My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 172KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  185. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  186. int feedmultiply = 100; //100->1 200->2
  187. int saved_feedmultiply;
  188. int extrudemultiply = 100; //100->1 200->2
  189. int extruder_multiply[EXTRUDERS] = { 100
  190. #if EXTRUDERS > 1
  191. , 100
  192. #if EXTRUDERS > 2
  193. , 100
  194. #if EXTRUDERS > 3
  195. , 100
  196. #endif
  197. #endif
  198. #endif
  199. };
  200. bool volumetric_enabled = false;
  201. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  202. #if EXTRUDERS > 1
  203. , DEFAULT_NOMINAL_FILAMENT_DIA
  204. #if EXTRUDERS > 2
  205. , DEFAULT_NOMINAL_FILAMENT_DIA
  206. #if EXTRUDERS > 3
  207. , DEFAULT_NOMINAL_FILAMENT_DIA
  208. #endif
  209. #endif
  210. #endif
  211. };
  212. float volumetric_multiplier[EXTRUDERS] = {1.0
  213. #if EXTRUDERS > 1
  214. , 1.0
  215. #if EXTRUDERS > 2
  216. , 1.0
  217. #if EXTRUDERS > 3
  218. , 1.0
  219. #endif
  220. #endif
  221. #endif
  222. };
  223. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  224. float add_homing[3] = { 0, 0, 0 };
  225. #ifdef DELTA
  226. float endstop_adj[3] = { 0, 0, 0 };
  227. #endif
  228. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  229. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  230. bool axis_known_position[3] = { false, false, false };
  231. float zprobe_zoffset;
  232. // Extruder offset
  233. #if EXTRUDERS > 1
  234. #ifndef DUAL_X_CARRIAGE
  235. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  236. #else
  237. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  238. #endif
  239. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  240. #if defined(EXTRUDER_OFFSET_X)
  241. EXTRUDER_OFFSET_X
  242. #else
  243. 0
  244. #endif
  245. ,
  246. #if defined(EXTRUDER_OFFSET_Y)
  247. EXTRUDER_OFFSET_Y
  248. #else
  249. 0
  250. #endif
  251. };
  252. #endif
  253. uint8_t active_extruder = 0;
  254. int fanSpeed = 0;
  255. #ifdef SERVO_ENDSTOPS
  256. int servo_endstops[] = SERVO_ENDSTOPS;
  257. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  258. #endif
  259. #ifdef BARICUDA
  260. int ValvePressure = 0;
  261. int EtoPPressure = 0;
  262. #endif
  263. #ifdef FWRETRACT
  264. bool autoretract_enabled = false;
  265. bool retracted[EXTRUDERS] = { false
  266. #if EXTRUDERS > 1
  267. , false
  268. #if EXTRUDERS > 2
  269. , false
  270. #if EXTRUDERS > 3
  271. , false
  272. #endif
  273. #endif
  274. #endif
  275. };
  276. bool retracted_swap[EXTRUDERS] = { false
  277. #if EXTRUDERS > 1
  278. , false
  279. #if EXTRUDERS > 2
  280. , false
  281. #if EXTRUDERS > 3
  282. , false
  283. #endif
  284. #endif
  285. #endif
  286. };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #ifdef ULTIPANEL
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0, 0, 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. // these are the default values, can be overriden with M665
  309. float delta_radius = DELTA_RADIUS;
  310. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  311. float delta_tower1_y = -COS_60 * delta_radius;
  312. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  313. float delta_tower2_y = -COS_60 * delta_radius;
  314. float delta_tower3_x = 0; // back middle tower
  315. float delta_tower3_y = delta_radius;
  316. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  317. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  318. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  319. #endif
  320. #ifdef SCARA
  321. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  322. #endif
  323. bool cancel_heatup = false;
  324. #ifdef FILAMENT_SENSOR
  325. //Variables for Filament Sensor input
  326. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  327. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  328. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  329. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  330. int delay_index1=0; //index into ring buffer
  331. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  332. float delay_dist=0; //delay distance counter
  333. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  334. #endif
  335. const char errormagic[] PROGMEM = "Error:";
  336. const char echomagic[] PROGMEM = "echo:";
  337. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  338. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  339. #ifndef DELTA
  340. static float delta[3] = { 0, 0, 0 };
  341. #endif
  342. static float offset[3] = { 0, 0, 0 };
  343. static bool home_all_axis = true;
  344. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  345. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  346. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  347. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  348. static bool fromsd[BUFSIZE];
  349. static int bufindr = 0;
  350. static int bufindw = 0;
  351. static int buflen = 0;
  352. static char serial_char;
  353. static int serial_count = 0;
  354. static boolean comment_mode = false;
  355. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  356. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  357. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  358. // Inactivity shutdown
  359. static unsigned long previous_millis_cmd = 0;
  360. static unsigned long max_inactive_time = 0;
  361. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  362. unsigned long starttime = 0; ///< Print job start time
  363. unsigned long stoptime = 0; ///< Print job stop time
  364. static uint8_t tmp_extruder;
  365. bool Stopped = false;
  366. #if NUM_SERVOS > 0
  367. Servo servos[NUM_SERVOS];
  368. #endif
  369. bool CooldownNoWait = true;
  370. bool target_direction;
  371. #ifdef CHDK
  372. unsigned long chdkHigh = 0;
  373. boolean chdkActive = false;
  374. #endif
  375. //===========================================================================
  376. //=============================Routines======================================
  377. //===========================================================================
  378. void get_arc_coordinates();
  379. bool setTargetedHotend(int code);
  380. void serial_echopair_P(const char *s_P, float v)
  381. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, double v)
  383. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. void serial_echopair_P(const char *s_P, unsigned long v)
  385. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  386. #ifdef SDSUPPORT
  387. #include "SdFatUtil.h"
  388. int freeMemory() { return SdFatUtil::FreeRam(); }
  389. #else
  390. extern "C" {
  391. extern unsigned int __bss_end;
  392. extern unsigned int __heap_start;
  393. extern void *__brkval;
  394. int freeMemory() {
  395. int free_memory;
  396. if ((int)__brkval == 0)
  397. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  398. else
  399. free_memory = ((int)&free_memory) - ((int)__brkval);
  400. return free_memory;
  401. }
  402. }
  403. #endif //!SDSUPPORT
  404. //Injects the next command from the pending sequence of commands, when possible
  405. //Return false if and only if no command was pending
  406. static bool drain_queued_commands_P()
  407. {
  408. char cmd[30];
  409. if(!queued_commands_P)
  410. return false;
  411. // Get the next 30 chars from the sequence of gcodes to run
  412. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  413. cmd[sizeof(cmd)-1]= 0;
  414. // Look for the end of line, or the end of sequence
  415. size_t i= 0;
  416. char c;
  417. while( (c= cmd[i]) && c!='\n' )
  418. ++i; // look for the end of this gcode command
  419. cmd[i]= 0;
  420. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  421. {
  422. if(c)
  423. queued_commands_P+= i+1; // move to next command
  424. else
  425. queued_commands_P= NULL; // will have no more commands in the sequence
  426. }
  427. return true;
  428. }
  429. //Record one or many commands to run from program memory.
  430. //Aborts the current queue, if any.
  431. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  432. void enquecommands_P(const char* pgcode)
  433. {
  434. queued_commands_P= pgcode;
  435. drain_queued_commands_P(); // first command exectuted asap (when possible)
  436. }
  437. //adds a single command to the main command buffer, from RAM
  438. //that is really done in a non-safe way.
  439. //needs overworking someday
  440. //Returns false if it failed to do so
  441. bool enquecommand(const char *cmd)
  442. {
  443. if(*cmd==';')
  444. return false;
  445. if(buflen >= BUFSIZE)
  446. return false;
  447. //this is dangerous if a mixing of serial and this happens
  448. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  449. SERIAL_ECHO_START;
  450. SERIAL_ECHOPGM(MSG_Enqueing);
  451. SERIAL_ECHO(cmdbuffer[bufindw]);
  452. SERIAL_ECHOLNPGM("\"");
  453. bufindw= (bufindw + 1)%BUFSIZE;
  454. buflen += 1;
  455. return true;
  456. }
  457. void setup_killpin()
  458. {
  459. #if defined(KILL_PIN) && KILL_PIN > -1
  460. SET_INPUT(KILL_PIN);
  461. WRITE(KILL_PIN,HIGH);
  462. #endif
  463. }
  464. // Set home pin
  465. void setup_homepin(void)
  466. {
  467. #if defined(HOME_PIN) && HOME_PIN > -1
  468. SET_INPUT(HOME_PIN);
  469. WRITE(HOME_PIN,HIGH);
  470. #endif
  471. }
  472. void setup_photpin()
  473. {
  474. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  475. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  476. #endif
  477. }
  478. void setup_powerhold()
  479. {
  480. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  481. OUT_WRITE(SUICIDE_PIN, HIGH);
  482. #endif
  483. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  484. #if defined(PS_DEFAULT_OFF)
  485. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  486. #else
  487. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  488. #endif
  489. #endif
  490. }
  491. void suicide()
  492. {
  493. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  494. OUT_WRITE(SUICIDE_PIN, LOW);
  495. #endif
  496. }
  497. void servo_init()
  498. {
  499. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  500. servos[0].attach(SERVO0_PIN);
  501. #endif
  502. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  503. servos[1].attach(SERVO1_PIN);
  504. #endif
  505. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  506. servos[2].attach(SERVO2_PIN);
  507. #endif
  508. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  509. servos[3].attach(SERVO3_PIN);
  510. #endif
  511. #if (NUM_SERVOS >= 5)
  512. #error "TODO: enter initalisation code for more servos"
  513. #endif
  514. // Set position of Servo Endstops that are defined
  515. #ifdef SERVO_ENDSTOPS
  516. for(int8_t i = 0; i < 3; i++)
  517. {
  518. if(servo_endstops[i] > -1) {
  519. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  520. }
  521. }
  522. #endif
  523. #if SERVO_LEVELING
  524. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  525. servos[servo_endstops[Z_AXIS]].detach();
  526. #endif
  527. }
  528. void setup()
  529. {
  530. setup_killpin();
  531. setup_powerhold();
  532. MYSERIAL.begin(BAUDRATE);
  533. SERIAL_PROTOCOLLNPGM("start");
  534. SERIAL_ECHO_START;
  535. // Check startup - does nothing if bootloader sets MCUSR to 0
  536. byte mcu = MCUSR;
  537. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  538. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  539. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  540. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  541. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  542. MCUSR=0;
  543. SERIAL_ECHOPGM(MSG_MARLIN);
  544. SERIAL_ECHOLNPGM(STRING_VERSION);
  545. #ifdef STRING_VERSION_CONFIG_H
  546. #ifdef STRING_CONFIG_H_AUTHOR
  547. SERIAL_ECHO_START;
  548. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  549. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  550. SERIAL_ECHOPGM(MSG_AUTHOR);
  551. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  552. SERIAL_ECHOPGM("Compiled: ");
  553. SERIAL_ECHOLNPGM(__DATE__);
  554. #endif // STRING_CONFIG_H_AUTHOR
  555. #endif // STRING_VERSION_CONFIG_H
  556. SERIAL_ECHO_START;
  557. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  558. SERIAL_ECHO(freeMemory());
  559. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  560. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  561. for(int8_t i = 0; i < BUFSIZE; i++)
  562. {
  563. fromsd[i] = false;
  564. }
  565. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  566. Config_RetrieveSettings();
  567. tp_init(); // Initialize temperature loop
  568. plan_init(); // Initialize planner;
  569. watchdog_init();
  570. st_init(); // Initialize stepper, this enables interrupts!
  571. setup_photpin();
  572. servo_init();
  573. lcd_init();
  574. _delay_ms(1000); // wait 1sec to display the splash screen
  575. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  576. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  577. #endif
  578. #ifdef DIGIPOT_I2C
  579. digipot_i2c_init();
  580. #endif
  581. #ifdef Z_PROBE_SLED
  582. pinMode(SERVO0_PIN, OUTPUT);
  583. digitalWrite(SERVO0_PIN, LOW); // turn it off
  584. #endif // Z_PROBE_SLED
  585. setup_homepin();
  586. #ifdef STAT_LED_RED
  587. pinMode(STAT_LED_RED, OUTPUT);
  588. digitalWrite(STAT_LED_RED, LOW); // turn it off
  589. #endif
  590. #ifdef STAT_LED_BLUE
  591. pinMode(STAT_LED_BLUE, OUTPUT);
  592. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  593. #endif
  594. }
  595. void loop()
  596. {
  597. if(buflen < (BUFSIZE-1))
  598. get_command();
  599. #ifdef SDSUPPORT
  600. card.checkautostart(false);
  601. #endif
  602. if(buflen)
  603. {
  604. #ifdef SDSUPPORT
  605. if(card.saving)
  606. {
  607. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  608. {
  609. card.write_command(cmdbuffer[bufindr]);
  610. if(card.logging)
  611. {
  612. process_commands();
  613. }
  614. else
  615. {
  616. SERIAL_PROTOCOLLNPGM(MSG_OK);
  617. }
  618. }
  619. else
  620. {
  621. card.closefile();
  622. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  623. }
  624. }
  625. else
  626. {
  627. process_commands();
  628. }
  629. #else
  630. process_commands();
  631. #endif //SDSUPPORT
  632. buflen = (buflen-1);
  633. bufindr = (bufindr + 1)%BUFSIZE;
  634. }
  635. //check heater every n milliseconds
  636. manage_heater();
  637. manage_inactivity();
  638. checkHitEndstops();
  639. lcd_update();
  640. }
  641. void get_command()
  642. {
  643. if(drain_queued_commands_P()) // priority is given to non-serial commands
  644. return;
  645. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  646. serial_char = MYSERIAL.read();
  647. if(serial_char == '\n' ||
  648. serial_char == '\r' ||
  649. serial_count >= (MAX_CMD_SIZE - 1) )
  650. {
  651. // end of line == end of comment
  652. comment_mode = false;
  653. if(!serial_count) {
  654. // short cut for empty lines
  655. return;
  656. }
  657. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  658. fromsd[bufindw] = false;
  659. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  660. {
  661. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  662. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  663. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  664. SERIAL_ERROR_START;
  665. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  666. SERIAL_ERRORLN(gcode_LastN);
  667. //Serial.println(gcode_N);
  668. FlushSerialRequestResend();
  669. serial_count = 0;
  670. return;
  671. }
  672. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  673. {
  674. byte checksum = 0;
  675. byte count = 0;
  676. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  677. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  678. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  679. SERIAL_ERROR_START;
  680. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  681. SERIAL_ERRORLN(gcode_LastN);
  682. FlushSerialRequestResend();
  683. serial_count = 0;
  684. return;
  685. }
  686. //if no errors, continue parsing
  687. }
  688. else
  689. {
  690. SERIAL_ERROR_START;
  691. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  692. SERIAL_ERRORLN(gcode_LastN);
  693. FlushSerialRequestResend();
  694. serial_count = 0;
  695. return;
  696. }
  697. gcode_LastN = gcode_N;
  698. //if no errors, continue parsing
  699. }
  700. else // if we don't receive 'N' but still see '*'
  701. {
  702. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  703. {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. serial_count = 0;
  708. return;
  709. }
  710. }
  711. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  712. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  713. switch(strtol(strchr_pointer + 1, NULL, 10)){
  714. case 0:
  715. case 1:
  716. case 2:
  717. case 3:
  718. if (Stopped == true) {
  719. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  720. LCD_MESSAGEPGM(MSG_STOPPED);
  721. }
  722. break;
  723. default:
  724. break;
  725. }
  726. }
  727. //If command was e-stop process now
  728. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  729. kill();
  730. bufindw = (bufindw + 1)%BUFSIZE;
  731. buflen += 1;
  732. serial_count = 0; //clear buffer
  733. }
  734. else if(serial_char == '\\') { //Handle escapes
  735. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  736. // if we have one more character, copy it over
  737. serial_char = MYSERIAL.read();
  738. cmdbuffer[bufindw][serial_count++] = serial_char;
  739. }
  740. //otherwise do nothing
  741. }
  742. else { // its not a newline, carriage return or escape char
  743. if(serial_char == ';') comment_mode = true;
  744. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  745. }
  746. }
  747. #ifdef SDSUPPORT
  748. if(!card.sdprinting || serial_count!=0){
  749. return;
  750. }
  751. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  752. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  753. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  754. static bool stop_buffering=false;
  755. if(buflen==0) stop_buffering=false;
  756. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  757. int16_t n=card.get();
  758. serial_char = (char)n;
  759. if(serial_char == '\n' ||
  760. serial_char == '\r' ||
  761. (serial_char == '#' && comment_mode == false) ||
  762. (serial_char == ':' && comment_mode == false) ||
  763. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  764. {
  765. if(card.eof()){
  766. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  767. stoptime=millis();
  768. char time[30];
  769. unsigned long t=(stoptime-starttime)/1000;
  770. int hours, minutes;
  771. minutes=(t/60)%60;
  772. hours=t/60/60;
  773. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  774. SERIAL_ECHO_START;
  775. SERIAL_ECHOLN(time);
  776. lcd_setstatus(time);
  777. card.printingHasFinished();
  778. card.checkautostart(true);
  779. }
  780. if(serial_char=='#')
  781. stop_buffering=true;
  782. if(!serial_count)
  783. {
  784. comment_mode = false; //for new command
  785. return; //if empty line
  786. }
  787. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  788. // if(!comment_mode){
  789. fromsd[bufindw] = true;
  790. buflen += 1;
  791. bufindw = (bufindw + 1)%BUFSIZE;
  792. // }
  793. comment_mode = false; //for new command
  794. serial_count = 0; //clear buffer
  795. }
  796. else
  797. {
  798. if(serial_char == ';') comment_mode = true;
  799. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  800. }
  801. }
  802. #endif //SDSUPPORT
  803. }
  804. float code_value()
  805. {
  806. return (strtod(strchr_pointer + 1, NULL));
  807. }
  808. long code_value_long()
  809. {
  810. return (strtol(strchr_pointer + 1, NULL, 10));
  811. }
  812. bool code_seen(char code)
  813. {
  814. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  815. return (strchr_pointer != NULL); //Return True if a character was found
  816. }
  817. #define DEFINE_PGM_READ_ANY(type, reader) \
  818. static inline type pgm_read_any(const type *p) \
  819. { return pgm_read_##reader##_near(p); }
  820. DEFINE_PGM_READ_ANY(float, float);
  821. DEFINE_PGM_READ_ANY(signed char, byte);
  822. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  823. static const PROGMEM type array##_P[3] = \
  824. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  825. static inline type array(int axis) \
  826. { return pgm_read_any(&array##_P[axis]); }
  827. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  828. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  829. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  830. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  831. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  832. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  833. #ifdef DUAL_X_CARRIAGE
  834. #if EXTRUDERS == 1 || defined(COREXY) \
  835. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  836. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  837. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  838. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  839. #endif
  840. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  841. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  842. #endif
  843. #define DXC_FULL_CONTROL_MODE 0
  844. #define DXC_AUTO_PARK_MODE 1
  845. #define DXC_DUPLICATION_MODE 2
  846. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  847. static float x_home_pos(int extruder) {
  848. if (extruder == 0)
  849. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  850. else
  851. // In dual carriage mode the extruder offset provides an override of the
  852. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  853. // This allow soft recalibration of the second extruder offset position without firmware reflash
  854. // (through the M218 command).
