My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 201KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "configuration_store.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "blinkm.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  126. * M112 - Emergency stop
  127. * M114 - Output current position to serial port
  128. * M115 - Capabilities string
  129. * M117 - display message
  130. * M119 - Output Endstop status to serial port
  131. * M120 - Enable endstop detection
  132. * M121 - Disable endstop detection
  133. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M140 - Set bed target temp
  138. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  139. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  143. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  147. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. * M206 - Set additional homing offset
  149. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. * M220 - Set speed factor override percentage: S<factor in percent>
  154. * M221 - Set extrude factor override percentage: S<factor in percent>
  155. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  156. * M240 - Trigger a camera to take a photograph
  157. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  159. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. * M301 - Set PID parameters P I and D
  161. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. * M304 - Set bed PID parameters P I and D
  164. * M380 - Activate solenoid on active extruder
  165. * M381 - Disable all solenoids
  166. * M400 - Finish all moves
  167. * M401 - Lower z-probe if present
  168. * M402 - Raise z-probe if present
  169. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  170. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  171. * M406 - Turn off Filament Sensor extrusion control
  172. * M407 - Display measured filament diameter
  173. * M410 - Quickstop. Abort all the planned moves
  174. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  175. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  176. * M428 - Set the home_offset logically based on the current_position
  177. * M500 - Store parameters in EEPROM
  178. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  179. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  180. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  181. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  182. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  183. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  184. * M666 - Set delta endstop adjustment
  185. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  186. * M907 - Set digital trimpot motor current using axis codes.
  187. * M908 - Control digital trimpot directly.
  188. * M350 - Set microstepping mode.
  189. * M351 - Toggle MS1 MS2 pins directly.
  190. *
  191. * ************ SCARA Specific - This can change to suit future G-code regulations
  192. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  193. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  194. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  195. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  196. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  197. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  198. * ************* SCARA End ***************
  199. *
  200. * M928 - Start SD logging (M928 filename.g) - ended by M29
  201. * M999 - Restart after being stopped by error
  202. */
  203. #ifdef SDSUPPORT
  204. CardReader card;
  205. #endif
  206. bool Running = true;
  207. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  208. static float feedrate = 1500.0, saved_feedrate;
  209. float current_position[NUM_AXIS] = { 0.0 };
  210. static float destination[NUM_AXIS] = { 0.0 };
  211. bool axis_known_position[3] = { false };
  212. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  213. static int cmd_queue_index_r = 0;
  214. static int cmd_queue_index_w = 0;
  215. static int commands_in_queue = 0;
  216. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  217. float homing_feedrate[] = HOMING_FEEDRATE;
  218. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  219. int feedrate_multiplier = 100; //100->1 200->2
  220. int saved_feedrate_multiplier;
  221. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  222. bool volumetric_enabled = false;
  223. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  224. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  225. float home_offset[3] = { 0 };
  226. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  227. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  228. uint8_t active_extruder = 0;
  229. int fanSpeed = 0;
  230. bool cancel_heatup = false;
  231. const char errormagic[] PROGMEM = "Error:";
  232. const char echomagic[] PROGMEM = "echo:";
  233. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  234. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  235. static char serial_char;
  236. static int serial_count = 0;
  237. static boolean comment_mode = false;
  238. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  239. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  240. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  241. // Inactivity shutdown
  242. millis_t previous_cmd_ms = 0;
  243. static millis_t max_inactive_time = 0;
  244. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  245. millis_t print_job_start_ms = 0; ///< Print job start time
  246. millis_t print_job_stop_ms = 0; ///< Print job stop time
  247. static uint8_t target_extruder;
  248. bool no_wait_for_cooling = true;
  249. bool target_direction;
  250. #ifdef ENABLE_AUTO_BED_LEVELING
  251. int xy_travel_speed = XY_TRAVEL_SPEED;
  252. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  253. #endif
  254. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  255. float z_endstop_adj = 0;
  256. #endif
  257. // Extruder offsets
  258. #if EXTRUDERS > 1
  259. #ifndef EXTRUDER_OFFSET_X
  260. #define EXTRUDER_OFFSET_X { 0 }
  261. #endif
  262. #ifndef EXTRUDER_OFFSET_Y
  263. #define EXTRUDER_OFFSET_Y { 0 }
  264. #endif
  265. float extruder_offset[][EXTRUDERS] = {
  266. EXTRUDER_OFFSET_X,
  267. EXTRUDER_OFFSET_Y
  268. #ifdef DUAL_X_CARRIAGE
  269. , { 0 } // supports offsets in XYZ plane
  270. #endif
  271. };
  272. #endif
  273. #ifdef SERVO_ENDSTOPS
  274. int servo_endstops[] = SERVO_ENDSTOPS;
  275. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  276. #endif
  277. #ifdef BARICUDA
  278. int ValvePressure = 0;
  279. int EtoPPressure = 0;
  280. #endif
  281. #ifdef FWRETRACT
  282. bool autoretract_enabled = false;
  283. bool retracted[EXTRUDERS] = { false };
  284. bool retracted_swap[EXTRUDERS] = { false };
  285. float retract_length = RETRACT_LENGTH;
  286. float retract_length_swap = RETRACT_LENGTH_SWAP;
  287. float retract_feedrate = RETRACT_FEEDRATE;
  288. float retract_zlift = RETRACT_ZLIFT;
  289. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  290. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  291. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  292. #endif // FWRETRACT
  293. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  294. bool powersupply =
  295. #ifdef PS_DEFAULT_OFF
  296. false
  297. #else
  298. true
  299. #endif
  300. ;
  301. #endif
  302. #ifdef DELTA
  303. float delta[3] = { 0 };
  304. #define SIN_60 0.8660254037844386
  305. #define COS_60 0.5
  306. float endstop_adj[3] = { 0 };
  307. // these are the default values, can be overriden with M665
  308. float delta_radius = DELTA_RADIUS;
  309. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  310. float delta_tower1_y = -COS_60 * delta_radius;
  311. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  312. float delta_tower2_y = -COS_60 * delta_radius;
  313. float delta_tower3_x = 0; // back middle tower
  314. float delta_tower3_y = delta_radius;
  315. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  316. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  317. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  318. #ifdef ENABLE_AUTO_BED_LEVELING
  319. int delta_grid_spacing[2] = { 0, 0 };
  320. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  321. #endif
  322. #else
  323. static bool home_all_axis = true;
  324. #endif
  325. #ifdef SCARA
  326. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  327. static float delta[3] = { 0 };
  328. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  329. #endif
  330. #ifdef FILAMENT_SENSOR
  331. //Variables for Filament Sensor input
  332. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  333. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  334. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  335. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  336. int delay_index1 = 0; //index into ring buffer
  337. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  338. float delay_dist = 0; //delay distance counter
  339. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  340. #endif
  341. #ifdef FILAMENT_RUNOUT_SENSOR
  342. static bool filrunoutEnqueued = false;
  343. #endif
  344. #ifdef SDSUPPORT
  345. static bool fromsd[BUFSIZE];
  346. #endif
  347. #if NUM_SERVOS > 0
  348. Servo servo[NUM_SERVOS];
  349. #endif
  350. #ifdef CHDK
  351. unsigned long chdkHigh = 0;
  352. boolean chdkActive = false;
  353. #endif
  354. //===========================================================================
  355. //================================ Functions ================================
  356. //===========================================================================
  357. void process_next_command();
  358. bool setTargetedHotend(int code);
  359. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  360. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  361. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. #ifdef PREVENT_DANGEROUS_EXTRUDE
  363. float extrude_min_temp = EXTRUDE_MINTEMP;
  364. #endif
  365. #ifdef SDSUPPORT
  366. #include "SdFatUtil.h"
  367. int freeMemory() { return SdFatUtil::FreeRam(); }
  368. #else
  369. extern "C" {
  370. extern unsigned int __bss_end;
  371. extern unsigned int __heap_start;
  372. extern void *__brkval;
  373. int freeMemory() {
  374. int free_memory;
  375. if ((int)__brkval == 0)
  376. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  377. else
  378. free_memory = ((int)&free_memory) - ((int)__brkval);
  379. return free_memory;
  380. }
  381. }
  382. #endif //!SDSUPPORT
  383. /**
  384. * Inject the next command from the command queue, when possible
  385. * Return false only if no command was pending
  386. */
  387. static bool drain_queued_commands_P() {
  388. if (!queued_commands_P) return false;
  389. // Get the next 30 chars from the sequence of gcodes to run
  390. char cmd[30];
  391. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  392. cmd[sizeof(cmd) - 1] = '\0';
  393. // Look for the end of line, or the end of sequence
  394. size_t i = 0;
  395. char c;
  396. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  397. cmd[i] = '\0';
  398. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  399. if (c)
  400. queued_commands_P += i + 1; // move to next command
  401. else
  402. queued_commands_P = NULL; // will have no more commands in the sequence
  403. }
  404. return true;
  405. }
  406. /**
  407. * Record one or many commands to run from program memory.
  408. * Aborts the current queue, if any.
  409. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  410. */
  411. void enqueuecommands_P(const char* pgcode) {
  412. queued_commands_P = pgcode;
  413. drain_queued_commands_P(); // first command executed asap (when possible)
  414. }
  415. /**
  416. * Copy a command directly into the main command buffer, from RAM.
  417. *
  418. * This is done in a non-safe way and needs a rework someday.
  419. * Returns false if it doesn't add any command
  420. */
  421. bool enqueuecommand(const char *cmd) {
  422. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  423. // This is dangerous if a mixing of serial and this happens
  424. char *command = command_queue[cmd_queue_index_w];
  425. strcpy(command, cmd);
  426. SERIAL_ECHO_START;
  427. SERIAL_ECHOPGM(MSG_Enqueueing);
  428. SERIAL_ECHO(command);
  429. SERIAL_ECHOLNPGM("\"");
  430. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  431. commands_in_queue++;
  432. return true;
  433. }
  434. void setup_killpin() {
  435. #if HAS_KILL
  436. SET_INPUT(KILL_PIN);
  437. WRITE(KILL_PIN, HIGH);
  438. #endif
  439. }
  440. void setup_filrunoutpin() {
  441. #if HAS_FILRUNOUT
  442. pinMode(FILRUNOUT_PIN, INPUT);
  443. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  444. WRITE(FILRUNOUT_PIN, HIGH);
  445. #endif
  446. #endif
  447. }
  448. // Set home pin
  449. void setup_homepin(void) {
  450. #if HAS_HOME
  451. SET_INPUT(HOME_PIN);
  452. WRITE(HOME_PIN, HIGH);
  453. #endif
  454. }
  455. void setup_photpin() {
  456. #if HAS_PHOTOGRAPH
  457. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  458. #endif
  459. }
  460. void setup_powerhold() {
  461. #if HAS_SUICIDE
  462. OUT_WRITE(SUICIDE_PIN, HIGH);
  463. #endif
  464. #if HAS_POWER_SWITCH
  465. #ifdef PS_DEFAULT_OFF
  466. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  467. #else
  468. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  469. #endif
  470. #endif
  471. }
  472. void suicide() {
  473. #if HAS_SUICIDE
  474. OUT_WRITE(SUICIDE_PIN, LOW);
  475. #endif
  476. }
  477. void servo_init() {
  478. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  479. servo[0].attach(SERVO0_PIN);
  480. #endif
  481. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  482. servo[1].attach(SERVO1_PIN);
  483. #endif
  484. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  485. servo[2].attach(SERVO2_PIN);
  486. #endif
  487. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  488. servo[3].attach(SERVO3_PIN);
  489. #endif
  490. // Set position of Servo Endstops that are defined
  491. #ifdef SERVO_ENDSTOPS
  492. for (int i = 0; i < 3; i++)
  493. if (servo_endstops[i] >= 0)
  494. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  495. #endif
  496. #if SERVO_LEVELING
  497. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  498. servo[servo_endstops[Z_AXIS]].detach();
  499. #endif
  500. }
  501. /**
  502. * Marlin entry-point: Set up before the program loop
  503. * - Set up the kill pin, filament runout, power hold
  504. * - Start the serial port
  505. * - Print startup messages and diagnostics
  506. * - Get EEPROM or default settings
  507. * - Initialize managers for:
  508. * • temperature
  509. * • planner
  510. * • watchdog
  511. * • stepper
  512. * • photo pin
  513. * • servos
  514. * • LCD controller
  515. * • Digipot I2C
  516. * • Z probe sled
  517. * • status LEDs
  518. */
  519. void setup() {
  520. setup_killpin();
  521. setup_filrunoutpin();
  522. setup_powerhold();
  523. MYSERIAL.begin(BAUDRATE);
  524. SERIAL_PROTOCOLLNPGM("start");
  525. SERIAL_ECHO_START;
  526. // Check startup - does nothing if bootloader sets MCUSR to 0
  527. byte mcu = MCUSR;
  528. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  529. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  530. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  531. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  532. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  533. MCUSR = 0;
  534. SERIAL_ECHOPGM(MSG_MARLIN);
  535. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  536. #ifdef STRING_VERSION_CONFIG_H
  537. #ifdef STRING_CONFIG_H_AUTHOR
  538. SERIAL_ECHO_START;
  539. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  540. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  541. SERIAL_ECHOPGM(MSG_AUTHOR);
  542. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  543. SERIAL_ECHOPGM("Compiled: ");
  544. SERIAL_ECHOLNPGM(__DATE__);
  545. #endif // STRING_CONFIG_H_AUTHOR
  546. #endif // STRING_VERSION_CONFIG_H
  547. SERIAL_ECHO_START;
  548. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  549. SERIAL_ECHO(freeMemory());
  550. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  551. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  552. #ifdef SDSUPPORT
  553. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  554. #endif
  555. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  556. Config_RetrieveSettings();
  557. tp_init(); // Initialize temperature loop
  558. plan_init(); // Initialize planner;
  559. watchdog_init();
  560. st_init(); // Initialize stepper, this enables interrupts!
  561. setup_photpin();
  562. servo_init();
  563. lcd_init();
  564. _delay_ms(1000); // wait 1sec to display the splash screen
  565. #if HAS_CONTROLLERFAN
  566. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  567. #endif
  568. #ifdef DIGIPOT_I2C
  569. digipot_i2c_init();
  570. #endif
  571. #ifdef Z_PROBE_SLED
  572. pinMode(SLED_PIN, OUTPUT);
  573. digitalWrite(SLED_PIN, LOW); // turn it off
  574. #endif // Z_PROBE_SLED
  575. setup_homepin();
  576. #ifdef STAT_LED_RED
  577. pinMode(STAT_LED_RED, OUTPUT);
  578. digitalWrite(STAT_LED_RED, LOW); // turn it off
  579. #endif
  580. #ifdef STAT_LED_BLUE
  581. pinMode(STAT_LED_BLUE, OUTPUT);
  582. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  583. #endif
  584. }
  585. /**
  586. * The main Marlin program loop
  587. *
  588. * - Save or log commands to SD
  589. * - Process available commands (if not saving)
  590. * - Call heater manager
  591. * - Call inactivity manager
  592. * - Call endstop manager
  593. * - Call LCD update
  594. */
  595. void loop() {
  596. if (commands_in_queue < BUFSIZE - 1) get_command();
  597. #ifdef SDSUPPORT
  598. card.checkautostart(false);
  599. #endif
  600. if (commands_in_queue) {
  601. #ifdef SDSUPPORT
  602. if (card.saving) {
  603. char *command = command_queue[cmd_queue_index_r];
  604. if (strstr_P(command, PSTR("M29"))) {
  605. // M29 closes the file
  606. card.closefile();
  607. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  608. }
  609. else {
  610. // Write the string from the read buffer to SD
  611. card.write_command(command);
  612. if (card.logging)
  613. process_next_command(); // The card is saving because it's logging
  614. else
  615. SERIAL_PROTOCOLLNPGM(MSG_OK);
  616. }
  617. }
  618. else
  619. process_next_command();
  620. #else
  621. process_next_command();
  622. #endif // SDSUPPORT
  623. commands_in_queue--;
  624. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  625. }
  626. // Check heater every n milliseconds
  627. manage_heater();
  628. manage_inactivity();
  629. checkHitEndstops();
  630. lcd_update();
  631. }
  632. void gcode_line_error(const char *err, bool doFlush=true) {
  633. SERIAL_ERROR_START;
  634. serialprintPGM(err);
  635. SERIAL_ERRORLN(gcode_LastN);
  636. //Serial.println(gcode_N);
  637. if (doFlush) FlushSerialRequestResend();
  638. serial_count = 0;
  639. }
  640. /**
  641. * Add to the circular command queue the next command from:
  642. * - The command-injection queue (queued_commands_P)
  643. * - The active serial input (usually USB)
  644. * - The SD card file being actively printed
  645. */
  646. void get_command() {
  647. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  648. #ifdef NO_TIMEOUTS
  649. static millis_t last_command_time = 0;
  650. millis_t ms = millis();
  651. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  652. SERIAL_ECHOLNPGM(MSG_WAIT);
  653. last_command_time = ms;
  654. }
  655. #endif
  656. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  657. #ifdef NO_TIMEOUTS
  658. last_command_time = ms;
  659. #endif
  660. serial_char = MYSERIAL.read();
  661. if (serial_char == '\n' || serial_char == '\r' ||
  662. serial_count >= (MAX_CMD_SIZE - 1)
  663. ) {
  664. // end of line == end of comment
  665. comment_mode = false;
  666. if (!serial_count) return; // shortcut for empty lines
  667. char *command = command_queue[cmd_queue_index_w];
  668. command[serial_count] = 0; // terminate string
  669. #ifdef SDSUPPORT
  670. fromsd[cmd_queue_index_w] = false;
  671. #endif
  672. if (strchr(command, 'N') != NULL) {
  673. strchr_pointer = strchr(command, 'N');
  674. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  675. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  676. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  677. return;
  678. }
  679. if (strchr(command, '*') != NULL) {
  680. byte checksum = 0;
  681. byte count = 0;
  682. while (command[count] != '*') checksum ^= command[count++];
  683. strchr_pointer = strchr(command, '*');
  684. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  685. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  686. return;
  687. }
  688. // if no errors, continue parsing
  689. }
  690. else {
  691. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  692. return;
  693. }
  694. gcode_LastN = gcode_N;
  695. // if no errors, continue parsing
  696. }
  697. else { // if we don't receive 'N' but still see '*'
  698. if ((strchr(command, '*') != NULL)) {
  699. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  700. return;
  701. }
  702. }
  703. if (strchr(command, 'G') != NULL) {
  704. strchr_pointer = strchr(command, 'G');
  705. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  706. case 0:
  707. case 1:
  708. case 2:
  709. case 3:
  710. if (IsStopped()) {
  711. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  712. LCD_MESSAGEPGM(MSG_STOPPED);
  713. }
  714. break;
  715. default:
  716. break;
  717. }
  718. }
  719. // If command was e-stop process now
  720. if (strcmp(command, "M112") == 0) kill();
  721. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  722. commands_in_queue += 1;
  723. serial_count = 0; //clear buffer
  724. }
  725. else if (serial_char == '\\') { // Handle escapes
  726. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  727. // if we have one more character, copy it over
  728. serial_char = MYSERIAL.read();
  729. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  730. }
  731. // otherwise do nothing
  732. }
  733. else { // its not a newline, carriage return or escape char
  734. if (serial_char == ';') comment_mode = true;
  735. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  736. }
  737. }
  738. #ifdef SDSUPPORT
  739. if (!card.sdprinting || serial_count) return;
  740. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  741. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  742. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  743. static bool stop_buffering = false;
  744. if (commands_in_queue == 0) stop_buffering = false;
  745. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  746. int16_t n = card.get();
  747. serial_char = (char)n;
  748. if (serial_char == '\n' || serial_char == '\r' ||
  749. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  750. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  751. ) {
  752. if (card.eof()) {
  753. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  754. print_job_stop_ms = millis();
  755. char time[30];
  756. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  757. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  758. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  759. SERIAL_ECHO_START;
  760. SERIAL_ECHOLN(time);
  761. lcd_setstatus(time, true);
  762. card.printingHasFinished();
  763. card.checkautostart(true);
  764. }
  765. if (serial_char == '#') stop_buffering = true;
  766. if (!serial_count) {
  767. comment_mode = false; //for new command
  768. return; //if empty line
  769. }
  770. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  771. // if (!comment_mode) {
  772. fromsd[cmd_queue_index_w] = true;
  773. commands_in_queue += 1;
  774. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  775. // }
  776. comment_mode = false; //for new command
  777. serial_count = 0; //clear buffer
  778. }
  779. else {
  780. if (serial_char == ';') comment_mode = true;
  781. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  782. }
  783. }
  784. #endif // SDSUPPORT
  785. }
  786. bool code_has_value() {
  787. int i = 1;
  788. char c = strchr_pointer[i];
  789. if (c == '-' || c == '+') c = strchr_pointer[++i];
  790. if (c == '.') c = strchr_pointer[++i];
  791. return (c >= '0' && c <= '9');
  792. }
  793. float code_value() {
  794. float ret;
  795. char *e = strchr(strchr_pointer, 'E');
  796. if (e) {
  797. *e = 0;
  798. ret = strtod(strchr_pointer+1, NULL);
  799. *e = 'E';
  800. }
  801. else
  802. ret = strtod(strchr_pointer+1, NULL);
  803. return ret;
  804. }
  805. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  806. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  807. bool code_seen(char code) {
  808. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  809. return (strchr_pointer != NULL); //Return True if a character was found
  810. }
  811. #define DEFINE_PGM_READ_ANY(type, reader) \
  812. static inline type pgm_read_any(const type *p) \
  813. { return pgm_read_##reader##_near(p); }
  814. DEFINE_PGM_READ_ANY(float, float);
  815. DEFINE_PGM_READ_ANY(signed char, byte);
  816. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  817. static const PROGMEM type array##_P[3] = \
  818. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  819. static inline type array(int axis) \
  820. { return pgm_read_any(&array##_P[axis]); }
  821. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  822. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  823. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  824. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  825. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  826. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  827. #ifdef DUAL_X_CARRIAGE
  828. #define DXC_FULL_CONTROL_MODE 0
  829. #define DXC_AUTO_PARK_MODE 1
  830. #define DXC_DUPLICATION_MODE 2
  831. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  832. static float x_home_pos(int extruder) {
  833. if (extruder == 0)
  834. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  835. else
  836. // In dual carriage mode the extruder offset provides an override of the
  837. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  838. // This allow soft recalibration of the second extruder offset position without firmware reflash
  839. // (through the M218 command).
