My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V24"
  38. /**
  39. * V24 EEPROM Layout:
  40. *
  41. * 100 Version (char x4)
  42. * 104 EEPROM Checksum (uint16_t)
  43. *
  44. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  45. * 122 M203 XYZE planner.max_feedrate (float x4)
  46. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  47. * 154 M204 P planner.acceleration (float)
  48. * 158 M204 R planner.retract_acceleration (float)
  49. * 162 M204 T planner.travel_acceleration (float)
  50. * 166 M205 S planner.min_feedrate (float)
  51. * 170 M205 T planner.min_travel_feedrate (float)
  52. * 174 M205 B planner.min_segment_time (ulong)
  53. * 178 M205 X planner.max_xy_jerk (float)
  54. * 182 M205 Z planner.max_z_jerk (float)
  55. * 186 M205 E planner.max_e_jerk (float)
  56. * 190 M206 XYZ home_offset (float x3)
  57. *
  58. * Mesh bed leveling:
  59. * 202 M420 S status (uint8)
  60. * 203 z_offset (float)
  61. * 207 mesh_num_x (uint8 as set in firmware)
  62. * 208 mesh_num_y (uint8 as set in firmware)
  63. * 209 G29 S3 XYZ z_values[][] (float x9, by default)
  64. *
  65. * AUTO BED LEVELING
  66. * 245 M851 zprobe_zoffset (float)
  67. *
  68. * DELTA:
  69. * 249 M666 XYZ endstop_adj (float x3)
  70. * 261 M665 R delta_radius (float)
  71. * 265 M665 L delta_diagonal_rod (float)
  72. * 269 M665 S delta_segments_per_second (float)
  73. * 273 M665 A delta_diagonal_rod_trim_tower_1 (float)
  74. * 277 M665 B delta_diagonal_rod_trim_tower_2 (float)
  75. * 281 M665 C delta_diagonal_rod_trim_tower_3 (float)
  76. *
  77. * Z_DUAL_ENDSTOPS:
  78. * 285 M666 Z z_endstop_adj (float)
  79. *
  80. * ULTIPANEL:
  81. * 289 M145 S0 H plaPreheatHotendTemp (int)
  82. * 291 M145 S0 B plaPreheatHPBTemp (int)
  83. * 293 M145 S0 F plaPreheatFanSpeed (int)
  84. * 295 M145 S1 H absPreheatHotendTemp (int)
  85. * 297 M145 S1 B absPreheatHPBTemp (int)
  86. * 299 M145 S1 F absPreheatFanSpeed (int)
  87. *
  88. * PIDTEMP:
  89. * 301 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  90. * 317 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  91. * 333 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  92. * 349 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  93. * 365 M301 L lpq_len (int)
  94. *
  95. * PIDTEMPBED:
  96. * 367 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  97. *
  98. * DOGLCD:
  99. * 379 M250 C lcd_contrast (int)
  100. *
  101. * SCARA:
  102. * 381 M365 XYZ axis_scaling (float x3)
  103. *
  104. * FWRETRACT:
  105. * 393 M209 S autoretract_enabled (bool)
  106. * 394 M207 S retract_length (float)
  107. * 398 M207 W retract_length_swap (float)
  108. * 402 M207 F retract_feedrate_mm_s (float)
  109. * 406 M207 Z retract_zlift (float)
  110. * 410 M208 S retract_recover_length (float)
  111. * 414 M208 W retract_recover_length_swap (float)
  112. * 418 M208 F retract_recover_feedrate (float)
  113. *
  114. * Volumetric Extrusion:
  115. * 422 M200 D volumetric_enabled (bool)
  116. * 423 M200 T D filament_size (float x4) (T0..3)
  117. *
  118. * 439 This Slot is Available!
