My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 51KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V33"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V33 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * Mesh bed leveling: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x 81) +288
  72. *
  73. * AUTO BED LEVELING 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR (or placeholder): 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 bed_level_grid[][] (float x9, up to float x256) +988
  85. *
  86. * DELTA (if deltabot): 48 bytes
  87. * 348 M666 XYZ endstop_adj (float x3)
  88. * 360 M665 R delta_radius (float)
  89. * 364 M665 L delta_diagonal_rod (float)
  90. * 368 M665 S delta_segments_per_second (float)
  91. * 372 M665 A delta_diagonal_rod_trim[A] (float)
  92. * 376 M665 B delta_diagonal_rod_trim[B] (float)
  93. * 380 M665 C delta_diagonal_rod_trim[C] (float)
  94. * 384 M665 I delta_tower_angle_trim[A] (float)
  95. * 388 M665 J delta_tower_angle_trim[B] (float)
  96. * 392 M665 K delta_tower_angle_trim[C] (float)
  97. *
  98. * Z_DUAL_ENDSTOPS (if not deltabot): 48 bytes
  99. * 348 M666 Z z_endstop_adj (float)
  100. * --- dummy data (float x11)
  101. *
  102. * ULTIPANEL: 6 bytes
  103. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  104. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  105. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  106. *
  107. * PIDTEMP: 66 bytes
  108. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  109. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  110. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  111. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  112. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  113. * 488 M301 L lpq_len (int)
  114. *
  115. * PIDTEMPBED: 12 bytes
  116. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  117. *
  118. * DOGLCD: 2 bytes
  119. * 502 M250 C lcd_contrast (int)
  120. *
  121. * FWRETRACT: 29 bytes
  122. * 504 M209 S autoretract_enabled (bool)
  123. * 505 M207 S retract_length (float)
  124. * 509 M207 W retract_length_swap (float)
  125. * 513 M207 F retract_feedrate_mm_s (float)
  126. * 517 M207 Z retract_zlift (float)
  127. * 521 M208 S retract_recover_length (float)
  128. * 525 M208 W retract_recover_length_swap (float)
  129. * 529 M208 F retract_recover_feedrate_mm_s (float)
  130. *
  131. * Volumetric Extrusion: 21 bytes
  132. * 533 M200 D volumetric_enabled (bool)
  133. * 534 M200 T D filament_size (float x5) (T0..3)
  134. *
  135. * TMC2130 Stepper Current: 20 bytes
  136. * 554 M906 X stepperX current (uint16_t)
  137. * 556 M906 Y stepperY current (uint16_t)
  138. * 558 M906 Z stepperZ current (uint16_t)
  139. * 560 M906 X2 stepperX2 current (uint16_t)
  140. * 562 M906 Y2 stepperY2 current (uint16_t)
  141. * 564 M906 Z2 stepperZ2 current (uint16_t)
  142. * 566 M906 E0 stepperE0 current (uint16_t)
  143. * 568 M906 E1 stepperE1 current (uint16_t)
  144. * 570 M906 E2 stepperE2 current (uint16_t)
  145. * 572 M906 E3 stepperE3 current (uint16_t)
  146. * 576 M906 E4 stepperE4 current (uint16_t)
  147. *
  148. * 580 Minimum end-point
  149. * 1901 (580 + 36 + 9 + 288 + 988) Maximum end-point
  150. */
  151. #include "configuration_store.h"
  152. MarlinSettings settings;
  153. #include "Marlin.h"
  154. #include "language.h"
  155. #include "endstops.h"
  156. #include "planner.h"
  157. #include "temperature.h"
  158. #include "ultralcd.h"
  159. #if ENABLED(MESH_BED_LEVELING)
  160. #include "mesh_bed_leveling.h"
  161. #endif
  162. #if ENABLED(HAVE_TMC2130)
  163. #include "stepper_indirection.h"
  164. #endif
  165. #if ENABLED(AUTO_BED_LEVELING_UBL)
  166. #include "ubl.h"
  167. #endif
  168. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  169. extern void bed_level_virt_interpolate();
  170. #endif
  171. /**
  172. * Post-process after Retrieve or Reset
  173. */
  174. void MarlinSettings::postprocess() {
  175. // steps per s2 needs to be updated to agree with units per s2
  176. planner.reset_acceleration_rates();
  177. // Make sure delta kinematics are updated before refreshing the
  178. // planner position so the stepper counts will be set correctly.
  179. #if ENABLED(DELTA)
  180. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  181. #endif
  182. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  183. // and init stepper.count[], planner.position[] with current_position
  184. planner.refresh_positioning();
  185. #if ENABLED(PIDTEMP)
  186. thermalManager.updatePID();
  187. #endif
  188. calculate_volumetric_multipliers();
  189. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  190. // Software endstops depend on home_offset
  191. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  192. #endif
  193. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  194. set_z_fade_height(
  195. //#if ENABLED(AUTO_BED_LEVELING_UBL)
  196. // ubl.state.g29_correction_fade_height
  197. //#else
  198. planner.z_fade_height
  199. //#endif
  200. );
  201. #endif
  202. }
  203. #if ENABLED(EEPROM_SETTINGS)
  204. const char version[4] = EEPROM_VERSION;
  205. uint16_t MarlinSettings::eeprom_checksum;
  206. bool MarlinSettings::eeprom_write_error,
  207. MarlinSettings::eeprom_read_error;
  208. void MarlinSettings::write_data(int &pos, const uint8_t* value, uint16_t size) {
  209. if (eeprom_write_error) return;
  210. while (size--) {
  211. uint8_t * const p = (uint8_t * const)pos;
  212. const uint8_t v = *value;
  213. // EEPROM has only ~100,000 write cycles,
  214. // so only write bytes that have changed!