  840. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  841. }
  842. static int x_home_dir(int extruder) {
  843. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  844. }
  845. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  846. static bool active_extruder_parked = false; // used in mode 1 & 2
  847. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  848. static millis_t delayed_move_time = 0; // used in mode 1
  849. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  850. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  851. bool extruder_duplication_enabled = false; // used in mode 2
  852. #endif //DUAL_X_CARRIAGE
  853. static void axis_is_at_home(int axis) {
  854. #ifdef DUAL_X_CARRIAGE
  855. if (axis == X_AXIS) {
  856. if (active_extruder != 0) {
  857. current_position[X_AXIS] = x_home_pos(active_extruder);
  858. min_pos[X_AXIS] = X2_MIN_POS;
  859. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  860. return;
  861. }
  862. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  863. float xoff = home_offset[X_AXIS];
  864. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  865. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  866. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  867. return;
  868. }
  869. }
  870. #endif
  871. #ifdef SCARA
  872. if (axis == X_AXIS || axis == Y_AXIS) {
  873. float homeposition[3];
  874. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  875. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  876. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  877. // Works out real Homeposition angles using inverse kinematics,
  878. // and calculates homing offset using forward kinematics
  879. calculate_delta(homeposition);
  880. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  881. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  882. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  883. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  884. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  885. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  886. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  887. calculate_SCARA_forward_Transform(delta);
  888. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  889. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  890. current_position[axis] = delta[axis];
  891. // SCARA home positions are based on configuration since the actual limits are determined by the
  892. // inverse kinematic transform.
  893. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  894. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  895. }
  896. else
  897. #endif
  898. {
  899. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  900. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  901. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  902. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  903. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  904. #endif
  905. }
  906. }
  907. /**
  908. * Some planner shorthand inline functions
  909. */
  910. inline void set_homing_bump_feedrate(AxisEnum axis) {
  911. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  912. if (homing_bump_divisor[axis] >= 1)
  913. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  914. else {
  915. feedrate = homing_feedrate[axis] / 10;
  916. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  917. }
  918. }
  919. inline void line_to_current_position() {
  920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  921. }
  922. inline void line_to_z(float zPosition) {
  923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  924. }
  925. inline void line_to_destination(float mm_m) {
  926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  927. }
  928. inline void line_to_destination() {
  929. line_to_destination(feedrate);
  930. }
  931. inline void sync_plan_position() {
  932. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  933. }
  934. #if defined(DELTA) || defined(SCARA)
  935. inline void sync_plan_position_delta() {
  936. calculate_delta(current_position);
  937. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  938. }
  939. #endif
  940. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  941. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  942. static void setup_for_endstop_move() {
  943. saved_feedrate = feedrate;
  944. saved_feedrate_multiplier = feedrate_multiplier;
  945. feedrate_multiplier = 100;
  946. refresh_cmd_timeout();
  947. enable_endstops(true);
  948. }
  949. #ifdef ENABLE_AUTO_BED_LEVELING
  950. #ifdef DELTA
  951. /**
  952. * Calculate delta, start a line, and set current_position to destination
  953. */
  954. void prepare_move_raw() {
  955. refresh_cmd_timeout();
  956. calculate_delta(destination);
  957. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  958. set_current_to_destination();
  959. }
  960. #endif
  961. #ifdef AUTO_BED_LEVELING_GRID
  962. #ifndef DELTA
  963. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  964. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  965. planeNormal.debug("planeNormal");
  966. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  967. //bedLevel.debug("bedLevel");
  968. //plan_bed_level_matrix.debug("bed level before");
  969. //vector_3 uncorrected_position = plan_get_position_mm();
  970. //uncorrected_position.debug("position before");
  971. vector_3 corrected_position = plan_get_position();
  972. //corrected_position.debug("position after");
  973. current_position[X_AXIS] = corrected_position.x;
  974. current_position[Y_AXIS] = corrected_position.y;
  975. current_position[Z_AXIS] = corrected_position.z;
  976. sync_plan_position();
  977. }
  978. #endif // !DELTA
  979. #else // !AUTO_BED_LEVELING_GRID
  980. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  981. plan_bed_level_matrix.set_to_identity();
  982. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  983. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  984. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  985. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  986. if (planeNormal.z < 0) {
  987. planeNormal.x = -planeNormal.x;
  988. planeNormal.y = -planeNormal.y;
  989. planeNormal.z = -planeNormal.z;
  990. }
  991. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  992. vector_3 corrected_position = plan_get_position();
  993. current_position[X_AXIS] = corrected_position.x;
  994. current_position[Y_AXIS] = corrected_position.y;
  995. current_position[Z_AXIS] = corrected_position.z;
  996. sync_plan_position();
  997. }
  998. #endif // !AUTO_BED_LEVELING_GRID
  999. static void run_z_probe() {
  1000. #ifdef DELTA
  1001. float start_z = current_position[Z_AXIS];
  1002. long start_steps = st_get_position(Z_AXIS);
  1003. // move down slowly until you find the bed
  1004. feedrate = homing_feedrate[Z_AXIS] / 4;
  1005. destination[Z_AXIS] = -10;
  1006. prepare_move_raw(); // this will also set_current_to_destination
  1007. st_synchronize();
  1008. endstops_hit_on_purpose(); // clear endstop hit flags
  1009. // we have to let the planner know where we are right now as it is not where we said to go.
  1010. long stop_steps = st_get_position(Z_AXIS);
  1011. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1012. current_position[Z_AXIS] = mm;
  1013. sync_plan_position_delta();
  1014. #else // !DELTA
  1015. plan_bed_level_matrix.set_to_identity();
  1016. feedrate = homing_feedrate[Z_AXIS];
  1017. // move down until you find the bed
  1018. float zPosition = -10;
  1019. line_to_z(zPosition);
  1020. st_synchronize();
  1021. // we have to let the planner know where we are right now as it is not where we said to go.
  1022. zPosition = st_get_position_mm(Z_AXIS);
  1023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1024. // move up the retract distance
  1025. zPosition += home_bump_mm(Z_AXIS);
  1026. line_to_z(zPosition);
  1027. st_synchronize();
  1028. endstops_hit_on_purpose(); // clear endstop hit flags
  1029. // move back down slowly to find bed
  1030. set_homing_bump_feedrate(Z_AXIS);
  1031. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1032. line_to_z(zPosition);
  1033. st_synchronize();
  1034. endstops_hit_on_purpose(); // clear endstop hit flags
  1035. // Get the current stepper position after bumping an endstop
  1036. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1037. sync_plan_position();
  1038. #endif // !DELTA
  1039. }
  1040. /**
  1041. * Plan a move to (X, Y, Z) and set the current_position
  1042. * The final current_position may not be the one that was requested
  1043. */
  1044. static void do_blocking_move_to(float x, float y, float z) {
  1045. float oldFeedRate = feedrate;
  1046. #ifdef DELTA
  1047. feedrate = XY_TRAVEL_SPEED;
  1048. destination[X_AXIS] = x;
  1049. destination[Y_AXIS] = y;
  1050. destination[Z_AXIS] = z;
  1051. prepare_move_raw(); // this will also set_current_to_destination
  1052. st_synchronize();
  1053. #else
  1054. feedrate = homing_feedrate[Z_AXIS];
  1055. current_position[Z_AXIS] = z;
  1056. line_to_current_position();
  1057. st_synchronize();
  1058. feedrate = xy_travel_speed;
  1059. current_position[X_AXIS] = x;
  1060. current_position[Y_AXIS] = y;
  1061. line_to_current_position();
  1062. st_synchronize();
  1063. #endif
  1064. feedrate = oldFeedRate;
  1065. }
  1066. static void clean_up_after_endstop_move() {
  1067. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1068. enable_endstops(false);
  1069. #endif
  1070. feedrate = saved_feedrate;
  1071. feedrate_multiplier = saved_feedrate_multiplier;
  1072. refresh_cmd_timeout();
  1073. }
  1074. static void deploy_z_probe() {
  1075. #ifdef SERVO_ENDSTOPS
  1076. // Engage Z Servo endstop if enabled
  1077. if (servo_endstops[Z_AXIS] >= 0) {
  1078. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1079. #if SERVO_LEVELING
  1080. srv->attach(0);
  1081. #endif
  1082. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1083. #if SERVO_LEVELING
  1084. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1085. srv->detach();
  1086. #endif
  1087. }
  1088. #elif defined(Z_PROBE_ALLEN_KEY)
  1089. feedrate = homing_feedrate[X_AXIS];
  1090. // Move to the start position to initiate deployment
  1091. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1092. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1093. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1094. prepare_move_raw(); // this will also set_current_to_destination
  1095. // Home X to touch the belt
  1096. feedrate = homing_feedrate[X_AXIS]/10;
  1097. destination[X_AXIS] = 0;
  1098. prepare_move_raw(); // this will also set_current_to_destination
  1099. // Home Y for safety
  1100. feedrate = homing_feedrate[X_AXIS]/2;
  1101. destination[Y_AXIS] = 0;
  1102. prepare_move_raw(); // this will also set_current_to_destination
  1103. st_synchronize();
  1104. #ifdef Z_PROBE_ENDSTOP
  1105. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1106. if (z_probe_endstop)
  1107. #else
  1108. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1109. if (z_min_endstop)
  1110. #endif
  1111. {
  1112. if (IsRunning()) {
  1113. SERIAL_ERROR_START;
  1114. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1115. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1116. }
  1117. Stop();
  1118. }
  1119. #endif // Z_PROBE_ALLEN_KEY
  1120. }
  1121. static void stow_z_probe(bool doRaise=true) {
  1122. #ifdef SERVO_ENDSTOPS
  1123. // Retract Z Servo endstop if enabled
  1124. if (servo_endstops[Z_AXIS] >= 0) {
  1125. #if Z_RAISE_AFTER_PROBING > 0
  1126. if (doRaise) {
  1127. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1128. st_synchronize();
  1129. }
  1130. #endif
  1131. // Change the Z servo angle
  1132. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1133. #if SERVO_LEVELING
  1134. srv->attach(0);
  1135. #endif
  1136. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1137. #if SERVO_LEVELING
  1138. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1139. srv->detach();
  1140. #endif
  1141. }
  1142. #elif defined(Z_PROBE_ALLEN_KEY)
  1143. // Move up for safety
  1144. feedrate = homing_feedrate[X_AXIS];
  1145. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1146. prepare_move_raw(); // this will also set_current_to_destination
  1147. // Move to the start position to initiate retraction
  1148. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1149. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1150. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1151. prepare_move_raw(); // this will also set_current_to_destination
  1152. // Move the nozzle down to push the probe into retracted position
  1153. feedrate = homing_feedrate[Z_AXIS]/10;
  1154. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1155. prepare_move_raw(); // this will also set_current_to_destination
  1156. // Move up for safety
  1157. feedrate = homing_feedrate[Z_AXIS]/2;
  1158. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1159. prepare_move_raw(); // this will also set_current_to_destination
  1160. // Home XY for safety
  1161. feedrate = homing_feedrate[X_AXIS]/2;
  1162. destination[X_AXIS] = 0;
  1163. destination[Y_AXIS] = 0;
  1164. prepare_move_raw(); // this will also set_current_to_destination
  1165. st_synchronize();
  1166. #ifdef Z_PROBE_ENDSTOP
  1167. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1168. if (!z_probe_endstop)
  1169. #else
  1170. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1171. if (!z_min_endstop)
  1172. #endif
  1173. {
  1174. if (IsRunning()) {
  1175. SERIAL_ERROR_START;
  1176. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1177. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1178. }
  1179. Stop();
  1180. }
  1181. #endif
  1182. }
  1183. enum ProbeAction {
  1184. ProbeStay = 0,
  1185. ProbeDeploy = BIT(0),
  1186. ProbeStow = BIT(1),
  1187. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1188. };
  1189. // Probe bed height at position (x,y), returns the measured z value
  1190. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1191. // move to right place
  1192. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1193. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1194. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1195. if (retract_action & ProbeDeploy) deploy_z_probe();
  1196. #endif
  1197. run_z_probe();
  1198. float measured_z = current_position[Z_AXIS];
  1199. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1200. if (retract_action == ProbeStay) {
  1201. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1202. st_synchronize();
  1203. }
  1204. #endif
  1205. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1206. if (retract_action & ProbeStow) stow_z_probe();
  1207. #endif
  1208. if (verbose_level > 2) {
  1209. SERIAL_PROTOCOLPGM("Bed");
  1210. SERIAL_PROTOCOLPGM(" X: ");
  1211. SERIAL_PROTOCOL_F(x, 3);
  1212. SERIAL_PROTOCOLPGM(" Y: ");
  1213. SERIAL_PROTOCOL_F(y, 3);
  1214. SERIAL_PROTOCOLPGM(" Z: ");
  1215. SERIAL_PROTOCOL_F(measured_z, 3);
  1216. SERIAL_EOL;
  1217. }
  1218. return measured_z;
  1219. }
  1220. #ifdef DELTA
  1221. /**
  1222. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1223. */
  1224. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1225. if (bed_level[x][y] != 0.0) {
  1226. return; // Don't overwrite good values.
  1227. }
  1228. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1229. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1230. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1231. float median = c; // Median is robust (ignores outliers).
  1232. if (a < b) {
  1233. if (b < c) median = b;
  1234. if (c < a) median = a;
  1235. } else { // b <= a
  1236. if (c < b) median = b;
  1237. if (a < c) median = a;
  1238. }
  1239. bed_level[x][y] = median;
  1240. }
  1241. // Fill in the unprobed points (corners of circular print surface)
  1242. // using linear extrapolation, away from the center.
  1243. static void extrapolate_unprobed_bed_level() {
  1244. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1245. for (int y = 0; y <= half; y++) {
  1246. for (int x = 0; x <= half; x++) {
  1247. if (x + y < 3) continue;
  1248. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1249. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1250. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1251. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1252. }
  1253. }
  1254. }
  1255. // Print calibration results for plotting or manual frame adjustment.
  1256. static void print_bed_level() {
  1257. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1258. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1259. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1260. SERIAL_PROTOCOLCHAR(' ');
  1261. }
  1262. SERIAL_EOL;
  1263. }
  1264. }
  1265. // Reset calibration results to zero.
  1266. void reset_bed_level() {
  1267. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1268. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1269. bed_level[x][y] = 0.0;
  1270. }
  1271. }
  1272. }
  1273. #endif // DELTA
  1274. #endif // ENABLE_AUTO_BED_LEVELING
  1275. #ifdef Z_PROBE_SLED
  1276. #ifndef SLED_DOCKING_OFFSET
  1277. #define SLED_DOCKING_OFFSET 0
  1278. #endif
  1279. /**
  1280. * Method to dock/undock a sled designed by Charles Bell.
  1281. *
  1282. * dock[in] If true, move to MAX_X and engage the electromagnet
  1283. * offset[in] The additional distance to move to adjust docking location
  1284. */
  1285. static void dock_sled(bool dock, int offset=0) {
  1286. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1287. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1288. SERIAL_ECHO_START;
  1289. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1290. return;
  1291. }
  1292. if (dock) {
  1293. float oldXpos = current_position[X_AXIS]; // save x position
  1294. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1295. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1296. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1297. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1298. } else {
  1299. float oldXpos = current_position[X_AXIS]; // save x position
  1300. float z_loc = current_position[Z_AXIS];
  1301. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1302. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1303. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1304. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1305. }
  1306. }
  1307. #endif // Z_PROBE_SLED
  1308. /**
  1309. * Home an individual axis
  1310. */
  1311. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1312. static void homeaxis(AxisEnum axis) {
  1313. #define HOMEAXIS_DO(LETTER) \
  1314. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1315. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1316. int axis_home_dir =
  1317. #ifdef DUAL_X_CARRIAGE
  1318. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1319. #endif
  1320. home_dir(axis);
  1321. // Set the axis position as setup for the move
  1322. current_position[axis] = 0;
  1323. sync_plan_position();
  1324. #ifdef Z_PROBE_SLED
  1325. // Get Probe
  1326. if (axis == Z_AXIS) {
  1327. if (axis_home_dir < 0) dock_sled(false);
  1328. }
  1329. #endif
  1330. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1331. // Deploy a probe if there is one, and homing towards the bed
  1332. if (axis == Z_AXIS) {
  1333. if (axis_home_dir < 0) deploy_z_probe();
  1334. }
  1335. else
  1336. #endif
  1337. #ifdef SERVO_ENDSTOPS
  1338. {
  1339. // Engage Servo endstop if enabled
  1340. if (servo_endstops[axis] > -1)
  1341. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1342. }
  1343. #endif
  1344. // Set a flag for Z motor locking
  1345. #ifdef Z_DUAL_ENDSTOPS
  1346. if (axis == Z_AXIS) In_Homing_Process(true);
  1347. #endif
  1348. // Move towards the endstop until an endstop is triggered
  1349. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1350. feedrate = homing_feedrate[axis];
  1351. line_to_destination();
  1352. st_synchronize();
  1353. // Set the axis position as setup for the move
  1354. current_position[axis] = 0;
  1355. sync_plan_position();
  1356. enable_endstops(false); // Disable endstops while moving away
  1357. // Move away from the endstop by the axis HOME_BUMP_MM
  1358. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1359. line_to_destination();
  1360. st_synchronize();
  1361. enable_endstops(true); // Enable endstops for next homing move
  1362. // Slow down the feedrate for the next move
  1363. set_homing_bump_feedrate(axis);
  1364. // Move slowly towards the endstop until triggered
  1365. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1366. line_to_destination();
  1367. st_synchronize();
  1368. #ifdef Z_DUAL_ENDSTOPS
  1369. if (axis == Z_AXIS) {
  1370. float adj = fabs(z_endstop_adj);
  1371. bool lockZ1;
  1372. if (axis_home_dir > 0) {
  1373. adj = -adj;
  1374. lockZ1 = (z_endstop_adj > 0);
  1375. }
  1376. else
  1377. lockZ1 = (z_endstop_adj < 0);
  1378. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1379. sync_plan_position();
  1380. // Move to the adjusted endstop height
  1381. feedrate = homing_feedrate[axis];
  1382. destination[Z_AXIS] = adj;
  1383. line_to_destination();
  1384. st_synchronize();
  1385. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1386. In_Homing_Process(false);
  1387. } // Z_AXIS
  1388. #endif
  1389. #ifdef DELTA
  1390. // retrace by the amount specified in endstop_adj
  1391. if (endstop_adj[axis] * axis_home_dir < 0) {
  1392. enable_endstops(false); // Disable endstops while moving away
  1393. sync_plan_position();
  1394. destination[axis] = endstop_adj[axis];
  1395. line_to_destination();
  1396. st_synchronize();
  1397. enable_endstops(true); // Enable endstops for next homing move
  1398. }
  1399. #endif
  1400. // Set the axis position to its home position (plus home offsets)
  1401. axis_is_at_home(axis);
  1402. sync_plan_position();
  1403. destination[axis] = current_position[axis];
  1404. feedrate = 0.0;
  1405. endstops_hit_on_purpose(); // clear endstop hit flags
  1406. axis_known_position[axis] = true;
  1407. #ifdef Z_PROBE_SLED
  1408. // bring probe back
  1409. if (axis == Z_AXIS) {
  1410. if (axis_home_dir < 0) dock_sled(true);
  1411. }
  1412. #endif
  1413. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1414. // Deploy a probe if there is one, and homing towards the bed
  1415. if (axis == Z_AXIS) {
  1416. if (axis_home_dir < 0) stow_z_probe();
  1417. }
  1418. else
  1419. #endif
  1420. #ifdef SERVO_ENDSTOPS
  1421. {
  1422. // Retract Servo endstop if enabled
  1423. if (servo_endstops[axis] > -1)
  1424. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1425. }
  1426. #endif
  1427. }
  1428. }
  1429. #ifdef FWRETRACT
  1430. void retract(bool retracting, bool swapping=false) {
  1431. if (retracting == retracted[active_extruder]) return;
  1432. float oldFeedrate = feedrate;
  1433. set_destination_to_current();
  1434. if (retracting) {
  1435. feedrate = retract_feedrate * 60;
  1436. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1437. plan_set_e_position(current_position[E_AXIS]);
  1438. prepare_move();
  1439. if (retract_zlift > 0.01) {
  1440. current_position[Z_AXIS] -= retract_zlift;
  1441. #ifdef DELTA
  1442. sync_plan_position_delta();
  1443. #else
  1444. sync_plan_position();
  1445. #endif
  1446. prepare_move();
  1447. }
  1448. }
  1449. else {
  1450. if (retract_zlift > 0.01) {
  1451. current_position[Z_AXIS] += retract_zlift;
  1452. #ifdef DELTA
  1453. sync_plan_position_delta();
  1454. #else
  1455. sync_plan_position();
  1456. #endif
  1457. //prepare_move();
  1458. }
  1459. feedrate = retract_recover_feedrate * 60;
  1460. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1461. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1462. plan_set_e_position(current_position[E_AXIS]);
  1463. prepare_move();
  1464. }
  1465. feedrate = oldFeedrate;
  1466. retracted[active_extruder] = retracting;
  1467. } // retract()
  1468. #endif // FWRETRACT
  1469. /**
  1470. *
  1471. * G-Code Handler functions
  1472. *
  1473. */
  1474. /**
  1475. * Set XYZE destination and feedrate from the current GCode command
  1476. *
  1477. * - Set destination from included axis codes
  1478. * - Set to current for missing axis codes
  1479. * - Set the feedrate, if included
  1480. */
  1481. void gcode_get_destination() {
  1482. for (int i = 0; i < NUM_AXIS; i++) {
  1483. if (code_seen(axis_codes[i]))
  1484. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1485. else
  1486. destination[i] = current_position[i];
  1487. }
  1488. if (code_seen('F')) {
  1489. float next_feedrate = code_value();
  1490. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1491. }
  1492. }
  1493. /**
  1494. * G0, G1: Coordinated movement of X Y Z E axes
  1495. */
  1496. inline void gcode_G0_G1() {
  1497. if (IsRunning()) {
  1498. gcode_get_destination(); // For X Y Z E F
  1499. #ifdef FWRETRACT
  1500. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1501. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1502. // Is this move an attempt to retract or recover?
