My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 183KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  185. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  186. int feedmultiply = 100; //100->1 200->2
  187. int saved_feedmultiply;
  188. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  189. bool volumetric_enabled = false;
  190. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  191. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  192. float current_position[NUM_AXIS] = { 0.0 };
  193. float home_offset[3] = { 0 };
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = { false };
  197. uint8_t active_extruder = 0;
  198. int fanSpeed = 0;
  199. bool cancel_heatup = false;
  200. const char errormagic[] PROGMEM = "Error:";
  201. const char echomagic[] PROGMEM = "echo:";
  202. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  203. static float destination[NUM_AXIS] = { 0 };
  204. static float offset[3] = { 0 };
  205. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  206. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  207. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  208. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  209. static int bufindr = 0;
  210. static int bufindw = 0;
  211. static int buflen = 0;
  212. static char serial_char;
  213. static int serial_count = 0;
  214. static boolean comment_mode = false;
  215. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  216. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  217. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  218. // Inactivity shutdown
  219. static unsigned long previous_millis_cmd = 0;
  220. static unsigned long max_inactive_time = 0;
  221. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  222. unsigned long starttime = 0; ///< Print job start time
  223. unsigned long stoptime = 0; ///< Print job stop time
  224. static uint8_t tmp_extruder;
  225. bool Stopped = false;
  226. bool CooldownNoWait = true;
  227. bool target_direction;
  228. #ifdef ENABLE_AUTO_BED_LEVELING
  229. int xy_travel_speed = XY_TRAVEL_SPEED;
  230. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  231. #endif
  232. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  233. float z_endstop_adj = 0;
  234. #endif
  235. // Extruder offsets
  236. #if EXTRUDERS > 1
  237. #ifndef EXTRUDER_OFFSET_X
  238. #define EXTRUDER_OFFSET_X { 0 }
  239. #endif
  240. #ifndef EXTRUDER_OFFSET_Y
  241. #define EXTRUDER_OFFSET_Y { 0 }
  242. #endif
  243. float extruder_offset[][EXTRUDERS] = {
  244. EXTRUDER_OFFSET_X,
  245. EXTRUDER_OFFSET_Y
  246. #ifdef DUAL_X_CARRIAGE
  247. , { 0 } // supports offsets in XYZ plane
  248. #endif
  249. };
  250. #endif
  251. #ifdef SERVO_ENDSTOPS
  252. int servo_endstops[] = SERVO_ENDSTOPS;
  253. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  254. #endif
  255. #ifdef BARICUDA
  256. int ValvePressure = 0;
  257. int EtoPPressure = 0;
  258. #endif
  259. #ifdef FWRETRACT
  260. bool autoretract_enabled = false;
  261. bool retracted[EXTRUDERS] = { false };
  262. bool retracted_swap[EXTRUDERS] = { false };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif // FWRETRACT
  271. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  272. bool powersupply =
  273. #ifdef PS_DEFAULT_OFF
  274. false
  275. #else
  276. true
  277. #endif
  278. ;
  279. #endif
  280. #if defined(DELTA) || defined(SCARA)
  281. static float delta[3] = { 0, 0, 0 };
  282. #ifdef DELTA
  283. #define SIN_60 0.8660254037844386
  284. #define COS_60 0.5
  285. float endstop_adj[3] = { 0 };
  286. // these are the default values, can be overriden with M665
  287. float delta_radius = DELTA_RADIUS;
  288. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  289. float delta_tower1_y = -COS_60 * delta_radius;
  290. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  291. float delta_tower2_y = -COS_60 * delta_radius;
  292. float delta_tower3_x = 0; // back middle tower
  293. float delta_tower3_y = delta_radius;
  294. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  295. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  296. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  297. #ifdef ENABLE_AUTO_BED_LEVELING
  298. int delta_grid_spacing[2] = { 0, 0 };
  299. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  300. #endif
  301. #endif
  302. #ifdef SCARA
  303. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  304. #endif
  305. #elif !defined(DELTA)
  306. static bool home_all_axis = true;
  307. #endif
  308. #ifdef FILAMENT_SENSOR
  309. //Variables for Filament Sensor input
  310. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  311. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  312. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  313. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  314. int delay_index1 = 0; //index into ring buffer
  315. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  316. float delay_dist = 0; //delay distance counter
  317. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  318. #endif
  319. #ifdef FILAMENT_RUNOUT_SENSOR
  320. static bool filrunoutEnqued = false;
  321. #endif
  322. #ifdef SDSUPPORT
  323. static bool fromsd[BUFSIZE];
  324. #endif
  325. #if NUM_SERVOS > 0
  326. Servo servos[NUM_SERVOS];
  327. #endif
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //================================ Functions ================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P() {
  364. if (!queued_commands_P) return false;
  365. // Get the next 30 chars from the sequence of gcodes to run
  366. char cmd[30];
  367. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  368. cmd[sizeof(cmd) - 1] = '\0';
  369. // Look for the end of line, or the end of sequence
  370. size_t i = 0;
  371. char c;
  372. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  373. cmd[i] = '\0';
  374. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  375. if (c)
  376. queued_commands_P += i + 1; // move to next command
  377. else
  378. queued_commands_P = NULL; // will have no more commands in the sequence
  379. }
  380. return true;
  381. }
  382. //Record one or many commands to run from program memory.
