My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 27KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  31. inline void set_current_from_destination() { COPY(current_position, destination); }
  32. #else
  33. extern void set_current_from_destination();
  34. #endif
  35. #if !UBL_SEGMENTED
  36. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
  37. /**
  38. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  39. * as possible to determine if this is the case. If this move is within the same cell, we will
  40. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  41. */
  42. const float start[XYZE] = {
  43. current_position[X_AXIS],
  44. current_position[Y_AXIS],
  45. current_position[Z_AXIS],
  46. current_position[E_AXIS]
  47. },
  48. end[XYZE] = {
  49. destination[X_AXIS],
  50. destination[Y_AXIS],
  51. destination[Z_AXIS],
  52. destination[E_AXIS]
  53. };
  54. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  55. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  56. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  57. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  58. if (g26_debug_flag) {
  59. SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
  60. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  61. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  62. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  63. SERIAL_CHAR(')');
  64. SERIAL_EOL();
  65. debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
  66. }
  67. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  68. /**
  69. * we don't need to break up the move
  70. *
  71. * If we are moving off the print bed, we are going to allow the move at this level.
  72. * But we detect it and isolate it. For now, we just pass along the request.
  73. */
  74. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  75. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  76. // a reasonable correction would be.
  77. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
  78. set_current_from_destination();
  79. if (g26_debug_flag)
  80. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
  81. return;
  82. }
  83. FINAL_MOVE:
  84. /**
  85. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  86. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  87. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  88. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  89. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  90. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  91. */
  92. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
  93. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  94. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  95. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  96. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  97. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  98. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  99. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  100. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  101. float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  102. /**
  103. * If part of the Mesh is undefined, it will show up as NAN
  104. * in z_values[][] and propagate through the
  105. * calculations. If our correction is NAN, we throw it out
  106. * because part of the Mesh is undefined and we don't have the
  107. * information we need to complete the height correction.
  108. */
  109. if (isnan(z0)) z0 = 0.0;
  110. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
  111. if (g26_debug_flag)
  112. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
  113. set_current_from_destination();
  114. return;
  115. }
  116. /**
  117. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  118. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  119. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  120. * computation and in fact most lines are of this nature. We will check for that in the following
  121. * blocks of code:
  122. */
  123. const float dx = end[X_AXIS] - start[X_AXIS],
  124. dy = end[Y_AXIS] - start[Y_AXIS];
  125. const int left_flag = dx < 0.0 ? 1 : 0,
  126. down_flag = dy < 0.0 ? 1 : 0;
  127. const float adx = left_flag ? -dx : dx,
  128. ady = down_flag ? -dy : dy;
  129. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  130. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  131. /**
  132. * Compute the scaling factor for the extruder for each partial move.
  133. * We need to watch out for zero length moves because it will cause us to
  134. * have an infinate scaling factor. We are stuck doing a floating point
  135. * divide to get our scaling factor, but after that, we just multiply by this
  136. * number. We also pick our scaling factor based on whether the X or Y
  137. * component is larger. We use the biggest of the two to preserve precision.
  138. */
  139. const bool use_x_dist = adx > ady;
  140. float on_axis_distance = use_x_dist ? dx : dy,
  141. e_position = end[E_AXIS] - start[E_AXIS],
  142. z_position = end[Z_AXIS] - start[Z_AXIS];
  143. const float e_normalized_dist = e_position / on_axis_distance,
  144. z_normalized_dist = z_position / on_axis_distance;
  145. int current_xi = cell_start_xi,
  146. current_yi = cell_start_yi;
  147. const float m = dy / dx,
  148. c = start[Y_AXIS] - m * start[X_AXIS];
  149. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  150. inf_m_flag = (isinf(m) != 0);
  151. /**
  152. * This block handles vertical lines. These are lines that stay within the same
  153. * X Cell column. They do not need to be perfectly vertical. They just can
  154. * not cross into another X Cell column.
  155. */
  156. if (dxi == 0) { // Check for a vertical line
  157. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  158. while (current_yi != cell_dest_yi + down_flag) {
  159. current_yi += dyi;
  160. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  161. /**
  162. * if the slope of the line is infinite, we won't do the calculations
  163. * else, we know the next X is the same so we can recover and continue!
  164. * Calculate X at the next Y mesh line
  165. */
  166. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  167. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  168. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  169. /**
  170. * If part of the Mesh is undefined, it will show up as NAN
  171. * in z_values[][] and propagate through the
  172. * calculations. If our correction is NAN, we throw it out
  173. * because part of the Mesh is undefined and we don't have the
  174. * information we need to complete the height correction.
  175. */
  176. if (isnan(z0)) z0 = 0.0;
  177. const float ry = mesh_index_to_ypos(current_yi);
  178. /**
  179. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  180. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  181. * happens, it might be best to remove the check and always 'schedule' the move because
  182. * the planner.buffer_segment() routine will filter it if that happens.
