My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 257KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M851 - Set Z probe's Z offset (mm). Set to a negative value for probes that trigger below the nozzle.
  218. * M907 - Set digital trimpot motor current using axis codes.
  219. * M908 - Control digital trimpot directly.
  220. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  221. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  222. * M350 - Set microstepping mode.
  223. * M351 - Toggle MS1 MS2 pins directly.
  224. *
  225. * ************ SCARA Specific - This can change to suit future G-code regulations
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  232. * ************* SCARA End ***************
  233. *
  234. * ************ Custom codes - This can change to suit future G-code regulations
  235. * M100 - Watch Free Memory (For Debugging Only)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  329. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  330. int xy_probe_speed = XY_PROBE_SPEED;
  331. bool bed_leveling_in_progress = false;
  332. #define XY_PROBE_FEEDRATE xy_probe_speed
  333. #elif defined(XY_PROBE_SPEED)
  334. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  335. #else
  336. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  337. #endif
  338. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  339. float z_endstop_adj = 0;
  340. #endif
  341. // Extruder offsets
  342. #if HOTENDS > 1
  343. #ifndef HOTEND_OFFSET_X
  344. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  345. #endif
  346. #ifndef HOTEND_OFFSET_Y
  347. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  348. #endif
  349. float hotend_offset[][HOTENDS] = {
  350. HOTEND_OFFSET_X,
  351. HOTEND_OFFSET_Y
  352. #if ENABLED(DUAL_X_CARRIAGE)
  353. , { 0 } // Z offsets for each extruder
  354. #endif
  355. };
  356. #endif
  357. #if HAS_Z_SERVO_ENDSTOP
  358. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  359. #endif
  360. #if ENABLED(BARICUDA)
  361. int baricuda_valve_pressure = 0;
  362. int baricuda_e_to_p_pressure = 0;
  363. #endif
  364. #if ENABLED(FWRETRACT)
  365. bool autoretract_enabled = false;
  366. bool retracted[EXTRUDERS] = { false };
  367. bool retracted_swap[EXTRUDERS] = { false };
  368. float retract_length = RETRACT_LENGTH;
  369. float retract_length_swap = RETRACT_LENGTH_SWAP;
  370. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  371. float retract_zlift = RETRACT_ZLIFT;
  372. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  373. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  374. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  375. #endif // FWRETRACT
  376. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  377. bool powersupply =
  378. #if ENABLED(PS_DEFAULT_OFF)
  379. false
  380. #else
  381. true
  382. #endif
  383. ;
  384. #endif
  385. #if ENABLED(DELTA)
  386. #define TOWER_1 X_AXIS
  387. #define TOWER_2 Y_AXIS
  388. #define TOWER_3 Z_AXIS
  389. float delta[3] = { 0 };
  390. #define SIN_60 0.8660254037844386
  391. #define COS_60 0.5
  392. float endstop_adj[3] = { 0 };
  393. // these are the default values, can be overriden with M665
  394. float delta_radius = DELTA_RADIUS;
  395. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  396. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  397. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  398. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  399. float delta_tower3_x = 0; // back middle tower
  400. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  401. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  402. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  403. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  404. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  405. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  406. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  407. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  408. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  409. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  410. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  411. int delta_grid_spacing[2] = { 0, 0 };
  412. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  413. #endif
  414. #else
  415. static bool home_all_axis = true;
  416. #endif
  417. #if ENABLED(SCARA)
  418. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  419. static float delta[3] = { 0 };
  420. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  421. #endif
  422. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  423. //Variables for Filament Sensor input
  424. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  425. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  426. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  427. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  428. int filwidth_delay_index1 = 0; //index into ring buffer
  429. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  430. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  431. #endif
  432. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  433. static bool filament_ran_out = false;
  434. #endif
  435. static bool send_ok[BUFSIZE];
  436. #if HAS_SERVOS
  437. Servo servo[NUM_SERVOS];
  438. #define MOVE_SERVO(I, P) servo[I].move(P)
  439. #if HAS_Z_SERVO_ENDSTOP
  440. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  441. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  442. #endif
  443. #endif
  444. #ifdef CHDK
  445. millis_t chdkHigh = 0;
  446. boolean chdkActive = false;
  447. #endif
  448. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  449. int lpq_len = 20;
  450. #endif
  451. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  452. // States for managing Marlin and host communication
  453. // Marlin sends messages if blocked or busy
  454. enum MarlinBusyState {
  455. NOT_BUSY, // Not in a handler
  456. IN_HANDLER, // Processing a GCode
  457. IN_PROCESS, // Known to be blocking command input (as in G29)
  458. PAUSED_FOR_USER, // Blocking pending any input
  459. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  460. };
  461. static MarlinBusyState busy_state = NOT_BUSY;
  462. static millis_t next_busy_signal_ms = 0;
  463. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  464. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  465. #else
  466. #define host_keepalive() ;
  467. #define KEEPALIVE_STATE(n) ;
  468. #endif // HOST_KEEPALIVE_FEATURE
  469. /**
  470. * ***************************************************************************
  471. * ******************************** FUNCTIONS ********************************
  472. * ***************************************************************************
  473. */
  474. void stop();
  475. void get_available_commands();
  476. void process_next_command();
  477. void prepare_move_to_destination();
  478. #if ENABLED(ARC_SUPPORT)
  479. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  480. #endif
  481. #if ENABLED(BEZIER_CURVE_SUPPORT)
  482. void plan_cubic_move(const float offset[4]);
  483. #endif
  484. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  485. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  486. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  487. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  488. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  489. static void report_current_position();
  490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  491. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  492. SERIAL_ECHO(prefix);
  493. SERIAL_ECHOPAIR(": (", x);
  494. SERIAL_ECHOPAIR(", ", y);
  495. SERIAL_ECHOPAIR(", ", z);
  496. SERIAL_ECHOLNPGM(")");
  497. }
  498. void print_xyz(const char* prefix, const float xyz[]) {
  499. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  500. }
  501. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  502. void print_xyz(const char* prefix, const vector_3 &xyz) {
  503. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  504. }
  505. #endif
  506. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  507. #endif
  508. #if ENABLED(DELTA) || ENABLED(SCARA)
  509. inline void sync_plan_position_delta() {
  510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  511. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  512. #endif
  513. calculate_delta(current_position);
  514. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  515. }
  516. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  517. #else
  518. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  519. #endif
  520. #if ENABLED(SDSUPPORT)
  521. #include "SdFatUtil.h"
  522. int freeMemory() { return SdFatUtil::FreeRam(); }
  523. #else
  524. extern "C" {
  525. extern unsigned int __bss_end;
  526. extern unsigned int __heap_start;
  527. extern void* __brkval;
  528. int freeMemory() {
  529. int free_memory;
  530. if ((int)__brkval == 0)
  531. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  532. else
  533. free_memory = ((int)&free_memory) - ((int)__brkval);
  534. return free_memory;
  535. }
  536. }
  537. #endif //!SDSUPPORT
  538. #if ENABLED(DIGIPOT_I2C)
  539. extern void digipot_i2c_set_current(int channel, float current);
  540. extern void digipot_i2c_init();
  541. #endif
  542. /**
  543. * Inject the next "immediate" command, when possible.
  544. * Return true if any immediate commands remain to inject.
  545. */
  546. static bool drain_queued_commands_P() {
  547. if (queued_commands_P != NULL) {
  548. size_t i = 0;
  549. char c, cmd[30];
  550. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  551. cmd[sizeof(cmd) - 1] = '\0';
  552. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  553. cmd[i] = '\0';
  554. if (enqueue_and_echo_command(cmd)) { // success?
  555. if (c) // newline char?
  556. queued_commands_P += i + 1; // advance to the next command
  557. else
  558. queued_commands_P = NULL; // nul char? no more commands
  559. }
  560. }
  561. return (queued_commands_P != NULL); // return whether any more remain
  562. }
  563. /**
  564. * Record one or many commands to run from program memory.
  565. * Aborts the current queue, if any.
  566. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  567. */
  568. void enqueue_and_echo_commands_P(const char* pgcode) {
  569. queued_commands_P = pgcode;
  570. drain_queued_commands_P(); // first command executed asap (when possible)
  571. }
  572. void clear_command_queue() {
  573. cmd_queue_index_r = cmd_queue_index_w;
  574. commands_in_queue = 0;
  575. }
  576. /**
  577. * Once a new command is in the ring buffer, call this to commit it
  578. */
  579. inline void _commit_command(bool say_ok) {
  580. send_ok[cmd_queue_index_w] = say_ok;
  581. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  582. commands_in_queue++;
  583. }
  584. /**
  585. * Copy a command directly into the main command buffer, from RAM.
  586. * Returns true if successfully adds the command
  587. */
  588. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  589. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  590. strcpy(command_queue[cmd_queue_index_w], cmd);
  591. _commit_command(say_ok);
  592. return true;
  593. }
  594. void enqueue_and_echo_command_now(const char* cmd) {
  595. while (!enqueue_and_echo_command(cmd)) idle();
  596. }
  597. /**
  598. * Enqueue with Serial Echo
  599. */
  600. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  601. if (_enqueuecommand(cmd, say_ok)) {
  602. SERIAL_ECHO_START;
  603. SERIAL_ECHOPGM(MSG_Enqueueing);
  604. SERIAL_ECHO(cmd);
  605. SERIAL_ECHOLNPGM("\"");
  606. return true;
  607. }
  608. return false;
  609. }
  610. void setup_killpin() {
  611. #if HAS_KILL
  612. SET_INPUT(KILL_PIN);
  613. WRITE(KILL_PIN, HIGH);
  614. #endif
  615. }
  616. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  617. void setup_filrunoutpin() {
  618. pinMode(FIL_RUNOUT_PIN, INPUT);
  619. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  620. WRITE(FIL_RUNOUT_PIN, HIGH);
  621. #endif
  622. }
  623. #endif
  624. // Set home pin
  625. void setup_homepin(void) {
  626. #if HAS_HOME
  627. SET_INPUT(HOME_PIN);
  628. WRITE(HOME_PIN, HIGH);
  629. #endif
  630. }
  631. void setup_photpin() {
  632. #if HAS_PHOTOGRAPH
  633. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  634. #endif
  635. }
  636. void setup_powerhold() {
  637. #if HAS_SUICIDE
  638. OUT_WRITE(SUICIDE_PIN, HIGH);
  639. #endif
  640. #if HAS_POWER_SWITCH
  641. #if ENABLED(PS_DEFAULT_OFF)
  642. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  643. #else
  644. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  645. #endif
  646. #endif
  647. }
  648. void suicide() {
  649. #if HAS_SUICIDE
  650. OUT_WRITE(SUICIDE_PIN, LOW);
  651. #endif
  652. }
  653. void servo_init() {
  654. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  655. servo[0].attach(SERVO0_PIN);
  656. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  657. #endif
  658. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  659. servo[1].attach(SERVO1_PIN);
  660. servo[1].detach();
  661. #endif
  662. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  663. servo[2].attach(SERVO2_PIN);
  664. servo[2].detach();
  665. #endif
  666. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  667. servo[3].attach(SERVO3_PIN);
  668. servo[3].detach();
  669. #endif
  670. #if HAS_Z_SERVO_ENDSTOP
  671. /**
  672. * Set position of Z Servo Endstop
  673. *
  674. * The servo might be deployed and positioned too low to stow
  675. * when starting up the machine or rebooting the board.
  676. * There's no way to know where the nozzle is positioned until
  677. * homing has been done - no homing with z-probe without init!
  678. *
  679. */
  680. STOW_Z_SERVO();
  681. #endif
  682. #if HAS_BED_PROBE
  683. endstops.enable_z_probe(false);
  684. #endif
  685. }
  686. /**
  687. * Stepper Reset (RigidBoard, et.al.)
  688. */
  689. #if HAS_STEPPER_RESET
  690. void disableStepperDrivers() {
  691. pinMode(STEPPER_RESET_PIN, OUTPUT);
  692. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  693. }
  694. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  695. #endif
  696. /**
  697. * Marlin entry-point: Set up before the program loop
  698. * - Set up the kill pin, filament runout, power hold
  699. * - Start the serial port
  700. * - Print startup messages and diagnostics
  701. * - Get EEPROM or default settings
  702. * - Initialize managers for:
  703. * • temperature
  704. * • planner
  705. * • watchdog
  706. * • stepper
  707. * • photo pin
  708. * • servos
  709. * • LCD controller
  710. * • Digipot I2C
  711. * • Z probe sled
  712. * • status LEDs
  713. */
  714. void setup() {
  715. #ifdef DISABLE_JTAG
  716. // Disable JTAG on AT90USB chips to free up pins for IO
  717. MCUCR = 0x80;
  718. MCUCR = 0x80;
  719. #endif
  720. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  721. setup_filrunoutpin();
  722. #endif
  723. setup_killpin();
  724. setup_powerhold();
  725. #if HAS_STEPPER_RESET
  726. disableStepperDrivers();
  727. #endif
  728. MYSERIAL.begin(BAUDRATE);
  729. SERIAL_PROTOCOLLNPGM("start");
  730. SERIAL_ECHO_START;
  731. // Check startup - does nothing if bootloader sets MCUSR to 0
  732. byte mcu = MCUSR;
  733. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  734. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  735. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  736. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  737. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  738. MCUSR = 0;
  739. SERIAL_ECHOPGM(MSG_MARLIN);
  740. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  741. #ifdef STRING_DISTRIBUTION_DATE
  742. #ifdef STRING_CONFIG_H_AUTHOR
  743. SERIAL_ECHO_START;
  744. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  745. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  746. SERIAL_ECHOPGM(MSG_AUTHOR);
  747. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  748. SERIAL_ECHOPGM("Compiled: ");
  749. SERIAL_ECHOLNPGM(__DATE__);
  750. #endif // STRING_CONFIG_H_AUTHOR
  751. #endif // STRING_DISTRIBUTION_DATE
  752. SERIAL_ECHO_START;
  753. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  754. SERIAL_ECHO(freeMemory());
  755. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  756. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  757. // Send "ok" after commands by default
  758. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  759. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  760. Config_RetrieveSettings();
  761. // Initialize current position based on home_offset
  762. memcpy(current_position, home_offset, sizeof(home_offset));
  763. #if ENABLED(DELTA) || ENABLED(SCARA)
  764. // Vital to init kinematic equivalent for X0 Y0 Z0
  765. SYNC_PLAN_POSITION_KINEMATIC();
  766. #endif
  767. thermalManager.init(); // Initialize temperature loop
  768. #if ENABLED(USE_WATCHDOG)
  769. watchdog_init();
  770. #endif
  771. stepper.init(); // Initialize stepper, this enables interrupts!
  772. setup_photpin();
  773. servo_init();
  774. #if HAS_CONTROLLERFAN
  775. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  776. #endif
  777. #if HAS_STEPPER_RESET
  778. enableStepperDrivers();
  779. #endif
  780. #if ENABLED(DIGIPOT_I2C)
  781. digipot_i2c_init();
  782. #endif
  783. #if ENABLED(DAC_STEPPER_CURRENT)
  784. dac_init();
  785. #endif
  786. #if ENABLED(Z_PROBE_SLED)
  787. pinMode(SLED_PIN, OUTPUT);
  788. digitalWrite(SLED_PIN, LOW); // turn it off
  789. #endif // Z_PROBE_SLED
  790. setup_homepin();
  791. #ifdef STAT_LED_RED
  792. pinMode(STAT_LED_RED, OUTPUT);
  793. digitalWrite(STAT_LED_RED, LOW); // turn it off
  794. #endif
  795. #ifdef STAT_LED_BLUE
  796. pinMode(STAT_LED_BLUE, OUTPUT);
  797. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  798. #endif
  799. lcd_init();
  800. #if ENABLED(SHOW_BOOTSCREEN)
  801. #if ENABLED(DOGLCD)
  802. delay(1000);
  803. #elif ENABLED(ULTRA_LCD)
  804. bootscreen();
  805. lcd_init();
  806. #endif
  807. #endif
  808. }
  809. /**
  810. * The main Marlin program loop
  811. *
  812. * - Save or log commands to SD
  813. * - Process available commands (if not saving)
  814. * - Call heater manager
  815. * - Call inactivity manager
  816. * - Call endstop manager
  817. * - Call LCD update
  818. */
  819. void loop() {
  820. if (commands_in_queue < BUFSIZE) get_available_commands();
  821. #if ENABLED(SDSUPPORT)
  822. card.checkautostart(false);
  823. #endif
  824. if (commands_in_queue) {
  825. #if ENABLED(SDSUPPORT)
  826. if (card.saving) {
  827. char* command = command_queue[cmd_queue_index_r];
  828. if (strstr_P(command, PSTR("M29"))) {
  829. // M29 closes the file
  830. card.closefile();
  831. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  832. ok_to_send();
  833. }
  834. else {
  835. // Write the string from the read buffer to SD
  836. card.write_command(command);
  837. if (card.logging)
  838. process_next_command(); // The card is saving because it's logging
  839. else
  840. ok_to_send();
  841. }
  842. }
  843. else
  844. process_next_command();
  845. #else
  846. process_next_command();
  847. #endif // SDSUPPORT
  848. commands_in_queue--;
  849. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  850. }
  851. endstops.report_state();
  852. idle();
  853. }
  854. void gcode_line_error(const char* err, bool doFlush = true) {
  855. SERIAL_ERROR_START;
  856. serialprintPGM(err);
  857. SERIAL_ERRORLN(gcode_LastN);
  858. //Serial.println(gcode_N);
  859. if (doFlush) FlushSerialRequestResend();
  860. serial_count = 0;
  861. }
  862. inline void get_serial_commands() {
  863. static char serial_line_buffer[MAX_CMD_SIZE];
  864. static boolean serial_comment_mode = false;
  865. // If the command buffer is empty for too long,
  866. // send "wait" to indicate Marlin is still waiting.
  867. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  868. static millis_t last_command_time = 0;
  869. millis_t ms = millis();
  870. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  871. SERIAL_ECHOLNPGM(MSG_WAIT);
  872. last_command_time = ms;
  873. }
  874. #endif
  875. /**
  876. * Loop while serial characters are incoming and the queue is not full
  877. */
  878. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  879. char serial_char = MYSERIAL.read();
  880. /**
  881. * If the character ends the line
  882. */
  883. if (serial_char == '\n' || serial_char == '\r') {
  884. serial_comment_mode = false; // end of line == end of comment
  885. if (!serial_count) continue; // skip empty lines
  886. serial_line_buffer[serial_count] = 0; // terminate string
  887. serial_count = 0; //reset buffer
  888. char* command = serial_line_buffer;
  889. while (*command == ' ') command++; // skip any leading spaces
  890. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  891. char* apos = strchr(command, '*');
  892. if (npos) {
  893. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  894. if (M110) {
  895. char* n2pos = strchr(command + 4, 'N');
  896. if (n2pos) npos = n2pos;
  897. }
  898. gcode_N = strtol(npos + 1, NULL, 10);
  899. if (gcode_N != gcode_LastN + 1 && !M110) {
  900. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  901. return;
  902. }
  903. if (apos) {
  904. byte checksum = 0, count = 0;
  905. while (command[count] != '*') checksum ^= command[count++];
  906. if (strtol(apos + 1, NULL, 10) != checksum) {
  907. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  908. return;
  909. }
  910. // if no errors, continue parsing
  911. }
  912. else {
  913. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  914. return;
  915. }
  916. gcode_LastN = gcode_N;
  917. // if no errors, continue parsing
  918. }
  919. else if (apos) { // No '*' without 'N'
  920. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  921. return;
  922. }
  923. // Movement commands alert when stopped
  924. if (IsStopped()) {
  925. char* gpos = strchr(command, 'G');
  926. if (gpos) {
  927. int codenum = strtol(gpos + 1, NULL, 10);
  928. switch (codenum) {
  929. case 0:
  930. case 1:
  931. case 2:
  932. case 3:
  933. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  934. LCD_MESSAGEPGM(MSG_STOPPED);
  935. break;
  936. }
  937. }
  938. }
  939. // If command was e-stop process now
  940. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  941. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  942. last_command_time = ms;
  943. #endif
  944. // Add the command to the queue
  945. _enqueuecommand(serial_line_buffer, true);
  946. }
  947. else if (serial_count >= MAX_CMD_SIZE - 1) {
  948. // Keep fetching, but ignore normal characters beyond the max length
  949. // The command will be injected when EOL is reached
  950. }
  951. else if (serial_char == '\\') { // Handle escapes
  952. if (MYSERIAL.available() > 0) {
  953. // if we have one more character, copy it over
  954. serial_char = MYSERIAL.read();
  955. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  956. }
  957. // otherwise do nothing
  958. }
  959. else { // it's not a newline, carriage return or escape char
  960. if (serial_char == ';') serial_comment_mode = true;
  961. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  962. }
  963. } // queue has space, serial has data
  964. }
  965. #if ENABLED(SDSUPPORT)
  966. inline void get_sdcard_commands() {
  967. static bool stop_buffering = false,
  968. sd_comment_mode = false;
  969. if (!card.sdprinting) return;
  970. /**
  971. * '#' stops reading from SD to the buffer prematurely, so procedural
  972. * macro calls are possible. If it occurs, stop_buffering is triggered
  973. * and the buffer is run dry; this character _can_ occur in serial com
  974. * due to checksums, however, no checksums are used in SD printing.
  975. */
  976. if (commands_in_queue == 0) stop_buffering = false;
  977. uint16_t sd_count = 0;
  978. bool card_eof = card.eof();
  979. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  980. int16_t n = card.get();
  981. char sd_char = (char)n;
  982. card_eof = card.eof();
  983. if (card_eof || n == -1
  984. || sd_char == '\n' || sd_char == '\r'
  985. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  986. ) {
  987. if (card_eof) {
  988. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  989. print_job_timer.stop();
  990. char time[30];
  991. millis_t t = print_job_timer.duration();
  992. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  993. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  994. SERIAL_ECHO_START;
  995. SERIAL_ECHOLN(time);
  996. lcd_setstatus(time, true);
  997. card.printingHasFinished();
  998. card.checkautostart(true);
  999. }
  1000. else if (n == -1) {
  1001. SERIAL_ERROR_START;
  1002. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1003. }
  1004. if (sd_char == '#') stop_buffering = true;
  1005. sd_comment_mode = false; //for new command
  1006. if (!sd_count) continue; //skip empty lines
  1007. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1008. sd_count = 0; //clear buffer
  1009. _commit_command(false);
  1010. }
  1011. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1012. /**
  1013. * Keep fetching, but ignore normal characters beyond the max length
  1014. * The command will be injected when EOL is reached
  1015. */
  1016. }
  1017. else {
  1018. if (sd_char == ';') sd_comment_mode = true;
  1019. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1020. }
  1021. }
  1022. }
  1023. #endif // SDSUPPORT
  1024. /**
  1025. * Add to the circular command queue the next command from:
  1026. * - The command-injection queue (queued_commands_P)
  1027. * - The active serial input (usually USB)
  1028. * - The SD card file being actively printed
  1029. */
  1030. void get_available_commands() {
  1031. // if any immediate commands remain, don't get other commands yet
  1032. if (drain_queued_commands_P()) return;
  1033. get_serial_commands();
  1034. #if ENABLED(SDSUPPORT)
  1035. get_sdcard_commands();
  1036. #endif
  1037. }
  1038. inline bool code_has_value() {
  1039. int i = 1;
  1040. char c = seen_pointer[i];
  1041. while (c == ' ') c = seen_pointer[++i];
  1042. if (c == '-' || c == '+') c = seen_pointer[++i];
  1043. if (c == '.') c = seen_pointer[++i];
  1044. return NUMERIC(c);
  1045. }
  1046. inline float code_value_float() {
  1047. float ret;
  1048. char* e = strchr(seen_pointer, 'E');
  1049. if (e) {
  1050. *e = 0;
  1051. ret = strtod(seen_pointer + 1, NULL);
  1052. *e = 'E';
  1053. }
  1054. else
  1055. ret = strtod(seen_pointer + 1, NULL);
  1056. return ret;
  1057. }
  1058. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1059. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1060. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1061. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1062. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1063. inline bool code_value_bool() { return code_value_byte() > 0; }
  1064. #if ENABLED(INCH_MODE_SUPPORT)
  1065. inline void set_input_linear_units(LinearUnit units) {
  1066. switch (units) {
  1067. case LINEARUNIT_INCH:
  1068. linear_unit_factor = 25.4;
  1069. break;
  1070. case LINEARUNIT_MM:
  1071. default:
  1072. linear_unit_factor = 1.0;
  1073. break;
  1074. }
  1075. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1076. }
  1077. inline float axis_unit_factor(int axis) {
  1078. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1079. }
  1080. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1081. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1082. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1083. #else
  1084. inline float code_value_linear_units() { return code_value_float(); }
  1085. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1086. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1087. #endif
  1088. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1089. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1090. float code_value_temp_abs() {
  1091. switch (input_temp_units) {
  1092. case TEMPUNIT_C:
  1093. return code_value_float();
  1094. case TEMPUNIT_F:
  1095. return (code_value_float() - 32) / 1.8;
  1096. case TEMPUNIT_K:
  1097. return code_value_float() - 272.15;
  1098. default:
  1099. return code_value_float();
  1100. }
  1101. }
  1102. float code_value_temp_diff() {
  1103. switch (input_temp_units) {
  1104. case TEMPUNIT_C:
  1105. case TEMPUNIT_K:
  1106. return code_value_float();
  1107. case TEMPUNIT_F:
  1108. return code_value_float() / 1.8;
  1109. default:
  1110. return code_value_float();
  1111. }
  1112. }
  1113. #else
  1114. float code_value_temp_abs() { return code_value_float(); }
  1115. float code_value_temp_diff() { return code_value_float(); }
  1116. #endif
  1117. inline millis_t code_value_millis() { return code_value_ulong(); }
  1118. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1119. bool code_seen(char code) {
  1120. seen_pointer = strchr(current_command_args, code);
  1121. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1122. }
  1123. /**
  1124. * Set target_extruder from the T parameter or the active_extruder
  1125. *
  1126. * Returns TRUE if the target is invalid
  1127. */
  1128. bool get_target_extruder_from_command(int code) {
  1129. if (code_seen('T')) {
  1130. uint8_t t = code_value_byte();
  1131. if (t >= EXTRUDERS) {
  1132. SERIAL_ECHO_START;
  1133. SERIAL_CHAR('M');
  1134. SERIAL_ECHO(code);
  1135. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1136. SERIAL_EOL;
  1137. return true;
  1138. }
  1139. target_extruder = t;
  1140. }
  1141. else
  1142. target_extruder = active_extruder;
  1143. return false;
  1144. }
  1145. #define DEFINE_PGM_READ_ANY(type, reader) \
  1146. static inline type pgm_read_any(const type *p) \
  1147. { return pgm_read_##reader##_near(p); }
  1148. DEFINE_PGM_READ_ANY(float, float);
  1149. DEFINE_PGM_READ_ANY(signed char, byte);
  1150. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1151. static const PROGMEM type array##_P[3] = \
  1152. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1153. static inline type array(int axis) \
  1154. { return pgm_read_any(&array##_P[axis]); }
  1155. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1156. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1157. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1158. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1159. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1160. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1161. #if ENABLED(DUAL_X_CARRIAGE)
  1162. #define DXC_FULL_CONTROL_MODE 0
  1163. #define DXC_AUTO_PARK_MODE 1
  1164. #define DXC_DUPLICATION_MODE 2
  1165. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1166. static float x_home_pos(int extruder) {
  1167. if (extruder == 0)
  1168. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1169. else
  1170. /**
  1171. * In dual carriage mode the extruder offset provides an override of the
  1172. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1173. * This allow soft recalibration of the second extruder offset position
  1174. * without firmware reflash (through the M218 command).