  1503. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1504. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1505. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1506. retract(!retracted[active_extruder]);
  1507. return;
  1508. }
  1509. }
  1510. #endif //FWRETRACT
  1511. prepare_move();
  1512. }
  1513. }
  1514. /**
  1515. * Plan an arc in 2 dimensions
  1516. *
  1517. * The arc is approximated by generating many small linear segments.
  1518. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1519. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1520. * larger segments will tend to be more efficient. Your slicer should have
  1521. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1522. */
  1523. void plan_arc(
  1524. float *target, // Destination position
  1525. float *offset, // Center of rotation relative to current_position
  1526. uint8_t clockwise // Clockwise?
  1527. ) {
  1528. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1529. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1530. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1531. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1532. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1533. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1534. r_axis1 = -offset[Y_AXIS],
  1535. rt_axis0 = target[X_AXIS] - center_axis0,
  1536. rt_axis1 = target[Y_AXIS] - center_axis1;
  1537. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1538. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1539. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1540. if (clockwise) { angular_travel -= RADIANS(360); }
  1541. // Make a circle if the angular rotation is 0
  1542. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1543. angular_travel += RADIANS(360);
  1544. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1545. if (mm_of_travel < 0.001) { return; }
  1546. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1547. if (segments == 0) segments = 1;
  1548. float theta_per_segment = angular_travel/segments;
  1549. float linear_per_segment = linear_travel/segments;
  1550. float extruder_per_segment = extruder_travel/segments;
  1551. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1552. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1553. r_T = [cos(phi) -sin(phi);
  1554. sin(phi) cos(phi] * r ;
  1555. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1556. defined from the circle center to the initial position. Each line segment is formed by successive
  1557. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1558. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1559. all double numbers are single precision on the Arduino. (True double precision will not have
  1560. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1561. tool precision in some cases. Therefore, arc path correction is implemented.
  1562. Small angle approximation may be used to reduce computation overhead further. This approximation
  1563. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1564. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1565. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1566. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1567. issue for CNC machines with the single precision Arduino calculations.
  1568. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1569. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1570. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1571. This is important when there are successive arc motions.
  1572. */
  1573. // Vector rotation matrix values
  1574. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1575. float sin_T = theta_per_segment;
  1576. float arc_target[4];
  1577. float sin_Ti;
  1578. float cos_Ti;
  1579. float r_axisi;
  1580. uint16_t i;
  1581. int8_t count = 0;
  1582. // Initialize the linear axis
  1583. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1584. // Initialize the extruder axis
  1585. arc_target[E_AXIS] = current_position[E_AXIS];
  1586. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1587. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1588. if (count < N_ARC_CORRECTION) {
  1589. // Apply vector rotation matrix to previous r_axis0 / 1
  1590. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1591. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1592. r_axis1 = r_axisi;
  1593. count++;
  1594. }
  1595. else {
  1596. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1597. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1598. cos_Ti = cos(i*theta_per_segment);
  1599. sin_Ti = sin(i*theta_per_segment);
  1600. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1601. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1602. count = 0;
  1603. }
  1604. // Update arc_target location
  1605. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1606. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1607. arc_target[Z_AXIS] += linear_per_segment;
  1608. arc_target[E_AXIS] += extruder_per_segment;
  1609. clamp_to_software_endstops(arc_target);
  1610. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1611. }
  1612. // Ensure last segment arrives at target location.
  1613. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1614. // As far as the parser is concerned, the position is now == target. In reality the
  1615. // motion control system might still be processing the action and the real tool position
  1616. // in any intermediate location.
  1617. set_current_to_destination();
  1618. }
  1619. /**
  1620. * G2: Clockwise Arc
  1621. * G3: Counterclockwise Arc
  1622. */
  1623. inline void gcode_G2_G3(bool clockwise) {
  1624. if (IsRunning()) {
  1625. #ifdef SF_ARC_FIX
  1626. bool relative_mode_backup = relative_mode;
  1627. relative_mode = true;
  1628. #endif
  1629. gcode_get_destination();
  1630. #ifdef SF_ARC_FIX
  1631. relative_mode = relative_mode_backup;
  1632. #endif
  1633. // Center of arc as offset from current_position
  1634. float arc_offset[2] = {
  1635. code_seen('I') ? code_value() : 0,
  1636. code_seen('J') ? code_value() : 0
  1637. };
  1638. // Send an arc to the planner
  1639. plan_arc(destination, arc_offset, clockwise);
  1640. refresh_cmd_timeout();
  1641. }
  1642. }
  1643. /**
  1644. * G4: Dwell S<seconds> or P<milliseconds>
  1645. */
  1646. inline void gcode_G4() {
  1647. millis_t codenum = 0;
  1648. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1649. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1650. st_synchronize();
  1651. refresh_cmd_timeout();
  1652. codenum += previous_cmd_ms; // keep track of when we started waiting
  1653. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1654. while (millis() < codenum) {
  1655. manage_heater();
  1656. manage_inactivity();
  1657. lcd_update();
  1658. }
  1659. }
  1660. #ifdef FWRETRACT
  1661. /**
  1662. * G10 - Retract filament according to settings of M207
  1663. * G11 - Recover filament according to settings of M208
  1664. */
  1665. inline void gcode_G10_G11(bool doRetract=false) {
  1666. #if EXTRUDERS > 1
  1667. if (doRetract) {
  1668. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1669. }
  1670. #endif
  1671. retract(doRetract
  1672. #if EXTRUDERS > 1
  1673. , retracted_swap[active_extruder]
  1674. #endif
  1675. );
  1676. }
  1677. #endif //FWRETRACT
  1678. /**
  1679. * G28: Home all axes according to settings
  1680. *
  1681. * Parameters
  1682. *
  1683. * None Home to all axes with no parameters.
  1684. * With QUICK_HOME enabled XY will home together, then Z.
  1685. *
  1686. * Cartesian parameters
  1687. *
  1688. * X Home to the X endstop
  1689. * Y Home to the Y endstop
  1690. * Z Home to the Z endstop
  1691. *
  1692. */
  1693. inline void gcode_G28() {
  1694. // Wait for planner moves to finish!
  1695. st_synchronize();
  1696. // For auto bed leveling, clear the level matrix
  1697. #ifdef ENABLE_AUTO_BED_LEVELING
  1698. plan_bed_level_matrix.set_to_identity();
  1699. #ifdef DELTA
  1700. reset_bed_level();
  1701. #endif
  1702. #endif
  1703. // For manual bed leveling deactivate the matrix temporarily
  1704. #ifdef MESH_BED_LEVELING
  1705. uint8_t mbl_was_active = mbl.active;
  1706. mbl.active = 0;
  1707. #endif
  1708. setup_for_endstop_move();
  1709. set_destination_to_current();
  1710. feedrate = 0.0;
  1711. #ifdef DELTA
  1712. // A delta can only safely home all axis at the same time
  1713. // all axis have to home at the same time
  1714. // Pretend the current position is 0,0,0
  1715. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1716. sync_plan_position();
  1717. // Move all carriages up together until the first endstop is hit.
  1718. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1719. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1720. line_to_destination();
  1721. st_synchronize();
  1722. endstops_hit_on_purpose(); // clear endstop hit flags
  1723. // Destination reached
  1724. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1725. // take care of back off and rehome now we are all at the top
  1726. HOMEAXIS(X);
  1727. HOMEAXIS(Y);
  1728. HOMEAXIS(Z);
  1729. sync_plan_position_delta();
  1730. #else // NOT DELTA
  1731. bool homeX = code_seen(axis_codes[X_AXIS]),
  1732. homeY = code_seen(axis_codes[Y_AXIS]),
  1733. homeZ = code_seen(axis_codes[Z_AXIS]);
  1734. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1735. if (home_all_axis || homeZ) {
  1736. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1737. HOMEAXIS(Z);
  1738. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1739. // Raise Z before homing any other axes
  1740. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1741. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1742. feedrate = max_feedrate[Z_AXIS] * 60;
  1743. line_to_destination();
  1744. st_synchronize();
  1745. #endif
  1746. } // home_all_axis || homeZ
  1747. #ifdef QUICK_HOME
  1748. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1749. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1750. #ifdef DUAL_X_CARRIAGE
  1751. int x_axis_home_dir = x_home_dir(active_extruder);
  1752. extruder_duplication_enabled = false;
  1753. #else
  1754. int x_axis_home_dir = home_dir(X_AXIS);
  1755. #endif
  1756. sync_plan_position();
  1757. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1758. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1759. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1760. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1761. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1762. line_to_destination();
  1763. st_synchronize();
  1764. axis_is_at_home(X_AXIS);
  1765. axis_is_at_home(Y_AXIS);
  1766. sync_plan_position();
  1767. destination[X_AXIS] = current_position[X_AXIS];
  1768. destination[Y_AXIS] = current_position[Y_AXIS];
  1769. line_to_destination();
  1770. feedrate = 0.0;
  1771. st_synchronize();
  1772. endstops_hit_on_purpose(); // clear endstop hit flags
  1773. current_position[X_AXIS] = destination[X_AXIS];
  1774. current_position[Y_AXIS] = destination[Y_AXIS];
  1775. #ifndef SCARA
  1776. current_position[Z_AXIS] = destination[Z_AXIS];
  1777. #endif
  1778. }
  1779. #endif // QUICK_HOME
  1780. #ifdef HOME_Y_BEFORE_X
  1781. // Home Y
  1782. if (home_all_axis || homeY) HOMEAXIS(Y);
  1783. #endif
  1784. // Home X
  1785. if (home_all_axis || homeX) {
  1786. #ifdef DUAL_X_CARRIAGE
  1787. int tmp_extruder = active_extruder;
  1788. extruder_duplication_enabled = false;
  1789. active_extruder = !active_extruder;
  1790. HOMEAXIS(X);
  1791. inactive_extruder_x_pos = current_position[X_AXIS];
  1792. active_extruder = tmp_extruder;
  1793. HOMEAXIS(X);
  1794. // reset state used by the different modes
  1795. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1796. delayed_move_time = 0;
  1797. active_extruder_parked = true;
  1798. #else
  1799. HOMEAXIS(X);
  1800. #endif
  1801. }
  1802. #ifndef HOME_Y_BEFORE_X
  1803. // Home Y
  1804. if (home_all_axis || homeY) HOMEAXIS(Y);
  1805. #endif
  1806. // Home Z last if homing towards the bed
  1807. #if Z_HOME_DIR < 0
  1808. if (home_all_axis || homeZ) {
  1809. #ifdef Z_SAFE_HOMING
  1810. if (home_all_axis) {
  1811. current_position[Z_AXIS] = 0;
  1812. sync_plan_position();
  1813. //
  1814. // Set the probe (or just the nozzle) destination to the safe homing point
  1815. //
  1816. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1817. // then this may not work as expected.
  1818. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1819. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1820. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1821. feedrate = XY_TRAVEL_SPEED;
  1822. // This could potentially move X, Y, Z all together
  1823. line_to_destination();
  1824. st_synchronize();
  1825. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1826. current_position[X_AXIS] = destination[X_AXIS];
  1827. current_position[Y_AXIS] = destination[Y_AXIS];
  1828. // Home the Z axis
  1829. HOMEAXIS(Z);
  1830. }
  1831. else if (homeZ) { // Don't need to Home Z twice
  1832. // Let's see if X and Y are homed
  1833. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1834. // Make sure the probe is within the physical limits
  1835. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1836. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1837. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1838. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1839. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1840. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1841. // Set the plan current position to X, Y, 0
  1842. current_position[Z_AXIS] = 0;
  1843. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1844. // Set Z destination away from bed and raise the axis
  1845. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1846. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1847. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1848. line_to_destination();
  1849. st_synchronize();
  1850. // Home the Z axis
  1851. HOMEAXIS(Z);
  1852. }
  1853. else {
  1854. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1855. SERIAL_ECHO_START;
  1856. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1857. }
  1858. }
  1859. else {
  1860. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1861. SERIAL_ECHO_START;
  1862. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1863. }
  1864. } // !home_all_axes && homeZ
  1865. #else // !Z_SAFE_HOMING
  1866. HOMEAXIS(Z);
  1867. #endif // !Z_SAFE_HOMING
  1868. } // home_all_axis || homeZ
  1869. #endif // Z_HOME_DIR < 0
  1870. sync_plan_position();
  1871. #endif // else DELTA
  1872. #ifdef SCARA
  1873. sync_plan_position_delta();
  1874. #endif
  1875. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1876. enable_endstops(false);
  1877. #endif
  1878. // For manual leveling move back to 0,0
  1879. #ifdef MESH_BED_LEVELING
  1880. if (mbl_was_active) {
  1881. current_position[X_AXIS] = mbl.get_x(0);
  1882. current_position[Y_AXIS] = mbl.get_y(0);
  1883. set_destination_to_current();
  1884. feedrate = homing_feedrate[X_AXIS];
  1885. line_to_destination();
  1886. st_synchronize();
  1887. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1888. sync_plan_position();
  1889. mbl.active = 1;
  1890. }
  1891. #endif
  1892. feedrate = saved_feedrate;
  1893. feedrate_multiplier = saved_feedrate_multiplier;
  1894. refresh_cmd_timeout();
  1895. endstops_hit_on_purpose(); // clear endstop hit flags
  1896. }
  1897. #ifdef MESH_BED_LEVELING
  1898. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1899. /**
  1900. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1901. * mesh to compensate for variable bed height
  1902. *
  1903. * Parameters With MESH_BED_LEVELING:
  1904. *
  1905. * S0 Produce a mesh report
  1906. * S1 Start probing mesh points
  1907. * S2 Probe the next mesh point
  1908. * S3 Xn Yn Zn.nn Manually modify a single point
  1909. *
  1910. * The S0 report the points as below
  1911. *
  1912. * +----> X-axis
  1913. * |
  1914. * |
  1915. * v Y-axis
  1916. *
  1917. */
  1918. inline void gcode_G29() {
  1919. static int probe_point = -1;
  1920. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1921. if (state < 0 || state > 3) {
  1922. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1923. return;
  1924. }
  1925. int ix, iy;
  1926. float z;
  1927. switch(state) {
  1928. case MeshReport:
  1929. if (mbl.active) {
  1930. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1931. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1932. SERIAL_PROTOCOLCHAR(',');
  1933. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1934. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1935. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1936. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1937. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1938. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1939. SERIAL_PROTOCOLPGM(" ");
  1940. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1941. }
  1942. SERIAL_EOL;
  1943. }
  1944. }
  1945. else
  1946. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1947. break;
  1948. case MeshStart:
  1949. mbl.reset();
  1950. probe_point = 0;
  1951. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1952. break;
  1953. case MeshNext:
  1954. if (probe_point < 0) {
  1955. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1956. return;
  1957. }
  1958. if (probe_point == 0) {
  1959. // Set Z to a positive value before recording the first Z.
  1960. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1961. sync_plan_position();
  1962. }
  1963. else {
  1964. // For others, save the Z of the previous point, then raise Z again.
  1965. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1966. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1967. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1968. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1969. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1971. st_synchronize();
  1972. }
  1973. // Is there another point to sample? Move there.
  1974. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1975. ix = probe_point % MESH_NUM_X_POINTS;
  1976. iy = probe_point / MESH_NUM_X_POINTS;
  1977. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1978. current_position[X_AXIS] = mbl.get_x(ix);
  1979. current_position[Y_AXIS] = mbl.get_y(iy);
  1980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1981. st_synchronize();
  1982. probe_point++;
  1983. }
  1984. else {
  1985. // After recording the last point, activate the mbl and home
  1986. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1987. probe_point = -1;
  1988. mbl.active = 1;
  1989. enqueuecommands_P(PSTR("G28"));
  1990. }
  1991. break;
  1992. case MeshSet:
  1993. if (code_seen('X') || code_seen('x')) {
  1994. ix = code_value_long()-1;
  1995. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1996. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1997. return;
  1998. }
  1999. } else {
  2000. SERIAL_PROTOCOLPGM("X not entered.\n");
  2001. return;
  2002. }
  2003. if (code_seen('Y') || code_seen('y')) {
  2004. iy = code_value_long()-1;
  2005. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2006. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2007. return;
  2008. }
  2009. } else {
  2010. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2011. return;
  2012. }
  2013. if (code_seen('Z') || code_seen('z')) {
  2014. z = code_value();
  2015. } else {
  2016. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2017. return;
  2018. }
  2019. mbl.z_values[iy][ix] = z;
  2020. } // switch(state)
  2021. }
  2022. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2023. /**
  2024. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2025. * Will fail if the printer has not been homed with G28.
  2026. *
  2027. * Enhanced G29 Auto Bed Leveling Probe Routine
  2028. *
  2029. * Parameters With AUTO_BED_LEVELING_GRID:
  2030. *
  2031. * P Set the size of the grid that will be probed (P x P points).
  2032. * Not supported by non-linear delta printer bed leveling.
  2033. * Example: "G29 P4"
  2034. *
  2035. * S Set the XY travel speed between probe points (in mm/min)
  2036. *
  2037. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2038. * or clean the rotation Matrix. Useful to check the topology
  2039. * after a first run of G29.
  2040. *
  2041. * V Set the verbose level (0-4). Example: "G29 V3"
  2042. *
  2043. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2044. * This is useful for manual bed leveling and finding flaws in the bed (to
  2045. * assist with part placement).
  2046. * Not supported by non-linear delta printer bed leveling.
  2047. *
  2048. * F Set the Front limit of the probing grid
  2049. * B Set the Back limit of the probing grid
  2050. * L Set the Left limit of the probing grid
  2051. * R Set the Right limit of the probing grid
  2052. *
  2053. * Global Parameters:
  2054. *
  2055. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2056. * Include "E" to engage/disengage the probe for each sample.
  2057. * There's no extra effect if you have a fixed probe.
