My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

Marlin_main.cpp 188KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extrudemultiply = 100; //100->1 200->2
  193. int extruder_multiply[EXTRUDERS] = { 100
  194. #if EXTRUDERS > 1
  195. , 100
  196. #if EXTRUDERS > 2
  197. , 100
  198. #if EXTRUDERS > 3
  199. , 100
  200. #endif
  201. #endif
  202. #endif
  203. };
  204. bool volumetric_enabled = false;
  205. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  206. #if EXTRUDERS > 1
  207. , DEFAULT_NOMINAL_FILAMENT_DIA
  208. #if EXTRUDERS > 2
  209. , DEFAULT_NOMINAL_FILAMENT_DIA
  210. #if EXTRUDERS > 3
  211. , DEFAULT_NOMINAL_FILAMENT_DIA
  212. #endif
  213. #endif
  214. #endif
  215. };
  216. float volumetric_multiplier[EXTRUDERS] = {1.0
  217. #if EXTRUDERS > 1
  218. , 1.0
  219. #if EXTRUDERS > 2
  220. , 1.0
  221. #if EXTRUDERS > 3
  222. , 1.0
  223. #endif
  224. #endif
  225. #endif
  226. };
  227. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  228. float home_offset[3] = { 0, 0, 0 };
  229. #ifdef DELTA
  230. float endstop_adj[3] = { 0, 0, 0 };
  231. #elif defined(Z_DUAL_ENDSTOPS)
  232. float z_endstop_adj = 0;
  233. #endif
  234. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  235. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  236. bool axis_known_position[3] = { false, false, false };
  237. // Extruder offset
  238. #if EXTRUDERS > 1
  239. #ifndef DUAL_X_CARRIAGE
  240. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  241. #else
  242. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  243. #endif
  244. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  245. #if defined(EXTRUDER_OFFSET_X)
  246. EXTRUDER_OFFSET_X
  247. #else
  248. 0
  249. #endif
  250. ,
  251. #if defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_Y
  253. #else
  254. 0
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed = 0;
  260. #ifdef SERVO_ENDSTOPS
  261. int servo_endstops[] = SERVO_ENDSTOPS;
  262. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  263. #endif
  264. #ifdef BARICUDA
  265. int ValvePressure = 0;
  266. int EtoPPressure = 0;
  267. #endif
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled = false;
  270. bool retracted[EXTRUDERS] = { false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #if EXTRUDERS > 3
  276. , false
  277. #endif
  278. #endif
  279. #endif
  280. };
  281. bool retracted_swap[EXTRUDERS] = { false
  282. #if EXTRUDERS > 1
  283. , false
  284. #if EXTRUDERS > 2
  285. , false
  286. #if EXTRUDERS > 3
  287. , false
  288. #endif
  289. #endif
  290. #endif
  291. };
  292. float retract_length = RETRACT_LENGTH;
  293. float retract_length_swap = RETRACT_LENGTH_SWAP;
  294. float retract_feedrate = RETRACT_FEEDRATE;
  295. float retract_zlift = RETRACT_ZLIFT;
  296. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  297. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  298. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  299. #endif // FWRETRACT
  300. #ifdef ULTIPANEL
  301. bool powersupply =
  302. #ifdef PS_DEFAULT_OFF
  303. false
  304. #else
  305. true
  306. #endif
  307. ;
  308. #endif
  309. #ifdef DELTA
  310. float delta[3] = { 0, 0, 0 };
  311. #define SIN_60 0.8660254037844386
  312. #define COS_60 0.5
  313. // these are the default values, can be overriden with M665
  314. float delta_radius = DELTA_RADIUS;
  315. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  316. float delta_tower1_y = -COS_60 * delta_radius;
  317. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  318. float delta_tower2_y = -COS_60 * delta_radius;
  319. float delta_tower3_x = 0; // back middle tower
  320. float delta_tower3_y = delta_radius;
  321. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  322. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  323. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  324. #ifdef ENABLE_AUTO_BED_LEVELING
  325. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  326. #endif
  327. #endif
  328. #ifdef SCARA
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. static float delta[3] = { 0, 0, 0 };
  331. #endif
  332. bool cancel_heatup = false;
  333. #ifdef FILAMENT_SENSOR
  334. //Variables for Filament Sensor input
  335. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  336. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  337. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  338. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  339. int delay_index1=0; //index into ring buffer
  340. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  341. float delay_dist=0; //delay distance counter
  342. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  343. #endif
  344. #ifdef FILAMENT_RUNOUT_SENSOR
  345. static bool filrunoutEnqued = false;
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  350. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  351. static float offset[3] = { 0, 0, 0 };
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  356. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  357. #ifdef SDSUPPORT
  358. static bool fromsd[BUFSIZE];
  359. #endif //!SDSUPPORT
  360. static int bufindr = 0;
  361. static int bufindw = 0;
  362. static int buflen = 0;
  363. static char serial_char;
  364. static int serial_count = 0;
  365. static boolean comment_mode = false;
  366. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  367. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  368. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  369. // Inactivity shutdown
  370. static unsigned long previous_millis_cmd = 0;
  371. static unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime = 0; ///< Print job start time
  374. unsigned long stoptime = 0; ///< Print job stop time
  375. static uint8_t tmp_extruder;
  376. bool Stopped = false;
  377. #if NUM_SERVOS > 0
  378. Servo servos[NUM_SERVOS];
  379. #endif
  380. bool CooldownNoWait = true;
  381. bool target_direction;
  382. #ifdef CHDK
  383. unsigned long chdkHigh = 0;
  384. boolean chdkActive = false;
  385. #endif
  386. //===========================================================================
  387. //=============================Routines======================================
  388. //===========================================================================
  389. void get_arc_coordinates();
  390. bool setTargetedHotend(int code);
  391. void serial_echopair_P(const char *s_P, float v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, double v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, unsigned long v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. #ifdef SDSUPPORT
  398. #include "SdFatUtil.h"
  399. int freeMemory() { return SdFatUtil::FreeRam(); }
  400. #else
  401. extern "C" {
  402. extern unsigned int __bss_end;
  403. extern unsigned int __heap_start;
  404. extern void *__brkval;
  405. int freeMemory() {
  406. int free_memory;
  407. if ((int)__brkval == 0)
  408. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  409. else
  410. free_memory = ((int)&free_memory) - ((int)__brkval);
  411. return free_memory;
  412. }
  413. }
  414. #endif //!SDSUPPORT
  415. //Injects the next command from the pending sequence of commands, when possible
  416. //Return false if and only if no command was pending
  417. static bool drain_queued_commands_P()
  418. {
  419. char cmd[30];
  420. if(!queued_commands_P)
  421. return false;
  422. // Get the next 30 chars from the sequence of gcodes to run
  423. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  424. cmd[sizeof(cmd)-1]= 0;
  425. // Look for the end of line, or the end of sequence
  426. size_t i= 0;
  427. char c;
  428. while( (c= cmd[i]) && c!='\n' )
  429. ++i; // look for the end of this gcode command
  430. cmd[i]= 0;
  431. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  432. {
  433. if(c)
  434. queued_commands_P+= i+1; // move to next command
  435. else
  436. queued_commands_P= NULL; // will have no more commands in the sequence
  437. }
  438. return true;
  439. }
  440. //Record one or many commands to run from program memory.
  441. //Aborts the current queue, if any.
  442. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  443. void enquecommands_P(const char* pgcode)
  444. {
  445. queued_commands_P= pgcode;
  446. drain_queued_commands_P(); // first command exectuted asap (when possible)
  447. }
  448. //adds a single command to the main command buffer, from RAM
  449. //that is really done in a non-safe way.
  450. //needs overworking someday
  451. //Returns false if it failed to do so
  452. bool enquecommand(const char *cmd)
  453. {
  454. if(*cmd==';')
  455. return false;
  456. if(buflen >= BUFSIZE)
  457. return false;
  458. //this is dangerous if a mixing of serial and this happens
  459. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  460. SERIAL_ECHO_START;
  461. SERIAL_ECHOPGM(MSG_Enqueing);
  462. SERIAL_ECHO(cmdbuffer[bufindw]);
  463. SERIAL_ECHOLNPGM("\"");
  464. bufindw= (bufindw + 1)%BUFSIZE;
  465. buflen += 1;
  466. return true;
  467. }
  468. void setup_killpin()
  469. {
  470. #if defined(KILL_PIN) && KILL_PIN > -1
  471. SET_INPUT(KILL_PIN);
  472. WRITE(KILL_PIN,HIGH);
  473. #endif
  474. }
  475. void setup_filrunoutpin()
  476. {
  477. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  478. pinMode(FILRUNOUT_PIN,INPUT);
  479. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  480. WRITE(FILLRUNOUT_PIN,HIGH);
  481. #endif
  482. #endif
  483. }
  484. // Set home pin
  485. void setup_homepin(void)
  486. {
  487. #if defined(HOME_PIN) && HOME_PIN > -1
  488. SET_INPUT(HOME_PIN);
  489. WRITE(HOME_PIN,HIGH);
  490. #endif
  491. }
  492. void setup_photpin()
  493. {
  494. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  495. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  496. #endif
  497. }
  498. void setup_powerhold()
  499. {
  500. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  501. OUT_WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. #if defined(PS_DEFAULT_OFF)
  505. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. OUT_WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. // Set position of Servo Endstops that are defined
  535. #ifdef SERVO_ENDSTOPS
  536. for(int8_t i = 0; i < 3; i++)
  537. {
  538. if(servo_endstops[i] > -1) {
  539. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  540. }
  541. }
  542. #endif
  543. #if SERVO_LEVELING
  544. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  545. servos[servo_endstops[Z_AXIS]].detach();
  546. #endif
  547. }
  548. void setup()
  549. {
  550. setup_killpin();
  551. setup_filrunoutpin();
  552. setup_powerhold();
  553. MYSERIAL.begin(BAUDRATE);
  554. SERIAL_PROTOCOLLNPGM("start");
  555. SERIAL_ECHO_START;
  556. // Check startup - does nothing if bootloader sets MCUSR to 0
  557. byte mcu = MCUSR;
  558. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  559. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  560. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  561. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  562. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  563. MCUSR=0;
  564. SERIAL_ECHOPGM(MSG_MARLIN);
  565. SERIAL_ECHOLNPGM(STRING_VERSION);
  566. #ifdef STRING_VERSION_CONFIG_H
  567. #ifdef STRING_CONFIG_H_AUTHOR
  568. SERIAL_ECHO_START;
  569. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  570. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  571. SERIAL_ECHOPGM(MSG_AUTHOR);
  572. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  573. SERIAL_ECHOPGM("Compiled: ");
  574. SERIAL_ECHOLNPGM(__DATE__);
  575. #endif // STRING_CONFIG_H_AUTHOR
  576. #endif // STRING_VERSION_CONFIG_H
  577. SERIAL_ECHO_START;
  578. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  579. SERIAL_ECHO(freeMemory());
  580. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  581. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  582. #ifdef SDSUPPORT
  583. for(int8_t i = 0; i < BUFSIZE; i++)
  584. {
  585. fromsd[i] = false;
  586. }
  587. #endif //!SDSUPPORT
  588. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  589. Config_RetrieveSettings();
  590. tp_init(); // Initialize temperature loop
  591. plan_init(); // Initialize planner;
  592. watchdog_init();
  593. st_init(); // Initialize stepper, this enables interrupts!
  594. setup_photpin();
  595. servo_init();
  596. lcd_init();
  597. _delay_ms(1000); // wait 1sec to display the splash screen
  598. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  599. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  600. #endif
  601. #ifdef DIGIPOT_I2C
  602. digipot_i2c_init();
  603. #endif
  604. #ifdef Z_PROBE_SLED
  605. pinMode(SERVO0_PIN, OUTPUT);
  606. digitalWrite(SERVO0_PIN, LOW); // turn it off
  607. #endif // Z_PROBE_SLED
  608. setup_homepin();
  609. #ifdef STAT_LED_RED
  610. pinMode(STAT_LED_RED, OUTPUT);
  611. digitalWrite(STAT_LED_RED, LOW); // turn it off
  612. #endif
  613. #ifdef STAT_LED_BLUE
  614. pinMode(STAT_LED_BLUE, OUTPUT);
  615. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  616. #endif
  617. }
  618. void loop()
  619. {
  620. if(buflen < (BUFSIZE-1))
  621. get_command();
  622. #ifdef SDSUPPORT
  623. card.checkautostart(false);
  624. #endif
  625. if(buflen)
  626. {
  627. #ifdef SDSUPPORT
  628. if(card.saving)
  629. {
  630. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  631. {
  632. card.write_command(cmdbuffer[bufindr]);
  633. if(card.logging)
  634. {
  635. process_commands();
  636. }
  637. else
  638. {
  639. SERIAL_PROTOCOLLNPGM(MSG_OK);
  640. }
  641. }
  642. else
  643. {
  644. card.closefile();
  645. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  646. }
  647. }
  648. else
  649. {
  650. process_commands();
  651. }
  652. #else
  653. process_commands();
  654. #endif //SDSUPPORT
  655. buflen = (buflen-1);
  656. bufindr = (bufindr + 1)%BUFSIZE;
  657. }
  658. //check heater every n milliseconds
  659. manage_heater();
  660. manage_inactivity();
  661. checkHitEndstops();
  662. lcd_update();
  663. }
  664. void get_command()
  665. {
  666. if(drain_queued_commands_P()) // priority is given to non-serial commands
  667. return;
  668. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  669. serial_char = MYSERIAL.read();
  670. if(serial_char == '\n' ||
  671. serial_char == '\r' ||
  672. serial_count >= (MAX_CMD_SIZE - 1) )
  673. {
  674. // end of line == end of comment
  675. comment_mode = false;
  676. if(!serial_count) {
  677. // short cut for empty lines
  678. return;
  679. }
  680. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  681. #ifdef SDSUPPORT
  682. fromsd[bufindw] = false;
  683. #endif //!SDSUPPORT
  684. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  685. {
  686. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  687. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  688. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  689. SERIAL_ERROR_START;
  690. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  691. SERIAL_ERRORLN(gcode_LastN);
  692. //Serial.println(gcode_N);
  693. FlushSerialRequestResend();
  694. serial_count = 0;
  695. return;
  696. }
  697. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  698. {
  699. byte checksum = 0;
  700. byte count = 0;
  701. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  702. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  703. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. FlushSerialRequestResend();
  708. serial_count = 0;
  709. return;
  710. }
  711. //if no errors, continue parsing
  712. }
  713. else
  714. {
  715. SERIAL_ERROR_START;
  716. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  717. SERIAL_ERRORLN(gcode_LastN);
  718. FlushSerialRequestResend();
  719. serial_count = 0;
  720. return;
  721. }
  722. gcode_LastN = gcode_N;
  723. //if no errors, continue parsing
  724. }
  725. else // if we don't receive 'N' but still see '*'
  726. {
  727. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  728. {
  729. SERIAL_ERROR_START;
  730. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  731. SERIAL_ERRORLN(gcode_LastN);
  732. serial_count = 0;
  733. return;
  734. }
  735. }
  736. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  737. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  738. switch(strtol(strchr_pointer + 1, NULL, 10)){
  739. case 0:
  740. case 1:
  741. case 2:
  742. case 3:
  743. if (Stopped == true) {
  744. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  745. LCD_MESSAGEPGM(MSG_STOPPED);
  746. }
  747. break;
  748. default:
  749. break;
  750. }
  751. }
  752. //If command was e-stop process now
  753. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  754. kill();
  755. bufindw = (bufindw + 1)%BUFSIZE;
  756. buflen += 1;
  757. serial_count = 0; //clear buffer
  758. }
  759. else if(serial_char == '\\') { //Handle escapes
  760. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  761. // if we have one more character, copy it over
  762. serial_char = MYSERIAL.read();
  763. cmdbuffer[bufindw][serial_count++] = serial_char;
  764. }
  765. //otherwise do nothing
  766. }
  767. else { // its not a newline, carriage return or escape char
  768. if(serial_char == ';') comment_mode = true;
  769. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  770. }
  771. }
  772. #ifdef SDSUPPORT
  773. if(!card.sdprinting || serial_count!=0){
  774. return;
  775. }
  776. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  777. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  778. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  779. static bool stop_buffering=false;
  780. if(buflen==0) stop_buffering=false;
  781. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  782. int16_t n=card.get();
  783. serial_char = (char)n;
  784. if(serial_char == '\n' ||
  785. serial_char == '\r' ||
  786. (serial_char == '#' && comment_mode == false) ||
  787. (serial_char == ':' && comment_mode == false) ||
  788. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  789. {
  790. if(card.eof()){
  791. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  792. stoptime=millis();
  793. char time[30];
  794. unsigned long t=(stoptime-starttime)/1000;
  795. int hours, minutes;
  796. minutes=(t/60)%60;
  797. hours=t/60/60;
  798. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHOLN(time);
  801. lcd_setstatus(time);
  802. card.printingHasFinished();
  803. card.checkautostart(true);
  804. }
  805. if(serial_char=='#')
  806. stop_buffering=true;
  807. if(!serial_count)
  808. {
  809. comment_mode = false; //for new command
  810. return; //if empty line
  811. }
  812. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  813. // if(!comment_mode){
  814. fromsd[bufindw] = true;
  815. buflen += 1;
  816. bufindw = (bufindw + 1)%BUFSIZE;
  817. // }
  818. comment_mode = false; //for new command
  819. serial_count = 0; //clear buffer
  820. }
  821. else
  822. {
  823. if(serial_char == ';') comment_mode = true;
  824. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  825. }
  826. }
  827. #endif //SDSUPPORT
  828. }
  829. float code_value()
  830. {
  831. float ret;
  832. char *e = strchr(strchr_pointer, 'E');
  833. if (e != NULL) *e = 0;
  834. ret = strtod(strchr_pointer+1, NULL);
  835. if (e != NULL) *e = 'E';
  836. return ret;
  837. }
  838. long code_value_long()
  839. {
  840. return (strtol(strchr_pointer + 1, NULL, 10));
  841. }
  842. bool code_seen(char code)
  843. {
  844. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  845. return (strchr_pointer != NULL); //Return True if a character was found
  846. }
  847. #define DEFINE_PGM_READ_ANY(type, reader) \
  848. static inline type pgm_read_any(const type *p) \
  849. { return pgm_read_##reader##_near(p); }
  850. DEFINE_PGM_READ_ANY(float, float);
  851. DEFINE_PGM_READ_ANY(signed char, byte);
  852. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  853. static const PROGMEM type array##_P[3] = \
  854. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  855. static inline type array(int axis) \
  856. { return pgm_read_any(&array##_P[axis]); }
  857. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  858. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  859. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  860. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  861. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  862. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  863. #ifdef DUAL_X_CARRIAGE
  864. #define DXC_FULL_CONTROL_MODE 0
  865. #define DXC_AUTO_PARK_MODE 1
  866. #define DXC_DUPLICATION_MODE 2
  867. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  868. static float x_home_pos(int extruder) {
  869. if (extruder == 0)
  870. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  871. else
  872. // In dual carriage mode the extruder offset provides an override of the
  873. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  874. // This allow soft recalibration of the second extruder offset position without firmware reflash
  875. // (through the M218 command).