  1175. */
  1176. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1177. }
  1178. static int x_home_dir(int extruder) {
  1179. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1180. }
  1181. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1182. static bool active_extruder_parked = false; // used in mode 1 & 2
  1183. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1184. static millis_t delayed_move_time = 0; // used in mode 1
  1185. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1186. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1187. bool extruder_duplication_enabled = false; // used in mode 2
  1188. #endif //DUAL_X_CARRIAGE
  1189. /**
  1190. * Software endstops can be used to monitor the open end of
  1191. * an axis that has a hardware endstop on the other end. Or
  1192. * they can prevent axes from moving past endstops and grinding.
  1193. *
  1194. * To keep doing their job as the coordinate system changes,
  1195. * the software endstop positions must be refreshed to remain
  1196. * at the same positions relative to the machine.
  1197. */
  1198. static void update_software_endstops(AxisEnum axis) {
  1199. float offs = home_offset[axis] + position_shift[axis];
  1200. #if ENABLED(DUAL_X_CARRIAGE)
  1201. if (axis == X_AXIS) {
  1202. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1203. if (active_extruder != 0) {
  1204. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1205. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1206. return;
  1207. }
  1208. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1209. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1210. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1211. return;
  1212. }
  1213. }
  1214. else
  1215. #endif
  1216. {
  1217. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1218. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1219. }
  1220. }
  1221. /**
  1222. * Change the home offset for an axis, update the current
  1223. * position and the software endstops to retain the same
  1224. * relative distance to the new home.
  1225. *
  1226. * Since this changes the current_position, code should
  1227. * call sync_plan_position soon after this.
  1228. */
  1229. static void set_home_offset(AxisEnum axis, float v) {
  1230. current_position[axis] += v - home_offset[axis];
  1231. home_offset[axis] = v;
  1232. update_software_endstops(axis);
  1233. }
  1234. static void set_axis_is_at_home(AxisEnum axis) {
  1235. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1236. if (DEBUGGING(LEVELING)) {
  1237. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1238. SERIAL_ECHOLNPGM(") >>>");
  1239. }
  1240. #endif
  1241. position_shift[axis] = 0;
  1242. #if ENABLED(DUAL_X_CARRIAGE)
  1243. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1244. if (active_extruder != 0)
  1245. current_position[X_AXIS] = x_home_pos(active_extruder);
  1246. else
  1247. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1248. update_software_endstops(X_AXIS);
  1249. return;
  1250. }
  1251. #endif
  1252. #if ENABLED(SCARA)
  1253. if (axis == X_AXIS || axis == Y_AXIS) {
  1254. float homeposition[3];
  1255. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1256. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1257. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1258. /**
  1259. * Works out real Homeposition angles using inverse kinematics,
  1260. * and calculates homing offset using forward kinematics
  1261. */
  1262. calculate_delta(homeposition);
  1263. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1264. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1265. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1266. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1267. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1268. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1269. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1270. calculate_SCARA_forward_Transform(delta);
  1271. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1272. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1273. current_position[axis] = delta[axis];
  1274. /**
  1275. * SCARA home positions are based on configuration since the actual
  1276. * limits are determined by the inverse kinematic transform.
  1277. */
  1278. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1279. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1280. }
  1281. else
  1282. #endif
  1283. {
  1284. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1285. update_software_endstops(axis);
  1286. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1287. if (axis == Z_AXIS) {
  1288. current_position[Z_AXIS] -= zprobe_zoffset;
  1289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) {
  1291. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1292. SERIAL_EOL;
  1293. }
  1294. #endif
  1295. }
  1296. #endif
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1300. DEBUG_POS("", current_position);
  1301. }
  1302. #endif
  1303. }
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) {
  1306. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1307. SERIAL_ECHOLNPGM(")");
  1308. }
  1309. #endif
  1310. }
  1311. /**
  1312. * Some planner shorthand inline functions
  1313. */
  1314. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1315. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1316. int hbd = homing_bump_divisor[axis];
  1317. if (hbd < 1) {
  1318. hbd = 10;
  1319. SERIAL_ECHO_START;
  1320. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1321. }
  1322. feedrate = homing_feedrate[axis] / hbd;
  1323. }
  1324. //
  1325. // line_to_current_position
  1326. // Move the planner to the current position from wherever it last moved
  1327. // (or from wherever it has been told it is located).
  1328. //
  1329. inline void line_to_current_position() {
  1330. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1331. }
  1332. inline void line_to_z(float zPosition) {
  1333. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1334. }
  1335. //
  1336. // line_to_destination
  1337. // Move the planner, not necessarily synced with current_position
  1338. //
  1339. inline void line_to_destination(float mm_m) {
  1340. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1341. }
  1342. inline void line_to_destination() {
  1343. line_to_destination(feedrate);
  1344. }
  1345. /**
  1346. * sync_plan_position
  1347. * Set planner / stepper positions to the cartesian current_position.
  1348. * The stepper code translates these coordinates into step units.
  1349. * Allows translation between steps and units (mm) for cartesian & core robots
  1350. */
  1351. inline void sync_plan_position() {
  1352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1353. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1354. #endif
  1355. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. }
  1357. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1358. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1359. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1360. //
  1361. // Prepare to do endstop or probe moves
  1362. // with custom feedrates.
  1363. //
  1364. // - Save current feedrates
  1365. // - Reset the rate multiplier
  1366. // - Reset the command timeout
  1367. // - Enable the endstops (for endstop moves)
  1368. //
  1369. static void setup_for_endstop_or_probe_move() {
  1370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1371. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1372. #endif
  1373. saved_feedrate = feedrate;
  1374. saved_feedrate_multiplier = feedrate_multiplier;
  1375. feedrate_multiplier = 100;
  1376. refresh_cmd_timeout();
  1377. }
  1378. static void setup_for_endstop_move() {
  1379. setup_for_endstop_or_probe_move();
  1380. endstops.enable();
  1381. }
  1382. static void clean_up_after_endstop_or_probe_move() {
  1383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1385. #endif
  1386. feedrate = saved_feedrate;
  1387. feedrate_multiplier = saved_feedrate_multiplier;
  1388. refresh_cmd_timeout();
  1389. }
  1390. #if HAS_BED_PROBE
  1391. #if ENABLED(DELTA)
  1392. /**
  1393. * Calculate delta, start a line, and set current_position to destination
  1394. */
  1395. void prepare_move_to_destination_raw() {
  1396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1397. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1398. #endif
  1399. refresh_cmd_timeout();
  1400. calculate_delta(destination);
  1401. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1402. set_current_to_destination();
  1403. }
  1404. #endif
  1405. /**
  1406. * Plan a move to (X, Y, Z) and set the current_position
  1407. * The final current_position may not be the one that was requested
  1408. */
  1409. static void do_blocking_move_to(float x, float y, float z) {
  1410. float old_feedrate = feedrate;
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1413. #endif
  1414. #if ENABLED(DELTA)
  1415. feedrate = XY_PROBE_FEEDRATE;
  1416. destination[X_AXIS] = x;
  1417. destination[Y_AXIS] = y;
  1418. destination[Z_AXIS] = z;
  1419. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1420. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1421. else
  1422. prepare_move_to_destination(); // this will also set_current_to_destination
  1423. #else
  1424. // If Z needs to raise, do it before moving XY
  1425. if (current_position[Z_AXIS] < z) {
  1426. feedrate = homing_feedrate[Z_AXIS];
  1427. current_position[Z_AXIS] = z;
  1428. line_to_current_position();
  1429. }
  1430. feedrate = XY_PROBE_FEEDRATE;
  1431. current_position[X_AXIS] = x;
  1432. current_position[Y_AXIS] = y;
  1433. line_to_current_position();
  1434. // If Z needs to lower, do it after moving XY
  1435. if (current_position[Z_AXIS] > z) {
  1436. feedrate = homing_feedrate[Z_AXIS];
  1437. current_position[Z_AXIS] = z;
  1438. line_to_current_position();
  1439. }
  1440. #endif
  1441. stepper.synchronize();
  1442. feedrate = old_feedrate;
  1443. }
  1444. inline void do_blocking_move_to_x(float x) {
  1445. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1446. }
  1447. inline void do_blocking_move_to_z(float z) {
  1448. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1449. }
  1450. /**
  1451. * Raise Z to a minimum height to make room for a probe to move
  1452. *
  1453. * zprobe_zoffset: Negative of the Z height where the probe engages
  1454. * z_raise: The probing raise distance
  1455. *
  1456. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1457. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1458. */
  1459. inline void do_probe_raise(float z_raise) {
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) {
  1462. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1463. SERIAL_ECHOLNPGM(")");
  1464. }
  1465. #endif
  1466. float z_dest = home_offset[Z_AXIS] + z_raise;
  1467. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1468. z_dest -= zprobe_zoffset;
  1469. if (z_dest > current_position[Z_AXIS]) {
  1470. float old_feedrate = feedrate;
  1471. feedrate = homing_feedrate[Z_AXIS];
  1472. do_blocking_move_to_z(z_dest);
  1473. feedrate = old_feedrate;
  1474. }
  1475. }
  1476. #endif //HAS_BED_PROBE
  1477. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1478. static void axis_unhomed_error(bool xyz=false) {
  1479. if (xyz) {
  1480. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1481. SERIAL_ECHO_START;
  1482. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1483. }
  1484. else {
  1485. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1486. SERIAL_ECHO_START;
  1487. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1488. }
  1489. }
  1490. #endif
  1491. #if ENABLED(Z_PROBE_SLED)
  1492. #ifndef SLED_DOCKING_OFFSET
  1493. #define SLED_DOCKING_OFFSET 0
  1494. #endif
  1495. /**
  1496. * Method to dock/undock a sled designed by Charles Bell.
  1497. *
  1498. * dock[in] If true, move to MAX_X and engage the electromagnet
  1499. * offset[in] The additional distance to move to adjust docking location
  1500. */
  1501. static void dock_sled(bool dock, int offset = 0) {
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) {
  1504. SERIAL_ECHOPAIR("dock_sled(", dock);
  1505. SERIAL_ECHOLNPGM(")");
  1506. }
  1507. #endif
  1508. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1509. axis_unhomed_error(true);
  1510. return;
  1511. }
  1512. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1513. float oldXpos = current_position[X_AXIS]; // save x position
  1514. float old_feedrate = feedrate;
  1515. if (dock) {
  1516. #if Z_RAISE_AFTER_PROBING > 0
  1517. do_probe_raise(Z_RAISE_AFTER_PROBING);
  1518. #endif
  1519. // Dock sled a bit closer to ensure proper capturing
  1520. feedrate = XY_PROBE_FEEDRATE;
  1521. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1522. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1523. }
  1524. else {
  1525. feedrate = XY_PROBE_FEEDRATE;
  1526. float z_loc = current_position[Z_AXIS];
  1527. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1528. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1529. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1530. }
  1531. do_blocking_move_to_x(oldXpos); // return to position before docking
  1532. feedrate = old_feedrate;
  1533. }
  1534. #endif // Z_PROBE_SLED
  1535. #if HAS_BED_PROBE
  1536. static void deploy_z_probe() {
  1537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1538. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1539. #endif
  1540. if (endstops.z_probe_enabled) return;
  1541. // Make room for probe
  1542. #if Z_RAISE_BEFORE_PROBING > 0
  1543. do_probe_raise(Z_RAISE_BEFORE_PROBING);
  1544. #endif
  1545. #if ENABLED(Z_PROBE_SLED)
  1546. dock_sled(false);
  1547. #elif HAS_Z_SERVO_ENDSTOP
  1548. // Engage Z Servo endstop if enabled
  1549. DEPLOY_Z_SERVO();
  1550. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1551. float old_feedrate = feedrate;
  1552. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1553. // If endstop is already false, the Z probe is deployed
  1554. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1555. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1556. if (z_probe_endstop)
  1557. #else
  1558. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1559. if (z_min_endstop)
  1560. #endif
  1561. {
  1562. // Move to the start position to initiate deployment
  1563. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1564. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1565. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1566. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1567. // Move to engage deployment
  1568. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1569. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1570. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1571. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1572. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1573. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1574. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1575. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1576. prepare_move_to_destination_raw();
  1577. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1578. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1579. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1580. // Move to trigger deployment
  1581. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1582. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1583. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1584. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1585. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1586. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1587. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1588. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1589. prepare_move_to_destination_raw();
  1590. #endif
  1591. }
  1592. // Partially Home X,Y for safety
  1593. destination[X_AXIS] *= 0.75;
  1594. destination[Y_AXIS] *= 0.75;
  1595. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1596. feedrate = old_feedrate;
  1597. stepper.synchronize();
  1598. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1599. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1600. if (z_probe_endstop)
  1601. #else
  1602. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1603. if (z_min_endstop)
  1604. #endif
  1605. {
  1606. if (IsRunning()) {
  1607. SERIAL_ERROR_START;
  1608. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1609. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1610. }
  1611. stop();
  1612. }
  1613. #else
  1614. // Nothing to be done. Just enable_z_probe below...
  1615. #endif
  1616. endstops.enable_z_probe();
  1617. }
  1618. static void stow_z_probe() {
  1619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1620. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1621. #endif
  1622. if (!endstops.z_probe_enabled) return;
  1623. // Make more room for the servo
  1624. #if Z_RAISE_AFTER_PROBING > 0
  1625. do_probe_raise(Z_RAISE_AFTER_PROBING);
  1626. #endif
  1627. #if ENABLED(Z_PROBE_SLED)
  1628. dock_sled(true);
  1629. #elif HAS_Z_SERVO_ENDSTOP
  1630. // Change the Z servo angle
  1631. STOW_Z_SERVO();
  1632. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1633. float old_feedrate = feedrate;
  1634. // Move up for safety
  1635. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1636. #if Z_RAISE_AFTER_PROBING > 0
  1637. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1638. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1639. #endif
  1640. // Move to the start position to initiate retraction
  1641. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1642. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1643. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1644. prepare_move_to_destination_raw();
  1645. // Move the nozzle down to push the Z probe into retracted position
  1646. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1647. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1648. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1649. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1650. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1651. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1652. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1653. prepare_move_to_destination_raw();
  1654. // Move up for safety
  1655. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1656. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1657. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1658. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1659. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1660. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1661. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1662. prepare_move_to_destination_raw();
  1663. // Home XY for safety
  1664. feedrate = homing_feedrate[X_AXIS] / 2;
  1665. destination[X_AXIS] = 0;
  1666. destination[Y_AXIS] = 0;
  1667. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1668. feedrate = old_feedrate;
  1669. stepper.synchronize();
  1670. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1671. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1672. if (!z_probe_endstop)
  1673. #else
  1674. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1675. if (!z_min_endstop)
  1676. #endif
  1677. {
  1678. if (IsRunning()) {
  1679. SERIAL_ERROR_START;
  1680. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1681. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1682. }
  1683. stop();
  1684. }
  1685. #else
  1686. // Nothing to do here. Just clear endstops.z_probe_enabled
  1687. #endif
  1688. endstops.enable_z_probe(false);
  1689. }
  1690. // Do a single Z probe and return with current_position[Z_AXIS]
  1691. // at the height where the probe triggered.
  1692. static float run_z_probe() {
  1693. float old_feedrate = feedrate;
  1694. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1695. refresh_cmd_timeout();
  1696. #if ENABLED(DELTA)
  1697. float start_z = current_position[Z_AXIS];
  1698. long start_steps = stepper.position(Z_AXIS);
  1699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1700. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1701. #endif
  1702. // move down slowly until you find the bed
  1703. feedrate = homing_feedrate[Z_AXIS] / 4;
  1704. destination[Z_AXIS] = -10;
  1705. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1706. stepper.synchronize();
  1707. endstops.hit_on_purpose(); // clear endstop hit flags
  1708. /**
  1709. * We have to let the planner know where we are right now as it
  1710. * is not where we said to go.
  1711. */
  1712. long stop_steps = stepper.position(Z_AXIS);
  1713. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1714. current_position[Z_AXIS] = mm;
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1717. #endif
  1718. SYNC_PLAN_POSITION_KINEMATIC();
  1719. #else // !DELTA
  1720. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1721. planner.bed_level_matrix.set_to_identity();
  1722. #endif
  1723. feedrate = homing_feedrate[Z_AXIS];
  1724. // Move down until the Z probe (or endstop?) is triggered
  1725. float zPosition = -(Z_MAX_LENGTH + 10);
  1726. line_to_z(zPosition);
  1727. stepper.synchronize();
  1728. // Tell the planner where we ended up - Get this from the stepper handler
  1729. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1730. planner.set_position_mm(
  1731. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1732. current_position[E_AXIS]
  1733. );
  1734. // move up the retract distance
  1735. zPosition += home_bump_mm(Z_AXIS);
  1736. line_to_z(zPosition);
  1737. stepper.synchronize();
  1738. endstops.hit_on_purpose(); // clear endstop hit flags
  1739. // move back down slowly to find bed
  1740. set_homing_bump_feedrate(Z_AXIS);
  1741. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1742. line_to_z(zPosition);
  1743. stepper.synchronize();
  1744. endstops.hit_on_purpose(); // clear endstop hit flags
  1745. // Get the current stepper position after bumping an endstop
  1746. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1747. SYNC_PLAN_POSITION_KINEMATIC();
  1748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1749. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1750. #endif
  1751. #endif // !DELTA
  1752. feedrate = old_feedrate;
  1753. return current_position[Z_AXIS];
  1754. }
  1755. #endif // HAS_BED_PROBE
  1756. #if HAS_PROBING_PROCEDURE
  1757. inline void do_blocking_move_to_xy(float x, float y) {
  1758. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1759. }
  1760. //
  1761. // - Move to the given XY
  1762. // - Deploy the probe, if not already deployed
  1763. // - Probe the bed, get the Z position
  1764. // - Depending on the 'stow' flag
  1765. // - Stow the probe, or
  1766. // - Raise to the BETWEEN height
  1767. // - Return the probed Z position
  1768. //
  1769. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1771. if (DEBUGGING(LEVELING)) {
  1772. SERIAL_ECHOLNPGM("probe_pt >>>");
  1773. SERIAL_ECHOPAIR("> stow:", stow);
  1774. SERIAL_EOL;
  1775. DEBUG_POS("", current_position);
  1776. }
  1777. #endif
  1778. float old_feedrate = feedrate;
  1779. // Raise by z_raise, then move the Z probe to the given XY
  1780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1781. if (DEBUGGING(LEVELING)) {
  1782. SERIAL_ECHOPAIR("> do_blocking_move_to ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1783. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1784. SERIAL_ECHOPAIR(", ", max(current_position[Z_AXIS], Z_RAISE_BETWEEN_PROBINGS));
  1785. SERIAL_EOL;
  1786. }
  1787. #endif
  1788. feedrate = XY_PROBE_FEEDRATE;
  1789. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1791. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> deploy_z_probe");
  1792. #endif
  1793. deploy_z_probe();
  1794. float measured_z = run_z_probe();
  1795. if (stow) {
  1796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1797. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> stow_z_probe");
  1798. #endif
  1799. stow_z_probe();
  1800. }
  1801. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1802. else {
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1805. #endif
  1806. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1807. }
  1808. #endif
  1809. if (verbose_level > 2) {
  1810. SERIAL_PROTOCOLPGM("Bed X: ");
  1811. SERIAL_PROTOCOL_F(x, 3);
  1812. SERIAL_PROTOCOLPGM(" Y: ");
  1813. SERIAL_PROTOCOL_F(y, 3);
  1814. SERIAL_PROTOCOLPGM(" Z: ");
  1815. SERIAL_PROTOCOL_F(measured_z, 3);
  1816. SERIAL_EOL;
  1817. }
  1818. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1819. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1820. #endif
  1821. feedrate = old_feedrate;
  1822. return measured_z;
  1823. }
  1824. #endif // HAS_BED_PROBE
  1825. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1826. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1827. #if DISABLED(DELTA)
  1828. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1829. //planner.bed_level_matrix.debug("bed level before");
  1830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1831. planner.bed_level_matrix.set_to_identity();
  1832. if (DEBUGGING(LEVELING)) {
  1833. vector_3 uncorrected_position = planner.adjusted_position();
  1834. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1835. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1836. }
  1837. #endif
  1838. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1839. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1840. vector_3 corrected_position = planner.adjusted_position();
  1841. current_position[X_AXIS] = corrected_position.x;
  1842. current_position[Y_AXIS] = corrected_position.y;
  1843. current_position[Z_AXIS] = corrected_position.z;
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1846. #endif
  1847. SYNC_PLAN_POSITION_KINEMATIC();
  1848. }
  1849. #endif // !DELTA
  1850. #else // !AUTO_BED_LEVELING_GRID
  1851. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1852. planner.bed_level_matrix.set_to_identity();
  1853. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1854. if (DEBUGGING(LEVELING)) {
  1855. vector_3 uncorrected_position = planner.adjusted_position();
  1856. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1857. }
  1858. #endif
  1859. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1860. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1861. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1862. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1863. if (planeNormal.z < 0) {
  1864. planeNormal.x = -planeNormal.x;
  1865. planeNormal.y = -planeNormal.y;
  1866. planeNormal.z = -planeNormal.z;
  1867. }
  1868. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1869. vector_3 corrected_position = planner.adjusted_position();
  1870. current_position[X_AXIS] = corrected_position.x;
  1871. current_position[Y_AXIS] = corrected_position.y;
  1872. current_position[Z_AXIS] = corrected_position.z;
  1873. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1874. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1875. #endif
  1876. SYNC_PLAN_POSITION_KINEMATIC();
  1877. }
  1878. #endif // !AUTO_BED_LEVELING_GRID
  1879. #if ENABLED(DELTA)
  1880. /**
  1881. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1882. */
  1883. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1884. if (bed_level[x][y] != 0.0) {
  1885. return; // Don't overwrite good values.
  1886. }
  1887. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1888. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1889. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1890. float median = c; // Median is robust (ignores outliers).
  1891. if (a < b) {
  1892. if (b < c) median = b;
  1893. if (c < a) median = a;
  1894. }
  1895. else { // b <= a
  1896. if (c < b) median = b;
  1897. if (a < c) median = a;
  1898. }
  1899. bed_level[x][y] = median;
  1900. }
  1901. /**
  1902. * Fill in the unprobed points (corners of circular print surface)
  1903. * using linear extrapolation, away from the center.
  1904. */
  1905. static void extrapolate_unprobed_bed_level() {
  1906. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1907. for (int y = 0; y <= half; y++) {
  1908. for (int x = 0; x <= half; x++) {
  1909. if (x + y < 3) continue;
  1910. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1911. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1912. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1913. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1914. }
  1915. }
  1916. }
  1917. /**
  1918. * Print calibration results for plotting or manual frame adjustment.
  1919. */
  1920. static void print_bed_level() {
  1921. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1922. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1923. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1924. SERIAL_PROTOCOLCHAR(' ');
  1925. }
  1926. SERIAL_EOL;
  1927. }
  1928. }
  1929. /**
  1930. * Reset calibration results to zero.