  183. */
  184. if (ry != start[Y_AXIS]) {
  185. if (!inf_normalized_flag) {
  186. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  187. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  188. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  189. }
  190. else {
  191. e_position = end[E_AXIS];
  192. z_position = end[Z_AXIS];
  193. }
  194. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  195. } //else printf("FIRST MOVE PRUNED ");
  196. }
  197. if (g26_debug_flag)
  198. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
  199. //
  200. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  201. //
  202. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  203. goto FINAL_MOVE;
  204. set_current_from_destination();
  205. return;
  206. }
  207. /**
  208. *
  209. * This block handles horizontal lines. These are lines that stay within the same
  210. * Y Cell row. They do not need to be perfectly horizontal. They just can
  211. * not cross into another Y Cell row.
  212. *
  213. */
  214. if (dyi == 0) { // Check for a horizontal line
  215. current_xi += left_flag; // Line is heading left, we just want to go to the left
  216. // edge of this cell for the first move.
  217. while (current_xi != cell_dest_xi + left_flag) {
  218. current_xi += dxi;
  219. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  220. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  221. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  222. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  223. /**
  224. * If part of the Mesh is undefined, it will show up as NAN
  225. * in z_values[][] and propagate through the
  226. * calculations. If our correction is NAN, we throw it out
  227. * because part of the Mesh is undefined and we don't have the
  228. * information we need to complete the height correction.
  229. */
  230. if (isnan(z0)) z0 = 0.0;
  231. const float rx = mesh_index_to_xpos(current_xi);
  232. /**
  233. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  234. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  235. * that happens, it might be best to remove the check and always 'schedule' the move because
  236. * the planner.buffer_segment() routine will filter it if that happens.
  237. */
  238. if (rx != start[X_AXIS]) {
  239. if (!inf_normalized_flag) {
  240. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  241. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  242. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  243. }
  244. else {
  245. e_position = end[E_AXIS];
  246. z_position = end[Z_AXIS];
  247. }
  248. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  249. } //else printf("FIRST MOVE PRUNED ");
  250. }
  251. if (g26_debug_flag)
  252. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
  253. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  254. goto FINAL_MOVE;
  255. set_current_from_destination();
  256. return;
  257. }
  258. /**
  259. *
  260. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  261. *
  262. */
  263. int xi_cnt = cell_start_xi - cell_dest_xi,
  264. yi_cnt = cell_start_yi - cell_dest_yi;
  265. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  266. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  267. current_xi += left_flag;
  268. current_yi += down_flag;
  269. while (xi_cnt > 0 || yi_cnt > 0) {
  270. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  271. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  272. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  273. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  274. // (No need to worry about m being zero.
  275. // If that was the case, it was already detected
  276. // as a vertical line move above.)
  277. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  278. // Yes! Crossing a Y Mesh Line next
  279. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  280. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  281. /**
  282. * If part of the Mesh is undefined, it will show up as NAN
  283. * in z_values[][] and propagate through the
  284. * calculations. If our correction is NAN, we throw it out
  285. * because part of the Mesh is undefined and we don't have the
  286. * information we need to complete the height correction.
  287. */
  288. if (isnan(z0)) z0 = 0.0;
  289. if (!inf_normalized_flag) {
  290. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  291. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  292. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  293. }
  294. else {
  295. e_position = end[E_AXIS];
  296. z_position = end[Z_AXIS];
  297. }
  298. planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
  299. current_yi += dyi;
  300. yi_cnt--;
  301. }
  302. else {
  303. // Yes! Crossing a X Mesh Line next
  304. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  305. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  306. /**
  307. * If part of the Mesh is undefined, it will show up as NAN
  308. * in z_values[][] and propagate through the
  309. * calculations. If our correction is NAN, we throw it out
  310. * because part of the Mesh is undefined and we don't have the
  311. * information we need to complete the height correction.