  383. //Aborts the current queue, if any.
  384. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  385. void enquecommands_P(const char* pgcode) {
  386. queued_commands_P = pgcode;
  387. drain_queued_commands_P(); // first command executed asap (when possible)
  388. }
  389. //adds a single command to the main command buffer, from RAM
  390. //that is really done in a non-safe way.
  391. //needs overworking someday
  392. //Returns false if it failed to do so
  393. bool enquecommand(const char *cmd)
  394. {
  395. if(*cmd==';')
  396. return false;
  397. if(buflen >= BUFSIZE)
  398. return false;
  399. //this is dangerous if a mixing of serial and this happens
  400. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  401. SERIAL_ECHO_START;
  402. SERIAL_ECHOPGM(MSG_Enqueing);
  403. SERIAL_ECHO(cmdbuffer[bufindw]);
  404. SERIAL_ECHOLNPGM("\"");
  405. bufindw= (bufindw + 1)%BUFSIZE;
  406. buflen += 1;
  407. return true;
  408. }
  409. void setup_killpin()
  410. {
  411. #if HAS_KILL
  412. SET_INPUT(KILL_PIN);
  413. WRITE(KILL_PIN, HIGH);
  414. #endif
  415. }
  416. void setup_filrunoutpin()
  417. {
  418. #if HAS_FILRUNOUT
  419. pinMode(FILRUNOUT_PIN, INPUT);
  420. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  421. WRITE(FILLRUNOUT_PIN, HIGH);
  422. #endif
  423. #endif
  424. }
  425. // Set home pin
  426. void setup_homepin(void)
  427. {
  428. #if HAS_HOME
  429. SET_INPUT(HOME_PIN);
  430. WRITE(HOME_PIN, HIGH);
  431. #endif
  432. }
  433. void setup_photpin()
  434. {
  435. #if HAS_PHOTOGRAPH
  436. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  437. #endif
  438. }
  439. void setup_powerhold()
  440. {
  441. #if HAS_SUICIDE
  442. OUT_WRITE(SUICIDE_PIN, HIGH);
  443. #endif
  444. #if HAS_POWER_SWITCH
  445. #ifdef PS_DEFAULT_OFF
  446. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  447. #else
  448. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  449. #endif
  450. #endif
  451. }
  452. void suicide()
  453. {
  454. #if HAS_SUICIDE
  455. OUT_WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. // Set position of Servo Endstops that are defined
  473. #ifdef SERVO_ENDSTOPS
  474. for (int i = 0; i < 3; i++)
  475. if (servo_endstops[i] >= 0)
  476. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  477. #endif
  478. #if SERVO_LEVELING
  479. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  480. servos[servo_endstops[Z_AXIS]].detach();
  481. #endif
  482. }
  483. void setup()
  484. {
  485. setup_killpin();
  486. setup_filrunoutpin();
  487. setup_powerhold();
  488. MYSERIAL.begin(BAUDRATE);
  489. SERIAL_PROTOCOLLNPGM("start");
  490. SERIAL_ECHO_START;
  491. // Check startup - does nothing if bootloader sets MCUSR to 0
  492. byte mcu = MCUSR;
  493. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  494. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  495. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  496. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  497. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  498. MCUSR=0;
  499. SERIAL_ECHOPGM(MSG_MARLIN);
  500. SERIAL_ECHOLNPGM(STRING_VERSION);
  501. #ifdef STRING_VERSION_CONFIG_H
  502. #ifdef STRING_CONFIG_H_AUTHOR
  503. SERIAL_ECHO_START;
  504. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  505. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  506. SERIAL_ECHOPGM(MSG_AUTHOR);
  507. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  508. SERIAL_ECHOPGM("Compiled: ");
  509. SERIAL_ECHOLNPGM(__DATE__);
  510. #endif // STRING_CONFIG_H_AUTHOR
  511. #endif // STRING_VERSION_CONFIG_H
  512. SERIAL_ECHO_START;
  513. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  514. SERIAL_ECHO(freeMemory());
  515. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  516. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  517. #ifdef SDSUPPORT
  518. for(int8_t i = 0; i < BUFSIZE; i++)
  519. {
  520. fromsd[i] = false;
  521. }
  522. #endif //!SDSUPPORT
  523. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  524. Config_RetrieveSettings();
  525. tp_init(); // Initialize temperature loop
  526. plan_init(); // Initialize planner;
  527. watchdog_init();
  528. st_init(); // Initialize stepper, this enables interrupts!