  215. if (v != eeprom_read_byte(p)) {
  216. eeprom_write_byte(p, v);
  217. if (eeprom_read_byte(p) != v) {
  218. SERIAL_ECHO_START;
  219. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  220. eeprom_write_error = true;
  221. return;
  222. }
  223. }
  224. eeprom_checksum += v;
  225. pos++;
  226. value++;
  227. };
  228. }
  229. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size) {
  230. do {
  231. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  232. if (!eeprom_read_error) *value = c;
  233. eeprom_checksum += c;
  234. pos++;
  235. value++;
  236. } while (--size);
  237. }
  238. #define DUMMY_PID_VALUE 3000.0f
  239. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  240. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  241. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  242. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  243. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  244. /**
  245. * M500 - Store Configuration
  246. */
  247. bool MarlinSettings::save() {
  248. float dummy = 0.0f;
  249. char ver[4] = "000";
  250. EEPROM_START();
  251. eeprom_write_error = false;
  252. EEPROM_WRITE(ver); // invalidate data first
  253. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  254. eeprom_checksum = 0; // clear before first "real data"
  255. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  256. EEPROM_WRITE(esteppers);
  257. EEPROM_WRITE(planner.axis_steps_per_mm);
  258. EEPROM_WRITE(planner.max_feedrate_mm_s);
  259. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  260. EEPROM_WRITE(planner.acceleration);
  261. EEPROM_WRITE(planner.retract_acceleration);
  262. EEPROM_WRITE(planner.travel_acceleration);
  263. EEPROM_WRITE(planner.min_feedrate_mm_s);
  264. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  265. EEPROM_WRITE(planner.min_segment_time);
  266. EEPROM_WRITE(planner.max_jerk);
  267. #if ENABLED(NO_WORKSPACE_OFFSETS)
  268. float home_offset[XYZ] = { 0 };
  269. #endif
  270. EEPROM_WRITE(home_offset);
  271. #if HOTENDS > 1
  272. // Skip hotend 0 which must be 0
  273. for (uint8_t e = 1; e < HOTENDS; e++)
  274. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  275. #endif
  276. //
  277. // General Leveling
  278. //
  279. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  280. EEPROM_WRITE(planner.z_fade_height);
  281. #else
  282. dummy = 10.0;
  283. EEPROM_WRITE(dummy);
  284. #endif
  285. //
  286. // Mesh Bed Leveling
  287. //
  288. #if ENABLED(MESH_BED_LEVELING)
  289. // Compile time test that sizeof(mbl.z_values) is as expected
  290. typedef char c_assert[(sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  291. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  292. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  293. EEPROM_WRITE(leveling_is_on);
  294. EEPROM_WRITE(mbl.z_offset);
  295. EEPROM_WRITE(mesh_num_x);
  296. EEPROM_WRITE(mesh_num_y);
  297. EEPROM_WRITE(mbl.z_values);
  298. #else
  299. // For disabled MBL write a default mesh
  300. const bool leveling_is_on = false;
  301. dummy = 0.0f;
  302. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  303. EEPROM_WRITE(leveling_is_on);
  304. EEPROM_WRITE(dummy); // z_offset
  305. EEPROM_WRITE(mesh_num_x);
  306. EEPROM_WRITE(mesh_num_y);
  307. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  308. #endif // MESH_BED_LEVELING
  309. #if !HAS_BED_PROBE
  310. float zprobe_zoffset = 0;
  311. #endif
  312. EEPROM_WRITE(zprobe_zoffset);
  313. //
  314. // Planar Bed Leveling matrix
  315. //
  316. #if ABL_PLANAR
  317. EEPROM_WRITE(planner.bed_level_matrix);
  318. #else
  319. dummy = 0.0;
  320. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  321. #endif
  322. //
  323. // Bilinear Auto Bed Leveling
  324. //
  325. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  326. // Compile time test that sizeof(bed_level_grid) is as expected
  327. typedef char c_assert[(sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  328. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  329. EEPROM_WRITE(grid_max_x); // 1 byte
  330. EEPROM_WRITE(grid_max_y); // 1 byte
  331. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  332. EEPROM_WRITE(bilinear_start); // 2 ints
  333. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  334. #else
  335. // For disabled Bilinear Grid write an empty 3x3 grid
  336. const uint8_t grid_max_x = 3, grid_max_y = 3;
  337. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  338. dummy = 0.0f;
  339. EEPROM_WRITE(grid_max_x);
  340. EEPROM_WRITE(grid_max_y);
  341. EEPROM_WRITE(bilinear_grid_spacing);
  342. EEPROM_WRITE(bilinear_start);
  343. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  344. #endif // AUTO_BED_LEVELING_BILINEAR
  345. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  346. #if ENABLED(DELTA)
  347. EEPROM_WRITE(endstop_adj); // 3 floats
  348. EEPROM_WRITE(delta_radius); // 1 float
  349. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  350. EEPROM_WRITE(delta_segments_per_second); // 1 float
  351. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  352. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  353. #elif ENABLED(Z_DUAL_ENDSTOPS)
  354. EEPROM_WRITE(z_endstop_adj); // 1 float
  355. dummy = 0.0f;
  356. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  357. #else
  358. dummy = 0.0f;
  359. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  360. #endif
  361. #if DISABLED(ULTIPANEL)
  362. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  363. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  364. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  365. #endif // !ULTIPANEL
  366. EEPROM_WRITE(lcd_preheat_hotend_temp);