  1931. */
  1932. void reset_bed_level() {
  1933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1934. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1935. #endif
  1936. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1937. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1938. bed_level[x][y] = 0.0;
  1939. }
  1940. }
  1941. }
  1942. #endif // DELTA
  1943. #endif // AUTO_BED_LEVELING_FEATURE
  1944. /**
  1945. * Home an individual axis
  1946. */
  1947. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1948. static void homeaxis(AxisEnum axis) {
  1949. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1950. if (DEBUGGING(LEVELING)) {
  1951. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1952. SERIAL_ECHOLNPGM(")");
  1953. }
  1954. #endif
  1955. #define HOMEAXIS_DO(LETTER) \
  1956. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1957. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1958. int axis_home_dir =
  1959. #if ENABLED(DUAL_X_CARRIAGE)
  1960. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1961. #endif
  1962. home_dir(axis);
  1963. // Set the axis position as setup for the move
  1964. current_position[axis] = 0;
  1965. SYNC_PLAN_POSITION_KINEMATIC();
  1966. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1967. #if HAS_BED_PROBE
  1968. if (axis == Z_AXIS && axis_home_dir < 0) {
  1969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1970. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
  1971. #endif
  1972. deploy_z_probe();
  1973. }
  1974. #endif
  1975. // Set a flag for Z motor locking
  1976. #if ENABLED(Z_DUAL_ENDSTOPS)
  1977. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1978. #endif
  1979. // Move towards the endstop until an endstop is triggered
  1980. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1981. feedrate = homing_feedrate[axis];
  1982. line_to_destination();
  1983. stepper.synchronize();
  1984. // Set the axis position as setup for the move
  1985. current_position[axis] = 0;
  1986. SYNC_PLAN_POSITION_KINEMATIC();
  1987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1988. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1989. #endif
  1990. endstops.enable(false); // Disable endstops while moving away
  1991. // Move away from the endstop by the axis HOME_BUMP_MM
  1992. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1993. line_to_destination();
  1994. stepper.synchronize();
  1995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1996. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1997. #endif
  1998. endstops.enable(true); // Enable endstops for next homing move
  1999. // Slow down the feedrate for the next move
  2000. set_homing_bump_feedrate(axis);
  2001. // Move slowly towards the endstop until triggered
  2002. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2003. line_to_destination();
  2004. stepper.synchronize();
  2005. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2006. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2007. #endif
  2008. #if ENABLED(Z_DUAL_ENDSTOPS)
  2009. if (axis == Z_AXIS) {
  2010. float adj = fabs(z_endstop_adj);
  2011. bool lockZ1;
  2012. if (axis_home_dir > 0) {
  2013. adj = -adj;
  2014. lockZ1 = (z_endstop_adj > 0);
  2015. }
  2016. else
  2017. lockZ1 = (z_endstop_adj < 0);
  2018. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2019. SYNC_PLAN_POSITION_KINEMATIC();
  2020. // Move to the adjusted endstop height
  2021. feedrate = homing_feedrate[axis];
  2022. destination[Z_AXIS] = adj;
  2023. line_to_destination();
  2024. stepper.synchronize();
  2025. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2026. stepper.set_homing_flag(false);
  2027. } // Z_AXIS
  2028. #endif
  2029. #if ENABLED(DELTA)
  2030. // retrace by the amount specified in endstop_adj
  2031. if (endstop_adj[axis] * axis_home_dir < 0) {
  2032. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2033. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2034. #endif
  2035. endstops.enable(false); // Disable endstops while moving away
  2036. SYNC_PLAN_POSITION_KINEMATIC();
  2037. destination[axis] = endstop_adj[axis];
  2038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2039. if (DEBUGGING(LEVELING)) {
  2040. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2041. DEBUG_POS("", destination);
  2042. }
  2043. #endif
  2044. line_to_destination();
  2045. stepper.synchronize();
  2046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2047. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2048. #endif
  2049. endstops.enable(true); // Enable endstops for next homing move
  2050. }
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. else {
  2053. if (DEBUGGING(LEVELING)) {
  2054. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2055. SERIAL_EOL;
  2056. }
  2057. }
  2058. #endif
  2059. #endif
  2060. // Set the axis position to its home position (plus home offsets)
  2061. set_axis_is_at_home(axis);
  2062. SYNC_PLAN_POSITION_KINEMATIC();
  2063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2064. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2065. #endif
  2066. destination[axis] = current_position[axis];
  2067. feedrate = 0.0;
  2068. endstops.hit_on_purpose(); // clear endstop hit flags
  2069. axis_known_position[axis] = true;
  2070. axis_homed[axis] = true;
  2071. // Put away the Z probe
  2072. #if HAS_BED_PROBE
  2073. if (axis == Z_AXIS && axis_home_dir < 0) {
  2074. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2075. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
  2076. #endif
  2077. stow_z_probe();
  2078. }
  2079. #endif
  2080. }
  2081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2082. if (DEBUGGING(LEVELING)) {
  2083. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2084. SERIAL_ECHOLNPGM(")");
  2085. }
  2086. #endif
  2087. }
  2088. #if ENABLED(FWRETRACT)
  2089. void retract(bool retracting, bool swapping = false) {
  2090. if (retracting == retracted[active_extruder]) return;
  2091. float old_feedrate = feedrate;
  2092. set_destination_to_current();
  2093. if (retracting) {
  2094. feedrate = retract_feedrate_mm_s * 60;
  2095. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2096. sync_plan_position_e();
  2097. prepare_move_to_destination();
  2098. if (retract_zlift > 0.01) {
  2099. current_position[Z_AXIS] -= retract_zlift;
  2100. SYNC_PLAN_POSITION_KINEMATIC();
  2101. prepare_move_to_destination();
  2102. }
  2103. }
  2104. else {
  2105. if (retract_zlift > 0.01) {
  2106. current_position[Z_AXIS] += retract_zlift;
  2107. SYNC_PLAN_POSITION_KINEMATIC();
  2108. }
  2109. feedrate = retract_recover_feedrate * 60;
  2110. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2111. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2112. sync_plan_position_e();
  2113. prepare_move_to_destination();
  2114. }
  2115. feedrate = old_feedrate;
  2116. retracted[active_extruder] = retracting;
  2117. } // retract()
  2118. #endif // FWRETRACT
  2119. /**
  2120. * ***************************************************************************
  2121. * ***************************** G-CODE HANDLING *****************************
  2122. * ***************************************************************************
  2123. */
  2124. /**
  2125. * Set XYZE destination and feedrate from the current GCode command
  2126. *
  2127. * - Set destination from included axis codes
  2128. * - Set to current for missing axis codes
  2129. * - Set the feedrate, if included
  2130. */
  2131. void gcode_get_destination() {
  2132. for (int i = 0; i < NUM_AXIS; i++) {
  2133. if (code_seen(axis_codes[i]))
  2134. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2135. else
  2136. destination[i] = current_position[i];
  2137. }
  2138. if (code_seen('F')) {
  2139. float next_feedrate = code_value_linear_units();
  2140. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2141. }
  2142. }
  2143. void unknown_command_error() {
  2144. SERIAL_ECHO_START;
  2145. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2146. SERIAL_ECHO(current_command);
  2147. SERIAL_ECHOPGM("\"\n");
  2148. }
  2149. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2150. /**
  2151. * Output a "busy" message at regular intervals
  2152. * while the machine is not accepting commands.
  2153. */
  2154. void host_keepalive() {
  2155. millis_t ms = millis();
  2156. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2157. if (PENDING(ms, next_busy_signal_ms)) return;
  2158. switch (busy_state) {
  2159. case IN_HANDLER:
  2160. case IN_PROCESS:
  2161. SERIAL_ECHO_START;
  2162. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2163. break;
  2164. case PAUSED_FOR_USER:
  2165. SERIAL_ECHO_START;
  2166. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2167. break;
  2168. case PAUSED_FOR_INPUT:
  2169. SERIAL_ECHO_START;
  2170. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2171. break;
  2172. default:
  2173. break;
  2174. }
  2175. }
  2176. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2177. }
  2178. #endif //HOST_KEEPALIVE_FEATURE
  2179. /**
  2180. * G0, G1: Coordinated movement of X Y Z E axes
  2181. */
  2182. inline void gcode_G0_G1() {
  2183. if (IsRunning()) {
  2184. gcode_get_destination(); // For X Y Z E F
  2185. #if ENABLED(FWRETRACT)
  2186. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2187. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2188. // Is this move an attempt to retract or recover?
  2189. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2190. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2191. sync_plan_position_e(); // AND from the planner
  2192. retract(!retracted[active_extruder]);
  2193. return;
  2194. }
  2195. }
  2196. #endif //FWRETRACT
  2197. prepare_move_to_destination();
  2198. }
  2199. }
  2200. /**
  2201. * G2: Clockwise Arc
  2202. * G3: Counterclockwise Arc
  2203. */
  2204. #if ENABLED(ARC_SUPPORT)
  2205. inline void gcode_G2_G3(bool clockwise) {
  2206. if (IsRunning()) {
  2207. #if ENABLED(SF_ARC_FIX)
  2208. bool relative_mode_backup = relative_mode;
  2209. relative_mode = true;
  2210. #endif
  2211. gcode_get_destination();
  2212. #if ENABLED(SF_ARC_FIX)
  2213. relative_mode = relative_mode_backup;
  2214. #endif
  2215. // Center of arc as offset from current_position
  2216. float arc_offset[2] = {
  2217. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2218. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2219. };
  2220. // Send an arc to the planner
  2221. plan_arc(destination, arc_offset, clockwise);
  2222. refresh_cmd_timeout();
  2223. }
  2224. }
  2225. #endif
  2226. /**
  2227. * G4: Dwell S<seconds> or P<milliseconds>
  2228. */
  2229. inline void gcode_G4() {
  2230. millis_t codenum = 0;
  2231. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2232. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2233. stepper.synchronize();
  2234. refresh_cmd_timeout();
  2235. codenum += previous_cmd_ms; // keep track of when we started waiting
  2236. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2237. while (PENDING(millis(), codenum)) idle();
  2238. }
  2239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2240. /**
  2241. * Parameters interpreted according to:
  2242. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2243. * However I, J omission is not supported at this point; all
  2244. * parameters can be omitted and default to zero.
  2245. */
  2246. /**
  2247. * G5: Cubic B-spline
  2248. */
  2249. inline void gcode_G5() {
  2250. if (IsRunning()) {
  2251. gcode_get_destination();
  2252. float offset[] = {
  2253. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2254. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2255. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2256. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2257. };
  2258. plan_cubic_move(offset);
  2259. }
  2260. }
  2261. #endif // BEZIER_CURVE_SUPPORT
  2262. #if ENABLED(FWRETRACT)
  2263. /**
  2264. * G10 - Retract filament according to settings of M207
  2265. * G11 - Recover filament according to settings of M208
  2266. */
  2267. inline void gcode_G10_G11(bool doRetract=false) {
  2268. #if EXTRUDERS > 1
  2269. if (doRetract) {
  2270. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2271. }
  2272. #endif
  2273. retract(doRetract
  2274. #if EXTRUDERS > 1
  2275. , retracted_swap[active_extruder]
  2276. #endif
  2277. );
  2278. }
  2279. #endif //FWRETRACT
  2280. #if ENABLED(INCH_MODE_SUPPORT)
  2281. /**
  2282. * G20: Set input mode to inches
  2283. */
  2284. inline void gcode_G20() {
  2285. set_input_linear_units(LINEARUNIT_INCH);
  2286. }
  2287. /**
  2288. * G21: Set input mode to millimeters
  2289. */
  2290. inline void gcode_G21() {
  2291. set_input_linear_units(LINEARUNIT_MM);
  2292. }
  2293. #endif
  2294. /**
  2295. * G28: Home all axes according to settings
  2296. *
  2297. * Parameters
  2298. *
  2299. * None Home to all axes with no parameters.
  2300. * With QUICK_HOME enabled XY will home together, then Z.
  2301. *
  2302. * Cartesian parameters
  2303. *
  2304. * X Home to the X endstop
  2305. * Y Home to the Y endstop
  2306. * Z Home to the Z endstop
  2307. *
  2308. */
  2309. inline void gcode_G28() {
  2310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2311. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2312. #endif
  2313. // Wait for planner moves to finish!
  2314. stepper.synchronize();
  2315. // For auto bed leveling, clear the level matrix
  2316. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2317. planner.bed_level_matrix.set_to_identity();
  2318. #if ENABLED(DELTA)
  2319. reset_bed_level();
  2320. #endif
  2321. #endif
  2322. /**
  2323. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2324. * on again when homing all axis
  2325. */
  2326. #if ENABLED(MESH_BED_LEVELING)
  2327. float pre_home_z = MESH_HOME_SEARCH_Z;
  2328. if (mbl.active()) {
  2329. // Save known Z position if already homed
  2330. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2331. pre_home_z = current_position[Z_AXIS];
  2332. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2333. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2334. }
  2335. mbl.set_active(false);
  2336. }
  2337. #endif
  2338. setup_for_endstop_move();
  2339. /**
  2340. * Directly after a reset this is all 0. Later we get a hint if we have
  2341. * to raise z or not.
  2342. */
  2343. set_destination_to_current();
  2344. feedrate = 0.0;
  2345. #if ENABLED(DELTA)
  2346. /**
  2347. * A delta can only safely home all axis at the same time
  2348. * all axis have to home at the same time
  2349. */
  2350. // Pretend the current position is 0,0,0
  2351. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2352. sync_plan_position();
  2353. // Move all carriages up together until the first endstop is hit.
  2354. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2355. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2356. line_to_destination();
  2357. stepper.synchronize();
  2358. endstops.hit_on_purpose(); // clear endstop hit flags
  2359. // Destination reached
  2360. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2361. // take care of back off and rehome now we are all at the top
  2362. HOMEAXIS(X);
  2363. HOMEAXIS(Y);
  2364. HOMEAXIS(Z);
  2365. SYNC_PLAN_POSITION_KINEMATIC();
  2366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2367. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2368. #endif
  2369. #else // NOT DELTA
  2370. bool homeX = code_seen(axis_codes[X_AXIS]),
  2371. homeY = code_seen(axis_codes[Y_AXIS]),
  2372. homeZ = code_seen(axis_codes[Z_AXIS]);
  2373. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2374. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2375. if (home_all_axis || homeZ) {
  2376. HOMEAXIS(Z);
  2377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2378. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2379. #endif
  2380. }
  2381. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2382. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2383. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2384. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2385. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2387. if (DEBUGGING(LEVELING)) {
  2388. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2389. SERIAL_EOL;
  2390. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2391. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2392. }
  2393. #endif
  2394. line_to_destination();
  2395. stepper.synchronize();
  2396. /**
  2397. * Update the current Z position even if it currently not real from
  2398. * Z-home otherwise each call to line_to_destination() will want to
  2399. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2400. */
  2401. current_position[Z_AXIS] = destination[Z_AXIS];
  2402. }
  2403. #endif
  2404. #if ENABLED(QUICK_HOME)
  2405. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2406. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2407. #if ENABLED(DUAL_X_CARRIAGE)
  2408. int x_axis_home_dir = x_home_dir(active_extruder);
  2409. extruder_duplication_enabled = false;
  2410. #else
  2411. int x_axis_home_dir = home_dir(X_AXIS);
  2412. #endif
  2413. SYNC_PLAN_POSITION_KINEMATIC();
  2414. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2415. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2416. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2417. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2418. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2419. line_to_destination();
  2420. stepper.synchronize();
  2421. set_axis_is_at_home(X_AXIS);
  2422. set_axis_is_at_home(Y_AXIS);
  2423. SYNC_PLAN_POSITION_KINEMATIC();
  2424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2425. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2426. #endif
  2427. destination[X_AXIS] = current_position[X_AXIS];
  2428. destination[Y_AXIS] = current_position[Y_AXIS];
  2429. line_to_destination();
  2430. feedrate = 0.0;
  2431. stepper.synchronize();
  2432. endstops.hit_on_purpose(); // clear endstop hit flags
  2433. current_position[X_AXIS] = destination[X_AXIS];
  2434. current_position[Y_AXIS] = destination[Y_AXIS];
  2435. #if DISABLED(SCARA)
  2436. current_position[Z_AXIS] = destination[Z_AXIS];
  2437. #endif
  2438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2439. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2440. #endif
  2441. }
  2442. #endif // QUICK_HOME
  2443. #if ENABLED(HOME_Y_BEFORE_X)
  2444. // Home Y
  2445. if (home_all_axis || homeY) HOMEAXIS(Y);
  2446. #endif
  2447. // Home X
  2448. if (home_all_axis || homeX) {
  2449. #if ENABLED(DUAL_X_CARRIAGE)
  2450. int tmp_extruder = active_extruder;
  2451. extruder_duplication_enabled = false;
  2452. active_extruder = !active_extruder;
  2453. HOMEAXIS(X);
  2454. inactive_extruder_x_pos = current_position[X_AXIS];
  2455. active_extruder = tmp_extruder;
  2456. HOMEAXIS(X);
  2457. // reset state used by the different modes
  2458. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2459. delayed_move_time = 0;
  2460. active_extruder_parked = true;
  2461. #else
  2462. HOMEAXIS(X);
  2463. #endif
  2464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2465. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2466. #endif
  2467. }
  2468. #if DISABLED(HOME_Y_BEFORE_X)
  2469. // Home Y
  2470. if (home_all_axis || homeY) {
  2471. HOMEAXIS(Y);
  2472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2473. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2474. #endif
  2475. }
  2476. #endif
  2477. // Home Z last if homing towards the bed
  2478. #if Z_HOME_DIR < 0
  2479. if (home_all_axis || homeZ) {
  2480. #if ENABLED(Z_SAFE_HOMING)
  2481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2482. if (DEBUGGING(LEVELING)) {
  2483. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2484. }
  2485. #endif
  2486. if (home_all_axis) {
  2487. /**
  2488. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2489. * No need to move Z any more as this height should already be safe
  2490. * enough to reach Z_SAFE_HOMING XY positions.
  2491. * Just make sure the planner is in sync.
  2492. */
  2493. SYNC_PLAN_POSITION_KINEMATIC();
  2494. /**
  2495. * Set the Z probe (or just the nozzle) destination to the safe
  2496. * homing point
  2497. */
  2498. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2499. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2500. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2501. feedrate = XY_PROBE_FEEDRATE;
  2502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2503. if (DEBUGGING(LEVELING)) {
  2504. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2505. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2506. }
  2507. #endif
  2508. // Move in the XY plane
  2509. line_to_destination();
  2510. stepper.synchronize();
  2511. /**
  2512. * Update the current positions for XY, Z is still at least at
  2513. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2514. */
  2515. current_position[X_AXIS] = destination[X_AXIS];
  2516. current_position[Y_AXIS] = destination[Y_AXIS];
  2517. // Home the Z axis
  2518. HOMEAXIS(Z);
  2519. }
  2520. else if (homeZ) { // Don't need to Home Z twice
  2521. // Let's see if X and Y are homed
  2522. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2523. /**
  2524. * Make sure the Z probe is within the physical limits
  2525. * NOTE: This doesn't necessarily ensure the Z probe is also
  2526. * within the bed!
  2527. */
  2528. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2529. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2530. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2531. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2532. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2533. // Home the Z axis
  2534. HOMEAXIS(Z);
  2535. }
  2536. else {
  2537. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2538. SERIAL_ECHO_START;
  2539. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2540. }
  2541. }
  2542. else {
  2543. axis_unhomed_error();
  2544. }
  2545. } // !home_all_axes && homeZ
  2546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2547. if (DEBUGGING(LEVELING)) {
  2548. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2549. }
  2550. #endif
  2551. #else // !Z_SAFE_HOMING
  2552. HOMEAXIS(Z);
  2553. #endif // !Z_SAFE_HOMING
  2554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2555. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2556. #endif
  2557. } // home_all_axis || homeZ
  2558. #endif // Z_HOME_DIR < 0
  2559. SYNC_PLAN_POSITION_KINEMATIC();
  2560. #endif // !DELTA (gcode_G28)
  2561. endstops.not_homing();
  2562. // Enable mesh leveling again
  2563. #if ENABLED(MESH_BED_LEVELING)
  2564. if (mbl.has_mesh()) {
  2565. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2566. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2567. SYNC_PLAN_POSITION_KINEMATIC();
  2568. mbl.set_active(true);
  2569. #if ENABLED(MESH_G28_REST_ORIGIN)
  2570. current_position[Z_AXIS] = 0.0;
  2571. set_destination_to_current();
  2572. feedrate = homing_feedrate[Z_AXIS];
  2573. line_to_destination();
  2574. stepper.synchronize();
  2575. #else
  2576. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2577. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2578. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2579. #endif
  2580. }
  2581. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2582. current_position[Z_AXIS] = pre_home_z;
  2583. SYNC_PLAN_POSITION_KINEMATIC();
  2584. mbl.set_active(true);
  2585. current_position[Z_AXIS] = pre_home_z -
  2586. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2587. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2588. }
  2589. }
  2590. #endif
  2591. clean_up_after_endstop_or_probe_move();
  2592. endstops.hit_on_purpose(); // clear endstop hit flags
  2593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2594. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2595. #endif
  2596. report_current_position();
  2597. }
  2598. #if HAS_PROBING_PROCEDURE
  2599. void out_of_range_error(const char* p_edge) {
  2600. SERIAL_PROTOCOLPGM("?Probe ");
  2601. serialprintPGM(p_edge);
  2602. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2603. }
  2604. #endif
  2605. #if ENABLED(MESH_BED_LEVELING)
  2606. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2607. inline void _mbl_goto_xy(float x, float y) {
  2608. saved_feedrate = feedrate;
  2609. feedrate = homing_feedrate[X_AXIS];
  2610. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2611. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2612. + MIN_Z_HEIGHT_FOR_HOMING
  2613. #endif
  2614. ;
  2615. line_to_current_position();
  2616. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2617. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2618. line_to_current_position();
  2619. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2620. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2621. line_to_current_position();
  2622. #endif
  2623. feedrate = saved_feedrate;
  2624. stepper.synchronize();
  2625. }
  2626. /**
  2627. * G29: Mesh-based Z probe, probes a grid and produces a
  2628. * mesh to compensate for variable bed height
  2629. *
  2630. * Parameters With MESH_BED_LEVELING:
  2631. *
  2632. * S0 Produce a mesh report
  2633. * S1 Start probing mesh points
  2634. * S2 Probe the next mesh point
  2635. * S3 Xn Yn Zn.nn Manually modify a single point
  2636. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2637. * S5 Reset and disable mesh
  2638. *
  2639. * The S0 report the points as below
  2640. *
  2641. * +----> X-axis 1-n
  2642. * |
  2643. * |
  2644. * v Y-axis 1-n
  2645. *
  2646. */
  2647. inline void gcode_G29() {
  2648. static int probe_point = -1;
  2649. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2650. if (state < 0 || state > 5) {
  2651. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2652. return;
  2653. }
  2654. int8_t px, py;
  2655. float z;
  2656. switch (state) {
  2657. case MeshReport:
  2658. if (mbl.has_mesh()) {
  2659. SERIAL_PROTOCOLPGM("State: ");
  2660. if (mbl.active())
  2661. SERIAL_PROTOCOLPGM("On");
  2662. else
  2663. SERIAL_PROTOCOLPGM("Off");
  2664. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2665. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2666. SERIAL_PROTOCOLCHAR(',');
  2667. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2668. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2669. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2670. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2671. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2672. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2673. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2674. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2675. SERIAL_PROTOCOLPGM(" ");
  2676. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2677. }
  2678. SERIAL_EOL;
  2679. }
  2680. }
  2681. else
  2682. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2683. break;
  2684. case MeshStart:
  2685. mbl.reset();
  2686. probe_point = 0;
  2687. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2688. break;
  2689. case MeshNext:
  2690. if (probe_point < 0) {
  2691. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2692. return;
  2693. }
  2694. // For each G29 S2...
  2695. if (probe_point == 0) {
  2696. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2697. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2698. SYNC_PLAN_POSITION_KINEMATIC();
  2699. }
  2700. else {
  2701. // For G29 S2 after adjusting Z.
  2702. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2703. }
  2704. // If there's another point to sample, move there with optional lift.
  2705. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2706. mbl.zigzag(probe_point, px, py);
  2707. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2708. probe_point++;
  2709. }
  2710. else {
  2711. // One last "return to the bed" (as originally coded) at completion
  2712. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2713. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2714. + MIN_Z_HEIGHT_FOR_HOMING
  2715. #endif
  2716. ;
  2717. line_to_current_position();
  2718. stepper.synchronize();
  2719. // After recording the last point, activate the mbl and home
  2720. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2721. probe_point = -1;
  2722. mbl.set_has_mesh(true);
  2723. enqueue_and_echo_commands_P(PSTR("G28"));
  2724. }
  2725. break;
  2726. case MeshSet:
  2727. if (code_seen('X')) {
  2728. px = code_value_int() - 1;
  2729. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2730. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2731. return;
  2732. }
  2733. }
  2734. else {
  2735. SERIAL_PROTOCOLPGM("X not entered.\n");
  2736. return;
  2737. }
  2738. if (code_seen('Y')) {
  2739. py = code_value_int() - 1;
  2740. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2741. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2742. return;
  2743. }
  2744. }
  2745. else {
  2746. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2747. return;
  2748. }
  2749. if (code_seen('Z')) {
  2750. z = code_value_axis_units(Z_AXIS);
  2751. }
  2752. else {
  2753. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2754. return;
  2755. }
  2756. mbl.z_values[py][px] = z;
  2757. break;
  2758. case MeshSetZOffset:
  2759. if (code_seen('Z')) {
  2760. z = code_value_axis_units(Z_AXIS);
  2761. }
  2762. else {
  2763. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2764. return;
  2765. }
  2766. mbl.z_offset = z;
  2767. break;
  2768. case MeshReset:
  2769. if (mbl.active()) {
  2770. current_position[Z_AXIS] +=
  2771. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2772. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2773. mbl.reset();
  2774. SYNC_PLAN_POSITION_KINEMATIC();
  2775. }
  2776. else
  2777. mbl.reset();
  2778. } // switch(state)
  2779. report_current_position();
  2780. }
  2781. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2782. /**
  2783. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2784. * Will fail if the printer has not been homed with G28.
  2785. *
  2786. * Enhanced G29 Auto Bed Leveling Probe Routine
  2787. *
  2788. * Parameters With AUTO_BED_LEVELING_GRID:
  2789. *
  2790. * P Set the size of the grid that will be probed (P x P points).
  2791. * Not supported by non-linear delta printer bed leveling.
  2792. * Example: "G29 P4"
  2793. *
  2794. * S Set the XY travel speed between probe points (in mm/min)
  2795. *
  2796. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2797. * or clean the rotation Matrix. Useful to check the topology
  2798. * after a first run of G29.
  2799. *
  2800. * V Set the verbose level (0-4). Example: "G29 V3"
  2801. *
  2802. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2803. * This is useful for manual bed leveling and finding flaws in the bed (to
  2804. * assist with part placement).
  2805. * Not supported by non-linear delta printer bed leveling.
  2806. *
  2807. * F Set the Front limit of the probing grid
  2808. * B Set the Back limit of the probing grid
  2809. * L Set the Left limit of the probing grid
  2810. * R Set the Right limit of the probing grid
  2811. *
  2812. * Global Parameters:
  2813. *
  2814. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2815. * Include "E" to engage/disengage the Z probe for each sample.