  2058. * Usage: "G29 E" or "G29 e"
  2059. *
  2060. */
  2061. inline void gcode_G29() {
  2062. // Don't allow auto-leveling without homing first
  2063. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2064. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2065. SERIAL_ECHO_START;
  2066. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2067. return;
  2068. }
  2069. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2070. if (verbose_level < 0 || verbose_level > 4) {
  2071. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2072. return;
  2073. }
  2074. bool dryrun = code_seen('D') || code_seen('d'),
  2075. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2076. #ifdef AUTO_BED_LEVELING_GRID
  2077. #ifndef DELTA
  2078. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2079. #endif
  2080. if (verbose_level > 0) {
  2081. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2082. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2083. }
  2084. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2085. #ifndef DELTA
  2086. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2087. if (auto_bed_leveling_grid_points < 2) {
  2088. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2089. return;
  2090. }
  2091. #endif
  2092. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2093. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2094. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2095. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2096. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2097. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2098. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2099. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2100. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2101. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2102. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2103. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2104. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2105. if (left_out || right_out || front_out || back_out) {
  2106. if (left_out) {
  2107. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2108. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2109. }
  2110. if (right_out) {
  2111. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2112. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2113. }
  2114. if (front_out) {
  2115. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2116. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2117. }
  2118. if (back_out) {
  2119. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2120. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2121. }
  2122. return;
  2123. }
  2124. #endif // AUTO_BED_LEVELING_GRID
  2125. #ifdef Z_PROBE_SLED
  2126. dock_sled(false); // engage (un-dock) the probe
  2127. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2128. deploy_z_probe();
  2129. #endif
  2130. st_synchronize();
  2131. if (!dryrun) {
  2132. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2133. plan_bed_level_matrix.set_to_identity();
  2134. #ifdef DELTA
  2135. reset_bed_level();
  2136. #else //!DELTA
  2137. //vector_3 corrected_position = plan_get_position_mm();
  2138. //corrected_position.debug("position before G29");
  2139. vector_3 uncorrected_position = plan_get_position();
  2140. //uncorrected_position.debug("position during G29");
  2141. current_position[X_AXIS] = uncorrected_position.x;
  2142. current_position[Y_AXIS] = uncorrected_position.y;
  2143. current_position[Z_AXIS] = uncorrected_position.z;
  2144. sync_plan_position();
  2145. #endif // !DELTA
  2146. }
  2147. setup_for_endstop_move();
  2148. feedrate = homing_feedrate[Z_AXIS];
  2149. #ifdef AUTO_BED_LEVELING_GRID
  2150. // probe at the points of a lattice grid
  2151. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2152. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2153. #ifdef DELTA
  2154. delta_grid_spacing[0] = xGridSpacing;
  2155. delta_grid_spacing[1] = yGridSpacing;
  2156. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2157. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2158. #else // !DELTA
  2159. // solve the plane equation ax + by + d = z
  2160. // A is the matrix with rows [x y 1] for all the probed points
  2161. // B is the vector of the Z positions
  2162. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2163. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2164. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2165. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2166. eqnBVector[abl2], // "B" vector of Z points
  2167. mean = 0.0;
  2168. #endif // !DELTA
  2169. int probePointCounter = 0;
  2170. bool zig = true;
  2171. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2172. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2173. int xStart, xStop, xInc;
  2174. if (zig) {
  2175. xStart = 0;
  2176. xStop = auto_bed_leveling_grid_points;
  2177. xInc = 1;
  2178. }
  2179. else {
  2180. xStart = auto_bed_leveling_grid_points - 1;
  2181. xStop = -1;
  2182. xInc = -1;
  2183. }
  2184. #ifndef DELTA
  2185. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2186. // This gets the probe points in more readable order.
  2187. if (!do_topography_map) zig = !zig;
  2188. #endif
  2189. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2190. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2191. // raise extruder
  2192. float measured_z,
  2193. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2194. #ifdef DELTA
  2195. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2196. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2197. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2198. #endif //DELTA
  2199. ProbeAction act;
  2200. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2201. act = ProbeDeployAndStow;
  2202. else if (yCount == 0 && xCount == xStart)
  2203. act = ProbeDeploy;
  2204. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2205. act = ProbeStow;
  2206. else
  2207. act = ProbeStay;
  2208. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2209. #ifndef DELTA
  2210. mean += measured_z;
  2211. eqnBVector[probePointCounter] = measured_z;
  2212. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2213. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2214. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2215. #else
  2216. bed_level[xCount][yCount] = measured_z + z_offset;
  2217. #endif
  2218. probePointCounter++;
  2219. manage_heater();
  2220. manage_inactivity();
  2221. lcd_update();
  2222. } //xProbe
  2223. } //yProbe
  2224. clean_up_after_endstop_move();
  2225. #ifdef DELTA
  2226. if (!dryrun) extrapolate_unprobed_bed_level();
  2227. print_bed_level();
  2228. #else // !DELTA
  2229. // solve lsq problem
  2230. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2231. mean /= abl2;
  2232. if (verbose_level) {
  2233. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2234. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2235. SERIAL_PROTOCOLPGM(" b: ");
  2236. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2237. SERIAL_PROTOCOLPGM(" d: ");
  2238. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2239. SERIAL_EOL;
  2240. if (verbose_level > 2) {
  2241. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2242. SERIAL_PROTOCOL_F(mean, 8);
  2243. SERIAL_EOL;
  2244. }
  2245. }
  2246. // Show the Topography map if enabled
  2247. if (do_topography_map) {
  2248. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2249. SERIAL_PROTOCOLPGM("+-----------+\n");
  2250. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2251. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2252. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2253. SERIAL_PROTOCOLPGM("+-----------+\n");
  2254. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2255. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2256. int ind = yy * auto_bed_leveling_grid_points + xx;
  2257. float diff = eqnBVector[ind] - mean;
  2258. if (diff >= 0.0)
  2259. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2260. else
  2261. SERIAL_PROTOCOLCHAR(' ');
  2262. SERIAL_PROTOCOL_F(diff, 5);
  2263. } // xx
  2264. SERIAL_EOL;
  2265. } // yy
  2266. SERIAL_EOL;
  2267. } //do_topography_map
  2268. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2269. free(plane_equation_coefficients);
  2270. #endif //!DELTA
  2271. #else // !AUTO_BED_LEVELING_GRID
  2272. // Actions for each probe
  2273. ProbeAction p1, p2, p3;
  2274. if (deploy_probe_for_each_reading)
  2275. p1 = p2 = p3 = ProbeDeployAndStow;
  2276. else
  2277. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2278. // Probe at 3 arbitrary points
  2279. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2280. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2281. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2282. clean_up_after_endstop_move();
  2283. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2284. #endif // !AUTO_BED_LEVELING_GRID
  2285. #ifndef DELTA
  2286. if (verbose_level > 0)
  2287. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2288. if (!dryrun) {
  2289. // Correct the Z height difference from z-probe position and hotend tip position.
  2290. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2291. // When the bed is uneven, this height must be corrected.
  2292. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2293. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2294. z_tmp = current_position[Z_AXIS],
  2295. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2296. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2297. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2298. sync_plan_position();
  2299. }
  2300. #endif // !DELTA
  2301. #ifdef Z_PROBE_SLED
  2302. dock_sled(true); // dock the probe
  2303. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2304. stow_z_probe();
  2305. #endif
  2306. #ifdef Z_PROBE_END_SCRIPT
  2307. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2308. st_synchronize();
  2309. #endif
  2310. }
  2311. #ifndef Z_PROBE_SLED
  2312. inline void gcode_G30() {
  2313. deploy_z_probe(); // Engage Z Servo endstop if available
  2314. st_synchronize();
  2315. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2316. setup_for_endstop_move();
  2317. feedrate = homing_feedrate[Z_AXIS];
  2318. run_z_probe();
  2319. SERIAL_PROTOCOLPGM("Bed");
  2320. SERIAL_PROTOCOLPGM(" X: ");
  2321. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2322. SERIAL_PROTOCOLPGM(" Y: ");
  2323. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2324. SERIAL_PROTOCOLPGM(" Z: ");
  2325. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2326. SERIAL_EOL;
  2327. clean_up_after_endstop_move();
  2328. stow_z_probe(); // Retract Z Servo endstop if available
  2329. }
  2330. #endif //!Z_PROBE_SLED
  2331. #endif //ENABLE_AUTO_BED_LEVELING
  2332. /**
  2333. * G92: Set current position to given X Y Z E
  2334. */
  2335. inline void gcode_G92() {
  2336. if (!code_seen(axis_codes[E_AXIS]))
  2337. st_synchronize();
  2338. bool didXYZ = false;
  2339. for (int i = 0; i < NUM_AXIS; i++) {
  2340. if (code_seen(axis_codes[i])) {
  2341. float v = current_position[i] = code_value();
  2342. if (i == E_AXIS)
  2343. plan_set_e_position(v);
  2344. else
  2345. didXYZ = true;
  2346. }
  2347. }
  2348. if (didXYZ) sync_plan_position();
  2349. }
  2350. #ifdef ULTIPANEL
  2351. /**
  2352. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2353. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2354. */
  2355. inline void gcode_M0_M1() {
  2356. char *src = strchr_pointer + 2;
  2357. millis_t codenum = 0;
  2358. bool hasP = false, hasS = false;
  2359. if (code_seen('P')) {
  2360. codenum = code_value_short(); // milliseconds to wait
  2361. hasP = codenum > 0;
  2362. }
  2363. if (code_seen('S')) {
  2364. codenum = code_value() * 1000; // seconds to wait
  2365. hasS = codenum > 0;
  2366. }
  2367. char* starpos = strchr(src, '*');
  2368. if (starpos != NULL) *(starpos) = '\0';
  2369. while (*src == ' ') ++src;
  2370. if (!hasP && !hasS && *src != '\0')
  2371. lcd_setstatus(src, true);
  2372. else {
  2373. LCD_MESSAGEPGM(MSG_USERWAIT);
  2374. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2375. dontExpireStatus();
  2376. #endif
  2377. }
  2378. lcd_ignore_click();
  2379. st_synchronize();
  2380. refresh_cmd_timeout();
  2381. if (codenum > 0) {
  2382. codenum += previous_cmd_ms; // keep track of when we started waiting
  2383. while(millis() < codenum && !lcd_clicked()) {
  2384. manage_heater();
  2385. manage_inactivity();
  2386. lcd_update();
  2387. }
  2388. lcd_ignore_click(false);
  2389. }
  2390. else {
  2391. if (!lcd_detected()) return;
  2392. while (!lcd_clicked()) {
  2393. manage_heater();
  2394. manage_inactivity();
  2395. lcd_update();
  2396. }
  2397. }
  2398. if (IS_SD_PRINTING)
  2399. LCD_MESSAGEPGM(MSG_RESUMING);
  2400. else
  2401. LCD_MESSAGEPGM(WELCOME_MSG);
  2402. }
  2403. #endif // ULTIPANEL
  2404. /**
  2405. * M17: Enable power on all stepper motors
  2406. */
  2407. inline void gcode_M17() {
  2408. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2409. enable_all_steppers();
  2410. }
  2411. #ifdef SDSUPPORT
  2412. /**
  2413. * M20: List SD card to serial output
  2414. */
  2415. inline void gcode_M20() {
  2416. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2417. card.ls();
  2418. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2419. }
  2420. /**
  2421. * M21: Init SD Card
  2422. */
  2423. inline void gcode_M21() {
  2424. card.initsd();
  2425. }
  2426. /**
  2427. * M22: Release SD Card
  2428. */
  2429. inline void gcode_M22() {
  2430. card.release();
  2431. }
  2432. /**
  2433. * M23: Select a file
  2434. */
  2435. inline void gcode_M23() {
  2436. char* codepos = strchr_pointer + 4;
  2437. char* starpos = strchr(codepos, '*');
  2438. if (starpos) *starpos = '\0';
  2439. card.openFile(codepos, true);
  2440. }
  2441. /**
  2442. * M24: Start SD Print
  2443. */
  2444. inline void gcode_M24() {
  2445. card.startFileprint();
  2446. print_job_start_ms = millis();
  2447. }
  2448. /**
  2449. * M25: Pause SD Print
  2450. */
  2451. inline void gcode_M25() {
  2452. card.pauseSDPrint();
  2453. }
  2454. /**
  2455. * M26: Set SD Card file index
  2456. */
  2457. inline void gcode_M26() {
  2458. if (card.cardOK && code_seen('S'))
  2459. card.setIndex(code_value_short());
  2460. }
  2461. /**
  2462. * M27: Get SD Card status
  2463. */
  2464. inline void gcode_M27() {
  2465. card.getStatus();
  2466. }
  2467. /**
  2468. * M28: Start SD Write
  2469. */
  2470. inline void gcode_M28() {
  2471. char* codepos = strchr_pointer + 4;
  2472. char* starpos = strchr(codepos, '*');
  2473. if (starpos) {
  2474. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2475. strchr_pointer = strchr(npos, ' ') + 1;
  2476. *(starpos) = '\0';
  2477. }
  2478. card.openFile(codepos, false);
  2479. }
  2480. /**
  2481. * M29: Stop SD Write
  2482. * Processed in write to file routine above
  2483. */
  2484. inline void gcode_M29() {
  2485. // card.saving = false;
  2486. }
  2487. /**
  2488. * M30 <filename>: Delete SD Card file
  2489. */
  2490. inline void gcode_M30() {
  2491. if (card.cardOK) {
  2492. card.closefile();
  2493. char* starpos = strchr(strchr_pointer + 4, '*');
  2494. if (starpos) {
  2495. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2496. strchr_pointer = strchr(npos, ' ') + 1;
  2497. *(starpos) = '\0';
  2498. }
  2499. card.removeFile(strchr_pointer + 4);
  2500. }
  2501. }
  2502. #endif
  2503. /**
  2504. * M31: Get the time since the start of SD Print (or last M109)
  2505. */
  2506. inline void gcode_M31() {
  2507. print_job_stop_ms = millis();
  2508. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2509. int min = t / 60, sec = t % 60;
  2510. char time[30];
  2511. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2512. SERIAL_ECHO_START;
  2513. SERIAL_ECHOLN(time);
  2514. lcd_setstatus(time);
  2515. autotempShutdown();
  2516. }
  2517. #ifdef SDSUPPORT
  2518. /**
  2519. * M32: Select file and start SD Print
  2520. */
  2521. inline void gcode_M32() {
  2522. if (card.sdprinting)
  2523. st_synchronize();
  2524. char* codepos = strchr_pointer + 4;
  2525. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2526. if (! namestartpos)
  2527. namestartpos = codepos; //default name position, 4 letters after the M
  2528. else
  2529. namestartpos++; //to skip the '!'
  2530. char* starpos = strchr(codepos, '*');
  2531. if (starpos) *(starpos) = '\0';
  2532. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2533. if (card.cardOK) {
  2534. card.openFile(namestartpos, true, !call_procedure);
  2535. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2536. card.setIndex(code_value_short());
  2537. card.startFileprint();
  2538. if (!call_procedure)
  2539. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2540. }
  2541. }
  2542. /**
  2543. * M928: Start SD Write
  2544. */
  2545. inline void gcode_M928() {
  2546. char* starpos = strchr(strchr_pointer + 5, '*');
  2547. if (starpos) {
  2548. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2549. strchr_pointer = strchr(npos, ' ') + 1;
  2550. *(starpos) = '\0';
  2551. }
  2552. card.openLogFile(strchr_pointer + 5);
  2553. }
  2554. #endif // SDSUPPORT
  2555. /**
  2556. * M42: Change pin status via GCode
  2557. */
  2558. inline void gcode_M42() {
  2559. if (code_seen('S')) {
  2560. int pin_status = code_value_short(),
  2561. pin_number = LED_PIN;
  2562. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2563. pin_number = code_value_short();
  2564. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2565. if (sensitive_pins[i] == pin_number) {
  2566. pin_number = -1;
  2567. break;
  2568. }
  2569. }
  2570. #if HAS_FAN
  2571. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2572. #endif
  2573. if (pin_number > -1) {
  2574. pinMode(pin_number, OUTPUT);
  2575. digitalWrite(pin_number, pin_status);
  2576. analogWrite(pin_number, pin_status);
  2577. }
  2578. } // code_seen('S')
  2579. }
  2580. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2581. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2582. #ifdef Z_PROBE_ENDSTOP
  2583. #if !HAS_Z_PROBE
  2584. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2585. #endif
  2586. #elif !HAS_Z_MIN
  2587. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2588. #endif
  2589. /**
  2590. * M48: Z-Probe repeatability measurement function.
  2591. *
  2592. * Usage:
  2593. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2594. * P = Number of sampled points (4-50, default 10)
  2595. * X = Sample X position
  2596. * Y = Sample Y position
  2597. * V = Verbose level (0-4, default=1)
  2598. * E = Engage probe for each reading
  2599. * L = Number of legs of movement before probe
  2600. *
  2601. * This function assumes the bed has been homed. Specifically, that a G28 command
  2602. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2603. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2604. * regenerated.
  2605. */
  2606. inline void gcode_M48() {
  2607. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2608. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2609. if (code_seen('V') || code_seen('v')) {
  2610. verbose_level = code_value_short();
  2611. if (verbose_level < 0 || verbose_level > 4 ) {
  2612. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2613. return;
  2614. }
  2615. }
  2616. if (verbose_level > 0)
  2617. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2618. if (code_seen('P') || code_seen('p')) {
  2619. n_samples = code_value_short();
  2620. if (n_samples < 4 || n_samples > 50) {
  2621. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2622. return;
  2623. }
  2624. }
  2625. double X_current = st_get_position_mm(X_AXIS),
  2626. Y_current = st_get_position_mm(Y_AXIS),
  2627. Z_current = st_get_position_mm(Z_AXIS),
  2628. E_current = st_get_position_mm(E_AXIS),
  2629. X_probe_location = X_current, Y_probe_location = Y_current,
  2630. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2631. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2632. if (code_seen('X') || code_seen('x')) {
  2633. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2634. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2635. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2636. return;
  2637. }
  2638. }
  2639. if (code_seen('Y') || code_seen('y')) {
  2640. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2641. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2642. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2643. return;
  2644. }
  2645. }
  2646. if (code_seen('L') || code_seen('l')) {
  2647. n_legs = code_value_short();
  2648. if (n_legs == 1) n_legs = 2;
  2649. if (n_legs < 0 || n_legs > 15) {
  2650. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2651. return;
  2652. }
  2653. }
  2654. //
  2655. // Do all the preliminary setup work. First raise the probe.
  2656. //
  2657. st_synchronize();
  2658. plan_bed_level_matrix.set_to_identity();
  2659. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2660. st_synchronize();
  2661. //
  2662. // Now get everything to the specified probe point So we can safely do a probe to
  2663. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2664. // use that as a starting point for each probe.
  2665. //
  2666. if (verbose_level > 2)
  2667. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2668. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2669. E_current,
  2670. homing_feedrate[X_AXIS]/60,
  2671. active_extruder);
  2672. st_synchronize();
  2673. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2674. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2675. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2676. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2677. //
  2678. // OK, do the initial probe to get us close to the bed.