  367. EEPROM_WRITE(lcd_preheat_bed_temp);
  368. EEPROM_WRITE(lcd_preheat_fan_speed);
  369. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  370. #if ENABLED(PIDTEMP)
  371. if (e < HOTENDS) {
  372. EEPROM_WRITE(PID_PARAM(Kp, e));
  373. EEPROM_WRITE(PID_PARAM(Ki, e));
  374. EEPROM_WRITE(PID_PARAM(Kd, e));
  375. #if ENABLED(PID_EXTRUSION_SCALING)
  376. EEPROM_WRITE(PID_PARAM(Kc, e));
  377. #else
  378. dummy = 1.0f; // 1.0 = default kc
  379. EEPROM_WRITE(dummy);
  380. #endif
  381. }
  382. else
  383. #endif // !PIDTEMP
  384. {
  385. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  386. EEPROM_WRITE(dummy); // Kp
  387. dummy = 0.0f;
  388. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  389. }
  390. } // Hotends Loop
  391. #if DISABLED(PID_EXTRUSION_SCALING)
  392. int lpq_len = 20;
  393. #endif
  394. EEPROM_WRITE(lpq_len);
  395. #if DISABLED(PIDTEMPBED)
  396. dummy = DUMMY_PID_VALUE;
  397. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  398. #else
  399. EEPROM_WRITE(thermalManager.bedKp);
  400. EEPROM_WRITE(thermalManager.bedKi);
  401. EEPROM_WRITE(thermalManager.bedKd);
  402. #endif
  403. #if !HAS_LCD_CONTRAST
  404. const int lcd_contrast = 32;
  405. #endif
  406. EEPROM_WRITE(lcd_contrast);
  407. #if ENABLED(FWRETRACT)
  408. EEPROM_WRITE(autoretract_enabled);
  409. EEPROM_WRITE(retract_length);
  410. #if EXTRUDERS > 1
  411. EEPROM_WRITE(retract_length_swap);
  412. #else
  413. dummy = 0.0f;
  414. EEPROM_WRITE(dummy);
  415. #endif
  416. EEPROM_WRITE(retract_feedrate_mm_s);
  417. EEPROM_WRITE(retract_zlift);
  418. EEPROM_WRITE(retract_recover_length);
  419. #if EXTRUDERS > 1
  420. EEPROM_WRITE(retract_recover_length_swap);
  421. #else
  422. dummy = 0.0f;
  423. EEPROM_WRITE(dummy);
  424. #endif
  425. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  426. #endif // FWRETRACT
  427. EEPROM_WRITE(volumetric_enabled);
  428. // Save filament sizes
  429. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  430. if (q < COUNT(filament_size)) dummy = filament_size[q];
  431. EEPROM_WRITE(dummy);
  432. }
  433. // Save TCM2130 Configuration, and placeholder values
  434. uint16_t val;
  435. #if ENABLED(HAVE_TMC2130)
  436. #if ENABLED(X_IS_TMC2130)
  437. val = stepperX.getCurrent();
  438. #else
  439. val = 0;
  440. #endif
  441. EEPROM_WRITE(val);
  442. #if ENABLED(Y_IS_TMC2130)
  443. val = stepperY.getCurrent();
  444. #else
  445. val = 0;
  446. #endif
  447. EEPROM_WRITE(val);
  448. #if ENABLED(Z_IS_TMC2130)
  449. val = stepperZ.getCurrent();
  450. #else
  451. val = 0;
  452. #endif
  453. EEPROM_WRITE(val);
  454. #if ENABLED(X2_IS_TMC2130)
  455. val = stepperX2.getCurrent();
  456. #else
  457. val = 0;
  458. #endif
  459. EEPROM_WRITE(val);
  460. #if ENABLED(Y2_IS_TMC2130)
  461. val = stepperY2.getCurrent();
  462. #else
  463. val = 0;
  464. #endif
  465. EEPROM_WRITE(val);
  466. #if ENABLED(Z2_IS_TMC2130)
  467. val = stepperZ2.getCurrent();
  468. #else
  469. val = 0;
  470. #endif
  471. EEPROM_WRITE(val);
  472. #if ENABLED(E0_IS_TMC2130)
  473. val = stepperE0.getCurrent();
  474. #else
  475. val = 0;
  476. #endif
  477. EEPROM_WRITE(val);
  478. #if ENABLED(E1_IS_TMC2130)
  479. val = stepperE1.getCurrent();
  480. #else
  481. val = 0;
  482. #endif
  483. EEPROM_WRITE(val);
  484. #if ENABLED(E2_IS_TMC2130)
  485. val = stepperE2.getCurrent();
  486. #else
  487. val = 0;
  488. #endif
  489. EEPROM_WRITE(val);
  490. #if ENABLED(E3_IS_TMC2130)
  491. val = stepperE3.getCurrent();
  492. #else
  493. val = 0;
  494. #endif
  495. EEPROM_WRITE(val);
  496. #else
  497. val = 0;
  498. for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
  499. #endif
  500. if (!eeprom_write_error) {
  501. const uint16_t final_checksum = eeprom_checksum,
  502. eeprom_size = eeprom_index;
  503. // Write the EEPROM header
  504. eeprom_index = EEPROM_OFFSET;
  505. EEPROM_WRITE(version);
  506. EEPROM_WRITE(final_checksum);
  507. // Report storage size
  508. SERIAL_ECHO_START;
  509. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  510. SERIAL_ECHOLNPGM(" bytes)");
  511. }
  512. #if ENABLED(AUTO_BED_LEVELING_UBL)
  513. ubl.store_state();
  514. if (ubl.state.eeprom_storage_slot >= 0)
  515. ubl.store_mesh(ubl.state.eeprom_storage_slot);
  516. #endif
  517. return !eeprom_write_error;
  518. }
  519. /**
  520. * M501 - Retrieve Configuration
  521. */
  522. bool MarlinSettings::load() {
  523. EEPROM_START();
  524. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  525. char stored_ver[4];
  526. EEPROM_READ(stored_ver);
  527. uint16_t stored_checksum;
  528. EEPROM_READ(stored_checksum);
  529. // Version has to match or defaults are used
  530. if (strncmp(version, stored_ver, 3) != 0) {
  531. if (stored_ver[0] != 'V') {
  532. stored_ver[0] = '?';
  533. stored_ver[1] = '\0';
  534. }
  535. SERIAL_ECHO_START;
  536. SERIAL_ECHOPGM("EEPROM version mismatch ");
  537. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  538. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  539. reset();
  540. }
  541. else {
  542. float dummy = 0;
  543. eeprom_checksum = 0; // clear before reading first "real data"
  544. // Number of esteppers may change
  545. uint8_t esteppers;
  546. EEPROM_READ(esteppers);
  547. // Get only the number of E stepper parameters previously stored
  548. // Any steppers added later are set to their defaults
  549. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  550. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  551. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  552. uint32_t tmp3[XYZ + esteppers];
  553. EEPROM_READ(tmp1);
  554. EEPROM_READ(tmp2);