  529. setup_photpin();
  530. servo_init();
  531. lcd_init();
  532. _delay_ms(1000); // wait 1sec to display the splash screen
  533. #if HAS_CONTROLLERFAN
  534. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  535. #endif
  536. #ifdef DIGIPOT_I2C
  537. digipot_i2c_init();
  538. #endif
  539. #ifdef Z_PROBE_SLED
  540. pinMode(SERVO0_PIN, OUTPUT);
  541. digitalWrite(SERVO0_PIN, LOW); // turn it off
  542. #endif // Z_PROBE_SLED
  543. setup_homepin();
  544. #ifdef STAT_LED_RED
  545. pinMode(STAT_LED_RED, OUTPUT);
  546. digitalWrite(STAT_LED_RED, LOW); // turn it off
  547. #endif
  548. #ifdef STAT_LED_BLUE
  549. pinMode(STAT_LED_BLUE, OUTPUT);
  550. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  551. #endif
  552. }
  553. void loop() {
  554. if (buflen < BUFSIZE - 1) get_command();
  555. #ifdef SDSUPPORT
  556. card.checkautostart(false);
  557. #endif
  558. if (buflen) {
  559. #ifdef SDSUPPORT
  560. if (card.saving) {
  561. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  562. card.write_command(cmdbuffer[bufindr]);
  563. if (card.logging)
  564. process_commands();
  565. else
  566. SERIAL_PROTOCOLLNPGM(MSG_OK);
  567. }
  568. else {
  569. card.closefile();
  570. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  571. }
  572. }
  573. else
  574. process_commands();
  575. #else
  576. process_commands();
  577. #endif // SDSUPPORT
  578. buflen--;
  579. bufindr = (bufindr + 1) % BUFSIZE;
  580. }
  581. // Check heater every n milliseconds
  582. manage_heater();
  583. manage_inactivity();
  584. checkHitEndstops();
  585. lcd_update();
  586. }
  587. void get_command()
  588. {
  589. if (drain_queued_commands_P()) // priority is given to non-serial commands
  590. return;
  591. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  592. serial_char = MYSERIAL.read();
  593. if(serial_char == '\n' ||
  594. serial_char == '\r' ||
  595. serial_count >= (MAX_CMD_SIZE - 1) )
  596. {
  597. // end of line == end of comment
  598. comment_mode = false;
  599. if(!serial_count) {
  600. // short cut for empty lines
  601. return;
  602. }
  603. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  604. #ifdef SDSUPPORT
  605. fromsd[bufindw] = false;
  606. #endif //!SDSUPPORT
  607. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  608. {
  609. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  610. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  611. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  614. SERIAL_ERRORLN(gcode_LastN);
  615. //Serial.println(gcode_N);
  616. FlushSerialRequestResend();
  617. serial_count = 0;
  618. return;
  619. }
  620. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  621. {
  622. byte checksum = 0;
  623. byte count = 0;
  624. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  625. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  626. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  629. SERIAL_ERRORLN(gcode_LastN);
  630. FlushSerialRequestResend();
  631. serial_count = 0;
  632. return;
  633. }
  634. //if no errors, continue parsing
  635. }
  636. else
  637. {
  638. SERIAL_ERROR_START;
  639. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  640. SERIAL_ERRORLN(gcode_LastN);
  641. FlushSerialRequestResend();
  642. serial_count = 0;
  643. return;
  644. }
  645. gcode_LastN = gcode_N;
  646. //if no errors, continue parsing
  647. }
  648. else // if we don't receive 'N' but still see '*'
  649. {
  650. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  651. {
  652. SERIAL_ERROR_START;
  653. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  654. SERIAL_ERRORLN(gcode_LastN);
  655. serial_count = 0;
  656. return;
  657. }
  658. }
  659. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  660. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  661. switch(strtol(strchr_pointer + 1, NULL, 10)){
  662. case 0:
  663. case 1:
  664. case 2:
  665. case 3:
  666. if (Stopped == true) {
  667. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  668. LCD_MESSAGEPGM(MSG_STOPPED);
  669. }
  670. break;
  671. default:
  672. break;
  673. }
  674. }
  675. //If command was e-stop process now
  676. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  677. kill();
  678. bufindw = (bufindw + 1)%BUFSIZE;
  679. buflen += 1;