  119. *
  120. */
  121. #include "Marlin.h"
  122. #include "language.h"
  123. #include "planner.h"
  124. #include "temperature.h"
  125. #include "ultralcd.h"
  126. #include "configuration_store.h"
  127. #if ENABLED(MESH_BED_LEVELING)
  128. #include "mesh_bed_leveling.h"
  129. #endif
  130. uint16_t eeprom_checksum;
  131. const char version[4] = EEPROM_VERSION;
  132. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  133. uint8_t c;
  134. while (size--) {
  135. eeprom_write_byte((unsigned char*)pos, *value);
  136. c = eeprom_read_byte((unsigned char*)pos);
  137. if (c != *value) {
  138. SERIAL_ECHO_START;
  139. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  140. }
  141. eeprom_checksum += c;
  142. pos++;
  143. value++;
  144. };
  145. }
  146. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  147. do {
  148. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  149. *value = c;
  150. eeprom_checksum += c;
  151. pos++;
  152. value++;
  153. } while (--size);
  154. }
  155. #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
  156. #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
  157. /**
  158. * Store Configuration Settings - M500
  159. */
  160. #define DUMMY_PID_VALUE 3000.0f
  161. #define EEPROM_OFFSET 100
  162. #if ENABLED(EEPROM_SETTINGS)
  163. /**
  164. * Store Configuration Settings - M500
  165. */
  166. void Config_StoreSettings() {
  167. float dummy = 0.0f;
  168. char ver[4] = "000";
  169. int i = EEPROM_OFFSET;
  170. EEPROM_WRITE_VAR(i, ver); // invalidate data first
  171. i += sizeof(eeprom_checksum); // Skip the checksum slot
  172. eeprom_checksum = 0; // clear before first "real data"
  173. EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
  174. EEPROM_WRITE_VAR(i, planner.max_feedrate);
  175. EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
  176. EEPROM_WRITE_VAR(i, planner.acceleration);
  177. EEPROM_WRITE_VAR(i, planner.retract_acceleration);
  178. EEPROM_WRITE_VAR(i, planner.travel_acceleration);
  179. EEPROM_WRITE_VAR(i, planner.min_feedrate);
  180. EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
  181. EEPROM_WRITE_VAR(i, planner.min_segment_time);
  182. EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
  183. EEPROM_WRITE_VAR(i, planner.max_z_jerk);
  184. EEPROM_WRITE_VAR(i, planner.max_e_jerk);
  185. EEPROM_WRITE_VAR(i, home_offset);
  186. #if ENABLED(MESH_BED_LEVELING)
  187. // Compile time test that sizeof(mbl.z_values) is as expected
  188. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  189. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  190. mesh_num_y = MESH_NUM_Y_POINTS,
  191. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  192. EEPROM_WRITE_VAR(i, dummy_uint8);
  193. EEPROM_WRITE_VAR(i, mbl.z_offset);
  194. EEPROM_WRITE_VAR(i, mesh_num_x);
  195. EEPROM_WRITE_VAR(i, mesh_num_y);
  196. EEPROM_WRITE_VAR(i, mbl.z_values);
  197. #else
  198. uint8_t mesh_num_x = 3,
  199. mesh_num_y = 3,
  200. dummy_uint8 = 0;
  201. dummy = 0.0f;
  202. EEPROM_WRITE_VAR(i, dummy_uint8);
  203. EEPROM_WRITE_VAR(i, dummy);
  204. EEPROM_WRITE_VAR(i, mesh_num_x);
  205. EEPROM_WRITE_VAR(i, mesh_num_y);
  206. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
  207. #endif // MESH_BED_LEVELING
  208. #if !HAS_BED_PROBE
  209. float zprobe_zoffset = 0;
  210. #endif
  211. EEPROM_WRITE_VAR(i, zprobe_zoffset);
  212. #if ENABLED(DELTA)
  213. EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
  214. EEPROM_WRITE_VAR(i, delta_radius); // 1 float
  215. EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
  216. EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  217. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  218. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  219. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  220. #elif ENABLED(Z_DUAL_ENDSTOPS)
  221. EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
  222. dummy = 0.0f;
  223. for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
  224. #else
  225. dummy = 0.0f;
  226. for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
  227. #endif
  228. #if DISABLED(ULTIPANEL)
  229. int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
  230. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  231. #endif // !ULTIPANEL
  232. EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  233. EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  234. EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  235. EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  236. EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  237. EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  238. for (uint8_t e = 0; e < 4; e++) {