  855. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  856. }
  857. static int x_home_dir(int extruder) {
  858. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  859. }
  860. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  861. static bool active_extruder_parked = false; // used in mode 1 & 2
  862. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  863. static unsigned long delayed_move_time = 0; // used in mode 1
  864. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  865. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  866. bool extruder_duplication_enabled = false; // used in mode 2
  867. #endif //DUAL_X_CARRIAGE
  868. static void axis_is_at_home(int axis) {
  869. #ifdef DUAL_X_CARRIAGE
  870. if (axis == X_AXIS) {
  871. if (active_extruder != 0) {
  872. current_position[X_AXIS] = x_home_pos(active_extruder);
  873. min_pos[X_AXIS] = X2_MIN_POS;
  874. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  875. return;
  876. }
  877. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  878. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  879. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  880. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  881. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  882. return;
  883. }
  884. }
  885. #endif
  886. #ifdef SCARA
  887. float homeposition[3];
  888. char i;
  889. if (axis < 2)
  890. {
  891. for (i=0; i<3; i++)
  892. {
  893. homeposition[i] = base_home_pos(i);
  894. }
  895. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  896. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  897. // Works out real Homeposition angles using inverse kinematics,
  898. // and calculates homing offset using forward kinematics
  899. calculate_delta(homeposition);
  900. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  901. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  902. for (i=0; i<2; i++)
  903. {
  904. delta[i] -= add_homing[i];
  905. }
  906. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  907. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  908. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  909. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  910. calculate_SCARA_forward_Transform(delta);
  911. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  912. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  913. current_position[axis] = delta[axis];
  914. // SCARA home positions are based on configuration since the actual limits are determined by the
  915. // inverse kinematic transform.
  916. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  917. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  918. }
  919. else
  920. {
  921. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  922. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  923. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  924. }
  925. #else
  926. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  927. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  928. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  929. #endif
  930. }
  931. #ifdef ENABLE_AUTO_BED_LEVELING
  932. #ifdef AUTO_BED_LEVELING_GRID
  933. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  934. {
  935. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  936. planeNormal.debug("planeNormal");
  937. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  938. //bedLevel.debug("bedLevel");
  939. //plan_bed_level_matrix.debug("bed level before");
  940. //vector_3 uncorrected_position = plan_get_position_mm();
  941. //uncorrected_position.debug("position before");
  942. vector_3 corrected_position = plan_get_position();
  943. // corrected_position.debug("position after");
  944. current_position[X_AXIS] = corrected_position.x;
  945. current_position[Y_AXIS] = corrected_position.y;
  946. current_position[Z_AXIS] = corrected_position.z;
  947. // put the bed at 0 so we don't go below it.
  948. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. }
  951. #else // not AUTO_BED_LEVELING_GRID
  952. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  953. plan_bed_level_matrix.set_to_identity();
  954. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  955. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  956. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  957. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  958. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  959. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  960. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  961. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  962. vector_3 corrected_position = plan_get_position();
  963. current_position[X_AXIS] = corrected_position.x;
  964. current_position[Y_AXIS] = corrected_position.y;
  965. current_position[Z_AXIS] = corrected_position.z;
  966. // put the bed at 0 so we don't go below it.
  967. current_position[Z_AXIS] = zprobe_zoffset;
  968. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  969. }
  970. #endif // AUTO_BED_LEVELING_GRID
  971. static void run_z_probe() {
  972. plan_bed_level_matrix.set_to_identity();
  973. feedrate = homing_feedrate[Z_AXIS];
  974. // move down until you find the bed
  975. float zPosition = -10;
  976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  977. st_synchronize();
  978. // we have to let the planner know where we are right now as it is not where we said to go.
  979. zPosition = st_get_position_mm(Z_AXIS);
  980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  981. // move up the retract distance
  982. zPosition += home_retract_mm(Z_AXIS);
  983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  984. st_synchronize();
  985. // move back down slowly to find bed
  986. if (homing_bump_divisor[Z_AXIS] >= 1)
  987. {
  988. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  989. }
  990. else
  991. {
  992. feedrate = homing_feedrate[Z_AXIS]/10;
  993. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  994. }
  995. zPosition -= home_retract_mm(Z_AXIS) * 2;
  996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  997. st_synchronize();
  998. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  999. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1000. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1001. }
  1002. static void do_blocking_move_to(float x, float y, float z) {
  1003. float oldFeedRate = feedrate;
  1004. feedrate = homing_feedrate[Z_AXIS];
  1005. current_position[Z_AXIS] = z;
  1006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1007. st_synchronize();
  1008. feedrate = XY_TRAVEL_SPEED;
  1009. current_position[X_AXIS] = x;
  1010. current_position[Y_AXIS] = y;
  1011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1012. st_synchronize();
  1013. feedrate = oldFeedRate;
  1014. }
  1015. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1016. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1017. }
  1018. static void setup_for_endstop_move() {
  1019. saved_feedrate = feedrate;
  1020. saved_feedmultiply = feedmultiply;
  1021. feedmultiply = 100;
  1022. previous_millis_cmd = millis();
  1023. enable_endstops(true);
  1024. }
  1025. static void clean_up_after_endstop_move() {
  1026. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1027. enable_endstops(false);
  1028. #endif
  1029. feedrate = saved_feedrate;
  1030. feedmultiply = saved_feedmultiply;
  1031. previous_millis_cmd = millis();
  1032. }
  1033. static void engage_z_probe() {
  1034. // Engage Z Servo endstop if enabled
  1035. #ifdef SERVO_ENDSTOPS
  1036. if (servo_endstops[Z_AXIS] > -1) {
  1037. #if SERVO_LEVELING
  1038. servos[servo_endstops[Z_AXIS]].attach(0);
  1039. #endif
  1040. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1041. #if SERVO_LEVELING
  1042. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1043. servos[servo_endstops[Z_AXIS]].detach();
  1044. #endif
  1045. }
  1046. #endif
  1047. }
  1048. static void retract_z_probe() {
  1049. // Retract Z Servo endstop if enabled
  1050. #ifdef SERVO_ENDSTOPS
  1051. if (servo_endstops[Z_AXIS] > -1) {
  1052. #if SERVO_LEVELING
  1053. servos[servo_endstops[Z_AXIS]].attach(0);
  1054. #endif
  1055. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1056. #if SERVO_LEVELING
  1057. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1058. servos[servo_endstops[Z_AXIS]].detach();
  1059. #endif
  1060. }
  1061. #endif
  1062. }
  1063. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1064. /// Probe bed height at position (x,y), returns the measured z value
  1065. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1066. // move to right place
  1067. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1068. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1069. #ifndef Z_PROBE_SLED
  1070. if (retract_action & ProbeEngage) engage_z_probe();
  1071. #endif
  1072. run_z_probe();
  1073. float measured_z = current_position[Z_AXIS];
  1074. #ifndef Z_PROBE_SLED
  1075. if (retract_action & ProbeRetract) retract_z_probe();
  1076. #endif
  1077. if (verbose_level > 2) {
  1078. SERIAL_PROTOCOLPGM(MSG_BED);
  1079. SERIAL_PROTOCOLPGM(" X: ");
  1080. SERIAL_PROTOCOL(x + 0.0001);
  1081. SERIAL_PROTOCOLPGM(" Y: ");
  1082. SERIAL_PROTOCOL(y + 0.0001);
  1083. SERIAL_PROTOCOLPGM(" Z: ");
  1084. SERIAL_PROTOCOL(measured_z + 0.0001);
  1085. SERIAL_EOL;
  1086. }
  1087. return measured_z;
  1088. }
  1089. #endif // ENABLE_AUTO_BED_LEVELING
  1090. static void homeaxis(int axis) {
  1091. #define HOMEAXIS_DO(LETTER) \
  1092. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1093. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1094. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1095. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1096. 0) {
  1097. int axis_home_dir = home_dir(axis);
  1098. #ifdef DUAL_X_CARRIAGE
  1099. if (axis == X_AXIS)
  1100. axis_home_dir = x_home_dir(active_extruder);
  1101. #endif
  1102. current_position[axis] = 0;
  1103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1104. #ifndef Z_PROBE_SLED
  1105. // Engage Servo endstop if enabled
  1106. #ifdef SERVO_ENDSTOPS
  1107. #if SERVO_LEVELING
  1108. if (axis==Z_AXIS) {
  1109. engage_z_probe();
  1110. }
  1111. else
  1112. #endif
  1113. if (servo_endstops[axis] > -1) {
  1114. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1115. }
  1116. #endif
  1117. #endif // Z_PROBE_SLED
  1118. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1119. feedrate = homing_feedrate[axis];
  1120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1121. st_synchronize();
  1122. current_position[axis] = 0;
  1123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1124. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1125. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1126. st_synchronize();
  1127. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1128. if (homing_bump_divisor[axis] >= 1)
  1129. {
  1130. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1131. }
  1132. else
  1133. {
  1134. feedrate = homing_feedrate[axis]/10;
  1135. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1136. }
  1137. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1138. st_synchronize();
  1139. #ifdef DELTA
  1140. // retrace by the amount specified in endstop_adj
  1141. if (endstop_adj[axis] * axis_home_dir < 0) {
  1142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1143. destination[axis] = endstop_adj[axis];
  1144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1145. st_synchronize();
  1146. }
  1147. #endif
  1148. axis_is_at_home(axis);
  1149. destination[axis] = current_position[axis];
  1150. feedrate = 0.0;
  1151. endstops_hit_on_purpose();
  1152. axis_known_position[axis] = true;
  1153. // Retract Servo endstop if enabled
  1154. #ifdef SERVO_ENDSTOPS
  1155. if (servo_endstops[axis] > -1) {
  1156. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1157. }
  1158. #endif
  1159. #if SERVO_LEVELING
  1160. #ifndef Z_PROBE_SLED
  1161. if (axis==Z_AXIS) retract_z_probe();
  1162. #endif
  1163. #endif
  1164. }
  1165. }
  1166. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1167. void refresh_cmd_timeout(void)
  1168. {
  1169. previous_millis_cmd = millis();
  1170. }
  1171. #ifdef FWRETRACT
  1172. void retract(bool retracting, bool swapretract = false) {
  1173. if(retracting && !retracted[active_extruder]) {
  1174. destination[X_AXIS]=current_position[X_AXIS];
  1175. destination[Y_AXIS]=current_position[Y_AXIS];
  1176. destination[Z_AXIS]=current_position[Z_AXIS];
  1177. destination[E_AXIS]=current_position[E_AXIS];
  1178. if (swapretract) {
  1179. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1180. } else {
  1181. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1182. }
  1183. plan_set_e_position(current_position[E_AXIS]);
  1184. float oldFeedrate = feedrate;
  1185. feedrate=retract_feedrate*60;
  1186. retracted[active_extruder]=true;
  1187. prepare_move();
  1188. if(retract_zlift > 0.01) {
  1189. current_position[Z_AXIS]-=retract_zlift;
  1190. #ifdef DELTA
  1191. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1192. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1193. #else
  1194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1195. #endif
  1196. prepare_move();
  1197. }
  1198. feedrate = oldFeedrate;
  1199. } else if(!retracting && retracted[active_extruder]) {
  1200. destination[X_AXIS]=current_position[X_AXIS];
  1201. destination[Y_AXIS]=current_position[Y_AXIS];
  1202. destination[Z_AXIS]=current_position[Z_AXIS];
  1203. destination[E_AXIS]=current_position[E_AXIS];
  1204. if(retract_zlift > 0.01) {
  1205. current_position[Z_AXIS]+=retract_zlift;
  1206. #ifdef DELTA
  1207. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1208. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1209. #else
  1210. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1211. #endif
  1212. //prepare_move();
  1213. }
  1214. if (swapretract) {
  1215. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1216. } else {
  1217. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1218. }
  1219. plan_set_e_position(current_position[E_AXIS]);
  1220. float oldFeedrate = feedrate;
  1221. feedrate=retract_recover_feedrate*60;
  1222. retracted[active_extruder]=false;
  1223. prepare_move();
  1224. feedrate = oldFeedrate;
  1225. }
  1226. } //retract
  1227. #endif //FWRETRACT
  1228. #ifdef Z_PROBE_SLED
  1229. #ifndef SLED_DOCKING_OFFSET
  1230. #define SLED_DOCKING_OFFSET 0
  1231. #endif
  1232. //
  1233. // Method to dock/undock a sled designed by Charles Bell.
  1234. //
  1235. // dock[in] If true, move to MAX_X and engage the electromagnet
  1236. // offset[in] The additional distance to move to adjust docking location
  1237. //
  1238. static void dock_sled(bool dock, int offset=0) {
  1239. int z_loc;
  1240. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1241. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1244. return;
  1245. }
  1246. if (dock) {
  1247. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1248. current_position[Y_AXIS],
  1249. current_position[Z_AXIS]);
  1250. // turn off magnet
  1251. digitalWrite(SERVO0_PIN, LOW);
  1252. } else {
  1253. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1254. z_loc = Z_RAISE_BEFORE_PROBING;
  1255. else
  1256. z_loc = current_position[Z_AXIS];
  1257. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1258. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1259. // turn on magnet
  1260. digitalWrite(SERVO0_PIN, HIGH);
  1261. }
  1262. }
  1263. #endif
  1264. /**
  1265. *
  1266. * G-Code Handler functions
  1267. *
  1268. */
  1269. /**
  1270. * G0, G1: Coordinated movement of X Y Z E axes
  1271. */
  1272. inline void gcode_G0_G1() {
  1273. if (!Stopped) {
  1274. get_coordinates(); // For X Y Z E F
  1275. #ifdef FWRETRACT
  1276. if (autoretract_enabled)
  1277. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1278. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1279. // Is this move an attempt to retract or recover?
  1280. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1281. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1282. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1283. retract(!retracted[active_extruder]);
  1284. return;
  1285. }
  1286. }
  1287. #endif //FWRETRACT
  1288. prepare_move();
  1289. //ClearToSend();
  1290. }
  1291. }
  1292. /**
  1293. * G2: Clockwise Arc
  1294. * G3: Counterclockwise Arc
  1295. */
  1296. inline void gcode_G2_G3(bool clockwise) {
  1297. if (!Stopped) {
  1298. get_arc_coordinates();
  1299. prepare_arc_move(clockwise);
  1300. }
  1301. }
  1302. /**
  1303. * G4: Dwell S<seconds> or P<milliseconds>
  1304. */
  1305. inline void gcode_G4() {
  1306. unsigned long codenum;
  1307. LCD_MESSAGEPGM(MSG_DWELL);
  1308. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1309. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1310. st_synchronize();
  1311. previous_millis_cmd = millis();
  1312. codenum += previous_millis_cmd; // keep track of when we started waiting
  1313. while(millis() < codenum) {
  1314. manage_heater();
  1315. manage_inactivity();
  1316. lcd_update();
  1317. }
  1318. }
  1319. #ifdef FWRETRACT
  1320. /**
  1321. * G10 - Retract filament according to settings of M207
  1322. * G11 - Recover filament according to settings of M208
  1323. */
  1324. inline void gcode_G10_G11(bool doRetract=false) {
  1325. #if EXTRUDERS > 1
  1326. if (doRetract) {
  1327. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1328. }
  1329. #endif
  1330. retract(doRetract
  1331. #if EXTRUDERS > 1
  1332. , retracted_swap[active_extruder]
  1333. #endif
  1334. );
  1335. }
  1336. #endif //FWRETRACT
  1337. /**
  1338. * G28: Home all axes, one at a time
  1339. */
  1340. inline void gcode_G28() {
  1341. #ifdef ENABLE_AUTO_BED_LEVELING
  1342. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1343. #endif
  1344. saved_feedrate = feedrate;
  1345. saved_feedmultiply = feedmultiply;
  1346. feedmultiply = 100;
  1347. previous_millis_cmd = millis();
  1348. enable_endstops(true);
  1349. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1350. feedrate = 0.0;
  1351. #ifdef DELTA
  1352. // A delta can only safely home all axis at the same time
  1353. // all axis have to home at the same time
  1354. // Move all carriages up together until the first endstop is hit.