  876. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  877. }
  878. static int x_home_dir(int extruder) {
  879. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  880. }
  881. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  882. static bool active_extruder_parked = false; // used in mode 1 & 2
  883. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  884. static unsigned long delayed_move_time = 0; // used in mode 1
  885. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  886. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  887. bool extruder_duplication_enabled = false; // used in mode 2
  888. #endif //DUAL_X_CARRIAGE
  889. static void axis_is_at_home(int axis) {
  890. #ifdef DUAL_X_CARRIAGE
  891. if (axis == X_AXIS) {
  892. if (active_extruder != 0) {
  893. current_position[X_AXIS] = x_home_pos(active_extruder);
  894. min_pos[X_AXIS] = X2_MIN_POS;
  895. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  896. return;
  897. }
  898. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  899. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  900. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  901. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  902. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  903. return;
  904. }
  905. }
  906. #endif
  907. #ifdef SCARA
  908. float homeposition[3];
  909. char i;
  910. if (axis < 2)
  911. {
  912. for (i=0; i<3; i++)
  913. {
  914. homeposition[i] = base_home_pos(i);
  915. }
  916. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  917. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  918. // Works out real Homeposition angles using inverse kinematics,
  919. // and calculates homing offset using forward kinematics
  920. calculate_delta(homeposition);
  921. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. for (i=0; i<2; i++)
  924. {
  925. delta[i] -= home_offset[i];
  926. }
  927. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  928. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  929. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  930. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  931. calculate_SCARA_forward_Transform(delta);
  932. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  933. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  934. current_position[axis] = delta[axis];
  935. // SCARA home positions are based on configuration since the actual limits are determined by the
  936. // inverse kinematic transform.
  937. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  938. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  939. }
  940. else
  941. {
  942. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  943. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  944. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  945. }
  946. #else
  947. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  948. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  949. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  950. #endif
  951. }
  952. #ifdef ENABLE_AUTO_BED_LEVELING
  953. #ifdef AUTO_BED_LEVELING_GRID
  954. #ifndef DELTA
  955. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  956. {
  957. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  958. planeNormal.debug("planeNormal");
  959. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  960. //bedLevel.debug("bedLevel");
  961. //plan_bed_level_matrix.debug("bed level before");
  962. //vector_3 uncorrected_position = plan_get_position_mm();
  963. //uncorrected_position.debug("position before");
  964. vector_3 corrected_position = plan_get_position();
  965. // corrected_position.debug("position after");
  966. current_position[X_AXIS] = corrected_position.x;
  967. current_position[Y_AXIS] = corrected_position.y;
  968. current_position[Z_AXIS] = corrected_position.z;
  969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  970. }
  971. #endif
  972. #else // not AUTO_BED_LEVELING_GRID
  973. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  974. plan_bed_level_matrix.set_to_identity();
  975. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  976. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  977. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  978. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  979. if (planeNormal.z < 0) {
  980. planeNormal.x = -planeNormal.x;
  981. planeNormal.y = -planeNormal.y;
  982. planeNormal.z = -planeNormal.z;
  983. }
  984. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  985. vector_3 corrected_position = plan_get_position();
  986. current_position[X_AXIS] = corrected_position.x;
  987. current_position[Y_AXIS] = corrected_position.y;
  988. current_position[Z_AXIS] = corrected_position.z;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. }
  991. #endif // AUTO_BED_LEVELING_GRID
  992. static void run_z_probe() {
  993. #ifdef DELTA
  994. float start_z = current_position[Z_AXIS];
  995. long start_steps = st_get_position(Z_AXIS);
  996. // move down slowly until you find the bed
  997. feedrate = homing_feedrate[Z_AXIS] / 4;
  998. destination[Z_AXIS] = -10;
  999. prepare_move_raw();
  1000. st_synchronize();
  1001. endstops_hit_on_purpose();
  1002. // we have to let the planner know where we are right now as it is not where we said to go.
  1003. long stop_steps = st_get_position(Z_AXIS);
  1004. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1005. current_position[Z_AXIS] = mm;
  1006. calculate_delta(current_position);
  1007. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1008. #else
  1009. plan_bed_level_matrix.set_to_identity();
  1010. feedrate = homing_feedrate[Z_AXIS];
  1011. // move down until you find the bed
  1012. float zPosition = -10;
  1013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1014. st_synchronize();
  1015. // we have to let the planner know where we are right now as it is not where we said to go.
  1016. zPosition = st_get_position_mm(Z_AXIS);
  1017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1018. // move up the retract distance
  1019. zPosition += home_retract_mm(Z_AXIS);
  1020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1021. st_synchronize();
  1022. endstops_hit_on_purpose();
  1023. // move back down slowly to find bed
  1024. if (homing_bump_divisor[Z_AXIS] >= 1)
  1025. {
  1026. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1027. }
  1028. else
  1029. {
  1030. feedrate = homing_feedrate[Z_AXIS]/10;
  1031. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1032. }
  1033. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1035. st_synchronize();
  1036. endstops_hit_on_purpose();
  1037. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1038. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1040. #endif
  1041. }
  1042. static void do_blocking_move_to(float x, float y, float z) {
  1043. float oldFeedRate = feedrate;
  1044. #ifdef DELTA
  1045. feedrate = XY_TRAVEL_SPEED;
  1046. destination[X_AXIS] = x;
  1047. destination[Y_AXIS] = y;
  1048. destination[Z_AXIS] = z;
  1049. prepare_move_raw();
  1050. st_synchronize();
  1051. #else
  1052. feedrate = homing_feedrate[Z_AXIS];
  1053. current_position[Z_AXIS] = z;
  1054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1055. st_synchronize();
  1056. feedrate = xy_travel_speed;
  1057. current_position[X_AXIS] = x;
  1058. current_position[Y_AXIS] = y;
  1059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1060. st_synchronize();
  1061. #endif
  1062. feedrate = oldFeedRate;
  1063. }
  1064. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1065. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1066. }
  1067. static void setup_for_endstop_move() {
  1068. saved_feedrate = feedrate;
  1069. saved_feedmultiply = feedmultiply;
  1070. feedmultiply = 100;
  1071. previous_millis_cmd = millis();
  1072. enable_endstops(true);
  1073. }
  1074. static void clean_up_after_endstop_move() {
  1075. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1076. enable_endstops(false);
  1077. #endif
  1078. feedrate = saved_feedrate;
  1079. feedmultiply = saved_feedmultiply;
  1080. previous_millis_cmd = millis();
  1081. }
  1082. static void engage_z_probe() {
  1083. // Engage Z Servo endstop if enabled
  1084. #ifdef SERVO_ENDSTOPS
  1085. if (servo_endstops[Z_AXIS] > -1) {
  1086. #if SERVO_LEVELING
  1087. servos[servo_endstops[Z_AXIS]].attach(0);
  1088. #endif
  1089. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1090. #if SERVO_LEVELING
  1091. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1092. servos[servo_endstops[Z_AXIS]].detach();
  1093. #endif
  1094. }
  1095. #elif defined(Z_PROBE_ALLEN_KEY)
  1096. feedrate = homing_feedrate[X_AXIS];
  1097. // Move to the start position to initiate deployment
  1098. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1099. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1100. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1101. prepare_move_raw();
  1102. // Home X to touch the belt
  1103. feedrate = homing_feedrate[X_AXIS]/10;
  1104. destination[X_AXIS] = 0;
  1105. prepare_move_raw();
  1106. // Home Y for safety
  1107. feedrate = homing_feedrate[X_AXIS]/2;
  1108. destination[Y_AXIS] = 0;
  1109. prepare_move_raw();
  1110. st_synchronize();
  1111. #if defined(Z_PROBE_AND_ENDSTOP)
  1112. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1113. if (z_probe_endstop)
  1114. #else
  1115. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1116. if (z_min_endstop)
  1117. #endif
  1118. {
  1119. if (!Stopped)
  1120. {
  1121. SERIAL_ERROR_START;
  1122. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1123. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1124. }
  1125. Stop();
  1126. }
  1127. #endif
  1128. }
  1129. static void retract_z_probe() {
  1130. // Retract Z Servo endstop if enabled
  1131. #ifdef SERVO_ENDSTOPS
  1132. if (servo_endstops[Z_AXIS] > -1)
  1133. {
  1134. #if Z_RAISE_AFTER_PROBING > 0
  1135. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1136. st_synchronize();
  1137. #endif
  1138. #if SERVO_LEVELING
  1139. servos[servo_endstops[Z_AXIS]].attach(0);
  1140. #endif
  1141. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1142. #if SERVO_LEVELING
  1143. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1144. servos[servo_endstops[Z_AXIS]].detach();
  1145. #endif
  1146. }
  1147. #elif defined(Z_PROBE_ALLEN_KEY)
  1148. // Move up for safety
  1149. feedrate = homing_feedrate[X_AXIS];
  1150. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1151. prepare_move_raw();
  1152. // Move to the start position to initiate retraction
  1153. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1154. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1155. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1156. prepare_move_raw();
  1157. // Move the nozzle down to push the probe into retracted position
  1158. feedrate = homing_feedrate[Z_AXIS]/10;
  1159. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1160. prepare_move_raw();
  1161. // Move up for safety
  1162. feedrate = homing_feedrate[Z_AXIS]/2;
  1163. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1164. prepare_move_raw();
  1165. // Home XY for safety
  1166. feedrate = homing_feedrate[X_AXIS]/2;
  1167. destination[X_AXIS] = 0;
  1168. destination[Y_AXIS] = 0;
  1169. prepare_move_raw();
  1170. st_synchronize();
  1171. #if defined(Z_PROBE_AND_ENDSTOP)
  1172. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1173. if (z_probe_endstop)
  1174. #else
  1175. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1176. if (z_min_endstop)
  1177. #endif
  1178. {
  1179. if (!Stopped)
  1180. {
  1181. SERIAL_ERROR_START;
  1182. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1183. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1184. }
  1185. Stop();
  1186. }
  1187. #endif
  1188. }
  1189. enum ProbeAction {
  1190. ProbeStay = 0,
  1191. ProbeEngage = BIT(0),
  1192. ProbeRetract = BIT(1),
  1193. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1194. };
  1195. /// Probe bed height at position (x,y), returns the measured z value
  1196. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1197. // move to right place
  1198. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1199. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1200. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1201. if (retract_action & ProbeEngage) engage_z_probe();
  1202. #endif
  1203. run_z_probe();
  1204. float measured_z = current_position[Z_AXIS];
  1205. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1206. if (retract_action & ProbeRetract) retract_z_probe();
  1207. #endif
  1208. if (verbose_level > 2) {
  1209. SERIAL_PROTOCOLPGM(MSG_BED);
  1210. SERIAL_PROTOCOLPGM(" X: ");
  1211. SERIAL_PROTOCOL_F(x, 3);
  1212. SERIAL_PROTOCOLPGM(" Y: ");
  1213. SERIAL_PROTOCOL_F(y, 3);
  1214. SERIAL_PROTOCOLPGM(" Z: ");
  1215. SERIAL_PROTOCOL_F(measured_z, 3);
  1216. SERIAL_EOL;
  1217. }
  1218. return measured_z;
  1219. }
  1220. #ifdef DELTA
  1221. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1222. if (bed_level[x][y] != 0.0) {
  1223. return; // Don't overwrite good values.
  1224. }
  1225. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1226. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1227. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1228. float median = c; // Median is robust (ignores outliers).
  1229. if (a < b) {
  1230. if (b < c) median = b;
  1231. if (c < a) median = a;
  1232. } else { // b <= a
  1233. if (c < b) median = b;
  1234. if (a < c) median = a;
  1235. }
  1236. bed_level[x][y] = median;
  1237. }
  1238. // Fill in the unprobed points (corners of circular print surface)
  1239. // using linear extrapolation, away from the center.
  1240. static void extrapolate_unprobed_bed_level() {
  1241. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1242. for (int y = 0; y <= half; y++) {
  1243. for (int x = 0; x <= half; x++) {
  1244. if (x + y < 3) continue;
  1245. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1246. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1247. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1248. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1249. }
  1250. }
  1251. }
  1252. // Print calibration results for plotting or manual frame adjustment.
  1253. static void print_bed_level() {
  1254. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1255. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1256. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1257. SERIAL_PROTOCOLPGM(" ");
  1258. }
  1259. SERIAL_ECHOLN("");
  1260. }
  1261. }
  1262. // Reset calibration results to zero.
  1263. void reset_bed_level() {
  1264. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1265. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1266. bed_level[x][y] = 0.0;
  1267. }
  1268. }
  1269. }
  1270. #endif // DELTA
  1271. #endif // ENABLE_AUTO_BED_LEVELING
  1272. static void homeaxis(int axis) {
  1273. #define HOMEAXIS_DO(LETTER) \
  1274. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1275. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1276. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1277. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1278. 0) {
  1279. int axis_home_dir = home_dir(axis);
  1280. #ifdef DUAL_X_CARRIAGE
  1281. if (axis == X_AXIS)
  1282. axis_home_dir = x_home_dir(active_extruder);
  1283. #endif
  1284. current_position[axis] = 0;
  1285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1286. #ifndef Z_PROBE_SLED
  1287. // Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP
  1288. #ifndef Z_PROBE_AND_ENDSTOP
  1289. #ifdef SERVO_ENDSTOPS
  1290. #if SERVO_LEVELING
  1291. if (axis==Z_AXIS) {
  1292. engage_z_probe();
  1293. }
  1294. else
  1295. #endif
  1296. if (servo_endstops[axis] > -1) {
  1297. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1298. }
  1299. #endif
  1300. #endif // Z_PROBE_AND_ENDSTOP
  1301. #endif // Z_PROBE_SLED
  1302. #ifdef Z_DUAL_ENDSTOPS
  1303. if (axis==Z_AXIS) In_Homing_Process(true);
  1304. #endif
  1305. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1306. feedrate = homing_feedrate[axis];
  1307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1308. st_synchronize();
  1309. current_position[axis] = 0;
  1310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1311. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1312. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1313. st_synchronize();
  1314. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1315. if (homing_bump_divisor[axis] >= 1)
  1316. {
  1317. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1318. }
  1319. else
  1320. {
  1321. feedrate = homing_feedrate[axis]/10;
  1322. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1323. }
  1324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1325. st_synchronize();
  1326. #ifdef Z_DUAL_ENDSTOPS
  1327. if (axis==Z_AXIS)
  1328. {
  1329. feedrate = homing_feedrate[axis];
  1330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1331. if (axis_home_dir > 0)
  1332. {
  1333. destination[axis] = (-1) * fabs(z_endstop_adj);
  1334. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1335. } else {
  1336. destination[axis] = fabs(z_endstop_adj);
  1337. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1338. }
  1339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1340. st_synchronize();
  1341. Lock_z_motor(false);
  1342. Lock_z2_motor(false);
  1343. In_Homing_Process(false);
  1344. }
  1345. #endif
  1346. #ifdef DELTA
  1347. // retrace by the amount specified in endstop_adj
  1348. if (endstop_adj[axis] * axis_home_dir < 0) {
  1349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1350. destination[axis] = endstop_adj[axis];
  1351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1352. st_synchronize();
  1353. }
  1354. #endif
  1355. axis_is_at_home(axis);
  1356. destination[axis] = current_position[axis];
  1357. feedrate = 0.0;
  1358. endstops_hit_on_purpose();
  1359. axis_known_position[axis] = true;
  1360. // Retract Servo endstop if enabled
  1361. #ifdef SERVO_ENDSTOPS
  1362. if (servo_endstops[axis] > -1) {
  1363. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1364. }
  1365. #endif
  1366. #if SERVO_LEVELING
  1367. #ifndef Z_PROBE_SLED
  1368. if (axis==Z_AXIS) retract_z_probe();
  1369. #endif
  1370. #endif
  1371. }
  1372. }
  1373. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1374. void refresh_cmd_timeout(void)
  1375. {
  1376. previous_millis_cmd = millis();
  1377. }
  1378. #ifdef FWRETRACT
  1379. void retract(bool retracting, bool swapretract = false) {
  1380. if(retracting && !retracted[active_extruder]) {
  1381. destination[X_AXIS]=current_position[X_AXIS];
  1382. destination[Y_AXIS]=current_position[Y_AXIS];
  1383. destination[Z_AXIS]=current_position[Z_AXIS];
  1384. destination[E_AXIS]=current_position[E_AXIS];
  1385. if (swapretract) {
  1386. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1387. } else {
  1388. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1389. }
  1390. plan_set_e_position(current_position[E_AXIS]);
  1391. float oldFeedrate = feedrate;
  1392. feedrate=retract_feedrate*60;
  1393. retracted[active_extruder]=true;
  1394. prepare_move();
  1395. if(retract_zlift > 0.01) {
  1396. current_position[Z_AXIS]-=retract_zlift;
  1397. #ifdef DELTA
  1398. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1399. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1400. #else
  1401. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1402. #endif
  1403. prepare_move();
  1404. }
  1405. feedrate = oldFeedrate;
  1406. } else if(!retracting && retracted[active_extruder]) {
  1407. destination[X_AXIS]=current_position[X_AXIS];
  1408. destination[Y_AXIS]=current_position[Y_AXIS];
  1409. destination[Z_AXIS]=current_position[Z_AXIS];
  1410. destination[E_AXIS]=current_position[E_AXIS];
  1411. if(retract_zlift > 0.01) {
  1412. current_position[Z_AXIS]+=retract_zlift;
  1413. #ifdef DELTA
  1414. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1415. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1416. #else
  1417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1418. #endif
  1419. //prepare_move();
  1420. }
  1421. if (swapretract) {
  1422. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1423. } else {
  1424. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1425. }
  1426. plan_set_e_position(current_position[E_AXIS]);
  1427. float oldFeedrate = feedrate;
  1428. feedrate=retract_recover_feedrate*60;
  1429. retracted[active_extruder]=false;
  1430. prepare_move();
  1431. feedrate = oldFeedrate;
  1432. }
  1433. } //retract
  1434. #endif //FWRETRACT
  1435. #ifdef Z_PROBE_SLED
  1436. #ifndef SLED_DOCKING_OFFSET
  1437. #define SLED_DOCKING_OFFSET 0
  1438. #endif
  1439. //
  1440. // Method to dock/undock a sled designed by Charles Bell.
  1441. //
  1442. // dock[in] If true, move to MAX_X and engage the electromagnet
  1443. // offset[in] The additional distance to move to adjust docking location
  1444. //
  1445. static void dock_sled(bool dock, int offset=0) {
  1446. int z_loc;
  1447. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1448. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1451. return;
  1452. }
  1453. if (dock) {
  1454. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1455. current_position[Y_AXIS],
  1456. current_position[Z_AXIS]);
  1457. // turn off magnet
  1458. digitalWrite(SERVO0_PIN, LOW);
  1459. } else {
  1460. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1461. z_loc = Z_RAISE_BEFORE_PROBING;
  1462. else
  1463. z_loc = current_position[Z_AXIS];
  1464. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1465. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1466. // turn on magnet
  1467. digitalWrite(SERVO0_PIN, HIGH);
  1468. }
  1469. }
  1470. #endif
  1471. /**
  1472. *
  1473. * G-Code Handler functions
  1474. *
  1475. */
  1476. /**
  1477. * G0, G1: Coordinated movement of X Y Z E axes
  1478. */
  1479. inline void gcode_G0_G1() {
  1480. if (!Stopped) {
  1481. get_coordinates(); // For X Y Z E F
  1482. #ifdef FWRETRACT
  1483. if (autoretract_enabled)
  1484. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1485. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1486. // Is this move an attempt to retract or recover?