  239. #if ENABLED(PIDTEMP)
  240. if (e < HOTENDS) {
  241. EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
  242. EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
  243. EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
  244. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  245. EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
  246. #else
  247. dummy = 1.0f; // 1.0 = default kc
  248. EEPROM_WRITE_VAR(i, dummy);
  249. #endif
  250. }
  251. else
  252. #endif // !PIDTEMP
  253. {
  254. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  255. EEPROM_WRITE_VAR(i, dummy); // Kp
  256. dummy = 0.0f;
  257. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
  258. }
  259. } // Hotends Loop
  260. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  261. int lpq_len = 20;
  262. #endif
  263. EEPROM_WRITE_VAR(i, lpq_len);
  264. #if DISABLED(PIDTEMPBED)
  265. dummy = DUMMY_PID_VALUE;
  266. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
  267. #else
  268. EEPROM_WRITE_VAR(i, thermalManager.bedKp);
  269. EEPROM_WRITE_VAR(i, thermalManager.bedKi);
  270. EEPROM_WRITE_VAR(i, thermalManager.bedKd);
  271. #endif
  272. #if !HAS_LCD_CONTRAST
  273. const int lcd_contrast = 32;
  274. #endif
  275. EEPROM_WRITE_VAR(i, lcd_contrast);
  276. #if ENABLED(SCARA)
  277. EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  278. #else
  279. dummy = 1.0f;
  280. EEPROM_WRITE_VAR(i, dummy);
  281. #endif
  282. #if ENABLED(FWRETRACT)
  283. EEPROM_WRITE_VAR(i, autoretract_enabled);
  284. EEPROM_WRITE_VAR(i, retract_length);
  285. #if EXTRUDERS > 1
  286. EEPROM_WRITE_VAR(i, retract_length_swap);
  287. #else
  288. dummy = 0.0f;
  289. EEPROM_WRITE_VAR(i, dummy);
  290. #endif
  291. EEPROM_WRITE_VAR(i, retract_feedrate_mm_s);
  292. EEPROM_WRITE_VAR(i, retract_zlift);
  293. EEPROM_WRITE_VAR(i, retract_recover_length);
  294. #if EXTRUDERS > 1
  295. EEPROM_WRITE_VAR(i, retract_recover_length_swap);
  296. #else
  297. dummy = 0.0f;
  298. EEPROM_WRITE_VAR(i, dummy);
  299. #endif
  300. EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  301. #endif // FWRETRACT
  302. EEPROM_WRITE_VAR(i, volumetric_enabled);
  303. // Save filament sizes
  304. for (uint8_t q = 0; q < 4; q++) {
  305. if (q < EXTRUDERS) dummy = filament_size[q];
  306. EEPROM_WRITE_VAR(i, dummy);
  307. }
  308. uint16_t final_checksum = eeprom_checksum;
  309. int j = EEPROM_OFFSET;
  310. EEPROM_WRITE_VAR(j, version);
  311. EEPROM_WRITE_VAR(j, final_checksum);
  312. // Report storage size
  313. SERIAL_ECHO_START;
  314. SERIAL_ECHOPAIR("Settings Stored (", i);
  315. SERIAL_ECHOLNPGM(" bytes)");
  316. }
  317. /**
  318. * Retrieve Configuration Settings - M501
  319. */
  320. void Config_RetrieveSettings() {
  321. int i = EEPROM_OFFSET;
  322. char stored_ver[4];
  323. uint16_t stored_checksum;
  324. EEPROM_READ_VAR(i, stored_ver);
  325. EEPROM_READ_VAR(i, stored_checksum);
  326. // SERIAL_ECHOPAIR("Version: [", ver);
  327. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  328. // SERIAL_ECHOLNPGM("]");
  329. if (strncmp(version, stored_ver, 3) != 0) {
  330. Config_ResetDefault();
  331. }
  332. else {
  333. float dummy = 0;
  334. eeprom_checksum = 0; // clear before reading first "real data"
  335. // version number match
  336. EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
  337. EEPROM_READ_VAR(i, planner.max_feedrate);
  338. EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
  339. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  340. planner.reset_acceleration_rates();
  341. EEPROM_READ_VAR(i, planner.acceleration);
  342. EEPROM_READ_VAR(i, planner.retract_acceleration);
  343. EEPROM_READ_VAR(i, planner.travel_acceleration);
  344. EEPROM_READ_VAR(i, planner.min_feedrate);
  345. EEPROM_READ_VAR(i, planner.min_travel_feedrate);
  346. EEPROM_READ_VAR(i, planner.min_segment_time);
  347. EEPROM_READ_VAR(i, planner.max_xy_jerk);
  348. EEPROM_READ_VAR(i, planner.max_z_jerk);
  349. EEPROM_READ_VAR(i, planner.max_e_jerk);
  350. EEPROM_READ_VAR(i, home_offset);
  351. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  352. EEPROM_READ_VAR(i, dummy_uint8);
  353. EEPROM_READ_VAR(i, dummy);
  354. EEPROM_READ_VAR(i, mesh_num_x);
  355. EEPROM_READ_VAR(i, mesh_num_y);
  356. #if ENABLED(MESH_BED_LEVELING)
  357. mbl.status = dummy_uint8;
  358. mbl.z_offset = dummy;
  359. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  360. EEPROM_READ_VAR(i, mbl.z_values);
  361. } else {
