * M18, M84: Disable all stepper motors
  3193. */
  3194. inline void gcode_M18_M84() {
  3195. if (code_seen('S')) {
  3196. stepper_inactive_time = code_value() * 1000;
  3197. }
  3198. else {
  3199. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3200. if (all_axis) {
  3201. st_synchronize();
  3202. disable_e0();
  3203. disable_e1();
  3204. disable_e2();
  3205. disable_e3();
  3206. finishAndDisableSteppers();
  3207. }
  3208. else {
  3209. st_synchronize();
  3210. if (code_seen('X')) disable_x();
  3211. if (code_seen('Y')) disable_y();
  3212. if (code_seen('Z')) disable_z();
  3213. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3214. if (code_seen('E')) {
  3215. disable_e0();
  3216. disable_e1();
  3217. disable_e2();
  3218. disable_e3();
  3219. }
  3220. #endif
  3221. }
  3222. }
  3223. }
  3224. /**
  3225. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3226. */
  3227. inline void gcode_M85() {
  3228. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3229. }
  3230. /**
  3231. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3232. * (Follows the same syntax as G92)
  3233. */
  3234. inline void gcode_M92() {
  3235. for(int8_t i=0; i < NUM_AXIS; i++) {
  3236. if (code_seen(axis_codes[i])) {
  3237. if (i == E_AXIS) {
  3238. float value = code_value();
  3239. if (value < 20.0) {
  3240. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3241. max_e_jerk *= factor;
  3242. max_feedrate[i] *= factor;
  3243. axis_steps_per_sqr_second[i] *= factor;
  3244. }
  3245. axis_steps_per_unit[i] = value;
  3246. }
  3247. else {
  3248. axis_steps_per_unit[i] = code_value();
  3249. }
  3250. }
  3251. }
  3252. }
  3253. /**
  3254. * M114: Output current position to serial port
  3255. */
  3256. inline void gcode_M114() {
  3257. SERIAL_PROTOCOLPGM("X:");
  3258. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3259. SERIAL_PROTOCOLPGM(" Y:");
  3260. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3261. SERIAL_PROTOCOLPGM(" Z:");
  3262. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3263. SERIAL_PROTOCOLPGM(" E:");
  3264. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3265. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3266. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3267. SERIAL_PROTOCOLPGM(" Y:");
  3268. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3269. SERIAL_PROTOCOLPGM(" Z:");
  3270. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3271. SERIAL_EOL;
  3272. #ifdef SCARA
  3273. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3274. SERIAL_PROTOCOL(delta[X_AXIS]);
  3275. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3276. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3277. SERIAL_EOL;
  3278. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3279. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3280. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3281. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3282. SERIAL_EOL;
  3283. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3284. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3285. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3286. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3287. SERIAL_EOL; SERIAL_EOL;
  3288. #endif
  3289. }
  3290. /**
  3291. * M115: Capabilities string
  3292. */
  3293. inline void gcode_M115() {
  3294. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3295. }
  3296. /**
  3297. * M117: Set LCD Status Message
  3298. */
  3299. inline void gcode_M117() {
  3300. lcd_setstatus(current_command_args);
  3301. }
  3302. /**
  3303. * M119: Output endstop states to serial output
  3304. */
  3305. inline void gcode_M119() {
  3306. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3307. #if HAS_X_MIN
  3308. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3309. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3310. #endif
  3311. #if HAS_X_MAX
  3312. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3313. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3314. #endif
  3315. #if HAS_Y_MIN
  3316. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3317. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3318. #endif
  3319. #if HAS_Y_MAX
  3320. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3321. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3322. #endif
  3323. #if HAS_Z_MIN
  3324. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3325. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3326. #endif
  3327. #if HAS_Z_MAX
  3328. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3329. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3330. #endif
  3331. #if HAS_Z2_MAX
  3332. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3333. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3334. #endif
  3335. #if HAS_Z_PROBE
  3336. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3337. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3338. #endif
  3339. }
  3340. /**
  3341. * M120: Enable endstops
  3342. */
  3343. inline void gcode_M120() { enable_endstops(true); }
  3344. /**
  3345. * M121: Disable endstops
  3346. */
  3347. inline void gcode_M121() { enable_endstops(false); }
  3348. #ifdef BLINKM
  3349. /**
  3350. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3351. */
  3352. inline void gcode_M150() {
  3353. SendColors(
  3354. code_seen('R') ? (byte)code_value_short() : 0,
  3355. code_seen('U') ? (byte)code_value_short() : 0,
  3356. code_seen('B') ? (byte)code_value_short() : 0
  3357. );
  3358. }
  3359. #endif // BLINKM
  3360. /**
  3361. * M200: Set filament diameter and set E axis units to cubic millimeters
  3362. *
  3363. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3364. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3365. */
  3366. inline void gcode_M200() {
  3367. if (setTargetedHotend(200)) return;
  3368. if (code_seen('D')) {
  3369. float diameter = code_value();
  3370. // setting any extruder filament size disables volumetric on the assumption that
  3371. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3372. // for all extruders
  3373. volumetric_enabled = (diameter != 0.0);
  3374. if (volumetric_enabled) {
  3375. filament_size[target_extruder] = diameter;
  3376. // make sure all extruders have some sane value for the filament size
  3377. for (int i=0; i<EXTRUDERS; i++)
  3378. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3379. }
  3380. }
  3381. else {
  3382. //reserved for setting filament diameter via UFID or filament measuring device
  3383. return;
  3384. }
  3385. calculate_volumetric_multipliers();
  3386. }
  3387. /**
  3388. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3389. */
  3390. inline void gcode_M201() {
  3391. for (int8_t i=0; i < NUM_AXIS; i++) {
  3392. if (code_seen(axis_codes[i])) {
  3393. max_acceleration_units_per_sq_second[i] = code_value();
  3394. }
  3395. }
  3396. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3397. reset_acceleration_rates();
  3398. }
  3399. #if 0 // Not used for Sprinter/grbl gen6
  3400. inline void gcode_M202() {
  3401. for(int8_t i=0; i < NUM_AXIS; i++) {
  3402. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3403. }
  3404. }
  3405. #endif
  3406. /**
  3407. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3408. */
  3409. inline void gcode_M203() {
  3410. for (int8_t i=0; i < NUM_AXIS; i++) {
  3411. if (code_seen(axis_codes[i])) {
  3412. max_feedrate[i] = code_value();
  3413. }
  3414. }
  3415. }
  3416. /**
  3417. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3418. *
  3419. * P = Printing moves
  3420. * R = Retract only (no X, Y, Z) moves
  3421. * T = Travel (non printing) moves
  3422. *
  3423. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3424. */
  3425. inline void gcode_M204() {
  3426. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3427. acceleration = code_value();
  3428. travel_acceleration = acceleration;
  3429. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3430. SERIAL_EOL;
  3431. }
  3432. if (code_seen('P')) {
  3433. acceleration = code_value();
  3434. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3435. SERIAL_EOL;
  3436. }
  3437. if (code_seen('R')) {
  3438. retract_acceleration = code_value();
  3439. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3440. SERIAL_EOL;
  3441. }
  3442. if (code_seen('T')) {
  3443. travel_acceleration = code_value();
  3444. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3445. SERIAL_EOL;
  3446. }
  3447. }
  3448. /**
  3449. * M205: Set Advanced Settings
  3450. *
  3451. * S = Min Feed Rate (mm/s)
  3452. * T = Min Travel Feed Rate (mm/s)
  3453. * B = Min Segment Time (µs)
  3454. * X = Max XY Jerk (mm/s/s)
  3455. * Z = Max Z Jerk (mm/s/s)
  3456. * E = Max E Jerk (mm/s/s)
  3457. */
  3458. inline void gcode_M205() {
  3459. if (code_seen('S')) minimumfeedrate = code_value();
  3460. if (code_seen('T')) mintravelfeedrate = code_value();
  3461. if (code_seen('B')) minsegmenttime = code_value();
  3462. if (code_seen('X')) max_xy_jerk = code_value();
  3463. if (code_seen('Z')) max_z_jerk = code_value();
  3464. if (code_seen('E')) max_e_jerk = code_value();
  3465. }
  3466. /**
  3467. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3468. */
  3469. inline void gcode_M206() {
  3470. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3471. if (code_seen(axis_codes[i])) {
  3472. home_offset[i] = code_value();
  3473. }
  3474. }
  3475. #ifdef SCARA
  3476. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3477. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3478. #endif
  3479. }
  3480. #ifdef DELTA
  3481. /**
  3482. * M665: Set delta configurations
  3483. *
  3484. * L = diagonal rod
  3485. * R = delta radius
  3486. * S = segments per second
  3487. */
  3488. inline void gcode_M665() {
  3489. if (code_seen('L')) delta_diagonal_rod = code_value();
  3490. if (code_seen('R')) delta_radius = code_value();
  3491. if (code_seen('S')) delta_segments_per_second = code_value();
  3492. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3493. }
  3494. /**
  3495. * M666: Set delta endstop adjustment
  3496. */
  3497. inline void gcode_M666() {
  3498. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3499. if (code_seen(axis_codes[i])) {
  3500. endstop_adj[i] = code_value();
  3501. }
  3502. }
  3503. }
  3504. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3505. /**