  2816. * There's no extra effect if you have a fixed Z probe.
  2817. * Usage: "G29 E" or "G29 e"
  2818. *
  2819. */
  2820. inline void gcode_G29() {
  2821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2822. if (DEBUGGING(LEVELING)) {
  2823. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2824. DEBUG_POS("", current_position);
  2825. }
  2826. #endif
  2827. // Don't allow auto-leveling without homing first
  2828. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2829. axis_unhomed_error(true);
  2830. return;
  2831. }
  2832. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2833. if (verbose_level < 0 || verbose_level > 4) {
  2834. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2835. return;
  2836. }
  2837. bool dryrun = code_seen('D');
  2838. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  2839. const bool stow_probe_after_each = false;
  2840. #else
  2841. bool stow_probe_after_each = code_seen('E');
  2842. #endif
  2843. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2844. #if DISABLED(DELTA)
  2845. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2846. #endif
  2847. if (verbose_level > 0) {
  2848. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2849. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2850. }
  2851. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2852. #if DISABLED(DELTA)
  2853. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2854. if (auto_bed_leveling_grid_points < 2) {
  2855. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2856. return;
  2857. }
  2858. #endif
  2859. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2860. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2861. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2862. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2863. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2864. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2865. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2866. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2867. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2868. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2869. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2870. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2871. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2872. if (left_out || right_out || front_out || back_out) {
  2873. if (left_out) {
  2874. out_of_range_error(PSTR("(L)eft"));
  2875. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2876. }
  2877. if (right_out) {
  2878. out_of_range_error(PSTR("(R)ight"));
  2879. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2880. }
  2881. if (front_out) {
  2882. out_of_range_error(PSTR("(F)ront"));
  2883. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2884. }
  2885. if (back_out) {
  2886. out_of_range_error(PSTR("(B)ack"));
  2887. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2888. }
  2889. return;
  2890. }
  2891. #endif // AUTO_BED_LEVELING_GRID
  2892. if (!dryrun) {
  2893. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2894. if (DEBUGGING(LEVELING)) {
  2895. vector_3 corrected_position = planner.adjusted_position();
  2896. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2897. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2898. }
  2899. #endif
  2900. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2901. planner.bed_level_matrix.set_to_identity();
  2902. #if ENABLED(DELTA)
  2903. reset_bed_level();
  2904. #else //!DELTA
  2905. //vector_3 corrected_position = planner.adjusted_position();
  2906. //corrected_position.debug("position before G29");
  2907. vector_3 uncorrected_position = planner.adjusted_position();
  2908. //uncorrected_position.debug("position during G29");
  2909. current_position[X_AXIS] = uncorrected_position.x;
  2910. current_position[Y_AXIS] = uncorrected_position.y;
  2911. current_position[Z_AXIS] = uncorrected_position.z;
  2912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2913. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2914. #endif
  2915. SYNC_PLAN_POSITION_KINEMATIC();
  2916. #endif // !DELTA
  2917. }
  2918. stepper.synchronize();
  2919. setup_for_endstop_or_probe_move();
  2920. // Deploy the probe. Servo will raise if needed.
  2921. deploy_z_probe();
  2922. bed_leveling_in_progress = true;
  2923. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2924. // probe at the points of a lattice grid
  2925. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2926. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2927. #if ENABLED(DELTA)
  2928. delta_grid_spacing[0] = xGridSpacing;
  2929. delta_grid_spacing[1] = yGridSpacing;
  2930. float zoffset = zprobe_zoffset;
  2931. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2932. #else // !DELTA
  2933. /**
  2934. * solve the plane equation ax + by + d = z
  2935. * A is the matrix with rows [x y 1] for all the probed points
  2936. * B is the vector of the Z positions
  2937. * the normal vector to the plane is formed by the coefficients of the
  2938. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2939. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2940. */
  2941. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2942. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2943. eqnBVector[abl2], // "B" vector of Z points
  2944. mean = 0.0;
  2945. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2946. #endif // !DELTA
  2947. int probePointCounter = 0;
  2948. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2949. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2950. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2951. int xStart, xStop, xInc;
  2952. if (zig) {
  2953. xStart = 0;
  2954. xStop = auto_bed_leveling_grid_points;
  2955. xInc = 1;
  2956. }
  2957. else {
  2958. xStart = auto_bed_leveling_grid_points - 1;
  2959. xStop = -1;
  2960. xInc = -1;
  2961. }
  2962. zig = !zig;
  2963. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2964. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2965. #if ENABLED(DELTA)
  2966. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2967. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2968. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2969. #endif //DELTA
  2970. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2971. #if DISABLED(DELTA)
  2972. mean += measured_z;
  2973. eqnBVector[probePointCounter] = measured_z;
  2974. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2975. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2976. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2977. indexIntoAB[xCount][yCount] = probePointCounter;
  2978. #else
  2979. bed_level[xCount][yCount] = measured_z + zoffset;
  2980. #endif
  2981. probePointCounter++;
  2982. idle();
  2983. } //xProbe
  2984. } //yProbe
  2985. #else // !AUTO_BED_LEVELING_GRID
  2986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2987. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2988. #endif
  2989. // Probe at 3 arbitrary points
  2990. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2991. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2992. stow_probe_after_each, verbose_level),
  2993. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2994. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2995. stow_probe_after_each, verbose_level),
  2996. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2997. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2998. stow_probe_after_each, verbose_level);
  2999. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3000. #endif // !AUTO_BED_LEVELING_GRID
  3001. // Raise to Z_RAISE_AFTER_PROBING. Stow the probe.
  3002. stow_z_probe();
  3003. // Restore state after probing
  3004. clean_up_after_endstop_or_probe_move();
  3005. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3006. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3007. #endif
  3008. // Calculate leveling, print reports, correct the position
  3009. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3010. #if ENABLED(DELTA)
  3011. if (!dryrun) extrapolate_unprobed_bed_level();
  3012. print_bed_level();
  3013. #else // !DELTA
  3014. // solve lsq problem
  3015. double plane_equation_coefficients[3];
  3016. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3017. mean /= abl2;
  3018. if (verbose_level) {
  3019. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3020. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3021. SERIAL_PROTOCOLPGM(" b: ");
  3022. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3023. SERIAL_PROTOCOLPGM(" d: ");
  3024. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3025. SERIAL_EOL;
  3026. if (verbose_level > 2) {
  3027. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3028. SERIAL_PROTOCOL_F(mean, 8);
  3029. SERIAL_EOL;
  3030. }
  3031. }
  3032. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3033. // Show the Topography map if enabled
  3034. if (do_topography_map) {
  3035. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3036. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3037. SERIAL_PROTOCOLPGM(" | |\n");
  3038. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3039. SERIAL_PROTOCOLPGM(" E | | I\n");
  3040. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3041. SERIAL_PROTOCOLPGM(" T | | H\n");
  3042. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3043. SERIAL_PROTOCOLPGM(" | |\n");
  3044. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3045. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3046. float min_diff = 999;
  3047. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3048. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3049. int ind = indexIntoAB[xx][yy];
  3050. float diff = eqnBVector[ind] - mean;
  3051. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3052. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3053. z_tmp = 0;
  3054. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3055. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3056. if (diff >= 0.0)
  3057. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3058. else
  3059. SERIAL_PROTOCOLCHAR(' ');
  3060. SERIAL_PROTOCOL_F(diff, 5);
  3061. } // xx
  3062. SERIAL_EOL;
  3063. } // yy
  3064. SERIAL_EOL;
  3065. if (verbose_level > 3) {
  3066. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3067. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3068. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3069. int ind = indexIntoAB[xx][yy];
  3070. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3071. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3072. z_tmp = 0;
  3073. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3074. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3075. if (diff >= 0.0)
  3076. SERIAL_PROTOCOLPGM(" +");
  3077. // Include + for column alignment
  3078. else
  3079. SERIAL_PROTOCOLCHAR(' ');
  3080. SERIAL_PROTOCOL_F(diff, 5);
  3081. } // xx
  3082. SERIAL_EOL;
  3083. } // yy
  3084. SERIAL_EOL;
  3085. }
  3086. } //do_topography_map
  3087. #endif //!DELTA
  3088. #endif // AUTO_BED_LEVELING_GRID
  3089. #if DISABLED(DELTA)
  3090. if (verbose_level > 0)
  3091. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3092. if (!dryrun) {
  3093. /**
  3094. * Correct the Z height difference from Z probe position and nozzle tip position.
  3095. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3096. * from the nozzle. When the bed is uneven, this height must be corrected.
  3097. */
  3098. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3099. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3100. z_tmp = current_position[Z_AXIS],
  3101. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3103. if (DEBUGGING(LEVELING)) {
  3104. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3105. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3106. SERIAL_EOL;
  3107. }
  3108. #endif
  3109. // Apply the correction sending the Z probe offset
  3110. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3112. if (DEBUGGING(LEVELING)) {
  3113. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3114. SERIAL_EOL;
  3115. }
  3116. #endif
  3117. // Adjust the current Z and send it to the planner.
  3118. current_position[Z_AXIS] += z_tmp - stepper_z;
  3119. SYNC_PLAN_POSITION_KINEMATIC();
  3120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3121. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3122. #endif
  3123. }
  3124. #endif // !DELTA
  3125. #ifdef Z_PROBE_END_SCRIPT
  3126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3127. if (DEBUGGING(LEVELING)) {
  3128. SERIAL_ECHO("Z Probe End Script: ");
  3129. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3130. }
  3131. #endif
  3132. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3133. stepper.synchronize();
  3134. #endif
  3135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3136. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3137. #endif
  3138. bed_leveling_in_progress = false;
  3139. report_current_position();
  3140. KEEPALIVE_STATE(IN_HANDLER);
  3141. }
  3142. #endif //AUTO_BED_LEVELING_FEATURE
  3143. #if HAS_BED_PROBE
  3144. /**
  3145. * G30: Do a single Z probe at the current XY
  3146. */
  3147. inline void gcode_G30() {
  3148. setup_for_endstop_or_probe_move();
  3149. deploy_z_probe();
  3150. stepper.synchronize();
  3151. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3152. float measured_z = run_z_probe(); // clears the ABL non-delta matrix only
  3153. SERIAL_PROTOCOLPGM("Bed X: ");
  3154. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3155. SERIAL_PROTOCOLPGM(" Y: ");
  3156. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3157. SERIAL_PROTOCOLPGM(" Z: ");
  3158. SERIAL_PROTOCOL(measured_z + 0.0001);
  3159. SERIAL_EOL;
  3160. stow_z_probe();
  3161. clean_up_after_endstop_or_probe_move();
  3162. report_current_position();
  3163. }
  3164. #if ENABLED(Z_PROBE_SLED)
  3165. /**
  3166. * G31: Deploy the Z probe
  3167. */
  3168. inline void gcode_G31() { deploy_z_probe(); }
  3169. /**
  3170. * G32: Stow the Z probe
  3171. */
  3172. inline void gcode_G32() { stow_z_probe(); }
  3173. #endif // Z_PROBE_SLED
  3174. #endif // HAS_BED_PROBE
  3175. /**
  3176. * G92: Set current position to given X Y Z E
  3177. */
  3178. inline void gcode_G92() {
  3179. bool didE = code_seen(axis_codes[E_AXIS]);
  3180. if (!didE) stepper.synchronize();
  3181. bool didXYZ = false;
  3182. for (int i = 0; i < NUM_AXIS; i++) {
  3183. if (code_seen(axis_codes[i])) {
  3184. float p = current_position[i],
  3185. v = code_value_axis_units(i);
  3186. current_position[i] = v;
  3187. if (i != E_AXIS) {
  3188. position_shift[i] += v - p; // Offset the coordinate space
  3189. update_software_endstops((AxisEnum)i);
  3190. didXYZ = true;
  3191. }
  3192. }
  3193. }
  3194. if (didXYZ)
  3195. SYNC_PLAN_POSITION_KINEMATIC();
  3196. else if (didE)
  3197. sync_plan_position_e();
  3198. }
  3199. #if ENABLED(ULTIPANEL)
  3200. /**
  3201. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3202. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3203. */
  3204. inline void gcode_M0_M1() {
  3205. char* args = current_command_args;
  3206. uint8_t test_value = 12;
  3207. SERIAL_ECHOPAIR("TEST", test_value);
  3208. millis_t codenum = 0;
  3209. bool hasP = false, hasS = false;
  3210. if (code_seen('P')) {
  3211. codenum = code_value_millis(); // milliseconds to wait
  3212. hasP = codenum > 0;
  3213. }
  3214. if (code_seen('S')) {
  3215. codenum = code_value_millis_from_seconds(); // seconds to wait
  3216. hasS = codenum > 0;
  3217. }
  3218. if (!hasP && !hasS && *args != '\0')
  3219. lcd_setstatus(args, true);
  3220. else {
  3221. LCD_MESSAGEPGM(MSG_USERWAIT);
  3222. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3223. dontExpireStatus();
  3224. #endif
  3225. }
  3226. lcd_ignore_click();
  3227. stepper.synchronize();
  3228. refresh_cmd_timeout();
  3229. if (codenum > 0) {
  3230. codenum += previous_cmd_ms; // wait until this time for a click
  3231. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3232. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3233. KEEPALIVE_STATE(IN_HANDLER);
  3234. lcd_ignore_click(false);
  3235. }
  3236. else {
  3237. if (!lcd_detected()) return;
  3238. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3239. while (!lcd_clicked()) idle();
  3240. KEEPALIVE_STATE(IN_HANDLER);
  3241. }
  3242. if (IS_SD_PRINTING)
  3243. LCD_MESSAGEPGM(MSG_RESUMING);
  3244. else
  3245. LCD_MESSAGEPGM(WELCOME_MSG);
  3246. }
  3247. #endif // ULTIPANEL
  3248. /**
  3249. * M17: Enable power on all stepper motors
  3250. */
  3251. inline void gcode_M17() {
  3252. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3253. enable_all_steppers();
  3254. }
  3255. #if ENABLED(SDSUPPORT)
  3256. /**
  3257. * M20: List SD card to serial output
  3258. */
  3259. inline void gcode_M20() {
  3260. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3261. card.ls();
  3262. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3263. }
  3264. /**
  3265. * M21: Init SD Card
  3266. */
  3267. inline void gcode_M21() {
  3268. card.initsd();
  3269. }
  3270. /**
  3271. * M22: Release SD Card
  3272. */
  3273. inline void gcode_M22() {
  3274. card.release();
  3275. }
  3276. /**
  3277. * M23: Open a file
  3278. */
  3279. inline void gcode_M23() {
  3280. card.openFile(current_command_args, true);
  3281. }
  3282. /**
  3283. * M24: Start SD Print
  3284. */
  3285. inline void gcode_M24() {
  3286. card.startFileprint();
  3287. print_job_timer.start();
  3288. }
  3289. /**
  3290. * M25: Pause SD Print
  3291. */
  3292. inline void gcode_M25() {
  3293. card.pauseSDPrint();
  3294. }
  3295. /**
  3296. * M26: Set SD Card file index
  3297. */
  3298. inline void gcode_M26() {
  3299. if (card.cardOK && code_seen('S'))
  3300. card.setIndex(code_value_long());
  3301. }
  3302. /**
  3303. * M27: Get SD Card status
  3304. */
  3305. inline void gcode_M27() {
  3306. card.getStatus();
  3307. }
  3308. /**
  3309. * M28: Start SD Write
  3310. */
  3311. inline void gcode_M28() {
  3312. card.openFile(current_command_args, false);
  3313. }
  3314. /**
  3315. * M29: Stop SD Write
  3316. * Processed in write to file routine above
  3317. */
  3318. inline void gcode_M29() {
  3319. // card.saving = false;
  3320. }
  3321. /**
  3322. * M30 <filename>: Delete SD Card file
  3323. */
  3324. inline void gcode_M30() {
  3325. if (card.cardOK) {
  3326. card.closefile();
  3327. card.removeFile(current_command_args);
  3328. }
  3329. }
  3330. #endif //SDSUPPORT
  3331. /**
  3332. * M31: Get the time since the start of SD Print (or last M109)
  3333. */
  3334. inline void gcode_M31() {
  3335. millis_t t = print_job_timer.duration();
  3336. int min = t / 60, sec = t % 60;
  3337. char time[30];
  3338. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3339. SERIAL_ECHO_START;
  3340. SERIAL_ECHOLN(time);
  3341. lcd_setstatus(time);
  3342. thermalManager.autotempShutdown();
  3343. }
  3344. #if ENABLED(SDSUPPORT)
  3345. /**
  3346. * M32: Select file and start SD Print
  3347. */
  3348. inline void gcode_M32() {
  3349. if (card.sdprinting)
  3350. stepper.synchronize();
  3351. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3352. if (!namestartpos)
  3353. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3354. else
  3355. namestartpos++; //to skip the '!'
  3356. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3357. if (card.cardOK) {
  3358. card.openFile(namestartpos, true, call_procedure);
  3359. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3360. card.setIndex(code_value_long());
  3361. card.startFileprint();
  3362. // Procedure calls count as normal print time.
  3363. if (!call_procedure) print_job_timer.start();
  3364. }
  3365. }
  3366. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3367. /**
  3368. * M33: Get the long full path of a file or folder
  3369. *
  3370. * Parameters:
  3371. * <dospath> Case-insensitive DOS-style path to a file or folder
  3372. *
  3373. * Example:
  3374. * M33 miscel~1/armchair/armcha~1.gco
  3375. *
  3376. * Output:
  3377. * /Miscellaneous/Armchair/Armchair.gcode
  3378. */
  3379. inline void gcode_M33() {
  3380. card.printLongPath(current_command_args);
  3381. }
  3382. #endif
  3383. /**
  3384. * M928: Start SD Write
  3385. */
  3386. inline void gcode_M928() {
  3387. card.openLogFile(current_command_args);
  3388. }
  3389. #endif // SDSUPPORT
  3390. /**
  3391. * M42: Change pin status via GCode
  3392. *
  3393. * P<pin> Pin number (LED if omitted)
  3394. * S<byte> Pin status from 0 - 255
  3395. */
  3396. inline void gcode_M42() {
  3397. if (code_seen('S')) {
  3398. int pin_status = code_value_int();
  3399. if (pin_status < 0 || pin_status > 255) return;
  3400. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3401. if (pin_number < 0) return;
  3402. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3403. if (pin_number == sensitive_pins[i]) return;
  3404. pinMode(pin_number, OUTPUT);
  3405. digitalWrite(pin_number, pin_status);
  3406. analogWrite(pin_number, pin_status);
  3407. #if FAN_COUNT > 0
  3408. switch (pin_number) {
  3409. #if HAS_FAN0
  3410. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3411. #endif
  3412. #if HAS_FAN1
  3413. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3414. #endif
  3415. #if HAS_FAN2
  3416. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3417. #endif
  3418. }
  3419. #endif
  3420. } // code_seen('S')
  3421. }
  3422. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3423. /**
  3424. * M48: Z probe repeatability measurement function.
  3425. *
  3426. * Usage:
  3427. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3428. * P = Number of sampled points (4-50, default 10)
  3429. * X = Sample X position
  3430. * Y = Sample Y position
  3431. * V = Verbose level (0-4, default=1)
  3432. * E = Engage Z probe for each reading
  3433. * L = Number of legs of movement before probe
  3434. * S = Schizoid (Or Star if you prefer)
  3435. *
  3436. * This function assumes the bed has been homed. Specifically, that a G28 command
  3437. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3438. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3439. * regenerated.
  3440. */
  3441. inline void gcode_M48() {
  3442. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3443. axis_unhomed_error(true);
  3444. return;
  3445. }
  3446. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3447. if (verbose_level < 0 || verbose_level > 4) {
  3448. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3449. return;
  3450. }
  3451. if (verbose_level > 0)
  3452. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3453. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3454. if (n_samples < 4 || n_samples > 50) {
  3455. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3456. return;
  3457. }
  3458. float X_current = current_position[X_AXIS],
  3459. Y_current = current_position[Y_AXIS];
  3460. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  3461. const bool stow_probe_after_each = false;
  3462. #else
  3463. bool stow_probe_after_each = code_seen('E');
  3464. #endif
  3465. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3466. #if DISABLED(DELTA)
  3467. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3468. out_of_range_error(PSTR("X"));
  3469. return;
  3470. }
  3471. #endif
  3472. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3473. #if DISABLED(DELTA)
  3474. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3475. out_of_range_error(PSTR("Y"));
  3476. return;
  3477. }
  3478. #else
  3479. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3480. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3481. return;
  3482. }
  3483. #endif
  3484. bool seen_L = code_seen('L');
  3485. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3486. if (n_legs > 15) {
  3487. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3488. return;
  3489. }
  3490. if (n_legs == 1) n_legs = 2;
  3491. bool schizoid_flag = code_seen('S');
  3492. if (schizoid_flag && !seen_L) n_legs = 7;
  3493. /**
  3494. * Now get everything to the specified probe point So we can safely do a
  3495. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3496. * we don't want to use that as a starting point for each probe.
  3497. */
  3498. if (verbose_level > 2)
  3499. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3500. #if ENABLED(DELTA)
  3501. // we don't do bed level correction in M48 because we want the raw data when we probe
  3502. reset_bed_level();
  3503. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3504. // we don't do bed level correction in M48 because we want the raw data when we probe
  3505. planner.bed_level_matrix.set_to_identity();
  3506. #endif
  3507. setup_for_endstop_or_probe_move();
  3508. // Move to the first point, deploy, and probe
  3509. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3510. randomSeed(millis());
  3511. double mean = 0, sigma = 0, sample_set[n_samples];
  3512. for (uint8_t n = 0; n < n_samples; n++) {
  3513. if (n_legs) {
  3514. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3515. float angle = random(0.0, 360.0),
  3516. radius = random(
  3517. #if ENABLED(DELTA)
  3518. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3519. #else
  3520. 5, X_MAX_LENGTH / 8
  3521. #endif
  3522. );
  3523. if (verbose_level > 3) {
  3524. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3525. SERIAL_ECHOPAIR(" angle: ", angle);
  3526. SERIAL_ECHO(" Direction: ");
  3527. if (dir > 0) SERIAL_ECHO("Counter ");
  3528. SERIAL_ECHOLN("Clockwise");
  3529. }
  3530. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3531. double delta_angle;
  3532. if (schizoid_flag)
  3533. // The points of a 5 point star are 72 degrees apart. We need to
  3534. // skip a point and go to the next one on the star.
  3535. delta_angle = dir * 2.0 * 72.0;
  3536. else
  3537. // If we do this line, we are just trying to move further
  3538. // around the circle.
  3539. delta_angle = dir * (float) random(25, 45);
  3540. angle += delta_angle;
  3541. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3542. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3543. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3544. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3545. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3546. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3547. #if DISABLED(DELTA)
  3548. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3549. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3550. #else
  3551. // If we have gone out too far, we can do a simple fix and scale the numbers
  3552. // back in closer to the origin.
  3553. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3554. X_current /= 1.25;
  3555. Y_current /= 1.25;
  3556. if (verbose_level > 3) {
  3557. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3558. SERIAL_ECHOPAIR(", ", Y_current);
  3559. SERIAL_EOL;
  3560. }
  3561. }
  3562. #endif
  3563. if (verbose_level > 3) {
  3564. SERIAL_PROTOCOL("Going to:");
  3565. SERIAL_ECHOPAIR("x: ", X_current);
  3566. SERIAL_ECHOPAIR("y: ", Y_current);
  3567. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3568. SERIAL_EOL;
  3569. }
  3570. do_blocking_move_to_xy(X_current, Y_current);
  3571. } // n_legs loop
  3572. } // n_legs
  3573. // Probe a single point
  3574. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3575. /**
  3576. * Get the current mean for the data points we have so far
  3577. */
  3578. double sum = 0.0;
  3579. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3580. mean = sum / (n + 1);
  3581. /**
  3582. * Now, use that mean to calculate the standard deviation for the
  3583. * data points we have so far
  3584. */
  3585. sum = 0.0;
  3586. for (uint8_t j = 0; j <= n; j++) {
  3587. float ss = sample_set[j] - mean;
  3588. sum += ss * ss;
  3589. }
  3590. sigma = sqrt(sum / (n + 1));
  3591. if (verbose_level > 0) {
  3592. if (verbose_level > 1) {
  3593. SERIAL_PROTOCOL(n + 1);
  3594. SERIAL_PROTOCOLPGM(" of ");
  3595. SERIAL_PROTOCOL((int)n_samples);
  3596. SERIAL_PROTOCOLPGM(" z: ");
  3597. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3598. if (verbose_level > 2) {
  3599. SERIAL_PROTOCOLPGM(" mean: ");
  3600. SERIAL_PROTOCOL_F(mean, 6);
  3601. SERIAL_PROTOCOLPGM(" sigma: ");
  3602. SERIAL_PROTOCOL_F(sigma, 6);
  3603. }
  3604. }
  3605. SERIAL_EOL;
  3606. }
  3607. } // End of probe loop
  3608. stow_z_probe();
  3609. if (verbose_level > 0) {
  3610. SERIAL_PROTOCOLPGM("Mean: ");
  3611. SERIAL_PROTOCOL_F(mean, 6);
  3612. SERIAL_EOL;
  3613. }
  3614. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3615. SERIAL_PROTOCOL_F(sigma, 6);
  3616. SERIAL_EOL; SERIAL_EOL;
  3617. clean_up_after_endstop_or_probe_move();
  3618. report_current_position();
  3619. }
  3620. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3621. /**
  3622. * M75: Start print timer
  3623. */
  3624. inline void gcode_M75() { print_job_timer.start(); }
  3625. /**
  3626. * M76: Pause print timer
  3627. */
  3628. inline void gcode_M76() { print_job_timer.pause(); }
  3629. /**
  3630. * M77: Stop print timer
  3631. */
  3632. inline void gcode_M77() { print_job_timer.stop(); }
  3633. #if ENABLED(PRINTCOUNTER)
  3634. /*+
  3635. * M78: Show print statistics
  3636. */
  3637. inline void gcode_M78() {
  3638. // "M78 S78" will reset the statistics
  3639. if (code_seen('S') && code_value_int() == 78)
  3640. print_job_timer.initStats();
  3641. else print_job_timer.showStats();
  3642. }
  3643. #endif
  3644. /**
  3645. * M104: Set hot end temperature
  3646. */
  3647. inline void gcode_M104() {
  3648. if (get_target_extruder_from_command(104)) return;
  3649. if (DEBUGGING(DRYRUN)) return;
  3650. #if ENABLED(SINGLENOZZLE)
  3651. if (target_extruder != active_extruder) return;
  3652. #endif
  3653. if (code_seen('S')) {
  3654. float temp = code_value_temp_abs();
  3655. thermalManager.setTargetHotend(temp, target_extruder);
  3656. #if ENABLED(DUAL_X_CARRIAGE)
  3657. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3658. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3659. #endif
  3660. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3661. /**
  3662. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3663. * stand by mode, for instance in a dual extruder setup, without affecting
  3664. * the running print timer.