  555. EEPROM_READ(tmp3);
  556. LOOP_XYZE_N(i) {
  557. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  558. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  559. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  560. }
  561. EEPROM_READ(planner.acceleration);
  562. EEPROM_READ(planner.retract_acceleration);
  563. EEPROM_READ(planner.travel_acceleration);
  564. EEPROM_READ(planner.min_feedrate_mm_s);
  565. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  566. EEPROM_READ(planner.min_segment_time);
  567. EEPROM_READ(planner.max_jerk);
  568. #if ENABLED(NO_WORKSPACE_OFFSETS)
  569. float home_offset[XYZ];
  570. #endif
  571. EEPROM_READ(home_offset);
  572. #if HOTENDS > 1
  573. // Skip hotend 0 which must be 0
  574. for (uint8_t e = 1; e < HOTENDS; e++)
  575. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  576. #endif
  577. //
  578. // General Leveling
  579. //
  580. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  581. EEPROM_READ(planner.z_fade_height);
  582. #else
  583. EEPROM_READ(dummy);
  584. #endif
  585. //
  586. // Mesh (Manual) Bed Leveling
  587. //
  588. bool leveling_is_on;
  589. uint8_t mesh_num_x, mesh_num_y;
  590. EEPROM_READ(leveling_is_on);
  591. EEPROM_READ(dummy);
  592. EEPROM_READ(mesh_num_x);
  593. EEPROM_READ(mesh_num_y);
  594. #if ENABLED(MESH_BED_LEVELING)
  595. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  596. mbl.z_offset = dummy;
  597. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  598. // EEPROM data fits the current mesh
  599. EEPROM_READ(mbl.z_values);
  600. }
  601. else {
  602. // EEPROM data is stale
  603. mbl.reset();
  604. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  605. }
  606. #else
  607. // MBL is disabled - skip the stored data
  608. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  609. #endif // MESH_BED_LEVELING
  610. #if !HAS_BED_PROBE
  611. float zprobe_zoffset = 0;
  612. #endif
  613. EEPROM_READ(zprobe_zoffset);
  614. //
  615. // Planar Bed Leveling matrix
  616. //
  617. #if ABL_PLANAR
  618. EEPROM_READ(planner.bed_level_matrix);
  619. #else
  620. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  621. #endif
  622. //
  623. // Bilinear Auto Bed Leveling
  624. //
  625. uint8_t grid_max_x, grid_max_y;
  626. EEPROM_READ(grid_max_x); // 1 byte
  627. EEPROM_READ(grid_max_y); // 1 byte
  628. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  629. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  630. set_bed_leveling_enabled(false);
  631. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  632. EEPROM_READ(bilinear_start); // 2 ints
  633. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  634. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  635. bed_level_virt_interpolate();
  636. #endif
  637. //set_bed_leveling_enabled(leveling_is_on);
  638. }
  639. else // EEPROM data is stale
  640. #endif // AUTO_BED_LEVELING_BILINEAR
  641. {
  642. // Skip past disabled (or stale) Bilinear Grid data
  643. int bgs[2], bs[2];
  644. EEPROM_READ(bgs);
  645. EEPROM_READ(bs);
  646. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  647. }
  648. #if ENABLED(DELTA)
  649. EEPROM_READ(endstop_adj); // 3 floats
  650. EEPROM_READ(delta_radius); // 1 float
  651. EEPROM_READ(delta_diagonal_rod); // 1 float
  652. EEPROM_READ(delta_segments_per_second); // 1 float
  653. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  654. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  655. #elif ENABLED(Z_DUAL_ENDSTOPS)
  656. EEPROM_READ(z_endstop_adj);
  657. dummy = 0.0f;
  658. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  659. #else
  660. dummy = 0.0f;
  661. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  662. #endif
  663. #if DISABLED(ULTIPANEL)
  664. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  665. #endif
  666. EEPROM_READ(lcd_preheat_hotend_temp);
  667. EEPROM_READ(lcd_preheat_bed_temp);
  668. EEPROM_READ(lcd_preheat_fan_speed);
  669. //EEPROM_ASSERT(
  670. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  671. // "lcd_preheat_fan_speed out of range"
  672. //);
  673. #if ENABLED(PIDTEMP)
  674. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  675. EEPROM_READ(dummy); // Kp
  676. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  677. // do not need to scale PID values as the values in EEPROM are already scaled
  678. PID_PARAM(Kp, e) = dummy;
  679. EEPROM_READ(PID_PARAM(Ki, e));
  680. EEPROM_READ(PID_PARAM(Kd, e));
  681. #if ENABLED(PID_EXTRUSION_SCALING)
  682. EEPROM_READ(PID_PARAM(Kc, e));
  683. #else
  684. EEPROM_READ(dummy);
  685. #endif
  686. }
  687. else {
  688. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  689. }
  690. }
  691. #else // !PIDTEMP
  692. // 4 x 4 = 16 slots for PID parameters
  693. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  694. #endif // !PIDTEMP
  695. #if DISABLED(PID_EXTRUSION_SCALING)
  696. int lpq_len;
  697. #endif
  698. EEPROM_READ(lpq_len);
  699. #if ENABLED(PIDTEMPBED)
  700. EEPROM_READ(dummy); // bedKp
  701. if (dummy != DUMMY_PID_VALUE) {
  702. thermalManager.bedKp = dummy;
  703. EEPROM_READ(thermalManager.bedKi);
  704. EEPROM_READ(thermalManager.bedKd);
  705. }
  706. #else
  707. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  708. #endif
  709. #if !HAS_LCD_CONTRAST
  710. int lcd_contrast;
  711. #endif
  712. EEPROM_READ(lcd_contrast);
  713. #if ENABLED(FWRETRACT)
  714. EEPROM_READ(autoretract_enabled);
  715. EEPROM_READ(retract_length);
  716. #if EXTRUDERS > 1
  717. EEPROM_READ(retract_length_swap);
  718. #else
  719. EEPROM_READ(dummy);
  720. #endif
  721. EEPROM_READ(retract_feedrate_mm_s);
  722. EEPROM_READ(retract_zlift);