  3506. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3507. */
  3508. inline void gcode_M666() {
  3509. if (code_seen('Z')) z_endstop_adj = code_value();
  3510. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3511. SERIAL_EOL;
  3512. }
  3513. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3514. #ifdef FWRETRACT
  3515. /**
  3516. * M207: Set firmware retraction values
  3517. *
  3518. * S[+mm] retract_length
  3519. * W[+mm] retract_length_swap (multi-extruder)
  3520. * F[mm/min] retract_feedrate
  3521. * Z[mm] retract_zlift
  3522. */
  3523. inline void gcode_M207() {
  3524. if (code_seen('S')) retract_length = code_value();
  3525. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3526. if (code_seen('Z')) retract_zlift = code_value();
  3527. #if EXTRUDERS > 1
  3528. if (code_seen('W')) retract_length_swap = code_value();
  3529. #endif
  3530. }
  3531. /**
  3532. * M208: Set firmware un-retraction values
  3533. *
  3534. * S[+mm] retract_recover_length (in addition to M207 S*)
  3535. * W[+mm] retract_recover_length_swap (multi-extruder)
  3536. * F[mm/min] retract_recover_feedrate
  3537. */
  3538. inline void gcode_M208() {
  3539. if (code_seen('S')) retract_recover_length = code_value();
  3540. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3541. #if EXTRUDERS > 1
  3542. if (code_seen('W')) retract_recover_length_swap = code_value();
  3543. #endif
  3544. }
  3545. /**
  3546. * M209: Enable automatic retract (M209 S1)
  3547. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3548. */
  3549. inline void gcode_M209() {
  3550. if (code_seen('S')) {
  3551. int t = code_value_short();
  3552. switch(t) {
  3553. case 0:
  3554. autoretract_enabled = false;
  3555. break;
  3556. case 1:
  3557. autoretract_enabled = true;
  3558. break;
  3559. default:
  3560. unknown_command_error();
  3561. return;
  3562. }
  3563. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3564. }
  3565. }
  3566. #endif // FWRETRACT
  3567. #if EXTRUDERS > 1
  3568. /**
  3569. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3570. */
  3571. inline void gcode_M218() {
  3572. if (setTargetedHotend(218)) return;
  3573. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3574. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3575. #ifdef DUAL_X_CARRIAGE
  3576. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3577. #endif
  3578. SERIAL_ECHO_START;
  3579. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3580. for (int e = 0; e < EXTRUDERS; e++) {
  3581. SERIAL_CHAR(' ');
  3582. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3583. SERIAL_CHAR(',');
  3584. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3585. #ifdef DUAL_X_CARRIAGE
  3586. SERIAL_CHAR(',');
  3587. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3588. #endif
  3589. }
  3590. SERIAL_EOL;
  3591. }
  3592. #endif // EXTRUDERS > 1
  3593. /**
  3594. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3595. */
  3596. inline void gcode_M220() {
  3597. if (code_seen('S')) feedrate_multiplier = code_value();
  3598. }
  3599. /**
  3600. * M221: Set extrusion percentage (M221 T0 S95)
  3601. */
  3602. inline void gcode_M221() {
  3603. if (code_seen('S')) {
  3604. int sval = code_value();
  3605. if (code_seen('T')) {
  3606. if (setTargetedHotend(221)) return;
  3607. extruder_multiplier[target_extruder] = sval;
  3608. }
  3609. else {
  3610. extruder_multiplier[active_extruder] = sval;
  3611. }
  3612. }
  3613. }
  3614. /**
  3615. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3616. */
  3617. inline void gcode_M226() {
  3618. if (code_seen('P')) {
  3619. int pin_number = code_value();
  3620. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3621. if (pin_state >= -1 && pin_state <= 1) {
  3622. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3623. if (sensitive_pins[i] == pin_number) {
  3624. pin_number = -1;
  3625. break;
  3626. }
  3627. }
  3628. if (pin_number > -1) {
  3629. int target = LOW;
  3630. st_synchronize();
  3631. pinMode(pin_number, INPUT);
  3632. switch(pin_state){
  3633. case 1:
  3634. target = HIGH;
  3635. break;
  3636. case 0:
  3637. target = LOW;
  3638. break;
  3639. case -1:
  3640. target = !digitalRead(pin_number);
  3641. break;
  3642. }
  3643. while (digitalRead(pin_number) != target) idle();
  3644. } // pin_number > -1
  3645. } // pin_state -1 0 1
  3646. } // code_seen('P')
  3647. }
  3648. #if NUM_SERVOS > 0
  3649. /**
  3650. * M280: Get or set servo position. P<index> S<angle>
  3651. */
  3652. inline void gcode_M280() {
  3653. int servo_index = code_seen('P') ? code_value_short() : -1;
  3654. int servo_position = 0;
  3655. if (code_seen('S')) {
  3656. servo_position = code_value_short();
  3657. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3658. Servo *srv = &servo[servo_index];
  3659. #if SERVO_LEVELING
  3660. srv->attach(0);
  3661. #endif
  3662. srv->write(servo_position);
  3663. #if SERVO_LEVELING
  3664. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3665. srv->detach();
  3666. #endif
  3667. }
  3668. else {
  3669. SERIAL_ECHO_START;
  3670. SERIAL_ECHO("Servo ");
  3671. SERIAL_ECHO(servo_index);
  3672. SERIAL_ECHOLN(" out of range");
  3673. }
  3674. }
  3675. else if (servo_index >= 0) {
  3676. SERIAL_PROTOCOL(MSG_OK);
  3677. SERIAL_PROTOCOL(" Servo ");
  3678. SERIAL_PROTOCOL(servo_index);
  3679. SERIAL_PROTOCOL(": ");
  3680. SERIAL_PROTOCOL(servo[servo_index].read());
  3681. SERIAL_EOL;
  3682. }
  3683. }
  3684. #endif // NUM_SERVOS > 0
  3685. #if HAS_BUZZER
  3686. /**
  3687. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3688. */
  3689. inline void gcode_M300() {
  3690. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3691. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3692. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3693. buzz(beepP, beepS);
  3694. }
  3695. #endif // HAS_BUZZER
  3696. #ifdef PIDTEMP
  3697. /**
  3698. * M301: Set PID parameters P I D (and optionally C)
  3699. */
  3700. inline void gcode_M301() {
  3701. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3702. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3703. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3704. if (e < EXTRUDERS) { // catch bad input value
  3705. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3706. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3707. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3708. #ifdef PID_ADD_EXTRUSION_RATE
  3709. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3710. #endif
  3711. updatePID();
  3712. SERIAL_PROTOCOL(MSG_OK);
  3713. #ifdef PID_PARAMS_PER_EXTRUDER
  3714. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3715. SERIAL_PROTOCOL(e);
  3716. #endif // PID_PARAMS_PER_EXTRUDER
  3717. SERIAL_PROTOCOL(" p:");
  3718. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3719. SERIAL_PROTOCOL(" i:");
  3720. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3721. SERIAL_PROTOCOL(" d:");
  3722. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3723. #ifdef PID_ADD_EXTRUSION_RATE
  3724. SERIAL_PROTOCOL(" c:");
  3725. //Kc does not have scaling applied above, or in resetting defaults
  3726. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3727. #endif
  3728. SERIAL_EOL;
  3729. }
  3730. else {
  3731. SERIAL_ECHO_START;
  3732. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3733. }
  3734. }
  3735. #endif // PIDTEMP
  3736. #ifdef PIDTEMPBED
  3737. inline void gcode_M304() {
  3738. if (code_seen('P')) bedKp = code_value();
  3739. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3740. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3741. updatePID();
  3742. SERIAL_PROTOCOL(MSG_OK);
  3743. SERIAL_PROTOCOL(" p:");
  3744. SERIAL_PROTOCOL(bedKp);
  3745. SERIAL_PROTOCOL(" i:");
  3746. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3747. SERIAL_PROTOCOL(" d:");
  3748. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3749. SERIAL_EOL;
  3750. }
  3751. #endif // PIDTEMPBED
  3752. #if defined(CHDK) || HAS_PHOTOGRAPH
  3753. /**
  3754. * M240: Trigger a camera by emulating a Canon RC-1
  3755. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3756. */
  3757. inline void gcode_M240() {
  3758. #ifdef CHDK
  3759. OUT_WRITE(CHDK, HIGH);
  3760. chdkHigh = millis();
  3761. chdkActive = true;
  3762. #elif HAS_PHOTOGRAPH
  3763. const uint8_t NUM_PULSES = 16;
  3764. const float PULSE_LENGTH = 0.01524;
  3765. for (int i = 0; i < NUM_PULSES; i++) {
  3766. WRITE(PHOTOGRAPH_PIN, HIGH);
  3767. _delay_ms(PULSE_LENGTH);
  3768. WRITE(PHOTOGRAPH_PIN, LOW);
  3769. _delay_ms(PULSE_LENGTH);
  3770. }
  3771. delay(7.33);
  3772. for (int i = 0; i < NUM_PULSES; i++) {
  3773. WRITE(PHOTOGRAPH_PIN, HIGH);
  3774. _delay_ms(PULSE_LENGTH);
  3775. WRITE(PHOTOGRAPH_PIN, LOW);
  3776. _delay_ms(PULSE_LENGTH);
  3777. }
  3778. #endif // !CHDK && HAS_PHOTOGRAPH
  3779. }
  3780. #endif // CHDK || PHOTOGRAPH_PIN
  3781. #ifdef HAS_LCD_CONTRAST
  3782. /**
  3783. * M250: Read and optionally set the LCD contrast
  3784. */
  3785. inline void gcode_M250() {
  3786. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3787. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3788. SERIAL_PROTOCOL(lcd_contrast);
  3789. SERIAL_EOL;
  3790. }
  3791. #endif // HAS_LCD_CONTRAST
  3792. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3793. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3794. /**
  3795. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3796. */
  3797. inline void gcode_M302() {
  3798. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3799. }
  3800. #endif // PREVENT_DANGEROUS_EXTRUDE
  3801. /**
  3802. * M303: PID relay autotune
  3803. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3804. * E<extruder> (-1 for the bed)
  3805. * C<cycles>
  3806. */
  3807. inline void gcode_M303() {
  3808. int e = code_seen('E') ? code_value_short() : 0;
  3809. int c = code_seen('C') ? code_value_short() : 5;
  3810. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3811. PID_autotune(temp, e, c);
  3812. }
  3813. #ifdef SCARA
  3814. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3815. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3816. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3817. if (IsRunning()) {
  3818. //gcode_get_destination(); // For X Y Z E F
  3819. delta[X_AXIS] = delta_x;
  3820. delta[Y_AXIS] = delta_y;
  3821. calculate_SCARA_forward_Transform(delta);