  1487. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1488. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1489. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1490. retract(!retracted[active_extruder]);
  1491. return;
  1492. }
  1493. }
  1494. #endif //FWRETRACT
  1495. prepare_move();
  1496. //ClearToSend();
  1497. }
  1498. }
  1499. /**
  1500. * G2: Clockwise Arc
  1501. * G3: Counterclockwise Arc
  1502. */
  1503. inline void gcode_G2_G3(bool clockwise) {
  1504. if (!Stopped) {
  1505. get_arc_coordinates();
  1506. prepare_arc_move(clockwise);
  1507. }
  1508. }
  1509. /**
  1510. * G4: Dwell S<seconds> or P<milliseconds>
  1511. */
  1512. inline void gcode_G4() {
  1513. unsigned long codenum=0;
  1514. LCD_MESSAGEPGM(MSG_DWELL);
  1515. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1516. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1517. st_synchronize();
  1518. previous_millis_cmd = millis();
  1519. codenum += previous_millis_cmd; // keep track of when we started waiting
  1520. while(millis() < codenum) {
  1521. manage_heater();
  1522. manage_inactivity();
  1523. lcd_update();
  1524. }
  1525. }
  1526. #ifdef FWRETRACT
  1527. /**
  1528. * G10 - Retract filament according to settings of M207
  1529. * G11 - Recover filament according to settings of M208
  1530. */
  1531. inline void gcode_G10_G11(bool doRetract=false) {
  1532. #if EXTRUDERS > 1
  1533. if (doRetract) {
  1534. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1535. }
  1536. #endif
  1537. retract(doRetract
  1538. #if EXTRUDERS > 1
  1539. , retracted_swap[active_extruder]
  1540. #endif
  1541. );
  1542. }
  1543. #endif //FWRETRACT
  1544. /**
  1545. * G28: Home all axes, one at a time
  1546. */
  1547. inline void gcode_G28() {
  1548. #ifdef ENABLE_AUTO_BED_LEVELING
  1549. #ifdef DELTA
  1550. reset_bed_level();
  1551. #else
  1552. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1553. #endif
  1554. #endif
  1555. #if defined(MESH_BED_LEVELING)
  1556. uint8_t mbl_was_active = mbl.active;
  1557. mbl.active = 0;
  1558. #endif // MESH_BED_LEVELING
  1559. saved_feedrate = feedrate;
  1560. saved_feedmultiply = feedmultiply;
  1561. feedmultiply = 100;
  1562. previous_millis_cmd = millis();
  1563. enable_endstops(true);
  1564. for (int i = X_AXIS; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1565. feedrate = 0.0;
  1566. #ifdef DELTA
  1567. // A delta can only safely home all axis at the same time
  1568. // all axis have to home at the same time
  1569. // Move all carriages up together until the first endstop is hit.
  1570. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1571. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1572. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1573. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1574. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. endstops_hit_on_purpose();
  1577. // Destination reached
  1578. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1579. // take care of back off and rehome now we are all at the top
  1580. HOMEAXIS(X);
  1581. HOMEAXIS(Y);
  1582. HOMEAXIS(Z);
  1583. calculate_delta(current_position);
  1584. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1585. #else // NOT DELTA
  1586. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1587. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1588. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1589. HOMEAXIS(Z);
  1590. }
  1591. #endif
  1592. #ifdef QUICK_HOME
  1593. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1594. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1595. #ifndef DUAL_X_CARRIAGE
  1596. int x_axis_home_dir = home_dir(X_AXIS);
  1597. #else
  1598. int x_axis_home_dir = x_home_dir(active_extruder);
  1599. extruder_duplication_enabled = false;
  1600. #endif
  1601. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1602. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1603. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1604. feedrate = homing_feedrate[X_AXIS];
  1605. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1606. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1607. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1608. } else {
  1609. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1610. }
  1611. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1612. st_synchronize();
  1613. axis_is_at_home(X_AXIS);
  1614. axis_is_at_home(Y_AXIS);
  1615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1616. destination[X_AXIS] = current_position[X_AXIS];
  1617. destination[Y_AXIS] = current_position[Y_AXIS];
  1618. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1619. feedrate = 0.0;
  1620. st_synchronize();
  1621. endstops_hit_on_purpose();
  1622. current_position[X_AXIS] = destination[X_AXIS];
  1623. current_position[Y_AXIS] = destination[Y_AXIS];
  1624. #ifndef SCARA
  1625. current_position[Z_AXIS] = destination[Z_AXIS];
  1626. #endif
  1627. }
  1628. #endif //QUICK_HOME
  1629. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1630. #ifdef DUAL_X_CARRIAGE
  1631. int tmp_extruder = active_extruder;
  1632. extruder_duplication_enabled = false;
  1633. active_extruder = !active_extruder;
  1634. HOMEAXIS(X);
  1635. inactive_extruder_x_pos = current_position[X_AXIS];
  1636. active_extruder = tmp_extruder;
  1637. HOMEAXIS(X);
  1638. // reset state used by the different modes
  1639. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1640. delayed_move_time = 0;
  1641. active_extruder_parked = true;
  1642. #else
  1643. HOMEAXIS(X);
  1644. #endif
  1645. }
  1646. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1647. if (code_seen(axis_codes[X_AXIS])) {
  1648. if (code_value_long() != 0) {
  1649. current_position[X_AXIS] = code_value()
  1650. #ifndef SCARA
  1651. + home_offset[X_AXIS]
  1652. #endif
  1653. ;
  1654. }
  1655. }
  1656. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1657. current_position[Y_AXIS] = code_value()
  1658. #ifndef SCARA
  1659. + home_offset[Y_AXIS]
  1660. #endif
  1661. ;
  1662. }
  1663. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1664. #ifndef Z_SAFE_HOMING
  1665. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1666. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1667. #ifndef Z_PROBE_AND_ENDSTOP
  1668. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1669. feedrate = max_feedrate[Z_AXIS];
  1670. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1671. st_synchronize();
  1672. #endif
  1673. #endif
  1674. HOMEAXIS(Z);
  1675. }
  1676. #else // Z_SAFE_HOMING
  1677. if (home_all_axis) {
  1678. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1679. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1680. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1681. feedrate = XY_TRAVEL_SPEED / 60;
  1682. current_position[Z_AXIS] = 0;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1685. st_synchronize();
  1686. current_position[X_AXIS] = destination[X_AXIS];
  1687. current_position[Y_AXIS] = destination[Y_AXIS];
  1688. HOMEAXIS(Z);
  1689. }
  1690. // Let's see if X and Y are homed and probe is inside bed area.
  1691. if (code_seen(axis_codes[Z_AXIS])) {
  1692. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1693. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1694. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1695. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1696. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1697. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1698. current_position[Z_AXIS] = 0;
  1699. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1700. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1701. feedrate = max_feedrate[Z_AXIS];
  1702. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1703. st_synchronize();
  1704. HOMEAXIS(Z);
  1705. }
  1706. else {
  1707. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1708. SERIAL_ECHO_START;
  1709. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1710. }
  1711. }
  1712. else {
  1713. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1714. SERIAL_ECHO_START;
  1715. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1716. }
  1717. }
  1718. #endif // Z_SAFE_HOMING
  1719. #endif // Z_HOME_DIR < 0
  1720. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1721. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1722. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1723. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1724. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1725. #endif
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. #endif // else DELTA
  1728. #ifdef SCARA
  1729. calculate_delta(current_position);
  1730. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1731. #endif
  1732. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1733. enable_endstops(false);
  1734. #endif
  1735. #if defined(MESH_BED_LEVELING)
  1736. if (mbl_was_active) {
  1737. current_position[X_AXIS] = mbl.get_x(0);
  1738. current_position[Y_AXIS] = mbl.get_y(0);
  1739. destination[X_AXIS] = current_position[X_AXIS];
  1740. destination[Y_AXIS] = current_position[Y_AXIS];
  1741. destination[Z_AXIS] = current_position[Z_AXIS];
  1742. destination[E_AXIS] = current_position[E_AXIS];
  1743. feedrate = homing_feedrate[X_AXIS];
  1744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1745. st_synchronize();
  1746. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1748. mbl.active = 1;
  1749. }
  1750. #endif
  1751. feedrate = saved_feedrate;
  1752. feedmultiply = saved_feedmultiply;
  1753. previous_millis_cmd = millis();
  1754. endstops_hit_on_purpose();
  1755. }
  1756. #ifdef MESH_BED_LEVELING
  1757. /**
  1758. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1759. * mesh to compensate for variable bed height
  1760. *
  1761. * Parameters With MESH_BED_LEVELING:
  1762. *
  1763. * S0 Produce a mesh report
  1764. * S1 Start probing mesh points
  1765. * S2 Probe the next mesh point
  1766. *
  1767. */
  1768. inline void gcode_G29() {
  1769. static int probe_point = -1;
  1770. int state = 0;
  1771. if (code_seen('S') || code_seen('s')) {
  1772. state = code_value_long();
  1773. if (state < 0 || state > 2) {
  1774. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1775. return;
  1776. }
  1777. }
  1778. if (state == 0) { // Dump mesh_bed_leveling
  1779. if (mbl.active) {
  1780. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1781. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1782. SERIAL_PROTOCOLPGM(",");
  1783. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1784. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1785. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1786. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1787. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1788. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1789. SERIAL_PROTOCOLPGM(" ");
  1790. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1791. }
  1792. SERIAL_EOL;
  1793. }
  1794. } else {
  1795. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1796. }
  1797. } else if (state == 1) { // Begin probing mesh points
  1798. mbl.reset();
  1799. probe_point = 0;
  1800. enquecommands_P(PSTR("G28"));
  1801. enquecommands_P(PSTR("G29 S2"));
  1802. } else if (state == 2) { // Goto next point
  1803. if (probe_point < 0) {
  1804. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1805. return;
  1806. }
  1807. int ix, iy;
  1808. if (probe_point == 0) {
  1809. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1811. } else {
  1812. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1813. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1814. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1815. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1816. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1818. st_synchronize();
  1819. }
  1820. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1821. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1822. probe_point = -1;
  1823. mbl.active = 1;
  1824. enquecommands_P(PSTR("G28"));
  1825. return;
  1826. }
  1827. ix = probe_point % MESH_NUM_X_POINTS;
  1828. iy = probe_point / MESH_NUM_X_POINTS;
  1829. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1830. current_position[X_AXIS] = mbl.get_x(ix);
  1831. current_position[Y_AXIS] = mbl.get_y(iy);
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1833. st_synchronize();
  1834. probe_point++;
  1835. }
  1836. }
  1837. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1838. /**
  1839. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1840. * Will fail if the printer has not been homed with G28.
  1841. *
  1842. * Enhanced G29 Auto Bed Leveling Probe Routine
  1843. *
  1844. * Parameters With AUTO_BED_LEVELING_GRID:
  1845. *
  1846. * P Set the size of the grid that will be probed (P x P points).
  1847. * Not supported by non-linear delta printer bed leveling.
  1848. * Example: "G29 P4"
  1849. *
  1850. * S Set the XY travel speed between probe points (in mm/min)
  1851. *
  1852. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1853. * or clean the rotation Matrix. Useful to check the topology
  1854. * after a first run of G29.
  1855. *
  1856. * V Set the verbose level (0-4). Example: "G29 V3"
  1857. *
  1858. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1859. * This is useful for manual bed leveling and finding flaws in the bed (to
  1860. * assist with part placement).
  1861. * Not supported by non-linear delta printer bed leveling.
  1862. *
  1863. * F Set the Front limit of the probing grid
  1864. * B Set the Back limit of the probing grid
  1865. * L Set the Left limit of the probing grid
  1866. * R Set the Right limit of the probing grid
  1867. *
  1868. * Global Parameters:
  1869. *
  1870. * E/e By default G29 engages / disengages the probe for each point.
  1871. * Include "E" to engage and disengage the probe just once.
  1872. * There's no extra effect if you have a fixed probe.
  1873. * Usage: "G29 E" or "G29 e"
  1874. *
  1875. */
  1876. inline void gcode_G29() {
  1877. // Prevent user from running a G29 without first homing in X and Y
  1878. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1879. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1880. SERIAL_ECHO_START;
  1881. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1882. return;
  1883. }
  1884. int verbose_level = 1;
  1885. float x_tmp, y_tmp, z_tmp, real_z;
  1886. if (code_seen('V') || code_seen('v')) {
  1887. verbose_level = code_value_long();
  1888. if (verbose_level < 0 || verbose_level > 4) {
  1889. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1890. return;
  1891. }
  1892. }
  1893. bool dryrun = code_seen('D') || code_seen('d');
  1894. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1895. #ifdef AUTO_BED_LEVELING_GRID
  1896. #ifndef DELTA
  1897. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1898. #endif
  1899. if (verbose_level > 0)
  1900. {
  1901. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1902. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1903. }
  1904. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1905. #ifndef DELTA
  1906. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1907. if (auto_bed_leveling_grid_points < 2) {
  1908. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1909. return;
  1910. }
  1911. #endif
  1912. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1913. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1914. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1915. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1916. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1917. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1918. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1919. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1920. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1921. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1922. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1923. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1924. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1925. if (left_out || right_out || front_out || back_out) {
  1926. if (left_out) {
  1927. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1928. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1929. }
  1930. if (right_out) {
  1931. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1932. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1933. }
  1934. if (front_out) {
  1935. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1936. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1937. }
  1938. if (back_out) {
  1939. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1940. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1941. }
  1942. return;
  1943. }
  1944. #endif // AUTO_BED_LEVELING_GRID
  1945. #ifdef Z_PROBE_SLED
  1946. dock_sled(false); // engage (un-dock) the probe
  1947. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1948. engage_z_probe();
  1949. #endif
  1950. st_synchronize();
  1951. if (!dryrun)
  1952. {
  1953. #ifdef DELTA
  1954. reset_bed_level();
  1955. #else //!DELTA
  1956. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1957. //vector_3 corrected_position = plan_get_position_mm();
  1958. //corrected_position.debug("position before G29");
  1959. plan_bed_level_matrix.set_to_identity();
  1960. vector_3 uncorrected_position = plan_get_position();
  1961. //uncorrected_position.debug("position during G29");
  1962. current_position[X_AXIS] = uncorrected_position.x;
  1963. current_position[Y_AXIS] = uncorrected_position.y;
  1964. current_position[Z_AXIS] = uncorrected_position.z;
  1965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1966. #endif
  1967. }
  1968. setup_for_endstop_move();
  1969. feedrate = homing_feedrate[Z_AXIS];
  1970. #ifdef AUTO_BED_LEVELING_GRID
  1971. // probe at the points of a lattice grid
  1972. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1973. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1974. #ifdef DELTA
  1975. delta_grid_spacing[0] = xGridSpacing;
  1976. delta_grid_spacing[1] = yGridSpacing;
  1977. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1978. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1979. #else // !DELTA
  1980. // solve the plane equation ax + by + d = z
  1981. // A is the matrix with rows [x y 1] for all the probed points
  1982. // B is the vector of the Z positions
  1983. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1984. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1985. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1986. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1987. eqnBVector[abl2], // "B" vector of Z points
  1988. mean = 0.0;
  1989. #endif // !DELTA
  1990. int probePointCounter = 0;
  1991. bool zig = true;
  1992. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1993. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1994. int xStart, xStop, xInc;
  1995. if (zig) {
  1996. xStart = 0;
  1997. xStop = auto_bed_leveling_grid_points;
  1998. xInc = 1;
  1999. }
  2000. else {
  2001. xStart = auto_bed_leveling_grid_points - 1;
  2002. xStop = -1;
  2003. xInc = -1;
  2004. }
  2005. #ifndef DELTA
  2006. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2007. // This gets the probe points in more readable order.
  2008. if (!do_topography_map) zig = !zig;
  2009. #endif
  2010. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2011. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2012. // raise extruder
  2013. float measured_z,
  2014. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2015. #ifdef DELTA
  2016. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2017. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2018. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  2019. continue;
  2020. #endif //DELTA
  2021. // Enhanced G29 - Do not retract servo between probes
  2022. ProbeAction act;
  2023. if (enhanced_g29) {
  2024. if (yProbe == front_probe_bed_position && xCount == 0)
  2025. act = ProbeEngage;
  2026. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2027. act = ProbeRetract;
  2028. else
  2029. act = ProbeStay;
  2030. }
  2031. else
  2032. act = ProbeEngageAndRetract;
  2033. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2034. #ifndef DELTA
  2035. mean += measured_z;
  2036. eqnBVector[probePointCounter] = measured_z;
  2037. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2038. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2039. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2040. #else
  2041. bed_level[xCount][yCount] = measured_z + z_offset;
  2042. #endif
  2043. probePointCounter++;
  2044. } //xProbe
  2045. } //yProbe
  2046. clean_up_after_endstop_move();
  2047. #ifdef DELTA
  2048. if (!dryrun) extrapolate_unprobed_bed_level();
  2049. print_bed_level();
  2050. #else // !DELTA
  2051. // solve lsq problem
  2052. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2053. mean /= abl2;
  2054. if (verbose_level) {
  2055. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2056. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2057. SERIAL_PROTOCOLPGM(" b: ");
  2058. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2059. SERIAL_PROTOCOLPGM(" d: ");
  2060. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2061. SERIAL_EOL;
  2062. if (verbose_level > 2) {
  2063. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2064. SERIAL_PROTOCOL_F(mean, 8);
  2065. SERIAL_EOL;
  2066. }
  2067. }
  2068. // Show the Topography map if enabled
  2069. if (do_topography_map) {
  2070. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2071. SERIAL_PROTOCOLPGM("+-----------+\n");
  2072. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2073. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2074. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2075. SERIAL_PROTOCOLPGM("+-----------+\n");
  2076. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2077. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2078. int ind = yy * auto_bed_leveling_grid_points + xx;
  2079. float diff = eqnBVector[ind] - mean;
  2080. if (diff >= 0.0)
  2081. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2082. else
  2083. SERIAL_PROTOCOLPGM(" ");
  2084. SERIAL_PROTOCOL_F(diff, 5);
  2085. } // xx
  2086. SERIAL_EOL;
  2087. } // yy
  2088. SERIAL_EOL;
  2089. } //do_topography_map
  2090. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2091. free(plane_equation_coefficients);
  2092. #endif //!DELTA
  2093. #else // !AUTO_BED_LEVELING_GRID
  2094. // Probe at 3 arbitrary points
  2095. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2096. if (enhanced_g29) {
  2097. // Basic Enhanced G29
  2098. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2099. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2100. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2101. }
  2102. else {
  2103. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
  2104. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2105. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2106. }
  2107. clean_up_after_endstop_move();
  2108. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2109. #endif // !AUTO_BED_LEVELING_GRID
  2110. #ifndef DELTA
  2111. if (verbose_level > 0)
  2112. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2113. // Correct the Z height difference from z-probe position and hotend tip position.