  680. serial_count = 0; //clear buffer
  681. }
  682. else if(serial_char == '\\') { //Handle escapes
  683. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  684. // if we have one more character, copy it over
  685. serial_char = MYSERIAL.read();
  686. cmdbuffer[bufindw][serial_count++] = serial_char;
  687. }
  688. //otherwise do nothing
  689. }
  690. else { // its not a newline, carriage return or escape char
  691. if(serial_char == ';') comment_mode = true;
  692. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  693. }
  694. }
  695. #ifdef SDSUPPORT
  696. if(!card.sdprinting || serial_count!=0){
  697. return;
  698. }
  699. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  700. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  701. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  702. static bool stop_buffering=false;
  703. if(buflen==0) stop_buffering=false;
  704. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  705. int16_t n=card.get();
  706. serial_char = (char)n;
  707. if(serial_char == '\n' ||
  708. serial_char == '\r' ||
  709. (serial_char == '#' && comment_mode == false) ||
  710. (serial_char == ':' && comment_mode == false) ||
  711. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  712. {
  713. if(card.eof()){
  714. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  715. stoptime=millis();
  716. char time[30];
  717. unsigned long t=(stoptime-starttime)/1000;
  718. int hours, minutes;
  719. minutes=(t/60)%60;
  720. hours=t/60/60;
  721. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  722. SERIAL_ECHO_START;
  723. SERIAL_ECHOLN(time);
  724. lcd_setstatus(time, true);
  725. card.printingHasFinished();
  726. card.checkautostart(true);
  727. }
  728. if(serial_char=='#')
  729. stop_buffering=true;
  730. if(!serial_count)
  731. {
  732. comment_mode = false; //for new command
  733. return; //if empty line
  734. }
  735. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  736. // if(!comment_mode){
  737. fromsd[bufindw] = true;
  738. buflen += 1;
  739. bufindw = (bufindw + 1)%BUFSIZE;
  740. // }
  741. comment_mode = false; //for new command
  742. serial_count = 0; //clear buffer
  743. }
  744. else
  745. {
  746. if(serial_char == ';') comment_mode = true;
  747. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  748. }
  749. }
  750. #endif //SDSUPPORT
  751. }
  752. float code_value() {
  753. float ret;
  754. char *e = strchr(strchr_pointer, 'E');
  755. if (e) {
  756. *e = 0;
  757. ret = strtod(strchr_pointer+1, NULL);
  758. *e = 'E';
  759. }
  760. else
  761. ret = strtod(strchr_pointer+1, NULL);
  762. return ret;
  763. }
  764. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  765. bool code_seen(char code) {
  766. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  767. return (strchr_pointer != NULL); //Return True if a character was found
  768. }
  769. #define DEFINE_PGM_READ_ANY(type, reader) \
  770. static inline type pgm_read_any(const type *p) \
  771. { return pgm_read_##reader##_near(p); }
  772. DEFINE_PGM_READ_ANY(float, float);
  773. DEFINE_PGM_READ_ANY(signed char, byte);
  774. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  775. static const PROGMEM type array##_P[3] = \
  776. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  777. static inline type array(int axis) \
  778. { return pgm_read_any(&array##_P[axis]); }
  779. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  780. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  782. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  783. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  784. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  785. #ifdef DUAL_X_CARRIAGE
  786. #define DXC_FULL_CONTROL_MODE 0
  787. #define DXC_AUTO_PARK_MODE 1
  788. #define DXC_DUPLICATION_MODE 2
  789. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  790. static float x_home_pos(int extruder) {
  791. if (extruder == 0)
  792. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  793. else
  794. // In dual carriage mode the extruder offset provides an override of the
  795. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  796. // This allow soft recalibration of the second extruder offset position without firmware reflash
  797. // (through the M218 command).
