My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 281KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. bool bed_leveling_in_progress = false;
  360. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  361. #elif defined(XY_PROBE_SPEED)
  362. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  363. #else
  364. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  365. #endif
  366. #if ENABLED(Z_DUAL_ENDSTOPS)
  367. float z_endstop_adj = 0;
  368. #endif
  369. // Extruder offsets
  370. #if HOTENDS > 1
  371. float hotend_offset[][HOTENDS] = {
  372. HOTEND_OFFSET_X,
  373. HOTEND_OFFSET_Y
  374. #ifdef HOTEND_OFFSET_Z
  375. , HOTEND_OFFSET_Z
  376. #endif
  377. };
  378. #endif
  379. #if HAS_Z_SERVO_ENDSTOP
  380. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  381. #endif
  382. #if ENABLED(BARICUDA)
  383. int baricuda_valve_pressure = 0;
  384. int baricuda_e_to_p_pressure = 0;
  385. #endif
  386. #if ENABLED(FWRETRACT)
  387. bool autoretract_enabled = false;
  388. bool retracted[EXTRUDERS] = { false };
  389. bool retracted_swap[EXTRUDERS] = { false };
  390. float retract_length = RETRACT_LENGTH;
  391. float retract_length_swap = RETRACT_LENGTH_SWAP;
  392. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  393. float retract_zlift = RETRACT_ZLIFT;
  394. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  395. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  396. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  397. #endif // FWRETRACT
  398. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  399. bool powersupply =
  400. #if ENABLED(PS_DEFAULT_OFF)
  401. false
  402. #else
  403. true
  404. #endif
  405. ;
  406. #endif
  407. #if ENABLED(DELTA)
  408. #define SIN_60 0.8660254037844386
  409. #define COS_60 0.5
  410. float delta[ABC],
  411. endstop_adj[ABC] = { 0 };
  412. // these are the default values, can be overriden with M665
  413. float delta_radius = DELTA_RADIUS,
  414. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  415. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  416. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  417. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  418. delta_tower3_x = 0, // back middle tower
  419. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  420. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  421. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  422. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  423. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  424. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  425. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  426. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  427. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  428. delta_clip_start_height = Z_MAX_POS;
  429. float delta_safe_distance_from_top();
  430. #else
  431. static bool home_all_axis = true;
  432. #endif
  433. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  434. int nonlinear_grid_spacing[2] = { 0 };
  435. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  436. #endif
  437. #if IS_SCARA
  438. // Float constants for SCARA calculations
  439. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  440. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  441. L2_2 = sq(float(L2));
  442. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  443. delta[ABC];
  444. #endif
  445. float cartes[XYZ] = { 0 };
  446. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  447. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  448. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  449. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  450. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  451. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  452. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  453. #endif
  454. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  455. static bool filament_ran_out = false;
  456. #endif
  457. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  458. FilamentChangeMenuResponse filament_change_menu_response;
  459. #endif
  460. #if ENABLED(MIXING_EXTRUDER)
  461. float mixing_factor[MIXING_STEPPERS];
  462. #if MIXING_VIRTUAL_TOOLS > 1
  463. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  464. #endif
  465. #endif
  466. static bool send_ok[BUFSIZE];
  467. #if HAS_SERVOS
  468. Servo servo[NUM_SERVOS];
  469. #define MOVE_SERVO(I, P) servo[I].move(P)
  470. #if HAS_Z_SERVO_ENDSTOP
  471. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  472. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  473. #endif
  474. #endif
  475. #ifdef CHDK
  476. millis_t chdkHigh = 0;
  477. boolean chdkActive = false;
  478. #endif
  479. #if ENABLED(PID_EXTRUSION_SCALING)
  480. int lpq_len = 20;
  481. #endif
  482. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  483. static MarlinBusyState busy_state = NOT_BUSY;
  484. static millis_t next_busy_signal_ms = 0;
  485. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  486. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  487. #else
  488. #define host_keepalive() ;
  489. #define KEEPALIVE_STATE(n) ;
  490. #endif // HOST_KEEPALIVE_FEATURE
  491. #define DEFINE_PGM_READ_ANY(type, reader) \
  492. static inline type pgm_read_any(const type *p) \
  493. { return pgm_read_##reader##_near(p); }
  494. DEFINE_PGM_READ_ANY(float, float);
  495. DEFINE_PGM_READ_ANY(signed char, byte);
  496. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  497. static const PROGMEM type array##_P[XYZ] = \
  498. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  499. static inline type array(int axis) \
  500. { return pgm_read_any(&array##_P[axis]); }
  501. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  504. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  505. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  506. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  507. /**
  508. * ***************************************************************************
  509. * ******************************** FUNCTIONS ********************************
  510. * ***************************************************************************
  511. */
  512. void stop();
  513. void get_available_commands();
  514. void process_next_command();
  515. void prepare_move_to_destination();
  516. void get_cartesian_from_steppers();
  517. void set_current_from_steppers_for_axis(const AxisEnum axis);
  518. #if ENABLED(ARC_SUPPORT)
  519. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  520. #endif
  521. #if ENABLED(BEZIER_CURVE_SUPPORT)
  522. void plan_cubic_move(const float offset[4]);
  523. #endif
  524. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  526. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  531. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  532. static void report_current_position();
  533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  534. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  535. serialprintPGM(prefix);
  536. SERIAL_ECHOPAIR("(", x);
  537. SERIAL_ECHOPAIR(", ", y);
  538. SERIAL_ECHOPAIR(", ", z);
  539. SERIAL_ECHOPGM(")");
  540. if (suffix) serialprintPGM(suffix);
  541. else SERIAL_EOL;
  542. }
  543. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  544. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  545. }
  546. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  547. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  548. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  549. }
  550. #endif
  551. #define DEBUG_POS(SUFFIX,VAR) do { \
  552. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  553. #endif
  554. /**
  555. * sync_plan_position
  556. *
  557. * Set the planner/stepper positions directly from current_position with
  558. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  559. */
  560. inline void sync_plan_position() {
  561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  562. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  563. #endif
  564. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  565. }
  566. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  567. #if IS_KINEMATIC
  568. inline void sync_plan_position_kinematic() {
  569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  570. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  571. #endif
  572. inverse_kinematics(current_position);
  573. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  574. }
  575. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  576. #else
  577. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  578. #endif
  579. #if ENABLED(SDSUPPORT)
  580. #include "SdFatUtil.h"
  581. int freeMemory() { return SdFatUtil::FreeRam(); }
  582. #else
  583. extern "C" {
  584. extern unsigned int __bss_end;
  585. extern unsigned int __heap_start;
  586. extern void* __brkval;
  587. int freeMemory() {
  588. int free_memory;
  589. if ((int)__brkval == 0)
  590. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  591. else
  592. free_memory = ((int)&free_memory) - ((int)__brkval);
  593. return free_memory;
  594. }
  595. }
  596. #endif //!SDSUPPORT
  597. #if ENABLED(DIGIPOT_I2C)
  598. extern void digipot_i2c_set_current(int channel, float current);
  599. extern void digipot_i2c_init();
  600. #endif
  601. /**
  602. * Inject the next "immediate" command, when possible.
  603. * Return true if any immediate commands remain to inject.
  604. */
  605. static bool drain_queued_commands_P() {
  606. if (queued_commands_P != NULL) {
  607. size_t i = 0;
  608. char c, cmd[30];
  609. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  610. cmd[sizeof(cmd) - 1] = '\0';
  611. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  612. cmd[i] = '\0';
  613. if (enqueue_and_echo_command(cmd)) { // success?
  614. if (c) // newline char?
  615. queued_commands_P += i + 1; // advance to the next command
  616. else
  617. queued_commands_P = NULL; // nul char? no more commands
  618. }
  619. }
  620. return (queued_commands_P != NULL); // return whether any more remain
  621. }
  622. /**
  623. * Record one or many commands to run from program memory.
  624. * Aborts the current queue, if any.
  625. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  626. */
  627. void enqueue_and_echo_commands_P(const char* pgcode) {
  628. queued_commands_P = pgcode;
  629. drain_queued_commands_P(); // first command executed asap (when possible)
  630. }
  631. void clear_command_queue() {
  632. cmd_queue_index_r = cmd_queue_index_w;
  633. commands_in_queue = 0;
  634. }
  635. /**
  636. * Once a new command is in the ring buffer, call this to commit it
  637. */
  638. inline void _commit_command(bool say_ok) {
  639. send_ok[cmd_queue_index_w] = say_ok;
  640. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  641. commands_in_queue++;
  642. }
  643. /**
  644. * Copy a command directly into the main command buffer, from RAM.
  645. * Returns true if successfully adds the command
  646. */
  647. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  648. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  649. strcpy(command_queue[cmd_queue_index_w], cmd);
  650. _commit_command(say_ok);
  651. return true;
  652. }
  653. void enqueue_and_echo_command_now(const char* cmd) {
  654. while (!enqueue_and_echo_command(cmd)) idle();
  655. }
  656. /**
  657. * Enqueue with Serial Echo
  658. */
  659. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  660. if (_enqueuecommand(cmd, say_ok)) {
  661. SERIAL_ECHO_START;
  662. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  663. SERIAL_ECHOLNPGM("\"");
  664. return true;
  665. }
  666. return false;
  667. }
  668. void setup_killpin() {
  669. #if HAS_KILL
  670. SET_INPUT(KILL_PIN);
  671. WRITE(KILL_PIN, HIGH);
  672. #endif
  673. }
  674. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  675. void setup_filrunoutpin() {
  676. pinMode(FIL_RUNOUT_PIN, INPUT);
  677. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  678. WRITE(FIL_RUNOUT_PIN, HIGH);
  679. #endif
  680. }
  681. #endif
  682. // Set home pin
  683. void setup_homepin(void) {
  684. #if HAS_HOME
  685. SET_INPUT(HOME_PIN);
  686. WRITE(HOME_PIN, HIGH);
  687. #endif
  688. }
  689. void setup_photpin() {
  690. #if HAS_PHOTOGRAPH
  691. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  692. #endif
  693. }
  694. void setup_powerhold() {
  695. #if HAS_SUICIDE
  696. OUT_WRITE(SUICIDE_PIN, HIGH);
  697. #endif
  698. #if HAS_POWER_SWITCH
  699. #if ENABLED(PS_DEFAULT_OFF)
  700. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  701. #else
  702. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  703. #endif
  704. #endif
  705. }
  706. void suicide() {
  707. #if HAS_SUICIDE
  708. OUT_WRITE(SUICIDE_PIN, LOW);
  709. #endif
  710. }
  711. void servo_init() {
  712. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  713. servo[0].attach(SERVO0_PIN);
  714. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  715. #endif
  716. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  717. servo[1].attach(SERVO1_PIN);
  718. servo[1].detach();
  719. #endif
  720. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  721. servo[2].attach(SERVO2_PIN);
  722. servo[2].detach();
  723. #endif
  724. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  725. servo[3].attach(SERVO3_PIN);
  726. servo[3].detach();
  727. #endif
  728. #if HAS_Z_SERVO_ENDSTOP
  729. /**
  730. * Set position of Z Servo Endstop
  731. *
  732. * The servo might be deployed and positioned too low to stow
  733. * when starting up the machine or rebooting the board.
  734. * There's no way to know where the nozzle is positioned until
  735. * homing has been done - no homing with z-probe without init!
  736. *
  737. */
  738. STOW_Z_SERVO();
  739. #endif
  740. }
  741. /**
  742. * Stepper Reset (RigidBoard, et.al.)
  743. */
  744. #if HAS_STEPPER_RESET
  745. void disableStepperDrivers() {
  746. pinMode(STEPPER_RESET_PIN, OUTPUT);
  747. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  748. }
  749. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  750. #endif
  751. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  752. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  753. i2c.receive(bytes);
  754. }
  755. void i2c_on_request() { // just send dummy data for now
  756. i2c.reply("Hello World!\n");
  757. }
  758. #endif
  759. void gcode_line_error(const char* err, bool doFlush = true) {
  760. SERIAL_ERROR_START;
  761. serialprintPGM(err);
  762. SERIAL_ERRORLN(gcode_LastN);
  763. //Serial.println(gcode_N);
  764. if (doFlush) FlushSerialRequestResend();
  765. serial_count = 0;
  766. }
  767. inline void get_serial_commands() {
  768. static char serial_line_buffer[MAX_CMD_SIZE];
  769. static boolean serial_comment_mode = false;
  770. // If the command buffer is empty for too long,
  771. // send "wait" to indicate Marlin is still waiting.
  772. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  773. static millis_t last_command_time = 0;
  774. millis_t ms = millis();
  775. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  776. SERIAL_ECHOLNPGM(MSG_WAIT);
  777. last_command_time = ms;
  778. }
  779. #endif
  780. /**
  781. * Loop while serial characters are incoming and the queue is not full
  782. */
  783. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  784. char serial_char = MYSERIAL.read();
  785. /**
  786. * If the character ends the line
  787. */
  788. if (serial_char == '\n' || serial_char == '\r') {
  789. serial_comment_mode = false; // end of line == end of comment
  790. if (!serial_count) continue; // skip empty lines
  791. serial_line_buffer[serial_count] = 0; // terminate string
  792. serial_count = 0; //reset buffer
  793. char* command = serial_line_buffer;
  794. while (*command == ' ') command++; // skip any leading spaces
  795. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  796. char* apos = strchr(command, '*');
  797. if (npos) {
  798. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  799. if (M110) {
  800. char* n2pos = strchr(command + 4, 'N');
  801. if (n2pos) npos = n2pos;
  802. }
  803. gcode_N = strtol(npos + 1, NULL, 10);
  804. if (gcode_N != gcode_LastN + 1 && !M110) {
  805. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  806. return;
  807. }
  808. if (apos) {
  809. byte checksum = 0, count = 0;
  810. while (command[count] != '*') checksum ^= command[count++];
  811. if (strtol(apos + 1, NULL, 10) != checksum) {
  812. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  813. return;
  814. }
  815. // if no errors, continue parsing
  816. }
  817. else {
  818. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  819. return;
  820. }
  821. gcode_LastN = gcode_N;
  822. // if no errors, continue parsing
  823. }
  824. else if (apos) { // No '*' without 'N'
  825. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  826. return;
  827. }
  828. // Movement commands alert when stopped
  829. if (IsStopped()) {
  830. char* gpos = strchr(command, 'G');
  831. if (gpos) {
  832. int codenum = strtol(gpos + 1, NULL, 10);
  833. switch (codenum) {
  834. case 0:
  835. case 1:
  836. case 2:
  837. case 3:
  838. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  839. LCD_MESSAGEPGM(MSG_STOPPED);
  840. break;
  841. }
  842. }
  843. }
  844. #if DISABLED(EMERGENCY_PARSER)
  845. // If command was e-stop process now
  846. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  847. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  848. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  849. #endif
  850. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  851. last_command_time = ms;
  852. #endif
  853. // Add the command to the queue
  854. _enqueuecommand(serial_line_buffer, true);
  855. }
  856. else if (serial_count >= MAX_CMD_SIZE - 1) {
  857. // Keep fetching, but ignore normal characters beyond the max length
  858. // The command will be injected when EOL is reached
  859. }
  860. else if (serial_char == '\\') { // Handle escapes
  861. if (MYSERIAL.available() > 0) {
  862. // if we have one more character, copy it over
  863. serial_char = MYSERIAL.read();
  864. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  865. }
  866. // otherwise do nothing
  867. }
  868. else { // it's not a newline, carriage return or escape char
  869. if (serial_char == ';') serial_comment_mode = true;
  870. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  871. }
  872. } // queue has space, serial has data
  873. }
  874. #if ENABLED(SDSUPPORT)
  875. inline void get_sdcard_commands() {
  876. static bool stop_buffering = false,
  877. sd_comment_mode = false;
  878. if (!card.sdprinting) return;
  879. /**
  880. * '#' stops reading from SD to the buffer prematurely, so procedural
  881. * macro calls are possible. If it occurs, stop_buffering is triggered
  882. * and the buffer is run dry; this character _can_ occur in serial com
  883. * due to checksums, however, no checksums are used in SD printing.
  884. */
  885. if (commands_in_queue == 0) stop_buffering = false;
  886. uint16_t sd_count = 0;
  887. bool card_eof = card.eof();
  888. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  889. int16_t n = card.get();
  890. char sd_char = (char)n;
  891. card_eof = card.eof();
  892. if (card_eof || n == -1
  893. || sd_char == '\n' || sd_char == '\r'
  894. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  895. ) {
  896. if (card_eof) {
  897. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  898. card.printingHasFinished();
  899. card.checkautostart(true);
  900. }
  901. else if (n == -1) {
  902. SERIAL_ERROR_START;
  903. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  904. }
  905. if (sd_char == '#') stop_buffering = true;
  906. sd_comment_mode = false; //for new command
  907. if (!sd_count) continue; //skip empty lines
  908. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  909. sd_count = 0; //clear buffer
  910. _commit_command(false);
  911. }
  912. else if (sd_count >= MAX_CMD_SIZE - 1) {
  913. /**
  914. * Keep fetching, but ignore normal characters beyond the max length
  915. * The command will be injected when EOL is reached
  916. */
  917. }
  918. else {
  919. if (sd_char == ';') sd_comment_mode = true;
  920. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  921. }
  922. }
  923. }
  924. #endif // SDSUPPORT
  925. /**
  926. * Add to the circular command queue the next command from:
  927. * - The command-injection queue (queued_commands_P)
  928. * - The active serial input (usually USB)
  929. * - The SD card file being actively printed
  930. */
  931. void get_available_commands() {
  932. // if any immediate commands remain, don't get other commands yet
  933. if (drain_queued_commands_P()) return;
  934. get_serial_commands();
  935. #if ENABLED(SDSUPPORT)
  936. get_sdcard_commands();
  937. #endif
  938. }
  939. inline bool code_has_value() {
  940. int i = 1;
  941. char c = seen_pointer[i];
  942. while (c == ' ') c = seen_pointer[++i];
  943. if (c == '-' || c == '+') c = seen_pointer[++i];
  944. if (c == '.') c = seen_pointer[++i];
  945. return NUMERIC(c);
  946. }
  947. inline float code_value_float() {
  948. float ret;
  949. char* e = strchr(seen_pointer, 'E');
  950. if (e) {
  951. *e = 0;
  952. ret = strtod(seen_pointer + 1, NULL);
  953. *e = 'E';
  954. }
  955. else
  956. ret = strtod(seen_pointer + 1, NULL);
  957. return ret;
  958. }
  959. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  960. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  961. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  962. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  963. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  964. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  965. #if ENABLED(INCH_MODE_SUPPORT)
  966. inline void set_input_linear_units(LinearUnit units) {
  967. switch (units) {
  968. case LINEARUNIT_INCH:
  969. linear_unit_factor = 25.4;
  970. break;
  971. case LINEARUNIT_MM:
  972. default:
  973. linear_unit_factor = 1.0;
  974. break;
  975. }
  976. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  977. }
  978. inline float axis_unit_factor(int axis) {
  979. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  980. }
  981. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  982. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  983. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  984. #else
  985. inline float code_value_linear_units() { return code_value_float(); }
  986. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  987. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  988. #endif
  989. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  990. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  991. float code_value_temp_abs() {
  992. switch (input_temp_units) {
  993. case TEMPUNIT_C:
  994. return code_value_float();
  995. case TEMPUNIT_F:
  996. return (code_value_float() - 32) * 0.5555555556;
  997. case TEMPUNIT_K:
  998. return code_value_float() - 272.15;
  999. default:
  1000. return code_value_float();
  1001. }
  1002. }
  1003. float code_value_temp_diff() {
  1004. switch (input_temp_units) {
  1005. case TEMPUNIT_C:
  1006. case TEMPUNIT_K:
  1007. return code_value_float();
  1008. case TEMPUNIT_F:
  1009. return code_value_float() * 0.5555555556;
  1010. default:
  1011. return code_value_float();
  1012. }
  1013. }
  1014. #else
  1015. float code_value_temp_abs() { return code_value_float(); }
  1016. float code_value_temp_diff() { return code_value_float(); }
  1017. #endif
  1018. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1019. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1020. bool code_seen(char code) {
  1021. seen_pointer = strchr(current_command_args, code);
  1022. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1023. }
  1024. /**
  1025. * Set target_extruder from the T parameter or the active_extruder
  1026. *
  1027. * Returns TRUE if the target is invalid
  1028. */
  1029. bool get_target_extruder_from_command(int code) {
  1030. if (code_seen('T')) {
  1031. if (code_value_byte() >= EXTRUDERS) {
  1032. SERIAL_ECHO_START;
  1033. SERIAL_CHAR('M');
  1034. SERIAL_ECHO(code);
  1035. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1036. return true;
  1037. }
  1038. target_extruder = code_value_byte();
  1039. }
  1040. else
  1041. target_extruder = active_extruder;
  1042. return false;
  1043. }
  1044. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1045. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1046. #endif
  1047. #if ENABLED(DUAL_X_CARRIAGE)
  1048. #define DXC_FULL_CONTROL_MODE 0
  1049. #define DXC_AUTO_PARK_MODE 1
  1050. #define DXC_DUPLICATION_MODE 2
  1051. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1052. static float x_home_pos(int extruder) {
  1053. if (extruder == 0)
  1054. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1055. else
  1056. /**
  1057. * In dual carriage mode the extruder offset provides an override of the
  1058. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1059. * This allow soft recalibration of the second extruder offset position
  1060. * without firmware reflash (through the M218 command).
  1061. */
  1062. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1063. }
  1064. static int x_home_dir(int extruder) {
  1065. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1066. }
  1067. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1068. static bool active_extruder_parked = false; // used in mode 1 & 2
  1069. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1070. static millis_t delayed_move_time = 0; // used in mode 1
  1071. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1072. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1073. #endif //DUAL_X_CARRIAGE
  1074. /**
  1075. * Software endstops can be used to monitor the open end of
  1076. * an axis that has a hardware endstop on the other end. Or
  1077. * they can prevent axes from moving past endstops and grinding.
  1078. *
  1079. * To keep doing their job as the coordinate system changes,
  1080. * the software endstop positions must be refreshed to remain
  1081. * at the same positions relative to the machine.
  1082. */
  1083. void update_software_endstops(AxisEnum axis) {
  1084. float offs = LOGICAL_POSITION(0, axis);
  1085. #if ENABLED(DUAL_X_CARRIAGE)
  1086. if (axis == X_AXIS) {
  1087. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1088. if (active_extruder != 0) {
  1089. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1090. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1091. return;
  1092. }
  1093. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1094. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1095. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1096. return;
  1097. }
  1098. }
  1099. else
  1100. #endif
  1101. {
  1102. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1103. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1104. }
  1105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1106. if (DEBUGGING(LEVELING)) {
  1107. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1108. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1109. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1110. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1111. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1112. }
  1113. #endif
  1114. #if ENABLED(DELTA)
  1115. if (axis == Z_AXIS)
  1116. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1117. #endif
  1118. }
  1119. /**
  1120. * Change the home offset for an axis, update the current
  1121. * position and the software endstops to retain the same
  1122. * relative distance to the new home.
  1123. *
  1124. * Since this changes the current_position, code should
  1125. * call sync_plan_position soon after this.
  1126. */
  1127. static void set_home_offset(AxisEnum axis, float v) {
  1128. current_position[axis] += v - home_offset[axis];
  1129. home_offset[axis] = v;
  1130. update_software_endstops(axis);
  1131. }
  1132. /**
  1133. * Set an axis' current position to its home position (after homing).
  1134. *
  1135. * For Core and Cartesian robots this applies one-to-one when an
  1136. * individual axis has been homed.
  1137. *
  1138. * DELTA should wait until all homing is done before setting the XYZ
  1139. * current_position to home, because homing is a single operation.
  1140. * In the case where the axis positions are already known and previously
  1141. * homed, DELTA could home to X or Y individually by moving either one
  1142. * to the center. However, homing Z always homes XY and Z.
  1143. *
  1144. * SCARA should wait until all XY homing is done before setting the XY
  1145. * current_position to home, because neither X nor Y is at home until
  1146. * both are at home. Z can however be homed individually.
  1147. *
  1148. */
  1149. static void set_axis_is_at_home(AxisEnum axis) {
  1150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1151. if (DEBUGGING(LEVELING)) {
  1152. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1153. SERIAL_ECHOLNPGM(")");
  1154. }
  1155. #endif
  1156. position_shift[axis] = 0;
  1157. #if ENABLED(DUAL_X_CARRIAGE)
  1158. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1159. if (active_extruder != 0)
  1160. current_position[X_AXIS] = x_home_pos(active_extruder);
  1161. else
  1162. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1163. update_software_endstops(X_AXIS);
  1164. return;
  1165. }
  1166. #endif
  1167. #if ENABLED(MORGAN_SCARA)
  1168. if (axis == X_AXIS || axis == Y_AXIS) {
  1169. float homeposition[XYZ];
  1170. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1171. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1172. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1173. /**
  1174. * Get Home position SCARA arm angles using inverse kinematics,
  1175. * and calculate homing offset using forward kinematics
  1176. */
  1177. inverse_kinematics(homeposition);
  1178. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1179. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1180. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1181. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1182. /**
  1183. * SCARA home positions are based on configuration since the actual
  1184. * limits are determined by the inverse kinematic transform.
  1185. */
  1186. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1187. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. }
  1189. else
  1190. #endif
  1191. {
  1192. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1193. update_software_endstops(axis);
  1194. if (axis == Z_AXIS) {
  1195. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1196. #if HOMING_Z_WITH_PROBE
  1197. current_position[Z_AXIS] -= zprobe_zoffset;
  1198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1199. if (DEBUGGING(LEVELING)) {
  1200. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1201. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1202. }
  1203. #endif
  1204. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1205. if (DEBUGGING(LEVELING))
  1206. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1207. #endif
  1208. #endif
  1209. }
  1210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1211. if (DEBUGGING(LEVELING)) {
  1212. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1213. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1214. DEBUG_POS("", current_position);
  1215. }
  1216. #endif
  1217. }
  1218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1219. if (DEBUGGING(LEVELING)) {
  1220. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1221. SERIAL_ECHOLNPGM(")");
  1222. }
  1223. #endif
  1224. axis_known_position[axis] = axis_homed[axis] = true;
  1225. }
  1226. /**
  1227. * Some planner shorthand inline functions
  1228. */
  1229. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1230. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1231. int hbd = homing_bump_divisor[axis];
  1232. if (hbd < 1) {
  1233. hbd = 10;
  1234. SERIAL_ECHO_START;
  1235. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1236. }
  1237. return homing_feedrate_mm_s[axis] / hbd;
  1238. }
  1239. //
  1240. // line_to_current_position
  1241. // Move the planner to the current position from wherever it last moved
  1242. // (or from wherever it has been told it is located).