  723. EEPROM_READ(retract_recover_length);
  724. #if EXTRUDERS > 1
  725. EEPROM_READ(retract_recover_length_swap);
  726. #else
  727. EEPROM_READ(dummy);
  728. #endif
  729. EEPROM_READ(retract_recover_feedrate_mm_s);
  730. #endif // FWRETRACT
  731. EEPROM_READ(volumetric_enabled);
  732. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  733. EEPROM_READ(dummy);
  734. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  735. }
  736. uint16_t val;
  737. #if ENABLED(HAVE_TMC2130)
  738. EEPROM_READ(val);
  739. #if ENABLED(X_IS_TMC2130)
  740. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  741. #endif
  742. EEPROM_READ(val);
  743. #if ENABLED(Y_IS_TMC2130)
  744. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  745. #endif
  746. EEPROM_READ(val);
  747. #if ENABLED(Z_IS_TMC2130)
  748. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  749. #endif
  750. EEPROM_READ(val);
  751. #if ENABLED(X2_IS_TMC2130)
  752. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  753. #endif
  754. EEPROM_READ(val);
  755. #if ENABLED(Y2_IS_TMC2130)
  756. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  757. #endif
  758. EEPROM_READ(val);
  759. #if ENABLED(Z2_IS_TMC2130)
  760. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  761. #endif
  762. EEPROM_READ(val);
  763. #if ENABLED(E0_IS_TMC2130)
  764. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  765. #endif
  766. EEPROM_READ(val);
  767. #if ENABLED(E1_IS_TMC2130)
  768. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  769. #endif
  770. EEPROM_READ(val);
  771. #if ENABLED(E2_IS_TMC2130)
  772. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  773. #endif
  774. EEPROM_READ(val);
  775. #if ENABLED(E3_IS_TMC2130)
  776. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  777. #endif
  778. EEPROM_READ(val);
  779. #if ENABLED(E4_IS_TMC2130)
  780. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  781. #endif
  782. #else
  783. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  784. #endif
  785. if (eeprom_checksum == stored_checksum) {
  786. if (eeprom_read_error)
  787. reset();
  788. else {
  789. postprocess();
  790. SERIAL_ECHO_START;
  791. SERIAL_ECHO(version);
  792. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  793. SERIAL_ECHOLNPGM(" bytes)");
  794. }
  795. }
  796. else {
  797. SERIAL_ERROR_START;
  798. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  799. reset();
  800. }
  801. #if ENABLED(AUTO_BED_LEVELING_UBL)
  802. ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  803. // can float up or down a little bit without
  804. // disrupting the Unified Bed Leveling data
  805. ubl.load_state();
  806. SERIAL_ECHOPGM(" UBL ");
  807. if (!ubl.state.active) SERIAL_ECHO("not ");
  808. SERIAL_ECHOLNPGM("active!");
  809. if (!ubl.sanity_check()) {
  810. int tmp_mesh; // We want to preserve whether the UBL System is Active
  811. bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
  812. tmp_mesh = ubl.state.eeprom_storage_slot;
  813. tmp_active = ubl.state.active;
  814. SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
  815. ubl.state = ubl.pre_initialized; // Initialize with the pre_initialized data structure
  816. ubl.state.eeprom_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
  817. ubl.state.active = tmp_active;
  818. }
  819. else {
  820. SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
  821. ubl.state = ubl.pre_initialized;
  822. ubl.reset();
  823. ubl.store_state();
  824. }
  825. if (ubl.state.eeprom_storage_slot >= 0) {
  826. ubl.load_mesh(ubl.state.eeprom_storage_slot);
  827. SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  828. SERIAL_ECHOLNPGM(" loaded from storage.");
  829. }
  830. else {
  831. ubl.reset();
  832. SERIAL_ECHOLNPGM("UBL System reset()");
  833. }
  834. #endif
  835. }
  836. #if ENABLED(EEPROM_CHITCHAT)
  837. report();
  838. #endif
  839. return !eeprom_read_error;
  840. }
  841. #else // !EEPROM_SETTINGS
  842. bool MarlinSettings::save() {
  843. SERIAL_ERROR_START;
  844. SERIAL_ERRORLNPGM("EEPROM disabled");
  845. return false;
  846. }
  847. #endif // !EEPROM_SETTINGS
  848. /**
  849. * M502 - Reset Configuration
  850. */
  851. void MarlinSettings::reset() {
  852. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  853. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  854. LOOP_XYZE_N(i) {
  855. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  856. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  857. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  858. }
  859. planner.acceleration = DEFAULT_ACCELERATION;
  860. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  861. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  862. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  863. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  864. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  865. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  866. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  867. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  868. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  869. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  870. planner.z_fade_height = 0.0;
  871. #endif
  872. #if DISABLED(NO_WORKSPACE_OFFSETS)
  873. ZERO(home_offset);
  874. #endif
  875. #if HOTENDS > 1
  876. constexpr float tmp4[XYZ][HOTENDS] = {
  877. HOTEND_OFFSET_X,
  878. HOTEND_OFFSET_Y
  879. #ifdef HOTEND_OFFSET_Z
  880. , HOTEND_OFFSET_Z
  881. #else
  882. , { 0 }
  883. #endif
  884. };
  885. static_assert(
  886. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  887. "Offsets for the first hotend must be 0.0."