  798. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  799. }
  800. static int x_home_dir(int extruder) {
  801. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  802. }
  803. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  804. static bool active_extruder_parked = false; // used in mode 1 & 2
  805. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  806. static unsigned long delayed_move_time = 0; // used in mode 1
  807. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  808. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  809. bool extruder_duplication_enabled = false; // used in mode 2
  810. #endif //DUAL_X_CARRIAGE
  811. static void axis_is_at_home(int axis) {
  812. #ifdef DUAL_X_CARRIAGE
  813. if (axis == X_AXIS) {
  814. if (active_extruder != 0) {
  815. current_position[X_AXIS] = x_home_pos(active_extruder);
  816. min_pos[X_AXIS] = X2_MIN_POS;
  817. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  818. return;
  819. }
  820. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  821. float xoff = home_offset[X_AXIS];
  822. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  823. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  824. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  825. return;
  826. }
  827. }
  828. #endif
  829. #ifdef SCARA
  830. float homeposition[3];
  831. if (axis < 2) {
  832. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  833. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  834. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  835. // Works out real Homeposition angles using inverse kinematics,
  836. // and calculates homing offset using forward kinematics
  837. calculate_delta(homeposition);
  838. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  839. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  840. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  841. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  844. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  845. calculate_SCARA_forward_Transform(delta);
  846. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  847. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  848. current_position[axis] = delta[axis];
  849. // SCARA home positions are based on configuration since the actual limits are determined by the
  850. // inverse kinematic transform.
  851. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  853. }
  854. else {
  855. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  856. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  857. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  858. }
  859. #else
  860. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  861. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  862. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  863. #endif
  864. }
  865. inline void refresh_cmd_timeout() { previous_millis_cmd = millis(); }
  866. /**
  867. * Some planner shorthand inline functions
  868. */
  869. inline void line_to_current_position() {
  870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  871. }
  872. inline void line_to_z(float zPosition) {
  873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  874. }
  875. inline void line_to_destination() {
  876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  877. }
  878. inline void sync_plan_position() {
  879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  880. }
  881. #if defined(DELTA) || defined(SCARA)
  882. inline void sync_plan_position_delta() {
  883. calculate_delta(current_position);
  884. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  885. }
  886. #endif
  887. #ifdef ENABLE_AUTO_BED_LEVELING
  888. #ifdef DELTA
  889. /**
  890. * Calculate delta, start a line, and set current_position to destination
  891. */
  892. void prepare_move_raw() {
  893. refresh_cmd_timeout();
  894. calculate_delta(destination);
  895. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  896. for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
  897. }
  898. #endif
  899. #ifdef AUTO_BED_LEVELING_GRID
  900. #ifndef DELTA
  901. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  902. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  903. planeNormal.debug("planeNormal");
  904. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  905. //bedLevel.debug("bedLevel");
  906. //plan_bed_level_matrix.debug("bed level before");
  907. //vector_3 uncorrected_position = plan_get_position_mm();
  908. //uncorrected_position.debug("position before");
  909. vector_3 corrected_position = plan_get_position();
  910. //corrected_position.debug("position after");
  911. current_position[X_AXIS] = corrected_position.x;
  912. current_position[Y_AXIS] = corrected_position.y;
  913. current_position[Z_AXIS] = corrected_position.z;
  914. sync_plan_position();
  915. }
  916. #endif // !DELTA
  917. #else // !AUTO_BED_LEVELING_GRID
  918. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  919. plan_bed_level_matrix.set_to_identity();
  920. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  921. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  922. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  923. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  924. if (planeNormal.z < 0) {
  925. planeNormal.x = -planeNormal.x;
  926. planeNormal.y = -planeNormal.y;
  927. planeNormal.z = -planeNormal.z;
  928. }
  929. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  930. vector_3 corrected_position = plan_get_position();
  931. current_position[X_AXIS] = corrected_position.x;
  932. current_position[Y_AXIS] = corrected_position.y;
  933. current_position[Z_AXIS] = corrected_position.z;
  934. sync_plan_position();
  935. }
  936. #endif // !AUTO_BED_LEVELING_GRID
  937. static void run_z_probe() {
  938. #ifdef DELTA
  939. float start_z = current_position[Z_AXIS];
  940. long start_steps = st_get_position(Z_AXIS);
  941. // move down slowly until you find the bed
  942. feedrate = homing_feedrate[Z_AXIS] / 4;
  943. destination[Z_AXIS] = -10;
  944. prepare_move_raw();
  945. st_synchronize();
  946. endstops_hit_on_purpose(); // clear endstop hit flags
  947. // we have to let the planner know where we are right now as it is not where we said to go.