  1243. //
  1244. inline void line_to_current_position() {
  1245. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1246. }
  1247. inline void line_to_z(float zPosition) {
  1248. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1249. }
  1250. //
  1251. // line_to_destination
  1252. // Move the planner, not necessarily synced with current_position
  1253. //
  1254. inline void line_to_destination(float fr_mm_s) {
  1255. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1256. }
  1257. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1258. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1259. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1260. #if ENABLED(DELTA)
  1261. /**
  1262. * Calculate delta, start a line, and set current_position to destination
  1263. */
  1264. void prepare_move_to_destination_raw() {
  1265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1266. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1267. #endif
  1268. refresh_cmd_timeout();
  1269. inverse_kinematics(destination);
  1270. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1271. set_current_to_destination();
  1272. }
  1273. #endif
  1274. /**
  1275. * Plan a move to (X, Y, Z) and set the current_position
  1276. * The final current_position may not be the one that was requested
  1277. */
  1278. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1279. float old_feedrate_mm_s = feedrate_mm_s;
  1280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1281. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1282. #endif
  1283. #if ENABLED(DELTA)
  1284. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1285. set_destination_to_current(); // sync destination at the start
  1286. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1287. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1288. #endif
  1289. // when in the danger zone
  1290. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1291. if (z > delta_clip_start_height) { // staying in the danger zone
  1292. destination[X_AXIS] = x; // move directly (uninterpolated)
  1293. destination[Y_AXIS] = y;
  1294. destination[Z_AXIS] = z;
  1295. prepare_move_to_destination_raw(); // set_current_to_destination
  1296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1297. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1298. #endif
  1299. return;
  1300. }
  1301. else {
  1302. destination[Z_AXIS] = delta_clip_start_height;
  1303. prepare_move_to_destination_raw(); // set_current_to_destination
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1306. #endif
  1307. }
  1308. }
  1309. if (z > current_position[Z_AXIS]) { // raising?
  1310. destination[Z_AXIS] = z;
  1311. prepare_move_to_destination_raw(); // set_current_to_destination
  1312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1313. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1314. #endif
  1315. }
  1316. destination[X_AXIS] = x;
  1317. destination[Y_AXIS] = y;
  1318. prepare_move_to_destination(); // set_current_to_destination
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1321. #endif
  1322. if (z < current_position[Z_AXIS]) { // lowering?
  1323. destination[Z_AXIS] = z;
  1324. prepare_move_to_destination_raw(); // set_current_to_destination
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1327. #endif
  1328. }
  1329. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1330. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1331. #endif
  1332. #else
  1333. // If Z needs to raise, do it before moving XY
  1334. if (current_position[Z_AXIS] < z) {
  1335. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1336. current_position[Z_AXIS] = z;
  1337. line_to_current_position();
  1338. }
  1339. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1340. current_position[X_AXIS] = x;
  1341. current_position[Y_AXIS] = y;
  1342. line_to_current_position();
  1343. // If Z needs to lower, do it after moving XY
  1344. if (current_position[Z_AXIS] > z) {
  1345. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1346. current_position[Z_AXIS] = z;
  1347. line_to_current_position();
  1348. }
  1349. #endif
  1350. stepper.synchronize();
  1351. feedrate_mm_s = old_feedrate_mm_s;
  1352. }
  1353. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1354. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1355. }
  1356. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1357. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1358. }
  1359. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1360. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1361. }
  1362. //
  1363. // Prepare to do endstop or probe moves
  1364. // with custom feedrates.
  1365. //
  1366. // - Save current feedrates
  1367. // - Reset the rate multiplier
  1368. // - Reset the command timeout
  1369. // - Enable the endstops (for endstop moves)
  1370. //
  1371. static void setup_for_endstop_or_probe_move() {
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1374. #endif
  1375. saved_feedrate_mm_s = feedrate_mm_s;
  1376. saved_feedrate_percentage = feedrate_percentage;
  1377. feedrate_percentage = 100;
  1378. refresh_cmd_timeout();
  1379. }
  1380. static void clean_up_after_endstop_or_probe_move() {
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1383. #endif
  1384. feedrate_mm_s = saved_feedrate_mm_s;
  1385. feedrate_percentage = saved_feedrate_percentage;
  1386. refresh_cmd_timeout();
  1387. }
  1388. #if HAS_BED_PROBE
  1389. /**
  1390. * Raise Z to a minimum height to make room for a probe to move
  1391. */
  1392. inline void do_probe_raise(float z_raise) {
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) {
  1395. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1396. SERIAL_ECHOLNPGM(")");
  1397. }
  1398. #endif
  1399. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1400. if (z_dest > current_position[Z_AXIS])
  1401. do_blocking_move_to_z(z_dest);
  1402. }
  1403. #endif //HAS_BED_PROBE
  1404. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1405. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1406. const bool xx = x && !axis_homed[X_AXIS],
  1407. yy = y && !axis_homed[Y_AXIS],
  1408. zz = z && !axis_homed[Z_AXIS];
  1409. if (xx || yy || zz) {
  1410. SERIAL_ECHO_START;
  1411. SERIAL_ECHOPGM(MSG_HOME " ");
  1412. if (xx) SERIAL_ECHOPGM(MSG_X);
  1413. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1414. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1415. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1416. #if ENABLED(ULTRA_LCD)
  1417. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1418. strcat_P(message, PSTR(MSG_HOME " "));
  1419. if (xx) strcat_P(message, PSTR(MSG_X));
  1420. if (yy) strcat_P(message, PSTR(MSG_Y));
  1421. if (zz) strcat_P(message, PSTR(MSG_Z));
  1422. strcat_P(message, PSTR(" " MSG_FIRST));
  1423. lcd_setstatus(message);
  1424. #endif
  1425. return true;
  1426. }
  1427. return false;
  1428. }
  1429. #endif
  1430. #if ENABLED(Z_PROBE_SLED)
  1431. #ifndef SLED_DOCKING_OFFSET
  1432. #define SLED_DOCKING_OFFSET 0
  1433. #endif
  1434. /**
  1435. * Method to dock/undock a sled designed by Charles Bell.
  1436. *
  1437. * stow[in] If false, move to MAX_X and engage the solenoid
  1438. * If true, move to MAX_X and release the solenoid
  1439. */
  1440. static void dock_sled(bool stow) {
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) {
  1443. SERIAL_ECHOPAIR("dock_sled(", stow);
  1444. SERIAL_ECHOLNPGM(")");
  1445. }
  1446. #endif
  1447. // Dock sled a bit closer to ensure proper capturing
  1448. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1449. #if PIN_EXISTS(SLED)
  1450. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1451. #endif
  1452. }
  1453. #endif // Z_PROBE_SLED
  1454. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1455. void run_deploy_moves_script() {
  1456. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1457. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1458. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1459. #endif
  1460. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1461. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1462. #endif
  1463. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1464. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1465. #endif
  1466. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1467. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1468. #endif
  1469. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1470. #endif
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1530. #endif
  1531. }
  1532. void run_stow_moves_script() {
  1533. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1534. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1535. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1538. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1541. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1544. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1545. #endif
  1546. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1547. #endif
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1607. #endif
  1608. }
  1609. #endif
  1610. #if HAS_BED_PROBE
  1611. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1612. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1613. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1614. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1615. #else
  1616. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1617. #endif
  1618. #endif
  1619. #define DEPLOY_PROBE() set_probe_deployed(true)
  1620. #define STOW_PROBE() set_probe_deployed(false)
  1621. // returns false for ok and true for failure
  1622. static bool set_probe_deployed(bool deploy) {
  1623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1624. if (DEBUGGING(LEVELING)) {
  1625. DEBUG_POS("set_probe_deployed", current_position);
  1626. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1627. }
  1628. #endif
  1629. if (endstops.z_probe_enabled == deploy) return false;
  1630. // Make room for probe
  1631. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1632. #if ENABLED(Z_PROBE_SLED)
  1633. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1634. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1635. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1636. #endif
  1637. float oldXpos = current_position[X_AXIS],
  1638. oldYpos = current_position[Y_AXIS];
  1639. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1640. // If endstop is already false, the Z probe is deployed
  1641. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1642. // Would a goto be less ugly?
  1643. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1644. // for a triggered when stowed manual probe.
  1645. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1646. // otherwise an Allen-Key probe can't be stowed.
  1647. #endif
  1648. #if ENABLED(Z_PROBE_SLED)
  1649. dock_sled(!deploy);
  1650. #elif HAS_Z_SERVO_ENDSTOP
  1651. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1652. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1653. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1654. #endif
  1655. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1656. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1657. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1658. if (IsRunning()) {
  1659. SERIAL_ERROR_START;
  1660. SERIAL_ERRORLNPGM("Z-Probe failed");
  1661. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1662. }
  1663. stop();
  1664. return true;
  1665. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1666. #endif
  1667. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1668. endstops.enable_z_probe(deploy);
  1669. return false;
  1670. }
  1671. static void do_probe_move(float z, float fr_mm_m) {
  1672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1673. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1674. #endif
  1675. // Move down until probe triggered
  1676. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1677. // Clear endstop flags
  1678. endstops.hit_on_purpose();
  1679. // Get Z where the steppers were interrupted
  1680. set_current_from_steppers_for_axis(Z_AXIS);
  1681. // Tell the planner where we actually are
  1682. SYNC_PLAN_POSITION_KINEMATIC();
  1683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1684. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1685. #endif
  1686. }
  1687. // Do a single Z probe and return with current_position[Z_AXIS]
  1688. // at the height where the probe triggered.
  1689. static float run_z_probe() {
  1690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1691. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1692. #endif
  1693. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1694. refresh_cmd_timeout();
  1695. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1696. // Do a first probe at the fast speed
  1697. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1698. // move up by the bump distance
  1699. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1700. #else
  1701. // If the nozzle is above the travel height then
  1702. // move down quickly before doing the slow probe
  1703. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1704. if (z < current_position[Z_AXIS])
  1705. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1706. #endif
  1707. // move down slowly to find bed
  1708. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1710. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1711. #endif
  1712. return current_position[Z_AXIS];
  1713. }
  1714. //
  1715. // - Move to the given XY
  1716. // - Deploy the probe, if not already deployed
  1717. // - Probe the bed, get the Z position
  1718. // - Depending on the 'stow' flag
  1719. // - Stow the probe, or
  1720. // - Raise to the BETWEEN height
  1721. // - Return the probed Z position
  1722. //
  1723. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1725. if (DEBUGGING(LEVELING)) {
  1726. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1727. SERIAL_ECHOPAIR(", ", y);
  1728. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1729. SERIAL_ECHOLNPGM(")");
  1730. DEBUG_POS("", current_position);
  1731. }
  1732. #endif
  1733. float old_feedrate_mm_s = feedrate_mm_s;
  1734. // Ensure a minimum height before moving the probe
  1735. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1736. // Move to the XY where we shall probe
  1737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1738. if (DEBUGGING(LEVELING)) {
  1739. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1740. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1741. SERIAL_ECHOLNPGM(")");
  1742. }
  1743. #endif
  1744. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1745. // Move the probe to the given XY
  1746. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1747. if (DEPLOY_PROBE()) return NAN;
  1748. float measured_z = run_z_probe();
  1749. if (stow) {
  1750. if (STOW_PROBE()) return NAN;
  1751. }
  1752. else {
  1753. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1754. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1755. #endif
  1756. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1757. }
  1758. if (verbose_level > 2) {
  1759. SERIAL_PROTOCOLPGM("Bed X: ");
  1760. SERIAL_PROTOCOL_F(x, 3);
  1761. SERIAL_PROTOCOLPGM(" Y: ");
  1762. SERIAL_PROTOCOL_F(y, 3);
  1763. SERIAL_PROTOCOLPGM(" Z: ");
  1764. SERIAL_PROTOCOL_F(measured_z, 3);
  1765. SERIAL_EOL;
  1766. }
  1767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1768. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1769. #endif
  1770. feedrate_mm_s = old_feedrate_mm_s;
  1771. return measured_z;
  1772. }
  1773. #endif // HAS_BED_PROBE
  1774. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1775. /**
  1776. * Reset calibration results to zero.
  1777. */
  1778. void reset_bed_level() {
  1779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1780. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1781. #endif
  1782. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1783. planner.bed_level_matrix.set_to_identity();
  1784. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1785. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1786. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1787. #endif
  1788. }
  1789. #endif // AUTO_BED_LEVELING_FEATURE
  1790. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1791. /**
  1792. * Get the stepper positions, apply the rotation matrix
  1793. * using the home XY and Z0 position as the fulcrum.
  1794. */
  1795. vector_3 untilted_stepper_position() {
  1796. get_cartesian_from_steppers();
  1797. vector_3 pos = vector_3(
  1798. cartes[X_AXIS] - X_TILT_FULCRUM,
  1799. cartes[Y_AXIS] - Y_TILT_FULCRUM,
  1800. cartes[Z_AXIS]
  1801. );
  1802. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1803. //pos.debug("untilted_stepper_position offset");
  1804. //bed_level_matrix.debug("untilted_stepper_position");
  1805. //inverse.debug("in untilted_stepper_position");
  1806. pos.apply_rotation(inverse);
  1807. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1808. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1809. pos.z = LOGICAL_Z_POSITION(pos.z);
  1810. //pos.debug("after rotation and reorientation");
  1811. return pos;
  1812. }
  1813. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1814. /**
  1815. * Extrapolate a single point from its neighbors
  1816. */
  1817. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1818. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1819. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1820. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1821. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1822. // Median is robust (ignores outliers).
  1823. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1824. : ((c < b) ? b : (a < c) ? a : c);
  1825. }
  1826. /**
  1827. * Fill in the unprobed points (corners of circular print surface)
  1828. * using linear extrapolation, away from the center.
  1829. */
  1830. static void extrapolate_unprobed_bed_level() {
  1831. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1832. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1833. for (uint8_t y = 0; y <= half_y; y++) {
  1834. for (uint8_t x = 0; x <= half_x; x++) {
  1835. if (x + y < 3) continue;
  1836. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1837. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1838. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1839. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1840. }
  1841. }
  1842. }
  1843. /**
  1844. * Print calibration results for plotting or manual frame adjustment.
  1845. */
  1846. static void print_bed_level() {
  1847. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1848. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1849. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1850. SERIAL_PROTOCOLCHAR(' ');
  1851. }
  1852. SERIAL_EOL;
  1853. }
  1854. }
  1855. #endif // AUTO_BED_LEVELING_NONLINEAR
  1856. /**
  1857. * Home an individual linear axis
  1858. */
  1859. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1860. current_position[axis] = 0;
  1861. sync_plan_position();
  1862. current_position[axis] = where;
  1863. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1864. stepper.synchronize();
  1865. endstops.hit_on_purpose();
  1866. }
  1867. /**
  1868. * Home an individual "raw axis" to its endstop.
  1869. * This applies to XYZ on Cartesian and Core robots, and
  1870. * to the individual ABC steppers on DELTA and SCARA.
  1871. *
  1872. * At the end of the procedure the axis is marked as
  1873. * homed and the current position of that axis is updated.
  1874. * Kinematic robots should wait till all axes are homed
  1875. * before updating the current position.
  1876. */
  1877. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1878. static void homeaxis(AxisEnum axis) {
  1879. #define CAN_HOME(A) \
  1880. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1881. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) {
  1884. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1885. SERIAL_ECHOLNPGM(")");
  1886. }
  1887. #endif
  1888. int axis_home_dir =
  1889. #if ENABLED(DUAL_X_CARRIAGE)
  1890. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1891. #endif
  1892. home_dir(axis);
  1893. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1894. #if HOMING_Z_WITH_PROBE
  1895. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1896. #endif
  1897. // Set a flag for Z motor locking
  1898. #if ENABLED(Z_DUAL_ENDSTOPS)
  1899. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1900. #endif
  1901. // Move towards the endstop until an endstop is triggered
  1902. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1904. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1905. #endif
  1906. // Move away from the endstop by the axis HOME_BUMP_MM
  1907. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1908. // Move slowly towards the endstop until triggered
  1909. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1911. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1912. #endif
  1913. #if ENABLED(Z_DUAL_ENDSTOPS)
  1914. if (axis == Z_AXIS) {
  1915. float adj = fabs(z_endstop_adj);
  1916. bool lockZ1;
  1917. if (axis_home_dir > 0) {
  1918. adj = -adj;
  1919. lockZ1 = (z_endstop_adj > 0);
  1920. }
  1921. else
  1922. lockZ1 = (z_endstop_adj < 0);
  1923. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1924. // Move to the adjusted endstop height
  1925. do_homing_move(axis, adj);
  1926. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1927. stepper.set_homing_flag(false);
  1928. } // Z_AXIS
  1929. #endif
  1930. // Delta has already moved all three towers up in G28
  1931. // so here it re-homes each tower in turn.
  1932. // Delta homing treats the axes as normal linear axes.
  1933. #if ENABLED(DELTA)
  1934. // retrace by the amount specified in endstop_adj
  1935. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1937. if (DEBUGGING(LEVELING)) {
  1938. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1939. DEBUG_POS("", current_position);
  1940. }
  1941. #endif
  1942. do_homing_move(axis, endstop_adj[axis]);
  1943. }
  1944. #else
  1945. // Set the axis position to its home position (plus home offsets)
  1946. set_axis_is_at_home(axis);
  1947. sync_plan_position();
  1948. destination[axis] = current_position[axis];
  1949. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1950. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1951. #endif
  1952. #endif
  1953. // Put away the Z probe
  1954. #if HOMING_Z_WITH_PROBE
  1955. if (axis == Z_AXIS && STOW_PROBE()) return;
  1956. #endif
  1957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1958. if (DEBUGGING(LEVELING)) {
  1959. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1960. SERIAL_ECHOLNPGM(")");
  1961. }
  1962. #endif
  1963. } // homeaxis()
  1964. #if ENABLED(FWRETRACT)
  1965. void retract(bool retracting, bool swapping = false) {
  1966. if (retracting == retracted[active_extruder]) return;
  1967. float old_feedrate_mm_s = feedrate_mm_s;
  1968. set_destination_to_current();
  1969. if (retracting) {
  1970. feedrate_mm_s = retract_feedrate_mm_s;
  1971. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1972. sync_plan_position_e();
  1973. prepare_move_to_destination();
  1974. if (retract_zlift > 0.01) {
  1975. current_position[Z_AXIS] -= retract_zlift;
  1976. SYNC_PLAN_POSITION_KINEMATIC();
  1977. prepare_move_to_destination();
  1978. }
  1979. }
  1980. else {
  1981. if (retract_zlift > 0.01) {
  1982. current_position[Z_AXIS] += retract_zlift;
  1983. SYNC_PLAN_POSITION_KINEMATIC();
  1984. }
  1985. feedrate_mm_s = retract_recover_feedrate_mm_s;
  1986. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1987. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1988. sync_plan_position_e();
  1989. prepare_move_to_destination();
  1990. }
  1991. feedrate_mm_s = old_feedrate_mm_s;
  1992. retracted[active_extruder] = retracting;
  1993. } // retract()
  1994. #endif // FWRETRACT
  1995. #if ENABLED(MIXING_EXTRUDER)
  1996. void normalize_mix() {
  1997. float mix_total = 0.0;
  1998. for (int i = 0; i < MIXING_STEPPERS; i++) {
  1999. float v = mixing_factor[i];
  2000. if (v < 0) v = mixing_factor[i] = 0;
  2001. mix_total += v;
  2002. }
  2003. // Scale all values if they don't add up to ~1.0
  2004. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2005. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2006. float mix_scale = 1.0 / mix_total;
  2007. for (int i = 0; i < MIXING_STEPPERS; i++)
  2008. mixing_factor[i] *= mix_scale;
  2009. }
  2010. }
  2011. #if ENABLED(DIRECT_MIXING_IN_G1)
  2012. // Get mixing parameters from the GCode
  2013. // Factors that are left out are set to 0
  2014. // The total "must" be 1.0 (but it will be normalized)
  2015. void gcode_get_mix() {
  2016. const char* mixing_codes = "ABCDHI";
  2017. for (int i = 0; i < MIXING_STEPPERS; i++)
  2018. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2019. normalize_mix();
  2020. }
  2021. #endif
  2022. #endif
  2023. /**
  2024. * ***************************************************************************
  2025. * ***************************** G-CODE HANDLING *****************************
  2026. * ***************************************************************************
  2027. */
  2028. /**
  2029. * Set XYZE destination and feedrate from the current GCode command
  2030. *
  2031. * - Set destination from included axis codes
  2032. * - Set to current for missing axis codes
  2033. * - Set the feedrate, if included
  2034. */
  2035. void gcode_get_destination() {
  2036. LOOP_XYZE(i) {
  2037. if (code_seen(axis_codes[i]))
  2038. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2039. else
  2040. destination[i] = current_position[i];
  2041. }
  2042. if (code_seen('F') && code_value_linear_units() > 0.0)
  2043. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2044. #if ENABLED(PRINTCOUNTER)
  2045. if (!DEBUGGING(DRYRUN))
  2046. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2047. #endif
  2048. // Get ABCDHI mixing factors
  2049. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2050. gcode_get_mix();
  2051. #endif
  2052. }
  2053. void unknown_command_error() {
  2054. SERIAL_ECHO_START;
  2055. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2056. SERIAL_ECHOLNPGM("\"");
  2057. }
  2058. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2059. /**
  2060. * Output a "busy" message at regular intervals
  2061. * while the machine is not accepting commands.
  2062. */
  2063. void host_keepalive() {
  2064. millis_t ms = millis();
  2065. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2066. if (PENDING(ms, next_busy_signal_ms)) return;
  2067. switch (busy_state) {
  2068. case IN_HANDLER:
  2069. case IN_PROCESS:
  2070. SERIAL_ECHO_START;
  2071. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2072. break;
  2073. case PAUSED_FOR_USER:
  2074. SERIAL_ECHO_START;
  2075. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2076. break;
  2077. case PAUSED_FOR_INPUT:
  2078. SERIAL_ECHO_START;
  2079. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2080. break;
  2081. default:
  2082. break;
  2083. }
  2084. }
  2085. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2086. }
  2087. #endif //HOST_KEEPALIVE_FEATURE
  2088. bool position_is_reachable(float target[XYZ]) {
  2089. float dx = RAW_X_POSITION(target[X_AXIS]),
  2090. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2091. #if ENABLED(DELTA)
  2092. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2093. #else
  2094. float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2095. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2096. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2097. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2098. #endif
  2099. }
  2100. /**************************************************
  2101. ***************** GCode Handlers *****************
  2102. **************************************************/
  2103. /**
  2104. * G0, G1: Coordinated movement of X Y Z E axes
  2105. */
  2106. inline void gcode_G0_G1() {
  2107. if (IsRunning()) {
  2108. gcode_get_destination(); // For X Y Z E F
  2109. #if ENABLED(FWRETRACT)
  2110. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2111. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2112. // Is this move an attempt to retract or recover?
  2113. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2114. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2115. sync_plan_position_e(); // AND from the planner
  2116. retract(!retracted[active_extruder]);
  2117. return;
  2118. }
  2119. }
  2120. #endif //FWRETRACT
  2121. prepare_move_to_destination();
  2122. }
  2123. }
  2124. /**
  2125. * G2: Clockwise Arc
  2126. * G3: Counterclockwise Arc
  2127. */
  2128. #if ENABLED(ARC_SUPPORT)
  2129. inline void gcode_G2_G3(bool clockwise) {
  2130. if (IsRunning()) {
  2131. #if ENABLED(SF_ARC_FIX)
  2132. bool relative_mode_backup = relative_mode;
  2133. relative_mode = true;
  2134. #endif
  2135. gcode_get_destination();
  2136. #if ENABLED(SF_ARC_FIX)
  2137. relative_mode = relative_mode_backup;
  2138. #endif
  2139. // Center of arc as offset from current_position
  2140. float arc_offset[2] = {
  2141. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2142. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2143. };
  2144. // Send an arc to the planner
  2145. plan_arc(destination, arc_offset, clockwise);
  2146. refresh_cmd_timeout();
  2147. }
  2148. }
  2149. #endif
  2150. /**
  2151. * G4: Dwell S<seconds> or P<milliseconds>
  2152. */
  2153. inline void gcode_G4() {
  2154. millis_t dwell_ms = 0;
  2155. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2156. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2157. stepper.synchronize();
  2158. refresh_cmd_timeout();
  2159. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2160. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2161. while (PENDING(millis(), dwell_ms)) idle();
  2162. }
  2163. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2164. /**
  2165. * Parameters interpreted according to:
  2166. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2167. * However I, J omission is not supported at this point; all
  2168. * parameters can be omitted and default to zero.
  2169. */
  2170. /**
  2171. * G5: Cubic B-spline
  2172. */
  2173. inline void gcode_G5() {
  2174. if (IsRunning()) {
  2175. gcode_get_destination();
  2176. float offset[] = {
  2177. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2178. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2179. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2180. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2181. };
  2182. plan_cubic_move(offset);
  2183. }
  2184. }
  2185. #endif // BEZIER_CURVE_SUPPORT
  2186. #if ENABLED(FWRETRACT)
  2187. /**
  2188. * G10 - Retract filament according to settings of M207
  2189. * G11 - Recover filament according to settings of M208
  2190. */
  2191. inline void gcode_G10_G11(bool doRetract=false) {
  2192. #if EXTRUDERS > 1
  2193. if (doRetract) {
  2194. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2195. }
  2196. #endif
  2197. retract(doRetract
  2198. #if EXTRUDERS > 1
  2199. , retracted_swap[active_extruder]
  2200. #endif
  2201. );
  2202. }
  2203. #endif //FWRETRACT
  2204. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2205. /**
  2206. * G12: Clean the nozzle
  2207. */
  2208. inline void gcode_G12() {
  2209. // Don't allow nozzle cleaning without homing first
  2210. if (axis_unhomed_error(true, true, true)) { return; }
  2211. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2212. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2213. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2214. Nozzle::clean(pattern, strokes, objects);
  2215. }
  2216. #endif
  2217. #if ENABLED(INCH_MODE_SUPPORT)
  2218. /**
  2219. * G20: Set input mode to inches
  2220. */
  2221. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2222. /**
  2223. * G21: Set input mode to millimeters
  2224. */
  2225. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2226. #endif
  2227. #if ENABLED(NOZZLE_PARK_FEATURE)
  2228. /**
  2229. * G27: Park the nozzle
  2230. */
  2231. inline void gcode_G27() {
  2232. // Don't allow nozzle parking without homing first
  2233. if (axis_unhomed_error(true, true, true)) { return; }
  2234. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2235. Nozzle::park(z_action);
  2236. }
  2237. #endif // NOZZLE_PARK_FEATURE
  2238. #if ENABLED(QUICK_HOME)
  2239. static void quick_home_xy() {
  2240. // Pretend the current position is 0,0
  2241. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2242. sync_plan_position();
  2243. int x_axis_home_dir =
  2244. #if ENABLED(DUAL_X_CARRIAGE)
  2245. x_home_dir(active_extruder)
  2246. #else
  2247. home_dir(X_AXIS)
  2248. #endif
  2249. ;
  2250. float mlx = max_length(X_AXIS),
  2251. mly = max_length(Y_AXIS),
  2252. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2253. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2254. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2255. endstops.hit_on_purpose(); // clear endstop hit flags
  2256. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2257. }
  2258. #endif // QUICK_HOME
  2259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2260. void log_machine_info() {
  2261. SERIAL_ECHOPGM("Machine Type: ");
  2262. #if ENABLED(DELTA)
  2263. SERIAL_ECHOLNPGM("Delta");
  2264. #elif IS_SCARA
  2265. SERIAL_ECHOLNPGM("SCARA");
  2266. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2267. SERIAL_ECHOLNPGM("Core");
  2268. #else
  2269. SERIAL_ECHOLNPGM("Cartesian");
  2270. #endif
  2271. SERIAL_ECHOPGM("Probe: ");
  2272. #if ENABLED(FIX_MOUNTED_PROBE)
  2273. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2274. #elif HAS_Z_SERVO_ENDSTOP
  2275. SERIAL_ECHOLNPGM("SERVO PROBE");
  2276. #elif ENABLED(BLTOUCH)
  2277. SERIAL_ECHOLNPGM("BLTOUCH");
  2278. #elif ENABLED(Z_PROBE_SLED)
  2279. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2280. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2281. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2282. #else
  2283. SERIAL_ECHOLNPGM("NONE");
  2284. #endif
  2285. #if HAS_BED_PROBE
  2286. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2287. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2288. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2289. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2290. SERIAL_ECHOPGM(" (Right");
  2291. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2292. SERIAL_ECHOPGM(" (Left");
  2293. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2294. SERIAL_ECHOPGM(" (Middle");
  2295. #else
  2296. SERIAL_ECHOPGM(" (Aligned With");
  2297. #endif
  2298. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2299. SERIAL_ECHOPGM("-Back");
  2300. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2301. SERIAL_ECHOPGM("-Front");
  2302. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2303. SERIAL_ECHOPGM("-Center");
  2304. #endif
  2305. if (zprobe_zoffset < 0)
  2306. SERIAL_ECHOPGM(" & Below");
  2307. else if (zprobe_zoffset > 0)
  2308. SERIAL_ECHOPGM(" & Above");
  2309. else
  2310. SERIAL_ECHOPGM(" & Same Z as");
  2311. SERIAL_ECHOLNPGM(" Nozzle)");
  2312. #endif
  2313. }
  2314. #endif // DEBUG_LEVELING_FEATURE
  2315. #if ENABLED(DELTA)
  2316. /**
  2317. * A delta can only safely home all axes at the same time
  2318. * This is like quick_home_xy() but for 3 towers.