  1355. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1358. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1360. st_synchronize();
  1361. endstops_hit_on_purpose();
  1362. // Destination reached
  1363. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1364. // take care of back off and rehome now we are all at the top
  1365. HOMEAXIS(X);
  1366. HOMEAXIS(Y);
  1367. HOMEAXIS(Z);
  1368. calculate_delta(current_position);
  1369. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1370. #else // NOT DELTA
  1371. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1372. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1373. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1374. HOMEAXIS(Z);
  1375. }
  1376. #endif
  1377. #ifdef QUICK_HOME
  1378. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1379. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1380. #ifndef DUAL_X_CARRIAGE
  1381. int x_axis_home_dir = home_dir(X_AXIS);
  1382. #else
  1383. int x_axis_home_dir = x_home_dir(active_extruder);
  1384. extruder_duplication_enabled = false;
  1385. #endif
  1386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1387. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1388. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1389. feedrate = homing_feedrate[X_AXIS];
  1390. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1391. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1392. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1393. } else {
  1394. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1395. }
  1396. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1397. st_synchronize();
  1398. axis_is_at_home(X_AXIS);
  1399. axis_is_at_home(Y_AXIS);
  1400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1401. destination[X_AXIS] = current_position[X_AXIS];
  1402. destination[Y_AXIS] = current_position[Y_AXIS];
  1403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1404. feedrate = 0.0;
  1405. st_synchronize();
  1406. endstops_hit_on_purpose();
  1407. current_position[X_AXIS] = destination[X_AXIS];
  1408. current_position[Y_AXIS] = destination[Y_AXIS];
  1409. #ifndef SCARA
  1410. current_position[Z_AXIS] = destination[Z_AXIS];
  1411. #endif
  1412. }
  1413. #endif //QUICK_HOME
  1414. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1415. #ifdef DUAL_X_CARRIAGE
  1416. int tmp_extruder = active_extruder;
  1417. extruder_duplication_enabled = false;
  1418. active_extruder = !active_extruder;
  1419. HOMEAXIS(X);
  1420. inactive_extruder_x_pos = current_position[X_AXIS];
  1421. active_extruder = tmp_extruder;
  1422. HOMEAXIS(X);
  1423. // reset state used by the different modes
  1424. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1425. delayed_move_time = 0;
  1426. active_extruder_parked = true;
  1427. #else
  1428. HOMEAXIS(X);
  1429. #endif
  1430. }
  1431. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1432. if (code_seen(axis_codes[X_AXIS])) {
  1433. if (code_value_long() != 0) {
  1434. current_position[X_AXIS] = code_value()
  1435. #ifndef SCARA
  1436. + add_homing[X_AXIS]
  1437. #endif
  1438. ;
  1439. }
  1440. }
  1441. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1442. current_position[Y_AXIS] = code_value()
  1443. #ifndef SCARA
  1444. + add_homing[Y_AXIS]
  1445. #endif
  1446. ;
  1447. }
  1448. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1449. #ifndef Z_SAFE_HOMING
  1450. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1451. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1452. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1453. feedrate = max_feedrate[Z_AXIS];
  1454. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1455. st_synchronize();
  1456. #endif
  1457. HOMEAXIS(Z);
  1458. }
  1459. #else // Z_SAFE_HOMING
  1460. if (home_all_axis) {
  1461. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1462. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1463. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1464. feedrate = XY_TRAVEL_SPEED / 60;
  1465. current_position[Z_AXIS] = 0;
  1466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1467. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1468. st_synchronize();
  1469. current_position[X_AXIS] = destination[X_AXIS];
  1470. current_position[Y_AXIS] = destination[Y_AXIS];
  1471. HOMEAXIS(Z);
  1472. }
  1473. // Let's see if X and Y are homed and probe is inside bed area.
  1474. if (code_seen(axis_codes[Z_AXIS])) {
  1475. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1476. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1477. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1478. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1479. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1480. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1481. current_position[Z_AXIS] = 0;
  1482. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1483. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1484. feedrate = max_feedrate[Z_AXIS];
  1485. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1486. st_synchronize();
  1487. HOMEAXIS(Z);
  1488. }
  1489. else {
  1490. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1491. SERIAL_ECHO_START;
  1492. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1493. }
  1494. }
  1495. else {
  1496. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1497. SERIAL_ECHO_START;
  1498. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1499. }
  1500. }
  1501. #endif // Z_SAFE_HOMING
  1502. #endif // Z_HOME_DIR < 0
  1503. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1504. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1505. #ifdef ENABLE_AUTO_BED_LEVELING
  1506. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1507. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1508. #endif
  1509. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1510. #endif // else DELTA
  1511. #ifdef SCARA
  1512. calculate_delta(current_position);
  1513. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1514. #endif
  1515. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1516. enable_endstops(false);
  1517. #endif
  1518. feedrate = saved_feedrate;
  1519. feedmultiply = saved_feedmultiply;
  1520. previous_millis_cmd = millis();
  1521. endstops_hit_on_purpose();
  1522. }
  1523. #ifdef ENABLE_AUTO_BED_LEVELING
  1524. // Define the possible boundaries for probing based on set limits
  1525. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1526. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1527. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1528. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1529. #ifdef AUTO_BED_LEVELING_GRID
  1530. // Make sure probing points are reachable
  1531. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1532. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1533. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1534. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1535. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1536. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1537. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1538. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1539. #endif
  1540. #else // !AUTO_BED_LEVELING_GRID
  1541. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1542. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1543. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1544. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1545. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1546. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1547. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1548. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1549. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1550. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1551. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1552. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1553. #endif
  1554. #endif // !AUTO_BED_LEVELING_GRID
  1555. /**
  1556. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1557. * Will fail if the printer has not been homed with G28.
  1558. *
  1559. * Enhanced G29 Auto Bed Leveling Probe Routine
  1560. *
  1561. * Parameters With AUTO_BED_LEVELING_GRID:
  1562. *
  1563. * P Set the size of the grid that will be probed (P x P points).
  1564. * Example: "G29 P4"
  1565. *
  1566. * V Set the verbose level (0-4). Example: "G29 V3"
  1567. *
  1568. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1569. * This is useful for manual bed leveling and finding flaws in the bed (to
  1570. * assist with part placement).
  1571. *
  1572. * F Set the Front limit of the probing grid
  1573. * B Set the Back limit of the probing grid
  1574. * L Set the Left limit of the probing grid
  1575. * R Set the Right limit of the probing grid
  1576. *
  1577. * Global Parameters:
  1578. *
  1579. * E/e By default G29 engages / disengages the probe for each point.
  1580. * Include "E" to engage and disengage the probe just once.
  1581. * There's no extra effect if you have a fixed probe.
  1582. * Usage: "G29 E" or "G29 e"
  1583. *
  1584. */
  1585. // Use one of these defines to specify the origin
  1586. // for a topographical map to be printed for your bed.
  1587. enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
  1588. #define TOPO_ORIGIN OriginFrontLeft
  1589. inline void gcode_G29() {
  1590. // Prevent user from running a G29 without first homing in X and Y
  1591. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1592. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1593. SERIAL_ECHO_START;
  1594. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1595. return;
  1596. }
  1597. int verbose_level = 1;
  1598. float x_tmp, y_tmp, z_tmp, real_z;
  1599. if (code_seen('V') || code_seen('v')) {
  1600. verbose_level = code_value_long();
  1601. if (verbose_level < 0 || verbose_level > 4) {
  1602. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1603. return;
  1604. }
  1605. }
  1606. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1607. #ifdef AUTO_BED_LEVELING_GRID
  1608. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1609. if (verbose_level > 0)
  1610. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1611. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1612. if (auto_bed_leveling_grid_points < 2) {
  1613. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1614. return;
  1615. }
  1616. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1617. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1618. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1619. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1620. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1621. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1622. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1623. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1624. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1625. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1626. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1627. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1628. if (left_out || right_out || front_out || back_out) {
  1629. if (left_out) {
  1630. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1631. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1632. }
  1633. if (right_out) {
  1634. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1635. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1636. }
  1637. if (front_out) {
  1638. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1639. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1640. }
  1641. if (back_out) {
  1642. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1643. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1644. }
  1645. return;
  1646. }
  1647. #endif // AUTO_BED_LEVELING_GRID
  1648. #ifdef Z_PROBE_SLED
  1649. dock_sled(false); // engage (un-dock) the probe
  1650. #endif
  1651. st_synchronize();
  1652. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1653. //vector_3 corrected_position = plan_get_position_mm();
  1654. //corrected_position.debug("position before G29");
  1655. plan_bed_level_matrix.set_to_identity();
  1656. vector_3 uncorrected_position = plan_get_position();
  1657. //uncorrected_position.debug("position durring G29");
  1658. current_position[X_AXIS] = uncorrected_position.x;
  1659. current_position[Y_AXIS] = uncorrected_position.y;
  1660. current_position[Z_AXIS] = uncorrected_position.z;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. setup_for_endstop_move();
  1663. feedrate = homing_feedrate[Z_AXIS];
  1664. #ifdef AUTO_BED_LEVELING_GRID
  1665. // probe at the points of a lattice grid
  1666. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1667. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1668. // solve the plane equation ax + by + d = z
  1669. // A is the matrix with rows [x y 1] for all the probed points
  1670. // B is the vector of the Z positions
  1671. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1672. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1673. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1674. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1675. eqnBVector[abl2], // "B" vector of Z points
  1676. mean = 0.0;
  1677. int probePointCounter = 0;
  1678. bool zig = true;
  1679. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1680. int xProbe, xInc;
  1681. if (zig)
  1682. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1683. else
  1684. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1685. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1686. // This gets the probe points in more readable order.
  1687. if (!topo_flag) zig = !zig;
  1688. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1689. // raise extruder
  1690. float measured_z,
  1691. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1692. // Enhanced G29 - Do not retract servo between probes
  1693. ProbeAction act;
  1694. if (enhanced_g29) {
  1695. if (yProbe == front_probe_bed_position && xCount == 0)
  1696. act = ProbeEngage;
  1697. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1698. act = ProbeRetract;
  1699. else
  1700. act = ProbeStay;
  1701. }
  1702. else
  1703. act = ProbeEngageRetract;
  1704. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1705. mean += measured_z;
  1706. eqnBVector[probePointCounter] = measured_z;
  1707. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1708. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1709. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1710. probePointCounter++;
  1711. xProbe += xInc;
  1712. } //xProbe
  1713. } //yProbe
  1714. clean_up_after_endstop_move();
  1715. // solve lsq problem
  1716. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1717. mean /= abl2;
  1718. if (verbose_level) {
  1719. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1720. SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
  1721. SERIAL_PROTOCOLPGM(" b: ");
  1722. SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
  1723. SERIAL_PROTOCOLPGM(" d: ");
  1724. SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
  1725. if (verbose_level > 2) {
  1726. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1727. SERIAL_PROTOCOL_F(mean, 6);
  1728. SERIAL_EOL;
  1729. }
  1730. }
  1731. if (topo_flag) {
  1732. int xx, yy;
  1733. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1734. #if TOPO_ORIGIN == OriginFrontLeft
  1735. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1736. #else
  1737. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1738. #endif
  1739. {
  1740. #if TOPO_ORIGIN == OriginBackRight
  1741. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1742. #else
  1743. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1744. #endif
  1745. {
  1746. int ind =
  1747. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1748. yy * auto_bed_leveling_grid_points + xx
  1749. #elif TOPO_ORIGIN == OriginBackLeft
  1750. xx * auto_bed_leveling_grid_points + yy
  1751. #elif TOPO_ORIGIN == OriginFrontRight
  1752. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1753. #endif
  1754. ;
  1755. float diff = eqnBVector[ind] - mean;
  1756. if (diff >= 0.0)
  1757. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1758. else
  1759. SERIAL_PROTOCOLPGM(" ");
  1760. SERIAL_PROTOCOL_F(diff, 5);
  1761. } // xx
  1762. SERIAL_EOL;
  1763. } // yy
  1764. SERIAL_EOL;
  1765. } //topo_flag
  1766. set_bed_level_equation_lsq(plane_equation_coefficients);
  1767. free(plane_equation_coefficients);
  1768. #else // !AUTO_BED_LEVELING_GRID
  1769. // Probe at 3 arbitrary points
  1770. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1771. if (enhanced_g29) {
  1772. // Basic Enhanced G29
  1773. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1774. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1775. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1776. }
  1777. else {
  1778. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  1779. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1780. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  1781. }
  1782. clean_up_after_endstop_move();
  1783. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1784. #endif // !AUTO_BED_LEVELING_GRID
  1785. st_synchronize();
  1786. if (verbose_level > 0)
  1787. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1788. // Correct the Z height difference from z-probe position and hotend tip position.
  1789. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1790. // When the bed is uneven, this height must be corrected.
  1791. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1792. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1793. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1794. z_tmp = current_position[Z_AXIS];
  1795. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1796. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. #ifdef Z_PROBE_SLED
  1799. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1800. #endif
  1801. #ifdef Z_PROBE_END_SCRIPT
  1802. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  1803. st_synchronize();
  1804. #endif
  1805. }
  1806. #ifndef Z_PROBE_SLED
  1807. inline void gcode_G30() {
  1808. engage_z_probe(); // Engage Z Servo endstop if available
  1809. st_synchronize();
  1810. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1811. setup_for_endstop_move();
  1812. feedrate = homing_feedrate[Z_AXIS];
  1813. run_z_probe();
  1814. SERIAL_PROTOCOLPGM(MSG_BED);
  1815. SERIAL_PROTOCOLPGM(" X: ");
  1816. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  1817. SERIAL_PROTOCOLPGM(" Y: ");
  1818. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  1819. SERIAL_PROTOCOLPGM(" Z: ");
  1820. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  1821. SERIAL_EOL;
  1822. clean_up_after_endstop_move();
  1823. retract_z_probe(); // Retract Z Servo endstop if available
  1824. }
  1825. #endif //!Z_PROBE_SLED
  1826. #endif //ENABLE_AUTO_BED_LEVELING
  1827. /**
  1828. * G92: Set current position to given X Y Z E
  1829. */
  1830. inline void gcode_G92() {
  1831. if (!code_seen(axis_codes[E_AXIS]))
  1832. st_synchronize();
  1833. for (int i=0;i<NUM_AXIS;i++) {
  1834. if (code_seen(axis_codes[i])) {
  1835. if (i == E_AXIS) {
  1836. current_position[i] = code_value();
  1837. plan_set_e_position(current_position[E_AXIS]);
  1838. }
  1839. else {
  1840. current_position[i] = code_value() +
  1841. #ifdef SCARA
  1842. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  1843. #else
  1844. add_homing[i]
  1845. #endif
  1846. ;
  1847. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1848. }
  1849. }
  1850. }
  1851. }
  1852. #ifdef ULTIPANEL
  1853. /**
  1854. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  1855. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  1856. */
  1857. inline void gcode_M0_M1() {
  1858. char *src = strchr_pointer + 2;
  1859. unsigned long codenum = 0;
  1860. bool hasP = false, hasS = false;
  1861. if (code_seen('P')) {
  1862. codenum = code_value(); // milliseconds to wait
  1863. hasP = codenum > 0;
  1864. }
  1865. if (code_seen('S')) {
  1866. codenum = code_value() * 1000; // seconds to wait
  1867. hasS = codenum > 0;
  1868. }
  1869. char* starpos = strchr(src, '*');
  1870. if (starpos != NULL) *(starpos) = '\0';
  1871. while (*src == ' ') ++src;
  1872. if (!hasP && !hasS && *src != '\0')
  1873. lcd_setstatus(src);
  1874. else
  1875. LCD_MESSAGEPGM(MSG_USERWAIT);
  1876. lcd_ignore_click();
  1877. st_synchronize();
  1878. previous_millis_cmd = millis();
  1879. if (codenum > 0) {
  1880. codenum += previous_millis_cmd; // keep track of when we started waiting
  1881. while(millis() < codenum && !lcd_clicked()) {
  1882. manage_heater();
  1883. manage_inactivity();
  1884. lcd_update();
  1885. }
  1886. lcd_ignore_click(false);
  1887. }
  1888. else {
  1889. if (!lcd_detected()) return;
  1890. while (!lcd_clicked()) {
  1891. manage_heater();
  1892. manage_inactivity();
  1893. lcd_update();
  1894. }
  1895. }
  1896. if (IS_SD_PRINTING)
  1897. LCD_MESSAGEPGM(MSG_RESUMING);
  1898. else
  1899. LCD_MESSAGEPGM(WELCOME_MSG);
  1900. }
  1901. #endif // ULTIPANEL
  1902. /**
  1903. * M17: Enable power on all stepper motors
  1904. */
  1905. inline void gcode_M17() {
  1906. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1907. enable_x();
  1908. enable_y();
  1909. enable_z();
  1910. enable_e0();
  1911. enable_e1();
  1912. enable_e2();
  1913. enable_e3();
  1914. }
  1915. #ifdef SDSUPPORT
  1916. /**
  1917. * M20: List SD card to serial output
  1918. */
  1919. inline void gcode_M20() {
  1920. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1921. card.ls();
  1922. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1923. }
  1924. /**
  1925. * M21: Init SD Card
  1926. */
  1927. inline void gcode_M21() {
  1928. card.initsd();
  1929. }
  1930. /**
  1931. * M22: Release SD Card
  1932. */
  1933. inline void gcode_M22() {
  1934. card.release();
  1935. }
  1936. /**
  1937. * M23: Select a file
  1938. */
  1939. inline void gcode_M23() {
  1940. char* codepos = strchr_pointer + 4;
  1941. char* starpos = strchr(codepos, '*');
  1942. if (starpos) *starpos = '\0';
  1943. card.openFile(codepos, true);
  1944. }
  1945. /**
  1946. * M24: Start SD Print
  1947. */
  1948. inline void gcode_M24() {
  1949. card.startFileprint();
  1950. starttime = millis();
  1951. }
  1952. /**
  1953. * M25: Pause SD Print
  1954. */
  1955. inline void gcode_M25() {
  1956. card.pauseSDPrint();
  1957. }
  1958. /**
  1959. * M26: Set SD Card file index
  1960. */
  1961. inline void gcode_M26() {
  1962. if (card.cardOK && code_seen('S'))
  1963. card.setIndex(code_value_long());
  1964. }
  1965. /**
  1966. * M27: Get SD Card status
  1967. */
  1968. inline void gcode_M27() {
  1969. card.getStatus();
  1970. }
  1971. /**
  1972. * M28: Start SD Write
  1973. */
  1974. inline void gcode_M28() {
  1975. char* codepos = strchr_pointer + 4;
  1976. char* starpos = strchr(strchr_pointer + 4, '*');
  1977. if (starpos) {
  1978. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1979. strchr_pointer = strchr(npos, ' ') + 1;
  1980. *(starpos) = '\0';
  1981. }
  1982. card.openFile(strchr_pointer + 4, false);
  1983. }
  1984. /**
  1985. * M29: Stop SD Write
  1986. * Processed in write to file routine above
  1987. */
  1988. inline void gcode_M29() {
  1989. // card.saving = false;
  1990. }
  1991. /**
  1992. * M30 <filename>: Delete SD Card file
  1993. */
  1994. inline void gcode_M30() {
  1995. if (card.cardOK) {
  1996. card.closefile();
  1997. char* starpos = strchr(strchr_pointer + 4, '*');
  1998. if (starpos) {
  1999. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2000. strchr_pointer = strchr(npos, ' ') + 1;
  2001. *(starpos) = '\0';
  2002. }
  2003. card.removeFile(strchr_pointer + 4);
  2004. }
  2005. }
  2006. #endif
  2007. /**
  2008. * M31: Get the time since the start of SD Print (or last M109)
  2009. */
  2010. inline void gcode_M31() {
  2011. stoptime = millis();
  2012. unsigned long t = (stoptime - starttime) / 1000;
  2013. int min = t / 60, sec = t % 60;
  2014. char time[30];
  2015. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2016. SERIAL_ECHO_START;
  2017. SERIAL_ECHOLN(time);
  2018. lcd_setstatus(time);
  2019. autotempShutdown();
  2020. }
  2021. #ifdef SDSUPPORT
  2022. /**
  2023. * M32: Select file and start SD Print
  2024. */
  2025. inline void gcode_M32() {
  2026. if (card.sdprinting)
  2027. st_synchronize();
  2028. char* codepos = strchr_pointer + 4;
  2029. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2030. if (! namestartpos)
  2031. namestartpos = codepos; //default name position, 4 letters after the M
  2032. else
  2033. namestartpos++; //to skip the '!'