  948. long stop_steps = st_get_position(Z_AXIS);
  949. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  950. current_position[Z_AXIS] = mm;
  951. sync_plan_position_delta();
  952. #else // !DELTA
  953. plan_bed_level_matrix.set_to_identity();
  954. feedrate = homing_feedrate[Z_AXIS];
  955. // move down until you find the bed
  956. float zPosition = -10;
  957. line_to_z(zPosition);
  958. st_synchronize();
  959. // we have to let the planner know where we are right now as it is not where we said to go.
  960. zPosition = st_get_position_mm(Z_AXIS);
  961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  962. // move up the retract distance
  963. zPosition += home_bump_mm(Z_AXIS);
  964. line_to_z(zPosition);
  965. st_synchronize();
  966. endstops_hit_on_purpose(); // clear endstop hit flags
  967. // move back down slowly to find bed
  968. if (homing_bump_divisor[Z_AXIS] >= 1)
  969. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  970. else {
  971. feedrate = homing_feedrate[Z_AXIS] / 10;
  972. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  973. }
  974. zPosition -= home_bump_mm(Z_AXIS) * 2;
  975. line_to_z(zPosition);
  976. st_synchronize();
  977. endstops_hit_on_purpose(); // clear endstop hit flags
  978. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  979. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  980. sync_plan_position();
  981. #endif // !DELTA
  982. }
  983. /**
  984. *
  985. */
  986. static void do_blocking_move_to(float x, float y, float z) {
  987. float oldFeedRate = feedrate;
  988. #ifdef DELTA
  989. feedrate = XY_TRAVEL_SPEED;
  990. destination[X_AXIS] = x;
  991. destination[Y_AXIS] = y;
  992. destination[Z_AXIS] = z;
  993. prepare_move_raw();
  994. st_synchronize();
  995. #else
  996. feedrate = homing_feedrate[Z_AXIS];
  997. current_position[Z_AXIS] = z;
  998. line_to_current_position();
  999. st_synchronize();
  1000. feedrate = xy_travel_speed;
  1001. current_position[X_AXIS] = x;
  1002. current_position[Y_AXIS] = y;
  1003. line_to_current_position();
  1004. st_synchronize();
  1005. #endif
  1006. feedrate = oldFeedRate;
  1007. }
  1008. static void setup_for_endstop_move() {
  1009. saved_feedrate = feedrate;
  1010. saved_feedmultiply = feedmultiply;
  1011. feedmultiply = 100;
  1012. refresh_cmd_timeout();
  1013. enable_endstops(true);
  1014. }
  1015. static void clean_up_after_endstop_move() {
  1016. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1017. enable_endstops(false);
  1018. #endif
  1019. feedrate = saved_feedrate;
  1020. feedmultiply = saved_feedmultiply;
  1021. refresh_cmd_timeout();
  1022. }
  1023. static void deploy_z_probe() {
  1024. #ifdef SERVO_ENDSTOPS
  1025. // Engage Z Servo endstop if enabled
  1026. if (servo_endstops[Z_AXIS] >= 0) {
  1027. #if SERVO_LEVELING
  1028. servos[servo_endstops[Z_AXIS]].attach(0);
  1029. #endif
  1030. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1031. #if SERVO_LEVELING
  1032. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1033. servos[servo_endstops[Z_AXIS]].detach();
  1034. #endif
  1035. }
  1036. #elif defined(Z_PROBE_ALLEN_KEY)
  1037. feedrate = homing_feedrate[X_AXIS];
  1038. // Move to the start position to initiate deployment
  1039. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1040. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1041. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1042. prepare_move_raw();
  1043. // Home X to touch the belt
  1044. feedrate = homing_feedrate[X_AXIS]/10;
  1045. destination[X_AXIS] = 0;
  1046. prepare_move_raw();
  1047. // Home Y for safety
  1048. feedrate = homing_feedrate[X_AXIS]/2;
  1049. destination[Y_AXIS] = 0;
  1050. prepare_move_raw();
  1051. st_synchronize();
  1052. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1053. if (z_min_endstop) {
  1054. if (!Stopped) {
  1055. SERIAL_ERROR_START;
  1056. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1057. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1058. }
  1059. Stop();
  1060. }
  1061. #endif // Z_PROBE_ALLEN_KEY
  1062. }
  1063. static void stow_z_probe() {
  1064. #ifdef SERVO_ENDSTOPS
  1065. // Retract Z Servo endstop if enabled
  1066. if (servo_endstops[Z_AXIS] >= 0) {
  1067. #if Z_RAISE_AFTER_PROBING > 0
  1068. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1069. st_synchronize();
  1070. #endif
  1071. #if SERVO_LEVELING