  3665. */
  3666. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3667. print_job_timer.stop();
  3668. LCD_MESSAGEPGM(WELCOME_MSG);
  3669. }
  3670. /**
  3671. * We do not check if the timer is already running because this check will
  3672. * be done for us inside the Stopwatch::start() method thus a running timer
  3673. * will not restart.
  3674. */
  3675. else print_job_timer.start();
  3676. #endif
  3677. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3678. }
  3679. }
  3680. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3681. void print_heaterstates() {
  3682. #if HAS_TEMP_HOTEND
  3683. SERIAL_PROTOCOLPGM(" T:");
  3684. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3685. SERIAL_PROTOCOLPGM(" /");
  3686. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3687. #endif
  3688. #if HAS_TEMP_BED
  3689. SERIAL_PROTOCOLPGM(" B:");
  3690. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3691. SERIAL_PROTOCOLPGM(" /");
  3692. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3693. #endif
  3694. #if HOTENDS > 1
  3695. for (int8_t e = 0; e < HOTENDS; ++e) {
  3696. SERIAL_PROTOCOLPGM(" T");
  3697. SERIAL_PROTOCOL(e);
  3698. SERIAL_PROTOCOLCHAR(':');
  3699. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3700. SERIAL_PROTOCOLPGM(" /");
  3701. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3702. }
  3703. #endif
  3704. #if HAS_TEMP_BED
  3705. SERIAL_PROTOCOLPGM(" B@:");
  3706. #ifdef BED_WATTS
  3707. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3708. SERIAL_PROTOCOLCHAR('W');
  3709. #else
  3710. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3711. #endif
  3712. #endif
  3713. SERIAL_PROTOCOLPGM(" @:");
  3714. #ifdef EXTRUDER_WATTS
  3715. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3716. SERIAL_PROTOCOLCHAR('W');
  3717. #else
  3718. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3719. #endif
  3720. #if HOTENDS > 1
  3721. for (int8_t e = 0; e < HOTENDS; ++e) {
  3722. SERIAL_PROTOCOLPGM(" @");
  3723. SERIAL_PROTOCOL(e);
  3724. SERIAL_PROTOCOLCHAR(':');
  3725. #ifdef EXTRUDER_WATTS
  3726. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3727. SERIAL_PROTOCOLCHAR('W');
  3728. #else
  3729. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3730. #endif
  3731. }
  3732. #endif
  3733. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3734. #if HAS_TEMP_BED
  3735. SERIAL_PROTOCOLPGM(" ADC B:");
  3736. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3737. SERIAL_PROTOCOLPGM("C->");
  3738. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3739. #endif
  3740. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3741. SERIAL_PROTOCOLPGM(" T");
  3742. SERIAL_PROTOCOL(cur_hotend);
  3743. SERIAL_PROTOCOLCHAR(':');
  3744. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3745. SERIAL_PROTOCOLPGM("C->");
  3746. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3747. }
  3748. #endif
  3749. }
  3750. #endif
  3751. /**
  3752. * M105: Read hot end and bed temperature
  3753. */
  3754. inline void gcode_M105() {
  3755. if (get_target_extruder_from_command(105)) return;
  3756. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3757. SERIAL_PROTOCOLPGM(MSG_OK);
  3758. print_heaterstates();
  3759. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3760. SERIAL_ERROR_START;
  3761. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3762. #endif
  3763. SERIAL_EOL;
  3764. }
  3765. #if FAN_COUNT > 0
  3766. /**
  3767. * M106: Set Fan Speed
  3768. *
  3769. * S<int> Speed between 0-255
  3770. * P<index> Fan index, if more than one fan
  3771. */
  3772. inline void gcode_M106() {
  3773. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3774. p = code_seen('P') ? code_value_ushort() : 0;
  3775. NOMORE(s, 255);
  3776. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3777. }
  3778. /**
  3779. * M107: Fan Off
  3780. */
  3781. inline void gcode_M107() {
  3782. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3783. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3784. }
  3785. #endif // FAN_COUNT > 0
  3786. /**
  3787. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3788. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3789. */
  3790. inline void gcode_M109() {
  3791. if (get_target_extruder_from_command(109)) return;
  3792. if (DEBUGGING(DRYRUN)) return;
  3793. #if ENABLED(SINGLENOZZLE)
  3794. if (target_extruder != active_extruder) return;
  3795. #endif
  3796. bool no_wait_for_cooling = code_seen('S');
  3797. if (no_wait_for_cooling || code_seen('R')) {
  3798. float temp = code_value_temp_abs();
  3799. thermalManager.setTargetHotend(temp, target_extruder);
  3800. #if ENABLED(DUAL_X_CARRIAGE)
  3801. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3802. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3803. #endif
  3804. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3805. /**
  3806. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3807. * stand by mode, for instance in a dual extruder setup, without affecting
  3808. * the running print timer.
  3809. */
  3810. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3811. print_job_timer.stop();
  3812. LCD_MESSAGEPGM(WELCOME_MSG);
  3813. }
  3814. /**
  3815. * We do not check if the timer is already running because this check will
  3816. * be done for us inside the Stopwatch::start() method thus a running timer
  3817. * will not restart.
  3818. */
  3819. else print_job_timer.start();
  3820. #endif
  3821. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3822. }
  3823. #if ENABLED(AUTOTEMP)
  3824. planner.autotemp_M109();
  3825. #endif
  3826. #if TEMP_RESIDENCY_TIME > 0
  3827. millis_t residency_start_ms = 0;
  3828. // Loop until the temperature has stabilized
  3829. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3830. #else
  3831. // Loop until the temperature is very close target
  3832. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3833. #endif //TEMP_RESIDENCY_TIME > 0
  3834. float theTarget = -1;
  3835. bool wants_to_cool;
  3836. cancel_heatup = false;
  3837. millis_t now, next_temp_ms = 0;
  3838. KEEPALIVE_STATE(NOT_BUSY);
  3839. do {
  3840. // Target temperature might be changed during the loop
  3841. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3842. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3843. theTarget = thermalManager.degTargetHotend(target_extruder);
  3844. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3845. if (no_wait_for_cooling && wants_to_cool) break;
  3846. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3847. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3848. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3849. }
  3850. now = millis();
  3851. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3852. next_temp_ms = now + 1000UL;
  3853. print_heaterstates();
  3854. #if TEMP_RESIDENCY_TIME > 0
  3855. SERIAL_PROTOCOLPGM(" W:");
  3856. if (residency_start_ms) {
  3857. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3858. SERIAL_PROTOCOLLN(rem);
  3859. }
  3860. else {
  3861. SERIAL_PROTOCOLLNPGM("?");
  3862. }
  3863. #else
  3864. SERIAL_EOL;
  3865. #endif
  3866. }
  3867. idle();
  3868. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3869. #if TEMP_RESIDENCY_TIME > 0
  3870. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3871. if (!residency_start_ms) {
  3872. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3873. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3874. }
  3875. else if (temp_diff > TEMP_HYSTERESIS) {
  3876. // Restart the timer whenever the temperature falls outside the hysteresis.
  3877. residency_start_ms = now;
  3878. }
  3879. #endif //TEMP_RESIDENCY_TIME > 0
  3880. } while (!cancel_heatup && TEMP_CONDITIONS);
  3881. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3882. KEEPALIVE_STATE(IN_HANDLER);
  3883. }
  3884. #if HAS_TEMP_BED
  3885. /**
  3886. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3887. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3888. */
  3889. inline void gcode_M190() {
  3890. if (DEBUGGING(DRYRUN)) return;
  3891. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3892. bool no_wait_for_cooling = code_seen('S');
  3893. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3894. #if TEMP_BED_RESIDENCY_TIME > 0
  3895. millis_t residency_start_ms = 0;
  3896. // Loop until the temperature has stabilized
  3897. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3898. #else
  3899. // Loop until the temperature is very close target
  3900. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3901. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3902. float theTarget = -1;
  3903. bool wants_to_cool;
  3904. cancel_heatup = false;
  3905. millis_t now, next_temp_ms = 0;
  3906. KEEPALIVE_STATE(NOT_BUSY);
  3907. do {
  3908. // Target temperature might be changed during the loop
  3909. if (theTarget != thermalManager.degTargetBed()) {
  3910. wants_to_cool = thermalManager.isCoolingBed();
  3911. theTarget = thermalManager.degTargetBed();
  3912. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3913. if (no_wait_for_cooling && wants_to_cool) break;
  3914. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3915. // Simply don't wait to cool a bed under 30C
  3916. if (wants_to_cool && theTarget < 30) break;
  3917. }
  3918. now = millis();
  3919. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3920. next_temp_ms = now + 1000UL;
  3921. print_heaterstates();
  3922. #if TEMP_BED_RESIDENCY_TIME > 0
  3923. SERIAL_PROTOCOLPGM(" W:");
  3924. if (residency_start_ms) {
  3925. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3926. SERIAL_PROTOCOLLN(rem);
  3927. }
  3928. else {
  3929. SERIAL_PROTOCOLLNPGM("?");
  3930. }
  3931. #else
  3932. SERIAL_EOL;
  3933. #endif
  3934. }
  3935. idle();
  3936. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3937. #if TEMP_BED_RESIDENCY_TIME > 0
  3938. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3939. if (!residency_start_ms) {
  3940. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3941. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3942. }
  3943. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3944. // Restart the timer whenever the temperature falls outside the hysteresis.
  3945. residency_start_ms = now;
  3946. }
  3947. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3948. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3949. LCD_MESSAGEPGM(MSG_BED_DONE);
  3950. KEEPALIVE_STATE(IN_HANDLER);
  3951. }
  3952. #endif // HAS_TEMP_BED
  3953. /**
  3954. * M110: Set Current Line Number
  3955. */
  3956. inline void gcode_M110() {
  3957. if (code_seen('N')) gcode_N = code_value_long();
  3958. }
  3959. /**
  3960. * M111: Set the debug level
  3961. */
  3962. inline void gcode_M111() {
  3963. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3964. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3965. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3966. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3967. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3968. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3970. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3971. #endif
  3972. const static char* const debug_strings[] PROGMEM = {
  3973. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3975. str_debug_32
  3976. #endif
  3977. };
  3978. SERIAL_ECHO_START;
  3979. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3980. if (marlin_debug_flags) {
  3981. uint8_t comma = 0;
  3982. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3983. if (TEST(marlin_debug_flags, i)) {
  3984. if (comma++) SERIAL_CHAR(',');
  3985. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3986. }
  3987. }
  3988. }
  3989. else {
  3990. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3991. }
  3992. SERIAL_EOL;
  3993. }
  3994. /**
  3995. * M112: Emergency Stop
  3996. */
  3997. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3998. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3999. /**
  4000. * M113: Get or set Host Keepalive interval (0 to disable)
  4001. *
  4002. * S<seconds> Optional. Set the keepalive interval.
  4003. */
  4004. inline void gcode_M113() {
  4005. if (code_seen('S')) {
  4006. host_keepalive_interval = code_value_byte();
  4007. NOMORE(host_keepalive_interval, 60);
  4008. }
  4009. else {
  4010. SERIAL_ECHO_START;
  4011. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4012. SERIAL_EOL;
  4013. }
  4014. }
  4015. #endif
  4016. #if ENABLED(BARICUDA)
  4017. #if HAS_HEATER_1
  4018. /**
  4019. * M126: Heater 1 valve open
  4020. */
  4021. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4022. /**
  4023. * M127: Heater 1 valve close
  4024. */
  4025. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4026. #endif
  4027. #if HAS_HEATER_2
  4028. /**
  4029. * M128: Heater 2 valve open
  4030. */
  4031. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4032. /**
  4033. * M129: Heater 2 valve close
  4034. */
  4035. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4036. #endif
  4037. #endif //BARICUDA
  4038. /**
  4039. * M140: Set bed temperature
  4040. */
  4041. inline void gcode_M140() {
  4042. if (DEBUGGING(DRYRUN)) return;
  4043. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4044. }
  4045. #if ENABLED(ULTIPANEL)
  4046. /**
  4047. * M145: Set the heatup state for a material in the LCD menu
  4048. * S<material> (0=PLA, 1=ABS)
  4049. * H<hotend temp>
  4050. * B<bed temp>
  4051. * F<fan speed>
  4052. */
  4053. inline void gcode_M145() {
  4054. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4055. if (material < 0 || material > 1) {
  4056. SERIAL_ERROR_START;
  4057. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4058. }
  4059. else {
  4060. int v;
  4061. switch (material) {
  4062. case 0:
  4063. if (code_seen('H')) {
  4064. v = code_value_int();
  4065. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4066. }
  4067. if (code_seen('F')) {
  4068. v = code_value_int();
  4069. plaPreheatFanSpeed = constrain(v, 0, 255);
  4070. }
  4071. #if TEMP_SENSOR_BED != 0
  4072. if (code_seen('B')) {
  4073. v = code_value_int();
  4074. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4075. }
  4076. #endif
  4077. break;
  4078. case 1:
  4079. if (code_seen('H')) {
  4080. v = code_value_int();
  4081. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4082. }
  4083. if (code_seen('F')) {
  4084. v = code_value_int();
  4085. absPreheatFanSpeed = constrain(v, 0, 255);
  4086. }
  4087. #if TEMP_SENSOR_BED != 0
  4088. if (code_seen('B')) {
  4089. v = code_value_int();
  4090. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4091. }
  4092. #endif
  4093. break;
  4094. }
  4095. }
  4096. }
  4097. #endif
  4098. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4099. /**
  4100. * M149: Set temperature units
  4101. */
  4102. inline void gcode_M149() {
  4103. if (code_seen('C')) {
  4104. set_input_temp_units(TEMPUNIT_C);
  4105. } else if (code_seen('K')) {
  4106. set_input_temp_units(TEMPUNIT_K);
  4107. } else if (code_seen('F')) {
  4108. set_input_temp_units(TEMPUNIT_F);
  4109. }
  4110. }
  4111. #endif
  4112. #if HAS_POWER_SWITCH
  4113. /**
  4114. * M80: Turn on Power Supply
  4115. */
  4116. inline void gcode_M80() {
  4117. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4118. /**
  4119. * If you have a switch on suicide pin, this is useful
  4120. * if you want to start another print with suicide feature after
  4121. * a print without suicide...
  4122. */
  4123. #if HAS_SUICIDE
  4124. OUT_WRITE(SUICIDE_PIN, HIGH);
  4125. #endif
  4126. #if ENABLED(ULTIPANEL)
  4127. powersupply = true;
  4128. LCD_MESSAGEPGM(WELCOME_MSG);
  4129. lcd_update();
  4130. #endif
  4131. }
  4132. #endif // HAS_POWER_SWITCH
  4133. /**
  4134. * M81: Turn off Power, including Power Supply, if there is one.
  4135. *
  4136. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4137. */
  4138. inline void gcode_M81() {
  4139. thermalManager.disable_all_heaters();
  4140. stepper.finish_and_disable();
  4141. #if FAN_COUNT > 0
  4142. #if FAN_COUNT > 1
  4143. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4144. #else
  4145. fanSpeeds[0] = 0;
  4146. #endif
  4147. #endif
  4148. delay(1000); // Wait 1 second before switching off
  4149. #if HAS_SUICIDE
  4150. stepper.synchronize();
  4151. suicide();
  4152. #elif HAS_POWER_SWITCH
  4153. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4154. #endif
  4155. #if ENABLED(ULTIPANEL)
  4156. #if HAS_POWER_SWITCH
  4157. powersupply = false;
  4158. #endif
  4159. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4160. lcd_update();
  4161. #endif
  4162. }
  4163. /**
  4164. * M82: Set E codes absolute (default)
  4165. */
  4166. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4167. /**
  4168. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4169. */
  4170. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4171. /**
  4172. * M18, M84: Disable all stepper motors
  4173. */
  4174. inline void gcode_M18_M84() {
  4175. if (code_seen('S')) {
  4176. stepper_inactive_time = code_value_millis_from_seconds();
  4177. }
  4178. else {
  4179. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4180. if (all_axis) {
  4181. stepper.finish_and_disable();
  4182. }
  4183. else {
  4184. stepper.synchronize();
  4185. if (code_seen('X')) disable_x();
  4186. if (code_seen('Y')) disable_y();
  4187. if (code_seen('Z')) disable_z();
  4188. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4189. if (code_seen('E')) {
  4190. disable_e0();
  4191. disable_e1();
  4192. disable_e2();
  4193. disable_e3();
  4194. }
  4195. #endif
  4196. }
  4197. }
  4198. }
  4199. /**
  4200. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4201. */
  4202. inline void gcode_M85() {
  4203. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4204. }
  4205. /**
  4206. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4207. * (Follows the same syntax as G92)
  4208. */
  4209. inline void gcode_M92() {
  4210. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4211. if (code_seen(axis_codes[i])) {
  4212. if (i == E_AXIS) {
  4213. float value = code_value_per_axis_unit(i);
  4214. if (value < 20.0) {
  4215. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4216. planner.max_e_jerk *= factor;
  4217. planner.max_feedrate[i] *= factor;
  4218. planner.max_acceleration_steps_per_s2[i] *= factor;
  4219. }
  4220. planner.axis_steps_per_mm[i] = value;
  4221. }
  4222. else {
  4223. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4224. }
  4225. }
  4226. }
  4227. }
  4228. /**
  4229. * Output the current position to serial
  4230. */
  4231. static void report_current_position() {
  4232. SERIAL_PROTOCOLPGM("X:");
  4233. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4234. SERIAL_PROTOCOLPGM(" Y:");
  4235. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4236. SERIAL_PROTOCOLPGM(" Z:");
  4237. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4238. SERIAL_PROTOCOLPGM(" E:");
  4239. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4240. stepper.report_positions();
  4241. #if ENABLED(SCARA)
  4242. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4243. SERIAL_PROTOCOL(delta[X_AXIS]);
  4244. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4245. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4246. SERIAL_EOL;
  4247. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4248. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4249. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4250. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4251. SERIAL_EOL;
  4252. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4253. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4254. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4255. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4256. SERIAL_EOL; SERIAL_EOL;
  4257. #endif
  4258. }
  4259. /**
  4260. * M114: Output current position to serial port
  4261. */
  4262. inline void gcode_M114() { report_current_position(); }
  4263. /**
  4264. * M115: Capabilities string
  4265. */
  4266. inline void gcode_M115() {
  4267. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4268. }
  4269. /**
  4270. * M117: Set LCD Status Message
  4271. */
  4272. inline void gcode_M117() {
  4273. lcd_setstatus(current_command_args);
  4274. }
  4275. /**
  4276. * M119: Output endstop states to serial output
  4277. */
  4278. inline void gcode_M119() { endstops.M119(); }
  4279. /**
  4280. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4281. */
  4282. inline void gcode_M120() { endstops.enable_globally(true); }
  4283. /**
  4284. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4285. */
  4286. inline void gcode_M121() { endstops.enable_globally(false); }
  4287. #if ENABLED(BLINKM)
  4288. /**
  4289. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4290. */
  4291. inline void gcode_M150() {
  4292. SendColors(
  4293. code_seen('R') ? code_value_byte() : 0,
  4294. code_seen('U') ? code_value_byte() : 0,
  4295. code_seen('B') ? code_value_byte() : 0
  4296. );
  4297. }
  4298. #endif // BLINKM
  4299. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4300. /**
  4301. * M155: Send data to a I2C slave device
  4302. *
  4303. * This is a PoC, the formating and arguments for the GCODE will
  4304. * change to be more compatible, the current proposal is:
  4305. *
  4306. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4307. *
  4308. * M155 B<byte-1 value in base 10>
  4309. * M155 B<byte-2 value in base 10>
  4310. * M155 B<byte-3 value in base 10>
  4311. *
  4312. * M155 S1 ; Send the buffered data and reset the buffer
  4313. * M155 R1 ; Reset the buffer without sending data
  4314. *
  4315. */
  4316. inline void gcode_M155() {
  4317. // Set the target address
  4318. if (code_seen('A'))
  4319. i2c.address(code_value_byte());
  4320. // Add a new byte to the buffer
  4321. else if (code_seen('B'))
  4322. i2c.addbyte(code_value_int());
  4323. // Flush the buffer to the bus
  4324. else if (code_seen('S')) i2c.send();
  4325. // Reset and rewind the buffer
  4326. else if (code_seen('R')) i2c.reset();
  4327. }
  4328. /**
  4329. * M156: Request X bytes from I2C slave device
  4330. *
  4331. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4332. */
  4333. inline void gcode_M156() {
  4334. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4335. int bytes = code_seen('B') ? code_value_int() : 1;
  4336. if (addr && bytes > 0 && bytes <= 32) {
  4337. i2c.address(addr);
  4338. i2c.reqbytes(bytes);
  4339. }
  4340. else {
  4341. SERIAL_ERROR_START;
  4342. SERIAL_ERRORLN("Bad i2c request");
  4343. }
  4344. }
  4345. #endif //EXPERIMENTAL_I2CBUS
  4346. /**
  4347. * M200: Set filament diameter and set E axis units to cubic units
  4348. *
  4349. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4350. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4351. */
  4352. inline void gcode_M200() {
  4353. if (get_target_extruder_from_command(200)) return;
  4354. if (code_seen('D')) {
  4355. float diameter = code_value_linear_units();
  4356. // setting any extruder filament size disables volumetric on the assumption that
  4357. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4358. // for all extruders
  4359. volumetric_enabled = (diameter != 0.0);
  4360. if (volumetric_enabled) {
  4361. filament_size[target_extruder] = diameter;
  4362. // make sure all extruders have some sane value for the filament size
  4363. for (int i = 0; i < EXTRUDERS; i++)
  4364. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4365. }
  4366. }
  4367. else {
  4368. //reserved for setting filament diameter via UFID or filament measuring device
  4369. return;
  4370. }
  4371. calculate_volumetric_multipliers();
  4372. }
  4373. /**
  4374. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4375. */
  4376. inline void gcode_M201() {
  4377. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4378. if (code_seen(axis_codes[i])) {
  4379. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4380. }
  4381. }
  4382. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4383. planner.reset_acceleration_rates();
  4384. }
  4385. #if 0 // Not used for Sprinter/grbl gen6
  4386. inline void gcode_M202() {
  4387. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4388. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4389. }
  4390. }
  4391. #endif
  4392. /**
  4393. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4394. */
  4395. inline void gcode_M203() {
  4396. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4397. if (code_seen(axis_codes[i])) {
  4398. planner.max_feedrate[i] = code_value_axis_units(i);
  4399. }
  4400. }
  4401. }
  4402. /**
  4403. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4404. *
  4405. * P = Printing moves
  4406. * R = Retract only (no X, Y, Z) moves
  4407. * T = Travel (non printing) moves
  4408. *
  4409. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4410. */
  4411. inline void gcode_M204() {
  4412. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4413. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4414. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4415. SERIAL_EOL;
  4416. }
  4417. if (code_seen('P')) {
  4418. planner.acceleration = code_value_linear_units();
  4419. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4420. SERIAL_EOL;
  4421. }
  4422. if (code_seen('R')) {
  4423. planner.retract_acceleration = code_value_linear_units();
  4424. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4425. SERIAL_EOL;
  4426. }
  4427. if (code_seen('T')) {
  4428. planner.travel_acceleration = code_value_linear_units();
  4429. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4430. SERIAL_EOL;
  4431. }
  4432. }
  4433. /**
  4434. * M205: Set Advanced Settings
  4435. *
  4436. * S = Min Feed Rate (mm/s)
  4437. * T = Min Travel Feed Rate (mm/s)
  4438. * B = Min Segment Time (µs)
  4439. * X = Max XY Jerk (mm/s/s)
  4440. * Z = Max Z Jerk (mm/s/s)
  4441. * E = Max E Jerk (mm/s/s)
  4442. */
  4443. inline void gcode_M205() {
  4444. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4445. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4446. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4447. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4448. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4449. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4450. }
  4451. /**
  4452. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4453. */
  4454. inline void gcode_M206() {
  4455. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4456. if (code_seen(axis_codes[i]))
  4457. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4458. #if ENABLED(SCARA)
  4459. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4460. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4461. #endif
  4462. SYNC_PLAN_POSITION_KINEMATIC();
  4463. report_current_position();
  4464. }
  4465. #if ENABLED(DELTA)
  4466. /**
  4467. * M665: Set delta configurations
  4468. *
  4469. * L = diagonal rod
  4470. * R = delta radius
  4471. * S = segments per second
  4472. * A = Alpha (Tower 1) diagonal rod trim
  4473. * B = Beta (Tower 2) diagonal rod trim
  4474. * C = Gamma (Tower 3) diagonal rod trim
  4475. */
  4476. inline void gcode_M665() {
  4477. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4478. if (code_seen('R')) delta_radius = code_value_linear_units();
  4479. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4480. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4481. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4482. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4483. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4484. }
  4485. /**
  4486. * M666: Set delta endstop adjustment
  4487. */
  4488. inline void gcode_M666() {
  4489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4490. if (DEBUGGING(LEVELING)) {
  4491. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4492. }
  4493. #endif
  4494. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4495. if (code_seen(axis_codes[i])) {
  4496. endstop_adj[i] = code_value_axis_units(i);
  4497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4498. if (DEBUGGING(LEVELING)) {
  4499. SERIAL_ECHOPGM("endstop_adj[");
  4500. SERIAL_ECHO(axis_codes[i]);
  4501. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4502. SERIAL_EOL;
  4503. }
  4504. #endif
  4505. }
  4506. }
  4507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4508. if (DEBUGGING(LEVELING)) {
  4509. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4510. }
  4511. #endif
  4512. }
  4513. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4514. /**
  4515. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4516. */
  4517. inline void gcode_M666() {
  4518. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4519. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4520. SERIAL_EOL;
  4521. }
  4522. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4523. #if ENABLED(FWRETRACT)
  4524. /**
  4525. * M207: Set firmware retraction values
  4526. *
  4527. * S[+mm] retract_length
  4528. * W[+mm] retract_length_swap (multi-extruder)
  4529. * F[mm/min] retract_feedrate_mm_s
  4530. * Z[mm] retract_zlift
  4531. */
  4532. inline void gcode_M207() {
  4533. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4534. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4535. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4536. #if EXTRUDERS > 1
  4537. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4538. #endif
  4539. }
  4540. /**
  4541. * M208: Set firmware un-retraction values
  4542. *
  4543. * S[+mm] retract_recover_length (in addition to M207 S*)
  4544. * W[+mm] retract_recover_length_swap (multi-extruder)
  4545. * F[mm/min] retract_recover_feedrate
  4546. */
  4547. inline void gcode_M208() {
  4548. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4549. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4550. #if EXTRUDERS > 1
  4551. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4552. #endif
  4553. }
  4554. /**
  4555. * M209: Enable automatic retract (M209 S1)
  4556. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4557. */
  4558. inline void gcode_M209() {
  4559. if (code_seen('S')) {
  4560. int t = code_value_int();
  4561. switch (t) {
  4562. case 0:
  4563. autoretract_enabled = false;
  4564. break;
  4565. case 1:
  4566. autoretract_enabled = true;
  4567. break;
  4568. default:
  4569. unknown_command_error();
  4570. return;
  4571. }
  4572. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4573. }
  4574. }
  4575. #endif // FWRETRACT
  4576. #if HOTENDS > 1
  4577. /**
  4578. * M218 - set hotend offset (in mm)
  4579. *
  4580. * T<tool>
  4581. * X<xoffset>
  4582. * Y<yoffset>
  4583. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4584. */
  4585. inline void gcode_M218() {
  4586. if (get_target_extruder_from_command(218)) return;
  4587. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4588. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4589. #if ENABLED(DUAL_X_CARRIAGE)
  4590. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4591. #endif
  4592. SERIAL_ECHO_START;
  4593. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4594. for (int e = 0; e < HOTENDS; e++) {
  4595. SERIAL_CHAR(' ');
  4596. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4597. SERIAL_CHAR(',');
  4598. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4599. #if ENABLED(DUAL_X_CARRIAGE)
  4600. SERIAL_CHAR(',');
  4601. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4602. #endif
  4603. }
  4604. SERIAL_EOL;
  4605. }
  4606. #endif // HOTENDS > 1
  4607. /**
  4608. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4609. */
  4610. inline void gcode_M220() {
  4611. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4612. }
  4613. /**
  4614. * M221: Set extrusion percentage (M221 T0 S95)
  4615. */
  4616. inline void gcode_M221() {
  4617. if (code_seen('S')) {
  4618. int sval = code_value_int();
  4619. if (get_target_extruder_from_command(221)) return;
  4620. extruder_multiplier[target_extruder] = sval;
  4621. }
  4622. }
  4623. /**
  4624. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4625. */
  4626. inline void gcode_M226() {
  4627. if (code_seen('P')) {
  4628. int pin_number = code_value_int();
  4629. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4630. if (pin_state >= -1 && pin_state <= 1) {
  4631. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4632. if (sensitive_pins[i] == pin_number) {
  4633. pin_number = -1;
  4634. break;
  4635. }
  4636. }
  4637. if (pin_number > -1) {
  4638. int target = LOW;
  4639. stepper.synchronize();
  4640. pinMode(pin_number, INPUT);
  4641. switch (pin_state) {
  4642. case 1:
  4643. target = HIGH;
  4644. break;
  4645. case 0:
  4646. target = LOW;
  4647. break;
  4648. case -1:
  4649. target = !digitalRead(pin_number);
  4650. break;
  4651. }
  4652. while (digitalRead(pin_number) != target) idle();
  4653. } // pin_number > -1
  4654. } // pin_state -1 0 1
  4655. } // code_seen('P')
  4656. }
  4657. #if HAS_SERVOS
  4658. /**
  4659. * M280: Get or set servo position. P<index> S<angle>
  4660. */
  4661. inline void gcode_M280() {
  4662. int servo_index = code_seen('P') ? code_value_int() : -1;
  4663. int servo_position = 0;
  4664. if (code_seen('S')) {
  4665. servo_position = code_value_int();
  4666. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4667. MOVE_SERVO(servo_index, servo_position);
  4668. else {
  4669. SERIAL_ERROR_START;
  4670. SERIAL_ERROR("Servo ");
  4671. SERIAL_ERROR(servo_index);
  4672. SERIAL_ERRORLN(" out of range");
  4673. }
  4674. }
  4675. else if (servo_index >= 0) {
  4676. SERIAL_ECHO_START;
  4677. SERIAL_ECHO(" Servo ");
  4678. SERIAL_ECHO(servo_index);
  4679. SERIAL_ECHO(": ");
  4680. SERIAL_ECHOLN(servo[servo_index].read());
  4681. }
  4682. }
  4683. #endif // HAS_SERVOS
  4684. #if HAS_BUZZER
  4685. /**
  4686. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4687. */
  4688. inline void gcode_M300() {
  4689. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4690. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4691. // Limits the tone duration to 0-5 seconds.