  2679. // Then retrace the right amount and use that in subsequent probes
  2680. //
  2681. deploy_z_probe();
  2682. setup_for_endstop_move();
  2683. run_z_probe();
  2684. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2685. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2686. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2687. E_current,
  2688. homing_feedrate[X_AXIS]/60,
  2689. active_extruder);
  2690. st_synchronize();
  2691. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2692. if (deploy_probe_for_each_reading) stow_z_probe();
  2693. for (uint8_t n=0; n < n_samples; n++) {
  2694. // Make sure we are at the probe location
  2695. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2696. if (n_legs) {
  2697. millis_t ms = millis();
  2698. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2699. theta = RADIANS(ms % 360L);
  2700. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2701. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2702. //SERIAL_ECHOPAIR(" theta: ",theta);
  2703. //SERIAL_ECHOPAIR(" direction: ",dir);
  2704. //SERIAL_EOL;
  2705. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2706. ms = millis();
  2707. theta += RADIANS(dir * (ms % 20L));
  2708. radius += (ms % 10L) - 5L;
  2709. if (radius < 0.0) radius = -radius;
  2710. X_current = X_probe_location + cos(theta) * radius;
  2711. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2712. Y_current = Y_probe_location + sin(theta) * radius;
  2713. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2714. if (verbose_level > 3) {
  2715. SERIAL_ECHOPAIR("x: ", X_current);
  2716. SERIAL_ECHOPAIR("y: ", Y_current);
  2717. SERIAL_EOL;
  2718. }
  2719. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2720. } // n_legs loop
  2721. // Go back to the probe location
  2722. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2723. } // n_legs
  2724. if (deploy_probe_for_each_reading) {
  2725. deploy_z_probe();
  2726. delay(1000);
  2727. }
  2728. setup_for_endstop_move();
  2729. run_z_probe();
  2730. sample_set[n] = current_position[Z_AXIS];
  2731. //
  2732. // Get the current mean for the data points we have so far
  2733. //
  2734. sum = 0.0;
  2735. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2736. mean = sum / (n + 1);
  2737. //
  2738. // Now, use that mean to calculate the standard deviation for the
  2739. // data points we have so far
  2740. //
  2741. sum = 0.0;
  2742. for (uint8_t j = 0; j <= n; j++) {
  2743. float ss = sample_set[j] - mean;
  2744. sum += ss * ss;
  2745. }
  2746. sigma = sqrt(sum / (n + 1));
  2747. if (verbose_level > 1) {
  2748. SERIAL_PROTOCOL(n+1);
  2749. SERIAL_PROTOCOLPGM(" of ");
  2750. SERIAL_PROTOCOL(n_samples);
  2751. SERIAL_PROTOCOLPGM(" z: ");
  2752. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2753. if (verbose_level > 2) {
  2754. SERIAL_PROTOCOLPGM(" mean: ");
  2755. SERIAL_PROTOCOL_F(mean,6);
  2756. SERIAL_PROTOCOLPGM(" sigma: ");
  2757. SERIAL_PROTOCOL_F(sigma,6);
  2758. }
  2759. }
  2760. if (verbose_level > 0) SERIAL_EOL;
  2761. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2762. st_synchronize();
  2763. // Stow between
  2764. if (deploy_probe_for_each_reading) {
  2765. stow_z_probe();
  2766. delay(1000);
  2767. }
  2768. }
  2769. // Stow after
  2770. if (!deploy_probe_for_each_reading) {
  2771. stow_z_probe();
  2772. delay(1000);
  2773. }
  2774. clean_up_after_endstop_move();
  2775. if (verbose_level > 0) {
  2776. SERIAL_PROTOCOLPGM("Mean: ");
  2777. SERIAL_PROTOCOL_F(mean, 6);
  2778. SERIAL_EOL;
  2779. }
  2780. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2781. SERIAL_PROTOCOL_F(sigma, 6);
  2782. SERIAL_EOL; SERIAL_EOL;
  2783. }
  2784. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2785. /**
  2786. * M104: Set hot end temperature
  2787. */
  2788. inline void gcode_M104() {
  2789. if (setTargetedHotend(104)) return;
  2790. if (code_seen('S')) {
  2791. float temp = code_value();
  2792. setTargetHotend(temp, target_extruder);
  2793. #ifdef DUAL_X_CARRIAGE
  2794. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2795. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2796. #endif
  2797. #ifdef THERMAL_PROTECTION_HOTENDS
  2798. start_watching_heater(target_extruder);
  2799. #endif
  2800. }
  2801. }
  2802. /**
  2803. * M105: Read hot end and bed temperature
  2804. */
  2805. inline void gcode_M105() {
  2806. if (setTargetedHotend(105)) return;
  2807. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2808. SERIAL_PROTOCOLPGM(MSG_OK);
  2809. #if HAS_TEMP_0
  2810. SERIAL_PROTOCOLPGM(" T:");
  2811. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2812. SERIAL_PROTOCOLPGM(" /");
  2813. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2814. #endif
  2815. #if HAS_TEMP_BED
  2816. SERIAL_PROTOCOLPGM(" B:");
  2817. SERIAL_PROTOCOL_F(degBed(), 1);
  2818. SERIAL_PROTOCOLPGM(" /");
  2819. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2820. #endif
  2821. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2822. SERIAL_PROTOCOLPGM(" T");
  2823. SERIAL_PROTOCOL(e);
  2824. SERIAL_PROTOCOLCHAR(':');
  2825. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2826. SERIAL_PROTOCOLPGM(" /");
  2827. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2828. }
  2829. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2830. SERIAL_ERROR_START;
  2831. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2832. #endif
  2833. SERIAL_PROTOCOLPGM(" @:");
  2834. #ifdef EXTRUDER_WATTS
  2835. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2836. SERIAL_PROTOCOLCHAR('W');
  2837. #else
  2838. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2839. #endif
  2840. SERIAL_PROTOCOLPGM(" B@:");
  2841. #ifdef BED_WATTS
  2842. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2843. SERIAL_PROTOCOLCHAR('W');
  2844. #else
  2845. SERIAL_PROTOCOL(getHeaterPower(-1));
  2846. #endif
  2847. #ifdef SHOW_TEMP_ADC_VALUES
  2848. #if HAS_TEMP_BED
  2849. SERIAL_PROTOCOLPGM(" ADC B:");
  2850. SERIAL_PROTOCOL_F(degBed(),1);
  2851. SERIAL_PROTOCOLPGM("C->");
  2852. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2853. #endif
  2854. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2855. SERIAL_PROTOCOLPGM(" T");
  2856. SERIAL_PROTOCOL(cur_extruder);
  2857. SERIAL_PROTOCOLCHAR(':');
  2858. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2859. SERIAL_PROTOCOLPGM("C->");
  2860. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2861. }
  2862. #endif
  2863. SERIAL_EOL;
  2864. }
  2865. #if HAS_FAN
  2866. /**
  2867. * M106: Set Fan Speed
  2868. */
  2869. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2870. /**
  2871. * M107: Fan Off
  2872. */
  2873. inline void gcode_M107() { fanSpeed = 0; }
  2874. #endif // HAS_FAN
  2875. /**
  2876. * M109: Wait for extruder(s) to reach temperature
  2877. */
  2878. inline void gcode_M109() {
  2879. if (setTargetedHotend(109)) return;
  2880. LCD_MESSAGEPGM(MSG_HEATING);
  2881. no_wait_for_cooling = code_seen('S');
  2882. if (no_wait_for_cooling || code_seen('R')) {
  2883. float temp = code_value();
  2884. setTargetHotend(temp, target_extruder);
  2885. #ifdef DUAL_X_CARRIAGE
  2886. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2887. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2888. #endif
  2889. }
  2890. #ifdef AUTOTEMP
  2891. autotemp_enabled = code_seen('F');
  2892. if (autotemp_enabled) autotemp_factor = code_value();
  2893. if (code_seen('S')) autotemp_min = code_value();
  2894. if (code_seen('B')) autotemp_max = code_value();
  2895. #endif
  2896. #ifdef THERMAL_PROTECTION_HOTENDS
  2897. start_watching_heater(target_extruder);
  2898. #endif
  2899. millis_t temp_ms = millis();
  2900. /* See if we are heating up or cooling down */
  2901. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2902. cancel_heatup = false;
  2903. #ifdef TEMP_RESIDENCY_TIME
  2904. long residency_start_ms = -1;
  2905. /* continue to loop until we have reached the target temp
  2906. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2907. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2908. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2909. #else
  2910. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2911. #endif //TEMP_RESIDENCY_TIME
  2912. { // while loop
  2913. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2914. SERIAL_PROTOCOLPGM("T:");
  2915. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2916. SERIAL_PROTOCOLPGM(" E:");
  2917. SERIAL_PROTOCOL((int)target_extruder);
  2918. #ifdef TEMP_RESIDENCY_TIME
  2919. SERIAL_PROTOCOLPGM(" W:");
  2920. if (residency_start_ms > -1) {
  2921. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2922. SERIAL_PROTOCOLLN(temp_ms);
  2923. }
  2924. else {
  2925. SERIAL_PROTOCOLLNPGM("?");
  2926. }
  2927. #else
  2928. SERIAL_EOL;
  2929. #endif
  2930. temp_ms = millis();
  2931. }
  2932. manage_heater();
  2933. manage_inactivity();
  2934. lcd_update();
  2935. #ifdef TEMP_RESIDENCY_TIME
  2936. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2937. // or when current temp falls outside the hysteresis after target temp was reached
  2938. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2939. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2940. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2941. {
  2942. residency_start_ms = millis();
  2943. }
  2944. #endif //TEMP_RESIDENCY_TIME
  2945. }
  2946. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2947. refresh_cmd_timeout();
  2948. print_job_start_ms = previous_cmd_ms;
  2949. }
  2950. #if HAS_TEMP_BED
  2951. /**
  2952. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2953. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2954. */
  2955. inline void gcode_M190() {
  2956. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2957. no_wait_for_cooling = code_seen('S');
  2958. if (no_wait_for_cooling || code_seen('R'))
  2959. setTargetBed(code_value());
  2960. millis_t temp_ms = millis();
  2961. cancel_heatup = false;
  2962. target_direction = isHeatingBed(); // true if heating, false if cooling
  2963. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2964. millis_t ms = millis();
  2965. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2966. temp_ms = ms;
  2967. float tt = degHotend(active_extruder);
  2968. SERIAL_PROTOCOLPGM("T:");
  2969. SERIAL_PROTOCOL(tt);
  2970. SERIAL_PROTOCOLPGM(" E:");
  2971. SERIAL_PROTOCOL((int)active_extruder);
  2972. SERIAL_PROTOCOLPGM(" B:");
  2973. SERIAL_PROTOCOL_F(degBed(), 1);
  2974. SERIAL_EOL;
  2975. }
  2976. manage_heater();
  2977. manage_inactivity();
  2978. lcd_update();
  2979. }
  2980. LCD_MESSAGEPGM(MSG_BED_DONE);
  2981. refresh_cmd_timeout();
  2982. }
  2983. #endif // HAS_TEMP_BED
  2984. /**
  2985. * M111: Set the debug level
  2986. */
  2987. inline void gcode_M111() {
  2988. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2989. }
  2990. /**
  2991. * M112: Emergency Stop
  2992. */
  2993. inline void gcode_M112() { kill(); }
  2994. #ifdef BARICUDA
  2995. #if HAS_HEATER_1
  2996. /**
  2997. * M126: Heater 1 valve open
  2998. */
  2999. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3000. /**
  3001. * M127: Heater 1 valve close
  3002. */
  3003. inline void gcode_M127() { ValvePressure = 0; }
  3004. #endif
  3005. #if HAS_HEATER_2
  3006. /**
  3007. * M128: Heater 2 valve open
  3008. */
  3009. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3010. /**
  3011. * M129: Heater 2 valve close
  3012. */
  3013. inline void gcode_M129() { EtoPPressure = 0; }
  3014. #endif
  3015. #endif //BARICUDA
  3016. /**
  3017. * M140: Set bed temperature
  3018. */
  3019. inline void gcode_M140() {
  3020. if (code_seen('S')) setTargetBed(code_value());
  3021. }
  3022. #ifdef ULTIPANEL
  3023. /**
  3024. * M145: Set the heatup state for a material in the LCD menu
  3025. * S<material> (0=PLA, 1=ABS)
  3026. * H<hotend temp>
  3027. * B<bed temp>
  3028. * F<fan speed>
  3029. */
  3030. inline void gcode_M145() {
  3031. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3032. if (material < 0 || material > 1) {
  3033. SERIAL_ERROR_START;
  3034. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3035. }
  3036. else {
  3037. int v;
  3038. switch (material) {
  3039. case 0:
  3040. if (code_seen('H')) {
  3041. v = code_value_short();
  3042. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3043. }
  3044. if (code_seen('F')) {
  3045. v = code_value_short();
  3046. plaPreheatFanSpeed = constrain(v, 0, 255);
  3047. }
  3048. #if TEMP_SENSOR_BED != 0
  3049. if (code_seen('B')) {
  3050. v = code_value_short();
  3051. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3052. }
  3053. #endif
  3054. break;
  3055. case 1:
  3056. if (code_seen('H')) {
  3057. v = code_value_short();
  3058. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3059. }
  3060. if (code_seen('F')) {
  3061. v = code_value_short();
  3062. absPreheatFanSpeed = constrain(v, 0, 255);
  3063. }
  3064. #if TEMP_SENSOR_BED != 0
  3065. if (code_seen('B')) {
  3066. v = code_value_short();
  3067. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3068. }
  3069. #endif
  3070. break;
  3071. }
  3072. }
  3073. }
  3074. #endif
  3075. #if HAS_POWER_SWITCH
  3076. /**
  3077. * M80: Turn on Power Supply
  3078. */
  3079. inline void gcode_M80() {
  3080. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3081. // If you have a switch on suicide pin, this is useful
  3082. // if you want to start another print with suicide feature after
  3083. // a print without suicide...
  3084. #if HAS_SUICIDE
  3085. OUT_WRITE(SUICIDE_PIN, HIGH);
  3086. #endif
  3087. #ifdef ULTIPANEL
  3088. powersupply = true;
  3089. LCD_MESSAGEPGM(WELCOME_MSG);
  3090. lcd_update();
  3091. #endif
  3092. }
  3093. #endif // HAS_POWER_SWITCH
  3094. /**
  3095. * M81: Turn off Power, including Power Supply, if there is one.
  3096. *
  3097. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3098. */
  3099. inline void gcode_M81() {
  3100. disable_all_heaters();
  3101. st_synchronize();
  3102. disable_e0();
  3103. disable_e1();
  3104. disable_e2();
  3105. disable_e3();
  3106. finishAndDisableSteppers();
  3107. fanSpeed = 0;
  3108. delay(1000); // Wait 1 second before switching off
  3109. #if HAS_SUICIDE
  3110. st_synchronize();
  3111. suicide();
  3112. #elif HAS_POWER_SWITCH
  3113. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3114. #endif
  3115. #ifdef ULTIPANEL
  3116. #if HAS_POWER_SWITCH
  3117. powersupply = false;
  3118. #endif
  3119. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3120. lcd_update();
  3121. #endif
  3122. }
  3123. /**
  3124. * M82: Set E codes absolute (default)
  3125. */
  3126. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3127. /**
  3128. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3129. */
  3130. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3131. /**
  3132. * M18, M84: Disable all stepper motors
  3133. */
  3134. inline void gcode_M18_M84() {
  3135. if (code_seen('S')) {
  3136. stepper_inactive_time = code_value() * 1000;
  3137. }
  3138. else {
  3139. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3140. if (all_axis) {
  3141. st_synchronize();
  3142. disable_e0();
  3143. disable_e1();
  3144. disable_e2();
  3145. disable_e3();
  3146. finishAndDisableSteppers();
  3147. }
  3148. else {
  3149. st_synchronize();
  3150. if (code_seen('X')) disable_x();
  3151. if (code_seen('Y')) disable_y();
  3152. if (code_seen('Z')) disable_z();
  3153. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3154. if (code_seen('E')) {
  3155. disable_e0();
  3156. disable_e1();
  3157. disable_e2();
  3158. disable_e3();
  3159. }
  3160. #endif
  3161. }
  3162. }
  3163. }
  3164. /**
  3165. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3166. */
  3167. inline void gcode_M85() {
  3168. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3169. }
  3170. /**
  3171. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3172. * (Follows the same syntax as G92)
  3173. */
  3174. inline void gcode_M92() {
  3175. for(int8_t i=0; i < NUM_AXIS; i++) {
  3176. if (code_seen(axis_codes[i])) {
  3177. if (i == E_AXIS) {
  3178. float value = code_value();
  3179. if (value < 20.0) {
  3180. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3181. max_e_jerk *= factor;
  3182. max_feedrate[i] *= factor;
  3183. axis_steps_per_sqr_second[i] *= factor;
  3184. }
  3185. axis_steps_per_unit[i] = value;
  3186. }
  3187. else {
  3188. axis_steps_per_unit[i] = code_value();
  3189. }
  3190. }
  3191. }
  3192. }
  3193. /**
  3194. * M114: Output current position to serial port
  3195. */
  3196. inline void gcode_M114() {
  3197. SERIAL_PROTOCOLPGM("X:");
  3198. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3199. SERIAL_PROTOCOLPGM(" Y:");
  3200. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3201. SERIAL_PROTOCOLPGM(" Z:");
  3202. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3203. SERIAL_PROTOCOLPGM(" E:");
  3204. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3205. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3206. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3207. SERIAL_PROTOCOLPGM(" Y:");
  3208. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3209. SERIAL_PROTOCOLPGM(" Z:");
  3210. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3211. SERIAL_EOL;
  3212. #ifdef SCARA
  3213. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3214. SERIAL_PROTOCOL(delta[X_AXIS]);
  3215. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3216. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3217. SERIAL_EOL;
  3218. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3219. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3220. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3221. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3222. SERIAL_EOL;
  3223. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3224. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3225. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3226. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3227. SERIAL_EOL; SERIAL_EOL;
  3228. #endif
  3229. }
  3230. /**
  3231. * M115: Capabilities string
  3232. */
  3233. inline void gcode_M115() {
  3234. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3235. }
  3236. /**
  3237. * M117: Set LCD Status Message
  3238. */
  3239. inline void gcode_M117() {
  3240. char* codepos = strchr_pointer + 5;
  3241. char* starpos = strchr(codepos, '*');
  3242. if (starpos) *starpos = '\0';
  3243. lcd_setstatus(codepos);
  3244. }
  3245. /**
  3246. * M119: Output endstop states to serial output
  3247. */
  3248. inline void gcode_M119() {
  3249. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3250. #if HAS_X_MIN
  3251. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3252. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3253. #endif
  3254. #if HAS_X_MAX
  3255. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3256. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3257. #endif
  3258. #if HAS_Y_MIN
  3259. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3260. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3261. #endif
  3262. #if HAS_Y_MAX
  3263. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3264. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3265. #endif
  3266. #if HAS_Z_MIN
  3267. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3268. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3269. #endif
  3270. #if HAS_Z_MAX
  3271. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3272. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3273. #endif
  3274. #if HAS_Z2_MAX
  3275. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3276. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3277. #endif
  3278. #if HAS_Z_PROBE
  3279. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3280. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3281. #endif
  3282. }
  3283. /**
  3284. * M120: Enable endstops
  3285. */
  3286. inline void gcode_M120() { enable_endstops(false); }
  3287. /**
  3288. * M121: Disable endstops
  3289. */
  3290. inline void gcode_M121() { enable_endstops(true); }
  3291. #ifdef BLINKM
  3292. /**
  3293. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3294. */
  3295. inline void gcode_M150() {
  3296. SendColors(
  3297. code_seen('R') ? (byte)code_value_short() : 0,
  3298. code_seen('U') ? (byte)code_value_short() : 0,
  3299. code_seen('B') ? (byte)code_value_short() : 0
  3300. );
  3301. }
  3302. #endif // BLINKM
  3303. /**
  3304. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3305. * T<extruder>
  3306. * D<millimeters>
  3307. */
  3308. inline void gcode_M200() {
  3309. int tmp_extruder = active_extruder;
  3310. if (code_seen('T')) {
  3311. tmp_extruder = code_value_short();
  3312. if (tmp_extruder >= EXTRUDERS) {
  3313. SERIAL_ECHO_START;
  3314. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3315. return;
  3316. }
  3317. }
  3318. if (code_seen('D')) {
  3319. float diameter = code_value();
  3320. // setting any extruder filament size disables volumetric on the assumption that
  3321. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3322. // for all extruders
  3323. volumetric_enabled = (diameter != 0.0);
  3324. if (volumetric_enabled) {
  3325. filament_size[tmp_extruder] = diameter;
  3326. // make sure all extruders have some sane value for the filament size
  3327. for (int i=0; i<EXTRUDERS; i++)
  3328. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3329. }
  3330. }
  3331. else {
  3332. //reserved for setting filament diameter via UFID or filament measuring device
  3333. return;
  3334. }
  3335. calculate_volumetric_multipliers();
  3336. }
  3337. /**
  3338. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3339. */
  3340. inline void gcode_M201() {
  3341. for (int8_t i=0; i < NUM_AXIS; i++) {
  3342. if (code_seen(axis_codes[i])) {
  3343. max_acceleration_units_per_sq_second[i] = code_value();
  3344. }
  3345. }
  3346. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3347. reset_acceleration_rates();
  3348. }
  3349. #if 0 // Not used for Sprinter/grbl gen6
  3350. inline void gcode_M202() {
  3351. for(int8_t i=0; i < NUM_AXIS; i++) {
  3352. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3353. }
  3354. }
  3355. #endif
  3356. /**
  3357. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3358. */
  3359. inline void gcode_M203() {
  3360. for (int8_t i=0; i < NUM_AXIS; i++) {
  3361. if (code_seen(axis_codes[i])) {
  3362. max_feedrate[i] = code_value();
  3363. }
  3364. }
  3365. }
  3366. /**
  3367. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3368. *
  3369. * P = Printing moves
  3370. * R = Retract only (no X, Y, Z) moves
  3371. * T = Travel (non printing) moves
  3372. *
  3373. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3374. */
  3375. inline void gcode_M204() {
  3376. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3377. acceleration = code_value();
  3378. travel_acceleration = acceleration;
  3379. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3380. SERIAL_EOL;
  3381. }
  3382. if (code_seen('P')) {
  3383. acceleration = code_value();
  3384. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3385. SERIAL_EOL;
  3386. }
  3387. if (code_seen('R')) {
  3388. retract_acceleration = code_value();
  3389. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3390. SERIAL_EOL;
  3391. }
  3392. if (code_seen('T')) {
  3393. travel_acceleration = code_value();
  3394. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3395. SERIAL_EOL;
  3396. }
  3397. }
  3398. /**
  3399. * M205: Set Advanced Settings
  3400. *
  3401. * S = Min Feed Rate (mm/s)
  3402. * T = Min Travel Feed Rate (mm/s)
  3403. * B = Min Segment Time (µs)
  3404. * X = Max XY Jerk (mm/s/s)
  3405. * Z = Max Z Jerk (mm/s/s)
  3406. * E = Max E Jerk (mm/s/s)
  3407. */
  3408. inline void gcode_M205() {
  3409. if (code_seen('S')) minimumfeedrate = code_value();
  3410. if (code_seen('T')) mintravelfeedrate = code_value();
  3411. if (code_seen('B')) minsegmenttime = code_value();
  3412. if (code_seen('X')) max_xy_jerk = code_value();
  3413. if (code_seen('Z')) max_z_jerk = code_value();
  3414. if (code_seen('E')) max_e_jerk = code_value();
  3415. }
  3416. /**
  3417. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3418. */
  3419. inline void gcode_M206() {
  3420. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3421. if (code_seen(axis_codes[i])) {
  3422. home_offset[i] = code_value();
  3423. }
  3424. }
  3425. #ifdef SCARA
  3426. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3427. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3428. #endif
  3429. }
  3430. #ifdef DELTA
  3431. /**
  3432. * M665: Set delta configurations