  2114. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2115. // When the bed is uneven, this height must be corrected.
  2116. if (!dryrun)
  2117. {
  2118. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2119. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2120. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2121. z_tmp = current_position[Z_AXIS];
  2122. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2123. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2124. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2125. }
  2126. #endif // !DELTA
  2127. #ifdef Z_PROBE_SLED
  2128. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2129. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2130. retract_z_probe();
  2131. #endif
  2132. #ifdef Z_PROBE_END_SCRIPT
  2133. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2134. st_synchronize();
  2135. #endif
  2136. }
  2137. #ifndef Z_PROBE_SLED
  2138. inline void gcode_G30() {
  2139. engage_z_probe(); // Engage Z Servo endstop if available
  2140. st_synchronize();
  2141. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2142. setup_for_endstop_move();
  2143. feedrate = homing_feedrate[Z_AXIS];
  2144. run_z_probe();
  2145. SERIAL_PROTOCOLPGM(MSG_BED);
  2146. SERIAL_PROTOCOLPGM(" X: ");
  2147. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2148. SERIAL_PROTOCOLPGM(" Y: ");
  2149. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2150. SERIAL_PROTOCOLPGM(" Z: ");
  2151. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2152. SERIAL_EOL;
  2153. clean_up_after_endstop_move();
  2154. retract_z_probe(); // Retract Z Servo endstop if available
  2155. }
  2156. #endif //!Z_PROBE_SLED
  2157. #endif //ENABLE_AUTO_BED_LEVELING
  2158. /**
  2159. * G92: Set current position to given X Y Z E
  2160. */
  2161. inline void gcode_G92() {
  2162. if (!code_seen(axis_codes[E_AXIS]))
  2163. st_synchronize();
  2164. for (int i = 0; i < NUM_AXIS; i++) {
  2165. if (code_seen(axis_codes[i])) {
  2166. current_position[i] = code_value();
  2167. if (i == E_AXIS)
  2168. plan_set_e_position(current_position[E_AXIS]);
  2169. else
  2170. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2171. }
  2172. }
  2173. }
  2174. #ifdef ULTIPANEL
  2175. /**
  2176. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2177. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2178. */
  2179. inline void gcode_M0_M1() {
  2180. char *src = strchr_pointer + 2;
  2181. unsigned long codenum = 0;
  2182. bool hasP = false, hasS = false;
  2183. if (code_seen('P')) {
  2184. codenum = code_value(); // milliseconds to wait
  2185. hasP = codenum > 0;
  2186. }
  2187. if (code_seen('S')) {
  2188. codenum = code_value() * 1000; // seconds to wait
  2189. hasS = codenum > 0;
  2190. }
  2191. char* starpos = strchr(src, '*');
  2192. if (starpos != NULL) *(starpos) = '\0';
  2193. while (*src == ' ') ++src;
  2194. if (!hasP && !hasS && *src != '\0')
  2195. lcd_setstatus(src);
  2196. else
  2197. LCD_MESSAGEPGM(MSG_USERWAIT);
  2198. lcd_ignore_click();
  2199. st_synchronize();
  2200. previous_millis_cmd = millis();
  2201. if (codenum > 0) {
  2202. codenum += previous_millis_cmd; // keep track of when we started waiting
  2203. while(millis() < codenum && !lcd_clicked()) {
  2204. manage_heater();
  2205. manage_inactivity();
  2206. lcd_update();
  2207. }
  2208. lcd_ignore_click(false);
  2209. }
  2210. else {
  2211. if (!lcd_detected()) return;
  2212. while (!lcd_clicked()) {
  2213. manage_heater();
  2214. manage_inactivity();
  2215. lcd_update();
  2216. }
  2217. }
  2218. if (IS_SD_PRINTING)
  2219. LCD_MESSAGEPGM(MSG_RESUMING);
  2220. else
  2221. LCD_MESSAGEPGM(WELCOME_MSG);
  2222. }
  2223. #endif // ULTIPANEL
  2224. /**
  2225. * M17: Enable power on all stepper motors
  2226. */
  2227. inline void gcode_M17() {
  2228. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2229. enable_x();
  2230. enable_y();
  2231. enable_z();
  2232. enable_e0();
  2233. enable_e1();
  2234. enable_e2();
  2235. enable_e3();
  2236. }
  2237. #ifdef SDSUPPORT
  2238. /**
  2239. * M20: List SD card to serial output
  2240. */
  2241. inline void gcode_M20() {
  2242. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2243. card.ls();
  2244. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2245. }
  2246. /**
  2247. * M21: Init SD Card
  2248. */
  2249. inline void gcode_M21() {
  2250. card.initsd();
  2251. }
  2252. /**
  2253. * M22: Release SD Card
  2254. */
  2255. inline void gcode_M22() {
  2256. card.release();
  2257. }
  2258. /**
  2259. * M23: Select a file
  2260. */
  2261. inline void gcode_M23() {
  2262. char* codepos = strchr_pointer + 4;
  2263. char* starpos = strchr(codepos, '*');
  2264. if (starpos) *starpos = '\0';
  2265. card.openFile(codepos, true);
  2266. }
  2267. /**
  2268. * M24: Start SD Print
  2269. */
  2270. inline void gcode_M24() {
  2271. card.startFileprint();
  2272. starttime = millis();
  2273. }
  2274. /**
  2275. * M25: Pause SD Print
  2276. */
  2277. inline void gcode_M25() {
  2278. card.pauseSDPrint();
  2279. }
  2280. /**
  2281. * M26: Set SD Card file index
  2282. */
  2283. inline void gcode_M26() {
  2284. if (card.cardOK && code_seen('S'))
  2285. card.setIndex(code_value_long());
  2286. }
  2287. /**
  2288. * M27: Get SD Card status
  2289. */
  2290. inline void gcode_M27() {
  2291. card.getStatus();
  2292. }
  2293. /**
  2294. * M28: Start SD Write
  2295. */
  2296. inline void gcode_M28() {
  2297. char* codepos = strchr_pointer + 4;
  2298. char* starpos = strchr(codepos, '*');
  2299. if (starpos) {
  2300. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2301. strchr_pointer = strchr(npos, ' ') + 1;
  2302. *(starpos) = '\0';
  2303. }
  2304. card.openFile(codepos, false);
  2305. }
  2306. /**
  2307. * M29: Stop SD Write
  2308. * Processed in write to file routine above
  2309. */
  2310. inline void gcode_M29() {
  2311. // card.saving = false;
  2312. }
  2313. /**
  2314. * M30 <filename>: Delete SD Card file
  2315. */
  2316. inline void gcode_M30() {
  2317. if (card.cardOK) {
  2318. card.closefile();
  2319. char* starpos = strchr(strchr_pointer + 4, '*');
  2320. if (starpos) {
  2321. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2322. strchr_pointer = strchr(npos, ' ') + 1;
  2323. *(starpos) = '\0';
  2324. }
  2325. card.removeFile(strchr_pointer + 4);
  2326. }
  2327. }
  2328. #endif
  2329. /**
  2330. * M31: Get the time since the start of SD Print (or last M109)
  2331. */
  2332. inline void gcode_M31() {
  2333. stoptime = millis();
  2334. unsigned long t = (stoptime - starttime) / 1000;
  2335. int min = t / 60, sec = t % 60;
  2336. char time[30];
  2337. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2338. SERIAL_ECHO_START;
  2339. SERIAL_ECHOLN(time);
  2340. lcd_setstatus(time);
  2341. autotempShutdown();
  2342. }
  2343. #ifdef SDSUPPORT
  2344. /**
  2345. * M32: Select file and start SD Print
  2346. */
  2347. inline void gcode_M32() {
  2348. if (card.sdprinting)
  2349. st_synchronize();
  2350. char* codepos = strchr_pointer + 4;
  2351. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2352. if (! namestartpos)
  2353. namestartpos = codepos; //default name position, 4 letters after the M
  2354. else
  2355. namestartpos++; //to skip the '!'
  2356. char* starpos = strchr(codepos, '*');
  2357. if (starpos) *(starpos) = '\0';
  2358. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2359. if (card.cardOK) {
  2360. card.openFile(namestartpos, true, !call_procedure);
  2361. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2362. card.setIndex(code_value_long());
  2363. card.startFileprint();
  2364. if (!call_procedure)
  2365. starttime = millis(); //procedure calls count as normal print time.
  2366. }
  2367. }
  2368. /**
  2369. * M928: Start SD Write
  2370. */
  2371. inline void gcode_M928() {
  2372. char* starpos = strchr(strchr_pointer + 5, '*');
  2373. if (starpos) {
  2374. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2375. strchr_pointer = strchr(npos, ' ') + 1;
  2376. *(starpos) = '\0';
  2377. }
  2378. card.openLogFile(strchr_pointer + 5);
  2379. }
  2380. #endif // SDSUPPORT
  2381. /**
  2382. * M42: Change pin status via GCode
  2383. */
  2384. inline void gcode_M42() {
  2385. if (code_seen('S')) {
  2386. int pin_status = code_value(),
  2387. pin_number = LED_PIN;
  2388. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2389. pin_number = code_value();
  2390. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2391. if (sensitive_pins[i] == pin_number) {
  2392. pin_number = -1;
  2393. break;
  2394. }
  2395. }
  2396. #if defined(FAN_PIN) && FAN_PIN > -1
  2397. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2398. #endif
  2399. if (pin_number > -1) {
  2400. pinMode(pin_number, OUTPUT);
  2401. digitalWrite(pin_number, pin_status);
  2402. analogWrite(pin_number, pin_status);
  2403. }
  2404. } // code_seen('S')
  2405. }
  2406. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2407. #if Z_MIN_PIN == -1
  2408. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2409. #endif
  2410. /**
  2411. * M48: Z-Probe repeatability measurement function.
  2412. *
  2413. * Usage:
  2414. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2415. * n = Number of samples (4-50, default 10)
  2416. * X = Sample X position
  2417. * Y = Sample Y position
  2418. * V = Verbose level (0-4, default=1)
  2419. * E = Engage probe for each reading
  2420. * L = Number of legs of movement before probe
  2421. *
  2422. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2423. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2424. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2425. * regenerated.
  2426. *
  2427. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2428. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2429. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2430. */
  2431. inline void gcode_M48() {
  2432. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2433. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2434. double X_current, Y_current, Z_current;
  2435. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2436. if (code_seen('V') || code_seen('v')) {
  2437. verbose_level = code_value();
  2438. if (verbose_level < 0 || verbose_level > 4 ) {
  2439. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2440. return;
  2441. }
  2442. }
  2443. if (verbose_level > 0)
  2444. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2445. if (code_seen('n')) {
  2446. n_samples = code_value();
  2447. if (n_samples < 4 || n_samples > 50) {
  2448. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2449. return;
  2450. }
  2451. }
  2452. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2453. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2454. Z_current = st_get_position_mm(Z_AXIS);
  2455. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2456. ext_position = st_get_position_mm(E_AXIS);
  2457. if (code_seen('E') || code_seen('e'))
  2458. engage_probe_for_each_reading++;
  2459. if (code_seen('X') || code_seen('x')) {
  2460. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2461. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2462. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2463. return;
  2464. }
  2465. }
  2466. if (code_seen('Y') || code_seen('y')) {
  2467. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2468. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2469. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2470. return;
  2471. }
  2472. }
  2473. if (code_seen('L') || code_seen('l')) {
  2474. n_legs = code_value();
  2475. if (n_legs == 1) n_legs = 2;
  2476. if (n_legs < 0 || n_legs > 15) {
  2477. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2478. return;
  2479. }
  2480. }
  2481. //
  2482. // Do all the preliminary setup work. First raise the probe.
  2483. //
  2484. st_synchronize();
  2485. plan_bed_level_matrix.set_to_identity();
  2486. plan_buffer_line(X_current, Y_current, Z_start_location,
  2487. ext_position,
  2488. homing_feedrate[Z_AXIS] / 60,
  2489. active_extruder);
  2490. st_synchronize();
  2491. //
  2492. // Now get everything to the specified probe point So we can safely do a probe to
  2493. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2494. // use that as a starting point for each probe.
  2495. //
  2496. if (verbose_level > 2)
  2497. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2498. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2499. ext_position,
  2500. homing_feedrate[X_AXIS]/60,
  2501. active_extruder);
  2502. st_synchronize();
  2503. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2504. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2505. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2506. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2507. //
  2508. // OK, do the inital probe to get us close to the bed.
  2509. // Then retrace the right amount and use that in subsequent probes
  2510. //
  2511. engage_z_probe();
  2512. setup_for_endstop_move();
  2513. run_z_probe();
  2514. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2515. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2516. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2517. ext_position,
  2518. homing_feedrate[X_AXIS]/60,
  2519. active_extruder);
  2520. st_synchronize();
  2521. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2522. if (engage_probe_for_each_reading) retract_z_probe();
  2523. for (n=0; n < n_samples; n++) {
  2524. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2525. if (n_legs) {
  2526. double radius=0.0, theta=0.0;
  2527. int l;
  2528. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2529. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2530. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2531. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2532. //SERIAL_ECHOPAIR(" theta: ",theta);
  2533. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2534. //SERIAL_PROTOCOLLNPGM("");
  2535. float dir = rotational_direction ? 1 : -1;
  2536. for (l = 0; l < n_legs - 1; l++) {
  2537. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2538. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2539. if (radius < 0.0) radius = -radius;
  2540. X_current = X_probe_location + cos(theta) * radius;
  2541. Y_current = Y_probe_location + sin(theta) * radius;
  2542. // Make sure our X & Y are sane
  2543. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2544. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2545. if (verbose_level > 3) {
  2546. SERIAL_ECHOPAIR("x: ", X_current);
  2547. SERIAL_ECHOPAIR("y: ", Y_current);
  2548. SERIAL_PROTOCOLLNPGM("");
  2549. }
  2550. do_blocking_move_to( X_current, Y_current, Z_current );
  2551. }
  2552. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2553. }
  2554. if (engage_probe_for_each_reading) {
  2555. engage_z_probe();
  2556. delay(1000);
  2557. }
  2558. setup_for_endstop_move();
  2559. run_z_probe();
  2560. sample_set[n] = current_position[Z_AXIS];
  2561. //
  2562. // Get the current mean for the data points we have so far
  2563. //
  2564. sum = 0.0;
  2565. for (j=0; j<=n; j++) sum += sample_set[j];
  2566. mean = sum / (double (n+1));
  2567. //
  2568. // Now, use that mean to calculate the standard deviation for the
  2569. // data points we have so far
  2570. //
  2571. sum = 0.0;
  2572. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2573. sigma = sqrt( sum / (double (n+1)) );
  2574. if (verbose_level > 1) {
  2575. SERIAL_PROTOCOL(n+1);
  2576. SERIAL_PROTOCOL(" of ");
  2577. SERIAL_PROTOCOL(n_samples);
  2578. SERIAL_PROTOCOLPGM(" z: ");
  2579. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2580. }
  2581. if (verbose_level > 2) {
  2582. SERIAL_PROTOCOL(" mean: ");
  2583. SERIAL_PROTOCOL_F(mean,6);
  2584. SERIAL_PROTOCOL(" sigma: ");
  2585. SERIAL_PROTOCOL_F(sigma,6);
  2586. }
  2587. if (verbose_level > 0) SERIAL_EOL;
  2588. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2589. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2590. st_synchronize();
  2591. if (engage_probe_for_each_reading) {
  2592. retract_z_probe();
  2593. delay(1000);
  2594. }
  2595. }
  2596. retract_z_probe();
  2597. delay(1000);
  2598. clean_up_after_endstop_move();
  2599. // enable_endstops(true);
  2600. if (verbose_level > 0) {
  2601. SERIAL_PROTOCOLPGM("Mean: ");
  2602. SERIAL_PROTOCOL_F(mean, 6);
  2603. SERIAL_EOL;
  2604. }
  2605. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2606. SERIAL_PROTOCOL_F(sigma, 6);
  2607. SERIAL_EOL; SERIAL_EOL;
  2608. }
  2609. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2610. /**
  2611. * M104: Set hot end temperature
  2612. */
  2613. inline void gcode_M104() {
  2614. if (setTargetedHotend(104)) return;
  2615. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2616. #ifdef DUAL_X_CARRIAGE
  2617. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2618. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2619. #endif
  2620. setWatch();
  2621. }
  2622. /**
  2623. * M105: Read hot end and bed temperature
  2624. */
  2625. inline void gcode_M105() {
  2626. if (setTargetedHotend(105)) return;
  2627. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2628. SERIAL_PROTOCOLPGM("ok T:");
  2629. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2630. SERIAL_PROTOCOLPGM(" /");
  2631. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2632. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2633. SERIAL_PROTOCOLPGM(" B:");
  2634. SERIAL_PROTOCOL_F(degBed(),1);
  2635. SERIAL_PROTOCOLPGM(" /");
  2636. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2637. #endif //TEMP_BED_PIN
  2638. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2639. SERIAL_PROTOCOLPGM(" T");
  2640. SERIAL_PROTOCOL(cur_extruder);
  2641. SERIAL_PROTOCOLPGM(":");
  2642. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2643. SERIAL_PROTOCOLPGM(" /");
  2644. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2645. }
  2646. #else
  2647. SERIAL_ERROR_START;
  2648. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2649. #endif
  2650. SERIAL_PROTOCOLPGM(" @:");
  2651. #ifdef EXTRUDER_WATTS
  2652. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2653. SERIAL_PROTOCOLPGM("W");
  2654. #else
  2655. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2656. #endif
  2657. SERIAL_PROTOCOLPGM(" B@:");
  2658. #ifdef BED_WATTS
  2659. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2660. SERIAL_PROTOCOLPGM("W");
  2661. #else
  2662. SERIAL_PROTOCOL(getHeaterPower(-1));
  2663. #endif
  2664. #ifdef SHOW_TEMP_ADC_VALUES
  2665. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2666. SERIAL_PROTOCOLPGM(" ADC B:");
  2667. SERIAL_PROTOCOL_F(degBed(),1);
  2668. SERIAL_PROTOCOLPGM("C->");
  2669. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2670. #endif
  2671. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2672. SERIAL_PROTOCOLPGM(" T");
  2673. SERIAL_PROTOCOL(cur_extruder);
  2674. SERIAL_PROTOCOLPGM(":");
  2675. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2676. SERIAL_PROTOCOLPGM("C->");
  2677. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2678. }
  2679. #endif
  2680. SERIAL_PROTOCOLLN("");
  2681. }
  2682. #if defined(FAN_PIN) && FAN_PIN > -1
  2683. /**
  2684. * M106: Set Fan Speed
  2685. */
  2686. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2687. /**
  2688. * M107: Fan Off
  2689. */
  2690. inline void gcode_M107() { fanSpeed = 0; }
  2691. #endif //FAN_PIN
  2692. /**
  2693. * M109: Wait for extruder(s) to reach temperature
  2694. */
  2695. inline void gcode_M109() {
  2696. if (setTargetedHotend(109)) return;
  2697. LCD_MESSAGEPGM(MSG_HEATING);
  2698. CooldownNoWait = code_seen('S');
  2699. if (CooldownNoWait || code_seen('R')) {
  2700. setTargetHotend(code_value(), tmp_extruder);
  2701. #ifdef DUAL_X_CARRIAGE
  2702. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2703. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2704. #endif
  2705. }
  2706. #ifdef AUTOTEMP
  2707. autotemp_enabled = code_seen('F');
  2708. if (autotemp_enabled) autotemp_factor = code_value();
  2709. if (code_seen('S')) autotemp_min = code_value();
  2710. if (code_seen('B')) autotemp_max = code_value();
  2711. #endif
  2712. setWatch();
  2713. unsigned long timetemp = millis();
  2714. /* See if we are heating up or cooling down */
  2715. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2716. cancel_heatup = false;
  2717. #ifdef TEMP_RESIDENCY_TIME
  2718. long residencyStart = -1;
  2719. /* continue to loop until we have reached the target temp
  2720. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2721. while((!cancel_heatup)&&((residencyStart == -1) ||
  2722. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2723. #else
  2724. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2725. #endif //TEMP_RESIDENCY_TIME
  2726. { // while loop
  2727. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2728. SERIAL_PROTOCOLPGM("T:");
  2729. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2730. SERIAL_PROTOCOLPGM(" E:");
  2731. SERIAL_PROTOCOL((int)tmp_extruder);
  2732. #ifdef TEMP_RESIDENCY_TIME
  2733. SERIAL_PROTOCOLPGM(" W:");
  2734. if (residencyStart > -1) {
  2735. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2736. SERIAL_PROTOCOLLN( timetemp );
  2737. }
  2738. else {
  2739. SERIAL_PROTOCOLLN( "?" );
  2740. }
  2741. #else
  2742. SERIAL_PROTOCOLLN("");
  2743. #endif
  2744. timetemp = millis();
  2745. }
  2746. manage_heater();
  2747. manage_inactivity();
  2748. lcd_update();
  2749. #ifdef TEMP_RESIDENCY_TIME
  2750. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2751. // or when current temp falls outside the hysteresis after target temp was reached
  2752. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2753. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2754. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2755. {
  2756. residencyStart = millis();
  2757. }
  2758. #endif //TEMP_RESIDENCY_TIME
  2759. }
  2760. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2761. starttime = previous_millis_cmd = millis();
  2762. }
  2763. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2764. /**
  2765. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2766. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2767. */
  2768. inline void gcode_M190() {
  2769. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2770. CooldownNoWait = code_seen('S');
  2771. if (CooldownNoWait || code_seen('R'))
  2772. setTargetBed(code_value());
  2773. unsigned long timetemp = millis();
  2774. cancel_heatup = false;
  2775. target_direction = isHeatingBed(); // true if heating, false if cooling
  2776. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2777. unsigned long ms = millis();
  2778. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2779. timetemp = ms;
  2780. float tt = degHotend(active_extruder);
  2781. SERIAL_PROTOCOLPGM("T:");
  2782. SERIAL_PROTOCOL(tt);
  2783. SERIAL_PROTOCOLPGM(" E:");
  2784. SERIAL_PROTOCOL((int)active_extruder);
  2785. SERIAL_PROTOCOLPGM(" B:");
  2786. SERIAL_PROTOCOL_F(degBed(), 1);
  2787. SERIAL_PROTOCOLLN("");
  2788. }
  2789. manage_heater();
  2790. manage_inactivity();
  2791. lcd_update();
  2792. }
  2793. LCD_MESSAGEPGM(MSG_BED_DONE);
  2794. previous_millis_cmd = millis();
  2795. }
  2796. #endif // TEMP_BED_PIN > -1
  2797. /**
  2798. * M112: Emergency Stop
  2799. */
  2800. inline void gcode_M112() {
  2801. kill();
  2802. }
  2803. #ifdef BARICUDA
  2804. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2805. /**
  2806. * M126: Heater 1 valve open
  2807. */
  2808. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2809. /**
  2810. * M127: Heater 1 valve close
  2811. */
  2812. inline void gcode_M127() { ValvePressure = 0; }
  2813. #endif
  2814. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2815. /**
  2816. * M128: Heater 2 valve open
  2817. */
  2818. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2819. /**
  2820. * M129: Heater 2 valve close
  2821. */
  2822. inline void gcode_M129() { EtoPPressure = 0; }
  2823. #endif
  2824. #endif //BARICUDA
  2825. /**
  2826. * M140: Set bed temperature
  2827. */
  2828. inline void gcode_M140() {
  2829. if (code_seen('S')) setTargetBed(code_value());
  2830. }
  2831. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2832. /**
  2833. * M80: Turn on Power Supply
  2834. */
  2835. inline void gcode_M80() {
  2836. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2837. // If you have a switch on suicide pin, this is useful
  2838. // if you want to start another print with suicide feature after
  2839. // a print without suicide...