  2034. char* starpos = strchr(codepos, '*');
  2035. if (starpos) *(starpos) = '\0';
  2036. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2037. if (card.cardOK) {
  2038. card.openFile(namestartpos, true, !call_procedure);
  2039. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2040. card.setIndex(code_value_long());
  2041. card.startFileprint();
  2042. if (!call_procedure)
  2043. starttime = millis(); //procedure calls count as normal print time.
  2044. }
  2045. }
  2046. /**
  2047. * M928: Start SD Write
  2048. */
  2049. inline void gcode_M928() {
  2050. char* starpos = strchr(strchr_pointer + 5, '*');
  2051. if (starpos) {
  2052. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2053. strchr_pointer = strchr(npos, ' ') + 1;
  2054. *(starpos) = '\0';
  2055. }
  2056. card.openLogFile(strchr_pointer + 5);
  2057. }
  2058. #endif // SDSUPPORT
  2059. /**
  2060. * M42: Change pin status via GCode
  2061. */
  2062. inline void gcode_M42() {
  2063. if (code_seen('S')) {
  2064. int pin_status = code_value(),
  2065. pin_number = LED_PIN;
  2066. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2067. pin_number = code_value();
  2068. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2069. if (sensitive_pins[i] == pin_number) {
  2070. pin_number = -1;
  2071. break;
  2072. }
  2073. }
  2074. #if defined(FAN_PIN) && FAN_PIN > -1
  2075. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2076. #endif
  2077. if (pin_number > -1) {
  2078. pinMode(pin_number, OUTPUT);
  2079. digitalWrite(pin_number, pin_status);
  2080. analogWrite(pin_number, pin_status);
  2081. }
  2082. } // code_seen('S')
  2083. }
  2084. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2085. #if Z_MIN_PIN == -1
  2086. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2087. #endif
  2088. /**
  2089. * M48: Z-Probe repeatability measurement function.
  2090. *
  2091. * Usage:
  2092. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2093. * n = Number of samples (4-50, default 10)
  2094. * X = Sample X position
  2095. * Y = Sample Y position
  2096. * V = Verbose level (0-4, default=1)
  2097. * E = Engage probe for each reading
  2098. * L = Number of legs of movement before probe
  2099. *
  2100. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2101. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2102. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2103. * regenerated.
  2104. *
  2105. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2106. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2107. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2108. */
  2109. inline void gcode_M48() {
  2110. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2111. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2112. double X_current, Y_current, Z_current;
  2113. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2114. if (code_seen('V') || code_seen('v')) {
  2115. verbose_level = code_value();
  2116. if (verbose_level < 0 || verbose_level > 4 ) {
  2117. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2118. return;
  2119. }
  2120. }
  2121. if (verbose_level > 0)
  2122. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2123. if (code_seen('n')) {
  2124. n_samples = code_value();
  2125. if (n_samples < 4 || n_samples > 50) {
  2126. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2127. return;
  2128. }
  2129. }
  2130. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2131. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2132. Z_current = st_get_position_mm(Z_AXIS);
  2133. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2134. ext_position = st_get_position_mm(E_AXIS);
  2135. if (code_seen('E') || code_seen('e'))
  2136. engage_probe_for_each_reading++;
  2137. if (code_seen('X') || code_seen('x')) {
  2138. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2139. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2140. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2141. return;
  2142. }
  2143. }
  2144. if (code_seen('Y') || code_seen('y')) {
  2145. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2146. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2147. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2148. return;
  2149. }
  2150. }
  2151. if (code_seen('L') || code_seen('l')) {
  2152. n_legs = code_value();
  2153. if (n_legs == 1) n_legs = 2;
  2154. if (n_legs < 0 || n_legs > 15) {
  2155. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2156. return;
  2157. }
  2158. }
  2159. //
  2160. // Do all the preliminary setup work. First raise the probe.
  2161. //
  2162. st_synchronize();
  2163. plan_bed_level_matrix.set_to_identity();
  2164. plan_buffer_line(X_current, Y_current, Z_start_location,
  2165. ext_position,
  2166. homing_feedrate[Z_AXIS] / 60,
  2167. active_extruder);
  2168. st_synchronize();
  2169. //
  2170. // Now get everything to the specified probe point So we can safely do a probe to
  2171. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2172. // use that as a starting point for each probe.
  2173. //
  2174. if (verbose_level > 2)
  2175. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2176. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2177. ext_position,
  2178. homing_feedrate[X_AXIS]/60,
  2179. active_extruder);
  2180. st_synchronize();
  2181. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2182. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2183. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2184. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2185. //
  2186. // OK, do the inital probe to get us close to the bed.
  2187. // Then retrace the right amount and use that in subsequent probes
  2188. //
  2189. engage_z_probe();
  2190. setup_for_endstop_move();
  2191. run_z_probe();
  2192. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2193. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2194. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2195. ext_position,
  2196. homing_feedrate[X_AXIS]/60,
  2197. active_extruder);
  2198. st_synchronize();
  2199. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2200. if (engage_probe_for_each_reading) retract_z_probe();
  2201. for (n=0; n < n_samples; n++) {
  2202. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2203. if (n_legs) {
  2204. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2205. int l;
  2206. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2207. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2208. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2209. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2210. //SERIAL_ECHOPAIR(" theta: ",theta);
  2211. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2212. //SERIAL_PROTOCOLLNPGM("");
  2213. float dir = rotational_direction ? 1 : -1;
  2214. for (l = 0; l < n_legs - 1; l++) {
  2215. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2216. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2217. if (radius < 0.0) radius = -radius;
  2218. X_current = X_probe_location + cos(theta) * radius;
  2219. Y_current = Y_probe_location + sin(theta) * radius;
  2220. // Make sure our X & Y are sane
  2221. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2222. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2223. if (verbose_level > 3) {
  2224. SERIAL_ECHOPAIR("x: ", X_current);
  2225. SERIAL_ECHOPAIR("y: ", Y_current);
  2226. SERIAL_PROTOCOLLNPGM("");
  2227. }
  2228. do_blocking_move_to( X_current, Y_current, Z_current );
  2229. }
  2230. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2231. }
  2232. if (engage_probe_for_each_reading) {
  2233. engage_z_probe();
  2234. delay(1000);
  2235. }
  2236. setup_for_endstop_move();
  2237. run_z_probe();
  2238. sample_set[n] = current_position[Z_AXIS];
  2239. //
  2240. // Get the current mean for the data points we have so far
  2241. //
  2242. sum = 0.0;
  2243. for (j=0; j<=n; j++) sum += sample_set[j];
  2244. mean = sum / (double (n+1));
  2245. //
  2246. // Now, use that mean to calculate the standard deviation for the
  2247. // data points we have so far
  2248. //
  2249. sum = 0.0;
  2250. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2251. sigma = sqrt( sum / (double (n+1)) );
  2252. if (verbose_level > 1) {
  2253. SERIAL_PROTOCOL(n+1);
  2254. SERIAL_PROTOCOL(" of ");
  2255. SERIAL_PROTOCOL(n_samples);
  2256. SERIAL_PROTOCOLPGM(" z: ");
  2257. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2258. }
  2259. if (verbose_level > 2) {
  2260. SERIAL_PROTOCOL(" mean: ");
  2261. SERIAL_PROTOCOL_F(mean,6);
  2262. SERIAL_PROTOCOL(" sigma: ");
  2263. SERIAL_PROTOCOL_F(sigma,6);
  2264. }
  2265. if (verbose_level > 0) SERIAL_EOL;
  2266. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2267. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2268. st_synchronize();
  2269. if (engage_probe_for_each_reading) {
  2270. retract_z_probe();
  2271. delay(1000);
  2272. }
  2273. }
  2274. retract_z_probe();
  2275. delay(1000);
  2276. clean_up_after_endstop_move();
  2277. // enable_endstops(true);
  2278. if (verbose_level > 0) {
  2279. SERIAL_PROTOCOLPGM("Mean: ");
  2280. SERIAL_PROTOCOL_F(mean, 6);
  2281. SERIAL_EOL;
  2282. }
  2283. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2284. SERIAL_PROTOCOL_F(sigma, 6);
  2285. SERIAL_EOL; SERIAL_EOL;
  2286. }
  2287. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2288. /**
  2289. * M104: Set hot end temperature
  2290. */
  2291. inline void gcode_M104() {
  2292. if (setTargetedHotend(104)) return;
  2293. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2294. #ifdef DUAL_X_CARRIAGE
  2295. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2296. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2297. #endif
  2298. setWatch();
  2299. }
  2300. /**
  2301. * M105: Read hot end and bed temperature
  2302. */
  2303. inline void gcode_M105() {
  2304. if (setTargetedHotend(105)) return;
  2305. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2306. SERIAL_PROTOCOLPGM("ok T:");
  2307. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2308. SERIAL_PROTOCOLPGM(" /");
  2309. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2310. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2311. SERIAL_PROTOCOLPGM(" B:");
  2312. SERIAL_PROTOCOL_F(degBed(),1);
  2313. SERIAL_PROTOCOLPGM(" /");
  2314. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2315. #endif //TEMP_BED_PIN
  2316. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2317. SERIAL_PROTOCOLPGM(" T");
  2318. SERIAL_PROTOCOL(cur_extruder);
  2319. SERIAL_PROTOCOLPGM(":");
  2320. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2321. SERIAL_PROTOCOLPGM(" /");
  2322. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2323. }
  2324. #else
  2325. SERIAL_ERROR_START;
  2326. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2327. #endif
  2328. SERIAL_PROTOCOLPGM(" @:");
  2329. #ifdef EXTRUDER_WATTS
  2330. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2331. SERIAL_PROTOCOLPGM("W");
  2332. #else
  2333. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2334. #endif
  2335. SERIAL_PROTOCOLPGM(" B@:");
  2336. #ifdef BED_WATTS
  2337. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2338. SERIAL_PROTOCOLPGM("W");
  2339. #else
  2340. SERIAL_PROTOCOL(getHeaterPower(-1));
  2341. #endif
  2342. #ifdef SHOW_TEMP_ADC_VALUES
  2343. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2344. SERIAL_PROTOCOLPGM(" ADC B:");
  2345. SERIAL_PROTOCOL_F(degBed(),1);
  2346. SERIAL_PROTOCOLPGM("C->");
  2347. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2348. #endif
  2349. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2350. SERIAL_PROTOCOLPGM(" T");
  2351. SERIAL_PROTOCOL(cur_extruder);
  2352. SERIAL_PROTOCOLPGM(":");
  2353. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2354. SERIAL_PROTOCOLPGM("C->");
  2355. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2356. }
  2357. #endif
  2358. SERIAL_PROTOCOLLN("");
  2359. }
  2360. #if defined(FAN_PIN) && FAN_PIN > -1
  2361. /**
  2362. * M106: Set Fan Speed
  2363. */
  2364. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2365. /**
  2366. * M107: Fan Off
  2367. */
  2368. inline void gcode_M107() { fanSpeed = 0; }
  2369. #endif //FAN_PIN
  2370. /**
  2371. * M109: Wait for extruder(s) to reach temperature
  2372. */
  2373. inline void gcode_M109() {
  2374. if (setTargetedHotend(109)) return;
  2375. LCD_MESSAGEPGM(MSG_HEATING);
  2376. CooldownNoWait = code_seen('S');
  2377. if (CooldownNoWait || code_seen('R')) {
  2378. setTargetHotend(code_value(), tmp_extruder);
  2379. #ifdef DUAL_X_CARRIAGE
  2380. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2381. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2382. #endif
  2383. }
  2384. #ifdef AUTOTEMP
  2385. autotemp_enabled = code_seen('F');
  2386. if (autotemp_enabled) autotemp_factor = code_value();
  2387. if (code_seen('S')) autotemp_min = code_value();
  2388. if (code_seen('B')) autotemp_max = code_value();
  2389. #endif
  2390. setWatch();
  2391. unsigned long timetemp = millis();
  2392. /* See if we are heating up or cooling down */
  2393. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2394. cancel_heatup = false;
  2395. #ifdef TEMP_RESIDENCY_TIME
  2396. long residencyStart = -1;
  2397. /* continue to loop until we have reached the target temp
  2398. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2399. while((!cancel_heatup)&&((residencyStart == -1) ||
  2400. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2401. #else
  2402. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2403. #endif //TEMP_RESIDENCY_TIME
  2404. { // while loop
  2405. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2406. SERIAL_PROTOCOLPGM("T:");
  2407. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2408. SERIAL_PROTOCOLPGM(" E:");
  2409. SERIAL_PROTOCOL((int)tmp_extruder);
  2410. #ifdef TEMP_RESIDENCY_TIME
  2411. SERIAL_PROTOCOLPGM(" W:");
  2412. if (residencyStart > -1) {
  2413. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2414. SERIAL_PROTOCOLLN( timetemp );
  2415. }
  2416. else {
  2417. SERIAL_PROTOCOLLN( "?" );
  2418. }
  2419. #else
  2420. SERIAL_PROTOCOLLN("");
  2421. #endif
  2422. timetemp = millis();
  2423. }
  2424. manage_heater();
  2425. manage_inactivity();
  2426. lcd_update();
  2427. #ifdef TEMP_RESIDENCY_TIME
  2428. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2429. // or when current temp falls outside the hysteresis after target temp was reached
  2430. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2431. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2432. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2433. {
  2434. residencyStart = millis();
  2435. }
  2436. #endif //TEMP_RESIDENCY_TIME
  2437. }
  2438. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2439. starttime = previous_millis_cmd = millis();
  2440. }
  2441. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2442. /**
  2443. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2444. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2445. */
  2446. inline void gcode_M190() {
  2447. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2448. CooldownNoWait = code_seen('S');
  2449. if (CooldownNoWait || code_seen('R'))
  2450. setTargetBed(code_value());
  2451. unsigned long timetemp = millis();
  2452. cancel_heatup = false;
  2453. target_direction = isHeatingBed(); // true if heating, false if cooling
  2454. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2455. unsigned long ms = millis();
  2456. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2457. timetemp = ms;
  2458. float tt = degHotend(active_extruder);
  2459. SERIAL_PROTOCOLPGM("T:");
  2460. SERIAL_PROTOCOL(tt);
  2461. SERIAL_PROTOCOLPGM(" E:");
  2462. SERIAL_PROTOCOL((int)active_extruder);
  2463. SERIAL_PROTOCOLPGM(" B:");
  2464. SERIAL_PROTOCOL_F(degBed(), 1);
  2465. SERIAL_PROTOCOLLN("");
  2466. }
  2467. manage_heater();
  2468. manage_inactivity();
  2469. lcd_update();
  2470. }
  2471. LCD_MESSAGEPGM(MSG_BED_DONE);
  2472. previous_millis_cmd = millis();
  2473. }
  2474. #endif // TEMP_BED_PIN > -1
  2475. /**
  2476. * M112: Emergency Stop
  2477. */
  2478. inline void gcode_M112() {
  2479. kill();
  2480. }
  2481. #ifdef BARICUDA
  2482. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2483. /**
  2484. * M126: Heater 1 valve open
  2485. */
  2486. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2487. /**
  2488. * M127: Heater 1 valve close
  2489. */
  2490. inline void gcode_M127() { ValvePressure = 0; }
  2491. #endif
  2492. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2493. /**
  2494. * M128: Heater 2 valve open
  2495. */
  2496. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2497. /**
  2498. * M129: Heater 2 valve close
  2499. */
  2500. inline void gcode_M129() { EtoPPressure = 0; }
  2501. #endif
  2502. #endif //BARICUDA
  2503. /**
  2504. * M140: Set bed temperature
  2505. */
  2506. inline void gcode_M140() {
  2507. if (code_seen('S')) setTargetBed(code_value());
  2508. }
  2509. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2510. /**
  2511. * M80: Turn on Power Supply
  2512. */
  2513. inline void gcode_M80() {
  2514. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2515. // If you have a switch on suicide pin, this is useful
  2516. // if you want to start another print with suicide feature after
  2517. // a print without suicide...