  3822. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3823. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3824. prepare_move();
  3825. //ok_to_send();
  3826. return true;
  3827. }
  3828. return false;
  3829. }
  3830. /**
  3831. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3832. */
  3833. inline bool gcode_M360() {
  3834. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3835. return SCARA_move_to_cal(0, 120);
  3836. }
  3837. /**
  3838. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3839. */
  3840. inline bool gcode_M361() {
  3841. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3842. return SCARA_move_to_cal(90, 130);
  3843. }
  3844. /**
  3845. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3846. */
  3847. inline bool gcode_M362() {
  3848. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3849. return SCARA_move_to_cal(60, 180);
  3850. }
  3851. /**
  3852. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3853. */
  3854. inline bool gcode_M363() {
  3855. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3856. return SCARA_move_to_cal(50, 90);
  3857. }
  3858. /**
  3859. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3860. */
  3861. inline bool gcode_M364() {
  3862. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3863. return SCARA_move_to_cal(45, 135);
  3864. }
  3865. /**
  3866. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3867. */
  3868. inline void gcode_M365() {
  3869. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3870. if (code_seen(axis_codes[i])) {
  3871. axis_scaling[i] = code_value();
  3872. }
  3873. }
  3874. }
  3875. #endif // SCARA
  3876. #ifdef EXT_SOLENOID
  3877. void enable_solenoid(uint8_t num) {
  3878. switch(num) {
  3879. case 0:
  3880. OUT_WRITE(SOL0_PIN, HIGH);
  3881. break;
  3882. #if HAS_SOLENOID_1
  3883. case 1:
  3884. OUT_WRITE(SOL1_PIN, HIGH);
  3885. break;
  3886. #endif
  3887. #if HAS_SOLENOID_2
  3888. case 2:
  3889. OUT_WRITE(SOL2_PIN, HIGH);
  3890. break;
  3891. #endif
  3892. #if HAS_SOLENOID_3
  3893. case 3:
  3894. OUT_WRITE(SOL3_PIN, HIGH);
  3895. break;
  3896. #endif
  3897. default:
  3898. SERIAL_ECHO_START;
  3899. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3900. break;
  3901. }
  3902. }
  3903. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3904. void disable_all_solenoids() {
  3905. OUT_WRITE(SOL0_PIN, LOW);
  3906. OUT_WRITE(SOL1_PIN, LOW);
  3907. OUT_WRITE(SOL2_PIN, LOW);
  3908. OUT_WRITE(SOL3_PIN, LOW);
  3909. }
  3910. /**
  3911. * M380: Enable solenoid on the active extruder
  3912. */
  3913. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3914. /**
  3915. * M381: Disable all solenoids
  3916. */
  3917. inline void gcode_M381() { disable_all_solenoids(); }
  3918. #endif // EXT_SOLENOID
  3919. /**
  3920. * M400: Finish all moves
  3921. */
  3922. inline void gcode_M400() { st_synchronize(); }
  3923. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3924. #ifdef SERVO_ENDSTOPS
  3925. void raise_z_for_servo() {
  3926. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3927. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3928. if (zpos < z_dest)
  3929. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3930. }
  3931. #endif
  3932. /**
  3933. * M401: Engage Z Servo endstop if available
  3934. */
  3935. inline void gcode_M401() {
  3936. #ifdef SERVO_ENDSTOPS
  3937. raise_z_for_servo();
  3938. #endif
  3939. deploy_z_probe();
  3940. }
  3941. /**
  3942. * M402: Retract Z Servo endstop if enabled
  3943. */
  3944. inline void gcode_M402() {
  3945. #ifdef SERVO_ENDSTOPS
  3946. raise_z_for_servo();
  3947. #endif
  3948. stow_z_probe(false);
  3949. }
  3950. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3951. #ifdef FILAMENT_SENSOR
  3952. /**
  3953. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3954. */
  3955. inline void gcode_M404() {
  3956. #if HAS_FILWIDTH
  3957. if (code_seen('W')) {
  3958. filament_width_nominal = code_value();
  3959. }
  3960. else {
  3961. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3962. SERIAL_PROTOCOLLN(filament_width_nominal);
  3963. }
  3964. #endif
  3965. }
  3966. /**
  3967. * M405: Turn on filament sensor for control
  3968. */
  3969. inline void gcode_M405() {
  3970. if (code_seen('D')) meas_delay_cm = code_value();
  3971. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3972. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3973. int temp_ratio = widthFil_to_size_ratio();
  3974. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3975. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3976. delay_index1 = delay_index2 = 0;
  3977. }
  3978. filament_sensor = true;
  3979. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3980. //SERIAL_PROTOCOL(filament_width_meas);
  3981. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3982. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3983. }
  3984. /**
  3985. * M406: Turn off filament sensor for control
  3986. */
  3987. inline void gcode_M406() { filament_sensor = false; }
  3988. /**
  3989. * M407: Get measured filament diameter on serial output
  3990. */
  3991. inline void gcode_M407() {
  3992. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3993. SERIAL_PROTOCOLLN(filament_width_meas);
  3994. }
  3995. #endif // FILAMENT_SENSOR
  3996. /**
  3997. * M410: Quickstop - Abort all planned moves
  3998. *
  3999. * This will stop the carriages mid-move, so most likely they
  4000. * will be out of sync with the stepper position after this.
  4001. */
  4002. inline void gcode_M410() { quickStop(); }
  4003. #ifdef MESH_BED_LEVELING
  4004. /**
  4005. * M420: Enable/Disable Mesh Bed Leveling
  4006. */
  4007. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4008. /**
  4009. * M421: Set a single Mesh Bed Leveling Z coordinate
  4010. */
  4011. inline void gcode_M421() {
  4012. float x, y, z;
  4013. bool err = false, hasX, hasY, hasZ;
  4014. if ((hasX = code_seen('X'))) x = code_value();
  4015. if ((hasY = code_seen('Y'))) y = code_value();
  4016. if ((hasZ = code_seen('Z'))) z = code_value();
  4017. if (!hasX || !hasY || !hasZ) {
  4018. SERIAL_ERROR_START;
  4019. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4020. err = true;
  4021. }
  4022. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4023. SERIAL_ERROR_START;
  4024. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4025. err = true;
  4026. }
  4027. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4028. }
  4029. #endif
  4030. /**
  4031. * M428: Set home_offset based on the distance between the
  4032. * current_position and the nearest "reference point."
  4033. * If an axis is past center its endstop position
  4034. * is the reference-point. Otherwise it uses 0. This allows
  4035. * the Z offset to be set near the bed when using a max endstop.
  4036. *
  4037. * M428 can't be used more than 2cm away from 0 or an endstop.
  4038. *
  4039. * Use M206 to set these values directly.
  4040. */
  4041. inline void gcode_M428() {
  4042. bool err = false;
  4043. float new_offs[3], new_pos[3];
  4044. memcpy(new_pos, current_position, sizeof(new_pos));
  4045. memcpy(new_offs, home_offset, sizeof(new_offs));
  4046. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4047. if (axis_known_position[i]) {
  4048. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4049. diff = new_pos[i] - base;
  4050. if (diff > -20 && diff < 20) {
  4051. new_offs[i] -= diff;
  4052. new_pos[i] = base;
  4053. }
  4054. else {
  4055. SERIAL_ERROR_START;
  4056. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4057. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4058. #if HAS_BUZZER
  4059. enqueuecommands_P(PSTR("M300 S40 P200"));
  4060. #endif
  4061. err = true;
  4062. break;
  4063. }
  4064. }
  4065. }
  4066. if (!err) {
  4067. memcpy(current_position, new_pos, sizeof(new_pos));
  4068. memcpy(home_offset, new_offs, sizeof(new_offs));
  4069. sync_plan_position();
  4070. LCD_ALERTMESSAGEPGM("Offset applied.");
  4071. #if HAS_BUZZER
  4072. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4073. #endif
  4074. }
  4075. }
  4076. /**
  4077. * M500: Store settings in EEPROM
  4078. */
  4079. inline void gcode_M500() {
  4080. Config_StoreSettings();
  4081. }
  4082. /**
  4083. * M501: Read settings from EEPROM
  4084. */
  4085. inline void gcode_M501() {
  4086. Config_RetrieveSettings();
  4087. }
  4088. /**
  4089. * M502: Revert to default settings
  4090. */
  4091. inline void gcode_M502() {
  4092. Config_ResetDefault();
  4093. }
  4094. /**
  4095. * M503: print settings currently in memory
  4096. */
  4097. inline void gcode_M503() {
  4098. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4099. }
  4100. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4101. /**
  4102. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4103. */
  4104. inline void gcode_M540() {
  4105. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4106. }
  4107. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4108. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4109. inline void gcode_SET_Z_PROBE_OFFSET() {
  4110. float value;
  4111. if (code_seen('Z')) {
  4112. value = code_value();
  4113. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4114. zprobe_zoffset = value;
  4115. SERIAL_ECHO_START;
  4116. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4117. SERIAL_EOL;
  4118. }
  4119. else {
  4120. SERIAL_ECHO_START;
  4121. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4122. SERIAL_ECHOPGM(MSG_Z_MIN);
  4123. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4124. SERIAL_ECHOPGM(MSG_Z_MAX);
  4125. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4126. SERIAL_EOL;
  4127. }
  4128. }
  4129. else {
  4130. SERIAL_ECHO_START;
  4131. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4132. SERIAL_ECHO(zprobe_zoffset);
  4133. SERIAL_EOL;
  4134. }
  4135. }
  4136. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4137. #ifdef FILAMENTCHANGEENABLE
  4138. /**
  4139. * M600: Pause for filament change
  4140. *
  4141. * E[distance] - Retract the filament this far (negative value)
  4142. * Z[distance] - Move the Z axis by this distance
  4143. * X[position] - Move to this X position, with Y
  4144. * Y[position] - Move to this Y position, with X
  4145. * L[distance] - Retract distance for removal (manual reload)
  4146. *
  4147. * Default values are used for omitted arguments.