  2840. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2841. OUT_WRITE(SUICIDE_PIN, HIGH);
  2842. #endif
  2843. #ifdef ULTIPANEL
  2844. powersupply = true;
  2845. LCD_MESSAGEPGM(WELCOME_MSG);
  2846. lcd_update();
  2847. #endif
  2848. }
  2849. #endif // PS_ON_PIN
  2850. /**
  2851. * M81: Turn off Power Supply
  2852. */
  2853. inline void gcode_M81() {
  2854. disable_heater();
  2855. st_synchronize();
  2856. disable_e0();
  2857. disable_e1();
  2858. disable_e2();
  2859. disable_e3();
  2860. finishAndDisableSteppers();
  2861. fanSpeed = 0;
  2862. delay(1000); // Wait 1 second before switching off
  2863. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2864. st_synchronize();
  2865. suicide();
  2866. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2867. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2868. #endif
  2869. #ifdef ULTIPANEL
  2870. powersupply = false;
  2871. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2872. lcd_update();
  2873. #endif
  2874. }
  2875. /**
  2876. * M82: Set E codes absolute (default)
  2877. */
  2878. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2879. /**
  2880. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2881. */
  2882. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2883. /**
  2884. * M18, M84: Disable all stepper motors
  2885. */
  2886. inline void gcode_M18_M84() {
  2887. if (code_seen('S')) {
  2888. stepper_inactive_time = code_value() * 1000;
  2889. }
  2890. else {
  2891. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2892. if (all_axis) {
  2893. st_synchronize();
  2894. disable_e0();
  2895. disable_e1();
  2896. disable_e2();
  2897. disable_e3();
  2898. finishAndDisableSteppers();
  2899. }
  2900. else {
  2901. st_synchronize();
  2902. if (code_seen('X')) disable_x();
  2903. if (code_seen('Y')) disable_y();
  2904. if (code_seen('Z')) disable_z();
  2905. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2906. if (code_seen('E')) {
  2907. disable_e0();
  2908. disable_e1();
  2909. disable_e2();
  2910. disable_e3();
  2911. }
  2912. #endif
  2913. }
  2914. }
  2915. }
  2916. /**
  2917. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2918. */
  2919. inline void gcode_M85() {
  2920. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2921. }
  2922. /**
  2923. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2924. */
  2925. inline void gcode_M92() {
  2926. for(int8_t i=0; i < NUM_AXIS; i++) {
  2927. if (code_seen(axis_codes[i])) {
  2928. if (i == E_AXIS) {
  2929. float value = code_value();
  2930. if (value < 20.0) {
  2931. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2932. max_e_jerk *= factor;
  2933. max_feedrate[i] *= factor;
  2934. axis_steps_per_sqr_second[i] *= factor;
  2935. }
  2936. axis_steps_per_unit[i] = value;
  2937. }
  2938. else {
  2939. axis_steps_per_unit[i] = code_value();
  2940. }
  2941. }
  2942. }
  2943. }
  2944. /**
  2945. * M114: Output current position to serial port
  2946. */
  2947. inline void gcode_M114() {
  2948. SERIAL_PROTOCOLPGM("X:");
  2949. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2950. SERIAL_PROTOCOLPGM(" Y:");
  2951. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2952. SERIAL_PROTOCOLPGM(" Z:");
  2953. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2954. SERIAL_PROTOCOLPGM(" E:");
  2955. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2956. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2957. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2958. SERIAL_PROTOCOLPGM(" Y:");
  2959. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2960. SERIAL_PROTOCOLPGM(" Z:");
  2961. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2962. SERIAL_PROTOCOLLN("");
  2963. #ifdef SCARA
  2964. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2965. SERIAL_PROTOCOL(delta[X_AXIS]);
  2966. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2967. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2968. SERIAL_PROTOCOLLN("");
  2969. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2970. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2971. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2972. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2973. SERIAL_PROTOCOLLN("");
  2974. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2975. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2976. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2977. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2978. SERIAL_PROTOCOLLN("");
  2979. SERIAL_PROTOCOLLN("");
  2980. #endif
  2981. }
  2982. /**
  2983. * M115: Capabilities string
  2984. */
  2985. inline void gcode_M115() {
  2986. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2987. }
  2988. /**
  2989. * M117: Set LCD Status Message
  2990. */
  2991. inline void gcode_M117() {
  2992. char* codepos = strchr_pointer + 5;
  2993. char* starpos = strchr(codepos, '*');
  2994. if (starpos) *starpos = '\0';
  2995. lcd_setstatus(codepos);
  2996. }
  2997. /**
  2998. * M119: Output endstop states to serial output
  2999. */
  3000. inline void gcode_M119() {
  3001. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3002. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3003. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3004. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3005. #endif
  3006. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3007. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3008. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3009. #endif
  3010. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3011. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3012. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3013. #endif
  3014. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3015. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3016. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3017. #endif
  3018. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3019. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3020. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3021. #endif
  3022. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3023. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3024. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3025. #endif
  3026. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  3027. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3028. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3029. #endif
  3030. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >-1
  3031. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3032. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3033. #endif
  3034. }
  3035. /**
  3036. * M120: Enable endstops
  3037. */
  3038. inline void gcode_M120() { enable_endstops(false); }
  3039. /**
  3040. * M121: Disable endstops
  3041. */
  3042. inline void gcode_M121() { enable_endstops(true); }
  3043. #ifdef BLINKM
  3044. /**
  3045. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3046. */
  3047. inline void gcode_M150() {
  3048. SendColors(
  3049. code_seen('R') ? (byte)code_value() : 0,
  3050. code_seen('U') ? (byte)code_value() : 0,
  3051. code_seen('B') ? (byte)code_value() : 0
  3052. );
  3053. }
  3054. #endif // BLINKM
  3055. /**
  3056. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3057. * T<extruder>
  3058. * D<millimeters>
  3059. */
  3060. inline void gcode_M200() {
  3061. tmp_extruder = active_extruder;
  3062. if (code_seen('T')) {
  3063. tmp_extruder = code_value();
  3064. if (tmp_extruder >= EXTRUDERS) {
  3065. SERIAL_ECHO_START;
  3066. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3067. return;
  3068. }
  3069. }
  3070. if (code_seen('D')) {
  3071. float diameter = code_value();
  3072. // setting any extruder filament size disables volumetric on the assumption that
  3073. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3074. // for all extruders
  3075. volumetric_enabled = (diameter != 0.0);
  3076. if (volumetric_enabled) {
  3077. filament_size[tmp_extruder] = diameter;
  3078. // make sure all extruders have some sane value for the filament size
  3079. for (int i=0; i<EXTRUDERS; i++)
  3080. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3081. }
  3082. }
  3083. else {
  3084. //reserved for setting filament diameter via UFID or filament measuring device
  3085. return;
  3086. }
  3087. calculate_volumetric_multipliers();
  3088. }
  3089. /**
  3090. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3091. */
  3092. inline void gcode_M201() {
  3093. for (int8_t i=0; i < NUM_AXIS; i++) {
  3094. if (code_seen(axis_codes[i])) {
  3095. max_acceleration_units_per_sq_second[i] = code_value();
  3096. }
  3097. }
  3098. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3099. reset_acceleration_rates();
  3100. }
  3101. #if 0 // Not used for Sprinter/grbl gen6
  3102. inline void gcode_M202() {
  3103. for(int8_t i=0; i < NUM_AXIS; i++) {
  3104. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3105. }
  3106. }
  3107. #endif
  3108. /**
  3109. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3110. */
  3111. inline void gcode_M203() {
  3112. for (int8_t i=0; i < NUM_AXIS; i++) {
  3113. if (code_seen(axis_codes[i])) {
  3114. max_feedrate[i] = code_value();
  3115. }
  3116. }
  3117. }
  3118. /**
  3119. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3120. *
  3121. * P = Printing moves
  3122. * R = Retract only (no X, Y, Z) moves
  3123. * T = Travel (non printing) moves
  3124. *
  3125. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3126. */
  3127. inline void gcode_M204() {
  3128. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3129. {
  3130. acceleration = code_value();
  3131. travel_acceleration = acceleration;
  3132. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3133. SERIAL_EOL;
  3134. }
  3135. if (code_seen('P'))
  3136. {
  3137. acceleration = code_value();
  3138. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3139. SERIAL_EOL;
  3140. }
  3141. if (code_seen('R'))
  3142. {
  3143. retract_acceleration = code_value();
  3144. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3145. SERIAL_EOL;
  3146. }
  3147. if (code_seen('T'))
  3148. {
  3149. travel_acceleration = code_value();
  3150. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3151. SERIAL_EOL;
  3152. }
  3153. }
  3154. /**
  3155. * M205: Set Advanced Settings
  3156. *
  3157. * S = Min Feed Rate (mm/s)
  3158. * T = Min Travel Feed Rate (mm/s)
  3159. * B = Min Segment Time (µs)
  3160. * X = Max XY Jerk (mm/s/s)
  3161. * Z = Max Z Jerk (mm/s/s)
  3162. * E = Max E Jerk (mm/s/s)
  3163. */
  3164. inline void gcode_M205() {
  3165. if (code_seen('S')) minimumfeedrate = code_value();
  3166. if (code_seen('T')) mintravelfeedrate = code_value();
  3167. if (code_seen('B')) minsegmenttime = code_value();
  3168. if (code_seen('X')) max_xy_jerk = code_value();
  3169. if (code_seen('Z')) max_z_jerk = code_value();
  3170. if (code_seen('E')) max_e_jerk = code_value();
  3171. }
  3172. /**
  3173. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3174. */
  3175. inline void gcode_M206() {
  3176. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3177. if (code_seen(axis_codes[i])) {
  3178. home_offset[i] = code_value();
  3179. }
  3180. }
  3181. #ifdef SCARA
  3182. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3183. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3184. #endif
  3185. }
  3186. #ifdef DELTA
  3187. /**
  3188. * M665: Set delta configurations
  3189. *
  3190. * L = diagonal rod
  3191. * R = delta radius
  3192. * S = segments per second
  3193. */
  3194. inline void gcode_M665() {
  3195. if (code_seen('L')) delta_diagonal_rod = code_value();
  3196. if (code_seen('R')) delta_radius = code_value();
  3197. if (code_seen('S')) delta_segments_per_second = code_value();
  3198. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3199. }
  3200. /**
  3201. * M666: Set delta endstop adjustment
  3202. */
  3203. inline void gcode_M666() {
  3204. for (int8_t i = 0; i < 3; i++) {
  3205. if (code_seen(axis_codes[i])) {
  3206. endstop_adj[i] = code_value();
  3207. }
  3208. }
  3209. }
  3210. #elif defined(Z_DUAL_ENDSTOPS)
  3211. /**
  3212. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3213. */
  3214. inline void gcode_M666() {
  3215. if (code_seen('Z')) z_endstop_adj = code_value();
  3216. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3217. SERIAL_EOL;
  3218. }
  3219. #endif // DELTA
  3220. #ifdef FWRETRACT
  3221. /**
  3222. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3223. */
  3224. inline void gcode_M207() {
  3225. if (code_seen('S')) retract_length = code_value();
  3226. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3227. if (code_seen('Z')) retract_zlift = code_value();
  3228. }
  3229. /**
  3230. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3231. */
  3232. inline void gcode_M208() {
  3233. if (code_seen('S')) retract_recover_length = code_value();
  3234. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3235. }
  3236. /**
  3237. * M209: Enable automatic retract (M209 S1)
  3238. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3239. */
  3240. inline void gcode_M209() {
  3241. if (code_seen('S')) {
  3242. int t = code_value();
  3243. switch(t) {
  3244. case 0:
  3245. autoretract_enabled = false;
  3246. break;
  3247. case 1:
  3248. autoretract_enabled = true;
  3249. break;
  3250. default:
  3251. SERIAL_ECHO_START;
  3252. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3253. SERIAL_ECHO(cmdbuffer[bufindr]);
  3254. SERIAL_ECHOLNPGM("\"");
  3255. return;
  3256. }
  3257. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3258. }
  3259. }
  3260. #endif // FWRETRACT
  3261. #if EXTRUDERS > 1
  3262. /**
  3263. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3264. */
  3265. inline void gcode_M218() {
  3266. if (setTargetedHotend(218)) return;
  3267. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3268. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3269. #ifdef DUAL_X_CARRIAGE
  3270. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3271. #endif
  3272. SERIAL_ECHO_START;
  3273. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3274. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3275. SERIAL_ECHO(" ");
  3276. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3277. SERIAL_ECHO(",");
  3278. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3279. #ifdef DUAL_X_CARRIAGE
  3280. SERIAL_ECHO(",");
  3281. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3282. #endif
  3283. }
  3284. SERIAL_EOL;
  3285. }
  3286. #endif // EXTRUDERS > 1
  3287. /**
  3288. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3289. */
  3290. inline void gcode_M220() {
  3291. if (code_seen('S')) feedmultiply = code_value();
  3292. }
  3293. /**
  3294. * M221: Set extrusion percentage (M221 T0 S95)
  3295. */
  3296. inline void gcode_M221() {
  3297. if (code_seen('S')) {
  3298. int sval = code_value();
  3299. if (code_seen('T')) {
  3300. if (setTargetedHotend(221)) return;
  3301. extruder_multiply[tmp_extruder] = sval;
  3302. }
  3303. else {
  3304. extrudemultiply = sval;
  3305. }
  3306. }
  3307. }
  3308. /**
  3309. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3310. */
  3311. inline void gcode_M226() {
  3312. if (code_seen('P')) {
  3313. int pin_number = code_value();
  3314. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3315. if (pin_state >= -1 && pin_state <= 1) {
  3316. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3317. if (sensitive_pins[i] == pin_number) {
  3318. pin_number = -1;
  3319. break;
  3320. }
  3321. }
  3322. if (pin_number > -1) {
  3323. int target = LOW;
  3324. st_synchronize();
  3325. pinMode(pin_number, INPUT);
  3326. switch(pin_state){
  3327. case 1:
  3328. target = HIGH;
  3329. break;
  3330. case 0:
  3331. target = LOW;
  3332. break;
  3333. case -1:
  3334. target = !digitalRead(pin_number);
  3335. break;
  3336. }
  3337. while(digitalRead(pin_number) != target) {
  3338. manage_heater();
  3339. manage_inactivity();
  3340. lcd_update();
  3341. }
  3342. } // pin_number > -1
  3343. } // pin_state -1 0 1
  3344. } // code_seen('P')
  3345. }
  3346. #if NUM_SERVOS > 0
  3347. /**
  3348. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3349. */
  3350. inline void gcode_M280() {
  3351. int servo_index = code_seen('P') ? code_value() : -1;
  3352. int servo_position = 0;
  3353. if (code_seen('S')) {
  3354. servo_position = code_value();
  3355. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3356. #if SERVO_LEVELING
  3357. servos[servo_index].attach(0);
  3358. #endif
  3359. servos[servo_index].write(servo_position);
  3360. #if SERVO_LEVELING
  3361. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3362. servos[servo_index].detach();
  3363. #endif
  3364. }
  3365. else {
  3366. SERIAL_ECHO_START;
  3367. SERIAL_ECHO("Servo ");
  3368. SERIAL_ECHO(servo_index);
  3369. SERIAL_ECHOLN(" out of range");
  3370. }
  3371. }
  3372. else if (servo_index >= 0) {
  3373. SERIAL_PROTOCOL(MSG_OK);
  3374. SERIAL_PROTOCOL(" Servo ");
  3375. SERIAL_PROTOCOL(servo_index);
  3376. SERIAL_PROTOCOL(": ");
  3377. SERIAL_PROTOCOL(servos[servo_index].read());
  3378. SERIAL_PROTOCOLLN("");
  3379. }
  3380. }
  3381. #endif // NUM_SERVOS > 0
  3382. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3383. /**
  3384. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3385. */
  3386. inline void gcode_M300() {
  3387. int beepS = code_seen('S') ? code_value() : 110;
  3388. int beepP = code_seen('P') ? code_value() : 1000;
  3389. if (beepS > 0) {
  3390. #if BEEPER > 0
  3391. tone(BEEPER, beepS);
  3392. delay(beepP);
  3393. noTone(BEEPER);
  3394. #elif defined(ULTRALCD)
  3395. lcd_buzz(beepS, beepP);
  3396. #elif defined(LCD_USE_I2C_BUZZER)
  3397. lcd_buzz(beepP, beepS);
  3398. #endif
  3399. }
  3400. else {
  3401. delay(beepP);
  3402. }
  3403. }
  3404. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3405. #ifdef PIDTEMP