  2319. */
  2320. inline void home_delta() {
  2321. // Init the current position of all carriages to 0,0,0
  2322. memset(current_position, 0, sizeof(current_position));
  2323. sync_plan_position();
  2324. // Move all carriages together linearly until an endstop is hit.
  2325. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2326. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2327. line_to_current_position();
  2328. stepper.synchronize();
  2329. endstops.hit_on_purpose(); // clear endstop hit flags
  2330. // Probably not needed. Double-check this line:
  2331. memset(current_position, 0, sizeof(current_position));
  2332. // At least one carriage has reached the top.
  2333. // Now back off and re-home each carriage separately.
  2334. HOMEAXIS(A);
  2335. HOMEAXIS(B);
  2336. HOMEAXIS(C);
  2337. // Set all carriages to their home positions
  2338. // Do this here all at once for Delta, because
  2339. // XYZ isn't ABC. Applying this per-tower would
  2340. // give the impression that they are the same.
  2341. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2342. SYNC_PLAN_POSITION_KINEMATIC();
  2343. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2344. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2345. #endif
  2346. }
  2347. #endif // DELTA
  2348. #if ENABLED(Z_SAFE_HOMING)
  2349. inline void home_z_safely() {
  2350. // Disallow Z homing if X or Y are unknown
  2351. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2352. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2353. SERIAL_ECHO_START;
  2354. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2355. return;
  2356. }
  2357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2358. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2359. #endif
  2360. SYNC_PLAN_POSITION_KINEMATIC();
  2361. /**
  2362. * Move the Z probe (or just the nozzle) to the safe homing point
  2363. */
  2364. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2365. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2366. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2367. #if HAS_BED_PROBE
  2368. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2369. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2370. #endif
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2373. #endif
  2374. if (position_is_reachable(destination)) {
  2375. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2376. HOMEAXIS(Z);
  2377. }
  2378. else {
  2379. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2380. SERIAL_ECHO_START;
  2381. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2382. }
  2383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2384. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2385. #endif
  2386. }
  2387. #endif // Z_SAFE_HOMING
  2388. /**
  2389. * G28: Home all axes according to settings
  2390. *
  2391. * Parameters
  2392. *
  2393. * None Home to all axes with no parameters.
  2394. * With QUICK_HOME enabled XY will home together, then Z.
  2395. *
  2396. * Cartesian parameters
  2397. *
  2398. * X Home to the X endstop
  2399. * Y Home to the Y endstop
  2400. * Z Home to the Z endstop
  2401. *
  2402. */
  2403. inline void gcode_G28() {
  2404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2405. if (DEBUGGING(LEVELING)) {
  2406. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2407. log_machine_info();
  2408. }
  2409. #endif
  2410. // Wait for planner moves to finish!
  2411. stepper.synchronize();
  2412. // For auto bed leveling, clear the level matrix
  2413. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2414. reset_bed_level();
  2415. #endif
  2416. // Always home with tool 0 active
  2417. #if HOTENDS > 1
  2418. uint8_t old_tool_index = active_extruder;
  2419. tool_change(0, 0, true);
  2420. #endif
  2421. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2422. extruder_duplication_enabled = false;
  2423. #endif
  2424. /**
  2425. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2426. * on again when homing all axis
  2427. */
  2428. #if ENABLED(MESH_BED_LEVELING)
  2429. float pre_home_z = MESH_HOME_SEARCH_Z;
  2430. if (mbl.active()) {
  2431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2432. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2433. #endif
  2434. // Save known Z position if already homed
  2435. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2436. pre_home_z = current_position[Z_AXIS];
  2437. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2438. }
  2439. mbl.set_active(false);
  2440. current_position[Z_AXIS] = pre_home_z;
  2441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2442. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2443. #endif
  2444. }
  2445. #endif
  2446. setup_for_endstop_or_probe_move();
  2447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2448. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2449. #endif
  2450. endstops.enable(true); // Enable endstops for next homing move
  2451. #if ENABLED(DELTA)
  2452. home_delta();
  2453. #else // NOT DELTA
  2454. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2455. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2456. set_destination_to_current();
  2457. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2458. if (home_all_axis || homeZ) {
  2459. HOMEAXIS(Z);
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2462. #endif
  2463. }
  2464. #else
  2465. if (home_all_axis || homeX || homeY) {
  2466. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2467. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2468. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING))
  2471. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2472. #endif
  2473. do_blocking_move_to_z(destination[Z_AXIS]);
  2474. }
  2475. }
  2476. #endif
  2477. #if ENABLED(QUICK_HOME)
  2478. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2479. #endif
  2480. #if ENABLED(HOME_Y_BEFORE_X)
  2481. // Home Y
  2482. if (home_all_axis || homeY) {
  2483. HOMEAXIS(Y);
  2484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2485. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2486. #endif
  2487. }
  2488. #endif
  2489. // Home X
  2490. if (home_all_axis || homeX) {
  2491. #if ENABLED(DUAL_X_CARRIAGE)
  2492. int tmp_extruder = active_extruder;
  2493. active_extruder = !active_extruder;
  2494. HOMEAXIS(X);
  2495. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2496. active_extruder = tmp_extruder;
  2497. HOMEAXIS(X);
  2498. // reset state used by the different modes
  2499. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2500. delayed_move_time = 0;
  2501. active_extruder_parked = true;
  2502. #else
  2503. HOMEAXIS(X);
  2504. #endif
  2505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2506. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2507. #endif
  2508. }
  2509. #if DISABLED(HOME_Y_BEFORE_X)
  2510. // Home Y
  2511. if (home_all_axis || homeY) {
  2512. HOMEAXIS(Y);
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2515. #endif
  2516. }
  2517. #endif
  2518. // Home Z last if homing towards the bed
  2519. #if Z_HOME_DIR < 0
  2520. if (home_all_axis || homeZ) {
  2521. #if ENABLED(Z_SAFE_HOMING)
  2522. home_z_safely();
  2523. #else
  2524. HOMEAXIS(Z);
  2525. #endif
  2526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2527. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2528. #endif
  2529. } // home_all_axis || homeZ
  2530. #endif // Z_HOME_DIR < 0
  2531. SYNC_PLAN_POSITION_KINEMATIC();
  2532. #endif // !DELTA (gcode_G28)
  2533. endstops.not_homing();
  2534. // Enable mesh leveling again
  2535. #if ENABLED(MESH_BED_LEVELING)
  2536. if (mbl.has_mesh()) {
  2537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2538. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2539. #endif
  2540. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2542. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2543. #endif
  2544. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2545. #if Z_HOME_DIR > 0
  2546. + Z_MAX_POS
  2547. #endif
  2548. ;
  2549. SYNC_PLAN_POSITION_KINEMATIC();
  2550. mbl.set_active(true);
  2551. #if ENABLED(MESH_G28_REST_ORIGIN)
  2552. current_position[Z_AXIS] = 0.0;
  2553. set_destination_to_current();
  2554. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2555. line_to_destination();
  2556. stepper.synchronize();
  2557. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2558. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2559. #endif
  2560. #else
  2561. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2562. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2563. #if Z_HOME_DIR > 0
  2564. + Z_MAX_POS
  2565. #endif
  2566. ;
  2567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2568. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2569. #endif
  2570. #endif
  2571. }
  2572. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2573. current_position[Z_AXIS] = pre_home_z;
  2574. SYNC_PLAN_POSITION_KINEMATIC();
  2575. mbl.set_active(true);
  2576. current_position[Z_AXIS] = pre_home_z -
  2577. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2579. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2580. #endif
  2581. }
  2582. }
  2583. #endif
  2584. #if ENABLED(DELTA)
  2585. // move to a height where we can use the full xy-area
  2586. do_blocking_move_to_z(delta_clip_start_height);
  2587. #endif
  2588. clean_up_after_endstop_or_probe_move();
  2589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2590. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2591. #endif
  2592. // Restore the active tool after homing
  2593. #if HOTENDS > 1
  2594. tool_change(old_tool_index, 0, true);
  2595. #endif
  2596. report_current_position();
  2597. }
  2598. #if HAS_PROBING_PROCEDURE
  2599. void out_of_range_error(const char* p_edge) {
  2600. SERIAL_PROTOCOLPGM("?Probe ");
  2601. serialprintPGM(p_edge);
  2602. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2603. }
  2604. #endif
  2605. #if ENABLED(MESH_BED_LEVELING)
  2606. inline void _mbl_goto_xy(float x, float y) {
  2607. float old_feedrate_mm_s = feedrate_mm_s;
  2608. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2609. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2610. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2611. + Z_PROBE_TRAVEL_HEIGHT
  2612. #elif Z_HOMING_HEIGHT > 0
  2613. + Z_HOMING_HEIGHT
  2614. #endif
  2615. ;
  2616. line_to_current_position();
  2617. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2618. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2619. line_to_current_position();
  2620. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2621. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2622. line_to_current_position();
  2623. #endif
  2624. feedrate_mm_s = old_feedrate_mm_s;
  2625. stepper.synchronize();
  2626. }
  2627. /**
  2628. * G29: Mesh-based Z probe, probes a grid and produces a
  2629. * mesh to compensate for variable bed height
  2630. *
  2631. * Parameters With MESH_BED_LEVELING:
  2632. *
  2633. * S0 Produce a mesh report
  2634. * S1 Start probing mesh points
  2635. * S2 Probe the next mesh point
  2636. * S3 Xn Yn Zn.nn Manually modify a single point
  2637. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2638. * S5 Reset and disable mesh
  2639. *
  2640. * The S0 report the points as below
  2641. *
  2642. * +----> X-axis 1-n
  2643. * |
  2644. * |
  2645. * v Y-axis 1-n
  2646. *
  2647. */
  2648. inline void gcode_G29() {
  2649. static int probe_point = -1;
  2650. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2651. if (state < 0 || state > 5) {
  2652. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2653. return;
  2654. }
  2655. int8_t px, py;
  2656. switch (state) {
  2657. case MeshReport:
  2658. if (mbl.has_mesh()) {
  2659. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2660. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2661. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2662. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2663. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2664. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2665. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2666. SERIAL_PROTOCOLPGM(" ");
  2667. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2668. }
  2669. SERIAL_EOL;
  2670. }
  2671. }
  2672. else
  2673. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2674. break;
  2675. case MeshStart:
  2676. mbl.reset();
  2677. probe_point = 0;
  2678. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2679. break;
  2680. case MeshNext:
  2681. if (probe_point < 0) {
  2682. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2683. return;
  2684. }
  2685. // For each G29 S2...
  2686. if (probe_point == 0) {
  2687. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2688. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2689. #if Z_HOME_DIR > 0
  2690. + Z_MAX_POS
  2691. #endif
  2692. ;
  2693. SYNC_PLAN_POSITION_KINEMATIC();
  2694. }
  2695. else {
  2696. // For G29 S2 after adjusting Z.
  2697. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2698. }
  2699. // If there's another point to sample, move there with optional lift.
  2700. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2701. mbl.zigzag(probe_point, px, py);
  2702. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2703. probe_point++;
  2704. }
  2705. else {
  2706. // One last "return to the bed" (as originally coded) at completion
  2707. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2708. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2709. + Z_PROBE_TRAVEL_HEIGHT
  2710. #elif Z_HOMING_HEIGHT > 0
  2711. + Z_HOMING_HEIGHT
  2712. #endif
  2713. ;
  2714. line_to_current_position();
  2715. stepper.synchronize();
  2716. // After recording the last point, activate the mbl and home
  2717. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2718. probe_point = -1;
  2719. mbl.set_has_mesh(true);
  2720. enqueue_and_echo_commands_P(PSTR("G28"));
  2721. }
  2722. break;
  2723. case MeshSet:
  2724. if (code_seen('X')) {
  2725. px = code_value_int() - 1;
  2726. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2727. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2728. return;
  2729. }
  2730. }
  2731. else {
  2732. SERIAL_PROTOCOLLNPGM("X not entered.");
  2733. return;
  2734. }
  2735. if (code_seen('Y')) {
  2736. py = code_value_int() - 1;
  2737. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2738. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2739. return;
  2740. }
  2741. }
  2742. else {
  2743. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2744. return;
  2745. }
  2746. if (code_seen('Z')) {
  2747. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2748. }
  2749. else {
  2750. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2751. return;
  2752. }
  2753. break;
  2754. case MeshSetZOffset:
  2755. if (code_seen('Z')) {
  2756. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2757. }
  2758. else {
  2759. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2760. return;
  2761. }
  2762. break;
  2763. case MeshReset:
  2764. if (mbl.active()) {
  2765. current_position[Z_AXIS] +=
  2766. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2767. mbl.reset();
  2768. SYNC_PLAN_POSITION_KINEMATIC();
  2769. }
  2770. else
  2771. mbl.reset();
  2772. } // switch(state)
  2773. report_current_position();
  2774. }
  2775. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2776. /**
  2777. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2778. * Will fail if the printer has not been homed with G28.
  2779. *
  2780. * Enhanced G29 Auto Bed Leveling Probe Routine
  2781. *
  2782. * Parameters With AUTO_BED_LEVELING_GRID:
  2783. *
  2784. * P Set the size of the grid that will be probed (P x P points).
  2785. * Not supported by non-linear delta printer bed leveling.
  2786. * Example: "G29 P4"
  2787. *
  2788. * S Set the XY travel speed between probe points (in units/min)
  2789. *
  2790. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2791. * or clean the rotation Matrix. Useful to check the topology
  2792. * after a first run of G29.
  2793. *
  2794. * V Set the verbose level (0-4). Example: "G29 V3"
  2795. *
  2796. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2797. * This is useful for manual bed leveling and finding flaws in the bed (to
  2798. * assist with part placement).
  2799. * Not supported by non-linear delta printer bed leveling.
  2800. *
  2801. * F Set the Front limit of the probing grid
  2802. * B Set the Back limit of the probing grid
  2803. * L Set the Left limit of the probing grid
  2804. * R Set the Right limit of the probing grid
  2805. *
  2806. * Global Parameters:
  2807. *
  2808. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2809. * Include "E" to engage/disengage the Z probe for each sample.
  2810. * There's no extra effect if you have a fixed Z probe.
  2811. * Usage: "G29 E" or "G29 e"
  2812. *
  2813. */
  2814. inline void gcode_G29() {
  2815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2816. if (DEBUGGING(LEVELING)) {
  2817. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2818. DEBUG_POS("", current_position);
  2819. log_machine_info();
  2820. }
  2821. #endif
  2822. // Don't allow auto-leveling without homing first
  2823. if (axis_unhomed_error(true, true, true)) return;
  2824. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2825. if (verbose_level < 0 || verbose_level > 4) {
  2826. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2827. return;
  2828. }
  2829. bool dryrun = code_seen('D'),
  2830. stow_probe_after_each = code_seen('E');
  2831. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2832. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2833. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2834. #endif
  2835. if (verbose_level > 0) {
  2836. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2837. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2838. }
  2839. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2840. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2841. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2842. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2843. if (abl_grid_points_x < 2) {
  2844. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2845. return;
  2846. }
  2847. #endif
  2848. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2849. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2850. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2851. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2852. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2853. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2854. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2855. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2856. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2857. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2858. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2859. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2860. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2861. if (left_out || right_out || front_out || back_out) {
  2862. if (left_out) {
  2863. out_of_range_error(PSTR("(L)eft"));
  2864. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2865. }
  2866. if (right_out) {
  2867. out_of_range_error(PSTR("(R)ight"));
  2868. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2869. }
  2870. if (front_out) {
  2871. out_of_range_error(PSTR("(F)ront"));
  2872. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2873. }
  2874. if (back_out) {
  2875. out_of_range_error(PSTR("(B)ack"));
  2876. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2877. }
  2878. return;
  2879. }
  2880. #endif // AUTO_BED_LEVELING_GRID
  2881. stepper.synchronize();
  2882. if (!dryrun) {
  2883. // Reset the bed_level_matrix because leveling
  2884. // needs to be done without leveling enabled.
  2885. reset_bed_level();
  2886. //
  2887. // Re-orient the current position without leveling
  2888. // based on where the steppers are positioned.
  2889. //
  2890. #if IS_KINEMATIC
  2891. // For DELTA/SCARA we need to apply forward kinematics.
  2892. // This returns raw positions and we remap to the space.
  2893. get_cartesian_from_steppers();
  2894. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartes[i], i);
  2895. #else
  2896. // For cartesian/core the steppers are already mapped to
  2897. // the coordinate space by design.
  2898. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2899. #endif // !DELTA
  2900. // Inform the planner about the new coordinates
  2901. SYNC_PLAN_POSITION_KINEMATIC();
  2902. }
  2903. setup_for_endstop_or_probe_move();
  2904. // Deploy the probe. Probe will raise if needed.
  2905. if (DEPLOY_PROBE()) return;
  2906. bed_leveling_in_progress = true;
  2907. float xProbe, yProbe, measured_z = 0;
  2908. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2909. // probe at the points of a lattice grid
  2910. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  2911. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  2912. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2913. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2914. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2915. float zoffset = zprobe_zoffset;
  2916. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2917. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  2918. /**
  2919. * solve the plane equation ax + by + d = z
  2920. * A is the matrix with rows [x y 1] for all the probed points
  2921. * B is the vector of the Z positions
  2922. * the normal vector to the plane is formed by the coefficients of the
  2923. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2924. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2925. */
  2926. int abl2 = abl_grid_points_x * abl_grid_points_y;
  2927. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2928. eqnBVector[abl2], // "B" vector of Z points
  2929. mean = 0.0;
  2930. int indexIntoAB[abl_grid_points_x][abl_grid_points_y];
  2931. #endif // AUTO_BED_LEVELING_LINEAR
  2932. int probePointCounter = 0;
  2933. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2934. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  2935. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  2936. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2937. int8_t xStart, xStop, xInc;
  2938. if (zig) {
  2939. xStart = 0;
  2940. xStop = abl_grid_points_x;
  2941. xInc = 1;
  2942. }
  2943. else {
  2944. xStart = abl_grid_points_x - 1;
  2945. xStop = -1;
  2946. xInc = -1;
  2947. }
  2948. zig = !zig;
  2949. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  2950. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  2951. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2952. #if ENABLED(DELTA)
  2953. // Avoid probing outside the round or hexagonal area of a delta printer
  2954. if (HYPOT2(xProbe, yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2955. #endif
  2956. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2957. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2958. mean += measured_z;
  2959. eqnBVector[probePointCounter] = measured_z;
  2960. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2961. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2962. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2963. indexIntoAB[xCount][yCount] = probePointCounter;
  2964. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2965. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  2966. #endif
  2967. probePointCounter++;
  2968. idle();
  2969. } //xProbe
  2970. } //yProbe
  2971. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2973. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2974. #endif
  2975. // Probe at 3 arbitrary points
  2976. vector_3 points[3] = {
  2977. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  2978. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  2979. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  2980. };
  2981. for (uint8_t i = 0; i < 3; ++i) {
  2982. // Retain the last probe position
  2983. xProbe = LOGICAL_X_POSITION(points[i].x);
  2984. yProbe = LOGICAL_Y_POSITION(points[i].y);
  2985. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2986. }
  2987. if (!dryrun) {
  2988. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  2989. if (planeNormal.z < 0) {
  2990. planeNormal.x *= -1;
  2991. planeNormal.y *= -1;
  2992. planeNormal.z *= -1;
  2993. }
  2994. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  2995. }
  2996. #endif // AUTO_BED_LEVELING_3POINT
  2997. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  2998. if (STOW_PROBE()) return;
  2999. // Restore state after probing
  3000. clean_up_after_endstop_or_probe_move();
  3001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3002. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3003. #endif
  3004. // Calculate leveling, print reports, correct the position
  3005. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3006. if (!dryrun) extrapolate_unprobed_bed_level();
  3007. print_bed_level();
  3008. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3009. // solve lsq problem
  3010. double plane_equation_coefficients[3];
  3011. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3012. mean /= abl2;
  3013. if (verbose_level) {
  3014. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3015. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3016. SERIAL_PROTOCOLPGM(" b: ");
  3017. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3018. SERIAL_PROTOCOLPGM(" d: ");
  3019. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3020. SERIAL_EOL;
  3021. if (verbose_level > 2) {
  3022. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3023. SERIAL_PROTOCOL_F(mean, 8);
  3024. SERIAL_EOL;
  3025. }
  3026. }
  3027. // Create the matrix but don't correct the position yet
  3028. if (!dryrun) {
  3029. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3030. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3031. );
  3032. }
  3033. // Show the Topography map if enabled
  3034. if (do_topography_map) {
  3035. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3036. " +--- BACK --+\n"
  3037. " | |\n"
  3038. " L | (+) | R\n"
  3039. " E | | I\n"
  3040. " F | (-) N (+) | G\n"
  3041. " T | | H\n"
  3042. " | (-) | T\n"
  3043. " | |\n"
  3044. " O-- FRONT --+\n"
  3045. " (0,0)");
  3046. float min_diff = 999;
  3047. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3048. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3049. int ind = indexIntoAB[xx][yy];
  3050. float diff = eqnBVector[ind] - mean,
  3051. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3052. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3053. z_tmp = 0;
  3054. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3055. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3056. if (diff >= 0.0)
  3057. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3058. else
  3059. SERIAL_PROTOCOLCHAR(' ');
  3060. SERIAL_PROTOCOL_F(diff, 5);
  3061. } // xx
  3062. SERIAL_EOL;
  3063. } // yy
  3064. SERIAL_EOL;
  3065. if (verbose_level > 3) {
  3066. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3067. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3068. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3069. int ind = indexIntoAB[xx][yy];
  3070. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3071. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3072. z_tmp = 0;
  3073. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3074. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3075. if (diff >= 0.0)
  3076. SERIAL_PROTOCOLPGM(" +");
  3077. // Include + for column alignment
  3078. else
  3079. SERIAL_PROTOCOLCHAR(' ');
  3080. SERIAL_PROTOCOL_F(diff, 5);
  3081. } // xx
  3082. SERIAL_EOL;
  3083. } // yy
  3084. SERIAL_EOL;
  3085. }
  3086. } //do_topography_map
  3087. if (verbose_level > 0)
  3088. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3089. if (!dryrun) {
  3090. //
  3091. // Correct the current XYZ position based on the tilted plane.
  3092. //
  3093. // 1. Get the distance from the current position to the reference point.
  3094. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3095. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3096. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3097. z_zero = 0;
  3098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3099. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3100. #endif
  3101. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3102. // 2. Apply the inverse matrix to the distance
  3103. // from the reference point to X, Y, and zero.
  3104. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3105. // 3. Get the matrix-based corrected Z.
  3106. // (Even if not used, get it for comparison.)