  4692. NOMORE(duration, 5000);
  4693. buzzer.tone(duration, frequency);
  4694. }
  4695. #endif // HAS_BUZZER
  4696. #if ENABLED(PIDTEMP)
  4697. /**
  4698. * M301: Set PID parameters P I D (and optionally C, L)
  4699. *
  4700. * P[float] Kp term
  4701. * I[float] Ki term (unscaled)
  4702. * D[float] Kd term (unscaled)
  4703. *
  4704. * With PID_ADD_EXTRUSION_RATE:
  4705. *
  4706. * C[float] Kc term
  4707. * L[float] LPQ length
  4708. */
  4709. inline void gcode_M301() {
  4710. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4711. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4712. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4713. if (e < HOTENDS) { // catch bad input value
  4714. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4715. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4716. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4717. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4718. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4719. if (code_seen('L')) lpq_len = code_value_float();
  4720. NOMORE(lpq_len, LPQ_MAX_LEN);
  4721. #endif
  4722. thermalManager.updatePID();
  4723. SERIAL_ECHO_START;
  4724. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4725. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4726. SERIAL_ECHO(e);
  4727. #endif // PID_PARAMS_PER_HOTEND
  4728. SERIAL_ECHO(" p:");
  4729. SERIAL_ECHO(PID_PARAM(Kp, e));
  4730. SERIAL_ECHO(" i:");
  4731. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4732. SERIAL_ECHO(" d:");
  4733. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4734. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4735. SERIAL_ECHO(" c:");
  4736. //Kc does not have scaling applied above, or in resetting defaults
  4737. SERIAL_ECHO(PID_PARAM(Kc, e));
  4738. #endif
  4739. SERIAL_EOL;
  4740. }
  4741. else {
  4742. SERIAL_ERROR_START;
  4743. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4744. }
  4745. }
  4746. #endif // PIDTEMP
  4747. #if ENABLED(PIDTEMPBED)
  4748. inline void gcode_M304() {
  4749. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4750. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4751. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4752. thermalManager.updatePID();
  4753. SERIAL_ECHO_START;
  4754. SERIAL_ECHO(" p:");
  4755. SERIAL_ECHO(thermalManager.bedKp);
  4756. SERIAL_ECHO(" i:");
  4757. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4758. SERIAL_ECHO(" d:");
  4759. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4760. }
  4761. #endif // PIDTEMPBED
  4762. #if defined(CHDK) || HAS_PHOTOGRAPH
  4763. /**
  4764. * M240: Trigger a camera by emulating a Canon RC-1
  4765. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4766. */
  4767. inline void gcode_M240() {
  4768. #ifdef CHDK
  4769. OUT_WRITE(CHDK, HIGH);
  4770. chdkHigh = millis();
  4771. chdkActive = true;
  4772. #elif HAS_PHOTOGRAPH
  4773. const uint8_t NUM_PULSES = 16;
  4774. const float PULSE_LENGTH = 0.01524;
  4775. for (int i = 0; i < NUM_PULSES; i++) {
  4776. WRITE(PHOTOGRAPH_PIN, HIGH);
  4777. _delay_ms(PULSE_LENGTH);
  4778. WRITE(PHOTOGRAPH_PIN, LOW);
  4779. _delay_ms(PULSE_LENGTH);
  4780. }
  4781. delay(7.33);
  4782. for (int i = 0; i < NUM_PULSES; i++) {
  4783. WRITE(PHOTOGRAPH_PIN, HIGH);
  4784. _delay_ms(PULSE_LENGTH);
  4785. WRITE(PHOTOGRAPH_PIN, LOW);
  4786. _delay_ms(PULSE_LENGTH);
  4787. }
  4788. #endif // !CHDK && HAS_PHOTOGRAPH
  4789. }
  4790. #endif // CHDK || PHOTOGRAPH_PIN
  4791. #if HAS_LCD_CONTRAST
  4792. /**
  4793. * M250: Read and optionally set the LCD contrast
  4794. */
  4795. inline void gcode_M250() {
  4796. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4797. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4798. SERIAL_PROTOCOL(lcd_contrast);
  4799. SERIAL_EOL;
  4800. }
  4801. #endif // HAS_LCD_CONTRAST
  4802. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4803. /**
  4804. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4805. */
  4806. inline void gcode_M302() {
  4807. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4808. }
  4809. #endif // PREVENT_DANGEROUS_EXTRUDE
  4810. /**
  4811. * M303: PID relay autotune
  4812. *
  4813. * S<temperature> sets the target temperature. (default 150C)
  4814. * E<extruder> (-1 for the bed) (default 0)
  4815. * C<cycles>
  4816. * U<bool> with a non-zero value will apply the result to current settings
  4817. */
  4818. inline void gcode_M303() {
  4819. #if HAS_PID_HEATING
  4820. int e = code_seen('E') ? code_value_int() : 0;
  4821. int c = code_seen('C') ? code_value_int() : 5;
  4822. bool u = code_seen('U') && code_value_bool();
  4823. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4824. if (e >= 0 && e < HOTENDS)
  4825. target_extruder = e;
  4826. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4827. thermalManager.PID_autotune(temp, e, c, u);
  4828. KEEPALIVE_STATE(IN_HANDLER);
  4829. #else
  4830. SERIAL_ERROR_START;
  4831. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4832. #endif
  4833. }
  4834. #if ENABLED(SCARA)
  4835. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4836. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4837. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4838. if (IsRunning()) {
  4839. //gcode_get_destination(); // For X Y Z E F
  4840. delta[X_AXIS] = delta_x;
  4841. delta[Y_AXIS] = delta_y;
  4842. calculate_SCARA_forward_Transform(delta);
  4843. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4844. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4845. prepare_move_to_destination();
  4846. //ok_to_send();
  4847. return true;
  4848. }
  4849. return false;
  4850. }
  4851. /**
  4852. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4853. */
  4854. inline bool gcode_M360() {
  4855. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4856. return SCARA_move_to_cal(0, 120);
  4857. }
  4858. /**
  4859. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4860. */
  4861. inline bool gcode_M361() {
  4862. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4863. return SCARA_move_to_cal(90, 130);
  4864. }
  4865. /**
  4866. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4867. */
  4868. inline bool gcode_M362() {
  4869. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4870. return SCARA_move_to_cal(60, 180);
  4871. }
  4872. /**
  4873. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4874. */
  4875. inline bool gcode_M363() {
  4876. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4877. return SCARA_move_to_cal(50, 90);
  4878. }
  4879. /**
  4880. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4881. */
  4882. inline bool gcode_M364() {
  4883. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4884. return SCARA_move_to_cal(45, 135);
  4885. }
  4886. /**
  4887. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4888. */
  4889. inline void gcode_M365() {
  4890. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4891. if (code_seen(axis_codes[i])) {
  4892. axis_scaling[i] = code_value_float();
  4893. }
  4894. }
  4895. }
  4896. #endif // SCARA
  4897. #if ENABLED(EXT_SOLENOID)
  4898. void enable_solenoid(uint8_t num) {
  4899. switch (num) {
  4900. case 0:
  4901. OUT_WRITE(SOL0_PIN, HIGH);
  4902. break;
  4903. #if HAS_SOLENOID_1
  4904. case 1:
  4905. OUT_WRITE(SOL1_PIN, HIGH);
  4906. break;
  4907. #endif
  4908. #if HAS_SOLENOID_2
  4909. case 2:
  4910. OUT_WRITE(SOL2_PIN, HIGH);
  4911. break;
  4912. #endif
  4913. #if HAS_SOLENOID_3
  4914. case 3:
  4915. OUT_WRITE(SOL3_PIN, HIGH);
  4916. break;
  4917. #endif
  4918. default:
  4919. SERIAL_ECHO_START;
  4920. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4921. break;
  4922. }
  4923. }
  4924. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4925. void disable_all_solenoids() {
  4926. OUT_WRITE(SOL0_PIN, LOW);
  4927. OUT_WRITE(SOL1_PIN, LOW);
  4928. OUT_WRITE(SOL2_PIN, LOW);
  4929. OUT_WRITE(SOL3_PIN, LOW);
  4930. }
  4931. /**
  4932. * M380: Enable solenoid on the active extruder
  4933. */
  4934. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4935. /**
  4936. * M381: Disable all solenoids
  4937. */
  4938. inline void gcode_M381() { disable_all_solenoids(); }
  4939. #endif // EXT_SOLENOID
  4940. /**
  4941. * M400: Finish all moves
  4942. */
  4943. inline void gcode_M400() { stepper.synchronize(); }
  4944. #if HAS_BED_PROBE
  4945. /**
  4946. * M401: Engage Z Servo endstop if available
  4947. */
  4948. inline void gcode_M401() { deploy_z_probe(); }
  4949. /**
  4950. * M402: Retract Z Servo endstop if enabled
  4951. */
  4952. inline void gcode_M402() { stow_z_probe(); }
  4953. #endif // HAS_BED_PROBE
  4954. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4955. /**
  4956. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4957. */
  4958. inline void gcode_M404() {
  4959. if (code_seen('W')) {
  4960. filament_width_nominal = code_value_linear_units();
  4961. }
  4962. else {
  4963. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4964. SERIAL_PROTOCOLLN(filament_width_nominal);
  4965. }
  4966. }
  4967. /**
  4968. * M405: Turn on filament sensor for control
  4969. */
  4970. inline void gcode_M405() {
  4971. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4972. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4973. if (code_seen('D')) meas_delay_cm = code_value_int();
  4974. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4975. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4976. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4977. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4978. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4979. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4980. }
  4981. filament_sensor = true;
  4982. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4983. //SERIAL_PROTOCOL(filament_width_meas);
  4984. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4985. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4986. }
  4987. /**
  4988. * M406: Turn off filament sensor for control
  4989. */
  4990. inline void gcode_M406() { filament_sensor = false; }
  4991. /**
  4992. * M407: Get measured filament diameter on serial output
  4993. */
  4994. inline void gcode_M407() {
  4995. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4996. SERIAL_PROTOCOLLN(filament_width_meas);
  4997. }
  4998. #endif // FILAMENT_WIDTH_SENSOR
  4999. #if DISABLED(DELTA) && DISABLED(SCARA)
  5000. void set_current_position_from_planner() {
  5001. stepper.synchronize();
  5002. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5003. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5004. current_position[X_AXIS] = pos.x;
  5005. current_position[Y_AXIS] = pos.y;
  5006. current_position[Z_AXIS] = pos.z;
  5007. #else
  5008. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5009. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5010. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5011. #endif
  5012. sync_plan_position(); // ...re-apply to planner position
  5013. }
  5014. #endif
  5015. /**
  5016. * M410: Quickstop - Abort all planned moves
  5017. *
  5018. * This will stop the carriages mid-move, so most likely they
  5019. * will be out of sync with the stepper position after this.
  5020. */
  5021. inline void gcode_M410() {
  5022. stepper.quick_stop();
  5023. #if DISABLED(DELTA) && DISABLED(SCARA)
  5024. set_current_position_from_planner();
  5025. #endif
  5026. }
  5027. #if ENABLED(MESH_BED_LEVELING)
  5028. /**
  5029. * M420: Enable/Disable Mesh Bed Leveling
  5030. */
  5031. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5032. /**
  5033. * M421: Set a single Mesh Bed Leveling Z coordinate
  5034. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5035. */
  5036. inline void gcode_M421() {
  5037. int8_t px, py;
  5038. float z = 0;
  5039. bool hasX, hasY, hasZ, hasI, hasJ;
  5040. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5041. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5042. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5043. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5044. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5045. if (hasX && hasY && hasZ) {
  5046. if (px >= 0 && py >= 0)
  5047. mbl.set_z(px, py, z);
  5048. else {
  5049. SERIAL_ERROR_START;
  5050. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5051. }
  5052. }
  5053. else if (hasI && hasJ && hasZ) {
  5054. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5055. mbl.set_z(px, py, z);
  5056. else {
  5057. SERIAL_ERROR_START;
  5058. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5059. }
  5060. }
  5061. else {
  5062. SERIAL_ERROR_START;
  5063. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5064. }
  5065. }
  5066. #endif
  5067. /**
  5068. * M428: Set home_offset based on the distance between the
  5069. * current_position and the nearest "reference point."
  5070. * If an axis is past center its endstop position
  5071. * is the reference-point. Otherwise it uses 0. This allows
  5072. * the Z offset to be set near the bed when using a max endstop.
  5073. *
  5074. * M428 can't be used more than 2cm away from 0 or an endstop.
  5075. *
  5076. * Use M206 to set these values directly.
  5077. */
  5078. inline void gcode_M428() {
  5079. bool err = false;
  5080. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5081. if (axis_homed[i]) {
  5082. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5083. diff = current_position[i] - base;
  5084. if (diff > -20 && diff < 20) {
  5085. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5086. }
  5087. else {
  5088. SERIAL_ERROR_START;
  5089. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5090. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5091. #if HAS_BUZZER
  5092. buzzer.tone(200, 40);
  5093. #endif
  5094. err = true;
  5095. break;
  5096. }
  5097. }
  5098. }
  5099. if (!err) {
  5100. SYNC_PLAN_POSITION_KINEMATIC();
  5101. report_current_position();
  5102. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5103. #if HAS_BUZZER
  5104. buzzer.tone(200, 659);
  5105. buzzer.tone(200, 698);
  5106. #endif
  5107. }
  5108. }
  5109. /**
  5110. * M500: Store settings in EEPROM
  5111. */
  5112. inline void gcode_M500() {
  5113. Config_StoreSettings();
  5114. }
  5115. /**
  5116. * M501: Read settings from EEPROM
  5117. */
  5118. inline void gcode_M501() {
  5119. Config_RetrieveSettings();
  5120. }
  5121. /**
  5122. * M502: Revert to default settings
  5123. */
  5124. inline void gcode_M502() {
  5125. Config_ResetDefault();
  5126. }
  5127. /**
  5128. * M503: print settings currently in memory
  5129. */
  5130. inline void gcode_M503() {
  5131. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5132. }
  5133. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5134. /**
  5135. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5136. */
  5137. inline void gcode_M540() {
  5138. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5139. }
  5140. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5141. #if HAS_BED_PROBE
  5142. inline void gcode_M851() {
  5143. SERIAL_ECHO_START;
  5144. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5145. SERIAL_CHAR(' ');
  5146. if (code_seen('Z')) {
  5147. float value = code_value_axis_units(Z_AXIS);
  5148. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5149. zprobe_zoffset = value;
  5150. SERIAL_ECHO(zprobe_zoffset);
  5151. }
  5152. else {
  5153. SERIAL_ECHOPGM(MSG_Z_MIN);
  5154. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5155. SERIAL_ECHOPGM(MSG_Z_MAX);
  5156. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5157. }
  5158. }
  5159. else {
  5160. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5161. }
  5162. SERIAL_EOL;
  5163. }
  5164. #endif // HAS_BED_PROBE
  5165. #if ENABLED(FILAMENTCHANGEENABLE)
  5166. /**
  5167. * M600: Pause for filament change
  5168. *
  5169. * E[distance] - Retract the filament this far (negative value)
  5170. * Z[distance] - Move the Z axis by this distance
  5171. * X[position] - Move to this X position, with Y
  5172. * Y[position] - Move to this Y position, with X
  5173. * L[distance] - Retract distance for removal (manual reload)
  5174. *
  5175. * Default values are used for omitted arguments.
  5176. *
  5177. */
  5178. inline void gcode_M600() {
  5179. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5180. SERIAL_ERROR_START;
  5181. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5182. return;
  5183. }
  5184. float lastpos[NUM_AXIS];
  5185. #if ENABLED(DELTA)
  5186. float fr60 = feedrate / 60;
  5187. #endif
  5188. for (int i = 0; i < NUM_AXIS; i++)
  5189. lastpos[i] = destination[i] = current_position[i];
  5190. #if ENABLED(DELTA)
  5191. #define RUNPLAN calculate_delta(destination); \
  5192. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5193. #else
  5194. #define RUNPLAN line_to_destination();
  5195. #endif
  5196. //retract by E
  5197. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5198. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5199. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5200. #endif
  5201. RUNPLAN;
  5202. //lift Z
  5203. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5204. #ifdef FILAMENTCHANGE_ZADD
  5205. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5206. #endif
  5207. RUNPLAN;
  5208. //move xy
  5209. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5210. #ifdef FILAMENTCHANGE_XPOS
  5211. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5212. #endif
  5213. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5214. #ifdef FILAMENTCHANGE_YPOS
  5215. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5216. #endif
  5217. RUNPLAN;
  5218. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5219. #ifdef FILAMENTCHANGE_FINALRETRACT
  5220. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5221. #endif
  5222. RUNPLAN;
  5223. //finish moves
  5224. stepper.synchronize();
  5225. //disable extruder steppers so filament can be removed
  5226. disable_e0();
  5227. disable_e1();
  5228. disable_e2();
  5229. disable_e3();
  5230. delay(100);
  5231. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5232. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5233. millis_t next_tick = 0;
  5234. #endif
  5235. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5236. while (!lcd_clicked()) {
  5237. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5238. millis_t ms = millis();
  5239. if (ELAPSED(ms, next_tick)) {
  5240. lcd_quick_feedback();
  5241. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5242. }
  5243. idle(true);
  5244. #else
  5245. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5246. destination[E_AXIS] = current_position[E_AXIS];
  5247. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5248. stepper.synchronize();
  5249. #endif
  5250. } // while(!lcd_clicked)
  5251. KEEPALIVE_STATE(IN_HANDLER);
  5252. lcd_quick_feedback(); // click sound feedback
  5253. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5254. current_position[E_AXIS] = 0;
  5255. stepper.synchronize();
  5256. #endif
  5257. //return to normal
  5258. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5259. #ifdef FILAMENTCHANGE_FINALRETRACT
  5260. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5261. #endif
  5262. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5263. sync_plan_position_e();
  5264. RUNPLAN; //should do nothing
  5265. lcd_reset_alert_level();
  5266. #if ENABLED(DELTA)
  5267. // Move XYZ to starting position, then E
  5268. calculate_delta(lastpos);
  5269. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5270. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5271. #else
  5272. // Move XY to starting position, then Z, then E
  5273. destination[X_AXIS] = lastpos[X_AXIS];
  5274. destination[Y_AXIS] = lastpos[Y_AXIS];
  5275. line_to_destination();
  5276. destination[Z_AXIS] = lastpos[Z_AXIS];
  5277. line_to_destination();
  5278. destination[E_AXIS] = lastpos[E_AXIS];
  5279. line_to_destination();
  5280. #endif
  5281. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5282. filament_ran_out = false;
  5283. #endif
  5284. }
  5285. #endif // FILAMENTCHANGEENABLE
  5286. #if ENABLED(DUAL_X_CARRIAGE)
  5287. /**
  5288. * M605: Set dual x-carriage movement mode
  5289. *
  5290. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5291. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5292. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5293. * millimeters x-offset and an optional differential hotend temperature of
  5294. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5295. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5296. *
  5297. * Note: the X axis should be homed after changing dual x-carriage mode.