  3406. /**
  3407. * M301: Set PID parameters P I D (and optionally C)
  3408. */
  3409. inline void gcode_M301() {
  3410. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3411. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3412. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3413. if (e < EXTRUDERS) { // catch bad input value
  3414. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3415. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3416. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3417. #ifdef PID_ADD_EXTRUSION_RATE
  3418. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3419. #endif
  3420. updatePID();
  3421. SERIAL_PROTOCOL(MSG_OK);
  3422. #ifdef PID_PARAMS_PER_EXTRUDER
  3423. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3424. SERIAL_PROTOCOL(e);
  3425. #endif // PID_PARAMS_PER_EXTRUDER
  3426. SERIAL_PROTOCOL(" p:");
  3427. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3428. SERIAL_PROTOCOL(" i:");
  3429. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3430. SERIAL_PROTOCOL(" d:");
  3431. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3432. #ifdef PID_ADD_EXTRUSION_RATE
  3433. SERIAL_PROTOCOL(" c:");
  3434. //Kc does not have scaling applied above, or in resetting defaults
  3435. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3436. #endif
  3437. SERIAL_PROTOCOLLN("");
  3438. }
  3439. else {
  3440. SERIAL_ECHO_START;
  3441. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3442. }
  3443. }
  3444. #endif // PIDTEMP
  3445. #ifdef PIDTEMPBED
  3446. inline void gcode_M304() {
  3447. if (code_seen('P')) bedKp = code_value();
  3448. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3449. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3450. updatePID();
  3451. SERIAL_PROTOCOL(MSG_OK);
  3452. SERIAL_PROTOCOL(" p:");
  3453. SERIAL_PROTOCOL(bedKp);
  3454. SERIAL_PROTOCOL(" i:");
  3455. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3456. SERIAL_PROTOCOL(" d:");
  3457. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3458. SERIAL_PROTOCOLLN("");
  3459. }
  3460. #endif // PIDTEMPBED
  3461. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3462. /**
  3463. * M240: Trigger a camera by emulating a Canon RC-1
  3464. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3465. */
  3466. inline void gcode_M240() {
  3467. #ifdef CHDK
  3468. OUT_WRITE(CHDK, HIGH);
  3469. chdkHigh = millis();
  3470. chdkActive = true;
  3471. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3472. const uint8_t NUM_PULSES = 16;
  3473. const float PULSE_LENGTH = 0.01524;
  3474. for (int i = 0; i < NUM_PULSES; i++) {
  3475. WRITE(PHOTOGRAPH_PIN, HIGH);
  3476. _delay_ms(PULSE_LENGTH);
  3477. WRITE(PHOTOGRAPH_PIN, LOW);
  3478. _delay_ms(PULSE_LENGTH);
  3479. }
  3480. delay(7.33);
  3481. for (int i = 0; i < NUM_PULSES; i++) {
  3482. WRITE(PHOTOGRAPH_PIN, HIGH);
  3483. _delay_ms(PULSE_LENGTH);
  3484. WRITE(PHOTOGRAPH_PIN, LOW);
  3485. _delay_ms(PULSE_LENGTH);
  3486. }
  3487. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3488. }
  3489. #endif // CHDK || PHOTOGRAPH_PIN
  3490. #ifdef DOGLCD
  3491. /**
  3492. * M250: Read and optionally set the LCD contrast
  3493. */
  3494. inline void gcode_M250() {
  3495. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3496. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3497. SERIAL_PROTOCOL(lcd_contrast);
  3498. SERIAL_PROTOCOLLN("");
  3499. }
  3500. #endif // DOGLCD
  3501. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3502. /**
  3503. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3504. */
  3505. inline void gcode_M302() {
  3506. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3507. }
  3508. #endif // PREVENT_DANGEROUS_EXTRUDE
  3509. /**
  3510. * M303: PID relay autotune
  3511. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3512. * E<extruder> (-1 for the bed)
  3513. * C<cycles>
  3514. */
  3515. inline void gcode_M303() {
  3516. int e = code_seen('E') ? code_value_long() : 0;
  3517. int c = code_seen('C') ? code_value_long() : 5;
  3518. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3519. PID_autotune(temp, e, c);
  3520. }
  3521. #ifdef SCARA
  3522. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3523. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3524. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3525. if (! Stopped) {
  3526. //get_coordinates(); // For X Y Z E F
  3527. delta[X_AXIS] = delta_x;
  3528. delta[Y_AXIS] = delta_y;
  3529. calculate_SCARA_forward_Transform(delta);
  3530. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3531. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3532. prepare_move();
  3533. //ClearToSend();
  3534. return true;
  3535. }
  3536. return false;
  3537. }
  3538. /**
  3539. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3540. */
  3541. inline bool gcode_M360() {
  3542. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3543. return SCARA_move_to_cal(0, 120);
  3544. }
  3545. /**
  3546. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3547. */
  3548. inline bool gcode_M361() {
  3549. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3550. return SCARA_move_to_cal(90, 130);
  3551. }
  3552. /**
  3553. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3554. */
  3555. inline bool gcode_M362() {
  3556. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3557. return SCARA_move_to_cal(60, 180);
  3558. }
  3559. /**
  3560. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3561. */
  3562. inline bool gcode_M363() {
  3563. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3564. return SCARA_move_to_cal(50, 90);
  3565. }
  3566. /**
  3567. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3568. */
  3569. inline bool gcode_M364() {
  3570. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3571. return SCARA_move_to_cal(45, 135);
  3572. }
  3573. /**
  3574. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3575. */
  3576. inline void gcode_M365() {
  3577. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3578. if (code_seen(axis_codes[i])) {
  3579. axis_scaling[i] = code_value();
  3580. }
  3581. }
  3582. }
  3583. #endif // SCARA
  3584. #ifdef EXT_SOLENOID
  3585. void enable_solenoid(uint8_t num) {
  3586. switch(num) {
  3587. case 0:
  3588. OUT_WRITE(SOL0_PIN, HIGH);
  3589. break;
  3590. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3591. case 1:
  3592. OUT_WRITE(SOL1_PIN, HIGH);
  3593. break;
  3594. #endif
  3595. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3596. case 2:
  3597. OUT_WRITE(SOL2_PIN, HIGH);
  3598. break;
  3599. #endif
  3600. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3601. case 3:
  3602. OUT_WRITE(SOL3_PIN, HIGH);
  3603. break;
  3604. #endif
  3605. default:
  3606. SERIAL_ECHO_START;
  3607. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3608. break;
  3609. }
  3610. }
  3611. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3612. void disable_all_solenoids() {
  3613. OUT_WRITE(SOL0_PIN, LOW);
  3614. OUT_WRITE(SOL1_PIN, LOW);
  3615. OUT_WRITE(SOL2_PIN, LOW);
  3616. OUT_WRITE(SOL3_PIN, LOW);
  3617. }
  3618. /**
  3619. * M380: Enable solenoid on the active extruder
  3620. */
  3621. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3622. /**
  3623. * M381: Disable all solenoids
  3624. */
  3625. inline void gcode_M381() { disable_all_solenoids(); }
  3626. #endif // EXT_SOLENOID
  3627. /**
  3628. * M400: Finish all moves
  3629. */
  3630. inline void gcode_M400() { st_synchronize(); }
  3631. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3632. /**
  3633. * M401: Engage Z Servo endstop if available
  3634. */
  3635. inline void gcode_M401() { engage_z_probe(); }
  3636. /**
  3637. * M402: Retract Z Servo endstop if enabled
  3638. */
  3639. inline void gcode_M402() { retract_z_probe(); }
  3640. #endif
  3641. #ifdef FILAMENT_SENSOR
  3642. /**
  3643. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3644. */
  3645. inline void gcode_M404() {
  3646. #if FILWIDTH_PIN > -1
  3647. if (code_seen('W')) {
  3648. filament_width_nominal = code_value();
  3649. }
  3650. else {
  3651. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3652. SERIAL_PROTOCOLLN(filament_width_nominal);
  3653. }
  3654. #endif
  3655. }
  3656. /**
  3657. * M405: Turn on filament sensor for control
  3658. */
  3659. inline void gcode_M405() {
  3660. if (code_seen('D')) meas_delay_cm = code_value();
  3661. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3662. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3663. int temp_ratio = widthFil_to_size_ratio();
  3664. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3665. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3666. delay_index1 = delay_index2 = 0;
  3667. }
  3668. filament_sensor = true;
  3669. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3670. //SERIAL_PROTOCOL(filament_width_meas);
  3671. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3672. //SERIAL_PROTOCOL(extrudemultiply);
  3673. }
  3674. /**
  3675. * M406: Turn off filament sensor for control
  3676. */
  3677. inline void gcode_M406() { filament_sensor = false; }
  3678. /**
  3679. * M407: Get measured filament diameter on serial output
  3680. */
  3681. inline void gcode_M407() {
  3682. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3683. SERIAL_PROTOCOLLN(filament_width_meas);
  3684. }
  3685. #endif // FILAMENT_SENSOR
  3686. /**
  3687. * M500: Store settings in EEPROM
  3688. */
  3689. inline void gcode_M500() {
  3690. Config_StoreSettings();
  3691. }
  3692. /**
  3693. * M501: Read settings from EEPROM
  3694. */
  3695. inline void gcode_M501() {
  3696. Config_RetrieveSettings();
  3697. }
  3698. /**
  3699. * M502: Revert to default settings
  3700. */
  3701. inline void gcode_M502() {
  3702. Config_ResetDefault();
  3703. }
  3704. /**
  3705. * M503: print settings currently in memory
  3706. */
  3707. inline void gcode_M503() {
  3708. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3709. }
  3710. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3711. /**
  3712. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3713. */
  3714. inline void gcode_M540() {
  3715. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3716. }
  3717. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3718. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3719. inline void gcode_SET_Z_PROBE_OFFSET() {
  3720. float value;
  3721. if (code_seen('Z')) {
  3722. value = code_value();
  3723. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3724. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3725. SERIAL_ECHO_START;
  3726. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3727. SERIAL_PROTOCOLLN("");
  3728. }
  3729. else {
  3730. SERIAL_ECHO_START;
  3731. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3732. SERIAL_ECHOPGM(MSG_Z_MIN);
  3733. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3734. SERIAL_ECHOPGM(MSG_Z_MAX);
  3735. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3736. SERIAL_PROTOCOLLN("");
  3737. }
  3738. }
  3739. else {
  3740. SERIAL_ECHO_START;
  3741. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3742. SERIAL_ECHO(-zprobe_zoffset);
  3743. SERIAL_PROTOCOLLN("");
  3744. }
  3745. }
  3746. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3747. #ifdef FILAMENTCHANGEENABLE
  3748. /**
  3749. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3750. */
  3751. inline void gcode_M600() {
  3752. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3753. for (int i=0; i<NUM_AXIS; i++)
  3754. target[i] = lastpos[i] = current_position[i];
  3755. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3756. #ifdef DELTA
  3757. #define RUNPLAN calculate_delta(target); BASICPLAN
  3758. #else
  3759. #define RUNPLAN BASICPLAN
  3760. #endif
  3761. //retract by E
  3762. if (code_seen('E')) target[E_AXIS] += code_value();
  3763. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3764. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3765. #endif
  3766. RUNPLAN;
  3767. //lift Z
  3768. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3769. #ifdef FILAMENTCHANGE_ZADD
  3770. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3771. #endif
  3772. RUNPLAN;
  3773. //move xy
  3774. if (code_seen('X')) target[X_AXIS] = code_value();
  3775. #ifdef FILAMENTCHANGE_XPOS
  3776. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3777. #endif
  3778. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3779. #ifdef FILAMENTCHANGE_YPOS
  3780. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3781. #endif
  3782. RUNPLAN;
  3783. if (code_seen('L')) target[E_AXIS] += code_value();
  3784. #ifdef FILAMENTCHANGE_FINALRETRACT
  3785. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3786. #endif
  3787. RUNPLAN;
  3788. //finish moves
  3789. st_synchronize();
  3790. //disable extruder steppers so filament can be removed
  3791. disable_e0();
  3792. disable_e1();
  3793. disable_e2();
  3794. disable_e3();
  3795. delay(100);
  3796. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3797. uint8_t cnt = 0;
  3798. while (!lcd_clicked()) {
  3799. cnt++;
  3800. manage_heater();
  3801. manage_inactivity(true);
  3802. lcd_update();
  3803. if (cnt == 0) {
  3804. #if BEEPER > 0
  3805. OUT_WRITE(BEEPER,HIGH);
  3806. delay(3);
  3807. WRITE(BEEPER,LOW);
  3808. delay(3);
  3809. #else
  3810. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3811. lcd_buzz(1000/6, 100);
  3812. #else
  3813. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3814. #endif
  3815. #endif
  3816. }
  3817. } // while(!lcd_clicked)
  3818. //return to normal
  3819. if (code_seen('L')) target[E_AXIS] -= code_value();
  3820. #ifdef FILAMENTCHANGE_FINALRETRACT
  3821. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3822. #endif
  3823. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3824. plan_set_e_position(current_position[E_AXIS]);
  3825. RUNPLAN; //should do nothing
  3826. lcd_reset_alert_level();
  3827. #ifdef DELTA
  3828. calculate_delta(lastpos);
  3829. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3830. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3831. #else
  3832. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3833. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3834. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3835. #endif
  3836. #ifdef FILAMENT_RUNOUT_SENSOR
  3837. filrunoutEnqued = false;
  3838. #endif
  3839. }
  3840. #endif // FILAMENTCHANGEENABLE
  3841. #ifdef DUAL_X_CARRIAGE
  3842. /**
  3843. * M605: Set dual x-carriage movement mode
  3844. *
  3845. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3846. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3847. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3848. * millimeters x-offset and an optional differential hotend temperature of
  3849. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3850. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3851. *
  3852. * Note: the X axis should be homed after changing dual x-carriage mode.
  3853. */
  3854. inline void gcode_M605() {
  3855. st_synchronize();
  3856. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3857. switch(dual_x_carriage_mode) {
  3858. case DXC_DUPLICATION_MODE:
  3859. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3860. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3861. SERIAL_ECHO_START;
  3862. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3863. SERIAL_ECHO(" ");
  3864. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3865. SERIAL_ECHO(",");
  3866. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3867. SERIAL_ECHO(" ");
  3868. SERIAL_ECHO(duplicate_extruder_x_offset);
  3869. SERIAL_ECHO(",");
  3870. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3871. break;
  3872. case DXC_FULL_CONTROL_MODE:
  3873. case DXC_AUTO_PARK_MODE:
  3874. break;
  3875. default:
  3876. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3877. break;
  3878. }
  3879. active_extruder_parked = false;
  3880. extruder_duplication_enabled = false;
  3881. delayed_move_time = 0;
  3882. }
  3883. #endif // DUAL_X_CARRIAGE
  3884. /**
  3885. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3886. */
  3887. inline void gcode_M907() {
  3888. #if HAS_DIGIPOTSS
  3889. for (int i=0;i<NUM_AXIS;i++)
  3890. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3891. if (code_seen('B')) digipot_current(4, code_value());
  3892. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3893. #endif
  3894. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3895. if (code_seen('X')) digipot_current(0, code_value());
  3896. #endif
  3897. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3898. if (code_seen('Z')) digipot_current(1, code_value());
  3899. #endif
  3900. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3901. if (code_seen('E')) digipot_current(2, code_value());
  3902. #endif
  3903. #ifdef DIGIPOT_I2C
  3904. // this one uses actual amps in floating point
  3905. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3906. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3907. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3908. #endif
  3909. }
  3910. #if HAS_DIGIPOTSS
  3911. /**
  3912. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3913. */
  3914. inline void gcode_M908() {
  3915. digitalPotWrite(
  3916. code_seen('P') ? code_value() : 0,
  3917. code_seen('S') ? code_value() : 0
  3918. );
  3919. }
  3920. #endif // HAS_DIGIPOTSS
  3921. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3922. inline void gcode_M350() {
  3923. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3924. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3925. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3926. if(code_seen('B')) microstep_mode(4,code_value());
  3927. microstep_readings();
  3928. #endif
  3929. }
  3930. /**
  3931. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3932. * S# determines MS1 or MS2, X# sets the pin high/low.