  2518. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2519. OUT_WRITE(SUICIDE_PIN, HIGH);
  2520. #endif
  2521. #ifdef ULTIPANEL
  2522. powersupply = true;
  2523. LCD_MESSAGEPGM(WELCOME_MSG);
  2524. lcd_update();
  2525. #endif
  2526. }
  2527. #endif // PS_ON_PIN
  2528. /**
  2529. * M81: Turn off Power Supply
  2530. */
  2531. inline void gcode_M81() {
  2532. disable_heater();
  2533. st_synchronize();
  2534. disable_e0();
  2535. disable_e1();
  2536. disable_e2();
  2537. disable_e3();
  2538. finishAndDisableSteppers();
  2539. fanSpeed = 0;
  2540. delay(1000); // Wait 1 second before switching off
  2541. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2542. st_synchronize();
  2543. suicide();
  2544. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2545. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2546. #endif
  2547. #ifdef ULTIPANEL
  2548. powersupply = false;
  2549. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2550. lcd_update();
  2551. #endif
  2552. }
  2553. /**
  2554. * M82: Set E codes absolute (default)
  2555. */
  2556. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2557. /**
  2558. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2559. */
  2560. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2561. /**
  2562. * M18, M84: Disable all stepper motors
  2563. */
  2564. inline void gcode_M18_M84() {
  2565. if (code_seen('S')) {
  2566. stepper_inactive_time = code_value() * 1000;
  2567. }
  2568. else {
  2569. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2570. if (all_axis) {
  2571. st_synchronize();
  2572. disable_e0();
  2573. disable_e1();
  2574. disable_e2();
  2575. disable_e3();
  2576. finishAndDisableSteppers();
  2577. }
  2578. else {
  2579. st_synchronize();
  2580. if (code_seen('X')) disable_x();
  2581. if (code_seen('Y')) disable_y();
  2582. if (code_seen('Z')) disable_z();
  2583. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2584. if (code_seen('E')) {
  2585. disable_e0();
  2586. disable_e1();
  2587. disable_e2();
  2588. disable_e3();
  2589. }
  2590. #endif
  2591. }
  2592. }
  2593. }
  2594. /**
  2595. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2596. */
  2597. inline void gcode_M85() {
  2598. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2599. }
  2600. /**
  2601. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2602. */
  2603. inline void gcode_M92() {
  2604. for(int8_t i=0; i < NUM_AXIS; i++) {
  2605. if (code_seen(axis_codes[i])) {
  2606. if (i == E_AXIS) {
  2607. float value = code_value();
  2608. if (value < 20.0) {
  2609. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2610. max_e_jerk *= factor;
  2611. max_feedrate[i] *= factor;
  2612. axis_steps_per_sqr_second[i] *= factor;
  2613. }
  2614. axis_steps_per_unit[i] = value;
  2615. }
  2616. else {
  2617. axis_steps_per_unit[i] = code_value();
  2618. }
  2619. }
  2620. }
  2621. }
  2622. /**
  2623. * M114: Output current position to serial port
  2624. */
  2625. inline void gcode_M114() {
  2626. SERIAL_PROTOCOLPGM("X:");
  2627. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" Y:");
  2629. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" Z:");
  2631. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2632. SERIAL_PROTOCOLPGM(" E:");
  2633. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2634. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2635. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2636. SERIAL_PROTOCOLPGM(" Y:");
  2637. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Z:");
  2639. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2640. SERIAL_PROTOCOLLN("");
  2641. #ifdef SCARA
  2642. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2643. SERIAL_PROTOCOL(delta[X_AXIS]);
  2644. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2645. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2646. SERIAL_PROTOCOLLN("");
  2647. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2648. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2649. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2650. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2651. SERIAL_PROTOCOLLN("");
  2652. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2653. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2654. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2655. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2656. SERIAL_PROTOCOLLN("");
  2657. SERIAL_PROTOCOLLN("");
  2658. #endif
  2659. }
  2660. /**
  2661. * M115: Capabilities string
  2662. */
  2663. inline void gcode_M115() {
  2664. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2665. }
  2666. /**
  2667. * M117: Set LCD Status Message
  2668. */
  2669. inline void gcode_M117() {
  2670. char* codepos = strchr_pointer + 5;
  2671. char* starpos = strchr(codepos, '*');
  2672. if (starpos) *starpos = '\0';
  2673. lcd_setstatus(codepos);
  2674. }
  2675. /**
  2676. * M119: Output endstop states to serial output
  2677. */
  2678. inline void gcode_M119() {
  2679. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2680. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2681. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2682. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2683. #endif
  2684. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2685. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2686. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2687. #endif
  2688. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2689. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2690. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2691. #endif
  2692. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2693. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2694. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2695. #endif
  2696. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2697. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2698. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2699. #endif
  2700. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2701. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2702. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2703. #endif
  2704. }
  2705. /**
  2706. * M120: Enable endstops
  2707. */
  2708. inline void gcode_M120() { enable_endstops(false); }
  2709. /**
  2710. * M121: Disable endstops
  2711. */
  2712. inline void gcode_M121() { enable_endstops(true); }
  2713. #ifdef BLINKM
  2714. /**
  2715. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2716. */
  2717. inline void gcode_M150() {
  2718. SendColors(
  2719. code_seen('R') ? (byte)code_value() : 0,
  2720. code_seen('U') ? (byte)code_value() : 0,
  2721. code_seen('B') ? (byte)code_value() : 0
  2722. );
  2723. }
  2724. #endif // BLINKM
  2725. /**
  2726. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2727. * T<extruder>
  2728. * D<millimeters>
  2729. */
  2730. inline void gcode_M200() {
  2731. tmp_extruder = active_extruder;
  2732. if (code_seen('T')) {
  2733. tmp_extruder = code_value();
  2734. if (tmp_extruder >= EXTRUDERS) {
  2735. SERIAL_ECHO_START;
  2736. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2737. return;
  2738. }
  2739. }
  2740. float area = .0;
  2741. if (code_seen('D')) {
  2742. float diameter = code_value();
  2743. // setting any extruder filament size disables volumetric on the assumption that
  2744. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2745. // for all extruders
  2746. volumetric_enabled = (diameter != 0.0);
  2747. if (volumetric_enabled) {
  2748. filament_size[tmp_extruder] = diameter;
  2749. // make sure all extruders have some sane value for the filament size
  2750. for (int i=0; i<EXTRUDERS; i++)
  2751. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2752. }
  2753. }
  2754. else {
  2755. //reserved for setting filament diameter via UFID or filament measuring device
  2756. return;
  2757. }
  2758. calculate_volumetric_multipliers();
  2759. }
  2760. /**
  2761. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2762. */
  2763. inline void gcode_M201() {
  2764. for (int8_t i=0; i < NUM_AXIS; i++) {
  2765. if (code_seen(axis_codes[i])) {
  2766. max_acceleration_units_per_sq_second[i] = code_value();
  2767. }
  2768. }
  2769. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2770. reset_acceleration_rates();
  2771. }
  2772. #if 0 // Not used for Sprinter/grbl gen6
  2773. inline void gcode_M202() {
  2774. for(int8_t i=0; i < NUM_AXIS; i++) {
  2775. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2776. }
  2777. }
  2778. #endif
  2779. /**
  2780. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2781. */
  2782. inline void gcode_M203() {
  2783. for (int8_t i=0; i < NUM_AXIS; i++) {
  2784. if (code_seen(axis_codes[i])) {
  2785. max_feedrate[i] = code_value();
  2786. }
  2787. }
  2788. }
  2789. /**
  2790. * M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
  2791. *
  2792. * S = normal moves
  2793. * T = filament only moves
  2794. *
  2795. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2796. */
  2797. inline void gcode_M204() {
  2798. if (code_seen('S')) acceleration = code_value();
  2799. if (code_seen('T')) retract_acceleration = code_value();
  2800. }
  2801. /**
  2802. * M205: Set Advanced Settings
  2803. *
  2804. * S = Min Feed Rate (mm/s)
  2805. * T = Min Travel Feed Rate (mm/s)
  2806. * B = Min Segment Time (µs)
  2807. * X = Max XY Jerk (mm/s/s)
  2808. * Z = Max Z Jerk (mm/s/s)
  2809. * E = Max E Jerk (mm/s/s)
  2810. */
  2811. inline void gcode_M205() {
  2812. if (code_seen('S')) minimumfeedrate = code_value();
  2813. if (code_seen('T')) mintravelfeedrate = code_value();
  2814. if (code_seen('B')) minsegmenttime = code_value();
  2815. if (code_seen('X')) max_xy_jerk = code_value();
  2816. if (code_seen('Z')) max_z_jerk = code_value();
  2817. if (code_seen('E')) max_e_jerk = code_value();
  2818. }
  2819. /**
  2820. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  2821. */
  2822. inline void gcode_M206() {
  2823. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  2824. if (code_seen(axis_codes[i])) {
  2825. add_homing[i] = code_value();
  2826. }
  2827. }
  2828. #ifdef SCARA
  2829. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  2830. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  2831. #endif
  2832. }
  2833. #ifdef DELTA
  2834. /**
  2835. * M665: Set delta configurations
  2836. *
  2837. * L = diagonal rod
  2838. * R = delta radius
  2839. * S = segments per second
  2840. */
  2841. inline void gcode_M665() {
  2842. if (code_seen('L')) delta_diagonal_rod = code_value();
  2843. if (code_seen('R')) delta_radius = code_value();
  2844. if (code_seen('S')) delta_segments_per_second = code_value();
  2845. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2846. }
  2847. /**
  2848. * M666: Set delta endstop adjustment
  2849. */
  2850. inline void gcode_M666() {
  2851. for (int8_t i = 0; i < 3; i++) {
  2852. if (code_seen(axis_codes[i])) {
  2853. endstop_adj[i] = code_value();
  2854. }
  2855. }
  2856. }
  2857. #endif // DELTA
  2858. #ifdef FWRETRACT
  2859. /**
  2860. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2861. */
  2862. inline void gcode_M207() {
  2863. if (code_seen('S')) retract_length = code_value();
  2864. if (code_seen('F')) retract_feedrate = code_value() / 60;
  2865. if (code_seen('Z')) retract_zlift = code_value();
  2866. }
  2867. /**
  2868. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2869. */
  2870. inline void gcode_M208() {
  2871. if (code_seen('S')) retract_recover_length = code_value();
  2872. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  2873. }
  2874. /**
  2875. * M209: Enable automatic retract (M209 S1)
  2876. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2877. */
  2878. inline void gcode_M209() {
  2879. if (code_seen('S')) {
  2880. int t = code_value();
  2881. switch(t) {
  2882. case 0:
  2883. autoretract_enabled = false;
  2884. break;
  2885. case 1:
  2886. autoretract_enabled = true;
  2887. break;
  2888. default:
  2889. SERIAL_ECHO_START;
  2890. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2891. SERIAL_ECHO(cmdbuffer[bufindr]);
  2892. SERIAL_ECHOLNPGM("\"");
  2893. return;
  2894. }
  2895. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2896. }
  2897. }
  2898. #endif // FWRETRACT
  2899. #if EXTRUDERS > 1
  2900. /**
  2901. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2902. */
  2903. inline void gcode_M218() {
  2904. if (setTargetedHotend(218)) return;
  2905. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2906. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2907. #ifdef DUAL_X_CARRIAGE
  2908. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2909. #endif
  2910. SERIAL_ECHO_START;
  2911. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2912. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  2913. SERIAL_ECHO(" ");
  2914. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2915. SERIAL_ECHO(",");
  2916. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2917. #ifdef DUAL_X_CARRIAGE
  2918. SERIAL_ECHO(",");
  2919. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2920. #endif
  2921. }
  2922. SERIAL_EOL;
  2923. }
  2924. #endif // EXTRUDERS > 1
  2925. /**
  2926. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  2927. */
  2928. inline void gcode_M220() {
  2929. if (code_seen('S')) feedmultiply = code_value();
  2930. }
  2931. /**
  2932. * M221: Set extrusion percentage (M221 T0 S95)
  2933. */
  2934. inline void gcode_M221() {
  2935. if (code_seen('S')) {
  2936. int sval = code_value();
  2937. if (code_seen('T')) {
  2938. if (setTargetedHotend(221)) return;
  2939. extruder_multiply[tmp_extruder] = sval;
  2940. }
  2941. else {
  2942. extrudemultiply = sval;
  2943. }
  2944. }
  2945. }
  2946. /**
  2947. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  2948. */
  2949. inline void gcode_M226() {
  2950. if (code_seen('P')) {
  2951. int pin_number = code_value();
  2952. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  2953. if (pin_state >= -1 && pin_state <= 1) {
  2954. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  2955. if (sensitive_pins[i] == pin_number) {
  2956. pin_number = -1;
  2957. break;
  2958. }
  2959. }
  2960. if (pin_number > -1) {
  2961. int target = LOW;
  2962. st_synchronize();
  2963. pinMode(pin_number, INPUT);
  2964. switch(pin_state){
  2965. case 1:
  2966. target = HIGH;
  2967. break;
  2968. case 0:
  2969. target = LOW;
  2970. break;
  2971. case -1:
  2972. target = !digitalRead(pin_number);
  2973. break;
  2974. }
  2975. while(digitalRead(pin_number) != target) {
  2976. manage_heater();
  2977. manage_inactivity();
  2978. lcd_update();
  2979. }
  2980. } // pin_number > -1
  2981. } // pin_state -1 0 1
  2982. } // code_seen('P')
  2983. }
  2984. #if NUM_SERVOS > 0
  2985. /**
  2986. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  2987. */
  2988. inline void gcode_M280() {
  2989. int servo_index = code_seen('P') ? code_value() : -1;
  2990. int servo_position = 0;
  2991. if (code_seen('S')) {
  2992. servo_position = code_value();
  2993. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2994. #if SERVO_LEVELING
  2995. servos[servo_index].attach(0);
  2996. #endif
  2997. servos[servo_index].write(servo_position);
  2998. #if SERVO_LEVELING
  2999. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3000. servos[servo_index].detach();
  3001. #endif
  3002. }
  3003. else {
  3004. SERIAL_ECHO_START;
  3005. SERIAL_ECHO("Servo ");
  3006. SERIAL_ECHO(servo_index);
  3007. SERIAL_ECHOLN(" out of range");
  3008. }
  3009. }
  3010. else if (servo_index >= 0) {
  3011. SERIAL_PROTOCOL(MSG_OK);
  3012. SERIAL_PROTOCOL(" Servo ");
  3013. SERIAL_PROTOCOL(servo_index);
  3014. SERIAL_PROTOCOL(": ");
  3015. SERIAL_PROTOCOL(servos[servo_index].read());
  3016. SERIAL_PROTOCOLLN("");
  3017. }
  3018. }
  3019. #endif // NUM_SERVOS > 0
  3020. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3021. /**
  3022. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3023. */
  3024. inline void gcode_M300() {
  3025. int beepS = code_seen('S') ? code_value() : 110;
  3026. int beepP = code_seen('P') ? code_value() : 1000;
  3027. if (beepS > 0) {
  3028. #if BEEPER > 0
  3029. tone(BEEPER, beepS);
  3030. delay(beepP);
  3031. noTone(BEEPER);
  3032. #elif defined(ULTRALCD)
  3033. lcd_buzz(beepS, beepP);
  3034. #elif defined(LCD_USE_I2C_BUZZER)
  3035. lcd_buzz(beepP, beepS);
  3036. #endif
  3037. }
  3038. else {
  3039. delay(beepP);
  3040. }
  3041. }
  3042. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3043. #ifdef PIDTEMP
  3044. /**
  3045. * M301: Set PID parameters P I D (and optionally C)
  3046. */
  3047. inline void gcode_M301() {
  3048. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3049. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3050. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3051. if (e < EXTRUDERS) { // catch bad input value
  3052. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3053. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3054. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3055. #ifdef PID_ADD_EXTRUSION_RATE
  3056. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3057. #endif
  3058. updatePID();
  3059. SERIAL_PROTOCOL(MSG_OK);
  3060. #ifdef PID_PARAMS_PER_EXTRUDER
  3061. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3062. SERIAL_PROTOCOL(e);
  3063. #endif // PID_PARAMS_PER_EXTRUDER
  3064. SERIAL_PROTOCOL(" p:");
  3065. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3066. SERIAL_PROTOCOL(" i:");
  3067. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3068. SERIAL_PROTOCOL(" d:");
  3069. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3070. #ifdef PID_ADD_EXTRUSION_RATE
  3071. SERIAL_PROTOCOL(" c:");
  3072. //Kc does not have scaling applied above, or in resetting defaults
  3073. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3074. #endif
  3075. SERIAL_PROTOCOLLN("");
  3076. }
  3077. else {
  3078. SERIAL_ECHO_START;
  3079. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3080. }
  3081. }
  3082. #endif // PIDTEMP