  362. mbl.reset();
  363. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  364. }
  365. #else
  366. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  367. #endif // MESH_BED_LEVELING
  368. #if !HAS_BED_PROBE
  369. float zprobe_zoffset = 0;
  370. #endif
  371. EEPROM_READ_VAR(i, zprobe_zoffset);
  372. #if ENABLED(DELTA)
  373. EEPROM_READ_VAR(i, endstop_adj); // 3 floats
  374. EEPROM_READ_VAR(i, delta_radius); // 1 float
  375. EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
  376. EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
  377. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  378. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  379. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  380. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  381. #elif ENABLED(Z_DUAL_ENDSTOPS)
  382. EEPROM_READ_VAR(i, z_endstop_adj);
  383. dummy = 0.0f;
  384. for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
  385. #else
  386. dummy = 0.0f;
  387. for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
  388. #endif
  389. #if DISABLED(ULTIPANEL)
  390. int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
  391. absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
  392. #endif
  393. EEPROM_READ_VAR(i, plaPreheatHotendTemp);
  394. EEPROM_READ_VAR(i, plaPreheatHPBTemp);
  395. EEPROM_READ_VAR(i, plaPreheatFanSpeed);
  396. EEPROM_READ_VAR(i, absPreheatHotendTemp);
  397. EEPROM_READ_VAR(i, absPreheatHPBTemp);
  398. EEPROM_READ_VAR(i, absPreheatFanSpeed);
  399. #if ENABLED(PIDTEMP)
  400. for (uint8_t e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
  401. EEPROM_READ_VAR(i, dummy); // Kp
  402. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  403. // do not need to scale PID values as the values in EEPROM are already scaled
  404. PID_PARAM(Kp, e) = dummy;
  405. EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
  406. EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
  407. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  408. EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
  409. #else
  410. EEPROM_READ_VAR(i, dummy);
  411. #endif
  412. }
  413. else {
  414. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
  415. }
  416. }
  417. #else // !PIDTEMP
  418. // 4 x 4 = 16 slots for PID parameters
  419. for (uint8_t q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
  420. #endif // !PIDTEMP
  421. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  422. int lpq_len;
  423. #endif
  424. EEPROM_READ_VAR(i, lpq_len);
  425. #if ENABLED(PIDTEMPBED)
  426. EEPROM_READ_VAR(i, dummy); // bedKp
  427. if (dummy != DUMMY_PID_VALUE) {
  428. thermalManager.bedKp = dummy;
  429. EEPROM_READ_VAR(i, thermalManager.bedKi);
  430. EEPROM_READ_VAR(i, thermalManager.bedKd);
  431. }
  432. #else
  433. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
  434. #endif
  435. #if !HAS_LCD_CONTRAST
  436. int lcd_contrast;
  437. #endif
  438. EEPROM_READ_VAR(i, lcd_contrast);
  439. #if ENABLED(SCARA)
  440. EEPROM_READ_VAR(i, axis_scaling); // 3 floats
  441. #else
  442. EEPROM_READ_VAR(i, dummy);
  443. #endif
  444. #if ENABLED(FWRETRACT)
  445. EEPROM_READ_VAR(i, autoretract_enabled);
  446. EEPROM_READ_VAR(i, retract_length);
  447. #if EXTRUDERS > 1
  448. EEPROM_READ_VAR(i, retract_length_swap);
  449. #else
  450. EEPROM_READ_VAR(i, dummy);
  451. #endif
  452. EEPROM_READ_VAR(i, retract_feedrate_mm_s);
  453. EEPROM_READ_VAR(i, retract_zlift);
  454. EEPROM_READ_VAR(i, retract_recover_length);
  455. #if EXTRUDERS > 1
  456. EEPROM_READ_VAR(i, retract_recover_length_swap);
  457. #else
  458. EEPROM_READ_VAR(i, dummy);
  459. #endif
  460. EEPROM_READ_VAR(i, retract_recover_feedrate);
  461. #endif // FWRETRACT
  462. EEPROM_READ_VAR(i, volumetric_enabled);
  463. for (uint8_t q = 0; q < 4; q++) {
  464. EEPROM_READ_VAR(i, dummy);
  465. if (q < EXTRUDERS) filament_size[q] = dummy;
  466. }
  467. calculate_volumetric_multipliers();
  468. // Call thermalManager.updatePID (similar to when we have processed M301)
  469. thermalManager.updatePID();
  470. if (eeprom_checksum == stored_checksum) {
  471. Config_Postprocess();
  472. SERIAL_ECHO_START;
  473. SERIAL_ECHO(version);
  474. SERIAL_ECHOPAIR(" stored settings retrieved (", i);
  475. SERIAL_ECHOLNPGM(" bytes)");
  476. }
  477. else {
  478. SERIAL_ERROR_START;
  479. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  480. Config_ResetDefault();
  481. }
  482. }
  483. #if ENABLED(EEPROM_CHITCHAT)
  484. Config_PrintSettings();
  485. #endif
  486. }
  487. #endif // EEPROM_SETTINGS