  3933. */
  3934. inline void gcode_M351() {
  3935. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3936. if (code_seen('S')) switch(code_value_long()) {
  3937. case 1:
  3938. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3939. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3940. break;
  3941. case 2:
  3942. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3943. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3944. break;
  3945. }
  3946. microstep_readings();
  3947. #endif
  3948. }
  3949. /**
  3950. * M999: Restart after being stopped
  3951. */
  3952. inline void gcode_M999() {
  3953. Stopped = false;
  3954. lcd_reset_alert_level();
  3955. gcode_LastN = Stopped_gcode_LastN;
  3956. FlushSerialRequestResend();
  3957. }
  3958. inline void gcode_T() {
  3959. tmp_extruder = code_value();
  3960. if (tmp_extruder >= EXTRUDERS) {
  3961. SERIAL_ECHO_START;
  3962. SERIAL_ECHO("T");
  3963. SERIAL_ECHO(tmp_extruder);
  3964. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3965. }
  3966. else {
  3967. #if EXTRUDERS > 1
  3968. bool make_move = false;
  3969. #endif
  3970. if (code_seen('F')) {
  3971. #if EXTRUDERS > 1
  3972. make_move = true;
  3973. #endif
  3974. next_feedrate = code_value();
  3975. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3976. }
  3977. #if EXTRUDERS > 1
  3978. if (tmp_extruder != active_extruder) {
  3979. // Save current position to return to after applying extruder offset
  3980. memcpy(destination, current_position, sizeof(destination));
  3981. #ifdef DUAL_X_CARRIAGE
  3982. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3983. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3984. // Park old head: 1) raise 2) move to park position 3) lower
  3985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3986. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3987. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3988. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3989. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3990. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3991. st_synchronize();
  3992. }
  3993. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3994. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3995. extruder_offset[Y_AXIS][active_extruder] +
  3996. extruder_offset[Y_AXIS][tmp_extruder];
  3997. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3998. extruder_offset[Z_AXIS][active_extruder] +
  3999. extruder_offset[Z_AXIS][tmp_extruder];
  4000. active_extruder = tmp_extruder;
  4001. // This function resets the max/min values - the current position may be overwritten below.
  4002. axis_is_at_home(X_AXIS);
  4003. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4004. current_position[X_AXIS] = inactive_extruder_x_pos;
  4005. inactive_extruder_x_pos = destination[X_AXIS];
  4006. }
  4007. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4008. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4009. if (active_extruder == 0 || active_extruder_parked)
  4010. current_position[X_AXIS] = inactive_extruder_x_pos;
  4011. else
  4012. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4013. inactive_extruder_x_pos = destination[X_AXIS];
  4014. extruder_duplication_enabled = false;
  4015. }
  4016. else {
  4017. // record raised toolhead position for use by unpark
  4018. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4019. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4020. active_extruder_parked = true;
  4021. delayed_move_time = 0;
  4022. }
  4023. #else // !DUAL_X_CARRIAGE
  4024. // Offset extruder (only by XY)
  4025. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4026. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4027. // Set the new active extruder and position
  4028. active_extruder = tmp_extruder;
  4029. #endif // !DUAL_X_CARRIAGE
  4030. #ifdef DELTA
  4031. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4032. //sent position to plan_set_position();
  4033. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4034. #else
  4035. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4036. #endif
  4037. // Move to the old position if 'F' was in the parameters
  4038. if (make_move && !Stopped) prepare_move();
  4039. }
  4040. #ifdef EXT_SOLENOID
  4041. st_synchronize();
  4042. disable_all_solenoids();
  4043. enable_solenoid_on_active_extruder();
  4044. #endif // EXT_SOLENOID
  4045. #endif // EXTRUDERS > 1
  4046. SERIAL_ECHO_START;
  4047. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4048. SERIAL_PROTOCOLLN((int)active_extruder);
  4049. }
  4050. }
  4051. /**
  4052. * Process Commands and dispatch them to handlers
  4053. */
  4054. void process_commands() {
  4055. if (code_seen('G')) {
  4056. int gCode = code_value_long();
  4057. switch(gCode) {
  4058. // G0, G1
  4059. case 0:
  4060. case 1:
  4061. gcode_G0_G1();
  4062. break;
  4063. // G2, G3
  4064. #ifndef SCARA
  4065. case 2: // G2 - CW ARC
  4066. case 3: // G3 - CCW ARC
  4067. gcode_G2_G3(gCode == 2);
  4068. break;
  4069. #endif
  4070. // G4 Dwell
  4071. case 4:
  4072. gcode_G4();
  4073. break;
  4074. #ifdef FWRETRACT
  4075. case 10: // G10: retract
  4076. case 11: // G11: retract_recover
  4077. gcode_G10_G11(gCode == 10);
  4078. break;
  4079. #endif //FWRETRACT
  4080. case 28: // G28: Home all axes, one at a time
  4081. gcode_G28();
  4082. break;
  4083. #if defined(MESH_BED_LEVELING)
  4084. case 29: // G29 Handle mesh based leveling
  4085. gcode_G29();
  4086. break;
  4087. #endif
  4088. #ifdef ENABLE_AUTO_BED_LEVELING
  4089. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4090. gcode_G29();
  4091. break;
  4092. #ifndef Z_PROBE_SLED
  4093. case 30: // G30 Single Z Probe
  4094. gcode_G30();
  4095. break;
  4096. #else // Z_PROBE_SLED
  4097. case 31: // G31: dock the sled
  4098. case 32: // G32: undock the sled
  4099. dock_sled(gCode == 31);
  4100. break;
  4101. #endif // Z_PROBE_SLED
  4102. #endif // ENABLE_AUTO_BED_LEVELING
  4103. case 90: // G90
  4104. relative_mode = false;
  4105. break;
  4106. case 91: // G91
  4107. relative_mode = true;
  4108. break;
  4109. case 92: // G92
  4110. gcode_G92();
  4111. break;
  4112. }
  4113. }
  4114. else if (code_seen('M')) {
  4115. switch( code_value_long() ) {
  4116. #ifdef ULTIPANEL
  4117. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4118. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4119. gcode_M0_M1();
  4120. break;
  4121. #endif // ULTIPANEL
  4122. case 17:
  4123. gcode_M17();
  4124. break;
  4125. #ifdef SDSUPPORT
  4126. case 20: // M20 - list SD card
  4127. gcode_M20(); break;
  4128. case 21: // M21 - init SD card
  4129. gcode_M21(); break;
  4130. case 22: //M22 - release SD card
  4131. gcode_M22(); break;
  4132. case 23: //M23 - Select file
  4133. gcode_M23(); break;
  4134. case 24: //M24 - Start SD print
  4135. gcode_M24(); break;
  4136. case 25: //M25 - Pause SD print
  4137. gcode_M25(); break;
  4138. case 26: //M26 - Set SD index
  4139. gcode_M26(); break;
  4140. case 27: //M27 - Get SD status
  4141. gcode_M27(); break;
  4142. case 28: //M28 - Start SD write
  4143. gcode_M28(); break;
  4144. case 29: //M29 - Stop SD write
  4145. gcode_M29(); break;
  4146. case 30: //M30 <filename> Delete File
  4147. gcode_M30(); break;
  4148. case 32: //M32 - Select file and start SD print
  4149. gcode_M32(); break;
  4150. case 928: //M928 - Start SD write
  4151. gcode_M928(); break;
  4152. #endif //SDSUPPORT
  4153. case 31: //M31 take time since the start of the SD print or an M109 command
  4154. gcode_M31();
  4155. break;
  4156. case 42: //M42 -Change pin status via gcode
  4157. gcode_M42();
  4158. break;
  4159. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4160. case 48: // M48 Z-Probe repeatability
  4161. gcode_M48();
  4162. break;
  4163. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4164. case 104: // M104
  4165. gcode_M104();
  4166. break;
  4167. case 112: // M112 Emergency Stop
  4168. gcode_M112();
  4169. break;
  4170. case 140: // M140 Set bed temp
  4171. gcode_M140();
  4172. break;
  4173. case 105: // M105 Read current temperature
  4174. gcode_M105();
  4175. return;
  4176. break;
  4177. case 109: // M109 Wait for temperature
  4178. gcode_M109();
  4179. break;
  4180. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4181. case 190: // M190 - Wait for bed heater to reach target.
  4182. gcode_M190();
  4183. break;
  4184. #endif //TEMP_BED_PIN
  4185. #if defined(FAN_PIN) && FAN_PIN > -1
  4186. case 106: //M106 Fan On
  4187. gcode_M106();
  4188. break;
  4189. case 107: //M107 Fan Off
  4190. gcode_M107();
  4191. break;
  4192. #endif //FAN_PIN
  4193. #ifdef BARICUDA
  4194. // PWM for HEATER_1_PIN
  4195. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4196. case 126: // M126 valve open
  4197. gcode_M126();
  4198. break;
  4199. case 127: // M127 valve closed
  4200. gcode_M127();
  4201. break;
  4202. #endif //HEATER_1_PIN
  4203. // PWM for HEATER_2_PIN
  4204. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4205. case 128: // M128 valve open
  4206. gcode_M128();
  4207. break;
  4208. case 129: // M129 valve closed
  4209. gcode_M129();
  4210. break;
  4211. #endif //HEATER_2_PIN
  4212. #endif //BARICUDA
  4213. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4214. case 80: // M80 - Turn on Power Supply
  4215. gcode_M80();
  4216. break;
  4217. #endif // PS_ON_PIN
  4218. case 81: // M81 - Turn off Power Supply
  4219. gcode_M81();
  4220. break;
  4221. case 82:
  4222. gcode_M82();
  4223. break;
  4224. case 83:
  4225. gcode_M83();
  4226. break;
  4227. case 18: //compatibility
  4228. case 84: // M84
  4229. gcode_M18_M84();
  4230. break;
  4231. case 85: // M85
  4232. gcode_M85();
  4233. break;
  4234. case 92: // M92
  4235. gcode_M92();
  4236. break;
  4237. case 115: // M115
  4238. gcode_M115();
  4239. break;
  4240. case 117: // M117 display message
  4241. gcode_M117();
  4242. break;
  4243. case 114: // M114
  4244. gcode_M114();
  4245. break;
  4246. case 120: // M120
  4247. gcode_M120();
  4248. break;
  4249. case 121: // M121
  4250. gcode_M121();
  4251. break;
  4252. case 119: // M119
  4253. gcode_M119();
  4254. break;
  4255. //TODO: update for all axis, use for loop
  4256. #ifdef BLINKM
  4257. case 150: // M150
  4258. gcode_M150();
  4259. break;
  4260. #endif //BLINKM
  4261. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4262. gcode_M200();
  4263. break;
  4264. case 201: // M201
  4265. gcode_M201();
  4266. break;
  4267. #if 0 // Not used for Sprinter/grbl gen6
  4268. case 202: // M202
  4269. gcode_M202();
  4270. break;
  4271. #endif
  4272. case 203: // M203 max feedrate mm/sec
  4273. gcode_M203();
  4274. break;
  4275. case 204: // M204 acclereration S normal moves T filmanent only moves
  4276. gcode_M204();
  4277. break;
  4278. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4279. gcode_M205();
  4280. break;
  4281. case 206: // M206 additional homing offset
  4282. gcode_M206();
  4283. break;
  4284. #ifdef DELTA
  4285. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4286. gcode_M665();
  4287. break;
  4288. case 666: // M666 set delta endstop adjustment
  4289. gcode_M666();
  4290. break;
  4291. #elif defined(Z_DUAL_ENDSTOPS)
  4292. case 666: // M666 set delta endstop adjustment
  4293. gcode_M666();
  4294. break;
  4295. #endif // DELTA
  4296. #ifdef FWRETRACT
  4297. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4298. gcode_M207();
  4299. break;
  4300. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4301. gcode_M208();
  4302. break;
  4303. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4304. gcode_M209();
  4305. break;
  4306. #endif // FWRETRACT
  4307. #if EXTRUDERS > 1
  4308. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4309. gcode_M218();
  4310. break;
  4311. #endif
  4312. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4313. gcode_M220();
  4314. break;
  4315. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4316. gcode_M221();
  4317. break;
  4318. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4319. gcode_M226();
  4320. break;
  4321. #if NUM_SERVOS > 0
  4322. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4323. gcode_M280();
  4324. break;
  4325. #endif // NUM_SERVOS > 0
  4326. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4327. case 300: // M300 - Play beep tone
  4328. gcode_M300();
  4329. break;
  4330. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4331. #ifdef PIDTEMP
  4332. case 301: // M301
  4333. gcode_M301();
  4334. break;
  4335. #endif // PIDTEMP
  4336. #ifdef PIDTEMPBED
  4337. case 304: // M304
  4338. gcode_M304();
  4339. break;
  4340. #endif // PIDTEMPBED
  4341. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4342. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4343. gcode_M240();
  4344. break;
  4345. #endif // CHDK || PHOTOGRAPH_PIN
  4346. #ifdef DOGLCD
  4347. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4348. gcode_M250();
  4349. break;
  4350. #endif // DOGLCD
  4351. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4352. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4353. gcode_M302();
  4354. break;
  4355. #endif // PREVENT_DANGEROUS_EXTRUDE
  4356. case 303: // M303 PID autotune
  4357. gcode_M303();
  4358. break;
  4359. #ifdef SCARA
  4360. case 360: // M360 SCARA Theta pos1
  4361. if (gcode_M360()) return;
  4362. break;
  4363. case 361: // M361 SCARA Theta pos2
  4364. if (gcode_M361()) return;
  4365. break;
  4366. case 362: // M362 SCARA Psi pos1
  4367. if (gcode_M362()) return;
  4368. break;
  4369. case 363: // M363 SCARA Psi pos2
  4370. if (gcode_M363()) return;
  4371. break;
  4372. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4373. if (gcode_M364()) return;
  4374. break;
  4375. case 365: // M365 Set SCARA scaling for X Y Z
  4376. gcode_M365();
  4377. break;
  4378. #endif // SCARA
  4379. case 400: // M400 finish all moves
  4380. gcode_M400();
  4381. break;
  4382. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4383. case 401:
  4384. gcode_M401();
  4385. break;
  4386. case 402:
  4387. gcode_M402();
  4388. break;
  4389. #endif
  4390. #ifdef FILAMENT_SENSOR
  4391. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4392. gcode_M404();
  4393. break;
  4394. case 405: //M405 Turn on filament sensor for control
  4395. gcode_M405();
  4396. break;
  4397. case 406: //M406 Turn off filament sensor for control
  4398. gcode_M406();
  4399. break;
  4400. case 407: //M407 Display measured filament diameter
  4401. gcode_M407();
  4402. break;
  4403. #endif // FILAMENT_SENSOR
  4404. case 500: // M500 Store settings in EEPROM
  4405. gcode_M500();
  4406. break;
  4407. case 501: // M501 Read settings from EEPROM
  4408. gcode_M501();
  4409. break;
  4410. case 502: // M502 Revert to default settings
  4411. gcode_M502();
  4412. break;
  4413. case 503: // M503 print settings currently in memory
  4414. gcode_M503();
  4415. break;
  4416. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4417. case 540:
  4418. gcode_M540();
  4419. break;
  4420. #endif
  4421. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4422. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4423. gcode_SET_Z_PROBE_OFFSET();
  4424. break;
  4425. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4426. #ifdef FILAMENTCHANGEENABLE
  4427. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4428. gcode_M600();
  4429. break;
  4430. #endif // FILAMENTCHANGEENABLE
  4431. #ifdef DUAL_X_CARRIAGE
  4432. case 605:
  4433. gcode_M605();
  4434. break;
  4435. #endif // DUAL_X_CARRIAGE
  4436. case 907: // M907 Set digital trimpot motor current using axis codes.
  4437. gcode_M907();
  4438. break;
  4439. #if HAS_DIGIPOTSS
  4440. case 908: // M908 Control digital trimpot directly.
  4441. gcode_M908();
  4442. break;
  4443. #endif // HAS_DIGIPOTSS
  4444. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4445. gcode_M350();
  4446. break;
  4447. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4448. gcode_M351();
  4449. break;
  4450. case 999: // M999: Restart after being Stopped
  4451. gcode_M999();
  4452. break;
  4453. }
  4454. }
  4455. else if (code_seen('T')) {
  4456. gcode_T();
  4457. }
  4458. else {
  4459. SERIAL_ECHO_START;
  4460. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4461. SERIAL_ECHO(cmdbuffer[bufindr]);
  4462. SERIAL_ECHOLNPGM("\"");
  4463. }
  4464. ClearToSend();
  4465. }
  4466. void FlushSerialRequestResend()
  4467. {
  4468. //char cmdbuffer[bufindr][100]="Resend:";
  4469. MYSERIAL.flush();
  4470. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4471. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4472. ClearToSend();
  4473. }
  4474. void ClearToSend()
  4475. {
  4476. previous_millis_cmd = millis();
  4477. #ifdef SDSUPPORT
  4478. if(fromsd[bufindr])
  4479. return;
  4480. #endif //SDSUPPORT
  4481. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4482. }
  4483. void get_coordinates() {
  4484. for (int i = 0; i < NUM_AXIS; i++) {
  4485. float dest;
  4486. if (code_seen(axis_codes[i])) {
  4487. dest = code_value();
  4488. if (axis_relative_modes[i] || relative_mode)
  4489. dest += current_position[i];
  4490. }
  4491. else
  4492. dest = current_position[i];
  4493. destination[i] = dest;
  4494. }
  4495. if (code_seen('F')) {
  4496. next_feedrate = code_value();
  4497. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4498. }
  4499. }
  4500. void get_arc_coordinates()
  4501. {
  4502. #ifdef SF_ARC_FIX
  4503. bool relative_mode_backup = relative_mode;
  4504. relative_mode = true;
  4505. #endif
  4506. get_coordinates();
  4507. #ifdef SF_ARC_FIX
  4508. relative_mode=relative_mode_backup;
  4509. #endif
  4510. if(code_seen('I')) {
  4511. offset[0] = code_value();
  4512. }
  4513. else {
  4514. offset[0] = 0.0;
  4515. }
  4516. if(code_seen('J')) {
  4517. offset[1] = code_value();
  4518. }
  4519. else {
  4520. offset[1] = 0.0;
  4521. }
  4522. }
  4523. void clamp_to_software_endstops(float target[3])
  4524. {
  4525. if (min_software_endstops) {
  4526. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4527. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4528. float negative_z_offset = 0;
  4529. #ifdef ENABLE_AUTO_BED_LEVELING
  4530. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4531. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4532. #endif
  4533. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4534. }
  4535. if (max_software_endstops) {
  4536. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4537. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4538. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4539. }
  4540. }
  4541. #ifdef DELTA
  4542. void recalc_delta_settings(float radius, float diagonal_rod)
  4543. {
  4544. delta_tower1_x= -SIN_60*radius; // front left tower
  4545. delta_tower1_y= -COS_60*radius;
  4546. delta_tower2_x= SIN_60*radius; // front right tower
  4547. delta_tower2_y= -COS_60*radius;
  4548. delta_tower3_x= 0.0; // back middle tower
  4549. delta_tower3_y= radius;
  4550. delta_diagonal_rod_2= sq(diagonal_rod);
  4551. }
  4552. void calculate_delta(float cartesian[3])
  4553. {
  4554. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4555. - sq(delta_tower1_x-cartesian[X_AXIS])
  4556. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4557. ) + cartesian[Z_AXIS];
  4558. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4559. - sq(delta_tower2_x-cartesian[X_AXIS])
  4560. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4561. ) + cartesian[Z_AXIS];
  4562. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4563. - sq(delta_tower3_x-cartesian[X_AXIS])
  4564. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4565. ) + cartesian[Z_AXIS];
  4566. /*
  4567. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4568. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4569. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4570. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4571. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4572. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4573. */
  4574. }
  4575. #ifdef ENABLE_AUTO_BED_LEVELING
  4576. // Adjust print surface height by linear interpolation over the bed_level array.