  3107. float new_z = z_real + z_zero;
  3108. // 4. Use the last measured distance to the bed, if possible
  3109. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3110. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3111. ) {
  3112. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3113. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3114. if (DEBUGGING(LEVELING)) {
  3115. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3116. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3117. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3118. }
  3119. #endif
  3120. new_z = simple_z;
  3121. }
  3122. // 5. The rotated XY and corrected Z are now current_position
  3123. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3124. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3125. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3126. SYNC_PLAN_POSITION_KINEMATIC();
  3127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3128. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3129. #endif
  3130. }
  3131. #endif // AUTO_BED_LEVELING_LINEAR
  3132. #ifdef Z_PROBE_END_SCRIPT
  3133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3134. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3135. #endif
  3136. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3137. stepper.synchronize();
  3138. #endif
  3139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3140. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3141. #endif
  3142. bed_leveling_in_progress = false;
  3143. report_current_position();
  3144. KEEPALIVE_STATE(IN_HANDLER);
  3145. }
  3146. #endif // AUTO_BED_LEVELING_FEATURE
  3147. #if HAS_BED_PROBE
  3148. /**
  3149. * G30: Do a single Z probe at the current XY
  3150. */
  3151. inline void gcode_G30() {
  3152. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3153. reset_bed_level();
  3154. #endif
  3155. setup_for_endstop_or_probe_move();
  3156. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3157. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3158. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3159. true, 1);
  3160. SERIAL_PROTOCOLPGM("Bed X: ");
  3161. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3162. SERIAL_PROTOCOLPGM(" Y: ");
  3163. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3164. SERIAL_PROTOCOLPGM(" Z: ");
  3165. SERIAL_PROTOCOL(measured_z + 0.0001);
  3166. SERIAL_EOL;
  3167. clean_up_after_endstop_or_probe_move();
  3168. report_current_position();
  3169. }
  3170. #if ENABLED(Z_PROBE_SLED)
  3171. /**
  3172. * G31: Deploy the Z probe
  3173. */
  3174. inline void gcode_G31() { DEPLOY_PROBE(); }
  3175. /**
  3176. * G32: Stow the Z probe
  3177. */
  3178. inline void gcode_G32() { STOW_PROBE(); }
  3179. #endif // Z_PROBE_SLED
  3180. #endif // HAS_BED_PROBE
  3181. /**
  3182. * G92: Set current position to given X Y Z E
  3183. */
  3184. inline void gcode_G92() {
  3185. bool didXYZ = false,
  3186. didE = code_seen('E');
  3187. if (!didE) stepper.synchronize();
  3188. LOOP_XYZE(i) {
  3189. if (code_seen(axis_codes[i])) {
  3190. float p = current_position[i],
  3191. v = code_value_axis_units(i);
  3192. current_position[i] = v;
  3193. if (i != E_AXIS) {
  3194. position_shift[i] += v - p; // Offset the coordinate space
  3195. update_software_endstops((AxisEnum)i);
  3196. didXYZ = true;
  3197. }
  3198. }
  3199. }
  3200. if (didXYZ)
  3201. SYNC_PLAN_POSITION_KINEMATIC();
  3202. else if (didE)
  3203. sync_plan_position_e();
  3204. }
  3205. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3206. /**
  3207. * M0: Unconditional stop - Wait for user button press on LCD
  3208. * M1: Conditional stop - Wait for user button press on LCD
  3209. */
  3210. inline void gcode_M0_M1() {
  3211. char* args = current_command_args;
  3212. millis_t codenum = 0;
  3213. bool hasP = false, hasS = false;
  3214. if (code_seen('P')) {
  3215. codenum = code_value_millis(); // milliseconds to wait
  3216. hasP = codenum > 0;
  3217. }
  3218. if (code_seen('S')) {
  3219. codenum = code_value_millis_from_seconds(); // seconds to wait
  3220. hasS = codenum > 0;
  3221. }
  3222. #if ENABLED(ULTIPANEL)
  3223. if (!hasP && !hasS && *args != '\0')
  3224. lcd_setstatus(args, true);
  3225. else {
  3226. LCD_MESSAGEPGM(MSG_USERWAIT);
  3227. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3228. dontExpireStatus();
  3229. #endif
  3230. }
  3231. lcd_ignore_click();
  3232. #else
  3233. if (!hasP && !hasS && *args != '\0') {
  3234. SERIAL_ECHO_START;
  3235. SERIAL_ECHOLN(args);
  3236. }
  3237. #endif
  3238. stepper.synchronize();
  3239. refresh_cmd_timeout();
  3240. #if ENABLED(ULTIPANEL)
  3241. if (codenum > 0) {
  3242. codenum += previous_cmd_ms; // wait until this time for a click
  3243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3244. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3245. lcd_ignore_click(false);
  3246. }
  3247. else if (lcd_detected()) {
  3248. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3249. while (!lcd_clicked()) idle();
  3250. }
  3251. else return;
  3252. if (IS_SD_PRINTING)
  3253. LCD_MESSAGEPGM(MSG_RESUMING);
  3254. else
  3255. LCD_MESSAGEPGM(WELCOME_MSG);
  3256. #else
  3257. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3258. wait_for_user = true;
  3259. if (codenum > 0) {
  3260. codenum += previous_cmd_ms; // wait until this time for an M108
  3261. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3262. }
  3263. else while (wait_for_user) idle();
  3264. wait_for_user = false;
  3265. #endif
  3266. KEEPALIVE_STATE(IN_HANDLER);
  3267. }
  3268. #endif // ULTIPANEL || EMERGENCY_PARSER
  3269. /**
  3270. * M17: Enable power on all stepper motors
  3271. */
  3272. inline void gcode_M17() {
  3273. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3274. enable_all_steppers();
  3275. }
  3276. #if ENABLED(SDSUPPORT)
  3277. /**
  3278. * M20: List SD card to serial output
  3279. */
  3280. inline void gcode_M20() {
  3281. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3282. card.ls();
  3283. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3284. }
  3285. /**
  3286. * M21: Init SD Card
  3287. */
  3288. inline void gcode_M21() { card.initsd(); }
  3289. /**
  3290. * M22: Release SD Card
  3291. */
  3292. inline void gcode_M22() { card.release(); }
  3293. /**
  3294. * M23: Open a file
  3295. */
  3296. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3297. /**
  3298. * M24: Start SD Print
  3299. */
  3300. inline void gcode_M24() {
  3301. card.startFileprint();
  3302. print_job_timer.start();
  3303. }
  3304. /**
  3305. * M25: Pause SD Print
  3306. */
  3307. inline void gcode_M25() { card.pauseSDPrint(); }
  3308. /**
  3309. * M26: Set SD Card file index
  3310. */
  3311. inline void gcode_M26() {
  3312. if (card.cardOK && code_seen('S'))
  3313. card.setIndex(code_value_long());
  3314. }
  3315. /**
  3316. * M27: Get SD Card status
  3317. */
  3318. inline void gcode_M27() { card.getStatus(); }
  3319. /**
  3320. * M28: Start SD Write
  3321. */
  3322. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3323. /**
  3324. * M29: Stop SD Write
  3325. * Processed in write to file routine above
  3326. */
  3327. inline void gcode_M29() {
  3328. // card.saving = false;
  3329. }
  3330. /**
  3331. * M30 <filename>: Delete SD Card file
  3332. */
  3333. inline void gcode_M30() {
  3334. if (card.cardOK) {
  3335. card.closefile();
  3336. card.removeFile(current_command_args);
  3337. }
  3338. }
  3339. #endif // SDSUPPORT
  3340. /**
  3341. * M31: Get the time since the start of SD Print (or last M109)
  3342. */
  3343. inline void gcode_M31() {
  3344. char buffer[21];
  3345. duration_t elapsed = print_job_timer.duration();
  3346. elapsed.toString(buffer);
  3347. lcd_setstatus(buffer);
  3348. SERIAL_ECHO_START;
  3349. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3350. thermalManager.autotempShutdown();
  3351. }
  3352. #if ENABLED(SDSUPPORT)
  3353. /**
  3354. * M32: Select file and start SD Print
  3355. */
  3356. inline void gcode_M32() {
  3357. if (card.sdprinting)
  3358. stepper.synchronize();
  3359. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3360. if (!namestartpos)
  3361. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3362. else
  3363. namestartpos++; //to skip the '!'
  3364. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3365. if (card.cardOK) {
  3366. card.openFile(namestartpos, true, call_procedure);
  3367. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3368. card.setIndex(code_value_long());
  3369. card.startFileprint();
  3370. // Procedure calls count as normal print time.
  3371. if (!call_procedure) print_job_timer.start();
  3372. }
  3373. }
  3374. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3375. /**
  3376. * M33: Get the long full path of a file or folder
  3377. *
  3378. * Parameters:
  3379. * <dospath> Case-insensitive DOS-style path to a file or folder
  3380. *
  3381. * Example:
  3382. * M33 miscel~1/armchair/armcha~1.gco
  3383. *
  3384. * Output:
  3385. * /Miscellaneous/Armchair/Armchair.gcode
  3386. */
  3387. inline void gcode_M33() {
  3388. card.printLongPath(current_command_args);
  3389. }
  3390. #endif
  3391. /**
  3392. * M928: Start SD Write
  3393. */
  3394. inline void gcode_M928() {
  3395. card.openLogFile(current_command_args);
  3396. }
  3397. #endif // SDSUPPORT
  3398. /**
  3399. * M42: Change pin status via GCode
  3400. *
  3401. * P<pin> Pin number (LED if omitted)
  3402. * S<byte> Pin status from 0 - 255
  3403. */
  3404. inline void gcode_M42() {
  3405. if (!code_seen('S')) return;
  3406. int pin_status = code_value_int();
  3407. if (pin_status < 0 || pin_status > 255) return;
  3408. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3409. if (pin_number < 0) return;
  3410. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3411. if (pin_number == sensitive_pins[i]) return;
  3412. pinMode(pin_number, OUTPUT);
  3413. digitalWrite(pin_number, pin_status);
  3414. analogWrite(pin_number, pin_status);
  3415. #if FAN_COUNT > 0
  3416. switch (pin_number) {
  3417. #if HAS_FAN0
  3418. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3419. #endif
  3420. #if HAS_FAN1
  3421. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3422. #endif
  3423. #if HAS_FAN2
  3424. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3425. #endif
  3426. }
  3427. #endif
  3428. }
  3429. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3430. /**
  3431. * M48: Z probe repeatability measurement function.
  3432. *
  3433. * Usage:
  3434. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3435. * P = Number of sampled points (4-50, default 10)
  3436. * X = Sample X position
  3437. * Y = Sample Y position
  3438. * V = Verbose level (0-4, default=1)
  3439. * E = Engage Z probe for each reading
  3440. * L = Number of legs of movement before probe
  3441. * S = Schizoid (Or Star if you prefer)
  3442. *
  3443. * This function assumes the bed has been homed. Specifically, that a G28 command
  3444. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3445. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3446. * regenerated.
  3447. */
  3448. inline void gcode_M48() {
  3449. if (axis_unhomed_error(true, true, true)) return;
  3450. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3451. if (verbose_level < 0 || verbose_level > 4) {
  3452. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3453. return;
  3454. }
  3455. if (verbose_level > 0)
  3456. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3457. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3458. if (n_samples < 4 || n_samples > 50) {
  3459. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3460. return;
  3461. }
  3462. float X_current = current_position[X_AXIS],
  3463. Y_current = current_position[Y_AXIS];
  3464. bool stow_probe_after_each = code_seen('E');
  3465. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3466. #if DISABLED(DELTA)
  3467. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3468. out_of_range_error(PSTR("X"));
  3469. return;
  3470. }
  3471. #endif
  3472. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3473. #if DISABLED(DELTA)
  3474. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3475. out_of_range_error(PSTR("Y"));
  3476. return;
  3477. }
  3478. #else
  3479. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3480. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3481. return;
  3482. }
  3483. #endif
  3484. bool seen_L = code_seen('L');
  3485. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3486. if (n_legs > 15) {
  3487. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3488. return;
  3489. }
  3490. if (n_legs == 1) n_legs = 2;
  3491. bool schizoid_flag = code_seen('S');
  3492. if (schizoid_flag && !seen_L) n_legs = 7;
  3493. /**
  3494. * Now get everything to the specified probe point So we can safely do a
  3495. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3496. * we don't want to use that as a starting point for each probe.
  3497. */
  3498. if (verbose_level > 2)
  3499. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3500. // Disable bed level correction in M48 because we want the raw data when we probe
  3501. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3502. reset_bed_level();
  3503. #endif
  3504. setup_for_endstop_or_probe_move();
  3505. // Move to the first point, deploy, and probe
  3506. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3507. randomSeed(millis());
  3508. double mean = 0, sigma = 0, sample_set[n_samples];
  3509. for (uint8_t n = 0; n < n_samples; n++) {
  3510. if (n_legs) {
  3511. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3512. float angle = random(0.0, 360.0),
  3513. radius = random(
  3514. #if ENABLED(DELTA)
  3515. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3516. #else
  3517. 5, X_MAX_LENGTH / 8
  3518. #endif
  3519. );
  3520. if (verbose_level > 3) {
  3521. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3522. SERIAL_ECHOPAIR(" angle: ", angle);
  3523. SERIAL_ECHOPGM(" Direction: ");
  3524. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3525. SERIAL_ECHOLNPGM("Clockwise");
  3526. }
  3527. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3528. double delta_angle;
  3529. if (schizoid_flag)
  3530. // The points of a 5 point star are 72 degrees apart. We need to
  3531. // skip a point and go to the next one on the star.
  3532. delta_angle = dir * 2.0 * 72.0;
  3533. else
  3534. // If we do this line, we are just trying to move further
  3535. // around the circle.
  3536. delta_angle = dir * (float) random(25, 45);
  3537. angle += delta_angle;
  3538. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3539. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3540. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3541. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3542. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3543. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3544. #if DISABLED(DELTA)
  3545. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3546. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3547. #else
  3548. // If we have gone out too far, we can do a simple fix and scale the numbers
  3549. // back in closer to the origin.
  3550. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3551. X_current /= 1.25;
  3552. Y_current /= 1.25;
  3553. if (verbose_level > 3) {
  3554. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3555. SERIAL_ECHOLNPAIR(", ", Y_current);
  3556. }
  3557. }
  3558. #endif
  3559. if (verbose_level > 3) {
  3560. SERIAL_PROTOCOLPGM("Going to:");
  3561. SERIAL_ECHOPAIR(" X", X_current);
  3562. SERIAL_ECHOPAIR(" Y", Y_current);
  3563. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3564. }
  3565. do_blocking_move_to_xy(X_current, Y_current);
  3566. } // n_legs loop
  3567. } // n_legs
  3568. // Probe a single point
  3569. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3570. /**
  3571. * Get the current mean for the data points we have so far
  3572. */
  3573. double sum = 0.0;
  3574. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3575. mean = sum / (n + 1);
  3576. /**
  3577. * Now, use that mean to calculate the standard deviation for the
  3578. * data points we have so far
  3579. */
  3580. sum = 0.0;
  3581. for (uint8_t j = 0; j <= n; j++)
  3582. sum += sq(sample_set[j] - mean);
  3583. sigma = sqrt(sum / (n + 1));
  3584. if (verbose_level > 0) {
  3585. if (verbose_level > 1) {
  3586. SERIAL_PROTOCOL(n + 1);
  3587. SERIAL_PROTOCOLPGM(" of ");
  3588. SERIAL_PROTOCOL((int)n_samples);
  3589. SERIAL_PROTOCOLPGM(" z: ");
  3590. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3591. if (verbose_level > 2) {
  3592. SERIAL_PROTOCOLPGM(" mean: ");
  3593. SERIAL_PROTOCOL_F(mean, 6);
  3594. SERIAL_PROTOCOLPGM(" sigma: ");
  3595. SERIAL_PROTOCOL_F(sigma, 6);
  3596. }
  3597. }
  3598. SERIAL_EOL;
  3599. }
  3600. } // End of probe loop
  3601. if (STOW_PROBE()) return;
  3602. if (verbose_level > 0) {
  3603. SERIAL_PROTOCOLPGM("Mean: ");
  3604. SERIAL_PROTOCOL_F(mean, 6);
  3605. SERIAL_EOL;
  3606. }
  3607. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3608. SERIAL_PROTOCOL_F(sigma, 6);
  3609. SERIAL_EOL; SERIAL_EOL;
  3610. clean_up_after_endstop_or_probe_move();
  3611. report_current_position();
  3612. }
  3613. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3614. /**
  3615. * M75: Start print timer
  3616. */
  3617. inline void gcode_M75() { print_job_timer.start(); }
  3618. /**
  3619. * M76: Pause print timer
  3620. */
  3621. inline void gcode_M76() { print_job_timer.pause(); }
  3622. /**
  3623. * M77: Stop print timer
  3624. */
  3625. inline void gcode_M77() { print_job_timer.stop(); }
  3626. #if ENABLED(PRINTCOUNTER)
  3627. /**
  3628. * M78: Show print statistics
  3629. */
  3630. inline void gcode_M78() {
  3631. // "M78 S78" will reset the statistics
  3632. if (code_seen('S') && code_value_int() == 78)
  3633. print_job_timer.initStats();
  3634. else
  3635. print_job_timer.showStats();
  3636. }
  3637. #endif
  3638. /**
  3639. * M104: Set hot end temperature
  3640. */
  3641. inline void gcode_M104() {
  3642. if (get_target_extruder_from_command(104)) return;
  3643. if (DEBUGGING(DRYRUN)) return;
  3644. #if ENABLED(SINGLENOZZLE)
  3645. if (target_extruder != active_extruder) return;
  3646. #endif
  3647. if (code_seen('S')) {
  3648. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3649. #if ENABLED(DUAL_X_CARRIAGE)
  3650. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3651. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3652. #endif
  3653. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3654. /**
  3655. * Stop the timer at the end of print, starting is managed by
  3656. * 'heat and wait' M109.
  3657. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3658. * stand by mode, for instance in a dual extruder setup, without affecting
  3659. * the running print timer.
  3660. */
  3661. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3662. print_job_timer.stop();
  3663. LCD_MESSAGEPGM(WELCOME_MSG);
  3664. }
  3665. #endif
  3666. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3667. }
  3668. }
  3669. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3670. void print_heaterstates() {
  3671. #if HAS_TEMP_HOTEND
  3672. SERIAL_PROTOCOLPGM(" T:");
  3673. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3674. SERIAL_PROTOCOLPGM(" /");
  3675. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3676. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3677. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3678. SERIAL_CHAR(')');
  3679. #endif
  3680. #endif
  3681. #if HAS_TEMP_BED
  3682. SERIAL_PROTOCOLPGM(" B:");
  3683. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3684. SERIAL_PROTOCOLPGM(" /");
  3685. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3686. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3687. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3688. SERIAL_CHAR(')');
  3689. #endif
  3690. #endif
  3691. #if HOTENDS > 1
  3692. HOTEND_LOOP() {
  3693. SERIAL_PROTOCOLPAIR(" T", e);
  3694. SERIAL_PROTOCOLCHAR(':');
  3695. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3696. SERIAL_PROTOCOLPGM(" /");
  3697. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3698. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3699. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3700. SERIAL_CHAR(')');
  3701. #endif
  3702. }
  3703. #endif
  3704. SERIAL_PROTOCOLPGM(" @:");
  3705. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3706. #if HAS_TEMP_BED
  3707. SERIAL_PROTOCOLPGM(" B@:");
  3708. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3709. #endif
  3710. #if HOTENDS > 1
  3711. HOTEND_LOOP() {
  3712. SERIAL_PROTOCOLPAIR(" @", e);
  3713. SERIAL_PROTOCOLCHAR(':');
  3714. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3715. }
  3716. #endif
  3717. }
  3718. #endif
  3719. /**
  3720. * M105: Read hot end and bed temperature
  3721. */
  3722. inline void gcode_M105() {
  3723. if (get_target_extruder_from_command(105)) return;
  3724. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3725. SERIAL_PROTOCOLPGM(MSG_OK);
  3726. print_heaterstates();
  3727. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3728. SERIAL_ERROR_START;
  3729. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3730. #endif
  3731. SERIAL_EOL;
  3732. }
  3733. #if FAN_COUNT > 0
  3734. /**
  3735. * M106: Set Fan Speed
  3736. *
  3737. * S<int> Speed between 0-255
  3738. * P<index> Fan index, if more than one fan
  3739. */
  3740. inline void gcode_M106() {
  3741. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3742. p = code_seen('P') ? code_value_ushort() : 0;
  3743. NOMORE(s, 255);
  3744. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3745. }
  3746. /**
  3747. * M107: Fan Off
  3748. */
  3749. inline void gcode_M107() {
  3750. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3751. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3752. }
  3753. #endif // FAN_COUNT > 0
  3754. #if DISABLED(EMERGENCY_PARSER)
  3755. /**
  3756. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3757. */
  3758. inline void gcode_M108() { wait_for_heatup = false; }
  3759. /**
  3760. * M112: Emergency Stop
  3761. */
  3762. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3763. /**
  3764. * M410: Quickstop - Abort all planned moves
  3765. *
  3766. * This will stop the carriages mid-move, so most likely they
  3767. * will be out of sync with the stepper position after this.
  3768. */
  3769. inline void gcode_M410() { quickstop_stepper(); }
  3770. #endif
  3771. #ifndef MIN_COOLING_SLOPE_DEG
  3772. #define MIN_COOLING_SLOPE_DEG 1.50
  3773. #endif
  3774. #ifndef MIN_COOLING_SLOPE_TIME
  3775. #define MIN_COOLING_SLOPE_TIME 60
  3776. #endif
  3777. /**
  3778. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3779. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3780. */
  3781. inline void gcode_M109() {
  3782. if (get_target_extruder_from_command(109)) return;
  3783. if (DEBUGGING(DRYRUN)) return;
  3784. #if ENABLED(SINGLENOZZLE)
  3785. if (target_extruder != active_extruder) return;
  3786. #endif
  3787. bool no_wait_for_cooling = code_seen('S');
  3788. if (no_wait_for_cooling || code_seen('R')) {
  3789. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3790. #if ENABLED(DUAL_X_CARRIAGE)
  3791. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3792. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3793. #endif
  3794. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3795. /**
  3796. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3797. * stand by mode, for instance in a dual extruder setup, without affecting
  3798. * the running print timer.
  3799. */
  3800. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3801. print_job_timer.stop();
  3802. LCD_MESSAGEPGM(WELCOME_MSG);
  3803. }
  3804. /**
  3805. * We do not check if the timer is already running because this check will
  3806. * be done for us inside the Stopwatch::start() method thus a running timer
  3807. * will not restart.
  3808. */
  3809. else print_job_timer.start();
  3810. #endif
  3811. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3812. }
  3813. #if ENABLED(AUTOTEMP)
  3814. planner.autotemp_M109();
  3815. #endif
  3816. #if TEMP_RESIDENCY_TIME > 0
  3817. millis_t residency_start_ms = 0;
  3818. // Loop until the temperature has stabilized
  3819. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3820. #else
  3821. // Loop until the temperature is very close target
  3822. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3823. #endif //TEMP_RESIDENCY_TIME > 0
  3824. float theTarget = -1.0, old_temp = 9999.0;
  3825. bool wants_to_cool = false;
  3826. wait_for_heatup = true;
  3827. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3828. KEEPALIVE_STATE(NOT_BUSY);
  3829. do {
  3830. // Target temperature might be changed during the loop
  3831. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3832. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3833. theTarget = thermalManager.degTargetHotend(target_extruder);
  3834. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3835. if (no_wait_for_cooling && wants_to_cool) break;
  3836. }
  3837. now = millis();
  3838. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3839. next_temp_ms = now + 1000UL;
  3840. print_heaterstates();
  3841. #if TEMP_RESIDENCY_TIME > 0
  3842. SERIAL_PROTOCOLPGM(" W:");
  3843. if (residency_start_ms) {
  3844. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3845. SERIAL_PROTOCOLLN(rem);
  3846. }
  3847. else {
  3848. SERIAL_PROTOCOLLNPGM("?");
  3849. }
  3850. #else
  3851. SERIAL_EOL;
  3852. #endif
  3853. }
  3854. idle();
  3855. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3856. float temp = thermalManager.degHotend(target_extruder);
  3857. #if TEMP_RESIDENCY_TIME > 0
  3858. float temp_diff = fabs(theTarget - temp);
  3859. if (!residency_start_ms) {
  3860. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3861. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3862. }
  3863. else if (temp_diff > TEMP_HYSTERESIS) {
  3864. // Restart the timer whenever the temperature falls outside the hysteresis.
  3865. residency_start_ms = now;
  3866. }
  3867. #endif //TEMP_RESIDENCY_TIME > 0
  3868. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3869. if (wants_to_cool) {
  3870. // break after MIN_COOLING_SLOPE_TIME seconds
  3871. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3872. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3873. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3874. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3875. old_temp = temp;
  3876. }
  3877. }
  3878. } while (wait_for_heatup && TEMP_CONDITIONS);
  3879. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3880. KEEPALIVE_STATE(IN_HANDLER);
  3881. }
  3882. #if HAS_TEMP_BED
  3883. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3884. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3885. #endif
  3886. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3887. #define MIN_COOLING_SLOPE_TIME_BED 60
  3888. #endif
  3889. /**
  3890. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3891. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3892. */
  3893. inline void gcode_M190() {
  3894. if (DEBUGGING(DRYRUN)) return;
  3895. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3896. bool no_wait_for_cooling = code_seen('S');
  3897. if (no_wait_for_cooling || code_seen('R')) {
  3898. thermalManager.setTargetBed(code_value_temp_abs());
  3899. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3900. if (code_value_temp_abs() > BED_MINTEMP) {
  3901. /**
  3902. * We start the timer when 'heating and waiting' command arrives, LCD
  3903. * functions never wait. Cooling down managed by extruders.
  3904. *
  3905. * We do not check if the timer is already running because this check will
  3906. * be done for us inside the Stopwatch::start() method thus a running timer
  3907. * will not restart.
  3908. */
  3909. print_job_timer.start();
  3910. }
  3911. #endif
  3912. }
  3913. #if TEMP_BED_RESIDENCY_TIME > 0
  3914. millis_t residency_start_ms = 0;
  3915. // Loop until the temperature has stabilized
  3916. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3917. #else
  3918. // Loop until the temperature is very close target
  3919. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3920. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3921. float theTarget = -1.0, old_temp = 9999.0;
  3922. bool wants_to_cool = false;
  3923. wait_for_heatup = true;
  3924. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3925. KEEPALIVE_STATE(NOT_BUSY);
  3926. target_extruder = active_extruder; // for print_heaterstates
  3927. do {
  3928. // Target temperature might be changed during the loop
  3929. if (theTarget != thermalManager.degTargetBed()) {
  3930. wants_to_cool = thermalManager.isCoolingBed();
  3931. theTarget = thermalManager.degTargetBed();
  3932. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3933. if (no_wait_for_cooling && wants_to_cool) break;
  3934. }
  3935. now = millis();
  3936. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3937. next_temp_ms = now + 1000UL;
  3938. print_heaterstates();
  3939. #if TEMP_BED_RESIDENCY_TIME > 0
  3940. SERIAL_PROTOCOLPGM(" W:");
  3941. if (residency_start_ms) {
  3942. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3943. SERIAL_PROTOCOLLN(rem);
  3944. }
  3945. else {
  3946. SERIAL_PROTOCOLLNPGM("?");
  3947. }
  3948. #else
  3949. SERIAL_EOL;
  3950. #endif
  3951. }
  3952. idle();
  3953. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3954. float temp = thermalManager.degBed();
  3955. #if TEMP_BED_RESIDENCY_TIME > 0
  3956. float temp_diff = fabs(theTarget - temp);
  3957. if (!residency_start_ms) {
  3958. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3959. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3960. }
  3961. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3962. // Restart the timer whenever the temperature falls outside the hysteresis.
  3963. residency_start_ms = now;
  3964. }
  3965. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3966. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3967. if (wants_to_cool) {
  3968. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3969. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3970. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3971. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3972. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3973. old_temp = temp;
  3974. }
  3975. }
  3976. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3977. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  3978. KEEPALIVE_STATE(IN_HANDLER);
  3979. }
  3980. #endif // HAS_TEMP_BED
  3981. /**
  3982. * M110: Set Current Line Number
  3983. */
  3984. inline void gcode_M110() {
  3985. if (code_seen('N')) gcode_N = code_value_long();
  3986. }
  3987. /**
  3988. * M111: Set the debug level
  3989. */
  3990. inline void gcode_M111() {
  3991. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3992. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3993. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3994. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3995. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3996. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3998. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3999. #endif
  4000. const static char* const debug_strings[] PROGMEM = {
  4001. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4003. str_debug_32
  4004. #endif
  4005. };
  4006. SERIAL_ECHO_START;
  4007. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4008. if (marlin_debug_flags) {
  4009. uint8_t comma = 0;
  4010. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4011. if (TEST(marlin_debug_flags, i)) {
  4012. if (comma++) SERIAL_CHAR(',');
  4013. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4014. }
  4015. }
  4016. }
  4017. else {
  4018. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4019. }
  4020. SERIAL_EOL;
  4021. }
  4022. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4023. /**
  4024. * M113: Get or set Host Keepalive interval (0 to disable)
  4025. *
  4026. * S<seconds> Optional. Set the keepalive interval.