  4148. *
  4149. */
  4150. inline void gcode_M600() {
  4151. if (degHotend(active_extruder) < extrude_min_temp) {
  4152. SERIAL_ERROR_START;
  4153. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4154. return;
  4155. }
  4156. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4157. for (int i=0; i<NUM_AXIS; i++)
  4158. lastpos[i] = destination[i] = current_position[i];
  4159. #ifdef DELTA
  4160. #define RUNPLAN calculate_delta(destination); \
  4161. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4162. #else
  4163. #define RUNPLAN line_to_destination();
  4164. #endif
  4165. //retract by E
  4166. if (code_seen('E')) destination[E_AXIS] += code_value();
  4167. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4168. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4169. #endif
  4170. RUNPLAN;
  4171. //lift Z
  4172. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4173. #ifdef FILAMENTCHANGE_ZADD
  4174. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4175. #endif
  4176. RUNPLAN;
  4177. //move xy
  4178. if (code_seen('X')) destination[X_AXIS] = code_value();
  4179. #ifdef FILAMENTCHANGE_XPOS
  4180. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4181. #endif
  4182. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4183. #ifdef FILAMENTCHANGE_YPOS
  4184. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4185. #endif
  4186. RUNPLAN;
  4187. if (code_seen('L')) destination[E_AXIS] += code_value();
  4188. #ifdef FILAMENTCHANGE_FINALRETRACT
  4189. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4190. #endif
  4191. RUNPLAN;
  4192. //finish moves
  4193. st_synchronize();
  4194. //disable extruder steppers so filament can be removed
  4195. disable_e0();
  4196. disable_e1();
  4197. disable_e2();
  4198. disable_e3();
  4199. delay(100);
  4200. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4201. millis_t next_tick = 0;
  4202. while (!lcd_clicked()) {
  4203. #ifndef AUTO_FILAMENT_CHANGE
  4204. millis_t ms = millis();
  4205. if (ms >= next_tick) {
  4206. lcd_quick_feedback();
  4207. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4208. }
  4209. manage_heater();
  4210. manage_inactivity(true);
  4211. lcd_update();
  4212. #else
  4213. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4214. plan_buffer_line(target[X_AXIS],target[Y_AXIS],target[Z_MAX_ENDSTOP_INVERTING],current_position[E_AXIS],AUTO_FILAMENT_CHANGE_FEEDRATE/60,active_extruder);
  4215. st_synchronize();
  4216. #endif
  4217. } // while(!lcd_clicked)
  4218. lcd_quick_feedback(); // click sound feedback
  4219. #ifdef AUTO_FILAMENT_CHANGE
  4220. current_position[E_AXIS]= 0;
  4221. st_synchronize();
  4222. #endif
  4223. //return to normal
  4224. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4225. #ifdef FILAMENTCHANGE_FINALRETRACT
  4226. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4227. #endif
  4228. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4229. plan_set_e_position(current_position[E_AXIS]);
  4230. RUNPLAN; //should do nothing
  4231. lcd_reset_alert_level();
  4232. #ifdef DELTA
  4233. // Move XYZ to starting position, then E
  4234. calculate_delta(lastpos);
  4235. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4236. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4237. #else
  4238. // Move XY to starting position, then Z, then E
  4239. destination[X_AXIS] = lastpos[X_AXIS];
  4240. destination[Y_AXIS] = lastpos[Y_AXIS];
  4241. line_to_destination();
  4242. destination[Z_AXIS] = lastpos[Z_AXIS];
  4243. line_to_destination();
  4244. destination[E_AXIS] = lastpos[E_AXIS];
  4245. line_to_destination();
  4246. #endif
  4247. #ifdef FILAMENT_RUNOUT_SENSOR
  4248. filrunoutEnqueued = false;
  4249. #endif
  4250. }
  4251. #endif // FILAMENTCHANGEENABLE
  4252. #ifdef DUAL_X_CARRIAGE
  4253. /**
  4254. * M605: Set dual x-carriage movement mode
  4255. *
  4256. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4257. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4258. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4259. * millimeters x-offset and an optional differential hotend temperature of
  4260. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4261. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4262. *
  4263. * Note: the X axis should be homed after changing dual x-carriage mode.
  4264. */
  4265. inline void gcode_M605() {
  4266. st_synchronize();
  4267. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4268. switch(dual_x_carriage_mode) {
  4269. case DXC_DUPLICATION_MODE:
  4270. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4271. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4272. SERIAL_ECHO_START;
  4273. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4274. SERIAL_CHAR(' ');
  4275. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4276. SERIAL_CHAR(',');
  4277. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4278. SERIAL_CHAR(' ');
  4279. SERIAL_ECHO(duplicate_extruder_x_offset);
  4280. SERIAL_CHAR(',');
  4281. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4282. break;
  4283. case DXC_FULL_CONTROL_MODE:
  4284. case DXC_AUTO_PARK_MODE:
  4285. break;
  4286. default:
  4287. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4288. break;
  4289. }
  4290. active_extruder_parked = false;
  4291. extruder_duplication_enabled = false;
  4292. delayed_move_time = 0;
  4293. }
  4294. #endif // DUAL_X_CARRIAGE
  4295. /**
  4296. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4297. */
  4298. inline void gcode_M907() {
  4299. #if HAS_DIGIPOTSS
  4300. for (int i=0;i<NUM_AXIS;i++)
  4301. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4302. if (code_seen('B')) digipot_current(4, code_value());
  4303. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4304. #endif
  4305. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4306. if (code_seen('X')) digipot_current(0, code_value());
  4307. #endif
  4308. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4309. if (code_seen('Z')) digipot_current(1, code_value());
  4310. #endif
  4311. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4312. if (code_seen('E')) digipot_current(2, code_value());
  4313. #endif
  4314. #ifdef DIGIPOT_I2C
  4315. // this one uses actual amps in floating point
  4316. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4317. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4318. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4319. #endif
  4320. }
  4321. #if HAS_DIGIPOTSS
  4322. /**
  4323. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4324. */
  4325. inline void gcode_M908() {
  4326. digitalPotWrite(
  4327. code_seen('P') ? code_value() : 0,
  4328. code_seen('S') ? code_value() : 0
  4329. );
  4330. }
  4331. #endif // HAS_DIGIPOTSS
  4332. #if HAS_MICROSTEPS
  4333. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4334. inline void gcode_M350() {
  4335. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4336. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4337. if(code_seen('B')) microstep_mode(4,code_value());
  4338. microstep_readings();
  4339. }
  4340. /**
  4341. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4342. * S# determines MS1 or MS2, X# sets the pin high/low.
  4343. */
  4344. inline void gcode_M351() {
  4345. if (code_seen('S')) switch(code_value_short()) {
  4346. case 1:
  4347. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4348. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4349. break;
  4350. case 2:
  4351. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4352. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4353. break;
  4354. }
  4355. microstep_readings();
  4356. }
  4357. #endif // HAS_MICROSTEPS
  4358. /**
  4359. * M999: Restart after being stopped
  4360. */
  4361. inline void gcode_M999() {
  4362. Running = true;
  4363. lcd_reset_alert_level();
  4364. gcode_LastN = Stopped_gcode_LastN;
  4365. FlushSerialRequestResend();
  4366. }
  4367. /**
  4368. * T0-T3: Switch tool, usually switching extruders
  4369. *
  4370. * F[mm/min] Set the movement feedrate
  4371. */
  4372. inline void gcode_T(uint8_t tmp_extruder) {
  4373. if (tmp_extruder >= EXTRUDERS) {
  4374. SERIAL_ECHO_START;
  4375. SERIAL_CHAR('T');
  4376. SERIAL_ECHO(tmp_extruder);
  4377. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4378. }
  4379. else {
  4380. target_extruder = tmp_extruder;
  4381. #if EXTRUDERS > 1
  4382. bool make_move = false;
  4383. #endif
  4384. if (code_seen('F')) {
  4385. #if EXTRUDERS > 1
  4386. make_move = true;
  4387. #endif
  4388. float next_feedrate = code_value();
  4389. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4390. }
  4391. #if EXTRUDERS > 1
  4392. if (tmp_extruder != active_extruder) {
  4393. // Save current position to return to after applying extruder offset
  4394. set_destination_to_current();
  4395. #ifdef DUAL_X_CARRIAGE
  4396. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4397. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4398. // Park old head: 1) raise 2) move to park position 3) lower
  4399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4400. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4401. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4402. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4403. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4404. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4405. st_synchronize();
  4406. }
  4407. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4408. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4409. extruder_offset[Y_AXIS][active_extruder] +
  4410. extruder_offset[Y_AXIS][tmp_extruder];
  4411. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4412. extruder_offset[Z_AXIS][active_extruder] +
  4413. extruder_offset[Z_AXIS][tmp_extruder];
  4414. active_extruder = tmp_extruder;
  4415. // This function resets the max/min values - the current position may be overwritten below.