  5298. */
  5299. inline void gcode_M605() {
  5300. stepper.synchronize();
  5301. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5302. switch (dual_x_carriage_mode) {
  5303. case DXC_DUPLICATION_MODE:
  5304. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5305. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5306. SERIAL_ECHO_START;
  5307. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5308. SERIAL_CHAR(' ');
  5309. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5310. SERIAL_CHAR(',');
  5311. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5312. SERIAL_CHAR(' ');
  5313. SERIAL_ECHO(duplicate_extruder_x_offset);
  5314. SERIAL_CHAR(',');
  5315. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5316. break;
  5317. case DXC_FULL_CONTROL_MODE:
  5318. case DXC_AUTO_PARK_MODE:
  5319. break;
  5320. default:
  5321. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5322. break;
  5323. }
  5324. active_extruder_parked = false;
  5325. extruder_duplication_enabled = false;
  5326. delayed_move_time = 0;
  5327. }
  5328. #endif // DUAL_X_CARRIAGE
  5329. #if ENABLED(LIN_ADVANCE)
  5330. /**
  5331. * M905: Set advance factor
  5332. */
  5333. inline void gcode_M905() {
  5334. stepper.synchronize();
  5335. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5336. }
  5337. #endif
  5338. /**
  5339. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5340. */
  5341. inline void gcode_M907() {
  5342. #if HAS_DIGIPOTSS
  5343. for (int i = 0; i < NUM_AXIS; i++)
  5344. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5345. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5346. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5347. #endif
  5348. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5349. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5350. #endif
  5351. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5352. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5353. #endif
  5354. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5355. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5356. #endif
  5357. #if ENABLED(DIGIPOT_I2C)
  5358. // this one uses actual amps in floating point
  5359. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5360. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5361. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5362. #endif
  5363. #if ENABLED(DAC_STEPPER_CURRENT)
  5364. if (code_seen('S')) {
  5365. float dac_percent = code_value_float();
  5366. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5367. }
  5368. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5369. #endif
  5370. }
  5371. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5372. /**
  5373. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5374. */
  5375. inline void gcode_M908() {
  5376. #if HAS_DIGIPOTSS
  5377. stepper.digitalPotWrite(
  5378. code_seen('P') ? code_value_int() : 0,
  5379. code_seen('S') ? code_value_int() : 0
  5380. );
  5381. #endif
  5382. #ifdef DAC_STEPPER_CURRENT
  5383. dac_current_raw(
  5384. code_seen('P') ? code_value_byte() : -1,
  5385. code_seen('S') ? code_value_ushort() : 0
  5386. );
  5387. #endif
  5388. }
  5389. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5390. inline void gcode_M909() { dac_print_values(); }
  5391. inline void gcode_M910() { dac_commit_eeprom(); }
  5392. #endif
  5393. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5394. #if HAS_MICROSTEPS
  5395. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5396. inline void gcode_M350() {
  5397. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5398. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5399. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5400. stepper.microstep_readings();
  5401. }
  5402. /**
  5403. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5404. * S# determines MS1 or MS2, X# sets the pin high/low.
  5405. */
  5406. inline void gcode_M351() {
  5407. if (code_seen('S')) switch (code_value_byte()) {
  5408. case 1:
  5409. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5410. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5411. break;
  5412. case 2:
  5413. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5414. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5415. break;
  5416. }
  5417. stepper.microstep_readings();
  5418. }
  5419. #endif // HAS_MICROSTEPS
  5420. /**
  5421. * M999: Restart after being stopped
  5422. *
  5423. * Default behaviour is to flush the serial buffer and request
  5424. * a resend to the host starting on the last N line received.
  5425. *
  5426. * Sending "M999 S1" will resume printing without flushing the
  5427. * existing command buffer.
  5428. *
  5429. */
  5430. inline void gcode_M999() {
  5431. Running = true;
  5432. lcd_reset_alert_level();
  5433. if (code_seen('S') && code_value_bool()) return;
  5434. // gcode_LastN = Stopped_gcode_LastN;
  5435. FlushSerialRequestResend();
  5436. }
  5437. /**
  5438. * T0-T3: Switch tool, usually switching extruders
  5439. *
  5440. * F[mm/min] Set the movement feedrate
  5441. * S1 Don't move the tool in XY after change
  5442. */
  5443. inline void gcode_T(uint8_t tmp_extruder) {
  5444. if (tmp_extruder >= EXTRUDERS) {
  5445. SERIAL_ECHO_START;
  5446. SERIAL_CHAR('T');
  5447. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5448. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5449. return;
  5450. }
  5451. #if HOTENDS > 1
  5452. float stored_feedrate = feedrate;
  5453. if (code_seen('F')) {
  5454. float next_feedrate = code_value_axis_units(X_AXIS);
  5455. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5456. }
  5457. else
  5458. feedrate = XY_PROBE_FEEDRATE;
  5459. if (tmp_extruder != active_extruder) {
  5460. bool no_move = code_seen('S') && code_value_bool();
  5461. // Save current position to return to after applying extruder offset
  5462. if (!no_move) set_destination_to_current();
  5463. #if ENABLED(DUAL_X_CARRIAGE)
  5464. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5465. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5466. // Park old head: 1) raise 2) move to park position 3) lower
  5467. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5468. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5469. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5470. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5471. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5472. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5473. stepper.synchronize();
  5474. }
  5475. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5476. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5477. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5478. active_extruder = tmp_extruder;
  5479. // This function resets the max/min values - the current position may be overwritten below.
  5480. set_axis_is_at_home(X_AXIS);
  5481. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5482. current_position[X_AXIS] = inactive_extruder_x_pos;
  5483. inactive_extruder_x_pos = destination[X_AXIS];
  5484. }
  5485. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5486. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5487. if (active_extruder_parked)
  5488. current_position[X_AXIS] = inactive_extruder_x_pos;
  5489. else
  5490. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5491. inactive_extruder_x_pos = destination[X_AXIS];
  5492. extruder_duplication_enabled = false;
  5493. }
  5494. else {
  5495. // record raised toolhead position for use by unpark
  5496. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5497. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5498. active_extruder_parked = true;
  5499. delayed_move_time = 0;
  5500. }
  5501. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5502. #else // !DUAL_X_CARRIAGE
  5503. //
  5504. // Set current_position to the position of the new nozzle.
  5505. // Offsets are based on linear distance, so we need to get
  5506. // the resulting position in coordinate space.
  5507. //
  5508. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5509. // - With mesh leveling, update Z for the new position
  5510. // - Otherwise, just use the raw linear distance
  5511. //
  5512. // Software endstops are altered here too. Consider a case where:
  5513. // E0 at X=0 ... E1 at X=10
  5514. // When we switch to E1 now X=10, but E1 can't move left.
  5515. // To express this we apply the change in XY to the software endstops.
  5516. // E1 can move farther right than E0, so the right limit is extended.
  5517. //
  5518. // Note that we don't adjust the Z software endstops. Why not?
  5519. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5520. // because the bed is 1mm lower at the new position. As long as
  5521. // the first nozzle is out of the way, the carriage should be
  5522. // allowed to move 1mm lower. This technically "breaks" the
  5523. // Z software endstop. But this is technically correct (and
  5524. // there is no viable alternative).
  5525. //
  5526. float xydiff[2] = {
  5527. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5528. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5529. };
  5530. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5531. // Offset extruder, make sure to apply the bed level rotation matrix
  5532. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5533. hotend_offset[Y_AXIS][tmp_extruder],
  5534. 0),
  5535. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5536. hotend_offset[Y_AXIS][active_extruder],
  5537. 0),
  5538. offset_vec = tmp_offset_vec - act_offset_vec;
  5539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5540. if (DEBUGGING(LEVELING)) {
  5541. SERIAL_ECHOLNPGM(">>> gcode_T");
  5542. tmp_offset_vec.debug("tmp_offset_vec");
  5543. act_offset_vec.debug("act_offset_vec");
  5544. offset_vec.debug("offset_vec (BEFORE)");
  5545. DEBUG_POS("BEFORE rotation", current_position);
  5546. }
  5547. #endif
  5548. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5549. // Adjust the current position
  5550. current_position[X_AXIS] += offset_vec.x;
  5551. current_position[Y_AXIS] += offset_vec.y;
  5552. current_position[Z_AXIS] += offset_vec.z;
  5553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5554. if (DEBUGGING(LEVELING)) {
  5555. offset_vec.debug("offset_vec (AFTER)");
  5556. DEBUG_POS("AFTER rotation", current_position);
  5557. SERIAL_ECHOLNPGM("<<< gcode_T");
  5558. }
  5559. #endif
  5560. #elif ENABLED(MESH_BED_LEVELING)
  5561. if (mbl.active()) {
  5562. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5563. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5564. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5565. }
  5566. #else // no bed leveling
  5567. // The newly-selected extruder XY is actually at...
  5568. current_position[X_AXIS] += xydiff[X_AXIS];
  5569. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5570. #endif // no bed leveling
  5571. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5572. position_shift[i] += xydiff[i];
  5573. update_software_endstops((AxisEnum)i);
  5574. }
  5575. // Set the new active extruder
  5576. active_extruder = tmp_extruder;
  5577. #endif // !DUAL_X_CARRIAGE
  5578. // Tell the planner the new "current position"
  5579. SYNC_PLAN_POSITION_KINEMATIC();
  5580. // Move to the "old position" (move the extruder into place)
  5581. if (!no_move && IsRunning()) prepare_move_to_destination();
  5582. } // (tmp_extruder != active_extruder)
  5583. #if ENABLED(EXT_SOLENOID)
  5584. stepper.synchronize();
  5585. disable_all_solenoids();
  5586. enable_solenoid_on_active_extruder();
  5587. #endif // EXT_SOLENOID
  5588. feedrate = stored_feedrate;
  5589. #else // !HOTENDS > 1
  5590. // Set the new active extruder
  5591. active_extruder = tmp_extruder;
  5592. #endif
  5593. SERIAL_ECHO_START;
  5594. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5595. SERIAL_PROTOCOLLN((int)active_extruder);
  5596. }
  5597. /**
  5598. * Process a single command and dispatch it to its handler
  5599. * This is called from the main loop()
  5600. */
  5601. void process_next_command() {
  5602. current_command = command_queue[cmd_queue_index_r];
  5603. if (DEBUGGING(ECHO)) {
  5604. SERIAL_ECHO_START;
  5605. SERIAL_ECHOLN(current_command);
  5606. }
  5607. // Sanitize the current command:
  5608. // - Skip leading spaces
  5609. // - Bypass N[-0-9][0-9]*[ ]*
  5610. // - Overwrite * with nul to mark the end
  5611. while (*current_command == ' ') ++current_command;
  5612. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5613. current_command += 2; // skip N[-0-9]
  5614. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5615. while (*current_command == ' ') ++current_command; // skip [ ]*
  5616. }
  5617. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5618. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5619. char *cmd_ptr = current_command;
  5620. // Get the command code, which must be G, M, or T
  5621. char command_code = *cmd_ptr++;
  5622. // Skip spaces to get the numeric part
  5623. while (*cmd_ptr == ' ') cmd_ptr++;
  5624. uint16_t codenum = 0; // define ahead of goto
  5625. // Bail early if there's no code
  5626. bool code_is_good = NUMERIC(*cmd_ptr);
  5627. if (!code_is_good) goto ExitUnknownCommand;
  5628. // Get and skip the code number
  5629. do {
  5630. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5631. cmd_ptr++;
  5632. } while (NUMERIC(*cmd_ptr));
  5633. // Skip all spaces to get to the first argument, or nul
  5634. while (*cmd_ptr == ' ') cmd_ptr++;
  5635. // The command's arguments (if any) start here, for sure!
  5636. current_command_args = cmd_ptr;
  5637. KEEPALIVE_STATE(IN_HANDLER);
  5638. // Handle a known G, M, or T
  5639. switch (command_code) {
  5640. case 'G': switch (codenum) {
  5641. // G0, G1
  5642. case 0:
  5643. case 1:
  5644. gcode_G0_G1();
  5645. break;
  5646. // G2, G3
  5647. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5648. case 2: // G2 - CW ARC
  5649. case 3: // G3 - CCW ARC
  5650. gcode_G2_G3(codenum == 2);
  5651. break;
  5652. #endif
  5653. // G4 Dwell
  5654. case 4:
  5655. gcode_G4();
  5656. break;
  5657. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5658. // G5
  5659. case 5: // G5 - Cubic B_spline
  5660. gcode_G5();
  5661. break;
  5662. #endif // BEZIER_CURVE_SUPPORT
  5663. #if ENABLED(FWRETRACT)
  5664. case 10: // G10: retract
  5665. case 11: // G11: retract_recover
  5666. gcode_G10_G11(codenum == 10);
  5667. break;
  5668. #endif // FWRETRACT
  5669. #if ENABLED(INCH_MODE_SUPPORT)
  5670. case 20: //G20: Inch Mode
  5671. gcode_G20();
  5672. break;
  5673. case 21: //G21: MM Mode
  5674. gcode_G21();
  5675. break;
  5676. #endif
  5677. case 28: // G28: Home all axes, one at a time
  5678. gcode_G28();
  5679. break;
  5680. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5681. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5682. gcode_G29();
  5683. break;
  5684. #endif
  5685. #if HAS_BED_PROBE
  5686. case 30: // G30 Single Z probe
  5687. gcode_G30();
  5688. break;
  5689. #if ENABLED(Z_PROBE_SLED)
  5690. case 31: // G31: dock the sled
  5691. gcode_G31();
  5692. break;
  5693. case 32: // G32: undock the sled
  5694. gcode_G32();
  5695. break;
  5696. #endif // Z_PROBE_SLED
  5697. #endif // HAS_BED_PROBE
  5698. case 90: // G90
  5699. relative_mode = false;
  5700. break;
  5701. case 91: // G91
  5702. relative_mode = true;
  5703. break;
  5704. case 92: // G92
  5705. gcode_G92();
  5706. break;
  5707. }
  5708. break;
  5709. case 'M': switch (codenum) {
  5710. #if ENABLED(ULTIPANEL)
  5711. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5712. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5713. gcode_M0_M1();
  5714. break;
  5715. #endif // ULTIPANEL
  5716. case 17:
  5717. gcode_M17();
  5718. break;
  5719. #if ENABLED(SDSUPPORT)
  5720. case 20: // M20 - list SD card
  5721. gcode_M20(); break;
  5722. case 21: // M21 - init SD card
  5723. gcode_M21(); break;
  5724. case 22: //M22 - release SD card
  5725. gcode_M22(); break;
  5726. case 23: //M23 - Select file
  5727. gcode_M23(); break;
  5728. case 24: //M24 - Start SD print
  5729. gcode_M24(); break;
  5730. case 25: //M25 - Pause SD print
  5731. gcode_M25(); break;
  5732. case 26: //M26 - Set SD index
  5733. gcode_M26(); break;
  5734. case 27: //M27 - Get SD status
  5735. gcode_M27(); break;
  5736. case 28: //M28 - Start SD write
  5737. gcode_M28(); break;
  5738. case 29: //M29 - Stop SD write
  5739. gcode_M29(); break;
  5740. case 30: //M30 <filename> Delete File
  5741. gcode_M30(); break;
  5742. case 32: //M32 - Select file and start SD print
  5743. gcode_M32(); break;
  5744. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5745. case 33: //M33 - Get the long full path to a file or folder
  5746. gcode_M33(); break;
  5747. #endif // LONG_FILENAME_HOST_SUPPORT
  5748. case 928: //M928 - Start SD write
  5749. gcode_M928(); break;
  5750. #endif //SDSUPPORT
  5751. case 31: //M31 take time since the start of the SD print or an M109 command
  5752. gcode_M31();
  5753. break;
  5754. case 42: //M42 -Change pin status via gcode
  5755. gcode_M42();
  5756. break;
  5757. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5758. case 48: // M48 Z probe repeatability
  5759. gcode_M48();
  5760. break;
  5761. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5762. case 75: // Start print timer
  5763. gcode_M75();
  5764. break;
  5765. case 76: // Pause print timer
  5766. gcode_M76();
  5767. break;
  5768. case 77: // Stop print timer
  5769. gcode_M77();
  5770. break;
  5771. #if ENABLED(PRINTCOUNTER)
  5772. case 78: // Show print statistics
  5773. gcode_M78();
  5774. break;
  5775. #endif
  5776. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5777. case 100:
  5778. gcode_M100();
  5779. break;
  5780. #endif
  5781. case 104: // M104
  5782. gcode_M104();
  5783. break;
  5784. case 110: // M110: Set Current Line Number
  5785. gcode_M110();
  5786. break;
  5787. case 111: // M111: Set debug level
  5788. gcode_M111();
  5789. break;
  5790. case 112: // M112: Emergency Stop
  5791. gcode_M112();
  5792. break;
  5793. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5794. case 113: // M113: Set Host Keepalive interval
  5795. gcode_M113();
  5796. break;
  5797. #endif
  5798. case 140: // M140: Set bed temp
  5799. gcode_M140();
  5800. break;
  5801. case 105: // M105: Read current temperature
  5802. gcode_M105();
  5803. KEEPALIVE_STATE(NOT_BUSY);
  5804. return; // "ok" already printed
  5805. case 109: // M109: Wait for temperature
  5806. gcode_M109();
  5807. break;
  5808. #if HAS_TEMP_BED
  5809. case 190: // M190: Wait for bed heater to reach target
  5810. gcode_M190();
  5811. break;
  5812. #endif // HAS_TEMP_BED
  5813. #if FAN_COUNT > 0
  5814. case 106: // M106: Fan On
  5815. gcode_M106();
  5816. break;
  5817. case 107: // M107: Fan Off
  5818. gcode_M107();
  5819. break;
  5820. #endif // FAN_COUNT > 0
  5821. #if ENABLED(BARICUDA)
  5822. // PWM for HEATER_1_PIN
  5823. #if HAS_HEATER_1
  5824. case 126: // M126: valve open
  5825. gcode_M126();
  5826. break;
  5827. case 127: // M127: valve closed
  5828. gcode_M127();
  5829. break;
  5830. #endif // HAS_HEATER_1
  5831. // PWM for HEATER_2_PIN
  5832. #if HAS_HEATER_2
  5833. case 128: // M128: valve open
  5834. gcode_M128();
  5835. break;
  5836. case 129: // M129: valve closed
  5837. gcode_M129();
  5838. break;
  5839. #endif // HAS_HEATER_2
  5840. #endif // BARICUDA
  5841. #if HAS_POWER_SWITCH
  5842. case 80: // M80: Turn on Power Supply
  5843. gcode_M80();
  5844. break;
  5845. #endif // HAS_POWER_SWITCH
  5846. case 81: // M81: Turn off Power, including Power Supply, if possible
  5847. gcode_M81();
  5848. break;
  5849. case 82:
  5850. gcode_M82();
  5851. break;
  5852. case 83:
  5853. gcode_M83();
  5854. break;
  5855. case 18: // (for compatibility)
  5856. case 84: // M84
  5857. gcode_M18_M84();
  5858. break;
  5859. case 85: // M85
  5860. gcode_M85();
  5861. break;
  5862. case 92: // M92: Set the steps-per-unit for one or more axes
  5863. gcode_M92();
  5864. break;
  5865. case 115: // M115: Report capabilities
  5866. gcode_M115();
  5867. break;
  5868. case 117: // M117: Set LCD message text, if possible
  5869. gcode_M117();
  5870. break;
  5871. case 114: // M114: Report current position
  5872. gcode_M114();
  5873. break;
  5874. case 120: // M120: Enable endstops
  5875. gcode_M120();
  5876. break;
  5877. case 121: // M121: Disable endstops
  5878. gcode_M121();
  5879. break;
  5880. case 119: // M119: Report endstop states
  5881. gcode_M119();
  5882. break;
  5883. #if ENABLED(ULTIPANEL)
  5884. case 145: // M145: Set material heatup parameters
  5885. gcode_M145();
  5886. break;
  5887. #endif
  5888. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5889. case 149:
  5890. gcode_M149();
  5891. break;
  5892. #endif
  5893. #if ENABLED(BLINKM)
  5894. case 150: // M150
  5895. gcode_M150();
  5896. break;
  5897. #endif //BLINKM
  5898. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5899. case 155:
  5900. gcode_M155();
  5901. break;
  5902. case 156:
  5903. gcode_M156();
  5904. break;
  5905. #endif //EXPERIMENTAL_I2CBUS
  5906. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5907. gcode_M200();
  5908. break;
  5909. case 201: // M201
  5910. gcode_M201();
  5911. break;
  5912. #if 0 // Not used for Sprinter/grbl gen6
  5913. case 202: // M202
  5914. gcode_M202();
  5915. break;
  5916. #endif
  5917. case 203: // M203 max feedrate mm/sec
  5918. gcode_M203();
  5919. break;
  5920. case 204: // M204 acclereration S normal moves T filmanent only moves
  5921. gcode_M204();
  5922. break;
  5923. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5924. gcode_M205();
  5925. break;
  5926. case 206: // M206 additional homing offset
  5927. gcode_M206();
  5928. break;
  5929. #if ENABLED(DELTA)
  5930. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5931. gcode_M665();
  5932. break;
  5933. #endif
  5934. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5935. case 666: // M666 set delta / dual endstop adjustment
  5936. gcode_M666();
  5937. break;
  5938. #endif
  5939. #if ENABLED(FWRETRACT)
  5940. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5941. gcode_M207();
  5942. break;
  5943. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5944. gcode_M208();
  5945. break;
  5946. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5947. gcode_M209();
  5948. break;
  5949. #endif // FWRETRACT
  5950. #if HOTENDS > 1
  5951. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5952. gcode_M218();
  5953. break;
  5954. #endif
  5955. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5956. gcode_M220();
  5957. break;
  5958. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5959. gcode_M221();
  5960. break;
  5961. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5962. gcode_M226();
  5963. break;
  5964. #if HAS_SERVOS
  5965. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5966. gcode_M280();
  5967. break;
  5968. #endif // HAS_SERVOS
  5969. #if HAS_BUZZER
  5970. case 300: // M300 - Play beep tone
  5971. gcode_M300();
  5972. break;
  5973. #endif // HAS_BUZZER
  5974. #if ENABLED(PIDTEMP)
  5975. case 301: // M301
  5976. gcode_M301();
  5977. break;
  5978. #endif // PIDTEMP
  5979. #if ENABLED(PIDTEMPBED)
  5980. case 304: // M304
  5981. gcode_M304();
  5982. break;
  5983. #endif // PIDTEMPBED
  5984. #if defined(CHDK) || HAS_PHOTOGRAPH
  5985. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5986. gcode_M240();
  5987. break;
  5988. #endif // CHDK || PHOTOGRAPH_PIN
  5989. #if HAS_LCD_CONTRAST
  5990. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5991. gcode_M250();
  5992. break;
  5993. #endif // HAS_LCD_CONTRAST
  5994. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5995. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5996. gcode_M302();
  5997. break;
  5998. #endif // PREVENT_DANGEROUS_EXTRUDE
  5999. case 303: // M303 PID autotune
  6000. gcode_M303();
  6001. break;
  6002. #if ENABLED(SCARA)
  6003. case 360: // M360 SCARA Theta pos1
  6004. if (gcode_M360()) return;
  6005. break;
  6006. case 361: // M361 SCARA Theta pos2
  6007. if (gcode_M361()) return;
  6008. break;
  6009. case 362: // M362 SCARA Psi pos1
  6010. if (gcode_M362()) return;
  6011. break;
  6012. case 363: // M363 SCARA Psi pos2
  6013. if (gcode_M363()) return;
  6014. break;
  6015. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6016. if (gcode_M364()) return;
  6017. break;
  6018. case 365: // M365 Set SCARA scaling for X Y Z
  6019. gcode_M365();
  6020. break;
  6021. #endif // SCARA
  6022. case 400: // M400 finish all moves
  6023. gcode_M400();
  6024. break;
  6025. #if HAS_BED_PROBE
  6026. case 401:
  6027. gcode_M401();
  6028. break;
  6029. case 402:
  6030. gcode_M402();
  6031. break;
  6032. #endif // HAS_BED_PROBE
  6033. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6034. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6035. gcode_M404();
  6036. break;
  6037. case 405: //M405 Turn on filament sensor for control
  6038. gcode_M405();
  6039. break;
  6040. case 406: //M406 Turn off filament sensor for control
  6041. gcode_M406();
  6042. break;
  6043. case 407: //M407 Display measured filament diameter
  6044. gcode_M407();
  6045. break;
  6046. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6047. case 410: // M410 quickstop - Abort all the planned moves.
  6048. gcode_M410();
  6049. break;
  6050. #if ENABLED(MESH_BED_LEVELING)
  6051. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6052. gcode_M420();
  6053. break;
  6054. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6055. gcode_M421();
  6056. break;
  6057. #endif
  6058. case 428: // M428 Apply current_position to home_offset
  6059. gcode_M428();
  6060. break;
  6061. case 500: // M500 Store settings in EEPROM
  6062. gcode_M500();
  6063. break;
  6064. case 501: // M501 Read settings from EEPROM
  6065. gcode_M501();
  6066. break;
  6067. case 502: // M502 Revert to default settings
  6068. gcode_M502();
  6069. break;
  6070. case 503: // M503 print settings currently in memory
  6071. gcode_M503();
  6072. break;
  6073. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6074. case 540:
  6075. gcode_M540();
  6076. break;
  6077. #endif
  6078. #if HAS_BED_PROBE
  6079. case 851:
  6080. gcode_M851();
  6081. break;
  6082. #endif // HAS_BED_PROBE
  6083. #if ENABLED(FILAMENTCHANGEENABLE)
  6084. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6085. gcode_M600();
  6086. break;
  6087. #endif // FILAMENTCHANGEENABLE
  6088. #if ENABLED(DUAL_X_CARRIAGE)
  6089. case 605:
  6090. gcode_M605();
  6091. break;
  6092. #endif // DUAL_X_CARRIAGE
  6093. #if ENABLED(LIN_ADVANCE)
  6094. case 905: // M905 Set advance factor.
  6095. gcode_M905();
  6096. break;
  6097. #endif
  6098. case 907: // M907 Set digital trimpot motor current using axis codes.
  6099. gcode_M907();
  6100. break;
  6101. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6102. case 908: // M908 Control digital trimpot directly.