  3433. *
  3434. * L = diagonal rod
  3435. * R = delta radius
  3436. * S = segments per second
  3437. */
  3438. inline void gcode_M665() {
  3439. if (code_seen('L')) delta_diagonal_rod = code_value();
  3440. if (code_seen('R')) delta_radius = code_value();
  3441. if (code_seen('S')) delta_segments_per_second = code_value();
  3442. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3443. }
  3444. /**
  3445. * M666: Set delta endstop adjustment
  3446. */
  3447. inline void gcode_M666() {
  3448. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3449. if (code_seen(axis_codes[i])) {
  3450. endstop_adj[i] = code_value();
  3451. }
  3452. }
  3453. }
  3454. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3455. /**
  3456. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3457. */
  3458. inline void gcode_M666() {
  3459. if (code_seen('Z')) z_endstop_adj = code_value();
  3460. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3461. SERIAL_EOL;
  3462. }
  3463. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3464. #ifdef FWRETRACT
  3465. /**
  3466. * M207: Set firmware retraction values
  3467. *
  3468. * S[+mm] retract_length
  3469. * W[+mm] retract_length_swap (multi-extruder)
  3470. * F[mm/min] retract_feedrate
  3471. * Z[mm] retract_zlift
  3472. */
  3473. inline void gcode_M207() {
  3474. if (code_seen('S')) retract_length = code_value();
  3475. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3476. if (code_seen('Z')) retract_zlift = code_value();
  3477. #if EXTRUDERS > 1
  3478. if (code_seen('W')) retract_length_swap = code_value();
  3479. #endif
  3480. }
  3481. /**
  3482. * M208: Set firmware un-retraction values
  3483. *
  3484. * S[+mm] retract_recover_length (in addition to M207 S*)
  3485. * W[+mm] retract_recover_length_swap (multi-extruder)
  3486. * F[mm/min] retract_recover_feedrate
  3487. */
  3488. inline void gcode_M208() {
  3489. if (code_seen('S')) retract_recover_length = code_value();
  3490. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3491. #if EXTRUDERS > 1
  3492. if (code_seen('W')) retract_recover_length_swap = code_value();
  3493. #endif
  3494. }
  3495. /**
  3496. * M209: Enable automatic retract (M209 S1)
  3497. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3498. */
  3499. inline void gcode_M209() {
  3500. if (code_seen('S')) {
  3501. int t = code_value_short();
  3502. switch(t) {
  3503. case 0:
  3504. autoretract_enabled = false;
  3505. break;
  3506. case 1:
  3507. autoretract_enabled = true;
  3508. break;
  3509. default:
  3510. SERIAL_ECHO_START;
  3511. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3512. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3513. SERIAL_ECHOLNPGM("\"");
  3514. return;
  3515. }
  3516. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3517. }
  3518. }
  3519. #endif // FWRETRACT
  3520. #if EXTRUDERS > 1
  3521. /**
  3522. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3523. */
  3524. inline void gcode_M218() {
  3525. if (setTargetedHotend(218)) return;
  3526. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3527. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3528. #ifdef DUAL_X_CARRIAGE
  3529. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3530. #endif
  3531. SERIAL_ECHO_START;
  3532. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3533. for (int e = 0; e < EXTRUDERS; e++) {
  3534. SERIAL_CHAR(' ');
  3535. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3536. SERIAL_CHAR(',');
  3537. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3538. #ifdef DUAL_X_CARRIAGE
  3539. SERIAL_CHAR(',');
  3540. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3541. #endif
  3542. }
  3543. SERIAL_EOL;
  3544. }
  3545. #endif // EXTRUDERS > 1
  3546. /**
  3547. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3548. */
  3549. inline void gcode_M220() {
  3550. if (code_seen('S')) feedrate_multiplier = code_value();
  3551. }
  3552. /**
  3553. * M221: Set extrusion percentage (M221 T0 S95)
  3554. */
  3555. inline void gcode_M221() {
  3556. if (code_seen('S')) {
  3557. int sval = code_value();
  3558. if (code_seen('T')) {
  3559. if (setTargetedHotend(221)) return;
  3560. extruder_multiply[target_extruder] = sval;
  3561. }
  3562. else {
  3563. extruder_multiply[active_extruder] = sval;
  3564. }
  3565. }
  3566. }
  3567. /**
  3568. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3569. */
  3570. inline void gcode_M226() {
  3571. if (code_seen('P')) {
  3572. int pin_number = code_value();
  3573. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3574. if (pin_state >= -1 && pin_state <= 1) {
  3575. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3576. if (sensitive_pins[i] == pin_number) {
  3577. pin_number = -1;
  3578. break;
  3579. }
  3580. }
  3581. if (pin_number > -1) {
  3582. int target = LOW;
  3583. st_synchronize();
  3584. pinMode(pin_number, INPUT);
  3585. switch(pin_state){
  3586. case 1:
  3587. target = HIGH;
  3588. break;
  3589. case 0:
  3590. target = LOW;
  3591. break;
  3592. case -1:
  3593. target = !digitalRead(pin_number);
  3594. break;
  3595. }
  3596. while(digitalRead(pin_number) != target) {
  3597. manage_heater();
  3598. manage_inactivity();
  3599. lcd_update();
  3600. }
  3601. } // pin_number > -1
  3602. } // pin_state -1 0 1
  3603. } // code_seen('P')
  3604. }
  3605. #if NUM_SERVOS > 0
  3606. /**
  3607. * M280: Get or set servo position. P<index> S<angle>
  3608. */
  3609. inline void gcode_M280() {
  3610. int servo_index = code_seen('P') ? code_value_short() : -1;
  3611. int servo_position = 0;
  3612. if (code_seen('S')) {
  3613. servo_position = code_value_short();
  3614. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3615. Servo *srv = &servo[servo_index];
  3616. #if SERVO_LEVELING
  3617. srv->attach(0);
  3618. #endif
  3619. srv->write(servo_position);
  3620. #if SERVO_LEVELING
  3621. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3622. srv->detach();
  3623. #endif
  3624. }
  3625. else {
  3626. SERIAL_ECHO_START;
  3627. SERIAL_ECHO("Servo ");
  3628. SERIAL_ECHO(servo_index);
  3629. SERIAL_ECHOLN(" out of range");
  3630. }
  3631. }
  3632. else if (servo_index >= 0) {
  3633. SERIAL_PROTOCOL(MSG_OK);
  3634. SERIAL_PROTOCOL(" Servo ");
  3635. SERIAL_PROTOCOL(servo_index);
  3636. SERIAL_PROTOCOL(": ");
  3637. SERIAL_PROTOCOL(servo[servo_index].read());
  3638. SERIAL_EOL;
  3639. }
  3640. }
  3641. #endif // NUM_SERVOS > 0
  3642. #if HAS_LCD_BUZZ
  3643. /**
  3644. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3645. */
  3646. inline void gcode_M300() {
  3647. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3648. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3649. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3650. lcd_buzz(beepP, beepS);
  3651. }
  3652. #endif // HAS_LCD_BUZZ
  3653. #ifdef PIDTEMP
  3654. /**
  3655. * M301: Set PID parameters P I D (and optionally C)
  3656. */
  3657. inline void gcode_M301() {
  3658. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3659. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3660. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3661. if (e < EXTRUDERS) { // catch bad input value
  3662. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3663. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3664. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3665. #ifdef PID_ADD_EXTRUSION_RATE
  3666. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3667. #endif
  3668. updatePID();
  3669. SERIAL_PROTOCOL(MSG_OK);
  3670. #ifdef PID_PARAMS_PER_EXTRUDER
  3671. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3672. SERIAL_PROTOCOL(e);
  3673. #endif // PID_PARAMS_PER_EXTRUDER
  3674. SERIAL_PROTOCOL(" p:");
  3675. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3676. SERIAL_PROTOCOL(" i:");
  3677. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3678. SERIAL_PROTOCOL(" d:");
  3679. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3680. #ifdef PID_ADD_EXTRUSION_RATE
  3681. SERIAL_PROTOCOL(" c:");
  3682. //Kc does not have scaling applied above, or in resetting defaults
  3683. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3684. #endif
  3685. SERIAL_EOL;
  3686. }
  3687. else {
  3688. SERIAL_ECHO_START;
  3689. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3690. }
  3691. }
  3692. #endif // PIDTEMP
  3693. #ifdef PIDTEMPBED
  3694. inline void gcode_M304() {
  3695. if (code_seen('P')) bedKp = code_value();
  3696. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3697. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3698. updatePID();
  3699. SERIAL_PROTOCOL(MSG_OK);
  3700. SERIAL_PROTOCOL(" p:");
  3701. SERIAL_PROTOCOL(bedKp);
  3702. SERIAL_PROTOCOL(" i:");
  3703. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3704. SERIAL_PROTOCOL(" d:");
  3705. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3706. SERIAL_EOL;
  3707. }
  3708. #endif // PIDTEMPBED
  3709. #if defined(CHDK) || HAS_PHOTOGRAPH
  3710. /**
  3711. * M240: Trigger a camera by emulating a Canon RC-1
  3712. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3713. */
  3714. inline void gcode_M240() {
  3715. #ifdef CHDK
  3716. OUT_WRITE(CHDK, HIGH);
  3717. chdkHigh = millis();
  3718. chdkActive = true;
  3719. #elif HAS_PHOTOGRAPH
  3720. const uint8_t NUM_PULSES = 16;
  3721. const float PULSE_LENGTH = 0.01524;
  3722. for (int i = 0; i < NUM_PULSES; i++) {
  3723. WRITE(PHOTOGRAPH_PIN, HIGH);
  3724. _delay_ms(PULSE_LENGTH);
  3725. WRITE(PHOTOGRAPH_PIN, LOW);
  3726. _delay_ms(PULSE_LENGTH);
  3727. }
  3728. delay(7.33);
  3729. for (int i = 0; i < NUM_PULSES; i++) {
  3730. WRITE(PHOTOGRAPH_PIN, HIGH);
  3731. _delay_ms(PULSE_LENGTH);
  3732. WRITE(PHOTOGRAPH_PIN, LOW);
  3733. _delay_ms(PULSE_LENGTH);
  3734. }
  3735. #endif // !CHDK && HAS_PHOTOGRAPH
  3736. }
  3737. #endif // CHDK || PHOTOGRAPH_PIN
  3738. #ifdef HAS_LCD_CONTRAST
  3739. /**
  3740. * M250: Read and optionally set the LCD contrast
  3741. */
  3742. inline void gcode_M250() {
  3743. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3744. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3745. SERIAL_PROTOCOL(lcd_contrast);
  3746. SERIAL_EOL;
  3747. }
  3748. #endif // HAS_LCD_CONTRAST
  3749. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3750. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3751. /**
  3752. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3753. */
  3754. inline void gcode_M302() {
  3755. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3756. }
  3757. #endif // PREVENT_DANGEROUS_EXTRUDE
  3758. /**
  3759. * M303: PID relay autotune
  3760. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3761. * E<extruder> (-1 for the bed)
  3762. * C<cycles>
  3763. */
  3764. inline void gcode_M303() {
  3765. int e = code_seen('E') ? code_value_short() : 0;
  3766. int c = code_seen('C') ? code_value_short() : 5;
  3767. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3768. PID_autotune(temp, e, c);
  3769. }
  3770. #ifdef SCARA
  3771. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3772. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3773. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3774. if (IsRunning()) {
  3775. //gcode_get_destination(); // For X Y Z E F
  3776. delta[X_AXIS] = delta_x;
  3777. delta[Y_AXIS] = delta_y;
  3778. calculate_SCARA_forward_Transform(delta);
  3779. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3780. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3781. prepare_move();
  3782. //ok_to_send();
  3783. return true;
  3784. }
  3785. return false;
  3786. }
  3787. /**
  3788. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3789. */
  3790. inline bool gcode_M360() {
  3791. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3792. return SCARA_move_to_cal(0, 120);
  3793. }
  3794. /**
  3795. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3796. */
  3797. inline bool gcode_M361() {
  3798. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3799. return SCARA_move_to_cal(90, 130);
  3800. }
  3801. /**
  3802. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3803. */
  3804. inline bool gcode_M362() {
  3805. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3806. return SCARA_move_to_cal(60, 180);
  3807. }
  3808. /**
  3809. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3810. */
  3811. inline bool gcode_M363() {
  3812. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3813. return SCARA_move_to_cal(50, 90);
  3814. }
  3815. /**
  3816. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3817. */
  3818. inline bool gcode_M364() {
  3819. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3820. return SCARA_move_to_cal(45, 135);
  3821. }
  3822. /**
  3823. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3824. */
  3825. inline void gcode_M365() {
  3826. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3827. if (code_seen(axis_codes[i])) {
  3828. axis_scaling[i] = code_value();
  3829. }
  3830. }
  3831. }
  3832. #endif // SCARA
  3833. #ifdef EXT_SOLENOID
  3834. void enable_solenoid(uint8_t num) {
  3835. switch(num) {
  3836. case 0:
  3837. OUT_WRITE(SOL0_PIN, HIGH);
  3838. break;
  3839. #if HAS_SOLENOID_1
  3840. case 1:
  3841. OUT_WRITE(SOL1_PIN, HIGH);
  3842. break;
  3843. #endif
  3844. #if HAS_SOLENOID_2
  3845. case 2:
  3846. OUT_WRITE(SOL2_PIN, HIGH);
  3847. break;
  3848. #endif
  3849. #if HAS_SOLENOID_3
  3850. case 3:
  3851. OUT_WRITE(SOL3_PIN, HIGH);
  3852. break;
  3853. #endif
  3854. default:
  3855. SERIAL_ECHO_START;
  3856. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3857. break;
  3858. }
  3859. }
  3860. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3861. void disable_all_solenoids() {
  3862. OUT_WRITE(SOL0_PIN, LOW);
  3863. OUT_WRITE(SOL1_PIN, LOW);
  3864. OUT_WRITE(SOL2_PIN, LOW);
  3865. OUT_WRITE(SOL3_PIN, LOW);
  3866. }
  3867. /**
  3868. * M380: Enable solenoid on the active extruder
  3869. */
  3870. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3871. /**
  3872. * M381: Disable all solenoids
  3873. */
  3874. inline void gcode_M381() { disable_all_solenoids(); }
  3875. #endif // EXT_SOLENOID
  3876. /**
  3877. * M400: Finish all moves
  3878. */
  3879. inline void gcode_M400() { st_synchronize(); }
  3880. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3881. #ifdef SERVO_ENDSTOPS
  3882. void raise_z_for_servo() {
  3883. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3884. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3885. if (zpos < z_dest)
  3886. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3887. }
  3888. #endif
  3889. /**
  3890. * M401: Engage Z Servo endstop if available
  3891. */
  3892. inline void gcode_M401() {
  3893. #ifdef SERVO_ENDSTOPS
  3894. raise_z_for_servo();
  3895. #endif
  3896. deploy_z_probe();
  3897. }
  3898. /**
  3899. * M402: Retract Z Servo endstop if enabled
  3900. */
  3901. inline void gcode_M402() {
  3902. #ifdef SERVO_ENDSTOPS
  3903. raise_z_for_servo();
  3904. #endif
  3905. stow_z_probe(false);
  3906. }
  3907. #endif
  3908. #ifdef FILAMENT_SENSOR
  3909. /**
  3910. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3911. */
  3912. inline void gcode_M404() {
  3913. #if HAS_FILWIDTH
  3914. if (code_seen('W')) {
  3915. filament_width_nominal = code_value();
  3916. }
  3917. else {
  3918. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3919. SERIAL_PROTOCOLLN(filament_width_nominal);
  3920. }
  3921. #endif
  3922. }
  3923. /**
  3924. * M405: Turn on filament sensor for control
  3925. */
  3926. inline void gcode_M405() {
  3927. if (code_seen('D')) meas_delay_cm = code_value();
  3928. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3929. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3930. int temp_ratio = widthFil_to_size_ratio();
  3931. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3932. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3933. delay_index1 = delay_index2 = 0;
  3934. }
  3935. filament_sensor = true;
  3936. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3937. //SERIAL_PROTOCOL(filament_width_meas);
  3938. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3939. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3940. }
  3941. /**
  3942. * M406: Turn off filament sensor for control
  3943. */
  3944. inline void gcode_M406() { filament_sensor = false; }
  3945. /**
  3946. * M407: Get measured filament diameter on serial output
  3947. */
  3948. inline void gcode_M407() {
  3949. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3950. SERIAL_PROTOCOLLN(filament_width_meas);
  3951. }
  3952. #endif // FILAMENT_SENSOR
  3953. /**
  3954. * M410: Quickstop - Abort all planned moves
  3955. *
  3956. * This will stop the carriages mid-move, so most likely they
  3957. * will be out of sync with the stepper position after this.
  3958. */
  3959. inline void gcode_M410() { quickStop(); }
  3960. #ifdef MESH_BED_LEVELING
  3961. /**
  3962. * M420: Enable/Disable Mesh Bed Leveling
  3963. */
  3964. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3965. /**
  3966. * M421: Set a single Mesh Bed Leveling Z coordinate
  3967. */
  3968. inline void gcode_M421() {
  3969. float x, y, z;
  3970. bool err = false, hasX, hasY, hasZ;
  3971. if ((hasX = code_seen('X'))) x = code_value();
  3972. if ((hasY = code_seen('Y'))) y = code_value();
  3973. if ((hasZ = code_seen('Z'))) z = code_value();
  3974. if (!hasX || !hasY || !hasZ) {
  3975. SERIAL_ERROR_START;
  3976. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3977. err = true;
  3978. }
  3979. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3980. SERIAL_ERROR_START;
  3981. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3982. err = true;
  3983. }
  3984. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3985. }
  3986. #endif
  3987. /**
  3988. * M428: Set home_offset based on the distance between the
  3989. * current_position and the nearest "reference point."
  3990. * If an axis is past center its endstop position
  3991. * is the reference-point. Otherwise it uses 0. This allows
  3992. * the Z offset to be set near the bed when using a max endstop.
  3993. *
  3994. * M428 can't be used more than 2cm away from 0 or an endstop.
  3995. *
  3996. * Use M206 to set these values directly.
  3997. */
  3998. inline void gcode_M428() {
  3999. bool err = false;
  4000. float new_offs[3], new_pos[3];
  4001. memcpy(new_pos, current_position, sizeof(new_pos));
  4002. memcpy(new_offs, home_offset, sizeof(new_offs));
  4003. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4004. if (axis_known_position[i]) {
  4005. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4006. diff = new_pos[i] - base;
  4007. if (diff > -20 && diff < 20) {
  4008. new_offs[i] -= diff;
  4009. new_pos[i] = base;
  4010. }
  4011. else {
  4012. SERIAL_ERROR_START;
  4013. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4014. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4015. #if HAS_LCD_BUZZ
  4016. enqueuecommands_P(PSTR("M300 S40 P200"));
  4017. #endif
  4018. err = true;
  4019. break;
  4020. }
  4021. }
  4022. }
  4023. if (!err) {
  4024. memcpy(current_position, new_pos, sizeof(new_pos));
  4025. memcpy(home_offset, new_offs, sizeof(new_offs));
  4026. sync_plan_position();
  4027. LCD_ALERTMESSAGEPGM("Offset applied.");
  4028. #if HAS_LCD_BUZZ
  4029. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4030. #endif
  4031. }
  4032. }
  4033. /**
  4034. * M500: Store settings in EEPROM
  4035. */
  4036. inline void gcode_M500() {
  4037. Config_StoreSettings();
  4038. }
  4039. /**
  4040. * M501: Read settings from EEPROM
  4041. */
  4042. inline void gcode_M501() {
  4043. Config_RetrieveSettings();
  4044. }
  4045. /**
  4046. * M502: Revert to default settings
  4047. */
  4048. inline void gcode_M502() {
  4049. Config_ResetDefault();
  4050. }
  4051. /**
  4052. * M503: print settings currently in memory
  4053. */
  4054. inline void gcode_M503() {
  4055. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4056. }
  4057. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4058. /**
  4059. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4060. */
  4061. inline void gcode_M540() {
  4062. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4063. }
  4064. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4065. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4066. inline void gcode_SET_Z_PROBE_OFFSET() {
  4067. float value;
  4068. if (code_seen('Z')) {
  4069. value = code_value();
  4070. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4071. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  4072. SERIAL_ECHO_START;
  4073. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4074. SERIAL_EOL;
  4075. }
  4076. else {
  4077. SERIAL_ECHO_START;
  4078. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4079. SERIAL_ECHOPGM(MSG_Z_MIN);
  4080. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4081. SERIAL_ECHOPGM(MSG_Z_MAX);
  4082. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4083. SERIAL_EOL;
  4084. }
  4085. }
  4086. else {
  4087. SERIAL_ECHO_START;
  4088. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4089. SERIAL_ECHO(-zprobe_zoffset);
  4090. SERIAL_EOL;
  4091. }
  4092. }
  4093. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4094. #ifdef FILAMENTCHANGEENABLE
  4095. /**
  4096. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4097. */
  4098. inline void gcode_M600() {
  4099. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4100. for (int i=0; i<NUM_AXIS; i++)
  4101. target[i] = lastpos[i] = current_position[i];
  4102. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4103. #ifdef DELTA
  4104. #define RUNPLAN calculate_delta(target); BASICPLAN
  4105. #else
  4106. #define RUNPLAN BASICPLAN
  4107. #endif
  4108. //retract by E
  4109. if (code_seen('E')) target[E_AXIS] += code_value();
  4110. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4111. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4112. #endif
  4113. RUNPLAN;
  4114. //lift Z
  4115. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4116. #ifdef FILAMENTCHANGE_ZADD
  4117. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4118. #endif
  4119. RUNPLAN;
  4120. //move xy
  4121. if (code_seen('X')) target[X_AXIS] = code_value();
  4122. #ifdef FILAMENTCHANGE_XPOS
  4123. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4124. #endif
  4125. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4126. #ifdef FILAMENTCHANGE_YPOS
  4127. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4128. #endif
  4129. RUNPLAN;
  4130. if (code_seen('L')) target[E_AXIS] += code_value();
  4131. #ifdef FILAMENTCHANGE_FINALRETRACT
  4132. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4133. #endif
  4134. RUNPLAN;
  4135. //finish moves
  4136. st_synchronize();
  4137. //disable extruder steppers so filament can be removed
  4138. disable_e0();
  4139. disable_e1();
  4140. disable_e2();
  4141. disable_e3();
  4142. delay(100);
  4143. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4144. uint8_t cnt = 0;
  4145. while (!lcd_clicked()) {
  4146. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4147. manage_heater();
  4148. manage_inactivity(true);
  4149. lcd_update();
  4150. } // while(!lcd_clicked)
  4151. //return to normal
  4152. if (code_seen('L')) target[E_AXIS] -= code_value();
  4153. #ifdef FILAMENTCHANGE_FINALRETRACT
  4154. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4155. #endif
  4156. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4157. plan_set_e_position(current_position[E_AXIS]);
  4158. RUNPLAN; //should do nothing
  4159. lcd_reset_alert_level();
  4160. #ifdef DELTA
  4161. calculate_delta(lastpos);
  4162. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4163. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4164. #else
  4165. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4166. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4167. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4168. #endif
  4169. #ifdef FILAMENT_RUNOUT_SENSOR
  4170. filrunoutEnqueued = false;
  4171. #endif
  4172. }
  4173. #endif // FILAMENTCHANGEENABLE
  4174. #ifdef DUAL_X_CARRIAGE
  4175. /**
  4176. * M605: Set dual x-carriage movement mode
  4177. *
  4178. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4179. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4180. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4181. * millimeters x-offset and an optional differential hotend temperature of
  4182. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4183. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4184. *
  4185. * Note: the X axis should be homed after changing dual x-carriage mode.