  4416. axis_is_at_home(X_AXIS);
  4417. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4418. current_position[X_AXIS] = inactive_extruder_x_pos;
  4419. inactive_extruder_x_pos = destination[X_AXIS];
  4420. }
  4421. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4422. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4423. if (active_extruder == 0 || active_extruder_parked)
  4424. current_position[X_AXIS] = inactive_extruder_x_pos;
  4425. else
  4426. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4427. inactive_extruder_x_pos = destination[X_AXIS];
  4428. extruder_duplication_enabled = false;
  4429. }
  4430. else {
  4431. // record raised toolhead position for use by unpark
  4432. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4433. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4434. active_extruder_parked = true;
  4435. delayed_move_time = 0;
  4436. }
  4437. #else // !DUAL_X_CARRIAGE
  4438. // Offset extruder (only by XY)
  4439. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4440. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4441. // Set the new active extruder and position
  4442. active_extruder = tmp_extruder;
  4443. #endif // !DUAL_X_CARRIAGE
  4444. #ifdef DELTA
  4445. sync_plan_position_delta();
  4446. #else
  4447. sync_plan_position();
  4448. #endif
  4449. // Move to the old position if 'F' was in the parameters
  4450. if (make_move && IsRunning()) prepare_move();
  4451. }
  4452. #ifdef EXT_SOLENOID
  4453. st_synchronize();
  4454. disable_all_solenoids();
  4455. enable_solenoid_on_active_extruder();
  4456. #endif // EXT_SOLENOID
  4457. #endif // EXTRUDERS > 1
  4458. SERIAL_ECHO_START;
  4459. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4460. SERIAL_PROTOCOLLN((int)active_extruder);
  4461. }
  4462. }
  4463. /**
  4464. * Process a single command and dispatch it to its handler
  4465. * This is called from the main loop()
  4466. */
  4467. void process_next_command() {
  4468. current_command = command_queue[cmd_queue_index_r];
  4469. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4470. SERIAL_ECHO_START;
  4471. SERIAL_ECHOLN(current_command);
  4472. }
  4473. // Sanitize the current command:
  4474. // - Skip leading spaces
  4475. // - Bypass N[0-9][0-9]*[ ]*
  4476. // - Overwrite * with nul to mark the end
  4477. while (*current_command == ' ') ++current_command;
  4478. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4479. current_command += 2; // skip N[0-9]
  4480. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4481. while (*current_command == ' ') ++current_command; // skip [ ]*
  4482. }
  4483. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4484. if (starpos) *starpos = '\0';
  4485. // Get the command code, which must be G, M, or T
  4486. char command_code = *current_command;
  4487. // The code must have a numeric value
  4488. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4489. int codenum; // define ahead of goto
  4490. // Bail early if there's no code
  4491. if (!code_is_good) goto ExitUnknownCommand;
  4492. // Args pointer optimizes code_seen, especially those taking XYZEF
  4493. // This wastes a little cpu on commands that expect no arguments.
  4494. current_command_args = current_command;
  4495. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4496. while (*current_command_args == ' ') ++current_command_args;
  4497. // Interpret the code int
  4498. seen_pointer = current_command;
  4499. codenum = code_value_short();
  4500. // Handle a known G, M, or T
  4501. switch(command_code) {
  4502. case 'G': switch (codenum) {
  4503. // G0, G1
  4504. case 0:
  4505. case 1:
  4506. gcode_G0_G1();
  4507. break;
  4508. // G2, G3
  4509. #ifndef SCARA
  4510. case 2: // G2 - CW ARC
  4511. case 3: // G3 - CCW ARC
  4512. gcode_G2_G3(codenum == 2);
  4513. break;
  4514. #endif
  4515. // G4 Dwell
  4516. case 4:
  4517. gcode_G4();
  4518. break;
  4519. #ifdef FWRETRACT
  4520. case 10: // G10: retract
  4521. case 11: // G11: retract_recover
  4522. gcode_G10_G11(codenum == 10);
  4523. break;
  4524. #endif //FWRETRACT
  4525. case 28: // G28: Home all axes, one at a time
  4526. gcode_G28();
  4527. break;
  4528. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4529. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4530. gcode_G29();
  4531. break;
  4532. #endif
  4533. #ifdef ENABLE_AUTO_BED_LEVELING
  4534. #ifndef Z_PROBE_SLED
  4535. case 30: // G30 Single Z Probe
  4536. gcode_G30();
  4537. break;
  4538. #else // Z_PROBE_SLED
  4539. case 31: // G31: dock the sled
  4540. case 32: // G32: undock the sled
  4541. dock_sled(codenum == 31);
  4542. break;
  4543. #endif // Z_PROBE_SLED
  4544. #endif // ENABLE_AUTO_BED_LEVELING
  4545. case 90: // G90
  4546. relative_mode = false;
  4547. break;
  4548. case 91: // G91
  4549. relative_mode = true;
  4550. break;
  4551. case 92: // G92
  4552. gcode_G92();
  4553. break;
  4554. }
  4555. break;
  4556. case 'M': switch (codenum) {
  4557. #ifdef ULTIPANEL
  4558. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4559. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4560. gcode_M0_M1();
  4561. break;
  4562. #endif // ULTIPANEL
  4563. case 17:
  4564. gcode_M17();
  4565. break;
  4566. #ifdef SDSUPPORT
  4567. case 20: // M20 - list SD card
  4568. gcode_M20(); break;
  4569. case 21: // M21 - init SD card
  4570. gcode_M21(); break;
  4571. case 22: //M22 - release SD card
  4572. gcode_M22(); break;
  4573. case 23: //M23 - Select file
  4574. gcode_M23(); break;
  4575. case 24: //M24 - Start SD print
  4576. gcode_M24(); break;
  4577. case 25: //M25 - Pause SD print
  4578. gcode_M25(); break;
  4579. case 26: //M26 - Set SD index
  4580. gcode_M26(); break;
  4581. case 27: //M27 - Get SD status
  4582. gcode_M27(); break;
  4583. case 28: //M28 - Start SD write
  4584. gcode_M28(); break;
  4585. case 29: //M29 - Stop SD write
  4586. gcode_M29(); break;
  4587. case 30: //M30 <filename> Delete File
  4588. gcode_M30(); break;
  4589. case 32: //M32 - Select file and start SD print
  4590. gcode_M32(); break;
  4591. #ifdef LONG_FILENAME_HOST_SUPPORT
  4592. case 33: //M33 - Get the long full path to a file or folder
  4593. gcode_M33(); break;
  4594. #endif // LONG_FILENAME_HOST_SUPPORT
  4595. case 928: //M928 - Start SD write
  4596. gcode_M928(); break;
  4597. #endif //SDSUPPORT
  4598. case 31: //M31 take time since the start of the SD print or an M109 command
  4599. gcode_M31();
  4600. break;
  4601. case 42: //M42 -Change pin status via gcode
  4602. gcode_M42();
  4603. break;
  4604. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4605. case 48: // M48 Z-Probe repeatability
  4606. gcode_M48();
  4607. break;
  4608. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4609. case 104: // M104
  4610. gcode_M104();
  4611. break;
  4612. case 111: // M111: Set debug level
  4613. gcode_M111();
  4614. break;
  4615. case 112: // M112: Emergency Stop
  4616. gcode_M112();
  4617. break;
  4618. case 140: // M140: Set bed temp
  4619. gcode_M140();
  4620. break;
  4621. case 105: // M105: Read current temperature
  4622. gcode_M105();
  4623. return; // "ok" already printed
  4624. case 109: // M109: Wait for temperature
  4625. gcode_M109();
  4626. break;
  4627. #if HAS_TEMP_BED
  4628. case 190: // M190: Wait for bed heater to reach target
  4629. gcode_M190();
  4630. break;
  4631. #endif // HAS_TEMP_BED
  4632. #if HAS_FAN
  4633. case 106: // M106: Fan On
  4634. gcode_M106();
  4635. break;
  4636. case 107: // M107: Fan Off
  4637. gcode_M107();
  4638. break;
  4639. #endif // HAS_FAN
  4640. #ifdef BARICUDA
  4641. // PWM for HEATER_1_PIN
  4642. #if HAS_HEATER_1
  4643. case 126: // M126: valve open
  4644. gcode_M126();
  4645. break;
  4646. case 127: // M127: valve closed
  4647. gcode_M127();
  4648. break;
  4649. #endif // HAS_HEATER_1
  4650. // PWM for HEATER_2_PIN
  4651. #if HAS_HEATER_2
  4652. case 128: // M128: valve open
  4653. gcode_M128();
  4654. break;
  4655. case 129: // M129: valve closed
  4656. gcode_M129();
  4657. break;
  4658. #endif // HAS_HEATER_2
  4659. #endif // BARICUDA
  4660. #if HAS_POWER_SWITCH
  4661. case 80: // M80: Turn on Power Supply
  4662. gcode_M80();
  4663. break;
  4664. #endif // HAS_POWER_SWITCH
  4665. case 81: // M81: Turn off Power, including Power Supply, if possible
  4666. gcode_M81();
  4667. break;
  4668. case 82:
  4669. gcode_M82();
  4670. break;
  4671. case 83:
  4672. gcode_M83();
  4673. break;
  4674. case 18: // (for compatibility)
  4675. case 84: // M84
  4676. gcode_M18_M84();
  4677. break;
  4678. case 85: // M85
  4679. gcode_M85();
  4680. break;
  4681. case 92: // M92: Set the steps-per-unit for one or more axes
  4682. gcode_M92();
  4683. break;
  4684. case 115: // M115: Report capabilities
  4685. gcode_M115();
  4686. break;
  4687. case 117: // M117: Set LCD message text, if possible
  4688. gcode_M117();
  4689. break;
  4690. case 114: // M114: Report current position
  4691. gcode_M114();
  4692. break;
  4693. case 120: // M120: Enable endstops
  4694. gcode_M120();
  4695. break;
  4696. case 121: // M121: Disable endstops
  4697. gcode_M121();
  4698. break;
  4699. case 119: // M119: Report endstop states
  4700. gcode_M119();
  4701. break;
  4702. #ifdef ULTIPANEL
  4703. case 145: // M145: Set material heatup parameters
  4704. gcode_M145();
  4705. break;
  4706. #endif
  4707. #ifdef BLINKM
  4708. case 150: // M150
  4709. gcode_M150();
  4710. break;
  4711. #endif //BLINKM