  888. );
  889. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  890. #endif
  891. // Applies to all MBL and ABL
  892. #if PLANNER_LEVELING
  893. reset_bed_level();
  894. #endif
  895. #if HAS_BED_PROBE
  896. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  897. #endif
  898. #if ENABLED(DELTA)
  899. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  900. drt[ABC] = { DELTA_DIAGONAL_ROD_TRIM_TOWER_1, DELTA_DIAGONAL_ROD_TRIM_TOWER_2, DELTA_DIAGONAL_ROD_TRIM_TOWER_3 },
  901. dta[ABC] = { DELTA_TOWER_ANGLE_TRIM_1, DELTA_TOWER_ANGLE_TRIM_2, DELTA_TOWER_ANGLE_TRIM_3 };
  902. COPY(endstop_adj, adj);
  903. delta_radius = DELTA_RADIUS;
  904. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  905. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  906. COPY(delta_diagonal_rod_trim, drt);
  907. COPY(delta_tower_angle_trim, dta);
  908. #elif ENABLED(Z_DUAL_ENDSTOPS)
  909. float z_endstop_adj =
  910. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  911. Z_DUAL_ENDSTOPS_ADJUSTMENT
  912. #else
  913. 0
  914. #endif
  915. ;
  916. #endif
  917. #if ENABLED(ULTIPANEL)
  918. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  919. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  920. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  921. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  922. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  923. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  924. #endif
  925. #if HAS_LCD_CONTRAST
  926. lcd_contrast = DEFAULT_LCD_CONTRAST;
  927. #endif
  928. #if ENABLED(PIDTEMP)
  929. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  930. HOTEND_LOOP()
  931. #endif
  932. {
  933. PID_PARAM(Kp, e) = DEFAULT_Kp;
  934. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  935. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  936. #if ENABLED(PID_EXTRUSION_SCALING)
  937. PID_PARAM(Kc, e) = DEFAULT_Kc;
  938. #endif
  939. }
  940. #if ENABLED(PID_EXTRUSION_SCALING)
  941. lpq_len = 20; // default last-position-queue size
  942. #endif
  943. #endif // PIDTEMP
  944. #if ENABLED(PIDTEMPBED)
  945. thermalManager.bedKp = DEFAULT_bedKp;
  946. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  947. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  948. #endif
  949. #if ENABLED(FWRETRACT)
  950. autoretract_enabled = false;
  951. retract_length = RETRACT_LENGTH;
  952. #if EXTRUDERS > 1
  953. retract_length_swap = RETRACT_LENGTH_SWAP;
  954. #endif
  955. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  956. retract_zlift = RETRACT_ZLIFT;
  957. retract_recover_length = RETRACT_RECOVER_LENGTH;
  958. #if EXTRUDERS > 1
  959. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  960. #endif
  961. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  962. #endif
  963. volumetric_enabled =
  964. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  965. true
  966. #else
  967. false
  968. #endif
  969. ;
  970. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  971. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  972. endstops.enable_globally(
  973. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  974. (true)
  975. #else
  976. (false)
  977. #endif
  978. );
  979. #if ENABLED(HAVE_TMC2130)
  980. #if ENABLED(X_IS_TMC2130)
  981. stepperX.setCurrent(X_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  982. #endif
  983. #if ENABLED(Y_IS_TMC2130)
  984. stepperY.setCurrent(Y_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  985. #endif
  986. #if ENABLED(Z_IS_TMC2130)
  987. stepperZ.setCurrent(Z_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  988. #endif
  989. #if ENABLED(X2_IS_TMC2130)
  990. stepperX2.setCurrent(X2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  991. #endif
  992. #if ENABLED(Y2_IS_TMC2130)
  993. stepperY2.setCurrent(Y2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  994. #endif
  995. #if ENABLED(Z2_IS_TMC2130)
  996. stepperZ2.setCurrent(Z2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  997. #endif
  998. #if ENABLED(E0_IS_TMC2130)
  999. stepperE0.setCurrent(E0_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1000. #endif
  1001. #if ENABLED(E1_IS_TMC2130)
  1002. stepperE1.setCurrent(E1_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1003. #endif
  1004. #if ENABLED(E2_IS_TMC2130)
  1005. stepperE2.setCurrent(E2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1006. #endif
  1007. #if ENABLED(E3_IS_TMC2130)
  1008. stepperE3.setCurrent(E3_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1009. #endif
  1010. #endif
  1011. postprocess();
  1012. SERIAL_ECHO_START;
  1013. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1014. }
  1015. #if DISABLED(DISABLE_M503)
  1016. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  1017. /**
  1018. * M503 - Report current settings in RAM
  1019. *
  1020. * Unless specifically disabled, M503 is available even without EEPROM
  1021. */
  1022. void MarlinSettings::report(bool forReplay) {
  1023. CONFIG_ECHO_START;
  1024. if (!forReplay) {
  1025. SERIAL_ECHOLNPGM("Steps per unit:");
  1026. CONFIG_ECHO_START;
  1027. }
  1028. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  1029. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  1030. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  1031. #if DISABLED(DISTINCT_E_FACTORS)
  1032. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  1033. #endif
  1034. SERIAL_EOL;
  1035. #if ENABLED(DISTINCT_E_FACTORS)
  1036. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1037. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1038. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  1039. }
  1040. #endif
  1041. CONFIG_ECHO_START;
  1042. if (!forReplay) {
  1043. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  1044. CONFIG_ECHO_START;
  1045. }
  1046. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  1047. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  1048. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  1049. #if DISABLED(DISTINCT_E_FACTORS)
  1050. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  1051. #endif
  1052. SERIAL_EOL;
  1053. #if ENABLED(DISTINCT_E_FACTORS)
  1054. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1055. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1056. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  1057. }
  1058. #endif
  1059. CONFIG_ECHO_START;
  1060. if (!forReplay) {