  4186. */
  4187. inline void gcode_M605() {
  4188. st_synchronize();
  4189. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4190. switch(dual_x_carriage_mode) {
  4191. case DXC_DUPLICATION_MODE:
  4192. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4193. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4194. SERIAL_ECHO_START;
  4195. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4196. SERIAL_CHAR(' ');
  4197. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4198. SERIAL_CHAR(',');
  4199. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4200. SERIAL_CHAR(' ');
  4201. SERIAL_ECHO(duplicate_extruder_x_offset);
  4202. SERIAL_CHAR(',');
  4203. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4204. break;
  4205. case DXC_FULL_CONTROL_MODE:
  4206. case DXC_AUTO_PARK_MODE:
  4207. break;
  4208. default:
  4209. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4210. break;
  4211. }
  4212. active_extruder_parked = false;
  4213. extruder_duplication_enabled = false;
  4214. delayed_move_time = 0;
  4215. }
  4216. #endif // DUAL_X_CARRIAGE
  4217. /**
  4218. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4219. */
  4220. inline void gcode_M907() {
  4221. #if HAS_DIGIPOTSS
  4222. for (int i=0;i<NUM_AXIS;i++)
  4223. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4224. if (code_seen('B')) digipot_current(4, code_value());
  4225. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4226. #endif
  4227. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4228. if (code_seen('X')) digipot_current(0, code_value());
  4229. #endif
  4230. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4231. if (code_seen('Z')) digipot_current(1, code_value());
  4232. #endif
  4233. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4234. if (code_seen('E')) digipot_current(2, code_value());
  4235. #endif
  4236. #ifdef DIGIPOT_I2C
  4237. // this one uses actual amps in floating point
  4238. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4239. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4240. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4241. #endif
  4242. }
  4243. #if HAS_DIGIPOTSS
  4244. /**
  4245. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4246. */
  4247. inline void gcode_M908() {
  4248. digitalPotWrite(
  4249. code_seen('P') ? code_value() : 0,
  4250. code_seen('S') ? code_value() : 0
  4251. );
  4252. }
  4253. #endif // HAS_DIGIPOTSS
  4254. #if HAS_MICROSTEPS
  4255. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4256. inline void gcode_M350() {
  4257. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4258. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4259. if(code_seen('B')) microstep_mode(4,code_value());
  4260. microstep_readings();
  4261. }
  4262. /**
  4263. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4264. * S# determines MS1 or MS2, X# sets the pin high/low.
  4265. */
  4266. inline void gcode_M351() {
  4267. if (code_seen('S')) switch(code_value_short()) {
  4268. case 1:
  4269. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4270. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4271. break;
  4272. case 2:
  4273. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4274. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4275. break;
  4276. }
  4277. microstep_readings();
  4278. }
  4279. #endif // HAS_MICROSTEPS
  4280. /**
  4281. * M999: Restart after being stopped
  4282. */
  4283. inline void gcode_M999() {
  4284. Running = true;
  4285. lcd_reset_alert_level();
  4286. gcode_LastN = Stopped_gcode_LastN;
  4287. FlushSerialRequestResend();
  4288. }
  4289. /**
  4290. * T0-T3: Switch tool, usually switching extruders
  4291. */
  4292. inline void gcode_T() {
  4293. int tmp_extruder = code_value();
  4294. if (tmp_extruder >= EXTRUDERS) {
  4295. SERIAL_ECHO_START;
  4296. SERIAL_CHAR('T');
  4297. SERIAL_ECHO(tmp_extruder);
  4298. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4299. }
  4300. else {
  4301. target_extruder = tmp_extruder;
  4302. #if EXTRUDERS > 1
  4303. bool make_move = false;
  4304. #endif
  4305. if (code_seen('F')) {
  4306. #if EXTRUDERS > 1
  4307. make_move = true;
  4308. #endif
  4309. float next_feedrate = code_value();
  4310. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4311. }
  4312. #if EXTRUDERS > 1
  4313. if (tmp_extruder != active_extruder) {
  4314. // Save current position to return to after applying extruder offset
  4315. set_destination_to_current();
  4316. #ifdef DUAL_X_CARRIAGE
  4317. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4318. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4319. // Park old head: 1) raise 2) move to park position 3) lower
  4320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4321. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4322. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4323. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4324. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4325. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4326. st_synchronize();
  4327. }
  4328. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4329. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4330. extruder_offset[Y_AXIS][active_extruder] +
  4331. extruder_offset[Y_AXIS][tmp_extruder];
  4332. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4333. extruder_offset[Z_AXIS][active_extruder] +
  4334. extruder_offset[Z_AXIS][tmp_extruder];
  4335. active_extruder = tmp_extruder;
  4336. // This function resets the max/min values - the current position may be overwritten below.
  4337. axis_is_at_home(X_AXIS);
  4338. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4339. current_position[X_AXIS] = inactive_extruder_x_pos;
  4340. inactive_extruder_x_pos = destination[X_AXIS];
  4341. }
  4342. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4343. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4344. if (active_extruder == 0 || active_extruder_parked)
  4345. current_position[X_AXIS] = inactive_extruder_x_pos;
  4346. else
  4347. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4348. inactive_extruder_x_pos = destination[X_AXIS];
  4349. extruder_duplication_enabled = false;
  4350. }
  4351. else {
  4352. // record raised toolhead position for use by unpark
  4353. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4354. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4355. active_extruder_parked = true;
  4356. delayed_move_time = 0;
  4357. }
  4358. #else // !DUAL_X_CARRIAGE
  4359. // Offset extruder (only by XY)
  4360. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4361. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4362. // Set the new active extruder and position
  4363. active_extruder = tmp_extruder;
  4364. #endif // !DUAL_X_CARRIAGE
  4365. #ifdef DELTA
  4366. sync_plan_position_delta();
  4367. #else
  4368. sync_plan_position();
  4369. #endif
  4370. // Move to the old position if 'F' was in the parameters
  4371. if (make_move && IsRunning()) prepare_move();
  4372. }
  4373. #ifdef EXT_SOLENOID
  4374. st_synchronize();
  4375. disable_all_solenoids();
  4376. enable_solenoid_on_active_extruder();
  4377. #endif // EXT_SOLENOID
  4378. #endif // EXTRUDERS > 1
  4379. SERIAL_ECHO_START;
  4380. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4381. SERIAL_PROTOCOLLN((int)active_extruder);
  4382. }
  4383. }
  4384. /**
  4385. * Process Commands and dispatch them to handlers
  4386. * This is called from the main loop()
  4387. */
  4388. void process_next_command() {
  4389. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4390. SERIAL_ECHO_START;
  4391. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4392. }
  4393. if (code_seen('G')) {
  4394. int gCode = code_value_short();
  4395. switch(gCode) {
  4396. // G0, G1
  4397. case 0:
  4398. case 1:
  4399. gcode_G0_G1();
  4400. break;
  4401. // G2, G3
  4402. #ifndef SCARA
  4403. case 2: // G2 - CW ARC
  4404. case 3: // G3 - CCW ARC
  4405. gcode_G2_G3(gCode == 2);
  4406. break;
  4407. #endif
  4408. // G4 Dwell
  4409. case 4:
  4410. gcode_G4();
  4411. break;
  4412. #ifdef FWRETRACT
  4413. case 10: // G10: retract
  4414. case 11: // G11: retract_recover
  4415. gcode_G10_G11(gCode == 10);
  4416. break;
  4417. #endif //FWRETRACT
  4418. case 28: // G28: Home all axes, one at a time
  4419. gcode_G28();
  4420. break;
  4421. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4422. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4423. gcode_G29();
  4424. break;
  4425. #endif
  4426. #ifdef ENABLE_AUTO_BED_LEVELING
  4427. #ifndef Z_PROBE_SLED
  4428. case 30: // G30 Single Z Probe
  4429. gcode_G30();
  4430. break;
  4431. #else // Z_PROBE_SLED
  4432. case 31: // G31: dock the sled
  4433. case 32: // G32: undock the sled
  4434. dock_sled(gCode == 31);
  4435. break;
  4436. #endif // Z_PROBE_SLED
  4437. #endif // ENABLE_AUTO_BED_LEVELING
  4438. case 90: // G90
  4439. relative_mode = false;
  4440. break;
  4441. case 91: // G91
  4442. relative_mode = true;
  4443. break;
  4444. case 92: // G92
  4445. gcode_G92();
  4446. break;
  4447. }
  4448. }
  4449. else if (code_seen('M')) {
  4450. switch(code_value_short()) {
  4451. #ifdef ULTIPANEL
  4452. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4453. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4454. gcode_M0_M1();
  4455. break;
  4456. #endif // ULTIPANEL
  4457. case 17:
  4458. gcode_M17();
  4459. break;
  4460. #ifdef SDSUPPORT
  4461. case 20: // M20 - list SD card
  4462. gcode_M20(); break;
  4463. case 21: // M21 - init SD card
  4464. gcode_M21(); break;
  4465. case 22: //M22 - release SD card
  4466. gcode_M22(); break;
  4467. case 23: //M23 - Select file
  4468. gcode_M23(); break;
  4469. case 24: //M24 - Start SD print
  4470. gcode_M24(); break;
  4471. case 25: //M25 - Pause SD print
  4472. gcode_M25(); break;
  4473. case 26: //M26 - Set SD index
  4474. gcode_M26(); break;
  4475. case 27: //M27 - Get SD status
  4476. gcode_M27(); break;
  4477. case 28: //M28 - Start SD write
  4478. gcode_M28(); break;
  4479. case 29: //M29 - Stop SD write
  4480. gcode_M29(); break;
  4481. case 30: //M30 <filename> Delete File
  4482. gcode_M30(); break;
  4483. case 32: //M32 - Select file and start SD print
  4484. gcode_M32(); break;
  4485. case 928: //M928 - Start SD write
  4486. gcode_M928(); break;
  4487. #endif //SDSUPPORT
  4488. case 31: //M31 take time since the start of the SD print or an M109 command
  4489. gcode_M31();
  4490. break;
  4491. case 42: //M42 -Change pin status via gcode
  4492. gcode_M42();
  4493. break;
  4494. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4495. case 48: // M48 Z-Probe repeatability
  4496. gcode_M48();
  4497. break;
  4498. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4499. case 104: // M104
  4500. gcode_M104();
  4501. break;
  4502. case 111: // M111: Set debug level
  4503. gcode_M111();
  4504. break;
  4505. case 112: // M112: Emergency Stop
  4506. gcode_M112();
  4507. break;
  4508. case 140: // M140: Set bed temp
  4509. gcode_M140();
  4510. break;
  4511. case 105: // M105: Read current temperature
  4512. gcode_M105();
  4513. return;
  4514. break;
  4515. case 109: // M109: Wait for temperature
  4516. gcode_M109();
  4517. break;
  4518. #if HAS_TEMP_BED
  4519. case 190: // M190: Wait for bed heater to reach target
  4520. gcode_M190();
  4521. break;
  4522. #endif // HAS_TEMP_BED
  4523. #if HAS_FAN
  4524. case 106: // M106: Fan On
  4525. gcode_M106();
  4526. break;
  4527. case 107: // M107: Fan Off
  4528. gcode_M107();
  4529. break;
  4530. #endif // HAS_FAN
  4531. #ifdef BARICUDA
  4532. // PWM for HEATER_1_PIN
  4533. #if HAS_HEATER_1
  4534. case 126: // M126: valve open
  4535. gcode_M126();
  4536. break;
  4537. case 127: // M127: valve closed
  4538. gcode_M127();
  4539. break;
  4540. #endif // HAS_HEATER_1
  4541. // PWM for HEATER_2_PIN
  4542. #if HAS_HEATER_2
  4543. case 128: // M128: valve open
  4544. gcode_M128();
  4545. break;
  4546. case 129: // M129: valve closed
  4547. gcode_M129();
  4548. break;
  4549. #endif // HAS_HEATER_2
  4550. #endif // BARICUDA
  4551. #if HAS_POWER_SWITCH
  4552. case 80: // M80: Turn on Power Supply
  4553. gcode_M80();
  4554. break;
  4555. #endif // HAS_POWER_SWITCH
  4556. case 81: // M81: Turn off Power, including Power Supply, if possible
  4557. gcode_M81();
  4558. break;
  4559. case 82:
  4560. gcode_M82();
  4561. break;
  4562. case 83:
  4563. gcode_M83();
  4564. break;
  4565. case 18: // (for compatibility)
  4566. case 84: // M84
  4567. gcode_M18_M84();
  4568. break;
  4569. case 85: // M85
  4570. gcode_M85();
  4571. break;
  4572. case 92: // M92: Set the steps-per-unit for one or more axes
  4573. gcode_M92();
  4574. break;
  4575. case 115: // M115: Report capabilities
  4576. gcode_M115();
  4577. break;
  4578. case 117: // M117: Set LCD message text
  4579. gcode_M117();
  4580. break;
  4581. case 114: // M114: Report current position
  4582. gcode_M114();
  4583. break;
  4584. case 120: // M120: Enable endstops
  4585. gcode_M120();
  4586. break;
  4587. case 121: // M121: Disable endstops
  4588. gcode_M121();
  4589. break;
  4590. case 119: // M119: Report endstop states
  4591. gcode_M119();
  4592. break;
  4593. #ifdef ULTIPANEL
  4594. case 145: // M145: Set material heatup parameters
  4595. gcode_M145();
  4596. break;
  4597. #endif
  4598. #ifdef BLINKM
  4599. case 150: // M150
  4600. gcode_M150();
  4601. break;
  4602. #endif //BLINKM
  4603. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4604. gcode_M200();
  4605. break;
  4606. case 201: // M201
  4607. gcode_M201();
  4608. break;
  4609. #if 0 // Not used for Sprinter/grbl gen6
  4610. case 202: // M202
  4611. gcode_M202();
  4612. break;
  4613. #endif
  4614. case 203: // M203 max feedrate mm/sec
  4615. gcode_M203();
  4616. break;
  4617. case 204: // M204 acclereration S normal moves T filmanent only moves
  4618. gcode_M204();
  4619. break;
  4620. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4621. gcode_M205();
  4622. break;
  4623. case 206: // M206 additional homing offset
  4624. gcode_M206();
  4625. break;
  4626. #ifdef DELTA
  4627. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4628. gcode_M665();
  4629. break;
  4630. #endif
  4631. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4632. case 666: // M666 set delta / dual endstop adjustment
  4633. gcode_M666();
  4634. break;
  4635. #endif
  4636. #ifdef FWRETRACT
  4637. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4638. gcode_M207();
  4639. break;
  4640. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4641. gcode_M208();
  4642. break;
  4643. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4644. gcode_M209();
  4645. break;
  4646. #endif // FWRETRACT
  4647. #if EXTRUDERS > 1
  4648. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4649. gcode_M218();
  4650. break;
  4651. #endif
  4652. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4653. gcode_M220();
  4654. break;
  4655. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4656. gcode_M221();
  4657. break;
  4658. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4659. gcode_M226();
  4660. break;
  4661. #if NUM_SERVOS > 0
  4662. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4663. gcode_M280();
  4664. break;
  4665. #endif // NUM_SERVOS > 0
  4666. #if HAS_LCD_BUZZ
  4667. case 300: // M300 - Play beep tone
  4668. gcode_M300();
  4669. break;
  4670. #endif // HAS_LCD_BUZZ
  4671. #ifdef PIDTEMP
  4672. case 301: // M301
  4673. gcode_M301();
  4674. break;
  4675. #endif // PIDTEMP
  4676. #ifdef PIDTEMPBED
  4677. case 304: // M304
  4678. gcode_M304();
  4679. break;
  4680. #endif // PIDTEMPBED
  4681. #if defined(CHDK) || HAS_PHOTOGRAPH
  4682. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4683. gcode_M240();
  4684. break;
  4685. #endif // CHDK || PHOTOGRAPH_PIN
  4686. #ifdef HAS_LCD_CONTRAST
  4687. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4688. gcode_M250();
  4689. break;
  4690. #endif // HAS_LCD_CONTRAST
  4691. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4692. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4693. gcode_M302();
  4694. break;
  4695. #endif // PREVENT_DANGEROUS_EXTRUDE
  4696. case 303: // M303 PID autotune
  4697. gcode_M303();
  4698. break;
  4699. #ifdef SCARA
  4700. case 360: // M360 SCARA Theta pos1
  4701. if (gcode_M360()) return;
  4702. break;
  4703. case 361: // M361 SCARA Theta pos2
  4704. if (gcode_M361()) return;
  4705. break;
  4706. case 362: // M362 SCARA Psi pos1
  4707. if (gcode_M362()) return;
  4708. break;
  4709. case 363: // M363 SCARA Psi pos2
  4710. if (gcode_M363()) return;
  4711. break;
  4712. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4713. if (gcode_M364()) return;
  4714. break;
  4715. case 365: // M365 Set SCARA scaling for X Y Z
  4716. gcode_M365();
  4717. break;
  4718. #endif // SCARA
  4719. case 400: // M400 finish all moves
  4720. gcode_M400();
  4721. break;
  4722. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4723. case 401:
  4724. gcode_M401();
  4725. break;
  4726. case 402:
  4727. gcode_M402();
  4728. break;
  4729. #endif
  4730. #ifdef FILAMENT_SENSOR
  4731. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4732. gcode_M404();
  4733. break;
  4734. case 405: //M405 Turn on filament sensor for control
  4735. gcode_M405();
  4736. break;
  4737. case 406: //M406 Turn off filament sensor for control
  4738. gcode_M406();
  4739. break;
  4740. case 407: //M407 Display measured filament diameter
  4741. gcode_M407();
  4742. break;
  4743. #endif // FILAMENT_SENSOR
  4744. case 410: // M410 quickstop - Abort all the planned moves.
  4745. gcode_M410();
  4746. break;
  4747. #ifdef MESH_BED_LEVELING
  4748. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4749. gcode_M420();
  4750. break;
  4751. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4752. gcode_M421();
  4753. break;
  4754. #endif
  4755. case 428: // M428 Apply current_position to home_offset
  4756. gcode_M428();
  4757. break;
  4758. case 500: // M500 Store settings in EEPROM
  4759. gcode_M500();
  4760. break;
  4761. case 501: // M501 Read settings from EEPROM
  4762. gcode_M501();
  4763. break;
  4764. case 502: // M502 Revert to default settings
  4765. gcode_M502();
  4766. break;
  4767. case 503: // M503 print settings currently in memory
  4768. gcode_M503();
  4769. break;
  4770. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4771. case 540:
  4772. gcode_M540();
  4773. break;
  4774. #endif
  4775. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4776. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4777. gcode_SET_Z_PROBE_OFFSET();
  4778. break;
  4779. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4780. #ifdef FILAMENTCHANGEENABLE
  4781. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4782. gcode_M600();
  4783. break;
  4784. #endif // FILAMENTCHANGEENABLE
  4785. #ifdef DUAL_X_CARRIAGE
  4786. case 605:
  4787. gcode_M605();
  4788. break;
  4789. #endif // DUAL_X_CARRIAGE
  4790. case 907: // M907 Set digital trimpot motor current using axis codes.