  3083. #ifdef PIDTEMPBED
  3084. inline void gcode_M304() {
  3085. if (code_seen('P')) bedKp = code_value();
  3086. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3087. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3088. updatePID();
  3089. SERIAL_PROTOCOL(MSG_OK);
  3090. SERIAL_PROTOCOL(" p:");
  3091. SERIAL_PROTOCOL(bedKp);
  3092. SERIAL_PROTOCOL(" i:");
  3093. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3094. SERIAL_PROTOCOL(" d:");
  3095. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3096. SERIAL_PROTOCOLLN("");
  3097. }
  3098. #endif // PIDTEMPBED
  3099. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3100. /**
  3101. * M240: Trigger a camera by emulating a Canon RC-1
  3102. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3103. */
  3104. inline void gcode_M240() {
  3105. #ifdef CHDK
  3106. OUT_WRITE(CHDK, HIGH);
  3107. chdkHigh = millis();
  3108. chdkActive = true;
  3109. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3110. const uint8_t NUM_PULSES = 16;
  3111. const float PULSE_LENGTH = 0.01524;
  3112. for (int i = 0; i < NUM_PULSES; i++) {
  3113. WRITE(PHOTOGRAPH_PIN, HIGH);
  3114. _delay_ms(PULSE_LENGTH);
  3115. WRITE(PHOTOGRAPH_PIN, LOW);
  3116. _delay_ms(PULSE_LENGTH);
  3117. }
  3118. delay(7.33);
  3119. for (int i = 0; i < NUM_PULSES; i++) {
  3120. WRITE(PHOTOGRAPH_PIN, HIGH);
  3121. _delay_ms(PULSE_LENGTH);
  3122. WRITE(PHOTOGRAPH_PIN, LOW);
  3123. _delay_ms(PULSE_LENGTH);
  3124. }
  3125. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3126. }
  3127. #endif // CHDK || PHOTOGRAPH_PIN
  3128. #ifdef DOGLCD
  3129. /**
  3130. * M250: Read and optionally set the LCD contrast
  3131. */
  3132. inline void gcode_M250() {
  3133. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3134. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3135. SERIAL_PROTOCOL(lcd_contrast);
  3136. SERIAL_PROTOCOLLN("");
  3137. }
  3138. #endif // DOGLCD
  3139. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3140. /**
  3141. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3142. */
  3143. inline void gcode_M302() {
  3144. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3145. }
  3146. #endif // PREVENT_DANGEROUS_EXTRUDE
  3147. /**
  3148. * M303: PID relay autotune
  3149. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3150. * E<extruder> (-1 for the bed)
  3151. * C<cycles>
  3152. */
  3153. inline void gcode_M303() {
  3154. int e = code_seen('E') ? code_value_long() : 0;
  3155. int c = code_seen('C') ? code_value_long() : 5;
  3156. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3157. PID_autotune(temp, e, c);
  3158. }
  3159. #ifdef SCARA
  3160. /**
  3161. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3162. */
  3163. inline bool gcode_M360() {
  3164. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3165. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3166. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3167. if (! Stopped) {
  3168. //get_coordinates(); // For X Y Z E F
  3169. delta[X_AXIS] = 0;
  3170. delta[Y_AXIS] = 120;
  3171. calculate_SCARA_forward_Transform(delta);
  3172. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3173. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3174. prepare_move();
  3175. //ClearToSend();
  3176. return true;
  3177. }
  3178. return false;
  3179. }
  3180. /**
  3181. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3182. */
  3183. inline bool gcode_M361() {
  3184. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3185. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3186. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3187. if (! Stopped) {
  3188. //get_coordinates(); // For X Y Z E F
  3189. delta[X_AXIS] = 90;
  3190. delta[Y_AXIS] = 130;
  3191. calculate_SCARA_forward_Transform(delta);
  3192. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3193. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3194. prepare_move();
  3195. //ClearToSend();
  3196. return true;
  3197. }
  3198. return false;
  3199. }
  3200. /**
  3201. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3202. */
  3203. inline bool gcode_M362() {
  3204. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3205. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3206. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3207. if (! Stopped) {
  3208. //get_coordinates(); // For X Y Z E F
  3209. delta[X_AXIS] = 60;
  3210. delta[Y_AXIS] = 180;
  3211. calculate_SCARA_forward_Transform(delta);
  3212. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3213. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3214. prepare_move();
  3215. //ClearToSend();
  3216. return true;
  3217. }
  3218. return false;
  3219. }
  3220. /**
  3221. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3222. */
  3223. inline bool gcode_M363() {
  3224. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3225. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3226. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3227. if (! Stopped) {
  3228. //get_coordinates(); // For X Y Z E F
  3229. delta[X_AXIS] = 50;
  3230. delta[Y_AXIS] = 90;
  3231. calculate_SCARA_forward_Transform(delta);
  3232. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3233. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3234. prepare_move();
  3235. //ClearToSend();
  3236. return true;
  3237. }
  3238. return false;
  3239. }
  3240. /**
  3241. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3242. */
  3243. inline bool gcode_M364() {
  3244. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3245. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3246. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3247. if (! Stopped) {
  3248. //get_coordinates(); // For X Y Z E F
  3249. delta[X_AXIS] = 45;
  3250. delta[Y_AXIS] = 135;
  3251. calculate_SCARA_forward_Transform(delta);
  3252. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3253. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3254. prepare_move();
  3255. //ClearToSend();
  3256. return true;
  3257. }
  3258. return false;
  3259. }
  3260. /**
  3261. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3262. */
  3263. inline void gcode_M365() {
  3264. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3265. if (code_seen(axis_codes[i])) {
  3266. axis_scaling[i] = code_value();
  3267. }
  3268. }
  3269. }
  3270. #endif // SCARA
  3271. #ifdef EXT_SOLENOID
  3272. void enable_solenoid(uint8_t num) {
  3273. switch(num) {
  3274. case 0:
  3275. OUT_WRITE(SOL0_PIN, HIGH);
  3276. break;
  3277. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3278. case 1:
  3279. OUT_WRITE(SOL1_PIN, HIGH);
  3280. break;
  3281. #endif
  3282. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3283. case 2:
  3284. OUT_WRITE(SOL2_PIN, HIGH);
  3285. break;
  3286. #endif
  3287. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3288. case 3:
  3289. OUT_WRITE(SOL3_PIN, HIGH);
  3290. break;
  3291. #endif
  3292. default:
  3293. SERIAL_ECHO_START;
  3294. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3295. break;
  3296. }
  3297. }
  3298. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3299. void disable_all_solenoids() {
  3300. OUT_WRITE(SOL0_PIN, LOW);
  3301. OUT_WRITE(SOL1_PIN, LOW);
  3302. OUT_WRITE(SOL2_PIN, LOW);
  3303. OUT_WRITE(SOL3_PIN, LOW);
  3304. }
  3305. /**
  3306. * M380: Enable solenoid on the active extruder
  3307. */
  3308. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3309. /**
  3310. * M381: Disable all solenoids
  3311. */
  3312. inline void gcode_M381() { disable_all_solenoids(); }
  3313. #endif // EXT_SOLENOID
  3314. /**
  3315. * M400: Finish all moves
  3316. */
  3317. inline void gcode_M400() { st_synchronize(); }
  3318. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3319. /**
  3320. * M401: Engage Z Servo endstop if available
  3321. */
  3322. inline void gcode_M401() { engage_z_probe(); }
  3323. /**
  3324. * M402: Retract Z Servo endstop if enabled
  3325. */
  3326. inline void gcode_M402() { retract_z_probe(); }
  3327. #endif
  3328. #ifdef FILAMENT_SENSOR
  3329. /**
  3330. * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
  3331. */
  3332. inline void gcode_M404() {
  3333. #if FILWIDTH_PIN > -1
  3334. if (code_seen('N')) {
  3335. filament_width_nominal = code_value();
  3336. }
  3337. else {
  3338. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3339. SERIAL_PROTOCOLLN(filament_width_nominal);
  3340. }
  3341. #endif
  3342. }
  3343. /**
  3344. * M405: Turn on filament sensor for control
  3345. */
  3346. inline void gcode_M405() {
  3347. if (code_seen('D')) meas_delay_cm = code_value();
  3348. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3349. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3350. int temp_ratio = widthFil_to_size_ratio();
  3351. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3352. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3353. delay_index1 = delay_index2 = 0;
  3354. }
  3355. filament_sensor = true;
  3356. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3357. //SERIAL_PROTOCOL(filament_width_meas);
  3358. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3359. //SERIAL_PROTOCOL(extrudemultiply);
  3360. }
  3361. /**
  3362. * M406: Turn off filament sensor for control
  3363. */
  3364. inline void gcode_M406() { filament_sensor = false; }
  3365. /**
  3366. * M407: Get measured filament diameter on serial output
  3367. */
  3368. inline void gcode_M407() {
  3369. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3370. SERIAL_PROTOCOLLN(filament_width_meas);
  3371. }
  3372. #endif // FILAMENT_SENSOR
  3373. /**
  3374. * M500: Store settings in EEPROM
  3375. */
  3376. inline void gcode_M500() {
  3377. Config_StoreSettings();
  3378. }
  3379. /**
  3380. * M501: Read settings from EEPROM
  3381. */
  3382. inline void gcode_M501() {
  3383. Config_RetrieveSettings();
  3384. }
  3385. /**
  3386. * M502: Revert to default settings
  3387. */
  3388. inline void gcode_M502() {
  3389. Config_ResetDefault();
  3390. }
  3391. /**
  3392. * M503: print settings currently in memory
  3393. */
  3394. inline void gcode_M503() {
  3395. Config_PrintSettings(code_seen('S') && code_value == 0);
  3396. }
  3397. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3398. /**
  3399. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3400. */
  3401. inline void gcode_M540() {
  3402. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3403. }
  3404. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3405. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3406. inline void gcode_SET_Z_PROBE_OFFSET() {
  3407. float value;
  3408. if (code_seen('Z')) {
  3409. value = code_value();
  3410. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3411. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3412. SERIAL_ECHO_START;
  3413. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3414. SERIAL_PROTOCOLLN("");
  3415. }
  3416. else {
  3417. SERIAL_ECHO_START;
  3418. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3419. SERIAL_ECHOPGM(MSG_Z_MIN);
  3420. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3421. SERIAL_ECHOPGM(MSG_Z_MAX);
  3422. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3423. SERIAL_PROTOCOLLN("");
  3424. }
  3425. }
  3426. else {
  3427. SERIAL_ECHO_START;
  3428. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3429. SERIAL_ECHO(-zprobe_zoffset);
  3430. SERIAL_PROTOCOLLN("");
  3431. }
  3432. }
  3433. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3434. #ifdef FILAMENTCHANGEENABLE
  3435. /**
  3436. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3437. */
  3438. inline void gcode_M600() {
  3439. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3440. for (int i=0; i<NUM_AXIS; i++)
  3441. target[i] = lastpos[i] = current_position[i];
  3442. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3443. #ifdef DELTA
  3444. #define RUNPLAN calculate_delta(target); BASICPLAN
  3445. #else
  3446. #define RUNPLAN BASICPLAN
  3447. #endif
  3448. //retract by E
  3449. if (code_seen('E')) target[E_AXIS] += code_value();
  3450. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3451. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3452. #endif
  3453. RUNPLAN;
  3454. //lift Z
  3455. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3456. #ifdef FILAMENTCHANGE_ZADD
  3457. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3458. #endif
  3459. RUNPLAN;
  3460. //move xy
  3461. if (code_seen('X')) target[X_AXIS] = code_value();
  3462. #ifdef FILAMENTCHANGE_XPOS
  3463. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3464. #endif
  3465. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3466. #ifdef FILAMENTCHANGE_YPOS
  3467. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3468. #endif
  3469. RUNPLAN;
  3470. if (code_seen('L')) target[E_AXIS] += code_value();
  3471. #ifdef FILAMENTCHANGE_FINALRETRACT
  3472. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3473. #endif
  3474. RUNPLAN;
  3475. //finish moves
  3476. st_synchronize();
  3477. //disable extruder steppers so filament can be removed
  3478. disable_e0();
  3479. disable_e1();
  3480. disable_e2();
  3481. disable_e3();
  3482. delay(100);
  3483. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3484. uint8_t cnt = 0;
  3485. while (!lcd_clicked()) {
  3486. cnt++;
  3487. manage_heater();
  3488. manage_inactivity(true);
  3489. lcd_update();
  3490. if (cnt == 0) {
  3491. #if BEEPER > 0
  3492. OUT_WRITE(BEEPER,HIGH);
  3493. delay(3);
  3494. WRITE(BEEPER,LOW);
  3495. delay(3);
  3496. #else
  3497. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3498. lcd_buzz(1000/6, 100);
  3499. #else
  3500. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3501. #endif
  3502. #endif
  3503. }
  3504. } // while(!lcd_clicked)
  3505. //return to normal
  3506. if (code_seen('L')) target[E_AXIS] -= code_value();
  3507. #ifdef FILAMENTCHANGE_FINALRETRACT
  3508. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3509. #endif
  3510. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3511. plan_set_e_position(current_position[E_AXIS]);
  3512. RUNPLAN; //should do nothing
  3513. lcd_reset_alert_level();
  3514. #ifdef DELTA
  3515. calculate_delta(lastpos);
  3516. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3517. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3518. #else
  3519. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3520. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3521. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3522. #endif
  3523. }
  3524. #endif // FILAMENTCHANGEENABLE
  3525. #ifdef DUAL_X_CARRIAGE
  3526. /**
  3527. * M605: Set dual x-carriage movement mode
  3528. *
  3529. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3530. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3531. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3532. * millimeters x-offset and an optional differential hotend temperature of
  3533. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3534. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3535. *
  3536. * Note: the X axis should be homed after changing dual x-carriage mode.
  3537. */
  3538. inline void gcode_M605() {
  3539. st_synchronize();
  3540. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3541. switch(dual_x_carriage_mode) {
  3542. case DXC_DUPLICATION_MODE:
  3543. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3544. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3545. SERIAL_ECHO_START;
  3546. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3547. SERIAL_ECHO(" ");
  3548. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3549. SERIAL_ECHO(",");
  3550. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3551. SERIAL_ECHO(" ");
  3552. SERIAL_ECHO(duplicate_extruder_x_offset);
  3553. SERIAL_ECHO(",");
  3554. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3555. break;
  3556. case DXC_FULL_CONTROL_MODE:
  3557. case DXC_AUTO_PARK_MODE:
  3558. break;
  3559. default:
  3560. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3561. break;
  3562. }
  3563. active_extruder_parked = false;
  3564. extruder_duplication_enabled = false;
  3565. delayed_move_time = 0;
  3566. }
  3567. #endif // DUAL_X_CARRIAGE
  3568. /**
  3569. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3570. */
  3571. inline void gcode_M907() {
  3572. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3573. for (int i=0;i<NUM_AXIS;i++)
  3574. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3575. if (code_seen('B')) digipot_current(4, code_value());
  3576. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3577. #endif
  3578. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3579. if (code_seen('X')) digipot_current(0, code_value());
  3580. #endif
  3581. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3582. if (code_seen('Z')) digipot_current(1, code_value());
  3583. #endif
  3584. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3585. if (code_seen('E')) digipot_current(2, code_value());
  3586. #endif
  3587. #ifdef DIGIPOT_I2C
  3588. // this one uses actual amps in floating point
  3589. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3590. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3591. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3592. #endif
  3593. }
  3594. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3595. /**
  3596. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3597. */
  3598. inline void gcode_M908() {
  3599. digitalPotWrite(
  3600. code_seen('P') ? code_value() : 0,
  3601. code_seen('S') ? code_value() : 0
  3602. );
  3603. }
  3604. #endif // DIGIPOTSS_PIN
  3605. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3606. inline void gcode_M350() {
  3607. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3608. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3609. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3610. if(code_seen('B')) microstep_mode(4,code_value());
  3611. microstep_readings();
  3612. #endif
  3613. }
  3614. /**
  3615. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3616. * S# determines MS1 or MS2, X# sets the pin high/low.