  4027. */
  4028. inline void gcode_M113() {
  4029. if (code_seen('S')) {
  4030. host_keepalive_interval = code_value_byte();
  4031. NOMORE(host_keepalive_interval, 60);
  4032. }
  4033. else {
  4034. SERIAL_ECHO_START;
  4035. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4036. }
  4037. }
  4038. #endif
  4039. #if ENABLED(BARICUDA)
  4040. #if HAS_HEATER_1
  4041. /**
  4042. * M126: Heater 1 valve open
  4043. */
  4044. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4045. /**
  4046. * M127: Heater 1 valve close
  4047. */
  4048. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4049. #endif
  4050. #if HAS_HEATER_2
  4051. /**
  4052. * M128: Heater 2 valve open
  4053. */
  4054. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4055. /**
  4056. * M129: Heater 2 valve close
  4057. */
  4058. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4059. #endif
  4060. #endif //BARICUDA
  4061. /**
  4062. * M140: Set bed temperature
  4063. */
  4064. inline void gcode_M140() {
  4065. if (DEBUGGING(DRYRUN)) return;
  4066. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4067. }
  4068. #if ENABLED(ULTIPANEL)
  4069. /**
  4070. * M145: Set the heatup state for a material in the LCD menu
  4071. * S<material> (0=PLA, 1=ABS)
  4072. * H<hotend temp>
  4073. * B<bed temp>
  4074. * F<fan speed>
  4075. */
  4076. inline void gcode_M145() {
  4077. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4078. if (material < 0 || material > 1) {
  4079. SERIAL_ERROR_START;
  4080. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4081. }
  4082. else {
  4083. int v;
  4084. switch (material) {
  4085. case 0:
  4086. if (code_seen('H')) {
  4087. v = code_value_int();
  4088. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4089. }
  4090. if (code_seen('F')) {
  4091. v = code_value_int();
  4092. preheatFanSpeed1 = constrain(v, 0, 255);
  4093. }
  4094. #if TEMP_SENSOR_BED != 0
  4095. if (code_seen('B')) {
  4096. v = code_value_int();
  4097. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4098. }
  4099. #endif
  4100. break;
  4101. case 1:
  4102. if (code_seen('H')) {
  4103. v = code_value_int();
  4104. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4105. }
  4106. if (code_seen('F')) {
  4107. v = code_value_int();
  4108. preheatFanSpeed2 = constrain(v, 0, 255);
  4109. }
  4110. #if TEMP_SENSOR_BED != 0
  4111. if (code_seen('B')) {
  4112. v = code_value_int();
  4113. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4114. }
  4115. #endif
  4116. break;
  4117. }
  4118. }
  4119. }
  4120. #endif // ULTIPANEL
  4121. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4122. /**
  4123. * M149: Set temperature units
  4124. */
  4125. inline void gcode_M149() {
  4126. if (code_seen('C')) {
  4127. set_input_temp_units(TEMPUNIT_C);
  4128. } else if (code_seen('K')) {
  4129. set_input_temp_units(TEMPUNIT_K);
  4130. } else if (code_seen('F')) {
  4131. set_input_temp_units(TEMPUNIT_F);
  4132. }
  4133. }
  4134. #endif
  4135. #if HAS_POWER_SWITCH
  4136. /**
  4137. * M80: Turn on Power Supply
  4138. */
  4139. inline void gcode_M80() {
  4140. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4141. /**
  4142. * If you have a switch on suicide pin, this is useful
  4143. * if you want to start another print with suicide feature after
  4144. * a print without suicide...
  4145. */
  4146. #if HAS_SUICIDE
  4147. OUT_WRITE(SUICIDE_PIN, HIGH);
  4148. #endif
  4149. #if ENABLED(ULTIPANEL)
  4150. powersupply = true;
  4151. LCD_MESSAGEPGM(WELCOME_MSG);
  4152. lcd_update();
  4153. #endif
  4154. }
  4155. #endif // HAS_POWER_SWITCH
  4156. /**
  4157. * M81: Turn off Power, including Power Supply, if there is one.
  4158. *
  4159. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4160. */
  4161. inline void gcode_M81() {
  4162. thermalManager.disable_all_heaters();
  4163. stepper.finish_and_disable();
  4164. #if FAN_COUNT > 0
  4165. #if FAN_COUNT > 1
  4166. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4167. #else
  4168. fanSpeeds[0] = 0;
  4169. #endif
  4170. #endif
  4171. delay(1000); // Wait 1 second before switching off
  4172. #if HAS_SUICIDE
  4173. stepper.synchronize();
  4174. suicide();
  4175. #elif HAS_POWER_SWITCH
  4176. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4177. #endif
  4178. #if ENABLED(ULTIPANEL)
  4179. #if HAS_POWER_SWITCH
  4180. powersupply = false;
  4181. #endif
  4182. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4183. lcd_update();
  4184. #endif
  4185. }
  4186. /**
  4187. * M82: Set E codes absolute (default)
  4188. */
  4189. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4190. /**
  4191. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4192. */
  4193. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4194. /**
  4195. * M18, M84: Disable all stepper motors
  4196. */
  4197. inline void gcode_M18_M84() {
  4198. if (code_seen('S')) {
  4199. stepper_inactive_time = code_value_millis_from_seconds();
  4200. }
  4201. else {
  4202. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4203. if (all_axis) {
  4204. stepper.finish_and_disable();
  4205. }
  4206. else {
  4207. stepper.synchronize();
  4208. if (code_seen('X')) disable_x();
  4209. if (code_seen('Y')) disable_y();
  4210. if (code_seen('Z')) disable_z();
  4211. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4212. if (code_seen('E')) {
  4213. disable_e0();
  4214. disable_e1();
  4215. disable_e2();
  4216. disable_e3();
  4217. }
  4218. #endif
  4219. }
  4220. }
  4221. }
  4222. /**
  4223. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4224. */
  4225. inline void gcode_M85() {
  4226. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4227. }
  4228. /**
  4229. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4230. * (Follows the same syntax as G92)
  4231. */
  4232. inline void gcode_M92() {
  4233. LOOP_XYZE(i) {
  4234. if (code_seen(axis_codes[i])) {
  4235. if (i == E_AXIS) {
  4236. float value = code_value_per_axis_unit(i);
  4237. if (value < 20.0) {
  4238. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4239. planner.max_e_jerk *= factor;
  4240. planner.max_feedrate_mm_s[i] *= factor;
  4241. planner.max_acceleration_steps_per_s2[i] *= factor;
  4242. }
  4243. planner.axis_steps_per_mm[i] = value;
  4244. }
  4245. else {
  4246. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4247. }
  4248. }
  4249. }
  4250. planner.refresh_positioning();
  4251. }
  4252. /**
  4253. * Output the current position to serial
  4254. */
  4255. static void report_current_position() {
  4256. SERIAL_PROTOCOLPGM("X:");
  4257. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4258. SERIAL_PROTOCOLPGM(" Y:");
  4259. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4260. SERIAL_PROTOCOLPGM(" Z:");
  4261. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4262. SERIAL_PROTOCOLPGM(" E:");
  4263. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4264. stepper.report_positions();
  4265. #if IS_SCARA
  4266. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4267. SERIAL_PROTOCOL(delta[X_AXIS]);
  4268. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4269. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4270. SERIAL_EOL;
  4271. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4272. SERIAL_PROTOCOL(delta[X_AXIS]);
  4273. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4274. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4275. SERIAL_EOL;
  4276. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4277. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4278. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4279. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4280. SERIAL_EOL; SERIAL_EOL;
  4281. #endif
  4282. }
  4283. /**
  4284. * M114: Output current position to serial port
  4285. */
  4286. inline void gcode_M114() { report_current_position(); }
  4287. /**
  4288. * M115: Capabilities string
  4289. */
  4290. inline void gcode_M115() {
  4291. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4292. }
  4293. /**
  4294. * M117: Set LCD Status Message
  4295. */
  4296. inline void gcode_M117() {
  4297. lcd_setstatus(current_command_args);
  4298. }
  4299. /**
  4300. * M119: Output endstop states to serial output
  4301. */
  4302. inline void gcode_M119() { endstops.M119(); }
  4303. /**
  4304. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4305. */
  4306. inline void gcode_M120() { endstops.enable_globally(true); }
  4307. /**
  4308. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4309. */
  4310. inline void gcode_M121() { endstops.enable_globally(false); }
  4311. #if ENABLED(BLINKM)
  4312. /**
  4313. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4314. */
  4315. inline void gcode_M150() {
  4316. SendColors(
  4317. code_seen('R') ? code_value_byte() : 0,
  4318. code_seen('U') ? code_value_byte() : 0,
  4319. code_seen('B') ? code_value_byte() : 0
  4320. );
  4321. }
  4322. #endif // BLINKM
  4323. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4324. /**
  4325. * M155: Send data to a I2C slave device
  4326. *
  4327. * This is a PoC, the formating and arguments for the GCODE will
  4328. * change to be more compatible, the current proposal is:
  4329. *
  4330. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4331. *
  4332. * M155 B<byte-1 value in base 10>
  4333. * M155 B<byte-2 value in base 10>
  4334. * M155 B<byte-3 value in base 10>
  4335. *
  4336. * M155 S1 ; Send the buffered data and reset the buffer
  4337. * M155 R1 ; Reset the buffer without sending data
  4338. *
  4339. */
  4340. inline void gcode_M155() {
  4341. // Set the target address
  4342. if (code_seen('A')) i2c.address(code_value_byte());
  4343. // Add a new byte to the buffer
  4344. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4345. // Flush the buffer to the bus
  4346. if (code_seen('S')) i2c.send();
  4347. // Reset and rewind the buffer
  4348. else if (code_seen('R')) i2c.reset();
  4349. }
  4350. /**
  4351. * M156: Request X bytes from I2C slave device
  4352. *
  4353. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4354. */
  4355. inline void gcode_M156() {
  4356. if (code_seen('A')) i2c.address(code_value_byte());
  4357. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4358. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4359. i2c.relay(bytes);
  4360. }
  4361. else {
  4362. SERIAL_ERROR_START;
  4363. SERIAL_ERRORLN("Bad i2c request");
  4364. }
  4365. }
  4366. #endif // EXPERIMENTAL_I2CBUS
  4367. /**
  4368. * M200: Set filament diameter and set E axis units to cubic units
  4369. *
  4370. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4371. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4372. */
  4373. inline void gcode_M200() {
  4374. if (get_target_extruder_from_command(200)) return;
  4375. if (code_seen('D')) {
  4376. // setting any extruder filament size disables volumetric on the assumption that
  4377. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4378. // for all extruders
  4379. volumetric_enabled = (code_value_linear_units() != 0.0);
  4380. if (volumetric_enabled) {
  4381. filament_size[target_extruder] = code_value_linear_units();
  4382. // make sure all extruders have some sane value for the filament size
  4383. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4384. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4385. }
  4386. }
  4387. else {
  4388. //reserved for setting filament diameter via UFID or filament measuring device
  4389. return;
  4390. }
  4391. calculate_volumetric_multipliers();
  4392. }
  4393. /**
  4394. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4395. */
  4396. inline void gcode_M201() {
  4397. LOOP_XYZE(i) {
  4398. if (code_seen(axis_codes[i])) {
  4399. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4400. }
  4401. }
  4402. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4403. planner.reset_acceleration_rates();
  4404. }
  4405. #if 0 // Not used for Sprinter/grbl gen6
  4406. inline void gcode_M202() {
  4407. LOOP_XYZE(i) {
  4408. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4409. }
  4410. }
  4411. #endif
  4412. /**
  4413. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4414. */
  4415. inline void gcode_M203() {
  4416. LOOP_XYZE(i)
  4417. if (code_seen(axis_codes[i]))
  4418. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4419. }
  4420. /**
  4421. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4422. *
  4423. * P = Printing moves
  4424. * R = Retract only (no X, Y, Z) moves
  4425. * T = Travel (non printing) moves
  4426. *
  4427. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4428. */
  4429. inline void gcode_M204() {
  4430. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4431. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4432. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4433. }
  4434. if (code_seen('P')) {
  4435. planner.acceleration = code_value_linear_units();
  4436. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4437. }
  4438. if (code_seen('R')) {
  4439. planner.retract_acceleration = code_value_linear_units();
  4440. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4441. }
  4442. if (code_seen('T')) {
  4443. planner.travel_acceleration = code_value_linear_units();
  4444. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4445. }
  4446. }
  4447. /**
  4448. * M205: Set Advanced Settings
  4449. *
  4450. * S = Min Feed Rate (units/s)
  4451. * T = Min Travel Feed Rate (units/s)
  4452. * B = Min Segment Time (µs)
  4453. * X = Max XY Jerk (units/sec^2)
  4454. * Z = Max Z Jerk (units/sec^2)
  4455. * E = Max E Jerk (units/sec^2)
  4456. */
  4457. inline void gcode_M205() {
  4458. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4459. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4460. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4461. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4462. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4463. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4464. }
  4465. /**
  4466. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4467. */
  4468. inline void gcode_M206() {
  4469. LOOP_XYZ(i)
  4470. if (code_seen(axis_codes[i]))
  4471. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4472. #if IS_SCARA
  4473. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4474. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4475. #endif
  4476. SYNC_PLAN_POSITION_KINEMATIC();
  4477. report_current_position();
  4478. }
  4479. #if ENABLED(DELTA)
  4480. /**
  4481. * M665: Set delta configurations
  4482. *
  4483. * L = diagonal rod
  4484. * R = delta radius
  4485. * S = segments per second
  4486. * A = Alpha (Tower 1) diagonal rod trim
  4487. * B = Beta (Tower 2) diagonal rod trim
  4488. * C = Gamma (Tower 3) diagonal rod trim
  4489. */
  4490. inline void gcode_M665() {
  4491. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4492. if (code_seen('R')) delta_radius = code_value_linear_units();
  4493. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4494. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4495. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4496. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4497. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4498. }
  4499. /**
  4500. * M666: Set delta endstop adjustment
  4501. */
  4502. inline void gcode_M666() {
  4503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4504. if (DEBUGGING(LEVELING)) {
  4505. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4506. }
  4507. #endif
  4508. LOOP_XYZ(i) {
  4509. if (code_seen(axis_codes[i])) {
  4510. endstop_adj[i] = code_value_axis_units(i);
  4511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4512. if (DEBUGGING(LEVELING)) {
  4513. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4514. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4515. }
  4516. #endif
  4517. }
  4518. }
  4519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4520. if (DEBUGGING(LEVELING)) {
  4521. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4522. }
  4523. #endif
  4524. }
  4525. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4526. /**
  4527. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4528. */
  4529. inline void gcode_M666() {
  4530. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4531. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4532. }
  4533. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4534. #if ENABLED(FWRETRACT)
  4535. /**
  4536. * M207: Set firmware retraction values
  4537. *
  4538. * S[+units] retract_length
  4539. * W[+units] retract_length_swap (multi-extruder)
  4540. * F[units/min] retract_feedrate_mm_s
  4541. * Z[units] retract_zlift
  4542. */
  4543. inline void gcode_M207() {
  4544. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4545. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4546. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4547. #if EXTRUDERS > 1
  4548. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4549. #endif
  4550. }
  4551. /**
  4552. * M208: Set firmware un-retraction values
  4553. *
  4554. * S[+units] retract_recover_length (in addition to M207 S*)
  4555. * W[+units] retract_recover_length_swap (multi-extruder)
  4556. * F[units/min] retract_recover_feedrate_mm_s
  4557. */
  4558. inline void gcode_M208() {
  4559. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4560. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4561. #if EXTRUDERS > 1
  4562. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4563. #endif
  4564. }
  4565. /**
  4566. * M209: Enable automatic retract (M209 S1)
  4567. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4568. */
  4569. inline void gcode_M209() {
  4570. if (code_seen('S')) {
  4571. autoretract_enabled = code_value_bool();
  4572. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4573. }
  4574. }
  4575. #endif // FWRETRACT
  4576. /**
  4577. * M211: Enable, Disable, and/or Report software endstops
  4578. *
  4579. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4580. */
  4581. inline void gcode_M211() {
  4582. SERIAL_ECHO_START;
  4583. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4584. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4585. #endif
  4586. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4587. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4588. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4589. #else
  4590. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4591. SERIAL_ECHOPGM(MSG_OFF);
  4592. #endif
  4593. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4594. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4595. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4596. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4597. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4598. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4599. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4600. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4601. }
  4602. #if HOTENDS > 1
  4603. /**
  4604. * M218 - set hotend offset (in linear units)
  4605. *
  4606. * T<tool>
  4607. * X<xoffset>
  4608. * Y<yoffset>
  4609. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4610. */
  4611. inline void gcode_M218() {
  4612. if (get_target_extruder_from_command(218)) return;
  4613. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4614. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4615. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4616. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4617. #endif
  4618. SERIAL_ECHO_START;
  4619. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4620. HOTEND_LOOP() {
  4621. SERIAL_CHAR(' ');
  4622. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4623. SERIAL_CHAR(',');
  4624. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4625. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4626. SERIAL_CHAR(',');
  4627. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4628. #endif
  4629. }
  4630. SERIAL_EOL;
  4631. }
  4632. #endif // HOTENDS > 1
  4633. /**
  4634. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4635. */
  4636. inline void gcode_M220() {
  4637. if (code_seen('S')) feedrate_percentage = code_value_int();
  4638. }
  4639. /**
  4640. * M221: Set extrusion percentage (M221 T0 S95)
  4641. */
  4642. inline void gcode_M221() {
  4643. if (get_target_extruder_from_command(221)) return;
  4644. if (code_seen('S'))
  4645. flow_percentage[target_extruder] = code_value_int();
  4646. }
  4647. /**
  4648. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4649. */
  4650. inline void gcode_M226() {
  4651. if (code_seen('P')) {
  4652. int pin_number = code_value_int();
  4653. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4654. if (pin_state >= -1 && pin_state <= 1) {
  4655. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4656. if (sensitive_pins[i] == pin_number) {
  4657. pin_number = -1;
  4658. break;
  4659. }
  4660. }
  4661. if (pin_number > -1) {
  4662. int target = LOW;
  4663. stepper.synchronize();
  4664. pinMode(pin_number, INPUT);
  4665. switch (pin_state) {
  4666. case 1:
  4667. target = HIGH;
  4668. break;
  4669. case 0:
  4670. target = LOW;
  4671. break;
  4672. case -1:
  4673. target = !digitalRead(pin_number);
  4674. break;
  4675. }
  4676. while (digitalRead(pin_number) != target) idle();
  4677. } // pin_number > -1
  4678. } // pin_state -1 0 1
  4679. } // code_seen('P')
  4680. }
  4681. #if HAS_SERVOS
  4682. /**
  4683. * M280: Get or set servo position. P<index> [S<angle>]
  4684. */
  4685. inline void gcode_M280() {
  4686. if (!code_seen('P')) return;
  4687. int servo_index = code_value_int();
  4688. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4689. if (code_seen('S'))
  4690. MOVE_SERVO(servo_index, code_value_int());
  4691. else {
  4692. SERIAL_ECHO_START;
  4693. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4694. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4695. }
  4696. }
  4697. else {
  4698. SERIAL_ERROR_START;
  4699. SERIAL_ECHOPAIR("Servo ", servo_index);
  4700. SERIAL_ECHOLNPGM(" out of range");
  4701. }
  4702. }
  4703. #endif // HAS_SERVOS
  4704. #if HAS_BUZZER
  4705. /**
  4706. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4707. */
  4708. inline void gcode_M300() {
  4709. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4710. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4711. // Limits the tone duration to 0-5 seconds.
  4712. NOMORE(duration, 5000);
  4713. BUZZ(duration, frequency);
  4714. }
  4715. #endif // HAS_BUZZER
  4716. #if ENABLED(PIDTEMP)
  4717. /**
  4718. * M301: Set PID parameters P I D (and optionally C, L)
  4719. *
  4720. * P[float] Kp term
  4721. * I[float] Ki term (unscaled)
  4722. * D[float] Kd term (unscaled)
  4723. *
  4724. * With PID_EXTRUSION_SCALING:
  4725. *
  4726. * C[float] Kc term
  4727. * L[float] LPQ length
  4728. */
  4729. inline void gcode_M301() {
  4730. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4731. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4732. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4733. if (e < HOTENDS) { // catch bad input value
  4734. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4735. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4736. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4737. #if ENABLED(PID_EXTRUSION_SCALING)
  4738. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4739. if (code_seen('L')) lpq_len = code_value_float();
  4740. NOMORE(lpq_len, LPQ_MAX_LEN);
  4741. #endif
  4742. thermalManager.updatePID();
  4743. SERIAL_ECHO_START;
  4744. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4745. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4746. #endif // PID_PARAMS_PER_HOTEND
  4747. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4748. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4749. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4750. #if ENABLED(PID_EXTRUSION_SCALING)
  4751. //Kc does not have scaling applied above, or in resetting defaults
  4752. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4753. #endif
  4754. SERIAL_EOL;
  4755. }
  4756. else {
  4757. SERIAL_ERROR_START;
  4758. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4759. }
  4760. }
  4761. #endif // PIDTEMP
  4762. #if ENABLED(PIDTEMPBED)
  4763. inline void gcode_M304() {
  4764. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4765. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4766. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4767. thermalManager.updatePID();
  4768. SERIAL_ECHO_START;
  4769. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4770. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4771. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4772. }
  4773. #endif // PIDTEMPBED
  4774. #if defined(CHDK) || HAS_PHOTOGRAPH
  4775. /**
  4776. * M240: Trigger a camera by emulating a Canon RC-1
  4777. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4778. */
  4779. inline void gcode_M240() {
  4780. #ifdef CHDK
  4781. OUT_WRITE(CHDK, HIGH);
  4782. chdkHigh = millis();
  4783. chdkActive = true;
  4784. #elif HAS_PHOTOGRAPH
  4785. const uint8_t NUM_PULSES = 16;
  4786. const float PULSE_LENGTH = 0.01524;
  4787. for (int i = 0; i < NUM_PULSES; i++) {
  4788. WRITE(PHOTOGRAPH_PIN, HIGH);
  4789. _delay_ms(PULSE_LENGTH);
  4790. WRITE(PHOTOGRAPH_PIN, LOW);
  4791. _delay_ms(PULSE_LENGTH);
  4792. }
  4793. delay(7.33);
  4794. for (int i = 0; i < NUM_PULSES; i++) {
  4795. WRITE(PHOTOGRAPH_PIN, HIGH);
  4796. _delay_ms(PULSE_LENGTH);
  4797. WRITE(PHOTOGRAPH_PIN, LOW);
  4798. _delay_ms(PULSE_LENGTH);
  4799. }
  4800. #endif // !CHDK && HAS_PHOTOGRAPH
  4801. }
  4802. #endif // CHDK || PHOTOGRAPH_PIN
  4803. #if HAS_LCD_CONTRAST
  4804. /**
  4805. * M250: Read and optionally set the LCD contrast
  4806. */
  4807. inline void gcode_M250() {
  4808. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4809. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4810. SERIAL_PROTOCOL(lcd_contrast);
  4811. SERIAL_EOL;
  4812. }
  4813. #endif // HAS_LCD_CONTRAST
  4814. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4815. /**
  4816. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4817. *
  4818. * S<temperature> sets the minimum extrude temperature
  4819. * P<bool> enables (1) or disables (0) cold extrusion
  4820. *
  4821. * Examples:
  4822. *
  4823. * M302 ; report current cold extrusion state
  4824. * M302 P0 ; enable cold extrusion checking
  4825. * M302 P1 ; disables cold extrusion checking
  4826. * M302 S0 ; always allow extrusion (disables checking)
  4827. * M302 S170 ; only allow extrusion above 170
  4828. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4829. */
  4830. inline void gcode_M302() {
  4831. bool seen_S = code_seen('S');
  4832. if (seen_S) {
  4833. thermalManager.extrude_min_temp = code_value_temp_abs();
  4834. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4835. }
  4836. if (code_seen('P'))
  4837. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4838. else if (!seen_S) {
  4839. // Report current state
  4840. SERIAL_ECHO_START;
  4841. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4842. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4843. SERIAL_ECHOLNPGM("C)");
  4844. }
  4845. }
  4846. #endif // PREVENT_COLD_EXTRUSION
  4847. /**
  4848. * M303: PID relay autotune
  4849. *
  4850. * S<temperature> sets the target temperature. (default 150C)
  4851. * E<extruder> (-1 for the bed) (default 0)
  4852. * C<cycles>
  4853. * U<bool> with a non-zero value will apply the result to current settings
  4854. */
  4855. inline void gcode_M303() {
  4856. #if HAS_PID_HEATING
  4857. int e = code_seen('E') ? code_value_int() : 0;
  4858. int c = code_seen('C') ? code_value_int() : 5;
  4859. bool u = code_seen('U') && code_value_bool();
  4860. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4861. if (e >= 0 && e < HOTENDS)
  4862. target_extruder = e;
  4863. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4864. thermalManager.PID_autotune(temp, e, c, u);
  4865. KEEPALIVE_STATE(IN_HANDLER);
  4866. #else
  4867. SERIAL_ERROR_START;
  4868. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4869. #endif
  4870. }
  4871. #if ENABLED(MORGAN_SCARA)
  4872. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4873. if (IsRunning()) {
  4874. //gcode_get_destination(); // For X Y Z E F
  4875. forward_kinematics_SCARA(delta_a, delta_b);
  4876. destination[X_AXIS] = cartes[X_AXIS];
  4877. destination[Y_AXIS] = cartes[Y_AXIS];
  4878. destination[Z_AXIS] = current_position[Z_AXIS];
  4879. prepare_move_to_destination();
  4880. return true;
  4881. }
  4882. return false;
  4883. }
  4884. /**
  4885. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4886. */
  4887. inline bool gcode_M360() {
  4888. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4889. return SCARA_move_to_cal(0, 120);
  4890. }
  4891. /**
  4892. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4893. */
  4894. inline bool gcode_M361() {
  4895. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4896. return SCARA_move_to_cal(90, 130);
  4897. }
  4898. /**
  4899. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4900. */
  4901. inline bool gcode_M362() {
  4902. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4903. return SCARA_move_to_cal(60, 180);
  4904. }
  4905. /**
  4906. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4907. */
  4908. inline bool gcode_M363() {
  4909. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4910. return SCARA_move_to_cal(50, 90);
  4911. }
  4912. /**
  4913. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4914. */
  4915. inline bool gcode_M364() {
  4916. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4917. return SCARA_move_to_cal(45, 135);
  4918. }
  4919. #endif // SCARA
  4920. #if ENABLED(EXT_SOLENOID)
  4921. void enable_solenoid(uint8_t num) {
  4922. switch (num) {
  4923. case 0:
  4924. OUT_WRITE(SOL0_PIN, HIGH);
  4925. break;
  4926. #if HAS_SOLENOID_1
  4927. case 1:
  4928. OUT_WRITE(SOL1_PIN, HIGH);
  4929. break;
  4930. #endif
  4931. #if HAS_SOLENOID_2
  4932. case 2:
  4933. OUT_WRITE(SOL2_PIN, HIGH);
  4934. break;
  4935. #endif
  4936. #if HAS_SOLENOID_3
  4937. case 3:
  4938. OUT_WRITE(SOL3_PIN, HIGH);
  4939. break;
  4940. #endif
  4941. default:
  4942. SERIAL_ECHO_START;
  4943. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4944. break;
  4945. }
  4946. }
  4947. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4948. void disable_all_solenoids() {
  4949. OUT_WRITE(SOL0_PIN, LOW);
  4950. OUT_WRITE(SOL1_PIN, LOW);
  4951. OUT_WRITE(SOL2_PIN, LOW);
  4952. OUT_WRITE(SOL3_PIN, LOW);
  4953. }
  4954. /**
  4955. * M380: Enable solenoid on the active extruder
  4956. */
  4957. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4958. /**
  4959. * M381: Disable all solenoids
  4960. */
  4961. inline void gcode_M381() { disable_all_solenoids(); }
  4962. #endif // EXT_SOLENOID
  4963. /**
  4964. * M400: Finish all moves
  4965. */
  4966. inline void gcode_M400() { stepper.synchronize(); }
  4967. #if HAS_BED_PROBE
  4968. /**
  4969. * M401: Engage Z Servo endstop if available
  4970. */
  4971. inline void gcode_M401() { DEPLOY_PROBE(); }
  4972. /**
  4973. * M402: Retract Z Servo endstop if enabled
  4974. */
  4975. inline void gcode_M402() { STOW_PROBE(); }
  4976. #endif // HAS_BED_PROBE
  4977. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4978. /**
  4979. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  4980. */
  4981. inline void gcode_M404() {
  4982. if (code_seen('W')) {
  4983. filament_width_nominal = code_value_linear_units();
  4984. }
  4985. else {
  4986. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4987. SERIAL_PROTOCOLLN(filament_width_nominal);
  4988. }
  4989. }
  4990. /**
  4991. * M405: Turn on filament sensor for control
  4992. */
  4993. inline void gcode_M405() {
  4994. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4995. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4996. if (code_seen('D')) meas_delay_cm = code_value_int();
  4997. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4998. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  4999. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5000. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5001. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5002. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5003. }
  5004. filament_sensor = true;
  5005. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5006. //SERIAL_PROTOCOL(filament_width_meas);
  5007. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5008. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5009. }
  5010. /**
  5011. * M406: Turn off filament sensor for control
  5012. */
  5013. inline void gcode_M406() { filament_sensor = false; }
  5014. /**
  5015. * M407: Get measured filament diameter on serial output
  5016. */
  5017. inline void gcode_M407() {
  5018. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5019. SERIAL_PROTOCOLLN(filament_width_meas);
  5020. }
  5021. #endif // FILAMENT_WIDTH_SENSOR
  5022. void quickstop_stepper() {
  5023. stepper.quick_stop();
  5024. #if DISABLED(SCARA)
  5025. stepper.synchronize();
  5026. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5027. SYNC_PLAN_POSITION_KINEMATIC();
  5028. #endif
  5029. }
  5030. #if ENABLED(MESH_BED_LEVELING)
  5031. /**
  5032. * M420: Enable/Disable Mesh Bed Leveling
  5033. */
  5034. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5035. /**
  5036. * M421: Set a single Mesh Bed Leveling Z coordinate
  5037. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5038. */
  5039. inline void gcode_M421() {
  5040. int8_t px = 0, py = 0;
  5041. float z = 0;
  5042. bool hasX, hasY, hasZ, hasI, hasJ;
  5043. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5044. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5045. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5046. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5047. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5048. if (hasX && hasY && hasZ) {
  5049. if (px >= 0 && py >= 0)
  5050. mbl.set_z(px, py, z);
  5051. else {
  5052. SERIAL_ERROR_START;
  5053. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5054. }
  5055. }
  5056. else if (hasI && hasJ && hasZ) {
  5057. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5058. mbl.set_z(px, py, z);
  5059. else {
  5060. SERIAL_ERROR_START;
  5061. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5062. }
  5063. }
  5064. else {
  5065. SERIAL_ERROR_START;
  5066. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5067. }
  5068. }
  5069. #endif
  5070. /**
  5071. * M428: Set home_offset based on the distance between the
  5072. * current_position and the nearest "reference point."