  4791. gcode_M907();
  4792. break;
  4793. #if HAS_DIGIPOTSS
  4794. case 908: // M908 Control digital trimpot directly.
  4795. gcode_M908();
  4796. break;
  4797. #endif // HAS_DIGIPOTSS
  4798. #if HAS_MICROSTEPS
  4799. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4800. gcode_M350();
  4801. break;
  4802. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4803. gcode_M351();
  4804. break;
  4805. #endif // HAS_MICROSTEPS
  4806. case 999: // M999: Restart after being Stopped
  4807. gcode_M999();
  4808. break;
  4809. }
  4810. }
  4811. else if (code_seen('T')) {
  4812. gcode_T();
  4813. }
  4814. else {
  4815. SERIAL_ECHO_START;
  4816. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4817. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4818. SERIAL_ECHOLNPGM("\"");
  4819. }
  4820. ok_to_send();
  4821. }
  4822. void FlushSerialRequestResend() {
  4823. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4824. MYSERIAL.flush();
  4825. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4826. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4827. ok_to_send();
  4828. }
  4829. void ok_to_send() {
  4830. refresh_cmd_timeout();
  4831. #ifdef SDSUPPORT
  4832. if (fromsd[cmd_queue_index_r]) return;
  4833. #endif
  4834. SERIAL_PROTOCOLPGM(MSG_OK);
  4835. #ifdef ADVANCED_OK
  4836. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4837. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4838. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4839. #endif
  4840. SERIAL_EOL;
  4841. }
  4842. void clamp_to_software_endstops(float target[3]) {
  4843. if (min_software_endstops) {
  4844. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4845. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4846. float negative_z_offset = 0;
  4847. #ifdef ENABLE_AUTO_BED_LEVELING
  4848. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4849. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4850. #endif
  4851. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4852. }
  4853. if (max_software_endstops) {
  4854. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4855. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4856. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4857. }
  4858. }
  4859. #ifdef DELTA
  4860. void recalc_delta_settings(float radius, float diagonal_rod) {
  4861. delta_tower1_x = -SIN_60 * radius; // front left tower
  4862. delta_tower1_y = -COS_60 * radius;
  4863. delta_tower2_x = SIN_60 * radius; // front right tower
  4864. delta_tower2_y = -COS_60 * radius;
  4865. delta_tower3_x = 0.0; // back middle tower
  4866. delta_tower3_y = radius;
  4867. delta_diagonal_rod_2 = sq(diagonal_rod);
  4868. }
  4869. void calculate_delta(float cartesian[3]) {
  4870. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4871. - sq(delta_tower1_x-cartesian[X_AXIS])
  4872. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4873. ) + cartesian[Z_AXIS];
  4874. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4875. - sq(delta_tower2_x-cartesian[X_AXIS])
  4876. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4877. ) + cartesian[Z_AXIS];
  4878. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4879. - sq(delta_tower3_x-cartesian[X_AXIS])
  4880. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4881. ) + cartesian[Z_AXIS];
  4882. /*
  4883. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4884. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4885. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4886. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4887. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4888. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4889. */
  4890. }
  4891. #ifdef ENABLE_AUTO_BED_LEVELING
  4892. // Adjust print surface height by linear interpolation over the bed_level array.
  4893. void adjust_delta(float cartesian[3]) {
  4894. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4895. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4896. float h1 = 0.001 - half, h2 = half - 0.001,
  4897. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4898. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4899. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4900. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4901. z1 = bed_level[floor_x + half][floor_y + half],
  4902. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4903. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4904. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4905. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4906. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4907. offset = (1 - ratio_x) * left + ratio_x * right;
  4908. delta[X_AXIS] += offset;
  4909. delta[Y_AXIS] += offset;
  4910. delta[Z_AXIS] += offset;
  4911. /*
  4912. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4913. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4914. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4915. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4916. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4917. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4918. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4919. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4920. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4921. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4922. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4923. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4924. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4925. */
  4926. }
  4927. #endif // ENABLE_AUTO_BED_LEVELING
  4928. #endif // DELTA
  4929. #ifdef MESH_BED_LEVELING
  4930. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4931. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4932. {
  4933. if (!mbl.active) {
  4934. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4935. set_current_to_destination();
  4936. return;
  4937. }
  4938. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4939. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4940. int ix = mbl.select_x_index(x);
  4941. int iy = mbl.select_y_index(y);
  4942. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4943. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4944. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4945. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4946. if (pix == ix && piy == iy) {
  4947. // Start and end on same mesh square
  4948. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4949. set_current_to_destination();
  4950. return;
  4951. }
  4952. float nx, ny, ne, normalized_dist;
  4953. if (ix > pix && (x_splits) & BIT(ix)) {
  4954. nx = mbl.get_x(ix);
  4955. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4956. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4957. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4958. x_splits ^= BIT(ix);
  4959. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4960. nx = mbl.get_x(pix);
  4961. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4962. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4963. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4964. x_splits ^= BIT(pix);
  4965. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4966. ny = mbl.get_y(iy);
  4967. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4968. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4969. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4970. y_splits ^= BIT(iy);
  4971. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4972. ny = mbl.get_y(piy);
  4973. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4974. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4975. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4976. y_splits ^= BIT(piy);
  4977. } else {
  4978. // Already split on a border
  4979. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4980. set_current_to_destination();
  4981. return;
  4982. }
  4983. // Do the split and look for more borders
  4984. destination[X_AXIS] = nx;
  4985. destination[Y_AXIS] = ny;
  4986. destination[E_AXIS] = ne;
  4987. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4988. destination[X_AXIS] = x;
  4989. destination[Y_AXIS] = y;
  4990. destination[E_AXIS] = e;
  4991. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4992. }
  4993. #endif // MESH_BED_LEVELING
  4994. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4995. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4996. float de = dest_e - curr_e;
  4997. if (de) {
  4998. if (degHotend(active_extruder) < extrude_min_temp) {
  4999. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5000. SERIAL_ECHO_START;
  5001. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5002. }
  5003. #ifdef PREVENT_LENGTHY_EXTRUDE
  5004. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5005. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5006. SERIAL_ECHO_START;
  5007. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5008. }
  5009. #endif
  5010. }
  5011. }
  5012. #endif // PREVENT_DANGEROUS_EXTRUDE
  5013. #if defined(DELTA) || defined(SCARA)
  5014. inline bool prepare_move_delta() {
  5015. float difference[NUM_AXIS];
  5016. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5017. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5018. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5019. if (cartesian_mm < 0.000001) return false;
  5020. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5021. int steps = max(1, int(delta_segments_per_second * seconds));
  5022. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5023. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5024. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5025. for (int s = 1; s <= steps; s++) {
  5026. float fraction = float(s) / float(steps);
  5027. for (int8_t i = 0; i < NUM_AXIS; i++)
  5028. destination[i] = current_position[i] + difference[i] * fraction;
  5029. calculate_delta(destination);
  5030. #ifdef ENABLE_AUTO_BED_LEVELING
  5031. adjust_delta(destination);
  5032. #endif
  5033. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5034. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5035. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5036. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5037. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5038. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5039. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5040. }
  5041. return true;
  5042. }
  5043. #endif // DELTA || SCARA
  5044. #ifdef SCARA
  5045. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5046. #endif
  5047. #ifdef DUAL_X_CARRIAGE
  5048. inline bool prepare_move_dual_x_carriage() {
  5049. if (active_extruder_parked) {
  5050. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5051. // move duplicate extruder into correct duplication position.
  5052. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5053. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5054. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5055. sync_plan_position();
  5056. st_synchronize();
  5057. extruder_duplication_enabled = true;
  5058. active_extruder_parked = false;
  5059. }
  5060. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5061. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5062. // This is a travel move (with no extrusion)
  5063. // Skip it, but keep track of the current position
  5064. // (so it can be used as the start of the next non-travel move)
  5065. if (delayed_move_time != 0xFFFFFFFFUL) {
  5066. set_current_to_destination();
  5067. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5068. delayed_move_time = millis();
  5069. return false;
  5070. }
  5071. }
  5072. delayed_move_time = 0;
  5073. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5074. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5077. active_extruder_parked = false;
  5078. }
  5079. }
  5080. return true;
  5081. }
  5082. #endif // DUAL_X_CARRIAGE
  5083. #if !defined(DELTA) && !defined(SCARA)
  5084. inline bool prepare_move_cartesian() {
  5085. // Do not use feedrate_multiplier for E or Z only moves
  5086. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5087. line_to_destination();
  5088. }
  5089. else {
  5090. #ifdef MESH_BED_LEVELING
  5091. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5092. return false;
  5093. #else
  5094. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5095. #endif
  5096. }
  5097. return true;
  5098. }
  5099. #endif // !DELTA && !SCARA
  5100. /**
  5101. * Prepare a single move and get ready for the next one
  5102. */
  5103. void prepare_move() {
  5104. clamp_to_software_endstops(destination);
  5105. refresh_cmd_timeout();
  5106. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5107. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5108. #endif
  5109. #ifdef SCARA
  5110. if (!prepare_move_scara()) return;
  5111. #elif defined(DELTA)
  5112. if (!prepare_move_delta()) return;
  5113. #endif
  5114. #ifdef DUAL_X_CARRIAGE
  5115. if (!prepare_move_dual_x_carriage()) return;
  5116. #endif
  5117. #if !defined(DELTA) && !defined(SCARA)
  5118. if (!prepare_move_cartesian()) return;
  5119. #endif
  5120. set_current_to_destination();
  5121. }
  5122. #if HAS_CONTROLLERFAN
  5123. void controllerFan() {
  5124. static millis_t lastMotor = 0; // Last time a motor was turned on
  5125. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5126. millis_t ms = millis();
  5127. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5128. lastMotorCheck = ms;
  5129. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5130. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5131. #if EXTRUDERS > 1
  5132. || E1_ENABLE_READ == E_ENABLE_ON
  5133. #if HAS_X2_ENABLE
  5134. || X2_ENABLE_READ == X_ENABLE_ON
  5135. #endif
  5136. #if EXTRUDERS > 2
  5137. || E2_ENABLE_READ == E_ENABLE_ON
  5138. #if EXTRUDERS > 3
  5139. || E3_ENABLE_READ == E_ENABLE_ON
  5140. #endif
  5141. #endif
  5142. #endif
  5143. ) {
  5144. lastMotor = ms; //... set time to NOW so the fan will turn on
  5145. }
  5146. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5147. // allows digital or PWM fan output to be used (see M42 handling)
  5148. digitalWrite(CONTROLLERFAN_PIN, speed);
  5149. analogWrite(CONTROLLERFAN_PIN, speed);
  5150. }
  5151. }
  5152. #endif // HAS_CONTROLLERFAN
  5153. #ifdef SCARA
  5154. void calculate_SCARA_forward_Transform(float f_scara[3])
  5155. {
  5156. // Perform forward kinematics, and place results in delta[3]
  5157. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5158. float x_sin, x_cos, y_sin, y_cos;
  5159. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5160. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5161. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5162. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5163. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5164. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5165. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5166. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5167. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5168. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5169. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5170. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5171. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5172. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5173. }
  5174. void calculate_delta(float cartesian[3]){
  5175. //reverse kinematics.
  5176. // Perform reversed kinematics, and place results in delta[3]
  5177. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5178. float SCARA_pos[2];
  5179. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5180. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5181. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5182. #if (Linkage_1 == Linkage_2)
  5183. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5184. #else
  5185. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5186. #endif
  5187. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5188. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5189. SCARA_K2 = Linkage_2 * SCARA_S2;
  5190. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5191. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5192. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5193. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5194. delta[Z_AXIS] = cartesian[Z_AXIS];
  5195. /*
  5196. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5197. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5198. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5199. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5200. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5201. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5202. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5203. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5204. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5205. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5206. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5207. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5208. SERIAL_ECHOLN(" ");*/
  5209. }
  5210. #endif
  5211. #ifdef TEMP_STAT_LEDS
  5212. static bool red_led = false;
  5213. static millis_t next_status_led_update_ms = 0;
  5214. void handle_status_leds(void) {
  5215. float max_temp = 0.0;
  5216. if (millis() > next_status_led_update_ms) {
  5217. next_status_led_update_ms += 500; // Update every 0.5s
  5218. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5219. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5220. #if HAS_TEMP_BED
  5221. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5222. #endif
  5223. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5224. if (new_led != red_led) {
  5225. red_led = new_led;
  5226. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5227. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5228. }
  5229. }
  5230. }
  5231. #endif
  5232. void enable_all_steppers() {
  5233. enable_x();
  5234. enable_y();
  5235. enable_z();
  5236. enable_e0();
  5237. enable_e1();
  5238. enable_e2();
  5239. enable_e3();
  5240. }
  5241. void disable_all_steppers() {
  5242. disable_x();
  5243. disable_y();
  5244. disable_z();
  5245. disable_e0();
  5246. disable_e1();
  5247. disable_e2();
  5248. disable_e3();
  5249. }
  5250. /**
  5251. * Manage several activities:
  5252. * - Check for Filament Runout
  5253. * - Keep the command buffer full
  5254. * - Check for maximum inactive time between commands
  5255. * - Check for maximum inactive time between stepper commands
  5256. * - Check if pin CHDK needs to go LOW
  5257. * - Check for KILL button held down
  5258. * - Check for HOME button held down
  5259. * - Check if cooling fan needs to be switched on
  5260. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5261. */
  5262. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5263. #if HAS_FILRUNOUT
  5264. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5265. filrunout();
  5266. #endif
  5267. if (commands_in_queue < BUFSIZE - 1) get_command();
  5268. millis_t ms = millis();
  5269. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5270. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5271. && !ignore_stepper_queue && !blocks_queued())
  5272. disable_all_steppers();
  5273. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5274. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5275. chdkActive = false;
  5276. WRITE(CHDK, LOW);
  5277. }
  5278. #endif
  5279. #if HAS_KILL
  5280. // Check if the kill button was pressed and wait just in case it was an accidental
  5281. // key kill key press
  5282. // -------------------------------------------------------------------------------
  5283. static int killCount = 0; // make the inactivity button a bit less responsive
  5284. const int KILL_DELAY = 750;
  5285. if (!READ(KILL_PIN))
  5286. killCount++;
  5287. else if (killCount > 0)
  5288. killCount--;
  5289. // Exceeded threshold and we can confirm that it was not accidental
  5290. // KILL the machine
  5291. // ----------------------------------------------------------------
  5292. if (killCount >= KILL_DELAY) kill();
  5293. #endif
  5294. #if HAS_HOME
  5295. // Check to see if we have to home, use poor man's debouncer
  5296. // ---------------------------------------------------------
  5297. static int homeDebounceCount = 0; // poor man's debouncing count
  5298. const int HOME_DEBOUNCE_DELAY = 750;
  5299. if (!READ(HOME_PIN)) {
  5300. if (!homeDebounceCount) {
  5301. enqueuecommands_P(PSTR("G28"));
  5302. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5303. }
  5304. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5305. homeDebounceCount++;
  5306. else
  5307. homeDebounceCount = 0;
  5308. }
  5309. #endif
  5310. #if HAS_CONTROLLERFAN
  5311. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5312. #endif
  5313. #ifdef EXTRUDER_RUNOUT_PREVENT
  5314. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5315. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5316. bool oldstatus;
  5317. switch(active_extruder) {
  5318. case 0:
  5319. oldstatus = E0_ENABLE_READ;
  5320. enable_e0();
  5321. break;
  5322. #if EXTRUDERS > 1
  5323. case 1:
  5324. oldstatus = E1_ENABLE_READ;
  5325. enable_e1();
  5326. break;
  5327. #if EXTRUDERS > 2
  5328. case 2:
  5329. oldstatus = E2_ENABLE_READ;
  5330. enable_e2();
  5331. break;
  5332. #if EXTRUDERS > 3
  5333. case 3:
  5334. oldstatus = E3_ENABLE_READ;
  5335. enable_e3();
  5336. break;
  5337. #endif
  5338. #endif
  5339. #endif
  5340. }
  5341. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5342. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5343. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5344. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5345. current_position[E_AXIS] = oldepos;
  5346. destination[E_AXIS] = oldedes;
  5347. plan_set_e_position(oldepos);
  5348. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5349. st_synchronize();
  5350. switch(active_extruder) {
  5351. case 0:
  5352. E0_ENABLE_WRITE(oldstatus);
  5353. break;
  5354. #if EXTRUDERS > 1
  5355. case 1:
  5356. E1_ENABLE_WRITE(oldstatus);
  5357. break;
  5358. #if EXTRUDERS > 2
  5359. case 2:
  5360. E2_ENABLE_WRITE(oldstatus);
  5361. break;
  5362. #if EXTRUDERS > 3
  5363. case 3:
  5364. E3_ENABLE_WRITE(oldstatus);
  5365. break;
  5366. #endif
  5367. #endif
  5368. #endif
  5369. }
  5370. }
  5371. #endif
  5372. #ifdef DUAL_X_CARRIAGE
  5373. // handle delayed move timeout
  5374. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5375. // travel moves have been received so enact them
  5376. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5377. set_destination_to_current();
  5378. prepare_move();
  5379. }
  5380. #endif
  5381. #ifdef TEMP_STAT_LEDS
  5382. handle_status_leds();
  5383. #endif
  5384. check_axes_activity();
  5385. }
  5386. void kill()
  5387. {
  5388. cli(); // Stop interrupts
  5389. disable_all_heaters();
  5390. disable_all_steppers();
  5391. #if HAS_POWER_SWITCH
  5392. pinMode(PS_ON_PIN, INPUT);
  5393. #endif
  5394. SERIAL_ERROR_START;
  5395. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5396. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5397. // FMC small patch to update the LCD before ending
  5398. sei(); // enable interrupts
  5399. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5400. cli(); // disable interrupts
  5401. suicide();
  5402. while(1) { /* Intentionally left empty */ } // Wait for reset
  5403. }
  5404. #ifdef FILAMENT_RUNOUT_SENSOR
  5405. void filrunout() {
  5406. if (!filrunoutEnqueued) {
  5407. filrunoutEnqueued = true;
  5408. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5409. st_synchronize();
  5410. }
  5411. }
  5412. #endif
  5413. void Stop() {
  5414. disable_all_heaters();
  5415. if (IsRunning()) {
  5416. Running = false;
  5417. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5418. SERIAL_ERROR_START;
  5419. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5420. LCD_MESSAGEPGM(MSG_STOPPED);
  5421. }
  5422. }
  5423. #ifdef FAST_PWM_FAN
  5424. void setPwmFrequency(uint8_t pin, int val)
  5425. {
  5426. val &= 0x07;
  5427. switch(digitalPinToTimer(pin))
  5428. {
  5429. #if defined(TCCR0A)
  5430. case TIMER0A:
  5431. case TIMER0B:
  5432. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5433. // TCCR0B |= val;
  5434. break;
  5435. #endif
  5436. #if defined(TCCR1A)
  5437. case TIMER1A:
  5438. case TIMER1B:
  5439. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5440. // TCCR1B |= val;
  5441. break;
  5442. #endif
  5443. #if defined(TCCR2)
  5444. case TIMER2:
  5445. case TIMER2:
  5446. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5447. TCCR2 |= val;
  5448. break;
  5449. #endif
  5450. #if defined(TCCR2A)
  5451. case TIMER2A:
  5452. case TIMER2B:
  5453. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5454. TCCR2B |= val;
  5455. break;
  5456. #endif
  5457. #if defined(TCCR3A)
  5458. case TIMER3A:
  5459. case TIMER3B:
  5460. case TIMER3C:
  5461. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5462. TCCR3B |= val;
  5463. break;
  5464. #endif
  5465. #if defined(TCCR4A)
  5466. case TIMER4A:
  5467. case TIMER4B:
  5468. case TIMER4C:
  5469. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5470. TCCR4B |= val;
  5471. break;
  5472. #endif
  5473. #if defined(TCCR5A)
  5474. case TIMER5A:
  5475. case TIMER5B:
  5476. case TIMER5C:
  5477. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5478. TCCR5B |= val;
  5479. break;
  5480. #endif
  5481. }
  5482. }
  5483. #endif //FAST_PWM_FAN
  5484. bool setTargetedHotend(int code){
  5485. target_extruder = active_extruder;
  5486. if (code_seen('T')) {
  5487. target_extruder = code_value_short();
  5488. if (target_extruder >= EXTRUDERS) {
  5489. SERIAL_ECHO_START;
  5490. switch(code){
  5491. case 104:
  5492. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5493. break;
  5494. case 105:
  5495. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5496. break;
  5497. case 109:
  5498. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5499. break;
  5500. case 218:
  5501. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5502. break;
  5503. case 221:
  5504. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5505. break;
  5506. }
  5507. SERIAL_ECHOLN(target_extruder);
  5508. return true;
  5509. }
  5510. }
  5511. return false;
  5512. }
  5513. float calculate_volumetric_multiplier(float diameter) {
  5514. if (!volumetric_enabled || diameter == 0) return 1.0;
  5515. float d2 = diameter * 0.5;
  5516. return 1.0 / (M_PI * d2 * d2);
  5517. }
  5518. void calculate_volumetric_multipliers() {
  5519. for (int i=0; i<EXTRUDERS; i++)
  5520. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5521. }