  1061. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  1062. CONFIG_ECHO_START;
  1063. }
  1064. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  1065. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  1066. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  1067. #if DISABLED(DISTINCT_E_FACTORS)
  1068. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  1069. #endif
  1070. SERIAL_EOL;
  1071. #if ENABLED(DISTINCT_E_FACTORS)
  1072. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1073. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1074. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  1075. }
  1076. #endif
  1077. CONFIG_ECHO_START;
  1078. if (!forReplay) {
  1079. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  1080. CONFIG_ECHO_START;
  1081. }
  1082. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  1083. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  1084. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  1085. SERIAL_EOL;
  1086. CONFIG_ECHO_START;
  1087. if (!forReplay) {
  1088. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  1089. CONFIG_ECHO_START;
  1090. }
  1091. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  1092. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  1093. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1094. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  1095. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  1096. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  1097. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  1098. SERIAL_EOL;
  1099. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1100. CONFIG_ECHO_START;
  1101. if (!forReplay) {
  1102. SERIAL_ECHOLNPGM("Home offset (mm)");
  1103. CONFIG_ECHO_START;
  1104. }
  1105. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  1106. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  1107. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  1108. SERIAL_EOL;
  1109. #endif
  1110. #if HOTENDS > 1
  1111. CONFIG_ECHO_START;
  1112. if (!forReplay) {
  1113. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  1114. CONFIG_ECHO_START;
  1115. }
  1116. for (uint8_t e = 1; e < HOTENDS; e++) {
  1117. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1118. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  1119. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  1120. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  1121. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  1122. #endif
  1123. SERIAL_EOL;
  1124. }
  1125. #endif
  1126. #if ENABLED(MESH_BED_LEVELING)
  1127. if (!forReplay) {
  1128. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1129. CONFIG_ECHO_START;
  1130. }
  1131. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  1132. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1133. SERIAL_ECHOLNPAIR(" Z", planner.z_fade_height);
  1134. #endif
  1135. SERIAL_EOL;
  1136. for (uint8_t py = 1; py <= GRID_MAX_POINTS_Y; py++) {
  1137. for (uint8_t px = 1; px <= GRID_MAX_POINTS_X; px++) {
  1138. CONFIG_ECHO_START;
  1139. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  1140. SERIAL_ECHOPAIR(" Y", (int)py);
  1141. SERIAL_ECHOPGM(" Z");
  1142. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  1143. SERIAL_EOL;
  1144. }
  1145. }
  1146. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1147. if (!forReplay) {
  1148. SERIAL_ECHOLNPGM("Unified Bed Leveling:");
  1149. CONFIG_ECHO_START;
  1150. }
  1151. SERIAL_ECHOPAIR(" M420 S", ubl.state.active ? 1 : 0);
  1152. //#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1153. // SERIAL_ECHOLNPAIR(" Z", ubl.state.g29_correction_fade_height);
  1154. //#endif
  1155. SERIAL_EOL;
  1156. if (!forReplay) {
  1157. SERIAL_ECHOPGM("\nUBL is ");
  1158. ubl.state.active ? SERIAL_CHAR('A') : SERIAL_ECHOPGM("Ina");
  1159. SERIAL_ECHOLNPAIR("ctive\n\nActive Mesh Slot: ", ubl.state.eeprom_storage_slot);
  1160. SERIAL_ECHOPGM("z_offset: ");
  1161. SERIAL_ECHO_F(ubl.state.z_offset, 6);
  1162. SERIAL_EOL;
  1163. SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values)));
  1164. SERIAL_ECHOLNPGM(" meshes.\n");
  1165. SERIAL_ECHOLNPGM("GRID_MAX_POINTS_X " STRINGIFY(GRID_MAX_POINTS_X));
  1166. SERIAL_ECHOLNPGM("GRID_MAX_POINTS_Y " STRINGIFY(GRID_MAX_POINTS_Y));
  1167. SERIAL_ECHOLNPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
  1168. SERIAL_ECHOLNPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
  1169. SERIAL_ECHOLNPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
  1170. SERIAL_ECHOLNPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
  1171. SERIAL_ECHOLNPGM("MESH_X_DIST " STRINGIFY(MESH_X_DIST));
  1172. SERIAL_ECHOLNPGM("MESH_Y_DIST " STRINGIFY(MESH_Y_DIST));
  1173. SERIAL_EOL;
  1174. }
  1175. #elif HAS_ABL
  1176. if (!forReplay) {
  1177. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1178. CONFIG_ECHO_START;
  1179. }
  1180. SERIAL_ECHOPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  1181. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1182. SERIAL_ECHOLNPAIR(" Z", planner.z_fade_height);
  1183. #endif
  1184. SERIAL_EOL;
  1185. #endif
  1186. #if ENABLED(DELTA)
  1187. CONFIG_ECHO_START;
  1188. if (!forReplay) {
  1189. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  1190. CONFIG_ECHO_START;
  1191. }
  1192. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  1193. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  1194. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  1195. SERIAL_EOL;
  1196. CONFIG_ECHO_START;
  1197. if (!forReplay) {
  1198. SERIAL_ECHOLNPGM("Delta settings: L=diagonal rod, R=radius, S=segments-per-second, ABC=diagonal rod trim, IJK=tower angle trim");
  1199. CONFIG_ECHO_START;
  1200. }
  1201. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  1202. SERIAL_ECHOPAIR(" R", delta_radius);
  1203. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1204. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim[A_AXIS]);
  1205. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim[B_AXIS]);
  1206. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim[C_AXIS]);
  1207. SERIAL_ECHOPAIR(" I", delta_tower_angle_trim[A_AXIS]);
  1208. SERIAL_ECHOPAIR(" J", delta_tower_angle_trim[B_AXIS]);
  1209. SERIAL_ECHOPAIR(" K", delta_tower_angle_trim[C_AXIS]);
  1210. SERIAL_EOL;
  1211. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1212. CONFIG_ECHO_START;
  1213. if (!forReplay) {