  488. /**
  489. * Reset Configuration Settings - M502
  490. */
  491. void Config_ResetDefault() {
  492. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  493. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  494. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  495. for (uint8_t i = 0; i < NUM_AXIS; i++) {
  496. planner.axis_steps_per_mm[i] = tmp1[i];
  497. planner.max_feedrate[i] = tmp2[i];
  498. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  499. #if ENABLED(SCARA)
  500. if (i < COUNT(axis_scaling))
  501. axis_scaling[i] = 1;
  502. #endif
  503. }
  504. // steps per sq second need to be updated to agree with the units per sq second
  505. planner.reset_acceleration_rates();
  506. planner.acceleration = DEFAULT_ACCELERATION;
  507. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  508. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  509. planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
  510. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  511. planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
  512. planner.max_xy_jerk = DEFAULT_XYJERK;
  513. planner.max_z_jerk = DEFAULT_ZJERK;
  514. planner.max_e_jerk = DEFAULT_EJERK;
  515. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  516. #if ENABLED(MESH_BED_LEVELING)
  517. mbl.reset();
  518. #endif
  519. #if HAS_BED_PROBE
  520. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  521. #endif
  522. #if ENABLED(DELTA)
  523. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  524. delta_radius = DELTA_RADIUS;
  525. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  526. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  527. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  528. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  529. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  530. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  531. #elif ENABLED(Z_DUAL_ENDSTOPS)
  532. z_endstop_adj = 0;
  533. #endif
  534. #if ENABLED(ULTIPANEL)
  535. plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
  536. plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
  537. plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
  538. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
  539. absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
  540. absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  541. #endif
  542. #if HAS_LCD_CONTRAST
  543. lcd_contrast = DEFAULT_LCD_CONTRAST;
  544. #endif
  545. #if ENABLED(PIDTEMP)
  546. #if ENABLED(PID_PARAMS_PER_HOTEND)
  547. for (uint8_t e = 0; e < HOTENDS; e++)
  548. #else
  549. int e = 0; UNUSED(e); // only need to write once
  550. #endif
  551. {
  552. PID_PARAM(Kp, e) = DEFAULT_Kp;
  553. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  554. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  555. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  556. PID_PARAM(Kc, e) = DEFAULT_Kc;
  557. #endif
  558. }
  559. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  560. lpq_len = 20; // default last-position-queue size
  561. #endif
  562. // call thermalManager.updatePID (similar to when we have processed M301)
  563. thermalManager.updatePID();
  564. #endif // PIDTEMP
  565. #if ENABLED(PIDTEMPBED)
  566. thermalManager.bedKp = DEFAULT_bedKp;
  567. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  568. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  569. #endif
  570. #if ENABLED(FWRETRACT)
  571. autoretract_enabled = false;
  572. retract_length = RETRACT_LENGTH;
  573. #if EXTRUDERS > 1
  574. retract_length_swap = RETRACT_LENGTH_SWAP;
  575. #endif
  576. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  577. retract_zlift = RETRACT_ZLIFT;
  578. retract_recover_length = RETRACT_RECOVER_LENGTH;
  579. #if EXTRUDERS > 1
  580. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  581. #endif
  582. retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  583. #endif
  584. volumetric_enabled = false;
  585. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  586. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  587. calculate_volumetric_multipliers();
  588. SERIAL_ECHO_START;
  589. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  590. }
  591. #if DISABLED(DISABLE_M503)
  592. /**
  593. * Print Configuration Settings - M503
  594. */
  595. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  596. void Config_PrintSettings(bool forReplay) {
  597. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  598. CONFIG_ECHO_START;
  599. if (!forReplay) {
  600. SERIAL_ECHOLNPGM("Steps per unit:");