  4712. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4713. gcode_M200();
  4714. break;
  4715. case 201: // M201
  4716. gcode_M201();
  4717. break;
  4718. #if 0 // Not used for Sprinter/grbl gen6
  4719. case 202: // M202
  4720. gcode_M202();
  4721. break;
  4722. #endif
  4723. case 203: // M203 max feedrate mm/sec
  4724. gcode_M203();
  4725. break;
  4726. case 204: // M204 acclereration S normal moves T filmanent only moves
  4727. gcode_M204();
  4728. break;
  4729. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4730. gcode_M205();
  4731. break;
  4732. case 206: // M206 additional homing offset
  4733. gcode_M206();
  4734. break;
  4735. #ifdef DELTA
  4736. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4737. gcode_M665();
  4738. break;
  4739. #endif
  4740. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4741. case 666: // M666 set delta / dual endstop adjustment
  4742. gcode_M666();
  4743. break;
  4744. #endif
  4745. #ifdef FWRETRACT
  4746. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4747. gcode_M207();
  4748. break;
  4749. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4750. gcode_M208();
  4751. break;
  4752. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4753. gcode_M209();
  4754. break;
  4755. #endif // FWRETRACT
  4756. #if EXTRUDERS > 1
  4757. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4758. gcode_M218();
  4759. break;
  4760. #endif
  4761. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4762. gcode_M220();
  4763. break;
  4764. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4765. gcode_M221();
  4766. break;
  4767. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4768. gcode_M226();
  4769. break;
  4770. #if NUM_SERVOS > 0
  4771. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4772. gcode_M280();
  4773. break;
  4774. #endif // NUM_SERVOS > 0
  4775. #if HAS_BUZZER
  4776. case 300: // M300 - Play beep tone
  4777. gcode_M300();
  4778. break;
  4779. #endif // HAS_BUZZER
  4780. #ifdef PIDTEMP
  4781. case 301: // M301
  4782. gcode_M301();
  4783. break;
  4784. #endif // PIDTEMP
  4785. #ifdef PIDTEMPBED
  4786. case 304: // M304
  4787. gcode_M304();
  4788. break;
  4789. #endif // PIDTEMPBED
  4790. #if defined(CHDK) || HAS_PHOTOGRAPH
  4791. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4792. gcode_M240();
  4793. break;
  4794. #endif // CHDK || PHOTOGRAPH_PIN
  4795. #ifdef HAS_LCD_CONTRAST
  4796. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4797. gcode_M250();
  4798. break;
  4799. #endif // HAS_LCD_CONTRAST
  4800. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4801. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4802. gcode_M302();
  4803. break;
  4804. #endif // PREVENT_DANGEROUS_EXTRUDE
  4805. case 303: // M303 PID autotune
  4806. gcode_M303();
  4807. break;
  4808. #ifdef SCARA
  4809. case 360: // M360 SCARA Theta pos1
  4810. if (gcode_M360()) return;
  4811. break;
  4812. case 361: // M361 SCARA Theta pos2
  4813. if (gcode_M361()) return;
  4814. break;
  4815. case 362: // M362 SCARA Psi pos1
  4816. if (gcode_M362()) return;
  4817. break;
  4818. case 363: // M363 SCARA Psi pos2
  4819. if (gcode_M363()) return;
  4820. break;
  4821. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4822. if (gcode_M364()) return;
  4823. break;
  4824. case 365: // M365 Set SCARA scaling for X Y Z
  4825. gcode_M365();
  4826. break;
  4827. #endif // SCARA
  4828. case 400: // M400 finish all moves
  4829. gcode_M400();
  4830. break;
  4831. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4832. case 401:
  4833. gcode_M401();
  4834. break;
  4835. case 402:
  4836. gcode_M402();
  4837. break;
  4838. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4839. #ifdef FILAMENT_SENSOR
  4840. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4841. gcode_M404();
  4842. break;
  4843. case 405: //M405 Turn on filament sensor for control
  4844. gcode_M405();
  4845. break;
  4846. case 406: //M406 Turn off filament sensor for control
  4847. gcode_M406();
  4848. break;
  4849. case 407: //M407 Display measured filament diameter
  4850. gcode_M407();
  4851. break;
  4852. #endif // FILAMENT_SENSOR
  4853. case 410: // M410 quickstop - Abort all the planned moves.
  4854. gcode_M410();
  4855. break;
  4856. #ifdef MESH_BED_LEVELING
  4857. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4858. gcode_M420();
  4859. break;
  4860. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4861. gcode_M421();
  4862. break;
  4863. #endif
  4864. case 428: // M428 Apply current_position to home_offset
  4865. gcode_M428();
  4866. break;
  4867. case 500: // M500 Store settings in EEPROM
  4868. gcode_M500();
  4869. break;
  4870. case 501: // M501 Read settings from EEPROM
  4871. gcode_M501();
  4872. break;
  4873. case 502: // M502 Revert to default settings
  4874. gcode_M502();
  4875. break;
  4876. case 503: // M503 print settings currently in memory
  4877. gcode_M503();
  4878. break;
  4879. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4880. case 540:
  4881. gcode_M540();
  4882. break;
  4883. #endif
  4884. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4885. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4886. gcode_SET_Z_PROBE_OFFSET();
  4887. break;
  4888. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4889. #ifdef FILAMENTCHANGEENABLE
  4890. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4891. gcode_M600();
  4892. break;
  4893. #endif // FILAMENTCHANGEENABLE
  4894. #ifdef DUAL_X_CARRIAGE
  4895. case 605:
  4896. gcode_M605();
  4897. break;
  4898. #endif // DUAL_X_CARRIAGE
  4899. case 907: // M907 Set digital trimpot motor current using axis codes.
  4900. gcode_M907();
  4901. break;
  4902. #if HAS_DIGIPOTSS
  4903. case 908: // M908 Control digital trimpot directly.
  4904. gcode_M908();
  4905. break;
  4906. #endif // HAS_DIGIPOTSS
  4907. #if HAS_MICROSTEPS
  4908. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4909. gcode_M350();
  4910. break;
  4911. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4912. gcode_M351();
  4913. break;
  4914. #endif // HAS_MICROSTEPS
  4915. case 999: // M999: Restart after being Stopped
  4916. gcode_M999();
  4917. break;
  4918. }
  4919. break;
  4920. case 'T':
  4921. gcode_T(codenum);
  4922. break;
  4923. default: code_is_good = false;
  4924. }
  4925. ExitUnknownCommand:
  4926. // Still unknown command? Throw an error
  4927. if (!code_is_good) unknown_command_error();
  4928. ok_to_send();
  4929. }
  4930. void FlushSerialRequestResend() {
  4931. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4932. MYSERIAL.flush();
  4933. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4934. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4935. ok_to_send();
  4936. }
  4937. void ok_to_send() {
  4938. refresh_cmd_timeout();
  4939. #ifdef SDSUPPORT
  4940. if (fromsd[cmd_queue_index_r]) return;
  4941. #endif
  4942. SERIAL_PROTOCOLPGM(MSG_OK);
  4943. #ifdef ADVANCED_OK
  4944. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4945. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4946. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4947. #endif
  4948. SERIAL_EOL;
  4949. }
  4950. void clamp_to_software_endstops(float target[3]) {
  4951. if (min_software_endstops) {
  4952. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4953. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4954. float negative_z_offset = 0;
  4955. #ifdef ENABLE_AUTO_BED_LEVELING
  4956. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4957. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4958. #endif
  4959. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4960. }
  4961. if (max_software_endstops) {
  4962. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4963. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4964. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4965. }
  4966. }
  4967. #ifdef DELTA
  4968. void recalc_delta_settings(float radius, float diagonal_rod) {
  4969. delta_tower1_x = -SIN_60 * radius; // front left tower
  4970. delta_tower1_y = -COS_60 * radius;
  4971. delta_tower2_x = SIN_60 * radius; // front right tower
  4972. delta_tower2_y = -COS_60 * radius;
  4973. delta_tower3_x = 0.0; // back middle tower
  4974. delta_tower3_y = radius;
  4975. delta_diagonal_rod_2 = sq(diagonal_rod);
  4976. }
  4977. void calculate_delta(float cartesian[3]) {
  4978. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4979. - sq(delta_tower1_x-cartesian[X_AXIS])
  4980. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4981. ) + cartesian[Z_AXIS];
  4982. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4983. - sq(delta_tower2_x-cartesian[X_AXIS])
  4984. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4985. ) + cartesian[Z_AXIS];
  4986. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4987. - sq(delta_tower3_x-cartesian[X_AXIS])
  4988. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4989. ) + cartesian[Z_AXIS];
  4990. /*
  4991. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4992. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4993. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4994. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4995. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4996. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4997. */
  4998. }
  4999. #ifdef ENABLE_AUTO_BED_LEVELING
  5000. // Adjust print surface height by linear interpolation over the bed_level array.