  5073. * If an axis is past center its endstop position
  5074. * is the reference-point. Otherwise it uses 0. This allows
  5075. * the Z offset to be set near the bed when using a max endstop.
  5076. *
  5077. * M428 can't be used more than 2cm away from 0 or an endstop.
  5078. *
  5079. * Use M206 to set these values directly.
  5080. */
  5081. inline void gcode_M428() {
  5082. bool err = false;
  5083. LOOP_XYZ(i) {
  5084. if (axis_homed[i]) {
  5085. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5086. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5087. if (diff > -20 && diff < 20) {
  5088. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5089. }
  5090. else {
  5091. SERIAL_ERROR_START;
  5092. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5093. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5094. BUZZ(200, 40);
  5095. err = true;
  5096. break;
  5097. }
  5098. }
  5099. }
  5100. if (!err) {
  5101. SYNC_PLAN_POSITION_KINEMATIC();
  5102. report_current_position();
  5103. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5104. BUZZ(200, 659);
  5105. BUZZ(200, 698);
  5106. }
  5107. }
  5108. /**
  5109. * M500: Store settings in EEPROM
  5110. */
  5111. inline void gcode_M500() {
  5112. Config_StoreSettings();
  5113. }
  5114. /**
  5115. * M501: Read settings from EEPROM
  5116. */
  5117. inline void gcode_M501() {
  5118. Config_RetrieveSettings();
  5119. }
  5120. /**
  5121. * M502: Revert to default settings
  5122. */
  5123. inline void gcode_M502() {
  5124. Config_ResetDefault();
  5125. }
  5126. /**
  5127. * M503: print settings currently in memory
  5128. */
  5129. inline void gcode_M503() {
  5130. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5131. }
  5132. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5133. /**
  5134. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5135. */
  5136. inline void gcode_M540() {
  5137. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5138. }
  5139. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5140. #if HAS_BED_PROBE
  5141. inline void gcode_M851() {
  5142. SERIAL_ECHO_START;
  5143. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5144. SERIAL_CHAR(' ');
  5145. if (code_seen('Z')) {
  5146. float value = code_value_axis_units(Z_AXIS);
  5147. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5148. zprobe_zoffset = value;
  5149. SERIAL_ECHO(zprobe_zoffset);
  5150. }
  5151. else {
  5152. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5153. SERIAL_CHAR(' ');
  5154. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5155. }
  5156. }
  5157. else {
  5158. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5159. }
  5160. SERIAL_EOL;
  5161. }
  5162. #endif // HAS_BED_PROBE
  5163. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5164. /**
  5165. * M600: Pause for filament change
  5166. *
  5167. * E[distance] - Retract the filament this far (negative value)
  5168. * Z[distance] - Move the Z axis by this distance
  5169. * X[position] - Move to this X position, with Y
  5170. * Y[position] - Move to this Y position, with X
  5171. * L[distance] - Retract distance for removal (manual reload)
  5172. *
  5173. * Default values are used for omitted arguments.
  5174. *
  5175. */
  5176. inline void gcode_M600() {
  5177. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5178. SERIAL_ERROR_START;
  5179. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5180. return;
  5181. }
  5182. // Show initial message and wait for synchronize steppers
  5183. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5184. stepper.synchronize();
  5185. float lastpos[NUM_AXIS];
  5186. // Save current position of all axes
  5187. LOOP_XYZE(i)
  5188. lastpos[i] = destination[i] = current_position[i];
  5189. // Define runplan for move axes
  5190. #if IS_KINEMATIC
  5191. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5192. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5193. #else
  5194. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5195. #endif
  5196. KEEPALIVE_STATE(IN_HANDLER);
  5197. // Initial retract before move to filament change position
  5198. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5199. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5200. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5201. #endif
  5202. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5203. // Lift Z axis
  5204. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5205. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5206. FILAMENT_CHANGE_Z_ADD
  5207. #else
  5208. 0
  5209. #endif
  5210. ;
  5211. if (z_lift > 0) {
  5212. destination[Z_AXIS] += z_lift;
  5213. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5214. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5215. }
  5216. // Move XY axes to filament exchange position
  5217. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5218. #ifdef FILAMENT_CHANGE_X_POS
  5219. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5220. #endif
  5221. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5222. #ifdef FILAMENT_CHANGE_Y_POS
  5223. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5224. #endif
  5225. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5226. stepper.synchronize();
  5227. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5228. // Unload filament
  5229. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5230. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5231. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5232. #endif
  5233. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5234. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5235. stepper.synchronize();
  5236. disable_e0();
  5237. disable_e1();
  5238. disable_e2();
  5239. disable_e3();
  5240. delay(100);
  5241. #if HAS_BUZZER
  5242. millis_t next_tick = 0;
  5243. #endif
  5244. // Wait for filament insert by user and press button
  5245. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5246. while (!lcd_clicked()) {
  5247. #if HAS_BUZZER
  5248. millis_t ms = millis();
  5249. if (ms >= next_tick) {
  5250. BUZZ(300, 2000);
  5251. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5252. }
  5253. #endif
  5254. idle(true);
  5255. }
  5256. delay(100);
  5257. while (lcd_clicked()) idle(true);
  5258. delay(100);
  5259. // Show load message
  5260. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5261. // Load filament
  5262. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5263. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5264. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5265. #endif
  5266. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5267. stepper.synchronize();
  5268. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5269. do {
  5270. // Extrude filament to get into hotend
  5271. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5272. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5273. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5274. stepper.synchronize();
  5275. // Ask user if more filament should be extruded
  5276. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5277. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5278. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5279. KEEPALIVE_STATE(IN_HANDLER);
  5280. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5281. #endif
  5282. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5283. KEEPALIVE_STATE(IN_HANDLER);
  5284. // Set extruder to saved position
  5285. current_position[E_AXIS] = lastpos[E_AXIS];
  5286. destination[E_AXIS] = lastpos[E_AXIS];
  5287. planner.set_e_position_mm(current_position[E_AXIS]);
  5288. #if IS_KINEMATIC
  5289. // Move XYZ to starting position, then E
  5290. inverse_kinematics(lastpos);
  5291. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5292. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5293. #else
  5294. // Move XY to starting position, then Z, then E
  5295. destination[X_AXIS] = lastpos[X_AXIS];
  5296. destination[Y_AXIS] = lastpos[Y_AXIS];
  5297. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5298. destination[Z_AXIS] = lastpos[Z_AXIS];
  5299. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5300. #endif
  5301. stepper.synchronize();
  5302. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5303. filament_ran_out = false;
  5304. #endif
  5305. // Show status screen
  5306. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5307. }
  5308. #endif // FILAMENT_CHANGE_FEATURE
  5309. #if ENABLED(DUAL_X_CARRIAGE)
  5310. /**
  5311. * M605: Set dual x-carriage movement mode
  5312. *
  5313. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5314. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5315. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5316. * units x-offset and an optional differential hotend temperature of
  5317. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5318. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5319. *
  5320. * Note: the X axis should be homed after changing dual x-carriage mode.
  5321. */
  5322. inline void gcode_M605() {
  5323. stepper.synchronize();
  5324. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5325. switch (dual_x_carriage_mode) {
  5326. case DXC_DUPLICATION_MODE:
  5327. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5328. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5329. SERIAL_ECHO_START;
  5330. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5331. SERIAL_CHAR(' ');
  5332. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5333. SERIAL_CHAR(',');
  5334. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5335. SERIAL_CHAR(' ');
  5336. SERIAL_ECHO(duplicate_extruder_x_offset);
  5337. SERIAL_CHAR(',');
  5338. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5339. break;
  5340. case DXC_FULL_CONTROL_MODE:
  5341. case DXC_AUTO_PARK_MODE:
  5342. break;
  5343. default:
  5344. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5345. break;
  5346. }
  5347. active_extruder_parked = false;
  5348. extruder_duplication_enabled = false;
  5349. delayed_move_time = 0;
  5350. }
  5351. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5352. inline void gcode_M605() {
  5353. stepper.synchronize();
  5354. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5355. SERIAL_ECHO_START;
  5356. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5357. }
  5358. #endif // M605
  5359. #if ENABLED(LIN_ADVANCE)
  5360. /**
  5361. * M905: Set advance factor
  5362. */
  5363. inline void gcode_M905() {
  5364. stepper.synchronize();
  5365. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5366. }
  5367. #endif
  5368. /**
  5369. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5370. */
  5371. inline void gcode_M907() {
  5372. #if HAS_DIGIPOTSS
  5373. LOOP_XYZE(i)
  5374. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5375. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5376. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5377. #endif
  5378. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5379. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5380. #endif
  5381. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5382. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5383. #endif
  5384. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5385. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5386. #endif
  5387. #if ENABLED(DIGIPOT_I2C)
  5388. // this one uses actual amps in floating point
  5389. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5390. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5391. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5392. #endif
  5393. #if ENABLED(DAC_STEPPER_CURRENT)
  5394. if (code_seen('S')) {
  5395. float dac_percent = code_value_float();
  5396. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5397. }
  5398. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5399. #endif
  5400. }
  5401. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5402. /**
  5403. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5404. */
  5405. inline void gcode_M908() {
  5406. #if HAS_DIGIPOTSS
  5407. stepper.digitalPotWrite(
  5408. code_seen('P') ? code_value_int() : 0,
  5409. code_seen('S') ? code_value_int() : 0
  5410. );
  5411. #endif
  5412. #ifdef DAC_STEPPER_CURRENT
  5413. dac_current_raw(
  5414. code_seen('P') ? code_value_byte() : -1,
  5415. code_seen('S') ? code_value_ushort() : 0
  5416. );
  5417. #endif
  5418. }
  5419. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5420. inline void gcode_M909() { dac_print_values(); }
  5421. inline void gcode_M910() { dac_commit_eeprom(); }
  5422. #endif
  5423. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5424. #if HAS_MICROSTEPS
  5425. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5426. inline void gcode_M350() {
  5427. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5428. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5429. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5430. stepper.microstep_readings();
  5431. }
  5432. /**
  5433. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5434. * S# determines MS1 or MS2, X# sets the pin high/low.
  5435. */
  5436. inline void gcode_M351() {
  5437. if (code_seen('S')) switch (code_value_byte()) {
  5438. case 1:
  5439. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5440. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5441. break;
  5442. case 2:
  5443. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5444. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5445. break;
  5446. }
  5447. stepper.microstep_readings();
  5448. }
  5449. #endif // HAS_MICROSTEPS
  5450. #if ENABLED(MIXING_EXTRUDER)
  5451. /**
  5452. * M163: Set a single mix factor for a mixing extruder
  5453. * This is called "weight" by some systems.
  5454. *
  5455. * S[index] The channel index to set
  5456. * P[float] The mix value
  5457. *
  5458. */
  5459. inline void gcode_M163() {
  5460. int mix_index = code_seen('S') ? code_value_int() : 0;
  5461. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5462. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5463. }
  5464. #if MIXING_VIRTUAL_TOOLS > 1
  5465. /**
  5466. * M164: Store the current mix factors as a virtual tool.
  5467. *
  5468. * S[index] The virtual tool to store
  5469. *
  5470. */
  5471. inline void gcode_M164() {
  5472. int tool_index = code_seen('S') ? code_value_int() : 0;
  5473. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5474. normalize_mix();
  5475. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5476. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5477. }
  5478. }
  5479. #endif
  5480. #if ENABLED(DIRECT_MIXING_IN_G1)
  5481. /**
  5482. * M165: Set multiple mix factors for a mixing extruder.
  5483. * Factors that are left out will be set to 0.
  5484. * All factors together must add up to 1.0.
  5485. *
  5486. * A[factor] Mix factor for extruder stepper 1
  5487. * B[factor] Mix factor for extruder stepper 2
  5488. * C[factor] Mix factor for extruder stepper 3
  5489. * D[factor] Mix factor for extruder stepper 4
  5490. * H[factor] Mix factor for extruder stepper 5
  5491. * I[factor] Mix factor for extruder stepper 6
  5492. *
  5493. */
  5494. inline void gcode_M165() { gcode_get_mix(); }
  5495. #endif
  5496. #endif // MIXING_EXTRUDER
  5497. /**
  5498. * M999: Restart after being stopped
  5499. *
  5500. * Default behaviour is to flush the serial buffer and request
  5501. * a resend to the host starting on the last N line received.
  5502. *
  5503. * Sending "M999 S1" will resume printing without flushing the
  5504. * existing command buffer.
  5505. *
  5506. */
  5507. inline void gcode_M999() {
  5508. Running = true;
  5509. lcd_reset_alert_level();
  5510. if (code_seen('S') && code_value_bool()) return;
  5511. // gcode_LastN = Stopped_gcode_LastN;
  5512. FlushSerialRequestResend();
  5513. }
  5514. #if ENABLED(SWITCHING_EXTRUDER)
  5515. inline void move_extruder_servo(uint8_t e) {
  5516. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5517. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5518. }
  5519. #endif
  5520. inline void invalid_extruder_error(const uint8_t &e) {
  5521. SERIAL_ECHO_START;
  5522. SERIAL_CHAR('T');
  5523. SERIAL_PROTOCOL_F(e, DEC);
  5524. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5525. }
  5526. /**
  5527. * Perform a tool-change, which may result in moving the
  5528. * previous tool out of the way and the new tool into place.
  5529. */
  5530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5531. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5532. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5533. invalid_extruder_error(tmp_extruder);
  5534. return;
  5535. }
  5536. // T0-Tnnn: Switch virtual tool by changing the mix
  5537. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5538. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5539. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5540. #if HOTENDS > 1
  5541. if (tmp_extruder >= EXTRUDERS) {
  5542. invalid_extruder_error(tmp_extruder);
  5543. return;
  5544. }
  5545. float old_feedrate_mm_s = feedrate_mm_s;
  5546. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5547. if (tmp_extruder != active_extruder) {
  5548. if (!no_move && axis_unhomed_error(true, true, true)) {
  5549. SERIAL_ECHOLNPGM("No move on toolchange");
  5550. no_move = true;
  5551. }
  5552. // Save current position to destination, for use later
  5553. set_destination_to_current();
  5554. #if ENABLED(DUAL_X_CARRIAGE)
  5555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5556. if (DEBUGGING(LEVELING)) {
  5557. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5558. switch (dual_x_carriage_mode) {
  5559. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5560. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5561. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5562. }
  5563. }
  5564. #endif
  5565. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5566. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5567. ) {
  5568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5569. if (DEBUGGING(LEVELING)) {
  5570. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5571. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5572. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5573. }
  5574. #endif
  5575. // Park old head: 1) raise 2) move to park position 3) lower
  5576. for (uint8_t i = 0; i < 3; i++)
  5577. planner.buffer_line(
  5578. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5579. current_position[Y_AXIS],
  5580. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5581. current_position[E_AXIS],
  5582. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5583. active_extruder
  5584. );
  5585. stepper.synchronize();
  5586. }
  5587. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5588. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5589. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5590. active_extruder = tmp_extruder;
  5591. // This function resets the max/min values - the current position may be overwritten below.
  5592. set_axis_is_at_home(X_AXIS);
  5593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5594. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5595. #endif
  5596. switch (dual_x_carriage_mode) {
  5597. case DXC_FULL_CONTROL_MODE:
  5598. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5599. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5600. break;
  5601. case DXC_DUPLICATION_MODE:
  5602. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5603. if (active_extruder_parked)
  5604. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5605. else
  5606. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5607. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5608. extruder_duplication_enabled = false;
  5609. break;
  5610. default:
  5611. // record raised toolhead position for use by unpark
  5612. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5613. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5614. active_extruder_parked = true;
  5615. delayed_move_time = 0;
  5616. break;
  5617. }
  5618. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5619. if (DEBUGGING(LEVELING)) {
  5620. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5621. DEBUG_POS("New extruder (parked)", current_position);
  5622. }
  5623. #endif
  5624. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5625. #else // !DUAL_X_CARRIAGE
  5626. #if ENABLED(SWITCHING_EXTRUDER)
  5627. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5628. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5629. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5630. // Always raise by some amount
  5631. planner.buffer_line(
  5632. current_position[X_AXIS],
  5633. current_position[Y_AXIS],
  5634. current_position[Z_AXIS] + z_raise,
  5635. current_position[E_AXIS],
  5636. planner.max_feedrate_mm_s[Z_AXIS],
  5637. active_extruder
  5638. );
  5639. stepper.synchronize();
  5640. move_extruder_servo(active_extruder);
  5641. delay(500);
  5642. // Move back down, if needed
  5643. if (z_raise != z_diff) {
  5644. planner.buffer_line(
  5645. current_position[X_AXIS],
  5646. current_position[Y_AXIS],
  5647. current_position[Z_AXIS] + z_diff,
  5648. current_position[E_AXIS],
  5649. planner.max_feedrate_mm_s[Z_AXIS],
  5650. active_extruder
  5651. );
  5652. stepper.synchronize();
  5653. }
  5654. #endif
  5655. /**
  5656. * Set current_position to the position of the new nozzle.
  5657. * Offsets are based on linear distance, so we need to get
  5658. * the resulting position in coordinate space.
  5659. *
  5660. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5661. * - With mesh leveling, update Z for the new position
  5662. * - Otherwise, just use the raw linear distance
  5663. *
  5664. * Software endstops are altered here too. Consider a case where:
  5665. * E0 at X=0 ... E1 at X=10
  5666. * When we switch to E1 now X=10, but E1 can't move left.
  5667. * To express this we apply the change in XY to the software endstops.
  5668. * E1 can move farther right than E0, so the right limit is extended.
  5669. *
  5670. * Note that we don't adjust the Z software endstops. Why not?
  5671. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5672. * because the bed is 1mm lower at the new position. As long as
  5673. * the first nozzle is out of the way, the carriage should be
  5674. * allowed to move 1mm lower. This technically "breaks" the
  5675. * Z software endstop. But this is technically correct (and
  5676. * there is no viable alternative).
  5677. */
  5678. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5679. // Offset extruder, make sure to apply the bed level rotation matrix
  5680. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5681. hotend_offset[Y_AXIS][tmp_extruder],
  5682. 0),
  5683. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5684. hotend_offset[Y_AXIS][active_extruder],
  5685. 0),
  5686. offset_vec = tmp_offset_vec - act_offset_vec;
  5687. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5688. if (DEBUGGING(LEVELING)) {
  5689. tmp_offset_vec.debug("tmp_offset_vec");
  5690. act_offset_vec.debug("act_offset_vec");
  5691. offset_vec.debug("offset_vec (BEFORE)");
  5692. }
  5693. #endif
  5694. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5696. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5697. #endif
  5698. // Adjustments to the current position
  5699. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5700. current_position[Z_AXIS] += offset_vec.z;
  5701. #else // !AUTO_BED_LEVELING_FEATURE
  5702. float xydiff[2] = {
  5703. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5704. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5705. };
  5706. #if ENABLED(MESH_BED_LEVELING)
  5707. if (mbl.active()) {
  5708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5709. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5710. #endif
  5711. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5712. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5713. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5715. if (DEBUGGING(LEVELING))
  5716. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5717. #endif
  5718. }
  5719. #endif // MESH_BED_LEVELING
  5720. #endif // !AUTO_BED_LEVELING_FEATURE
  5721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5722. if (DEBUGGING(LEVELING)) {
  5723. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5724. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5725. SERIAL_ECHOLNPGM(" }");
  5726. }
  5727. #endif
  5728. // The newly-selected extruder XY is actually at...
  5729. current_position[X_AXIS] += xydiff[X_AXIS];
  5730. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5731. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5732. position_shift[i] += xydiff[i];
  5733. update_software_endstops((AxisEnum)i);
  5734. }
  5735. // Set the new active extruder
  5736. active_extruder = tmp_extruder;
  5737. #endif // !DUAL_X_CARRIAGE
  5738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5739. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5740. #endif
  5741. // Tell the planner the new "current position"
  5742. SYNC_PLAN_POSITION_KINEMATIC();
  5743. // Move to the "old position" (move the extruder into place)
  5744. if (!no_move && IsRunning()) {
  5745. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5746. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5747. #endif
  5748. prepare_move_to_destination();
  5749. }
  5750. } // (tmp_extruder != active_extruder)
  5751. stepper.synchronize();
  5752. #if ENABLED(EXT_SOLENOID)
  5753. disable_all_solenoids();
  5754. enable_solenoid_on_active_extruder();
  5755. #endif // EXT_SOLENOID
  5756. feedrate_mm_s = old_feedrate_mm_s;
  5757. #else // HOTENDS <= 1
  5758. // Set the new active extruder
  5759. active_extruder = tmp_extruder;
  5760. UNUSED(fr_mm_s);
  5761. UNUSED(no_move);
  5762. #endif // HOTENDS <= 1
  5763. SERIAL_ECHO_START;
  5764. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5765. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5766. }
  5767. /**
  5768. * T0-T3: Switch tool, usually switching extruders
  5769. *
  5770. * F[units/min] Set the movement feedrate
  5771. * S1 Don't move the tool in XY after change
  5772. */
  5773. inline void gcode_T(uint8_t tmp_extruder) {
  5774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5775. if (DEBUGGING(LEVELING)) {
  5776. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5777. SERIAL_ECHOLNPGM(")");
  5778. DEBUG_POS("BEFORE", current_position);
  5779. }
  5780. #endif
  5781. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5782. tool_change(tmp_extruder);
  5783. #elif HOTENDS > 1
  5784. tool_change(
  5785. tmp_extruder,
  5786. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5787. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5788. );
  5789. #endif
  5790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5791. if (DEBUGGING(LEVELING)) {
  5792. DEBUG_POS("AFTER", current_position);
  5793. SERIAL_ECHOLNPGM("<<< gcode_T");
  5794. }
  5795. #endif
  5796. }
  5797. /**
  5798. * Process a single command and dispatch it to its handler
  5799. * This is called from the main loop()
  5800. */
  5801. void process_next_command() {
  5802. current_command = command_queue[cmd_queue_index_r];
  5803. if (DEBUGGING(ECHO)) {
  5804. SERIAL_ECHO_START;
  5805. SERIAL_ECHOLN(current_command);
  5806. }
  5807. // Sanitize the current command:
  5808. // - Skip leading spaces
  5809. // - Bypass N[-0-9][0-9]*[ ]*
  5810. // - Overwrite * with nul to mark the end
  5811. while (*current_command == ' ') ++current_command;
  5812. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5813. current_command += 2; // skip N[-0-9]
  5814. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5815. while (*current_command == ' ') ++current_command; // skip [ ]*
  5816. }
  5817. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5818. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5819. char *cmd_ptr = current_command;
  5820. // Get the command code, which must be G, M, or T
  5821. char command_code = *cmd_ptr++;
  5822. // Skip spaces to get the numeric part
  5823. while (*cmd_ptr == ' ') cmd_ptr++;
  5824. uint16_t codenum = 0; // define ahead of goto
  5825. // Bail early if there's no code
  5826. bool code_is_good = NUMERIC(*cmd_ptr);
  5827. if (!code_is_good) goto ExitUnknownCommand;
  5828. // Get and skip the code number
  5829. do {
  5830. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5831. cmd_ptr++;
  5832. } while (NUMERIC(*cmd_ptr));
  5833. // Skip all spaces to get to the first argument, or nul
  5834. while (*cmd_ptr == ' ') cmd_ptr++;
  5835. // The command's arguments (if any) start here, for sure!