  312. */
  313. if (isnan(z0)) z0 = 0.0;
  314. if (!inf_normalized_flag) {
  315. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  316. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  317. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  318. }
  319. else {
  320. e_position = end[E_AXIS];
  321. z_position = end[Z_AXIS];
  322. }
  323. planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
  324. current_xi += dxi;
  325. xi_cnt--;
  326. }
  327. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  328. }
  329. if (g26_debug_flag)
  330. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
  331. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  332. goto FINAL_MOVE;
  333. set_current_from_destination();
  334. }
  335. #else // UBL_SEGMENTED
  336. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  337. static float scara_feed_factor, scara_oldA, scara_oldB;
  338. #endif
  339. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  340. // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
  341. inline void _O2 ubl_buffer_segment_raw(const float (&raw)[XYZE], const float &fr) {
  342. #if ENABLED(DELTA) // apply delta inverse_kinematics
  343. DELTA_RAW_IK();
  344. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
  345. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  346. inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
  347. // should move the feedrate scaling to scara inverse_kinematics
  348. const float adiff = FABS(delta[A_AXIS] - scara_oldA),
  349. bdiff = FABS(delta[B_AXIS] - scara_oldB);
  350. scara_oldA = delta[A_AXIS];
  351. scara_oldB = delta[B_AXIS];
  352. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  353. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
  354. #else // CARTESIAN
  355. planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
  356. #endif
  357. }
  358. #if IS_SCARA
  359. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  360. #elif ENABLED(DELTA)
  361. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  362. #else // CARTESIAN
  363. #ifdef LEVELED_SEGMENT_LENGTH
  364. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  365. #else
  366. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  367. #endif
  368. #endif
  369. /**
  370. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  371. * This calls planner.buffer_segment multiple times for small incremental moves.
  372. * Returns true if did NOT move, false if moved (requires current_position update).
  373. */
  374. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&in_target)[XYZE], const float &feedrate) {
  375. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  376. return true; // did not move, so current_position still accurate
  377. const float total[XYZE] = {
  378. rtarget[X_AXIS] - current_position[X_AXIS],
  379. rtarget[Y_AXIS] - current_position[Y_AXIS],
  380. rtarget[Z_AXIS] - current_position[Z_AXIS],
  381. rtarget[E_AXIS] - current_position[E_AXIS]
  382. };
  383. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  384. #if IS_KINEMATIC
  385. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  386. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  387. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  388. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  389. #else
  390. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  391. #endif
  392. NOLESS(segments, 1); // must have at least one segment
  393. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  394. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  395. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  396. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  397. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  398. #endif
  399. const float diff[XYZE] = {
  400. total[X_AXIS] * inv_segments,
  401. total[Y_AXIS] * inv_segments,
  402. total[Z_AXIS] * inv_segments,
  403. total[E_AXIS] * inv_segments
  404. };
  405. // Note that E segment distance could vary slightly as z mesh height
  406. // changes for each segment, but small enough to ignore.
  407. float raw[XYZE] = {
  408. current_position[X_AXIS],
  409. current_position[Y_AXIS],
  410. current_position[Z_AXIS],
  411. current_position[E_AXIS]
  412. };
  413. // Only compute leveling per segment if ubl active and target below z_fade_height.
  414. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  415. while (--segments) {
  416. LOOP_XYZE(i) raw[i] += diff[i];
  417. ubl_buffer_segment_raw(raw, feedrate);
  418. }
  419. ubl_buffer_segment_raw(rtarget, feedrate);
  420. return false; // moved but did not set_current_from_destination();
  421. }
  422. // Otherwise perform per-segment leveling
  423. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  424. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  425. #endif
  426. // increment to first segment destination
  427. LOOP_XYZE(i) raw[i] += diff[i];
  428. for(;;) { // for each mesh cell encountered during the move
  429. // Compute mesh cell invariants that remain constant for all segments within cell.
  430. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  431. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  432. // Inner loop will exit each time (because out of cell bounds) but will come back
  433. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  434. // for mesh inset area.
  435. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  436. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  437. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  438. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  439. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  440. y0 = mesh_index_to_ypos(cell_yi);
  441. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  442. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  443. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  444. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  445. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  446. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  447. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  448. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  449. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  450. cy = raw[Y_AXIS] - y0;
  451. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  452. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  453. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  454. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  455. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  456. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  457. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  458. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  459. // and the z_cxym slope will change, both as a function of cx within the cell, and
  460. // each change by a constant for fixed segment lengths.
  461. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  462. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  463. for(;;) { // for all segments within this mesh cell
  464. if (--segments == 0) // if this is last segment, use rtarget for exact
  465. COPY(raw, rtarget);
  466. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  467. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  468. * fade_scaling_factor // apply fade factor to interpolated mesh height
  469. #endif
  470. ;
  471. const float z = raw[Z_AXIS];
  472. raw[Z_AXIS] += z_cxcy;
  473. ubl_buffer_segment_raw(raw, feedrate);
  474. raw[Z_AXIS] = z;
  475. if (segments == 0) // done with last segment
  476. return false; // did not set_current_from_destination()
  477. LOOP_XYZE(i) raw[i] += diff[i];
  478. cx += diff[X_AXIS];
  479. cy += diff[Y_AXIS];
  480. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  481. break;
  482. // Next segment still within same mesh cell, adjust the per-segment
  483. // slope and intercept to compute next z height.
  484. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  485. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  486. } // segment loop
  487. } // cell loop
  488. }
  489. #endif // UBL_SEGMENTED
  490. #endif // AUTO_BED_LEVELING_UBL