  6103. gcode_M908();
  6104. break;
  6105. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6106. case 909: // M909 Print digipot/DAC current value
  6107. gcode_M909();
  6108. break;
  6109. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6110. gcode_M910();
  6111. break;
  6112. #endif
  6113. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6114. #if HAS_MICROSTEPS
  6115. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6116. gcode_M350();
  6117. break;
  6118. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6119. gcode_M351();
  6120. break;
  6121. #endif // HAS_MICROSTEPS
  6122. case 999: // M999: Restart after being Stopped
  6123. gcode_M999();
  6124. break;
  6125. }
  6126. break;
  6127. case 'T':
  6128. gcode_T(codenum);
  6129. break;
  6130. default: code_is_good = false;
  6131. }
  6132. KEEPALIVE_STATE(NOT_BUSY);
  6133. ExitUnknownCommand:
  6134. // Still unknown command? Throw an error
  6135. if (!code_is_good) unknown_command_error();
  6136. ok_to_send();
  6137. }
  6138. void FlushSerialRequestResend() {
  6139. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6140. MYSERIAL.flush();
  6141. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6142. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6143. ok_to_send();
  6144. }
  6145. void ok_to_send() {
  6146. refresh_cmd_timeout();
  6147. if (!send_ok[cmd_queue_index_r]) return;
  6148. SERIAL_PROTOCOLPGM(MSG_OK);
  6149. #if ENABLED(ADVANCED_OK)
  6150. char* p = command_queue[cmd_queue_index_r];
  6151. if (*p == 'N') {
  6152. SERIAL_PROTOCOL(' ');
  6153. SERIAL_ECHO(*p++);
  6154. while (NUMERIC_SIGNED(*p))
  6155. SERIAL_ECHO(*p++);
  6156. }
  6157. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6158. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6159. #endif
  6160. SERIAL_EOL;
  6161. }
  6162. void clamp_to_software_endstops(float target[3]) {
  6163. if (min_software_endstops) {
  6164. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6165. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6166. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6167. }
  6168. if (max_software_endstops) {
  6169. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6170. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6171. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6172. }
  6173. }
  6174. #if ENABLED(DELTA)
  6175. void recalc_delta_settings(float radius, float diagonal_rod) {
  6176. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6177. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6178. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6179. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6180. delta_tower3_x = 0.0; // back middle tower
  6181. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6182. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6183. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6184. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6185. }
  6186. void calculate_delta(float cartesian[3]) {
  6187. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6188. - sq(delta_tower1_x - cartesian[X_AXIS])
  6189. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6190. ) + cartesian[Z_AXIS];
  6191. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6192. - sq(delta_tower2_x - cartesian[X_AXIS])
  6193. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6194. ) + cartesian[Z_AXIS];
  6195. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6196. - sq(delta_tower3_x - cartesian[X_AXIS])
  6197. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6198. ) + cartesian[Z_AXIS];
  6199. /**
  6200. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6201. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6202. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6203. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6204. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6205. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6206. */
  6207. }
  6208. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6209. // Adjust print surface height by linear interpolation over the bed_level array.
  6210. void adjust_delta(float cartesian[3]) {
  6211. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6212. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6213. float h1 = 0.001 - half, h2 = half - 0.001,
  6214. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6215. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6216. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6217. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6218. z1 = bed_level[floor_x + half][floor_y + half],
  6219. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6220. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6221. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6222. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6223. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6224. offset = (1 - ratio_x) * left + ratio_x * right;
  6225. delta[X_AXIS] += offset;
  6226. delta[Y_AXIS] += offset;
  6227. delta[Z_AXIS] += offset;
  6228. /**
  6229. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6230. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6231. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6232. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6233. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6234. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6235. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6236. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6237. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6238. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6239. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6240. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6241. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6242. */
  6243. }
  6244. #endif // AUTO_BED_LEVELING_FEATURE
  6245. #endif // DELTA
  6246. #if ENABLED(MESH_BED_LEVELING)
  6247. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6248. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6249. if (!mbl.active()) {
  6250. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6251. set_current_to_destination();
  6252. return;
  6253. }
  6254. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6255. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6256. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6257. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6258. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6259. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6260. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6261. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6262. if (pcx == cx && pcy == cy) {
  6263. // Start and end on same mesh square
  6264. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6265. set_current_to_destination();
  6266. return;
  6267. }
  6268. float nx, ny, nz, ne, normalized_dist;
  6269. if (cx > pcx && TEST(x_splits, cx)) {
  6270. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6271. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6272. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6273. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6274. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6275. CBI(x_splits, cx);
  6276. }
  6277. else if (cx < pcx && TEST(x_splits, pcx)) {
  6278. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6279. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6280. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6281. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6282. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6283. CBI(x_splits, pcx);
  6284. }
  6285. else if (cy > pcy && TEST(y_splits, cy)) {
  6286. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6287. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6288. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6289. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6290. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6291. CBI(y_splits, cy);
  6292. }
  6293. else if (cy < pcy && TEST(y_splits, pcy)) {
  6294. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6295. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6296. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6297. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6298. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6299. CBI(y_splits, pcy);
  6300. }
  6301. else {
  6302. // Already split on a border
  6303. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6304. set_current_to_destination();
  6305. return;
  6306. }
  6307. // Do the split and look for more borders
  6308. destination[X_AXIS] = nx;
  6309. destination[Y_AXIS] = ny;
  6310. destination[Z_AXIS] = nz;
  6311. destination[E_AXIS] = ne;
  6312. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6313. destination[X_AXIS] = x;
  6314. destination[Y_AXIS] = y;
  6315. destination[Z_AXIS] = z;
  6316. destination[E_AXIS] = e;
  6317. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6318. }
  6319. #endif // MESH_BED_LEVELING
  6320. #if ENABLED(DELTA) || ENABLED(SCARA)
  6321. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6322. float difference[NUM_AXIS];
  6323. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6324. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6325. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6326. if (cartesian_mm < 0.000001) return false;
  6327. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6328. float seconds = cartesian_mm / _feedrate;
  6329. int steps = max(1, int(delta_segments_per_second * seconds));
  6330. float inv_steps = 1.0/steps;
  6331. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6332. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6333. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6334. for (int s = 1; s <= steps; s++) {
  6335. float fraction = float(s) * inv_steps;
  6336. for (int8_t i = 0; i < NUM_AXIS; i++)
  6337. target[i] = current_position[i] + difference[i] * fraction;
  6338. calculate_delta(target);
  6339. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6340. if (!bed_leveling_in_progress) adjust_delta(target);
  6341. #endif
  6342. //DEBUG_POS("prepare_delta_move_to", target);
  6343. //DEBUG_POS("prepare_delta_move_to", delta);
  6344. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6345. }
  6346. return true;
  6347. }
  6348. #endif // DELTA || SCARA
  6349. #if ENABLED(SCARA)
  6350. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6351. #endif
  6352. #if ENABLED(DUAL_X_CARRIAGE)
  6353. inline bool prepare_move_dual_x_carriage() {
  6354. if (active_extruder_parked) {
  6355. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6356. // move duplicate extruder into correct duplication position.
  6357. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6358. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6359. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6360. SYNC_PLAN_POSITION_KINEMATIC();
  6361. stepper.synchronize();
  6362. extruder_duplication_enabled = true;
  6363. active_extruder_parked = false;
  6364. }
  6365. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6366. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6367. // This is a travel move (with no extrusion)
  6368. // Skip it, but keep track of the current position
  6369. // (so it can be used as the start of the next non-travel move)
  6370. if (delayed_move_time != 0xFFFFFFFFUL) {
  6371. set_current_to_destination();
  6372. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6373. delayed_move_time = millis();
  6374. return false;
  6375. }
  6376. }
  6377. delayed_move_time = 0;
  6378. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6379. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6380. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6381. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6382. active_extruder_parked = false;
  6383. }
  6384. }
  6385. return true;
  6386. }
  6387. #endif // DUAL_X_CARRIAGE
  6388. #if DISABLED(DELTA) && DISABLED(SCARA)
  6389. inline bool prepare_cartesian_move_to_destination() {
  6390. // Do not use feedrate_multiplier for E or Z only moves
  6391. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6392. line_to_destination();
  6393. }
  6394. else {
  6395. #if ENABLED(MESH_BED_LEVELING)
  6396. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6397. return false;
  6398. #else
  6399. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6400. #endif
  6401. }
  6402. return true;
  6403. }
  6404. #endif // !DELTA && !SCARA
  6405. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6406. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6407. if (DEBUGGING(DRYRUN)) return;
  6408. float de = dest_e - curr_e;
  6409. if (de) {
  6410. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6411. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6412. SERIAL_ECHO_START;
  6413. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6414. }
  6415. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6416. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6417. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6418. SERIAL_ECHO_START;
  6419. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6420. }
  6421. #endif
  6422. }
  6423. }
  6424. #endif // PREVENT_DANGEROUS_EXTRUDE
  6425. /**
  6426. * Prepare a single move and get ready for the next one
  6427. *
  6428. * (This may call planner.buffer_line several times to put
  6429. * smaller moves into the planner for DELTA or SCARA.)
  6430. */
  6431. void prepare_move_to_destination() {
  6432. clamp_to_software_endstops(destination);
  6433. refresh_cmd_timeout();
  6434. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6435. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6436. #endif
  6437. #if ENABLED(SCARA)
  6438. if (!prepare_scara_move_to(destination)) return;
  6439. #elif ENABLED(DELTA)
  6440. if (!prepare_delta_move_to(destination)) return;
  6441. #else
  6442. #if ENABLED(DUAL_X_CARRIAGE)
  6443. if (!prepare_move_dual_x_carriage()) return;
  6444. #endif
  6445. if (!prepare_cartesian_move_to_destination()) return;
  6446. #endif
  6447. set_current_to_destination();
  6448. }
  6449. #if ENABLED(ARC_SUPPORT)
  6450. /**
  6451. * Plan an arc in 2 dimensions
  6452. *
  6453. * The arc is approximated by generating many small linear segments.
  6454. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6455. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6456. * larger segments will tend to be more efficient. Your slicer should have
  6457. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6458. */
  6459. void plan_arc(
  6460. float target[NUM_AXIS], // Destination position
  6461. float* offset, // Center of rotation relative to current_position
  6462. uint8_t clockwise // Clockwise?
  6463. ) {
  6464. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6465. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6466. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6467. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6468. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6469. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6470. r_Y = -offset[Y_AXIS],
  6471. rt_X = target[X_AXIS] - center_X,
  6472. rt_Y = target[Y_AXIS] - center_Y;
  6473. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6474. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6475. if (angular_travel < 0) angular_travel += RADIANS(360);
  6476. if (clockwise) angular_travel -= RADIANS(360);
  6477. // Make a circle if the angular rotation is 0
  6478. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6479. angular_travel += RADIANS(360);
  6480. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6481. if (mm_of_travel < 0.001) return;
  6482. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6483. if (segments == 0) segments = 1;
  6484. float theta_per_segment = angular_travel / segments;
  6485. float linear_per_segment = linear_travel / segments;
  6486. float extruder_per_segment = extruder_travel / segments;
  6487. /**
  6488. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6489. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6490. * r_T = [cos(phi) -sin(phi);
  6491. * sin(phi) cos(phi] * r ;
  6492. *
  6493. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6494. * defined from the circle center to the initial position. Each line segment is formed by successive
  6495. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6496. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6497. * all double numbers are single precision on the Arduino. (True double precision will not have
  6498. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6499. * tool precision in some cases. Therefore, arc path correction is implemented.
  6500. *
  6501. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6502. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6503. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6504. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6505. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6506. * issue for CNC machines with the single precision Arduino calculations.
  6507. *
  6508. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6509. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6510. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6511. * This is important when there are successive arc motions.
  6512. */
  6513. // Vector rotation matrix values
  6514. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6515. float sin_T = theta_per_segment;
  6516. float arc_target[NUM_AXIS];
  6517. float sin_Ti, cos_Ti, r_new_Y;
  6518. uint16_t i;
  6519. int8_t count = 0;
  6520. // Initialize the linear axis
  6521. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6522. // Initialize the extruder axis
  6523. arc_target[E_AXIS] = current_position[E_AXIS];
  6524. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6525. millis_t next_idle_ms = millis() + 200UL;
  6526. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6527. thermalManager.manage_heater();
  6528. millis_t now = millis();
  6529. if (ELAPSED(now, next_idle_ms)) {
  6530. next_idle_ms = now + 200UL;
  6531. idle();
  6532. }
  6533. if (++count < N_ARC_CORRECTION) {
  6534. // Apply vector rotation matrix to previous r_X / 1
  6535. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6536. r_X = r_X * cos_T - r_Y * sin_T;
  6537. r_Y = r_new_Y;
  6538. }
  6539. else {
  6540. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6541. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6542. // To reduce stuttering, the sin and cos could be computed at different times.
  6543. // For now, compute both at the same time.
  6544. cos_Ti = cos(i * theta_per_segment);
  6545. sin_Ti = sin(i * theta_per_segment);
  6546. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6547. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6548. count = 0;
  6549. }
  6550. // Update arc_target location
  6551. arc_target[X_AXIS] = center_X + r_X;
  6552. arc_target[Y_AXIS] = center_Y + r_Y;
  6553. arc_target[Z_AXIS] += linear_per_segment;
  6554. arc_target[E_AXIS] += extruder_per_segment;
  6555. clamp_to_software_endstops(arc_target);
  6556. #if ENABLED(DELTA) || ENABLED(SCARA)
  6557. calculate_delta(arc_target);
  6558. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6559. adjust_delta(arc_target);
  6560. #endif
  6561. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6562. #else
  6563. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6564. #endif
  6565. }
  6566. // Ensure last segment arrives at target location.
  6567. #if ENABLED(DELTA) || ENABLED(SCARA)
  6568. calculate_delta(target);
  6569. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6570. adjust_delta(target);
  6571. #endif
  6572. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6573. #else
  6574. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6575. #endif
  6576. // As far as the parser is concerned, the position is now == target. In reality the
  6577. // motion control system might still be processing the action and the real tool position
  6578. // in any intermediate location.
  6579. set_current_to_destination();
  6580. }
  6581. #endif
  6582. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6583. void plan_cubic_move(const float offset[4]) {
  6584. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6585. // As far as the parser is concerned, the position is now == target. In reality the
  6586. // motion control system might still be processing the action and the real tool position
  6587. // in any intermediate location.
  6588. set_current_to_destination();
  6589. }
  6590. #endif // BEZIER_CURVE_SUPPORT
  6591. #if HAS_CONTROLLERFAN
  6592. void controllerFan() {
  6593. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6594. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6595. millis_t ms = millis();
  6596. if (ELAPSED(ms, nextMotorCheck)) {
  6597. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6598. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6599. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6600. #if EXTRUDERS > 1
  6601. || E1_ENABLE_READ == E_ENABLE_ON
  6602. #if HAS_X2_ENABLE
  6603. || X2_ENABLE_READ == X_ENABLE_ON
  6604. #endif
  6605. #if EXTRUDERS > 2
  6606. || E2_ENABLE_READ == E_ENABLE_ON
  6607. #if EXTRUDERS > 3
  6608. || E3_ENABLE_READ == E_ENABLE_ON
  6609. #endif
  6610. #endif
  6611. #endif
  6612. ) {
  6613. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6614. }
  6615. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6616. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6617. // allows digital or PWM fan output to be used (see M42 handling)
  6618. digitalWrite(CONTROLLERFAN_PIN, speed);
  6619. analogWrite(CONTROLLERFAN_PIN, speed);
  6620. }
  6621. }
  6622. #endif // HAS_CONTROLLERFAN
  6623. #if ENABLED(SCARA)
  6624. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6625. // Perform forward kinematics, and place results in delta[3]
  6626. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6627. float x_sin, x_cos, y_sin, y_cos;
  6628. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6629. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6630. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6631. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6632. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6633. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6634. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6635. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6636. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6637. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6638. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6639. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6640. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6641. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6642. }
  6643. void calculate_delta(float cartesian[3]) {
  6644. //reverse kinematics.
  6645. // Perform reversed kinematics, and place results in delta[3]
  6646. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6647. float SCARA_pos[2];
  6648. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6649. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6650. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6651. #if (Linkage_1 == Linkage_2)
  6652. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6653. #else
  6654. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6655. #endif
  6656. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6657. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6658. SCARA_K2 = Linkage_2 * SCARA_S2;
  6659. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6660. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6661. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6662. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6663. delta[Z_AXIS] = cartesian[Z_AXIS];
  6664. /**
  6665. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6666. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6667. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6668. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6669. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6670. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6671. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6672. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6673. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6674. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6675. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6676. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6677. SERIAL_EOL;
  6678. */
  6679. }
  6680. #endif // SCARA
  6681. #if ENABLED(TEMP_STAT_LEDS)
  6682. static bool red_led = false;
  6683. static millis_t next_status_led_update_ms = 0;
  6684. void handle_status_leds(void) {
  6685. float max_temp = 0.0;
  6686. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6687. next_status_led_update_ms += 500; // Update every 0.5s
  6688. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6689. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6690. #if HAS_TEMP_BED
  6691. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6692. #endif
  6693. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6694. if (new_led != red_led) {
  6695. red_led = new_led;
  6696. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6697. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6698. }
  6699. }
  6700. }
  6701. #endif
  6702. void enable_all_steppers() {
  6703. enable_x();
  6704. enable_y();
  6705. enable_z();
  6706. enable_e0();
  6707. enable_e1();
  6708. enable_e2();
  6709. enable_e3();
  6710. }
  6711. void disable_all_steppers() {
  6712. disable_x();
  6713. disable_y();
  6714. disable_z();
  6715. disable_e0();
  6716. disable_e1();
  6717. disable_e2();
  6718. disable_e3();
  6719. }
  6720. /**
  6721. * Standard idle routine keeps the machine alive
  6722. */
  6723. void idle(
  6724. #if ENABLED(FILAMENTCHANGEENABLE)
  6725. bool no_stepper_sleep/*=false*/
  6726. #endif
  6727. ) {
  6728. lcd_update();
  6729. host_keepalive();
  6730. manage_inactivity(
  6731. #if ENABLED(FILAMENTCHANGEENABLE)
  6732. no_stepper_sleep
  6733. #endif
  6734. );
  6735. thermalManager.manage_heater();
  6736. #if ENABLED(PRINTCOUNTER)
  6737. print_job_timer.tick();
  6738. #endif
  6739. #if HAS_BUZZER
  6740. buzzer.tick();
  6741. #endif
  6742. }
  6743. /**
  6744. * Manage several activities:
  6745. * - Check for Filament Runout
  6746. * - Keep the command buffer full
  6747. * - Check for maximum inactive time between commands
  6748. * - Check for maximum inactive time between stepper commands
  6749. * - Check if pin CHDK needs to go LOW
  6750. * - Check for KILL button held down
  6751. * - Check for HOME button held down
  6752. * - Check if cooling fan needs to be switched on
  6753. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6754. */
  6755. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6756. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6757. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6758. handle_filament_runout();
  6759. #endif
  6760. if (commands_in_queue < BUFSIZE) get_available_commands();
  6761. millis_t ms = millis();
  6762. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6763. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6764. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6765. #if ENABLED(DISABLE_INACTIVE_X)
  6766. disable_x();
  6767. #endif
  6768. #if ENABLED(DISABLE_INACTIVE_Y)
  6769. disable_y();
  6770. #endif
  6771. #if ENABLED(DISABLE_INACTIVE_Z)
  6772. disable_z();
  6773. #endif
  6774. #if ENABLED(DISABLE_INACTIVE_E)
  6775. disable_e0();
  6776. disable_e1();
  6777. disable_e2();
  6778. disable_e3();
  6779. #endif
  6780. }
  6781. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6782. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6783. chdkActive = false;
  6784. WRITE(CHDK, LOW);
  6785. }
  6786. #endif
  6787. #if HAS_KILL
  6788. // Check if the kill button was pressed and wait just in case it was an accidental
  6789. // key kill key press
  6790. // -------------------------------------------------------------------------------
  6791. static int killCount = 0; // make the inactivity button a bit less responsive
  6792. const int KILL_DELAY = 750;
  6793. if (!READ(KILL_PIN))
  6794. killCount++;
  6795. else if (killCount > 0)
  6796. killCount--;
  6797. // Exceeded threshold and we can confirm that it was not accidental
  6798. // KILL the machine
  6799. // ----------------------------------------------------------------
  6800. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6801. #endif
  6802. #if HAS_HOME
  6803. // Check to see if we have to home, use poor man's debouncer
  6804. // ---------------------------------------------------------
  6805. static int homeDebounceCount = 0; // poor man's debouncing count
  6806. const int HOME_DEBOUNCE_DELAY = 2500;
  6807. if (!READ(HOME_PIN)) {
  6808. if (!homeDebounceCount) {
  6809. enqueue_and_echo_commands_P(PSTR("G28"));
  6810. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6811. }
  6812. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6813. homeDebounceCount++;
  6814. else
  6815. homeDebounceCount = 0;
  6816. }
  6817. #endif
  6818. #if HAS_CONTROLLERFAN
  6819. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6820. #endif
  6821. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6822. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6823. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6824. bool oldstatus;
  6825. switch (active_extruder) {
  6826. case 0:
  6827. oldstatus = E0_ENABLE_READ;
  6828. enable_e0();
  6829. break;
  6830. #if EXTRUDERS > 1
  6831. case 1:
  6832. oldstatus = E1_ENABLE_READ;
  6833. enable_e1();
  6834. break;
  6835. #if EXTRUDERS > 2
  6836. case 2:
  6837. oldstatus = E2_ENABLE_READ;
  6838. enable_e2();
  6839. break;
  6840. #if EXTRUDERS > 3
  6841. case 3:
  6842. oldstatus = E3_ENABLE_READ;
  6843. enable_e3();
  6844. break;
  6845. #endif
  6846. #endif
  6847. #endif
  6848. }
  6849. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6850. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6851. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6852. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6853. current_position[E_AXIS] = oldepos;
  6854. destination[E_AXIS] = oldedes;
  6855. planner.set_e_position_mm(oldepos);
  6856. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6857. stepper.synchronize();
  6858. switch (active_extruder) {
  6859. case 0:
  6860. E0_ENABLE_WRITE(oldstatus);
  6861. break;
  6862. #if EXTRUDERS > 1
  6863. case 1:
  6864. E1_ENABLE_WRITE(oldstatus);
  6865. break;
  6866. #if EXTRUDERS > 2
  6867. case 2:
  6868. E2_ENABLE_WRITE(oldstatus);
  6869. break;
  6870. #if EXTRUDERS > 3
  6871. case 3:
  6872. E3_ENABLE_WRITE(oldstatus);
  6873. break;
  6874. #endif
  6875. #endif
  6876. #endif
  6877. }
  6878. }
  6879. #endif
  6880. #if ENABLED(DUAL_X_CARRIAGE)
  6881. // handle delayed move timeout
  6882. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6883. // travel moves have been received so enact them
  6884. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6885. set_destination_to_current();
  6886. prepare_move_to_destination();
  6887. }
  6888. #endif
  6889. #if ENABLED(TEMP_STAT_LEDS)
  6890. handle_status_leds();
  6891. #endif
  6892. planner.check_axes_activity();
  6893. }
  6894. void kill(const char* lcd_msg) {
  6895. #if ENABLED(ULTRA_LCD)
  6896. lcd_init();
  6897. lcd_setalertstatuspgm(lcd_msg);
  6898. #else
  6899. UNUSED(lcd_msg);
  6900. #endif
  6901. cli(); // Stop interrupts
  6902. thermalManager.disable_all_heaters();
  6903. disable_all_steppers();
  6904. #if HAS_POWER_SWITCH
  6905. pinMode(PS_ON_PIN, INPUT);
  6906. #endif
  6907. SERIAL_ERROR_START;
  6908. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6909. // FMC small patch to update the LCD before ending
  6910. sei(); // enable interrupts
  6911. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6912. cli(); // disable interrupts
  6913. suicide();
  6914. while (1) {
  6915. #if ENABLED(USE_WATCHDOG)
  6916. watchdog_reset();
  6917. #endif
  6918. } // Wait for reset
  6919. }
  6920. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6921. void handle_filament_runout() {
  6922. if (!filament_ran_out) {
  6923. filament_ran_out = true;
  6924. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6925. stepper.synchronize();
  6926. }
  6927. }
  6928. #endif // FILAMENT_RUNOUT_SENSOR
  6929. #if ENABLED(FAST_PWM_FAN)
  6930. void setPwmFrequency(uint8_t pin, int val) {
  6931. val &= 0x07;
  6932. switch (digitalPinToTimer(pin)) {
  6933. #if defined(TCCR0A)
  6934. case TIMER0A:
  6935. case TIMER0B:
  6936. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6937. // TCCR0B |= val;
  6938. break;
  6939. #endif
  6940. #if defined(TCCR1A)
  6941. case TIMER1A:
  6942. case TIMER1B:
  6943. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6944. // TCCR1B |= val;
  6945. break;
  6946. #endif
  6947. #if defined(TCCR2)
  6948. case TIMER2:
  6949. case TIMER2:
  6950. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6951. TCCR2 |= val;
  6952. break;
  6953. #endif
  6954. #if defined(TCCR2A)
  6955. case TIMER2A:
  6956. case TIMER2B:
  6957. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6958. TCCR2B |= val;
  6959. break;
  6960. #endif
  6961. #if defined(TCCR3A)
  6962. case TIMER3A:
  6963. case TIMER3B:
  6964. case TIMER3C:
  6965. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6966. TCCR3B |= val;
  6967. break;
  6968. #endif
  6969. #if defined(TCCR4A)
  6970. case TIMER4A:
  6971. case TIMER4B:
  6972. case TIMER4C:
  6973. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6974. TCCR4B |= val;
  6975. break;
  6976. #endif
  6977. #if defined(TCCR5A)
  6978. case TIMER5A:
  6979. case TIMER5B:
  6980. case TIMER5C:
  6981. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6982. TCCR5B |= val;
  6983. break;
  6984. #endif
  6985. }
  6986. }
  6987. #endif // FAST_PWM_FAN
  6988. void stop() {
  6989. thermalManager.disable_all_heaters();
  6990. if (IsRunning()) {
  6991. Running = false;
  6992. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6993. SERIAL_ERROR_START;
  6994. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6995. LCD_MESSAGEPGM(MSG_STOPPED);
  6996. }
  6997. }
  6998. float calculate_volumetric_multiplier(float diameter) {
  6999. if (!volumetric_enabled || diameter == 0) return 1.0;
  7000. float d2 = diameter * 0.5;
  7001. return 1.0 / (M_PI * d2 * d2);
  7002. }
  7003. void calculate_volumetric_multipliers() {
  7004. for (int i = 0; i < EXTRUDERS; i++)
  7005. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7006. }