  1072. servos[servo_endstops[Z_AXIS]].attach(0);
  1073. #endif
  1074. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1075. #if SERVO_LEVELING
  1076. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1077. servos[servo_endstops[Z_AXIS]].detach();
  1078. #endif
  1079. }
  1080. #elif defined(Z_PROBE_ALLEN_KEY)
  1081. // Move up for safety
  1082. feedrate = homing_feedrate[X_AXIS];
  1083. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1084. prepare_move_raw();
  1085. // Move to the start position to initiate retraction
  1086. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1087. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1088. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1089. prepare_move_raw();
  1090. // Move the nozzle down to push the probe into retracted position
  1091. feedrate = homing_feedrate[Z_AXIS]/10;
  1092. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1093. prepare_move_raw();
  1094. // Move up for safety
  1095. feedrate = homing_feedrate[Z_AXIS]/2;
  1096. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1097. prepare_move_raw();
  1098. // Home XY for safety
  1099. feedrate = homing_feedrate[X_AXIS]/2;
  1100. destination[X_AXIS] = 0;
  1101. destination[Y_AXIS] = 0;
  1102. prepare_move_raw();
  1103. st_synchronize();
  1104. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1105. if (!z_min_endstop) {
  1106. if (!Stopped) {
  1107. SERIAL_ERROR_START;
  1108. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1109. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1110. }
  1111. Stop();
  1112. }
  1113. #endif
  1114. }
  1115. enum ProbeAction {
  1116. ProbeStay = 0,
  1117. ProbeEngage = BIT(0),
  1118. ProbeRetract = BIT(1),
  1119. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1120. };
  1121. // Probe bed height at position (x,y), returns the measured z value
  1122. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1123. // move to right place
  1124. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1125. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1126. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1127. if (retract_action & ProbeEngage) deploy_z_probe();
  1128. #endif
  1129. run_z_probe();
  1130. float measured_z = current_position[Z_AXIS];
  1131. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1132. if (retract_action == ProbeStay) {
  1133. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1134. st_synchronize();
  1135. }
  1136. #endif
  1137. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1138. if (retract_action & ProbeRetract) stow_z_probe();
  1139. #endif
  1140. if (verbose_level > 2) {
  1141. SERIAL_PROTOCOLPGM(MSG_BED);
  1142. SERIAL_PROTOCOLPGM(" X: ");
  1143. SERIAL_PROTOCOL_F(x, 3);
  1144. SERIAL_PROTOCOLPGM(" Y: ");
  1145. SERIAL_PROTOCOL_F(y, 3);
  1146. SERIAL_PROTOCOLPGM(" Z: ");
  1147. SERIAL_PROTOCOL_F(measured_z, 3);
  1148. SERIAL_EOL;
  1149. }
  1150. return measured_z;
  1151. }
  1152. #ifdef DELTA
  1153. /**
  1154. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1155. */
  1156. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1157. if (bed_level[x][y] != 0.0) {
  1158. return; // Don't overwrite good values.
  1159. }
  1160. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1161. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1162. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1163. float median = c; // Median is robust (ignores outliers).
  1164. if (a < b) {
  1165. if (b < c) median = b;
  1166. if (c < a) median = a;
  1167. } else { // b <= a
  1168. if (c < b) median = b;
  1169. if (a < c) median = a;
  1170. }
  1171. bed_level[x][y] = median;
  1172. }
  1173. // Fill in the unprobed points (corners of circular print surface)
  1174. // using linear extrapolation, away from the center.
  1175. static void extrapolate_unprobed_bed_level() {
  1176. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1177. for (int y = 0; y <= half; y++) {
  1178. for (int x = 0; x <= half; x++) {
  1179. if (x + y < 3) continue;
  1180. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1181. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1182. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1183. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1184. }
  1185. }
  1186. }
  1187. // Print calibration results for plotting or manual frame adjustment.