  5836. current_command_args = cmd_ptr;
  5837. KEEPALIVE_STATE(IN_HANDLER);
  5838. // Handle a known G, M, or T
  5839. switch (command_code) {
  5840. case 'G': switch (codenum) {
  5841. // G0, G1
  5842. case 0:
  5843. case 1:
  5844. gcode_G0_G1();
  5845. break;
  5846. // G2, G3
  5847. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5848. case 2: // G2 - CW ARC
  5849. case 3: // G3 - CCW ARC
  5850. gcode_G2_G3(codenum == 2);
  5851. break;
  5852. #endif
  5853. // G4 Dwell
  5854. case 4:
  5855. gcode_G4();
  5856. break;
  5857. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5858. // G5
  5859. case 5: // G5 - Cubic B_spline
  5860. gcode_G5();
  5861. break;
  5862. #endif // BEZIER_CURVE_SUPPORT
  5863. #if ENABLED(FWRETRACT)
  5864. case 10: // G10: retract
  5865. case 11: // G11: retract_recover
  5866. gcode_G10_G11(codenum == 10);
  5867. break;
  5868. #endif // FWRETRACT
  5869. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5870. case 12:
  5871. gcode_G12(); // G12: Nozzle Clean
  5872. break;
  5873. #endif // NOZZLE_CLEAN_FEATURE
  5874. #if ENABLED(INCH_MODE_SUPPORT)
  5875. case 20: //G20: Inch Mode
  5876. gcode_G20();
  5877. break;
  5878. case 21: //G21: MM Mode
  5879. gcode_G21();
  5880. break;
  5881. #endif // INCH_MODE_SUPPORT
  5882. #if ENABLED(NOZZLE_PARK_FEATURE)
  5883. case 27: // G27: Nozzle Park
  5884. gcode_G27();
  5885. break;
  5886. #endif // NOZZLE_PARK_FEATURE
  5887. case 28: // G28: Home all axes, one at a time
  5888. gcode_G28();
  5889. break;
  5890. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5891. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5892. gcode_G29();
  5893. break;
  5894. #endif // AUTO_BED_LEVELING_FEATURE
  5895. #if HAS_BED_PROBE
  5896. case 30: // G30 Single Z probe
  5897. gcode_G30();
  5898. break;
  5899. #if ENABLED(Z_PROBE_SLED)
  5900. case 31: // G31: dock the sled
  5901. gcode_G31();
  5902. break;
  5903. case 32: // G32: undock the sled
  5904. gcode_G32();
  5905. break;
  5906. #endif // Z_PROBE_SLED
  5907. #endif // HAS_BED_PROBE
  5908. case 90: // G90
  5909. relative_mode = false;
  5910. break;
  5911. case 91: // G91
  5912. relative_mode = true;
  5913. break;
  5914. case 92: // G92
  5915. gcode_G92();
  5916. break;
  5917. }
  5918. break;
  5919. case 'M': switch (codenum) {
  5920. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  5921. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5922. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5923. gcode_M0_M1();
  5924. break;
  5925. #endif // ULTIPANEL
  5926. case 17:
  5927. gcode_M17();
  5928. break;
  5929. #if ENABLED(SDSUPPORT)
  5930. case 20: // M20 - list SD card
  5931. gcode_M20(); break;
  5932. case 21: // M21 - init SD card
  5933. gcode_M21(); break;
  5934. case 22: //M22 - release SD card
  5935. gcode_M22(); break;
  5936. case 23: //M23 - Select file
  5937. gcode_M23(); break;
  5938. case 24: //M24 - Start SD print
  5939. gcode_M24(); break;
  5940. case 25: //M25 - Pause SD print
  5941. gcode_M25(); break;
  5942. case 26: //M26 - Set SD index
  5943. gcode_M26(); break;
  5944. case 27: //M27 - Get SD status
  5945. gcode_M27(); break;
  5946. case 28: //M28 - Start SD write
  5947. gcode_M28(); break;
  5948. case 29: //M29 - Stop SD write
  5949. gcode_M29(); break;
  5950. case 30: //M30 <filename> Delete File
  5951. gcode_M30(); break;
  5952. case 32: //M32 - Select file and start SD print
  5953. gcode_M32(); break;
  5954. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5955. case 33: //M33 - Get the long full path to a file or folder
  5956. gcode_M33(); break;
  5957. #endif // LONG_FILENAME_HOST_SUPPORT
  5958. case 928: //M928 - Start SD write
  5959. gcode_M928(); break;
  5960. #endif //SDSUPPORT
  5961. case 31: //M31 take time since the start of the SD print or an M109 command
  5962. gcode_M31();
  5963. break;
  5964. case 42: //M42 -Change pin status via gcode
  5965. gcode_M42();
  5966. break;
  5967. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5968. case 48: // M48 Z probe repeatability
  5969. gcode_M48();
  5970. break;
  5971. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5972. case 75: // Start print timer
  5973. gcode_M75();
  5974. break;
  5975. case 76: // Pause print timer
  5976. gcode_M76();
  5977. break;
  5978. case 77: // Stop print timer
  5979. gcode_M77();
  5980. break;
  5981. #if ENABLED(PRINTCOUNTER)
  5982. case 78: // Show print statistics
  5983. gcode_M78();
  5984. break;
  5985. #endif
  5986. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5987. case 100:
  5988. gcode_M100();
  5989. break;
  5990. #endif
  5991. case 104: // M104
  5992. gcode_M104();
  5993. break;
  5994. case 110: // M110: Set Current Line Number
  5995. gcode_M110();
  5996. break;
  5997. case 111: // M111: Set debug level
  5998. gcode_M111();
  5999. break;
  6000. #if DISABLED(EMERGENCY_PARSER)
  6001. case 108: // M108: Cancel Waiting
  6002. gcode_M108();
  6003. break;
  6004. case 112: // M112: Emergency Stop
  6005. gcode_M112();
  6006. break;
  6007. case 410: // M410 quickstop - Abort all the planned moves.
  6008. gcode_M410();
  6009. break;
  6010. #endif
  6011. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6012. case 113: // M113: Set Host Keepalive interval
  6013. gcode_M113();
  6014. break;
  6015. #endif
  6016. case 140: // M140: Set bed temp
  6017. gcode_M140();
  6018. break;
  6019. case 105: // M105: Read current temperature
  6020. gcode_M105();
  6021. KEEPALIVE_STATE(NOT_BUSY);
  6022. return; // "ok" already printed
  6023. case 109: // M109: Wait for temperature
  6024. gcode_M109();
  6025. break;
  6026. #if HAS_TEMP_BED
  6027. case 190: // M190: Wait for bed heater to reach target
  6028. gcode_M190();
  6029. break;
  6030. #endif // HAS_TEMP_BED
  6031. #if FAN_COUNT > 0
  6032. case 106: // M106: Fan On
  6033. gcode_M106();
  6034. break;
  6035. case 107: // M107: Fan Off
  6036. gcode_M107();
  6037. break;
  6038. #endif // FAN_COUNT > 0
  6039. #if ENABLED(BARICUDA)
  6040. // PWM for HEATER_1_PIN
  6041. #if HAS_HEATER_1
  6042. case 126: // M126: valve open
  6043. gcode_M126();
  6044. break;
  6045. case 127: // M127: valve closed
  6046. gcode_M127();
  6047. break;
  6048. #endif // HAS_HEATER_1
  6049. // PWM for HEATER_2_PIN
  6050. #if HAS_HEATER_2
  6051. case 128: // M128: valve open
  6052. gcode_M128();
  6053. break;
  6054. case 129: // M129: valve closed
  6055. gcode_M129();
  6056. break;
  6057. #endif // HAS_HEATER_2
  6058. #endif // BARICUDA
  6059. #if HAS_POWER_SWITCH
  6060. case 80: // M80: Turn on Power Supply
  6061. gcode_M80();
  6062. break;
  6063. #endif // HAS_POWER_SWITCH
  6064. case 81: // M81: Turn off Power, including Power Supply, if possible
  6065. gcode_M81();
  6066. break;
  6067. case 82:
  6068. gcode_M82();
  6069. break;
  6070. case 83:
  6071. gcode_M83();
  6072. break;
  6073. case 18: // (for compatibility)
  6074. case 84: // M84
  6075. gcode_M18_M84();
  6076. break;
  6077. case 85: // M85
  6078. gcode_M85();
  6079. break;
  6080. case 92: // M92: Set the steps-per-unit for one or more axes
  6081. gcode_M92();
  6082. break;
  6083. case 115: // M115: Report capabilities
  6084. gcode_M115();
  6085. break;
  6086. case 117: // M117: Set LCD message text, if possible
  6087. gcode_M117();
  6088. break;
  6089. case 114: // M114: Report current position
  6090. gcode_M114();
  6091. break;
  6092. case 120: // M120: Enable endstops
  6093. gcode_M120();
  6094. break;
  6095. case 121: // M121: Disable endstops
  6096. gcode_M121();
  6097. break;
  6098. case 119: // M119: Report endstop states
  6099. gcode_M119();
  6100. break;
  6101. #if ENABLED(ULTIPANEL)
  6102. case 145: // M145: Set material heatup parameters
  6103. gcode_M145();
  6104. break;
  6105. #endif
  6106. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6107. case 149:
  6108. gcode_M149();
  6109. break;
  6110. #endif
  6111. #if ENABLED(BLINKM)
  6112. case 150: // M150
  6113. gcode_M150();
  6114. break;
  6115. #endif //BLINKM
  6116. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6117. case 155:
  6118. gcode_M155();
  6119. break;
  6120. case 156:
  6121. gcode_M156();
  6122. break;
  6123. #endif //EXPERIMENTAL_I2CBUS
  6124. #if ENABLED(MIXING_EXTRUDER)
  6125. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6126. gcode_M163();
  6127. break;
  6128. #if MIXING_VIRTUAL_TOOLS > 1
  6129. case 164: // M164 S<int> save current mix as a virtual extruder
  6130. gcode_M164();
  6131. break;
  6132. #endif
  6133. #if ENABLED(DIRECT_MIXING_IN_G1)
  6134. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6135. gcode_M165();
  6136. break;
  6137. #endif
  6138. #endif
  6139. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6140. gcode_M200();
  6141. break;
  6142. case 201: // M201
  6143. gcode_M201();
  6144. break;
  6145. #if 0 // Not used for Sprinter/grbl gen6
  6146. case 202: // M202
  6147. gcode_M202();
  6148. break;
  6149. #endif
  6150. case 203: // M203 max feedrate units/sec
  6151. gcode_M203();
  6152. break;
  6153. case 204: // M204 acclereration S normal moves T filmanent only moves
  6154. gcode_M204();
  6155. break;
  6156. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6157. gcode_M205();
  6158. break;
  6159. case 206: // M206 additional homing offset
  6160. gcode_M206();
  6161. break;
  6162. #if ENABLED(DELTA)
  6163. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6164. gcode_M665();
  6165. break;
  6166. #endif
  6167. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6168. case 666: // M666 set delta / dual endstop adjustment
  6169. gcode_M666();
  6170. break;
  6171. #endif
  6172. #if ENABLED(FWRETRACT)
  6173. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6174. gcode_M207();
  6175. break;
  6176. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6177. gcode_M208();
  6178. break;
  6179. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6180. gcode_M209();
  6181. break;
  6182. #endif // FWRETRACT
  6183. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6184. gcode_M211();
  6185. break;
  6186. #if HOTENDS > 1
  6187. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6188. gcode_M218();
  6189. break;
  6190. #endif
  6191. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6192. gcode_M220();
  6193. break;
  6194. case 221: // M221 - Set Flow Percentage: S<percent>
  6195. gcode_M221();
  6196. break;
  6197. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6198. gcode_M226();
  6199. break;
  6200. #if HAS_SERVOS
  6201. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6202. gcode_M280();
  6203. break;
  6204. #endif // HAS_SERVOS
  6205. #if HAS_BUZZER
  6206. case 300: // M300 - Play beep tone
  6207. gcode_M300();
  6208. break;
  6209. #endif // HAS_BUZZER
  6210. #if ENABLED(PIDTEMP)
  6211. case 301: // M301
  6212. gcode_M301();
  6213. break;
  6214. #endif // PIDTEMP
  6215. #if ENABLED(PIDTEMPBED)
  6216. case 304: // M304
  6217. gcode_M304();
  6218. break;
  6219. #endif // PIDTEMPBED
  6220. #if defined(CHDK) || HAS_PHOTOGRAPH
  6221. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6222. gcode_M240();
  6223. break;
  6224. #endif // CHDK || PHOTOGRAPH_PIN
  6225. #if HAS_LCD_CONTRAST
  6226. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6227. gcode_M250();
  6228. break;
  6229. #endif // HAS_LCD_CONTRAST
  6230. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6231. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6232. gcode_M302();
  6233. break;
  6234. #endif // PREVENT_COLD_EXTRUSION
  6235. case 303: // M303 PID autotune
  6236. gcode_M303();
  6237. break;
  6238. #if ENABLED(MORGAN_SCARA)
  6239. case 360: // M360 SCARA Theta pos1
  6240. if (gcode_M360()) return;
  6241. break;
  6242. case 361: // M361 SCARA Theta pos2
  6243. if (gcode_M361()) return;
  6244. break;
  6245. case 362: // M362 SCARA Psi pos1
  6246. if (gcode_M362()) return;
  6247. break;
  6248. case 363: // M363 SCARA Psi pos2
  6249. if (gcode_M363()) return;
  6250. break;
  6251. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6252. if (gcode_M364()) return;
  6253. break;
  6254. #endif // SCARA
  6255. case 400: // M400 finish all moves
  6256. gcode_M400();
  6257. break;
  6258. #if HAS_BED_PROBE
  6259. case 401:
  6260. gcode_M401();
  6261. break;
  6262. case 402:
  6263. gcode_M402();
  6264. break;
  6265. #endif // HAS_BED_PROBE
  6266. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6267. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6268. gcode_M404();
  6269. break;
  6270. case 405: //M405 Turn on filament sensor for control
  6271. gcode_M405();
  6272. break;
  6273. case 406: //M406 Turn off filament sensor for control
  6274. gcode_M406();
  6275. break;
  6276. case 407: //M407 Display measured filament diameter
  6277. gcode_M407();
  6278. break;
  6279. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6280. #if ENABLED(MESH_BED_LEVELING)
  6281. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6282. gcode_M420();
  6283. break;
  6284. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6285. gcode_M421();
  6286. break;
  6287. #endif
  6288. case 428: // M428 Apply current_position to home_offset
  6289. gcode_M428();
  6290. break;
  6291. case 500: // M500 Store settings in EEPROM
  6292. gcode_M500();
  6293. break;
  6294. case 501: // M501 Read settings from EEPROM
  6295. gcode_M501();
  6296. break;
  6297. case 502: // M502 Revert to default settings
  6298. gcode_M502();
  6299. break;
  6300. case 503: // M503 print settings currently in memory
  6301. gcode_M503();
  6302. break;
  6303. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6304. case 540:
  6305. gcode_M540();
  6306. break;
  6307. #endif
  6308. #if HAS_BED_PROBE
  6309. case 851:
  6310. gcode_M851();
  6311. break;
  6312. #endif // HAS_BED_PROBE
  6313. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6314. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6315. gcode_M600();
  6316. break;
  6317. #endif // FILAMENT_CHANGE_FEATURE
  6318. #if ENABLED(DUAL_X_CARRIAGE)
  6319. case 605:
  6320. gcode_M605();
  6321. break;
  6322. #endif // DUAL_X_CARRIAGE
  6323. #if ENABLED(LIN_ADVANCE)
  6324. case 905: // M905 Set advance factor.
  6325. gcode_M905();
  6326. break;
  6327. #endif
  6328. case 907: // M907 Set digital trimpot motor current using axis codes.
  6329. gcode_M907();
  6330. break;
  6331. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6332. case 908: // M908 Control digital trimpot directly.
  6333. gcode_M908();
  6334. break;
  6335. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6336. case 909: // M909 Print digipot/DAC current value
  6337. gcode_M909();
  6338. break;
  6339. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6340. gcode_M910();
  6341. break;
  6342. #endif
  6343. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6344. #if HAS_MICROSTEPS
  6345. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6346. gcode_M350();
  6347. break;
  6348. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6349. gcode_M351();
  6350. break;
  6351. #endif // HAS_MICROSTEPS
  6352. case 999: // M999: Restart after being Stopped
  6353. gcode_M999();
  6354. break;
  6355. }
  6356. break;
  6357. case 'T':
  6358. gcode_T(codenum);
  6359. break;
  6360. default: code_is_good = false;
  6361. }
  6362. KEEPALIVE_STATE(NOT_BUSY);
  6363. ExitUnknownCommand:
  6364. // Still unknown command? Throw an error
  6365. if (!code_is_good) unknown_command_error();
  6366. ok_to_send();
  6367. }
  6368. /**
  6369. * Send a "Resend: nnn" message to the host to
  6370. * indicate that a command needs to be re-sent.
  6371. */
  6372. void FlushSerialRequestResend() {
  6373. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6374. MYSERIAL.flush();
  6375. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6376. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6377. ok_to_send();
  6378. }
  6379. /**
  6380. * Send an "ok" message to the host, indicating
  6381. * that a command was successfully processed.
  6382. *
  6383. * If ADVANCED_OK is enabled also include:
  6384. * N<int> Line number of the command, if any
  6385. * P<int> Planner space remaining
  6386. * B<int> Block queue space remaining
  6387. */
  6388. void ok_to_send() {
  6389. refresh_cmd_timeout();
  6390. if (!send_ok[cmd_queue_index_r]) return;
  6391. SERIAL_PROTOCOLPGM(MSG_OK);
  6392. #if ENABLED(ADVANCED_OK)
  6393. char* p = command_queue[cmd_queue_index_r];
  6394. if (*p == 'N') {
  6395. SERIAL_PROTOCOL(' ');
  6396. SERIAL_ECHO(*p++);
  6397. while (NUMERIC_SIGNED(*p))
  6398. SERIAL_ECHO(*p++);
  6399. }
  6400. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6401. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6402. #endif
  6403. SERIAL_EOL;
  6404. }
  6405. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6406. /**
  6407. * Constrain the given coordinates to the software endstops.
  6408. */
  6409. void clamp_to_software_endstops(float target[XYZ]) {
  6410. #if ENABLED(min_software_endstops)
  6411. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6412. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6413. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6414. #endif
  6415. #if ENABLED(max_software_endstops)
  6416. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6417. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6418. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6419. #endif
  6420. }
  6421. #endif
  6422. #if ENABLED(DELTA)
  6423. /**
  6424. * Recalculate factors used for delta kinematics whenever
  6425. * settings have been changed (e.g., by M665).
  6426. */
  6427. void recalc_delta_settings(float radius, float diagonal_rod) {
  6428. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6429. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6430. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6431. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6432. delta_tower3_x = 0.0; // back middle tower
  6433. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6434. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6435. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6436. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6437. }
  6438. #if ENABLED(DELTA_FAST_SQRT)
  6439. /**
  6440. * Fast inverse sqrt from Quake III Arena
  6441. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6442. */
  6443. float Q_rsqrt(float number) {
  6444. long i;
  6445. float x2, y;
  6446. const float threehalfs = 1.5f;
  6447. x2 = number * 0.5f;
  6448. y = number;
  6449. i = * ( long * ) &y; // evil floating point bit level hacking
  6450. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6451. y = * ( float * ) &i;
  6452. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6453. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6454. return y;
  6455. }
  6456. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6457. #else
  6458. #define _SQRT(n) sqrt(n)
  6459. #endif
  6460. /**
  6461. * Delta Inverse Kinematics
  6462. *
  6463. * Calculate the tower positions for a given logical
  6464. * position, storing the result in the delta[] array.
  6465. *
  6466. * This is an expensive calculation, requiring 3 square
  6467. * roots per segmented linear move, and strains the limits
  6468. * of a Mega2560 with a Graphical Display.
  6469. *
  6470. * Suggested optimizations include:
  6471. *
  6472. * - Disable the home_offset (M206) and/or position_shift (G92)
  6473. * features to remove up to 12 float additions.
  6474. *
  6475. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6476. * (see above)
  6477. */
  6478. void inverse_kinematics(const float logical[XYZ]) {
  6479. const float cartesian[XYZ] = {
  6480. RAW_X_POSITION(logical[X_AXIS]),
  6481. RAW_Y_POSITION(logical[Y_AXIS]),
  6482. RAW_Z_POSITION(logical[Z_AXIS])
  6483. };
  6484. // Macro to obtain the Z position of an individual tower
  6485. #define DELTA_Z(T) cartesian[Z_AXIS] + _SQRT( \
  6486. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6487. delta_tower##T##_x - cartesian[X_AXIS], \
  6488. delta_tower##T##_y - cartesian[Y_AXIS] \
  6489. ) \
  6490. )
  6491. delta[A_AXIS] = DELTA_Z(1);
  6492. delta[B_AXIS] = DELTA_Z(2);
  6493. delta[C_AXIS] = DELTA_Z(3);
  6494. /*
  6495. SERIAL_ECHOPAIR("cartesian X:", cartesian[X_AXIS]);
  6496. SERIAL_ECHOPAIR(" Y:", cartesian[Y_AXIS]);
  6497. SERIAL_ECHOLNPAIR(" Z:", cartesian[Z_AXIS]);
  6498. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);
  6499. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);
  6500. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);
  6501. //*/
  6502. }
  6503. /**
  6504. * Calculate the highest Z position where the
  6505. * effector has the full range of XY motion.
  6506. */
  6507. float delta_safe_distance_from_top() {
  6508. float cartesian[XYZ] = {
  6509. LOGICAL_X_POSITION(0),
  6510. LOGICAL_Y_POSITION(0),
  6511. LOGICAL_Z_POSITION(0)
  6512. };
  6513. inverse_kinematics(cartesian);
  6514. float distance = delta[A_AXIS];
  6515. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6516. inverse_kinematics(cartesian);
  6517. return abs(distance - delta[A_AXIS]);
  6518. }
  6519. /**
  6520. * Delta Forward Kinematics
  6521. *
  6522. * See the Wikipedia article "Trilateration"
  6523. * https://en.wikipedia.org/wiki/Trilateration
  6524. *
  6525. * Establish a new coordinate system in the plane of the
  6526. * three carriage points. This system has its origin at
  6527. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6528. * plane with a Z component of zero.
  6529. * We will define unit vectors in this coordinate system
  6530. * in our original coordinate system. Then when we calculate
  6531. * the Xnew, Ynew and Znew values, we can translate back into
  6532. * the original system by moving along those unit vectors
  6533. * by the corresponding values.
  6534. *
  6535. * Variable names matched to Marlin, c-version, and avoid the
  6536. * use of any vector library.
  6537. *
  6538. * by Andreas Hardtung 2016-06-07
  6539. * based on a Java function from "Delta Robot Kinematics V3"
  6540. * by Steve Graves
  6541. *
  6542. * The result is stored in the cartes[] array.
  6543. */
  6544. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6545. // Create a vector in old coordinates along x axis of new coordinate
  6546. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6547. // Get the Magnitude of vector.
  6548. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6549. // Create unit vector by dividing by magnitude.
  6550. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6551. // Get the vector from the origin of the new system to the third point.
  6552. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6553. // Use the dot product to find the component of this vector on the X axis.
  6554. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6555. // Create a vector along the x axis that represents the x component of p13.
  6556. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6557. // Subtract the X component from the original vector leaving only Y. We use the
  6558. // variable that will be the unit vector after we scale it.
  6559. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6560. // The magnitude of Y component
  6561. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6562. // Convert to a unit vector
  6563. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6564. // The cross product of the unit x and y is the unit z
  6565. // float[] ez = vectorCrossProd(ex, ey);
  6566. float ez[3] = {
  6567. ex[1] * ey[2] - ex[2] * ey[1],
  6568. ex[2] * ey[0] - ex[0] * ey[2],
  6569. ex[0] * ey[1] - ex[1] * ey[0]
  6570. };
  6571. // We now have the d, i and j values defined in Wikipedia.
  6572. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6573. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6574. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6575. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6576. // Start from the origin of the old coordinates and add vectors in the
  6577. // old coords that represent the Xnew, Ynew and Znew to find the point
  6578. // in the old system.
  6579. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6580. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6581. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6582. };
  6583. void forward_kinematics_DELTA(float point[ABC]) {
  6584. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6585. }
  6586. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6587. // Adjust print surface height by linear interpolation over the bed_level array.
  6588. void adjust_delta(float cartesian[XYZ]) {
  6589. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6590. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6591. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6592. float hx2 = half_x - 0.001, hx1 = -hx2,
  6593. hy2 = half_y - 0.001, hy1 = -hy2,
  6594. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6595. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6596. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6597. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6598. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6599. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6600. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6601. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6602. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6603. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6604. offset = (1 - ratio_x) * left + ratio_x * right;
  6605. delta[X_AXIS] += offset;
  6606. delta[Y_AXIS] += offset;
  6607. delta[Z_AXIS] += offset;
  6608. /**
  6609. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6610. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6611. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6612. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6613. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6614. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6615. SERIAL_ECHOPAIR(" z1=", z1);
  6616. SERIAL_ECHOPAIR(" z2=", z2);
  6617. SERIAL_ECHOPAIR(" z3=", z3);
  6618. SERIAL_ECHOPAIR(" z4=", z4);
  6619. SERIAL_ECHOPAIR(" left=", left);
  6620. SERIAL_ECHOPAIR(" right=", right);
  6621. SERIAL_ECHOLNPAIR(" offset=", offset);
  6622. */
  6623. }
  6624. #endif // AUTO_BED_LEVELING_NONLINEAR
  6625. #endif // DELTA
  6626. /**
  6627. * Get the stepper positions in the cartes[] array.
  6628. * Forward kinematics are applied for DELTA and SCARA.
  6629. *
  6630. * The result is in the current coordinate space with
  6631. * leveling applied. The coordinates need to be run through
  6632. * unapply_leveling to obtain the "ideal" coordinates
  6633. * suitable for current_position, etc.
  6634. */
  6635. void get_cartesian_from_steppers() {
  6636. #if ENABLED(DELTA)
  6637. forward_kinematics_DELTA(
  6638. stepper.get_axis_position_mm(A_AXIS),
  6639. stepper.get_axis_position_mm(B_AXIS),
  6640. stepper.get_axis_position_mm(C_AXIS)
  6641. );
  6642. #elif IS_SCARA
  6643. forward_kinematics_SCARA(
  6644. stepper.get_axis_position_degrees(A_AXIS),
  6645. stepper.get_axis_position_degrees(B_AXIS)
  6646. );
  6647. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6648. #else
  6649. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6650. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6651. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6652. #endif
  6653. }
  6654. /**
  6655. * Set the current_position for an axis based on
  6656. * the stepper positions, removing any leveling that
  6657. * may have been applied.
  6658. *
  6659. * << INCOMPLETE! Still needs to unapply leveling! >>
  6660. */
  6661. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6662. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  6663. vector_3 pos = untilted_stepper_position();
  6664. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6665. #elif IS_KINEMATIC
  6666. get_cartesian_from_steppers();
  6667. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  6668. #else
  6669. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6670. #endif
  6671. }
  6672. #if ENABLED(MESH_BED_LEVELING)
  6673. /**
  6674. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6675. * splitting the move where it crosses mesh borders.
  6676. */
  6677. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6678. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6679. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6680. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6681. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6682. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6683. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6684. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6685. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6686. if (cx1 == cx2 && cy1 == cy2) {
  6687. // Start and end on same mesh square
  6688. line_to_destination(fr_mm_s);
  6689. set_current_to_destination();
  6690. return;
  6691. }
  6692. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6693. float normalized_dist, end[NUM_AXIS];
  6694. // Split at the left/front border of the right/top square
  6695. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6696. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6697. memcpy(end, destination, sizeof(end));
  6698. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6699. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6700. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6701. CBI(x_splits, gcx);
  6702. }
  6703. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6704. memcpy(end, destination, sizeof(end));
  6705. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6706. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6707. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6708. CBI(y_splits, gcy);
  6709. }
  6710. else {
  6711. // Already split on a border
  6712. line_to_destination(fr_mm_s);
  6713. set_current_to_destination();
  6714. return;
  6715. }
  6716. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6717. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6718. // Do the split and look for more borders
  6719. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6720. // Restore destination from stack
  6721. memcpy(destination, end, sizeof(end));
  6722. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6723. }
  6724. #endif // MESH_BED_LEVELING
  6725. #if IS_KINEMATIC
  6726. /**
  6727. * Prepare a linear move in a DELTA or SCARA setup.
  6728. *
  6729. * This calls planner.buffer_line several times, adding
  6730. * small incremental moves for DELTA or SCARA.
  6731. */
  6732. inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
  6733. float difference[NUM_AXIS];
  6734. LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
  6735. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6736. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6737. if (UNEAR_ZERO(cartesian_mm)) return false;
  6738. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6739. float seconds = cartesian_mm / _feedrate_mm_s;
  6740. int steps = max(1, int(delta_segments_per_second * seconds));
  6741. float inv_steps = 1.0/steps;
  6742. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6743. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6744. // SERIAL_ECHOLNPAIR(" steps=", steps);
  6745. for (int s = 1; s <= steps; s++) {
  6746. float fraction = float(s) * inv_steps;
  6747. LOOP_XYZE(i)
  6748. logical[i] = current_position[i] + difference[i] * fraction;
  6749. inverse_kinematics(logical);
  6750. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6751. if (!bed_leveling_in_progress) adjust_delta(logical);
  6752. #endif
  6753. //DEBUG_POS("prepare_kinematic_move_to", logical);
  6754. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6755. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6756. }
  6757. return true;
  6758. }
  6759. #else
  6760. /**
  6761. * Prepare a linear move in a Cartesian setup.