  601. CONFIG_ECHO_START;
  602. }
  603. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  604. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  605. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  606. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  607. SERIAL_EOL;
  608. CONFIG_ECHO_START;
  609. #if ENABLED(SCARA)
  610. if (!forReplay) {
  611. SERIAL_ECHOLNPGM("Scaling factors:");
  612. CONFIG_ECHO_START;
  613. }
  614. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  615. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  616. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  617. SERIAL_EOL;
  618. CONFIG_ECHO_START;
  619. #endif // SCARA
  620. if (!forReplay) {
  621. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  622. CONFIG_ECHO_START;
  623. }
  624. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]);
  625. SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
  626. SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
  627. SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
  628. SERIAL_EOL;
  629. CONFIG_ECHO_START;
  630. if (!forReplay) {
  631. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  632. CONFIG_ECHO_START;
  633. }
  634. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  635. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  636. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  637. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  638. SERIAL_EOL;
  639. CONFIG_ECHO_START;
  640. if (!forReplay) {
  641. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  642. CONFIG_ECHO_START;
  643. }
  644. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  645. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  646. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  647. SERIAL_EOL;
  648. CONFIG_ECHO_START;
  649. if (!forReplay) {
  650. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  651. CONFIG_ECHO_START;
  652. }
  653. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate);
  654. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
  655. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  656. SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
  657. SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
  658. SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
  659. SERIAL_EOL;
  660. CONFIG_ECHO_START;
  661. if (!forReplay) {
  662. SERIAL_ECHOLNPGM("Home offset (mm)");
  663. CONFIG_ECHO_START;
  664. }
  665. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  666. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  667. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  668. SERIAL_EOL;
  669. #if ENABLED(MESH_BED_LEVELING)
  670. if (!forReplay) {
  671. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  672. CONFIG_ECHO_START;
  673. }
  674. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  675. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  676. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  677. SERIAL_EOL;
  678. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  679. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  680. CONFIG_ECHO_START;
  681. SERIAL_ECHOPAIR(" G29 S3 X", px);
  682. SERIAL_ECHOPAIR(" Y", py);
  683. SERIAL_ECHOPGM(" Z");
  684. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  685. SERIAL_EOL;
  686. }
  687. }
  688. #endif
  689. #if ENABLED(DELTA)
  690. CONFIG_ECHO_START;
  691. if (!forReplay) {
  692. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  693. CONFIG_ECHO_START;
  694. }
  695. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  696. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  697. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  698. SERIAL_EOL;
  699. CONFIG_ECHO_START;
  700. if (!forReplay) {
  701. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  702. CONFIG_ECHO_START;
  703. }
  704. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  705. SERIAL_ECHOPAIR(" R", delta_radius);
  706. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  707. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  708. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  709. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  710. SERIAL_EOL;
  711. #elif ENABLED(Z_DUAL_ENDSTOPS)
  712. CONFIG_ECHO_START;
  713. if (!forReplay) {
  714. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  715. CONFIG_ECHO_START;
  716. }
  717. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  718. SERIAL_EOL;
  719. #endif // DELTA
  720. #if ENABLED(ULTIPANEL)
  721. CONFIG_ECHO_START;
  722. if (!forReplay) {