  5001. void adjust_delta(float cartesian[3]) {
  5002. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5003. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5004. float h1 = 0.001 - half, h2 = half - 0.001,
  5005. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5006. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5007. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5008. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5009. z1 = bed_level[floor_x + half][floor_y + half],
  5010. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5011. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5012. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5013. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5014. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5015. offset = (1 - ratio_x) * left + ratio_x * right;
  5016. delta[X_AXIS] += offset;
  5017. delta[Y_AXIS] += offset;
  5018. delta[Z_AXIS] += offset;
  5019. /*
  5020. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5021. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5022. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5023. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5024. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5025. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5026. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5027. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5028. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5029. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5030. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5031. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5032. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5033. */
  5034. }
  5035. #endif // ENABLE_AUTO_BED_LEVELING
  5036. #endif // DELTA
  5037. #ifdef MESH_BED_LEVELING
  5038. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5039. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  5040. {
  5041. if (!mbl.active) {
  5042. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5043. set_current_to_destination();
  5044. return;
  5045. }
  5046. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5047. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5048. int ix = mbl.select_x_index(x);
  5049. int iy = mbl.select_y_index(y);
  5050. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5051. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5052. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5053. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5054. if (pix == ix && piy == iy) {
  5055. // Start and end on same mesh square
  5056. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5057. set_current_to_destination();
  5058. return;
  5059. }
  5060. float nx, ny, ne, normalized_dist;
  5061. if (ix > pix && (x_splits) & BIT(ix)) {
  5062. nx = mbl.get_x(ix);
  5063. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5064. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5065. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5066. x_splits ^= BIT(ix);
  5067. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5068. nx = mbl.get_x(pix);
  5069. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5070. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5071. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5072. x_splits ^= BIT(pix);
  5073. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5074. ny = mbl.get_y(iy);
  5075. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5076. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5077. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5078. y_splits ^= BIT(iy);
  5079. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5080. ny = mbl.get_y(piy);
  5081. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5082. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5083. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5084. y_splits ^= BIT(piy);
  5085. } else {
  5086. // Already split on a border
  5087. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5088. set_current_to_destination();
  5089. return;
  5090. }
  5091. // Do the split and look for more borders
  5092. destination[X_AXIS] = nx;
  5093. destination[Y_AXIS] = ny;
  5094. destination[E_AXIS] = ne;
  5095. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5096. destination[X_AXIS] = x;
  5097. destination[Y_AXIS] = y;
  5098. destination[E_AXIS] = e;
  5099. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5100. }
  5101. #endif // MESH_BED_LEVELING
  5102. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5103. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5104. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5105. float de = dest_e - curr_e;
  5106. if (de) {
  5107. if (degHotend(active_extruder) < extrude_min_temp) {
  5108. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5109. SERIAL_ECHO_START;
  5110. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5111. }
  5112. #ifdef PREVENT_LENGTHY_EXTRUDE
  5113. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5114. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5115. SERIAL_ECHO_START;
  5116. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5117. }
  5118. #endif
  5119. }
  5120. }
  5121. #endif // PREVENT_DANGEROUS_EXTRUDE
  5122. #if defined(DELTA) || defined(SCARA)
  5123. inline bool prepare_move_delta() {
  5124. float difference[NUM_AXIS];
  5125. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5126. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5127. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5128. if (cartesian_mm < 0.000001) return false;
  5129. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5130. int steps = max(1, int(delta_segments_per_second * seconds));
  5131. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5132. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5133. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5134. for (int s = 1; s <= steps; s++) {
  5135. float fraction = float(s) / float(steps);
  5136. for (int8_t i = 0; i < NUM_AXIS; i++)
  5137. destination[i] = current_position[i] + difference[i] * fraction;
  5138. calculate_delta(destination);
  5139. #ifdef ENABLE_AUTO_BED_LEVELING
  5140. adjust_delta(destination);
  5141. #endif
  5142. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5143. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5144. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5145. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5146. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5147. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5148. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5149. }
  5150. return true;
  5151. }
  5152. #endif // DELTA || SCARA
  5153. #ifdef SCARA
  5154. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5155. #endif
  5156. #ifdef DUAL_X_CARRIAGE
  5157. inline bool prepare_move_dual_x_carriage() {
  5158. if (active_extruder_parked) {
  5159. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5160. // move duplicate extruder into correct duplication position.
  5161. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5162. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5163. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5164. sync_plan_position();
  5165. st_synchronize();
  5166. extruder_duplication_enabled = true;
  5167. active_extruder_parked = false;
  5168. }
  5169. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5170. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5171. // This is a travel move (with no extrusion)
  5172. // Skip it, but keep track of the current position
  5173. // (so it can be used as the start of the next non-travel move)
  5174. if (delayed_move_time != 0xFFFFFFFFUL) {
  5175. set_current_to_destination();
  5176. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5177. delayed_move_time = millis();
  5178. return false;
  5179. }
  5180. }
  5181. delayed_move_time = 0;
  5182. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5183. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5186. active_extruder_parked = false;
  5187. }
  5188. }
  5189. return true;
  5190. }
  5191. #endif // DUAL_X_CARRIAGE
  5192. #if !defined(DELTA) && !defined(SCARA)
  5193. inline bool prepare_move_cartesian() {
  5194. // Do not use feedrate_multiplier for E or Z only moves
  5195. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5196. line_to_destination();
  5197. }
  5198. else {
  5199. #ifdef MESH_BED_LEVELING
  5200. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5201. return false;
  5202. #else
  5203. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5204. #endif
  5205. }
  5206. return true;
  5207. }
  5208. #endif // !DELTA && !SCARA
  5209. /**
  5210. * Prepare a single move and get ready for the next one
  5211. */
  5212. void prepare_move() {
  5213. clamp_to_software_endstops(destination);
  5214. refresh_cmd_timeout();
  5215. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5216. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5217. #endif
  5218. #ifdef SCARA
  5219. if (!prepare_move_scara()) return;
  5220. #elif defined(DELTA)
  5221. if (!prepare_move_delta()) return;
  5222. #endif
  5223. #ifdef DUAL_X_CARRIAGE
  5224. if (!prepare_move_dual_x_carriage()) return;
  5225. #endif
  5226. #if !defined(DELTA) && !defined(SCARA)
  5227. if (!prepare_move_cartesian()) return;
  5228. #endif
  5229. set_current_to_destination();
  5230. }
  5231. #if HAS_CONTROLLERFAN
  5232. void controllerFan() {
  5233. static millis_t lastMotor = 0; // Last time a motor was turned on
  5234. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5235. millis_t ms = millis();
  5236. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5237. lastMotorCheck = ms;
  5238. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5239. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5240. #if EXTRUDERS > 1
  5241. || E1_ENABLE_READ == E_ENABLE_ON
  5242. #if HAS_X2_ENABLE
  5243. || X2_ENABLE_READ == X_ENABLE_ON
  5244. #endif
  5245. #if EXTRUDERS > 2
  5246. || E2_ENABLE_READ == E_ENABLE_ON
  5247. #if EXTRUDERS > 3
  5248. || E3_ENABLE_READ == E_ENABLE_ON
  5249. #endif
  5250. #endif
  5251. #endif
  5252. ) {
  5253. lastMotor = ms; //... set time to NOW so the fan will turn on
  5254. }
  5255. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5256. // allows digital or PWM fan output to be used (see M42 handling)
  5257. digitalWrite(CONTROLLERFAN_PIN, speed);
  5258. analogWrite(CONTROLLERFAN_PIN, speed);
  5259. }
  5260. }
  5261. #endif // HAS_CONTROLLERFAN
  5262. #ifdef SCARA
  5263. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5264. // Perform forward kinematics, and place results in delta[3]
  5265. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5266. float x_sin, x_cos, y_sin, y_cos;
  5267. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5268. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5269. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5270. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5271. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5272. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5273. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5274. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5275. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5276. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5277. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5278. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5279. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5280. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5281. }
  5282. void calculate_delta(float cartesian[3]){
  5283. //reverse kinematics.