  6762. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6763. */
  6764. inline bool prepare_move_to_destination_cartesian() {
  6765. // Do not use feedrate_percentage for E or Z only moves
  6766. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6767. line_to_destination();
  6768. }
  6769. else {
  6770. #if ENABLED(MESH_BED_LEVELING)
  6771. if (mbl.active()) {
  6772. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6773. return false;
  6774. }
  6775. else
  6776. #endif
  6777. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6778. }
  6779. return true;
  6780. }
  6781. #endif // !IS_KINEMATIC
  6782. #if ENABLED(DUAL_X_CARRIAGE)
  6783. /**
  6784. * Prepare a linear move in a dual X axis setup
  6785. */
  6786. inline bool prepare_move_to_destination_dualx() {
  6787. if (active_extruder_parked) {
  6788. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6789. // move duplicate extruder into correct duplication position.
  6790. planner.set_position_mm(
  6791. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6792. current_position[Y_AXIS],
  6793. current_position[Z_AXIS],
  6794. current_position[E_AXIS]
  6795. );
  6796. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6797. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6798. SYNC_PLAN_POSITION_KINEMATIC();
  6799. stepper.synchronize();
  6800. extruder_duplication_enabled = true;
  6801. active_extruder_parked = false;
  6802. }
  6803. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6804. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6805. // This is a travel move (with no extrusion)
  6806. // Skip it, but keep track of the current position
  6807. // (so it can be used as the start of the next non-travel move)
  6808. if (delayed_move_time != 0xFFFFFFFFUL) {
  6809. set_current_to_destination();
  6810. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6811. delayed_move_time = millis();
  6812. return false;
  6813. }
  6814. }
  6815. delayed_move_time = 0;
  6816. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6817. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6818. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6819. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6820. active_extruder_parked = false;
  6821. }
  6822. }
  6823. return true;
  6824. }
  6825. #endif // DUAL_X_CARRIAGE
  6826. /**
  6827. * Prepare a single move and get ready for the next one
  6828. *
  6829. * This may result in several calls to planner.buffer_line to
  6830. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  6831. */
  6832. void prepare_move_to_destination() {
  6833. clamp_to_software_endstops(destination);
  6834. refresh_cmd_timeout();
  6835. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6836. if (!DEBUGGING(DRYRUN)) {
  6837. if (destination[E_AXIS] != current_position[E_AXIS]) {
  6838. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6839. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6840. SERIAL_ECHO_START;
  6841. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6842. }
  6843. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6844. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  6845. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6846. SERIAL_ECHO_START;
  6847. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6848. }
  6849. #endif
  6850. }
  6851. }
  6852. #endif
  6853. #if IS_KINEMATIC
  6854. if (!prepare_kinematic_move_to(destination)) return;
  6855. #else
  6856. #if ENABLED(DUAL_X_CARRIAGE)
  6857. if (!prepare_move_to_destination_dualx()) return;
  6858. #endif
  6859. if (!prepare_move_to_destination_cartesian()) return;
  6860. #endif
  6861. set_current_to_destination();
  6862. }
  6863. #if ENABLED(ARC_SUPPORT)
  6864. /**
  6865. * Plan an arc in 2 dimensions
  6866. *
  6867. * The arc is approximated by generating many small linear segments.
  6868. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6869. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6870. * larger segments will tend to be more efficient. Your slicer should have
  6871. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6872. */
  6873. void plan_arc(
  6874. float logical[NUM_AXIS], // Destination position
  6875. float* offset, // Center of rotation relative to current_position
  6876. uint8_t clockwise // Clockwise?
  6877. ) {
  6878. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6879. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6880. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6881. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  6882. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  6883. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6884. r_Y = -offset[Y_AXIS],
  6885. rt_X = logical[X_AXIS] - center_X,
  6886. rt_Y = logical[Y_AXIS] - center_Y;
  6887. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6888. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6889. if (angular_travel < 0) angular_travel += RADIANS(360);
  6890. if (clockwise) angular_travel -= RADIANS(360);
  6891. // Make a circle if the angular rotation is 0
  6892. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  6893. angular_travel += RADIANS(360);
  6894. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6895. if (mm_of_travel < 0.001) return;
  6896. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6897. if (segments == 0) segments = 1;
  6898. float theta_per_segment = angular_travel / segments;
  6899. float linear_per_segment = linear_travel / segments;
  6900. float extruder_per_segment = extruder_travel / segments;
  6901. /**
  6902. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6903. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6904. * r_T = [cos(phi) -sin(phi);
  6905. * sin(phi) cos(phi] * r ;
  6906. *
  6907. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6908. * defined from the circle center to the initial position. Each line segment is formed by successive
  6909. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6910. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6911. * all double numbers are single precision on the Arduino. (True double precision will not have
  6912. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6913. * tool precision in some cases. Therefore, arc path correction is implemented.
  6914. *
  6915. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6916. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6917. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6918. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6919. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6920. * issue for CNC machines with the single precision Arduino calculations.
  6921. *
  6922. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6923. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6924. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6925. * This is important when there are successive arc motions.
  6926. */
  6927. // Vector rotation matrix values
  6928. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6929. float sin_T = theta_per_segment;
  6930. float arc_target[NUM_AXIS];
  6931. float sin_Ti, cos_Ti, r_new_Y;
  6932. uint16_t i;
  6933. int8_t count = 0;
  6934. // Initialize the linear axis
  6935. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6936. // Initialize the extruder axis
  6937. arc_target[E_AXIS] = current_position[E_AXIS];
  6938. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6939. millis_t next_idle_ms = millis() + 200UL;
  6940. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6941. thermalManager.manage_heater();
  6942. millis_t now = millis();
  6943. if (ELAPSED(now, next_idle_ms)) {
  6944. next_idle_ms = now + 200UL;
  6945. idle();
  6946. }
  6947. if (++count < N_ARC_CORRECTION) {
  6948. // Apply vector rotation matrix to previous r_X / 1
  6949. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6950. r_X = r_X * cos_T - r_Y * sin_T;
  6951. r_Y = r_new_Y;
  6952. }
  6953. else {
  6954. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6955. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6956. // To reduce stuttering, the sin and cos could be computed at different times.
  6957. // For now, compute both at the same time.
  6958. cos_Ti = cos(i * theta_per_segment);
  6959. sin_Ti = sin(i * theta_per_segment);
  6960. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6961. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6962. count = 0;
  6963. }
  6964. // Update arc_target location
  6965. arc_target[X_AXIS] = center_X + r_X;
  6966. arc_target[Y_AXIS] = center_Y + r_Y;
  6967. arc_target[Z_AXIS] += linear_per_segment;
  6968. arc_target[E_AXIS] += extruder_per_segment;
  6969. clamp_to_software_endstops(arc_target);
  6970. #if IS_KINEMATIC
  6971. inverse_kinematics(arc_target);
  6972. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6973. adjust_delta(arc_target);
  6974. #endif
  6975. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6976. #else
  6977. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6978. #endif
  6979. }
  6980. // Ensure last segment arrives at target location.
  6981. #if IS_KINEMATIC
  6982. inverse_kinematics(logical);
  6983. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6984. adjust_delta(logical);
  6985. #endif
  6986. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  6987. #else
  6988. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  6989. #endif
  6990. // As far as the parser is concerned, the position is now == target. In reality the
  6991. // motion control system might still be processing the action and the real tool position
  6992. // in any intermediate location.
  6993. set_current_to_destination();
  6994. }
  6995. #endif
  6996. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6997. void plan_cubic_move(const float offset[4]) {
  6998. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  6999. // As far as the parser is concerned, the position is now == destination. In reality the
  7000. // motion control system might still be processing the action and the real tool position
  7001. // in any intermediate location.
  7002. set_current_to_destination();
  7003. }
  7004. #endif // BEZIER_CURVE_SUPPORT
  7005. #if HAS_CONTROLLERFAN
  7006. void controllerFan() {
  7007. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7008. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7009. millis_t ms = millis();
  7010. if (ELAPSED(ms, nextMotorCheck)) {
  7011. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7012. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7013. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7014. #if E_STEPPERS > 1
  7015. || E1_ENABLE_READ == E_ENABLE_ON
  7016. #if HAS_X2_ENABLE
  7017. || X2_ENABLE_READ == X_ENABLE_ON
  7018. #endif
  7019. #if E_STEPPERS > 2
  7020. || E2_ENABLE_READ == E_ENABLE_ON
  7021. #if E_STEPPERS > 3
  7022. || E3_ENABLE_READ == E_ENABLE_ON
  7023. #endif
  7024. #endif
  7025. #endif
  7026. ) {
  7027. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7028. }
  7029. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7030. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7031. // allows digital or PWM fan output to be used (see M42 handling)
  7032. digitalWrite(CONTROLLERFAN_PIN, speed);
  7033. analogWrite(CONTROLLERFAN_PIN, speed);
  7034. }
  7035. }
  7036. #endif // HAS_CONTROLLERFAN
  7037. #if IS_SCARA
  7038. void forward_kinematics_SCARA(const float &a, const float &b) {
  7039. // Perform forward kinematics, and place results in cartes[]
  7040. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7041. float a_sin, a_cos, b_sin, b_cos;
  7042. a_sin = sin(RADIANS(a)) * L1;
  7043. a_cos = cos(RADIANS(a)) * L1;
  7044. b_sin = sin(RADIANS(b)) * L2;
  7045. b_cos = cos(RADIANS(b)) * L2;
  7046. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7047. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7048. /*
  7049. SERIAL_ECHOPAIR("f_delta x=", a);
  7050. SERIAL_ECHOPAIR(" y=", b);
  7051. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7052. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7053. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7054. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7055. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7056. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7057. //*/
  7058. }
  7059. void inverse_kinematics(const float logical[XYZ]) {
  7060. // Inverse kinematics.
  7061. // Perform SCARA IK and place results in delta[].
  7062. // The maths and first version were done by QHARLEY.
  7063. // Integrated, tweaked by Joachim Cerny in June 2014.
  7064. static float C2, S2, SK1, SK2, THETA, PSI;
  7065. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7066. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7067. #if (L1 == L2)
  7068. C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
  7069. #else
  7070. C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000;
  7071. #endif
  7072. S2 = sqrt(1 - sq(C2));
  7073. SK1 = L1 + L2 * C2;
  7074. SK2 = L2 * S2;
  7075. THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1;
  7076. PSI = atan2(S2, C2);
  7077. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7078. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7079. delta[Z_AXIS] = logical[Z_AXIS];
  7080. /*
  7081. DEBUG_POS("SCARA IK", logical);
  7082. DEBUG_POS("SCARA IK", delta);
  7083. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7084. SERIAL_ECHOPAIR(",", sy);
  7085. SERIAL_ECHOPAIR(" C2=", C2);
  7086. SERIAL_ECHOPAIR(" S2=", S2);
  7087. SERIAL_ECHOPAIR(" Theta=", THETA);
  7088. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7089. //*/
  7090. }
  7091. #endif // IS_SCARA
  7092. #if ENABLED(TEMP_STAT_LEDS)
  7093. static bool red_led = false;
  7094. static millis_t next_status_led_update_ms = 0;
  7095. void handle_status_leds(void) {
  7096. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7097. next_status_led_update_ms += 500; // Update every 0.5s
  7098. float max_temp = 0.0;
  7099. #if HAS_TEMP_BED
  7100. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7101. #endif
  7102. HOTEND_LOOP() {
  7103. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7104. }
  7105. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7106. if (new_led != red_led) {
  7107. red_led = new_led;
  7108. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7109. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7110. }
  7111. }
  7112. }
  7113. #endif
  7114. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7115. void handle_filament_runout() {
  7116. if (!filament_ran_out) {
  7117. filament_ran_out = true;
  7118. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7119. stepper.synchronize();
  7120. }
  7121. }
  7122. #endif // FILAMENT_RUNOUT_SENSOR
  7123. #if ENABLED(FAST_PWM_FAN)
  7124. void setPwmFrequency(uint8_t pin, int val) {
  7125. val &= 0x07;
  7126. switch (digitalPinToTimer(pin)) {
  7127. #if defined(TCCR0A)
  7128. case TIMER0A:
  7129. case TIMER0B:
  7130. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7131. // TCCR0B |= val;
  7132. break;
  7133. #endif
  7134. #if defined(TCCR1A)
  7135. case TIMER1A:
  7136. case TIMER1B:
  7137. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7138. // TCCR1B |= val;
  7139. break;
  7140. #endif
  7141. #if defined(TCCR2)
  7142. case TIMER2:
  7143. case TIMER2:
  7144. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7145. TCCR2 |= val;
  7146. break;
  7147. #endif
  7148. #if defined(TCCR2A)
  7149. case TIMER2A:
  7150. case TIMER2B:
  7151. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7152. TCCR2B |= val;
  7153. break;
  7154. #endif
  7155. #if defined(TCCR3A)
  7156. case TIMER3A:
  7157. case TIMER3B:
  7158. case TIMER3C:
  7159. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7160. TCCR3B |= val;
  7161. break;
  7162. #endif
  7163. #if defined(TCCR4A)
  7164. case TIMER4A:
  7165. case TIMER4B:
  7166. case TIMER4C:
  7167. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7168. TCCR4B |= val;
  7169. break;
  7170. #endif
  7171. #if defined(TCCR5A)
  7172. case TIMER5A:
  7173. case TIMER5B:
  7174. case TIMER5C:
  7175. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7176. TCCR5B |= val;
  7177. break;
  7178. #endif
  7179. }
  7180. }
  7181. #endif // FAST_PWM_FAN
  7182. float calculate_volumetric_multiplier(float diameter) {
  7183. if (!volumetric_enabled || diameter == 0) return 1.0;
  7184. float d2 = diameter * 0.5;
  7185. return 1.0 / (M_PI * d2 * d2);
  7186. }
  7187. void calculate_volumetric_multipliers() {
  7188. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7189. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7190. }
  7191. void enable_all_steppers() {
  7192. enable_x();
  7193. enable_y();
  7194. enable_z();
  7195. enable_e0();
  7196. enable_e1();
  7197. enable_e2();
  7198. enable_e3();
  7199. }
  7200. void disable_all_steppers() {
  7201. disable_x();
  7202. disable_y();
  7203. disable_z();
  7204. disable_e0();
  7205. disable_e1();
  7206. disable_e2();
  7207. disable_e3();
  7208. }
  7209. /**
  7210. * Manage several activities:
  7211. * - Check for Filament Runout
  7212. * - Keep the command buffer full
  7213. * - Check for maximum inactive time between commands
  7214. * - Check for maximum inactive time between stepper commands
  7215. * - Check if pin CHDK needs to go LOW
  7216. * - Check for KILL button held down
  7217. * - Check for HOME button held down
  7218. * - Check if cooling fan needs to be switched on
  7219. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7220. */
  7221. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7222. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7223. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7224. handle_filament_runout();
  7225. #endif
  7226. if (commands_in_queue < BUFSIZE) get_available_commands();
  7227. millis_t ms = millis();
  7228. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7229. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7230. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7231. #if ENABLED(DISABLE_INACTIVE_X)
  7232. disable_x();
  7233. #endif
  7234. #if ENABLED(DISABLE_INACTIVE_Y)
  7235. disable_y();
  7236. #endif
  7237. #if ENABLED(DISABLE_INACTIVE_Z)
  7238. disable_z();
  7239. #endif
  7240. #if ENABLED(DISABLE_INACTIVE_E)
  7241. disable_e0();
  7242. disable_e1();
  7243. disable_e2();
  7244. disable_e3();
  7245. #endif
  7246. }
  7247. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7248. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7249. chdkActive = false;
  7250. WRITE(CHDK, LOW);
  7251. }
  7252. #endif
  7253. #if HAS_KILL
  7254. // Check if the kill button was pressed and wait just in case it was an accidental
  7255. // key kill key press
  7256. // -------------------------------------------------------------------------------
  7257. static int killCount = 0; // make the inactivity button a bit less responsive
  7258. const int KILL_DELAY = 750;
  7259. if (!READ(KILL_PIN))
  7260. killCount++;
  7261. else if (killCount > 0)
  7262. killCount--;
  7263. // Exceeded threshold and we can confirm that it was not accidental
  7264. // KILL the machine
  7265. // ----------------------------------------------------------------
  7266. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7267. #endif
  7268. #if HAS_HOME
  7269. // Check to see if we have to home, use poor man's debouncer
  7270. // ---------------------------------------------------------
  7271. static int homeDebounceCount = 0; // poor man's debouncing count
  7272. const int HOME_DEBOUNCE_DELAY = 2500;
  7273. if (!READ(HOME_PIN)) {
  7274. if (!homeDebounceCount) {
  7275. enqueue_and_echo_commands_P(PSTR("G28"));
  7276. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7277. }
  7278. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7279. homeDebounceCount++;
  7280. else
  7281. homeDebounceCount = 0;
  7282. }
  7283. #endif
  7284. #if HAS_CONTROLLERFAN
  7285. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7286. #endif
  7287. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7288. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7289. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7290. bool oldstatus;
  7291. #if ENABLED(SWITCHING_EXTRUDER)
  7292. oldstatus = E0_ENABLE_READ;
  7293. enable_e0();
  7294. #else // !SWITCHING_EXTRUDER
  7295. switch (active_extruder) {
  7296. case 0:
  7297. oldstatus = E0_ENABLE_READ;
  7298. enable_e0();
  7299. break;
  7300. #if E_STEPPERS > 1
  7301. case 1:
  7302. oldstatus = E1_ENABLE_READ;
  7303. enable_e1();
  7304. break;
  7305. #if E_STEPPERS > 2
  7306. case 2:
  7307. oldstatus = E2_ENABLE_READ;
  7308. enable_e2();
  7309. break;
  7310. #if E_STEPPERS > 3
  7311. case 3:
  7312. oldstatus = E3_ENABLE_READ;
  7313. enable_e3();
  7314. break;
  7315. #endif
  7316. #endif
  7317. #endif
  7318. }
  7319. #endif // !SWITCHING_EXTRUDER
  7320. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7321. planner.buffer_line(
  7322. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7323. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7324. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7325. );
  7326. stepper.synchronize();
  7327. planner.set_e_position_mm(current_position[E_AXIS]);
  7328. #if ENABLED(SWITCHING_EXTRUDER)
  7329. E0_ENABLE_WRITE(oldstatus);
  7330. #else
  7331. switch (active_extruder) {
  7332. case 0:
  7333. E0_ENABLE_WRITE(oldstatus);
  7334. break;
  7335. #if E_STEPPERS > 1
  7336. case 1:
  7337. E1_ENABLE_WRITE(oldstatus);
  7338. break;
  7339. #if E_STEPPERS > 2
  7340. case 2:
  7341. E2_ENABLE_WRITE(oldstatus);
  7342. break;
  7343. #if E_STEPPERS > 3
  7344. case 3:
  7345. E3_ENABLE_WRITE(oldstatus);
  7346. break;
  7347. #endif
  7348. #endif
  7349. #endif
  7350. }
  7351. #endif // !SWITCHING_EXTRUDER
  7352. }
  7353. #endif // EXTRUDER_RUNOUT_PREVENT
  7354. #if ENABLED(DUAL_X_CARRIAGE)
  7355. // handle delayed move timeout
  7356. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7357. // travel moves have been received so enact them
  7358. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7359. set_destination_to_current();
  7360. prepare_move_to_destination();
  7361. }
  7362. #endif
  7363. #if ENABLED(TEMP_STAT_LEDS)
  7364. handle_status_leds();
  7365. #endif
  7366. planner.check_axes_activity();
  7367. }
  7368. /**
  7369. * Standard idle routine keeps the machine alive
  7370. */
  7371. void idle(
  7372. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7373. bool no_stepper_sleep/*=false*/
  7374. #endif
  7375. ) {
  7376. lcd_update();
  7377. host_keepalive();
  7378. manage_inactivity(
  7379. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7380. no_stepper_sleep
  7381. #endif
  7382. );
  7383. thermalManager.manage_heater();
  7384. #if ENABLED(PRINTCOUNTER)
  7385. print_job_timer.tick();
  7386. #endif
  7387. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7388. buzzer.tick();
  7389. #endif
  7390. }
  7391. /**
  7392. * Kill all activity and lock the machine.
  7393. * After this the machine will need to be reset.
  7394. */
  7395. void kill(const char* lcd_msg) {
  7396. SERIAL_ERROR_START;
  7397. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7398. #if ENABLED(ULTRA_LCD)
  7399. kill_screen(lcd_msg);
  7400. #else
  7401. UNUSED(lcd_msg);
  7402. #endif
  7403. delay(500); // Wait a short time
  7404. cli(); // Stop interrupts
  7405. thermalManager.disable_all_heaters();
  7406. disable_all_steppers();
  7407. #if HAS_POWER_SWITCH
  7408. pinMode(PS_ON_PIN, INPUT);
  7409. #endif
  7410. suicide();
  7411. while (1) {
  7412. #if ENABLED(USE_WATCHDOG)
  7413. watchdog_reset();
  7414. #endif
  7415. } // Wait for reset
  7416. }
  7417. /**
  7418. * Turn off heaters and stop the print in progress
  7419. * After a stop the machine may be resumed with M999
  7420. */
  7421. void stop() {
  7422. thermalManager.disable_all_heaters();
  7423. if (IsRunning()) {
  7424. Running = false;
  7425. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7426. SERIAL_ERROR_START;
  7427. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7428. LCD_MESSAGEPGM(MSG_STOPPED);
  7429. }
  7430. }
  7431. /**
  7432. * Marlin entry-point: Set up before the program loop
  7433. * - Set up the kill pin, filament runout, power hold
  7434. * - Start the serial port
  7435. * - Print startup messages and diagnostics
  7436. * - Get EEPROM or default settings
  7437. * - Initialize managers for:
  7438. * • temperature
  7439. * • planner
  7440. * • watchdog
  7441. * • stepper
  7442. * • photo pin
  7443. * • servos
  7444. * • LCD controller
  7445. * • Digipot I2C
  7446. * • Z probe sled
  7447. * • status LEDs
  7448. */
  7449. void setup() {
  7450. #ifdef DISABLE_JTAG
  7451. // Disable JTAG on AT90USB chips to free up pins for IO
  7452. MCUCR = 0x80;
  7453. MCUCR = 0x80;
  7454. #endif
  7455. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7456. setup_filrunoutpin();
  7457. #endif
  7458. setup_killpin();
  7459. setup_powerhold();
  7460. #if HAS_STEPPER_RESET
  7461. disableStepperDrivers();
  7462. #endif
  7463. MYSERIAL.begin(BAUDRATE);
  7464. SERIAL_PROTOCOLLNPGM("start");
  7465. SERIAL_ECHO_START;
  7466. // Check startup - does nothing if bootloader sets MCUSR to 0
  7467. byte mcu = MCUSR;
  7468. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7469. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7470. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7471. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7472. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7473. MCUSR = 0;
  7474. SERIAL_ECHOPGM(MSG_MARLIN);
  7475. SERIAL_CHAR(' ');
  7476. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7477. SERIAL_EOL;
  7478. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7479. SERIAL_ECHO_START;
  7480. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7481. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7482. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7483. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7484. #endif
  7485. SERIAL_ECHO_START;
  7486. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7487. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7488. // Send "ok" after commands by default
  7489. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7490. // Load data from EEPROM if available (or use defaults)
  7491. // This also updates variables in the planner, elsewhere
  7492. Config_RetrieveSettings();
  7493. // Initialize current position based on home_offset
  7494. memcpy(current_position, home_offset, sizeof(home_offset));
  7495. // Vital to init stepper/planner equivalent for current_position
  7496. SYNC_PLAN_POSITION_KINEMATIC();
  7497. thermalManager.init(); // Initialize temperature loop
  7498. #if ENABLED(USE_WATCHDOG)
  7499. watchdog_init();
  7500. #endif
  7501. stepper.init(); // Initialize stepper, this enables interrupts!
  7502. setup_photpin();
  7503. servo_init();
  7504. #if HAS_BED_PROBE
  7505. endstops.enable_z_probe(false);
  7506. #endif
  7507. #if HAS_CONTROLLERFAN
  7508. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7509. #endif
  7510. #if HAS_STEPPER_RESET
  7511. enableStepperDrivers();
  7512. #endif
  7513. #if ENABLED(DIGIPOT_I2C)
  7514. digipot_i2c_init();
  7515. #endif
  7516. #if ENABLED(DAC_STEPPER_CURRENT)
  7517. dac_init();
  7518. #endif
  7519. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7520. pinMode(SLED_PIN, OUTPUT);
  7521. digitalWrite(SLED_PIN, LOW); // turn it off
  7522. #endif // Z_PROBE_SLED
  7523. setup_homepin();
  7524. #ifdef STAT_LED_RED
  7525. pinMode(STAT_LED_RED, OUTPUT);
  7526. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7527. #endif
  7528. #ifdef STAT_LED_BLUE
  7529. pinMode(STAT_LED_BLUE, OUTPUT);
  7530. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7531. #endif
  7532. lcd_init();
  7533. #if ENABLED(SHOW_BOOTSCREEN)
  7534. #if ENABLED(DOGLCD)
  7535. safe_delay(BOOTSCREEN_TIMEOUT);
  7536. #elif ENABLED(ULTRA_LCD)
  7537. bootscreen();
  7538. lcd_init();
  7539. #endif
  7540. #endif
  7541. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7542. // Initialize mixing to 100% color 1
  7543. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7544. mixing_factor[i] = (i == 0) ? 1 : 0;
  7545. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7546. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7547. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7548. #endif
  7549. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7550. i2c.onReceive(i2c_on_receive);
  7551. i2c.onRequest(i2c_on_request);
  7552. #endif
  7553. }
  7554. /**
  7555. * The main Marlin program loop
  7556. *
  7557. * - Save or log commands to SD
  7558. * - Process available commands (if not saving)
  7559. * - Call heater manager
  7560. * - Call inactivity manager
  7561. * - Call endstop manager
  7562. * - Call LCD update
  7563. */
  7564. void loop() {
  7565. if (commands_in_queue < BUFSIZE) get_available_commands();
  7566. #if ENABLED(SDSUPPORT)
  7567. card.checkautostart(false);
  7568. #endif
  7569. if (commands_in_queue) {
  7570. #if ENABLED(SDSUPPORT)
  7571. if (card.saving) {
  7572. char* command = command_queue[cmd_queue_index_r];
  7573. if (strstr_P(command, PSTR("M29"))) {
  7574. // M29 closes the file
  7575. card.closefile();
  7576. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7577. ok_to_send();
  7578. }
  7579. else {
  7580. // Write the string from the read buffer to SD
  7581. card.write_command(command);
  7582. if (card.logging)
  7583. process_next_command(); // The card is saving because it's logging
  7584. else
  7585. ok_to_send();
  7586. }
  7587. }
  7588. else
  7589. process_next_command();
  7590. #else
  7591. process_next_command();
  7592. #endif // SDSUPPORT
  7593. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7594. if (commands_in_queue) {
  7595. --commands_in_queue;
  7596. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7597. }
  7598. }
  7599. endstops.report_state();
  7600. idle();
  7601. }