  1214. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  1215. CONFIG_ECHO_START;
  1216. }
  1217. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  1218. SERIAL_EOL;
  1219. #endif // DELTA
  1220. #if ENABLED(ULTIPANEL)
  1221. CONFIG_ECHO_START;
  1222. if (!forReplay) {
  1223. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1224. CONFIG_ECHO_START;
  1225. }
  1226. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1227. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1228. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  1229. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  1230. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  1231. SERIAL_EOL;
  1232. }
  1233. #endif // ULTIPANEL
  1234. #if HAS_PID_HEATING
  1235. CONFIG_ECHO_START;
  1236. if (!forReplay) {
  1237. SERIAL_ECHOLNPGM("PID settings:");
  1238. }
  1239. #if ENABLED(PIDTEMP)
  1240. #if HOTENDS > 1
  1241. if (forReplay) {
  1242. HOTEND_LOOP() {
  1243. CONFIG_ECHO_START;
  1244. SERIAL_ECHOPAIR(" M301 E", e);
  1245. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1246. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1247. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1248. #if ENABLED(PID_EXTRUSION_SCALING)
  1249. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1250. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1251. #endif
  1252. SERIAL_EOL;
  1253. }
  1254. }
  1255. else
  1256. #endif // HOTENDS > 1
  1257. // !forReplay || HOTENDS == 1
  1258. {
  1259. CONFIG_ECHO_START;
  1260. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1261. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1262. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1263. #if ENABLED(PID_EXTRUSION_SCALING)
  1264. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1265. SERIAL_ECHOPAIR(" L", lpq_len);
  1266. #endif
  1267. SERIAL_EOL;
  1268. }
  1269. #endif // PIDTEMP
  1270. #if ENABLED(PIDTEMPBED)
  1271. CONFIG_ECHO_START;
  1272. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1273. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1274. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1275. SERIAL_EOL;
  1276. #endif
  1277. #endif // PIDTEMP || PIDTEMPBED
  1278. #if HAS_LCD_CONTRAST
  1279. CONFIG_ECHO_START;
  1280. if (!forReplay) {
  1281. SERIAL_ECHOLNPGM("LCD Contrast:");
  1282. CONFIG_ECHO_START;
  1283. }
  1284. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  1285. SERIAL_EOL;
  1286. #endif
  1287. #if ENABLED(FWRETRACT)
  1288. CONFIG_ECHO_START;
  1289. if (!forReplay) {
  1290. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  1291. CONFIG_ECHO_START;
  1292. }
  1293. SERIAL_ECHOPAIR(" M207 S", retract_length);
  1294. #if EXTRUDERS > 1
  1295. SERIAL_ECHOPAIR(" W", retract_length_swap);
  1296. #endif
  1297. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  1298. SERIAL_ECHOPAIR(" Z", retract_zlift);
  1299. SERIAL_EOL;
  1300. CONFIG_ECHO_START;
  1301. if (!forReplay) {
  1302. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  1303. CONFIG_ECHO_START;
  1304. }
  1305. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  1306. #if EXTRUDERS > 1
  1307. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  1308. #endif
  1309. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  1310. SERIAL_EOL;
  1311. CONFIG_ECHO_START;
  1312. if (!forReplay) {
  1313. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1314. CONFIG_ECHO_START;
  1315. }
  1316. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1317. SERIAL_EOL;
  1318. #endif // FWRETRACT
  1319. /**
  1320. * Volumetric extrusion M200
  1321. */
  1322. if (!forReplay) {
  1323. CONFIG_ECHO_START;
  1324. SERIAL_ECHOPGM("Filament settings:");
  1325. if (volumetric_enabled)
  1326. SERIAL_EOL;
  1327. else
  1328. SERIAL_ECHOLNPGM(" Disabled");
  1329. }
  1330. CONFIG_ECHO_START;
  1331. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1332. SERIAL_EOL;
  1333. #if EXTRUDERS > 1
  1334. CONFIG_ECHO_START;
  1335. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1336. SERIAL_EOL;
  1337. #if EXTRUDERS > 2
  1338. CONFIG_ECHO_START;
  1339. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1340. SERIAL_EOL;
  1341. #if EXTRUDERS > 3
  1342. CONFIG_ECHO_START;
  1343. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1344. SERIAL_EOL;
  1345. #if EXTRUDERS > 4
  1346. CONFIG_ECHO_START;
  1347. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1348. SERIAL_EOL;
  1349. #endif // EXTRUDERS > 4
  1350. #endif // EXTRUDERS > 3
  1351. #endif // EXTRUDERS > 2
  1352. #endif // EXTRUDERS > 1
  1353. if (!volumetric_enabled) {
  1354. CONFIG_ECHO_START;
  1355. SERIAL_ECHOLNPGM(" M200 D0");
  1356. }
  1357. /**
  1358. * Auto Bed Leveling
  1359. */
  1360. #if HAS_BED_PROBE
  1361. CONFIG_ECHO_START;
  1362. if (!forReplay) {
  1363. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1364. CONFIG_ECHO_START;
  1365. }
  1366. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  1367. SERIAL_EOL;
  1368. #endif
  1369. /**
  1370. * TMC2130 stepper driver current
  1371. */
  1372. #if ENABLED(HAVE_TMC2130)
  1373. CONFIG_ECHO_START;
  1374. if (!forReplay) {
  1375. SERIAL_ECHOLNPGM("Stepper driver current:");
  1376. CONFIG_ECHO_START;
  1377. }
  1378. SERIAL_ECHO(" M906");
  1379. #if ENABLED(X_IS_TMC2130)
  1380. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1381. #endif
  1382. #if ENABLED(Y_IS_TMC2130)
  1383. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1384. #endif
  1385. #if ENABLED(Z_IS_TMC2130)
  1386. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1387. #endif
  1388. #if ENABLED(X2_IS_TMC2130)
  1389. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1390. #endif
  1391. #if ENABLED(Y2_IS_TMC2130)
  1392. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1393. #endif
  1394. #if ENABLED(Z2_IS_TMC2130)
  1395. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1396. #endif
  1397. #if ENABLED(E0_IS_TMC2130)
  1398. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1399. #endif
  1400. #if ENABLED(E1_IS_TMC2130)
  1401. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1402. #endif
  1403. #if ENABLED(E2_IS_TMC2130)
  1404. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1405. #endif
  1406. #if ENABLED(E3_IS_TMC2130)
  1407. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1408. #endif
  1409. SERIAL_EOL;
  1410. #endif
  1411. }
  1412. #endif // !DISABLE_M503