  5284. // Perform reversed kinematics, and place results in delta[3]
  5285. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5286. float SCARA_pos[2];
  5287. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5288. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5289. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5290. #if (Linkage_1 == Linkage_2)
  5291. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5292. #else
  5293. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5294. #endif
  5295. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5296. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5297. SCARA_K2 = Linkage_2 * SCARA_S2;
  5298. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5299. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5300. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5301. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5302. delta[Z_AXIS] = cartesian[Z_AXIS];
  5303. /*
  5304. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5305. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5306. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5307. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5308. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5309. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5310. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5311. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5312. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5313. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5314. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5315. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5316. SERIAL_EOL;
  5317. */
  5318. }
  5319. #endif // SCARA
  5320. #ifdef TEMP_STAT_LEDS
  5321. static bool red_led = false;
  5322. static millis_t next_status_led_update_ms = 0;
  5323. void handle_status_leds(void) {
  5324. float max_temp = 0.0;
  5325. if (millis() > next_status_led_update_ms) {
  5326. next_status_led_update_ms += 500; // Update every 0.5s
  5327. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5328. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5329. #if HAS_TEMP_BED
  5330. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5331. #endif
  5332. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5333. if (new_led != red_led) {
  5334. red_led = new_led;
  5335. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5336. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5337. }
  5338. }
  5339. }
  5340. #endif
  5341. void enable_all_steppers() {
  5342. enable_x();
  5343. enable_y();
  5344. enable_z();
  5345. enable_e0();
  5346. enable_e1();
  5347. enable_e2();
  5348. enable_e3();
  5349. }
  5350. void disable_all_steppers() {
  5351. disable_x();
  5352. disable_y();
  5353. disable_z();
  5354. disable_e0();
  5355. disable_e1();
  5356. disable_e2();
  5357. disable_e3();
  5358. }
  5359. /**
  5360. * Standard idle routine keeps the machine alive
  5361. */
  5362. void idle() {
  5363. manage_heater();
  5364. manage_inactivity();
  5365. lcd_update();
  5366. }
  5367. /**
  5368. * Manage several activities:
  5369. * - Check for Filament Runout
  5370. * - Keep the command buffer full
  5371. * - Check for maximum inactive time between commands
  5372. * - Check for maximum inactive time between stepper commands
  5373. * - Check if pin CHDK needs to go LOW
  5374. * - Check for KILL button held down
  5375. * - Check for HOME button held down
  5376. * - Check if cooling fan needs to be switched on
  5377. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5378. */
  5379. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5380. #if HAS_FILRUNOUT
  5381. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5382. filrunout();
  5383. #endif
  5384. if (commands_in_queue < BUFSIZE - 1) get_command();
  5385. millis_t ms = millis();
  5386. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5387. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5388. && !ignore_stepper_queue && !blocks_queued()) {
  5389. #if DISABLE_X == true
  5390. disable_x();
  5391. #endif
  5392. #if DISABLE_Y == true
  5393. disable_y();
  5394. #endif
  5395. #if DISABLE_Z == true
  5396. disable_z();
  5397. #endif
  5398. #if DISABLE_E == true
  5399. disable_e0();
  5400. disable_e1();
  5401. disable_e2();
  5402. disable_e3();
  5403. #endif
  5404. }
  5405. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5406. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5407. chdkActive = false;
  5408. WRITE(CHDK, LOW);
  5409. }
  5410. #endif
  5411. #if HAS_KILL
  5412. // Check if the kill button was pressed and wait just in case it was an accidental
  5413. // key kill key press
  5414. // -------------------------------------------------------------------------------
  5415. static int killCount = 0; // make the inactivity button a bit less responsive
  5416. const int KILL_DELAY = 750;
  5417. if (!READ(KILL_PIN))
  5418. killCount++;
  5419. else if (killCount > 0)
  5420. killCount--;
  5421. // Exceeded threshold and we can confirm that it was not accidental
  5422. // KILL the machine
  5423. // ----------------------------------------------------------------
  5424. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5425. #endif
  5426. #if HAS_HOME
  5427. // Check to see if we have to home, use poor man's debouncer
  5428. // ---------------------------------------------------------
  5429. static int homeDebounceCount = 0; // poor man's debouncing count
  5430. const int HOME_DEBOUNCE_DELAY = 750;
  5431. if (!READ(HOME_PIN)) {
  5432. if (!homeDebounceCount) {
  5433. enqueuecommands_P(PSTR("G28"));
  5434. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5435. }
  5436. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5437. homeDebounceCount++;
  5438. else
  5439. homeDebounceCount = 0;
  5440. }
  5441. #endif
  5442. #if HAS_CONTROLLERFAN
  5443. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5444. #endif
  5445. #ifdef EXTRUDER_RUNOUT_PREVENT
  5446. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5447. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5448. bool oldstatus;
  5449. switch(active_extruder) {
  5450. case 0:
  5451. oldstatus = E0_ENABLE_READ;
  5452. enable_e0();
  5453. break;
  5454. #if EXTRUDERS > 1
  5455. case 1:
  5456. oldstatus = E1_ENABLE_READ;
  5457. enable_e1();
  5458. break;
  5459. #if EXTRUDERS > 2
  5460. case 2:
  5461. oldstatus = E2_ENABLE_READ;
  5462. enable_e2();
  5463. break;
  5464. #if EXTRUDERS > 3
  5465. case 3:
  5466. oldstatus = E3_ENABLE_READ;
  5467. enable_e3();
  5468. break;
  5469. #endif
  5470. #endif
  5471. #endif
  5472. }
  5473. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5474. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5475. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5476. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5477. current_position[E_AXIS] = oldepos;
  5478. destination[E_AXIS] = oldedes;
  5479. plan_set_e_position(oldepos);
  5480. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5481. st_synchronize();
  5482. switch(active_extruder) {
  5483. case 0:
  5484. E0_ENABLE_WRITE(oldstatus);
  5485. break;
  5486. #if EXTRUDERS > 1
  5487. case 1:
  5488. E1_ENABLE_WRITE(oldstatus);
  5489. break;
  5490. #if EXTRUDERS > 2
  5491. case 2:
  5492. E2_ENABLE_WRITE(oldstatus);
  5493. break;
  5494. #if EXTRUDERS > 3
  5495. case 3:
  5496. E3_ENABLE_WRITE(oldstatus);
  5497. break;
  5498. #endif
  5499. #endif
  5500. #endif
  5501. }
  5502. }
  5503. #endif
  5504. #ifdef DUAL_X_CARRIAGE
  5505. // handle delayed move timeout
  5506. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5507. // travel moves have been received so enact them
  5508. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5509. set_destination_to_current();
  5510. prepare_move();
  5511. }
  5512. #endif
  5513. #ifdef TEMP_STAT_LEDS
  5514. handle_status_leds();
  5515. #endif
  5516. check_axes_activity();
  5517. }
  5518. void kill(const char *lcd_msg) {
  5519. #ifdef ULTRA_LCD
  5520. lcd_setalertstatuspgm(lcd_msg);
  5521. #endif
  5522. cli(); // Stop interrupts
  5523. disable_all_heaters();
  5524. disable_all_steppers();
  5525. #if HAS_POWER_SWITCH
  5526. pinMode(PS_ON_PIN, INPUT);
  5527. #endif
  5528. SERIAL_ERROR_START;
  5529. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5530. // FMC small patch to update the LCD before ending
  5531. sei(); // enable interrupts
  5532. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5533. cli(); // disable interrupts
  5534. suicide();
  5535. while(1) { /* Intentionally left empty */ } // Wait for reset
  5536. }
  5537. #ifdef FILAMENT_RUNOUT_SENSOR
  5538. void filrunout() {
  5539. if (!filrunoutEnqueued) {
  5540. filrunoutEnqueued = true;
  5541. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5542. st_synchronize();
  5543. }
  5544. }
  5545. #endif // FILAMENT_RUNOUT_SENSOR
  5546. #ifdef FAST_PWM_FAN
  5547. void setPwmFrequency(uint8_t pin, int val) {
  5548. val &= 0x07;
  5549. switch (digitalPinToTimer(pin)) {
  5550. #if defined(TCCR0A)
  5551. case TIMER0A:
  5552. case TIMER0B:
  5553. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5554. // TCCR0B |= val;
  5555. break;
  5556. #endif
  5557. #if defined(TCCR1A)
  5558. case TIMER1A:
  5559. case TIMER1B:
  5560. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5561. // TCCR1B |= val;
  5562. break;
  5563. #endif
  5564. #if defined(TCCR2)
  5565. case TIMER2:
  5566. case TIMER2:
  5567. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5568. TCCR2 |= val;
  5569. break;
  5570. #endif
  5571. #if defined(TCCR2A)
  5572. case TIMER2A:
  5573. case TIMER2B:
  5574. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5575. TCCR2B |= val;
  5576. break;
  5577. #endif
  5578. #if defined(TCCR3A)
  5579. case TIMER3A:
  5580. case TIMER3B:
  5581. case TIMER3C:
  5582. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5583. TCCR3B |= val;
  5584. break;
  5585. #endif
  5586. #if defined(TCCR4A)
  5587. case TIMER4A:
  5588. case TIMER4B:
  5589. case TIMER4C:
  5590. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5591. TCCR4B |= val;
  5592. break;
  5593. #endif
  5594. #if defined(TCCR5A)
  5595. case TIMER5A:
  5596. case TIMER5B:
  5597. case TIMER5C:
  5598. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5599. TCCR5B |= val;
  5600. break;
  5601. #endif
  5602. }
  5603. }
  5604. #endif // FAST_PWM_FAN
  5605. void Stop() {
  5606. disable_all_heaters();
  5607. if (IsRunning()) {
  5608. Running = false;
  5609. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5610. SERIAL_ERROR_START;
  5611. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5612. LCD_MESSAGEPGM(MSG_STOPPED);
  5613. }
  5614. }
  5615. /**
  5616. * Set target_extruder from the T parameter or the active_extruder
  5617. *
  5618. * Returns TRUE if the target is invalid
  5619. */
  5620. bool setTargetedHotend(int code) {
  5621. target_extruder = active_extruder;
  5622. if (code_seen('T')) {
  5623. target_extruder = code_value_short();
  5624. if (target_extruder >= EXTRUDERS) {
  5625. SERIAL_ECHO_START;
  5626. SERIAL_CHAR('M');
  5627. SERIAL_ECHO(code);
  5628. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5629. SERIAL_ECHOLN(target_extruder);
  5630. return true;
  5631. }
  5632. }
  5633. return false;
  5634. }
  5635. float calculate_volumetric_multiplier(float diameter) {
  5636. if (!volumetric_enabled || diameter == 0) return 1.0;
  5637. float d2 = diameter * 0.5;
  5638. return 1.0 / (M_PI * d2 * d2);
  5639. }
  5640. void calculate_volumetric_multipliers() {
  5641. for (int i=0; i<EXTRUDERS; i++)
  5642. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5643. }