  723. SERIAL_ECHOLNPGM("Material heatup parameters:");
  724. CONFIG_ECHO_START;
  725. }
  726. SERIAL_ECHOPAIR(" M145 S0 H", plaPreheatHotendTemp);
  727. SERIAL_ECHOPAIR(" B", plaPreheatHPBTemp);
  728. SERIAL_ECHOPAIR(" F", plaPreheatFanSpeed);
  729. SERIAL_EOL;
  730. CONFIG_ECHO_START;
  731. SERIAL_ECHOPAIR(" M145 S1 H", absPreheatHotendTemp);
  732. SERIAL_ECHOPAIR(" B", absPreheatHPBTemp);
  733. SERIAL_ECHOPAIR(" F", absPreheatFanSpeed);
  734. SERIAL_EOL;
  735. #endif // ULTIPANEL
  736. #if HAS_PID_HEATING
  737. CONFIG_ECHO_START;
  738. if (!forReplay) {
  739. SERIAL_ECHOLNPGM("PID settings:");
  740. }
  741. #if ENABLED(PIDTEMP)
  742. #if HOTENDS > 1
  743. if (forReplay) {
  744. for (uint8_t i = 0; i < HOTENDS; i++) {
  745. CONFIG_ECHO_START;
  746. SERIAL_ECHOPAIR(" M301 E", i);
  747. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
  748. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
  749. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
  750. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  751. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
  752. if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  753. #endif
  754. SERIAL_EOL;
  755. }
  756. }
  757. else
  758. #endif // HOTENDS > 1
  759. // !forReplay || HOTENDS == 1
  760. {
  761. CONFIG_ECHO_START;
  762. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  763. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  764. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  765. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  766. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  767. SERIAL_ECHOPAIR(" L", lpq_len);
  768. #endif
  769. SERIAL_EOL;
  770. }
  771. #endif // PIDTEMP
  772. #if ENABLED(PIDTEMPBED)
  773. CONFIG_ECHO_START;
  774. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  775. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  776. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  777. SERIAL_EOL;
  778. #endif
  779. #endif // PIDTEMP || PIDTEMPBED
  780. #if HAS_LCD_CONTRAST
  781. CONFIG_ECHO_START;
  782. if (!forReplay) {
  783. SERIAL_ECHOLNPGM("LCD Contrast:");
  784. CONFIG_ECHO_START;
  785. }
  786. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  787. SERIAL_EOL;
  788. #endif
  789. #if ENABLED(FWRETRACT)
  790. CONFIG_ECHO_START;
  791. if (!forReplay) {
  792. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  793. CONFIG_ECHO_START;
  794. }
  795. SERIAL_ECHOPAIR(" M207 S", retract_length);
  796. #if EXTRUDERS > 1
  797. SERIAL_ECHOPAIR(" W", retract_length_swap);
  798. #endif
  799. SERIAL_ECHOPAIR(" F", retract_feedrate_mm_s * 60);
  800. SERIAL_ECHOPAIR(" Z", retract_zlift);
  801. SERIAL_EOL;
  802. CONFIG_ECHO_START;
  803. if (!forReplay) {
  804. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  805. CONFIG_ECHO_START;
  806. }
  807. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  808. #if EXTRUDERS > 1
  809. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  810. #endif
  811. SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
  812. SERIAL_EOL;
  813. CONFIG_ECHO_START;
  814. if (!forReplay) {
  815. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  816. CONFIG_ECHO_START;
  817. }
  818. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  819. SERIAL_EOL;
  820. #endif // FWRETRACT
  821. /**
  822. * Volumetric extrusion M200
  823. */
  824. if (!forReplay) {
  825. CONFIG_ECHO_START;
  826. SERIAL_ECHOPGM("Filament settings:");
  827. if (volumetric_enabled)
  828. SERIAL_EOL;
  829. else
  830. SERIAL_ECHOLNPGM(" Disabled");
  831. }
  832. CONFIG_ECHO_START;
  833. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  834. SERIAL_EOL;
  835. #if EXTRUDERS > 1
  836. CONFIG_ECHO_START;
  837. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  838. SERIAL_EOL;
  839. #if EXTRUDERS > 2
  840. CONFIG_ECHO_START;
  841. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  842. SERIAL_EOL;
  843. #if EXTRUDERS > 3
  844. CONFIG_ECHO_START;
  845. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  846. SERIAL_EOL;
  847. #endif
  848. #endif
  849. #endif
  850. if (!volumetric_enabled) {
  851. CONFIG_ECHO_START;
  852. SERIAL_ECHOLNPGM(" M200 D0");
  853. }
  854. /**
  855. * Auto Bed Leveling
  856. */
  857. #if HAS_BED_PROBE
  858. if (!forReplay) {
  859. CONFIG_ECHO_START;
  860. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  861. }
  862. CONFIG_ECHO_START;
  863. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  864. SERIAL_EOL;
  865. #endif
  866. }
  867. #endif // !DISABLE_M503