  3617. */
  3618. inline void gcode_M351() {
  3619. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3620. if (code_seen('S')) switch(code_value_long()) {
  3621. case 1:
  3622. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3623. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3624. break;
  3625. case 2:
  3626. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3627. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3628. break;
  3629. }
  3630. microstep_readings();
  3631. #endif
  3632. }
  3633. /**
  3634. * M999: Restart after being stopped
  3635. */
  3636. inline void gcode_M999() {
  3637. Stopped = false;
  3638. lcd_reset_alert_level();
  3639. gcode_LastN = Stopped_gcode_LastN;
  3640. FlushSerialRequestResend();
  3641. }
  3642. inline void gcode_T() {
  3643. tmp_extruder = code_value();
  3644. if (tmp_extruder >= EXTRUDERS) {
  3645. SERIAL_ECHO_START;
  3646. SERIAL_ECHO("T");
  3647. SERIAL_ECHO(tmp_extruder);
  3648. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3649. }
  3650. else {
  3651. boolean make_move = false;
  3652. if (code_seen('F')) {
  3653. make_move = true;
  3654. next_feedrate = code_value();
  3655. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3656. }
  3657. #if EXTRUDERS > 1
  3658. if (tmp_extruder != active_extruder) {
  3659. // Save current position to return to after applying extruder offset
  3660. memcpy(destination, current_position, sizeof(destination));
  3661. #ifdef DUAL_X_CARRIAGE
  3662. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3663. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3664. // Park old head: 1) raise 2) move to park position 3) lower
  3665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3666. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3667. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3668. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3669. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3670. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3671. st_synchronize();
  3672. }
  3673. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3674. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3675. extruder_offset[Y_AXIS][active_extruder] +
  3676. extruder_offset[Y_AXIS][tmp_extruder];
  3677. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3678. extruder_offset[Z_AXIS][active_extruder] +
  3679. extruder_offset[Z_AXIS][tmp_extruder];
  3680. active_extruder = tmp_extruder;
  3681. // This function resets the max/min values - the current position may be overwritten below.
  3682. axis_is_at_home(X_AXIS);
  3683. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3684. current_position[X_AXIS] = inactive_extruder_x_pos;
  3685. inactive_extruder_x_pos = destination[X_AXIS];
  3686. }
  3687. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3688. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3689. if (active_extruder == 0 || active_extruder_parked)
  3690. current_position[X_AXIS] = inactive_extruder_x_pos;
  3691. else
  3692. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3693. inactive_extruder_x_pos = destination[X_AXIS];
  3694. extruder_duplication_enabled = false;
  3695. }
  3696. else {
  3697. // record raised toolhead position for use by unpark
  3698. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3699. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3700. active_extruder_parked = true;
  3701. delayed_move_time = 0;
  3702. }
  3703. #else // !DUAL_X_CARRIAGE
  3704. // Offset extruder (only by XY)
  3705. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3706. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3707. // Set the new active extruder and position
  3708. active_extruder = tmp_extruder;
  3709. #endif // !DUAL_X_CARRIAGE
  3710. #ifdef DELTA
  3711. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3712. //sent position to plan_set_position();
  3713. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3714. #else
  3715. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3716. #endif
  3717. // Move to the old position if 'F' was in the parameters
  3718. if (make_move && !Stopped) prepare_move();
  3719. }
  3720. #ifdef EXT_SOLENOID
  3721. st_synchronize();
  3722. disable_all_solenoids();
  3723. enable_solenoid_on_active_extruder();
  3724. #endif // EXT_SOLENOID
  3725. #endif // EXTRUDERS > 1
  3726. SERIAL_ECHO_START;
  3727. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3728. SERIAL_PROTOCOLLN((int)active_extruder);
  3729. }
  3730. }
  3731. /**
  3732. * Process Commands and dispatch them to handlers
  3733. */
  3734. void process_commands() {
  3735. if (code_seen('G')) {
  3736. int gCode = code_value_long();
  3737. switch(gCode) {
  3738. // G0, G1
  3739. case 0:
  3740. case 1:
  3741. gcode_G0_G1();
  3742. break;
  3743. // G2, G3
  3744. #ifndef SCARA
  3745. case 2: // G2 - CW ARC
  3746. case 3: // G3 - CCW ARC
  3747. gcode_G2_G3(gCode == 2);
  3748. break;
  3749. #endif
  3750. // G4 Dwell
  3751. case 4:
  3752. gcode_G4();
  3753. break;
  3754. #ifdef FWRETRACT
  3755. case 10: // G10: retract
  3756. case 11: // G11: retract_recover
  3757. gcode_G10_G11(gCode == 10);
  3758. break;
  3759. #endif //FWRETRACT
  3760. case 28: // G28: Home all axes, one at a time
  3761. gcode_G28();
  3762. break;
  3763. #ifdef ENABLE_AUTO_BED_LEVELING
  3764. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3765. gcode_G29();
  3766. break;
  3767. #ifndef Z_PROBE_SLED
  3768. case 30: // G30 Single Z Probe
  3769. gcode_G30();
  3770. break;
  3771. #else // Z_PROBE_SLED
  3772. case 31: // G31: dock the sled
  3773. case 32: // G32: undock the sled
  3774. dock_sled(gCode == 31);
  3775. break;
  3776. #endif // Z_PROBE_SLED
  3777. #endif // ENABLE_AUTO_BED_LEVELING
  3778. case 90: // G90
  3779. relative_mode = false;
  3780. break;
  3781. case 91: // G91
  3782. relative_mode = true;
  3783. break;
  3784. case 92: // G92
  3785. gcode_G92();
  3786. break;
  3787. }
  3788. }
  3789. else if (code_seen('M')) {
  3790. switch( code_value_long() ) {
  3791. #ifdef ULTIPANEL
  3792. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3793. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3794. gcode_M0_M1();
  3795. break;
  3796. #endif // ULTIPANEL
  3797. case 17:
  3798. gcode_M17();
  3799. break;
  3800. #ifdef SDSUPPORT
  3801. case 20: // M20 - list SD card
  3802. gcode_M20(); break;
  3803. case 21: // M21 - init SD card
  3804. gcode_M21(); break;
  3805. case 22: //M22 - release SD card
  3806. gcode_M22(); break;
  3807. case 23: //M23 - Select file
  3808. gcode_M23(); break;
  3809. case 24: //M24 - Start SD print
  3810. gcode_M24(); break;
  3811. case 25: //M25 - Pause SD print
  3812. gcode_M25(); break;
  3813. case 26: //M26 - Set SD index
  3814. gcode_M26(); break;
  3815. case 27: //M27 - Get SD status
  3816. gcode_M27(); break;
  3817. case 28: //M28 - Start SD write
  3818. gcode_M28(); break;
  3819. case 29: //M29 - Stop SD write
  3820. gcode_M29(); break;
  3821. case 30: //M30 <filename> Delete File
  3822. gcode_M30(); break;
  3823. case 32: //M32 - Select file and start SD print
  3824. gcode_M32(); break;
  3825. case 928: //M928 - Start SD write
  3826. gcode_M928(); break;
  3827. #endif //SDSUPPORT
  3828. case 31: //M31 take time since the start of the SD print or an M109 command
  3829. gcode_M31();
  3830. break;
  3831. case 42: //M42 -Change pin status via gcode
  3832. gcode_M42();
  3833. break;
  3834. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  3835. case 48: // M48 Z-Probe repeatability
  3836. gcode_M48();
  3837. break;
  3838. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  3839. case 104: // M104
  3840. gcode_M104();
  3841. break;
  3842. case 112: // M112 Emergency Stop
  3843. gcode_M112();
  3844. break;
  3845. case 140: // M140 Set bed temp
  3846. gcode_M140();
  3847. break;
  3848. case 105: // M105 Read current temperature
  3849. gcode_M105();
  3850. return;
  3851. break;
  3852. case 109: // M109 Wait for temperature
  3853. gcode_M109();
  3854. break;
  3855. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3856. case 190: // M190 - Wait for bed heater to reach target.
  3857. gcode_M190();
  3858. break;
  3859. #endif //TEMP_BED_PIN
  3860. #if defined(FAN_PIN) && FAN_PIN > -1
  3861. case 106: //M106 Fan On
  3862. gcode_M106();
  3863. break;
  3864. case 107: //M107 Fan Off
  3865. gcode_M107();
  3866. break;
  3867. #endif //FAN_PIN
  3868. #ifdef BARICUDA
  3869. // PWM for HEATER_1_PIN
  3870. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  3871. case 126: // M126 valve open
  3872. gcode_M126();
  3873. break;
  3874. case 127: // M127 valve closed
  3875. gcode_M127();
  3876. break;
  3877. #endif //HEATER_1_PIN
  3878. // PWM for HEATER_2_PIN
  3879. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  3880. case 128: // M128 valve open
  3881. gcode_M128();
  3882. break;
  3883. case 129: // M129 valve closed
  3884. gcode_M129();
  3885. break;
  3886. #endif //HEATER_2_PIN
  3887. #endif //BARICUDA
  3888. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3889. case 80: // M80 - Turn on Power Supply
  3890. gcode_M80();
  3891. break;
  3892. #endif // PS_ON_PIN
  3893. case 81: // M81 - Turn off Power Supply
  3894. gcode_M81();
  3895. break;
  3896. case 82:
  3897. gcode_M82();
  3898. break;
  3899. case 83:
  3900. gcode_M83();
  3901. break;
  3902. case 18: //compatibility
  3903. case 84: // M84
  3904. gcode_M18_M84();
  3905. break;
  3906. case 85: // M85
  3907. gcode_M85();
  3908. break;
  3909. case 92: // M92
  3910. gcode_M92();
  3911. break;
  3912. case 115: // M115
  3913. gcode_M115();
  3914. break;
  3915. case 117: // M117 display message
  3916. gcode_M117();
  3917. break;
  3918. case 114: // M114
  3919. gcode_M114();
  3920. break;
  3921. case 120: // M120
  3922. gcode_M120();
  3923. break;
  3924. case 121: // M121
  3925. gcode_M121();
  3926. break;
  3927. case 119: // M119
  3928. gcode_M119();
  3929. break;
  3930. //TODO: update for all axis, use for loop
  3931. #ifdef BLINKM
  3932. case 150: // M150
  3933. gcode_M150();
  3934. break;
  3935. #endif //BLINKM
  3936. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3937. gcode_M200();
  3938. break;
  3939. case 201: // M201
  3940. gcode_M201();
  3941. break;
  3942. #if 0 // Not used for Sprinter/grbl gen6
  3943. case 202: // M202
  3944. gcode_M202();
  3945. break;
  3946. #endif
  3947. case 203: // M203 max feedrate mm/sec
  3948. gcode_M203();
  3949. break;
  3950. case 204: // M204 acclereration S normal moves T filmanent only moves
  3951. gcode_M204();
  3952. break;
  3953. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3954. gcode_M205();
  3955. break;
  3956. case 206: // M206 additional homing offset
  3957. gcode_M206();
  3958. break;
  3959. #ifdef DELTA
  3960. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  3961. gcode_M665();
  3962. break;
  3963. case 666: // M666 set delta endstop adjustment
  3964. gcode_M666();
  3965. break;
  3966. #endif // DELTA
  3967. #ifdef FWRETRACT
  3968. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3969. gcode_M207();
  3970. break;
  3971. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3972. gcode_M208();
  3973. break;
  3974. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3975. gcode_M209();
  3976. break;
  3977. #endif // FWRETRACT
  3978. #if EXTRUDERS > 1
  3979. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3980. gcode_M218();
  3981. break;
  3982. #endif
  3983. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3984. gcode_M220();
  3985. break;
  3986. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3987. gcode_M221();
  3988. break;
  3989. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3990. gcode_M226();
  3991. break;
  3992. #if NUM_SERVOS > 0
  3993. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3994. gcode_M280();
  3995. break;
  3996. #endif // NUM_SERVOS > 0
  3997. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3998. case 300: // M300 - Play beep tone
  3999. gcode_M300();
  4000. break;
  4001. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4002. #ifdef PIDTEMP
  4003. case 301: // M301
  4004. gcode_M301();
  4005. break;
  4006. #endif // PIDTEMP
  4007. #ifdef PIDTEMPBED
  4008. case 304: // M304
  4009. gcode_M304();
  4010. break;
  4011. #endif // PIDTEMPBED
  4012. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4013. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4014. gcode_M240();
  4015. break;
  4016. #endif // CHDK || PHOTOGRAPH_PIN
  4017. #ifdef DOGLCD
  4018. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4019. gcode_M250();
  4020. break;
  4021. #endif // DOGLCD
  4022. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4023. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4024. gcode_M302();
  4025. break;
  4026. #endif // PREVENT_DANGEROUS_EXTRUDE
  4027. case 303: // M303 PID autotune
  4028. gcode_M303();
  4029. break;
  4030. #ifdef SCARA
  4031. case 360: // M360 SCARA Theta pos1
  4032. if (gcode_M360()) return;
  4033. break;
  4034. case 361: // M361 SCARA Theta pos2
  4035. if (gcode_M361()) return;
  4036. break;
  4037. case 362: // M362 SCARA Psi pos1
  4038. if (gcode_M362()) return;
  4039. break;
  4040. case 363: // M363 SCARA Psi pos2
  4041. if (gcode_M363()) return;
  4042. break;
  4043. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4044. if (gcode_M364()) return;
  4045. break;
  4046. case 365: // M365 Set SCARA scaling for X Y Z
  4047. gcode_M365();
  4048. break;
  4049. #endif // SCARA
  4050. case 400: // M400 finish all moves
  4051. gcode_M400();
  4052. break;
  4053. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  4054. case 401:
  4055. gcode_M401();
  4056. break;
  4057. case 402:
  4058. gcode_M402();
  4059. break;
  4060. #endif
  4061. #ifdef FILAMENT_SENSOR
  4062. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4063. gcode_M404();
  4064. break;
  4065. case 405: //M405 Turn on filament sensor for control
  4066. gcode_M405();
  4067. break;
  4068. case 406: //M406 Turn off filament sensor for control
  4069. gcode_M406();
  4070. break;
  4071. case 407: //M407 Display measured filament diameter
  4072. gcode_M407();
  4073. break;
  4074. #endif // FILAMENT_SENSOR
  4075. case 500: // M500 Store settings in EEPROM
  4076. gcode_M500();
  4077. break;
  4078. case 501: // M501 Read settings from EEPROM
  4079. gcode_M501();
  4080. break;
  4081. case 502: // M502 Revert to default settings
  4082. gcode_M502();
  4083. break;
  4084. case 503: // M503 print settings currently in memory
  4085. gcode_M503();
  4086. break;
  4087. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4088. case 540:
  4089. gcode_M540();
  4090. break;
  4091. #endif
  4092. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4093. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4094. gcode_SET_Z_PROBE_OFFSET();
  4095. break;
  4096. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4097. #ifdef FILAMENTCHANGEENABLE
  4098. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4099. gcode_M600();
  4100. break;
  4101. #endif // FILAMENTCHANGEENABLE
  4102. #ifdef DUAL_X_CARRIAGE
  4103. case 605:
  4104. gcode_M605();
  4105. break;
  4106. #endif // DUAL_X_CARRIAGE
  4107. case 907: // M907 Set digital trimpot motor current using axis codes.
  4108. gcode_M907();
  4109. break;
  4110. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4111. case 908: // M908 Control digital trimpot directly.
  4112. gcode_M908();
  4113. break;
  4114. #endif // DIGIPOTSS_PIN
  4115. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4116. gcode_M350();
  4117. break;
  4118. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4119. gcode_M351();
  4120. break;
  4121. case 999: // M999: Restart after being Stopped
  4122. gcode_M999();
  4123. break;
  4124. }
  4125. }
  4126. else if (code_seen('T')) {
  4127. gcode_T();
  4128. }
  4129. else {
  4130. SERIAL_ECHO_START;
  4131. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4132. SERIAL_ECHO(cmdbuffer[bufindr]);
  4133. SERIAL_ECHOLNPGM("\"");
  4134. }
  4135. ClearToSend();
  4136. }
  4137. void FlushSerialRequestResend()
  4138. {
  4139. //char cmdbuffer[bufindr][100]="Resend:";
  4140. MYSERIAL.flush();
  4141. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4142. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4143. ClearToSend();
  4144. }
  4145. void ClearToSend()
  4146. {
  4147. previous_millis_cmd = millis();
  4148. #ifdef SDSUPPORT
  4149. if(fromsd[bufindr])
  4150. return;
  4151. #endif //SDSUPPORT
  4152. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4153. }
  4154. void get_coordinates()
  4155. {
  4156. bool seen[4]={false,false,false,false};
  4157. for(int8_t i=0; i < NUM_AXIS; i++) {
  4158. if(code_seen(axis_codes[i]))
  4159. {
  4160. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4161. seen[i]=true;
  4162. }
  4163. else destination[i] = current_position[i]; //Are these else lines really needed?