  4577. int delta_grid_spacing[2] = { 0, 0 };
  4578. void adjust_delta(float cartesian[3])
  4579. {
  4580. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4581. return; // G29 not done
  4582. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4583. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4584. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4585. int floor_x = floor(grid_x);
  4586. int floor_y = floor(grid_y);
  4587. float ratio_x = grid_x - floor_x;
  4588. float ratio_y = grid_y - floor_y;
  4589. float z1 = bed_level[floor_x+half][floor_y+half];
  4590. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4591. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4592. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4593. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4594. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4595. float offset = (1-ratio_x)*left + ratio_x*right;
  4596. delta[X_AXIS] += offset;
  4597. delta[Y_AXIS] += offset;
  4598. delta[Z_AXIS] += offset;
  4599. /*
  4600. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4601. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4602. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4603. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4604. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4605. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4606. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4607. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4608. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4609. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4610. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4611. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4612. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4613. */
  4614. }
  4615. #endif //ENABLE_AUTO_BED_LEVELING
  4616. void prepare_move_raw()
  4617. {
  4618. previous_millis_cmd = millis();
  4619. calculate_delta(destination);
  4620. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4621. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4622. active_extruder);
  4623. for(int8_t i=0; i < NUM_AXIS; i++) {
  4624. current_position[i] = destination[i];
  4625. }
  4626. }
  4627. #endif //DELTA
  4628. #if defined(MESH_BED_LEVELING)
  4629. #if !defined(MIN)
  4630. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4631. #endif // ! MIN
  4632. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4633. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4634. {
  4635. if (!mbl.active) {
  4636. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4637. for(int8_t i=0; i < NUM_AXIS; i++) {
  4638. current_position[i] = destination[i];
  4639. }
  4640. return;
  4641. }
  4642. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4643. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4644. int ix = mbl.select_x_index(x);
  4645. int iy = mbl.select_y_index(y);
  4646. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4647. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4648. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4649. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4650. if (pix == ix && piy == iy) {
  4651. // Start and end on same mesh square
  4652. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4653. for(int8_t i=0; i < NUM_AXIS; i++) {
  4654. current_position[i] = destination[i];
  4655. }
  4656. return;
  4657. }
  4658. float nx, ny, ne, normalized_dist;
  4659. if (ix > pix && (x_splits) & BIT(ix)) {
  4660. nx = mbl.get_x(ix);
  4661. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4662. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4663. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4664. x_splits ^= BIT(ix);
  4665. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4666. nx = mbl.get_x(pix);
  4667. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4668. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4669. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4670. x_splits ^= BIT(pix);
  4671. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4672. ny = mbl.get_y(iy);
  4673. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4674. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4675. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4676. y_splits ^= BIT(iy);
  4677. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4678. ny = mbl.get_y(piy);
  4679. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4680. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4681. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4682. y_splits ^= BIT(piy);
  4683. } else {
  4684. // Already split on a border
  4685. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4686. for(int8_t i=0; i < NUM_AXIS; i++) {
  4687. current_position[i] = destination[i];
  4688. }
  4689. return;
  4690. }
  4691. // Do the split and look for more borders
  4692. destination[X_AXIS] = nx;
  4693. destination[Y_AXIS] = ny;
  4694. destination[E_AXIS] = ne;
  4695. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4696. destination[X_AXIS] = x;
  4697. destination[Y_AXIS] = y;
  4698. destination[E_AXIS] = e;
  4699. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4700. }
  4701. #endif // MESH_BED_LEVELING
  4702. void prepare_move()
  4703. {
  4704. clamp_to_software_endstops(destination);
  4705. previous_millis_cmd = millis();
  4706. #ifdef SCARA //for now same as delta-code
  4707. float difference[NUM_AXIS];
  4708. for (int8_t i=0; i < NUM_AXIS; i++) {
  4709. difference[i] = destination[i] - current_position[i];
  4710. }
  4711. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4712. sq(difference[Y_AXIS]) +
  4713. sq(difference[Z_AXIS]));
  4714. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4715. if (cartesian_mm < 0.000001) { return; }
  4716. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4717. int steps = max(1, int(scara_segments_per_second * seconds));
  4718. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4719. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4720. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4721. for (int s = 1; s <= steps; s++) {
  4722. float fraction = float(s) / float(steps);
  4723. for(int8_t i=0; i < NUM_AXIS; i++) {
  4724. destination[i] = current_position[i] + difference[i] * fraction;
  4725. }
  4726. calculate_delta(destination);
  4727. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4728. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4729. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4730. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4731. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4732. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4733. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4734. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4735. active_extruder);
  4736. }
  4737. #endif // SCARA
  4738. #ifdef DELTA
  4739. float difference[NUM_AXIS];
  4740. for (int8_t i=0; i < NUM_AXIS; i++) {
  4741. difference[i] = destination[i] - current_position[i];
  4742. }
  4743. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4744. sq(difference[Y_AXIS]) +
  4745. sq(difference[Z_AXIS]));
  4746. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4747. if (cartesian_mm < 0.000001) { return; }
  4748. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4749. int steps = max(1, int(delta_segments_per_second * seconds));
  4750. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4751. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4752. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4753. for (int s = 1; s <= steps; s++) {
  4754. float fraction = float(s) / float(steps);
  4755. for(int8_t i=0; i < NUM_AXIS; i++) {
  4756. destination[i] = current_position[i] + difference[i] * fraction;
  4757. }
  4758. calculate_delta(destination);
  4759. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4760. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4761. active_extruder);
  4762. }
  4763. #endif // DELTA
  4764. #ifdef DUAL_X_CARRIAGE
  4765. if (active_extruder_parked)
  4766. {
  4767. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4768. {
  4769. // move duplicate extruder into correct duplication position.
  4770. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4771. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4772. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4774. st_synchronize();
  4775. extruder_duplication_enabled = true;
  4776. active_extruder_parked = false;
  4777. }
  4778. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4779. {
  4780. if (current_position[E_AXIS] == destination[E_AXIS])
  4781. {
  4782. // this is a travel move - skit it but keep track of current position (so that it can later
  4783. // be used as start of first non-travel move)
  4784. if (delayed_move_time != 0xFFFFFFFFUL)
  4785. {
  4786. memcpy(current_position, destination, sizeof(current_position));
  4787. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4788. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4789. delayed_move_time = millis();
  4790. return;
  4791. }
  4792. }
  4793. delayed_move_time = 0;
  4794. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4795. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4797. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4799. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4800. active_extruder_parked = false;
  4801. }
  4802. }
  4803. #endif //DUAL_X_CARRIAGE
  4804. #if ! (defined DELTA || defined SCARA)
  4805. // Do not use feedmultiply for E or Z only moves
  4806. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4808. } else {
  4809. #if defined(MESH_BED_LEVELING)
  4810. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4811. return;
  4812. #else
  4813. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4814. #endif // MESH_BED_LEVELING
  4815. }
  4816. #endif // !(DELTA || SCARA)
  4817. for(int8_t i=0; i < NUM_AXIS; i++) {
  4818. current_position[i] = destination[i];
  4819. }
  4820. }
  4821. void prepare_arc_move(char isclockwise) {
  4822. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4823. // Trace the arc
  4824. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4825. // As far as the parser is concerned, the position is now == target. In reality the
  4826. // motion control system might still be processing the action and the real tool position
  4827. // in any intermediate location.
  4828. for(int8_t i=0; i < NUM_AXIS; i++) {
  4829. current_position[i] = destination[i];
  4830. }
  4831. previous_millis_cmd = millis();
  4832. }
  4833. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4834. #if defined(FAN_PIN)
  4835. #if CONTROLLERFAN_PIN == FAN_PIN
  4836. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4837. #endif
  4838. #endif
  4839. unsigned long lastMotor = 0; // Last time a motor was turned on
  4840. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4841. void controllerFan() {
  4842. uint32_t ms = millis();
  4843. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4844. lastMotorCheck = ms;
  4845. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4846. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4847. #if EXTRUDERS > 1
  4848. || E1_ENABLE_READ == E_ENABLE_ON
  4849. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4850. || X2_ENABLE_READ == X_ENABLE_ON
  4851. #endif
  4852. #if EXTRUDERS > 2
  4853. || E2_ENABLE_READ == E_ENABLE_ON
  4854. #if EXTRUDERS > 3
  4855. || E3_ENABLE_READ == E_ENABLE_ON
  4856. #endif
  4857. #endif
  4858. #endif
  4859. ) {
  4860. lastMotor = ms; //... set time to NOW so the fan will turn on
  4861. }
  4862. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4863. // allows digital or PWM fan output to be used (see M42 handling)
  4864. digitalWrite(CONTROLLERFAN_PIN, speed);
  4865. analogWrite(CONTROLLERFAN_PIN, speed);
  4866. }
  4867. }
  4868. #endif
  4869. #ifdef SCARA
  4870. void calculate_SCARA_forward_Transform(float f_scara[3])
  4871. {
  4872. // Perform forward kinematics, and place results in delta[3]
  4873. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4874. float x_sin, x_cos, y_sin, y_cos;
  4875. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4876. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4877. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4878. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4879. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4880. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4881. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4882. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4883. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4884. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4885. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4886. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4887. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4888. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4889. }
  4890. void calculate_delta(float cartesian[3]){
  4891. //reverse kinematics.
  4892. // Perform reversed kinematics, and place results in delta[3]
  4893. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4894. float SCARA_pos[2];
  4895. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4896. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4897. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4898. #if (Linkage_1 == Linkage_2)
  4899. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4900. #else
  4901. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4902. #endif
  4903. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4904. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4905. SCARA_K2 = Linkage_2 * SCARA_S2;
  4906. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4907. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4908. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4909. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4910. delta[Z_AXIS] = cartesian[Z_AXIS];
  4911. /*
  4912. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4913. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4914. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4915. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4916. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4917. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4918. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4919. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4920. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4921. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4922. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4923. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4924. SERIAL_ECHOLN(" ");*/
  4925. }
  4926. #endif
  4927. #ifdef TEMP_STAT_LEDS
  4928. static bool blue_led = false;
  4929. static bool red_led = false;
  4930. static uint32_t stat_update = 0;
  4931. void handle_status_leds(void) {
  4932. float max_temp = 0.0;
  4933. if(millis() > stat_update) {
  4934. stat_update += 500; // Update every 0.5s
  4935. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4936. max_temp = max(max_temp, degHotend(cur_extruder));
  4937. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4938. }
  4939. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4940. max_temp = max(max_temp, degTargetBed());
  4941. max_temp = max(max_temp, degBed());
  4942. #endif
  4943. if((max_temp > 55.0) && (red_led == false)) {
  4944. digitalWrite(STAT_LED_RED, 1);
  4945. digitalWrite(STAT_LED_BLUE, 0);
  4946. red_led = true;
  4947. blue_led = false;
  4948. }
  4949. if((max_temp < 54.0) && (blue_led == false)) {
  4950. digitalWrite(STAT_LED_RED, 0);
  4951. digitalWrite(STAT_LED_BLUE, 1);
  4952. red_led = false;
  4953. blue_led = true;
  4954. }
  4955. }
  4956. }
  4957. #endif
  4958. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4959. {
  4960. #if defined(KILL_PIN) && KILL_PIN > -1
  4961. static int killCount = 0; // make the inactivity button a bit less responsive
  4962. const int KILL_DELAY = 750;
  4963. #endif
  4964. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4965. if(card.sdprinting) {
  4966. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4967. filrunout(); }
  4968. #endif
  4969. #if defined(HOME_PIN) && HOME_PIN > -1
  4970. static int homeDebounceCount = 0; // poor man's debouncing count
  4971. const int HOME_DEBOUNCE_DELAY = 750;
  4972. #endif
  4973. if(buflen < (BUFSIZE-1))
  4974. get_command();
  4975. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4976. if(max_inactive_time)
  4977. kill();
  4978. if(stepper_inactive_time) {
  4979. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4980. {
  4981. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4982. disable_x();
  4983. disable_y();
  4984. disable_z();
  4985. disable_e0();
  4986. disable_e1();
  4987. disable_e2();
  4988. disable_e3();
  4989. }
  4990. }
  4991. }
  4992. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4993. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4994. {
  4995. chdkActive = false;
  4996. WRITE(CHDK, LOW);
  4997. }
  4998. #endif
  4999. #if defined(KILL_PIN) && KILL_PIN > -1
  5000. // Check if the kill button was pressed and wait just in case it was an accidental
  5001. // key kill key press
  5002. // -------------------------------------------------------------------------------
  5003. if( 0 == READ(KILL_PIN) )
  5004. {
  5005. killCount++;
  5006. }
  5007. else if (killCount > 0)
  5008. {
  5009. killCount--;
  5010. }
  5011. // Exceeded threshold and we can confirm that it was not accidental
  5012. // KILL the machine
  5013. // ----------------------------------------------------------------
  5014. if ( killCount >= KILL_DELAY)
  5015. {
  5016. kill();
  5017. }
  5018. #endif
  5019. #if defined(HOME_PIN) && HOME_PIN > -1
  5020. // Check to see if we have to home, use poor man's debouncer
  5021. // ---------------------------------------------------------
  5022. if ( 0 == READ(HOME_PIN) )
  5023. {
  5024. if (homeDebounceCount == 0)
  5025. {
  5026. enquecommands_P((PSTR("G28")));
  5027. homeDebounceCount++;
  5028. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5029. }
  5030. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5031. {
  5032. homeDebounceCount++;
  5033. }
  5034. else
  5035. {
  5036. homeDebounceCount = 0;
  5037. }
  5038. }
  5039. #endif
  5040. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5041. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5042. #endif
  5043. #ifdef EXTRUDER_RUNOUT_PREVENT
  5044. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5045. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5046. {
  5047. bool oldstatus=E0_ENABLE_READ;
  5048. enable_e0();
  5049. float oldepos=current_position[E_AXIS];
  5050. float oldedes=destination[E_AXIS];
  5051. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5052. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5053. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5054. current_position[E_AXIS]=oldepos;
  5055. destination[E_AXIS]=oldedes;
  5056. plan_set_e_position(oldepos);
  5057. previous_millis_cmd=millis();
  5058. st_synchronize();
  5059. E0_ENABLE_WRITE(oldstatus);
  5060. }
  5061. #endif
  5062. #if defined(DUAL_X_CARRIAGE)
  5063. // handle delayed move timeout
  5064. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5065. {
  5066. // travel moves have been received so enact them
  5067. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5068. memcpy(destination,current_position,sizeof(destination));
  5069. prepare_move();
  5070. }
  5071. #endif
  5072. #ifdef TEMP_STAT_LEDS
  5073. handle_status_leds();
  5074. #endif
  5075. check_axes_activity();
  5076. }
  5077. void kill()
  5078. {
  5079. cli(); // Stop interrupts
  5080. disable_heater();
  5081. disable_x();
  5082. disable_y();
  5083. disable_z();
  5084. disable_e0();
  5085. disable_e1();
  5086. disable_e2();
  5087. disable_e3();
  5088. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5089. pinMode(PS_ON_PIN,INPUT);
  5090. #endif
  5091. SERIAL_ERROR_START;
  5092. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5093. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5094. // FMC small patch to update the LCD before ending
  5095. sei(); // enable interrupts
  5096. for ( int i=5; i--; lcd_update())
  5097. {
  5098. delay(200);
  5099. }
  5100. cli(); // disable interrupts
  5101. suicide();
  5102. while(1) { /* Intentionally left empty */ } // Wait for reset
  5103. }
  5104. #ifdef FILAMENT_RUNOUT_SENSOR
  5105. void filrunout()
  5106. {
  5107. if filrunoutEnqued == false {
  5108. filrunoutEnqued = true;
  5109. enquecommand("M600");
  5110. }
  5111. }
  5112. #endif
  5113. void Stop()
  5114. {
  5115. disable_heater();
  5116. if(Stopped == false) {
  5117. Stopped = true;
  5118. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5119. SERIAL_ERROR_START;
  5120. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5121. LCD_MESSAGEPGM(MSG_STOPPED);
  5122. }
  5123. }
  5124. bool IsStopped() { return Stopped; };
  5125. #ifdef FAST_PWM_FAN
  5126. void setPwmFrequency(uint8_t pin, int val)
  5127. {
  5128. val &= 0x07;
  5129. switch(digitalPinToTimer(pin))
  5130. {
  5131. #if defined(TCCR0A)
  5132. case TIMER0A:
  5133. case TIMER0B:
  5134. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5135. // TCCR0B |= val;
  5136. break;
  5137. #endif
  5138. #if defined(TCCR1A)
  5139. case TIMER1A:
  5140. case TIMER1B:
  5141. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5142. // TCCR1B |= val;
  5143. break;
  5144. #endif
  5145. #if defined(TCCR2)
  5146. case TIMER2:
  5147. case TIMER2:
  5148. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5149. TCCR2 |= val;
  5150. break;
  5151. #endif
  5152. #if defined(TCCR2A)
  5153. case TIMER2A:
  5154. case TIMER2B:
  5155. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5156. TCCR2B |= val;
  5157. break;
  5158. #endif
  5159. #if defined(TCCR3A)
  5160. case TIMER3A:
  5161. case TIMER3B:
  5162. case TIMER3C:
  5163. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5164. TCCR3B |= val;
  5165. break;
  5166. #endif
  5167. #if defined(TCCR4A)
  5168. case TIMER4A:
  5169. case TIMER4B:
  5170. case TIMER4C:
  5171. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5172. TCCR4B |= val;
  5173. break;
  5174. #endif
  5175. #if defined(TCCR5A)
  5176. case TIMER5A:
  5177. case TIMER5B:
  5178. case TIMER5C:
  5179. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5180. TCCR5B |= val;
  5181. break;
  5182. #endif
  5183. }
  5184. }
  5185. #endif //FAST_PWM_FAN
  5186. bool setTargetedHotend(int code){
  5187. tmp_extruder = active_extruder;
  5188. if(code_seen('T')) {
  5189. tmp_extruder = code_value();
  5190. if(tmp_extruder >= EXTRUDERS) {
  5191. SERIAL_ECHO_START;
  5192. switch(code){
  5193. case 104:
  5194. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5195. break;
  5196. case 105:
  5197. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5198. break;
  5199. case 109:
  5200. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5201. break;
  5202. case 218:
  5203. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5204. break;
  5205. case 221:
  5206. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5207. break;
  5208. }
  5209. SERIAL_ECHOLN(tmp_extruder);
  5210. return true;
  5211. }
  5212. }
  5213. return false;
  5214. }
  5215. float calculate_volumetric_multiplier(float diameter) {
  5216. if (!volumetric_enabled || diameter == 0) return 1.0;
  5217. float d2 = diameter * 0.5;
  5218. return 1.0 / (M_PI * d2 * d2);
  5219. }
  5220. void calculate_volumetric_multipliers() {
  5221. for (int i=0; i<EXTRUDERS; i++)
  5222. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5223. }