  4164. }
  4165. if(code_seen('F')) {
  4166. next_feedrate = code_value();
  4167. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4168. }
  4169. }
  4170. void get_arc_coordinates()
  4171. {
  4172. #ifdef SF_ARC_FIX
  4173. bool relative_mode_backup = relative_mode;
  4174. relative_mode = true;
  4175. #endif
  4176. get_coordinates();
  4177. #ifdef SF_ARC_FIX
  4178. relative_mode=relative_mode_backup;
  4179. #endif
  4180. if(code_seen('I')) {
  4181. offset[0] = code_value();
  4182. }
  4183. else {
  4184. offset[0] = 0.0;
  4185. }
  4186. if(code_seen('J')) {
  4187. offset[1] = code_value();
  4188. }
  4189. else {
  4190. offset[1] = 0.0;
  4191. }
  4192. }
  4193. void clamp_to_software_endstops(float target[3])
  4194. {
  4195. if (min_software_endstops) {
  4196. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4197. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4198. float negative_z_offset = 0;
  4199. #ifdef ENABLE_AUTO_BED_LEVELING
  4200. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4201. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4202. #endif
  4203. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4204. }
  4205. if (max_software_endstops) {
  4206. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4207. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4208. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4209. }
  4210. }
  4211. #ifdef DELTA
  4212. void recalc_delta_settings(float radius, float diagonal_rod)
  4213. {
  4214. delta_tower1_x= -SIN_60*radius; // front left tower
  4215. delta_tower1_y= -COS_60*radius;
  4216. delta_tower2_x= SIN_60*radius; // front right tower
  4217. delta_tower2_y= -COS_60*radius;
  4218. delta_tower3_x= 0.0; // back middle tower
  4219. delta_tower3_y= radius;
  4220. delta_diagonal_rod_2= sq(diagonal_rod);
  4221. }
  4222. void calculate_delta(float cartesian[3])
  4223. {
  4224. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4225. - sq(delta_tower1_x-cartesian[X_AXIS])
  4226. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4227. ) + cartesian[Z_AXIS];
  4228. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4229. - sq(delta_tower2_x-cartesian[X_AXIS])
  4230. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4231. ) + cartesian[Z_AXIS];
  4232. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4233. - sq(delta_tower3_x-cartesian[X_AXIS])
  4234. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4235. ) + cartesian[Z_AXIS];
  4236. /*
  4237. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4238. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4239. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4240. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4241. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4242. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4243. */
  4244. }
  4245. #endif
  4246. void prepare_move()
  4247. {
  4248. clamp_to_software_endstops(destination);
  4249. previous_millis_cmd = millis();
  4250. #ifdef SCARA //for now same as delta-code
  4251. float difference[NUM_AXIS];
  4252. for (int8_t i=0; i < NUM_AXIS; i++) {
  4253. difference[i] = destination[i] - current_position[i];
  4254. }
  4255. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4256. sq(difference[Y_AXIS]) +
  4257. sq(difference[Z_AXIS]));
  4258. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4259. if (cartesian_mm < 0.000001) { return; }
  4260. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4261. int steps = max(1, int(scara_segments_per_second * seconds));
  4262. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4263. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4264. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4265. for (int s = 1; s <= steps; s++) {
  4266. float fraction = float(s) / float(steps);
  4267. for(int8_t i=0; i < NUM_AXIS; i++) {
  4268. destination[i] = current_position[i] + difference[i] * fraction;
  4269. }
  4270. calculate_delta(destination);
  4271. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4272. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4273. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4274. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4275. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4276. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4277. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4278. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4279. active_extruder);
  4280. }
  4281. #endif // SCARA
  4282. #ifdef DELTA
  4283. float difference[NUM_AXIS];
  4284. for (int8_t i=0; i < NUM_AXIS; i++) {
  4285. difference[i] = destination[i] - current_position[i];
  4286. }
  4287. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4288. sq(difference[Y_AXIS]) +
  4289. sq(difference[Z_AXIS]));
  4290. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4291. if (cartesian_mm < 0.000001) { return; }
  4292. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4293. int steps = max(1, int(delta_segments_per_second * seconds));
  4294. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4295. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4296. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4297. for (int s = 1; s <= steps; s++) {
  4298. float fraction = float(s) / float(steps);
  4299. for(int8_t i=0; i < NUM_AXIS; i++) {
  4300. destination[i] = current_position[i] + difference[i] * fraction;
  4301. }
  4302. calculate_delta(destination);
  4303. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4304. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4305. active_extruder);
  4306. }
  4307. #endif // DELTA
  4308. #ifdef DUAL_X_CARRIAGE
  4309. if (active_extruder_parked)
  4310. {
  4311. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4312. {
  4313. // move duplicate extruder into correct duplication position.
  4314. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4315. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4316. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4318. st_synchronize();
  4319. extruder_duplication_enabled = true;
  4320. active_extruder_parked = false;
  4321. }
  4322. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4323. {
  4324. if (current_position[E_AXIS] == destination[E_AXIS])
  4325. {
  4326. // this is a travel move - skit it but keep track of current position (so that it can later
  4327. // be used as start of first non-travel move)
  4328. if (delayed_move_time != 0xFFFFFFFFUL)
  4329. {
  4330. memcpy(current_position, destination, sizeof(current_position));
  4331. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4332. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4333. delayed_move_time = millis();
  4334. return;
  4335. }
  4336. }
  4337. delayed_move_time = 0;
  4338. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4339. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4341. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4343. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4344. active_extruder_parked = false;
  4345. }
  4346. }
  4347. #endif //DUAL_X_CARRIAGE
  4348. #if ! (defined DELTA || defined SCARA)
  4349. // Do not use feedmultiply for E or Z only moves
  4350. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4352. }
  4353. else {
  4354. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4355. }
  4356. #endif // !(DELTA || SCARA)
  4357. for(int8_t i=0; i < NUM_AXIS; i++) {
  4358. current_position[i] = destination[i];
  4359. }
  4360. }
  4361. void prepare_arc_move(char isclockwise) {
  4362. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4363. // Trace the arc
  4364. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4365. // As far as the parser is concerned, the position is now == target. In reality the
  4366. // motion control system might still be processing the action and the real tool position
  4367. // in any intermediate location.
  4368. for(int8_t i=0; i < NUM_AXIS; i++) {
  4369. current_position[i] = destination[i];
  4370. }
  4371. previous_millis_cmd = millis();
  4372. }
  4373. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4374. #if defined(FAN_PIN)
  4375. #if CONTROLLERFAN_PIN == FAN_PIN
  4376. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4377. #endif
  4378. #endif
  4379. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4380. unsigned long lastMotorCheck = 0;
  4381. void controllerFan()
  4382. {
  4383. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4384. {
  4385. lastMotorCheck = millis();
  4386. if((READ(X_ENABLE_PIN) == (X_ENABLE_ON)) || (READ(Y_ENABLE_PIN) == (Y_ENABLE_ON)) || (READ(Z_ENABLE_PIN) == (Z_ENABLE_ON)) || (soft_pwm_bed > 0)
  4387. #if EXTRUDERS > 2
  4388. || (READ(E2_ENABLE_PIN) == (E_ENABLE_ON))
  4389. #endif
  4390. #if EXTRUDER > 1
  4391. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4392. || (READ(X2_ENABLE_PIN) == (X_ENABLE_ON))
  4393. #endif
  4394. || (READ(E1_ENABLE_PIN) == (E_ENABLE_ON))
  4395. #endif
  4396. || (READ(E0_ENABLE_PIN) == (E_ENABLE_ON))) //If any of the drivers are enabled...
  4397. {
  4398. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4399. }
  4400. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4401. {
  4402. digitalWrite(CONTROLLERFAN_PIN, 0);
  4403. analogWrite(CONTROLLERFAN_PIN, 0);
  4404. }
  4405. else
  4406. {
  4407. // allows digital or PWM fan output to be used (see M42 handling)
  4408. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4409. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4410. }
  4411. }
  4412. }
  4413. #endif
  4414. #ifdef SCARA
  4415. void calculate_SCARA_forward_Transform(float f_scara[3])
  4416. {
  4417. // Perform forward kinematics, and place results in delta[3]
  4418. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4419. float x_sin, x_cos, y_sin, y_cos;
  4420. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4421. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4422. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4423. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4424. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4425. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4426. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4427. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4428. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4429. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4430. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4431. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4432. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4433. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4434. }
  4435. void calculate_delta(float cartesian[3]){
  4436. //reverse kinematics.
  4437. // Perform reversed kinematics, and place results in delta[3]
  4438. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4439. float SCARA_pos[2];
  4440. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4441. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4442. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4443. #if (Linkage_1 == Linkage_2)
  4444. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4445. #else
  4446. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4447. #endif
  4448. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4449. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4450. SCARA_K2 = Linkage_2 * SCARA_S2;
  4451. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4452. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4453. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4454. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4455. delta[Z_AXIS] = cartesian[Z_AXIS];
  4456. /*
  4457. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4458. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4459. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4460. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4461. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4462. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4463. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4464. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4465. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4466. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4467. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4468. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4469. SERIAL_ECHOLN(" ");*/
  4470. }
  4471. #endif
  4472. #ifdef TEMP_STAT_LEDS
  4473. static bool blue_led = false;
  4474. static bool red_led = false;
  4475. static uint32_t stat_update = 0;
  4476. void handle_status_leds(void) {
  4477. float max_temp = 0.0;
  4478. if(millis() > stat_update) {
  4479. stat_update += 500; // Update every 0.5s
  4480. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4481. max_temp = max(max_temp, degHotend(cur_extruder));
  4482. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4483. }
  4484. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4485. max_temp = max(max_temp, degTargetBed());
  4486. max_temp = max(max_temp, degBed());
  4487. #endif
  4488. if((max_temp > 55.0) && (red_led == false)) {
  4489. digitalWrite(STAT_LED_RED, 1);
  4490. digitalWrite(STAT_LED_BLUE, 0);
  4491. red_led = true;
  4492. blue_led = false;
  4493. }
  4494. if((max_temp < 54.0) && (blue_led == false)) {
  4495. digitalWrite(STAT_LED_RED, 0);
  4496. digitalWrite(STAT_LED_BLUE, 1);
  4497. red_led = false;
  4498. blue_led = true;
  4499. }
  4500. }
  4501. }
  4502. #endif
  4503. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4504. {
  4505. #if defined(KILL_PIN) && KILL_PIN > -1
  4506. static int killCount = 0; // make the inactivity button a bit less responsive
  4507. const int KILL_DELAY = 10000;
  4508. #endif
  4509. #if defined(HOME_PIN) && HOME_PIN > -1
  4510. static int homeDebounceCount = 0; // poor man's debouncing count
  4511. const int HOME_DEBOUNCE_DELAY = 10000;
  4512. #endif
  4513. if(buflen < (BUFSIZE-1))
  4514. get_command();
  4515. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4516. if(max_inactive_time)
  4517. kill();
  4518. if(stepper_inactive_time) {
  4519. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4520. {
  4521. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4522. disable_x();
  4523. disable_y();
  4524. disable_z();
  4525. disable_e0();
  4526. disable_e1();
  4527. disable_e2();
  4528. disable_e3();
  4529. }
  4530. }
  4531. }
  4532. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4533. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4534. {
  4535. chdkActive = false;
  4536. WRITE(CHDK, LOW);
  4537. }
  4538. #endif
  4539. #if defined(KILL_PIN) && KILL_PIN > -1
  4540. // Check if the kill button was pressed and wait just in case it was an accidental
  4541. // key kill key press
  4542. // -------------------------------------------------------------------------------
  4543. if( 0 == READ(KILL_PIN) )
  4544. {
  4545. killCount++;
  4546. }
  4547. else if (killCount > 0)
  4548. {
  4549. killCount--;
  4550. }
  4551. // Exceeded threshold and we can confirm that it was not accidental
  4552. // KILL the machine
  4553. // ----------------------------------------------------------------
  4554. if ( killCount >= KILL_DELAY)
  4555. {
  4556. kill();
  4557. }
  4558. #endif
  4559. #if defined(HOME_PIN) && HOME_PIN > -1
  4560. // Check to see if we have to home, use poor man's debouncer
  4561. // ---------------------------------------------------------
  4562. if ( 0 == READ(HOME_PIN) )
  4563. {
  4564. if (homeDebounceCount == 0)
  4565. {
  4566. enquecommands_P((PSTR("G28")));
  4567. homeDebounceCount++;
  4568. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4569. }
  4570. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4571. {
  4572. homeDebounceCount++;
  4573. }
  4574. else
  4575. {
  4576. homeDebounceCount = 0;
  4577. }
  4578. }
  4579. #endif
  4580. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4581. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4582. #endif
  4583. #ifdef EXTRUDER_RUNOUT_PREVENT
  4584. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4585. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4586. {
  4587. bool oldstatus=READ(E0_ENABLE_PIN);
  4588. enable_e0();
  4589. float oldepos=current_position[E_AXIS];
  4590. float oldedes=destination[E_AXIS];
  4591. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4592. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4593. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4594. current_position[E_AXIS]=oldepos;
  4595. destination[E_AXIS]=oldedes;
  4596. plan_set_e_position(oldepos);
  4597. previous_millis_cmd=millis();
  4598. st_synchronize();
  4599. WRITE(E0_ENABLE_PIN,oldstatus);
  4600. }
  4601. #endif
  4602. #if defined(DUAL_X_CARRIAGE)
  4603. // handle delayed move timeout
  4604. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4605. {
  4606. // travel moves have been received so enact them
  4607. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4608. memcpy(destination,current_position,sizeof(destination));
  4609. prepare_move();
  4610. }
  4611. #endif
  4612. #ifdef TEMP_STAT_LEDS
  4613. handle_status_leds();
  4614. #endif
  4615. check_axes_activity();
  4616. }
  4617. void kill()
  4618. {
  4619. cli(); // Stop interrupts
  4620. disable_heater();
  4621. disable_x();
  4622. disable_y();
  4623. disable_z();
  4624. disable_e0();
  4625. disable_e1();
  4626. disable_e2();
  4627. disable_e3();
  4628. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4629. pinMode(PS_ON_PIN,INPUT);
  4630. #endif
  4631. SERIAL_ERROR_START;
  4632. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4633. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4634. // FMC small patch to update the LCD before ending
  4635. sei(); // enable interrupts
  4636. for ( int i=5; i--; lcd_update())
  4637. {
  4638. delay(200);
  4639. }
  4640. cli(); // disable interrupts
  4641. suicide();
  4642. while(1) { /* Intentionally left empty */ } // Wait for reset
  4643. }
  4644. void Stop()
  4645. {
  4646. disable_heater();
  4647. if(Stopped == false) {
  4648. Stopped = true;
  4649. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4650. SERIAL_ERROR_START;
  4651. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4652. LCD_MESSAGEPGM(MSG_STOPPED);
  4653. }
  4654. }
  4655. bool IsStopped() { return Stopped; };
  4656. #ifdef FAST_PWM_FAN
  4657. void setPwmFrequency(uint8_t pin, int val)
  4658. {
  4659. val &= 0x07;
  4660. switch(digitalPinToTimer(pin))
  4661. {
  4662. #if defined(TCCR0A)
  4663. case TIMER0A:
  4664. case TIMER0B:
  4665. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4666. // TCCR0B |= val;
  4667. break;
  4668. #endif
  4669. #if defined(TCCR1A)
  4670. case TIMER1A:
  4671. case TIMER1B:
  4672. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4673. // TCCR1B |= val;
  4674. break;
  4675. #endif
  4676. #if defined(TCCR2)
  4677. case TIMER2:
  4678. case TIMER2:
  4679. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4680. TCCR2 |= val;
  4681. break;
  4682. #endif
  4683. #if defined(TCCR2A)
  4684. case TIMER2A:
  4685. case TIMER2B:
  4686. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4687. TCCR2B |= val;
  4688. break;
  4689. #endif
  4690. #if defined(TCCR3A)
  4691. case TIMER3A:
  4692. case TIMER3B:
  4693. case TIMER3C:
  4694. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4695. TCCR3B |= val;
  4696. break;
  4697. #endif
  4698. #if defined(TCCR4A)
  4699. case TIMER4A:
  4700. case TIMER4B:
  4701. case TIMER4C:
  4702. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4703. TCCR4B |= val;
  4704. break;
  4705. #endif
  4706. #if defined(TCCR5A)
  4707. case TIMER5A:
  4708. case TIMER5B:
  4709. case TIMER5C:
  4710. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4711. TCCR5B |= val;
  4712. break;
  4713. #endif
  4714. }
  4715. }
  4716. #endif //FAST_PWM_FAN
  4717. bool setTargetedHotend(int code){
  4718. tmp_extruder = active_extruder;
  4719. if(code_seen('T')) {
  4720. tmp_extruder = code_value();
  4721. if(tmp_extruder >= EXTRUDERS) {
  4722. SERIAL_ECHO_START;
  4723. switch(code){
  4724. case 104:
  4725. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4726. break;
  4727. case 105:
  4728. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4729. break;
  4730. case 109:
  4731. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4732. break;
  4733. case 218:
  4734. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4735. break;
  4736. case 221:
  4737. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4738. break;
  4739. }
  4740. SERIAL_ECHOLN(tmp_extruder);
  4741. return true;
  4742. }
  4743. }
  4744. return false;
  4745. }
  4746. float calculate_volumetric_multiplier(float diameter) {
  4747. if (!volumetric_enabled || diameter == 0) return 1.0;
  4748. float d2 = diameter * 0.5;
  4749. return 1.0 / (M_PI * d2 * d2);
  4750. }
  4751. void calculate_volumetric_multipliers() {
  4752. for (int i=0; i<EXTRUDERS; i++)
  4753. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4754. }