  1188. static void print_bed_level() {
  1189. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1190. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1191. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1192. SERIAL_PROTOCOLPGM(" ");
  1193. }
  1194. SERIAL_ECHOLN("");
  1195. }
  1196. }
  1197. // Reset calibration results to zero.
  1198. void reset_bed_level() {
  1199. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1200. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1201. bed_level[x][y] = 0.0;
  1202. }
  1203. }
  1204. }
  1205. #endif // DELTA
  1206. #endif // ENABLE_AUTO_BED_LEVELING
  1207. /**
  1208. * Home an individual axis
  1209. */
  1210. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1211. static void homeaxis(int axis) {
  1212. #define HOMEAXIS_DO(LETTER) \
  1213. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1214. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1215. int axis_home_dir;
  1216. #ifdef DUAL_X_CARRIAGE
  1217. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1218. #else
  1219. axis_home_dir = home_dir(axis);
  1220. #endif
  1221. // Set the axis position as setup for the move
  1222. current_position[axis] = 0;
  1223. sync_plan_position();
  1224. // Engage Servo endstop if enabled
  1225. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1226. #if SERVO_LEVELING
  1227. if (axis == Z_AXIS) deploy_z_probe(); else
  1228. #endif
  1229. {
  1230. if (servo_endstops[axis] > -1)
  1231. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1232. }
  1233. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1234. #ifdef Z_DUAL_ENDSTOPS
  1235. if (axis == Z_AXIS) In_Homing_Process(true);
  1236. #endif
  1237. // Move towards the endstop until an endstop is triggered
  1238. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1239. feedrate = homing_feedrate[axis];
  1240. line_to_destination();
  1241. st_synchronize();
  1242. // Set the axis position as setup for the move
  1243. current_position[axis] = 0;
  1244. sync_plan_position();
  1245. // Move away from the endstop by the axis HOME_BUMP_MM
  1246. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1247. line_to_destination();
  1248. st_synchronize();
  1249. // Slow down the feedrate for the next move
  1250. if (homing_bump_divisor[axis] >= 1)
  1251. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1252. else {
  1253. feedrate = homing_feedrate[axis] / 10;
  1254. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1255. }
  1256. // Move slowly towards the endstop until triggered
  1257. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1258. line_to_destination();
  1259. st_synchronize();
  1260. #ifdef Z_DUAL_ENDSTOPS
  1261. if (axis == Z_AXIS) {
  1262. float adj = fabs(z_endstop_adj);
  1263. bool lockZ1;
  1264. if (axis_home_dir > 0) {
  1265. adj = -adj;
  1266. lockZ1 = (z_endstop_adj > 0);
  1267. }
  1268. else
  1269. lockZ1 = (z_endstop_adj < 0);
  1270. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1271. sync_plan_position();
  1272. // Move to the adjusted endstop height
  1273. feedrate = homing_feedrate[axis];
  1274. destination[Z_AXIS] = adj;
  1275. line_to_destination();
  1276. st_synchronize();
  1277. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1278. In_Homing_Process(false);
  1279. } // Z_AXIS
  1280. #endif
  1281. #ifdef DELTA
  1282. // retrace by the amount specified in endstop_adj
  1283. if (endstop_adj[axis] * axis_home_dir < 0) {
  1284. sync_plan_position();
  1285. destination[axis] = endstop_adj[axis];
  1286. line_to_destination();
  1287. st_synchronize();
  1288. }
  1289. #endif
  1290. // Set the axis position to its home position (plus home offsets)
  1291. axis_is_at_home(axis);
  1292. destination[axis] = current_position[axis];
  1293. feedrate = 0.0;
  1294. endstops_hit_on_purpose(); // clear endstop hit flags
  1295. axis_known_position[axis] = true;
  1296. // Retract Servo endstop if enabled
  1297. #ifdef SERVO_ENDSTOPS
  1298. if (servo_endstops[axis] > -1)
  1299. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1300. #endif
  1301. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1302. if (axis == Z_AXIS) stow_z_probe();
  1303. #endif
  1304. }
  1305. }
  1306. #ifdef FWRETRACT
  1307. void retract(bool retracting, bool swapretract = false) {
  1308. if (retracting == retracted[active_extruder]) return;
  1309. float oldFeedrate = feedrate;
  1310. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1311. if (retracting) {
  1312. feedrate = retract_feedrate * 60;
  1313. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1314. plan_set_e_position(current_position[E_AXIS]);
  1315. prepare_move();
  1316. if (retract_zlift > 0.01) {
  1317. current_position[Z_AXIS] -= retract_zlift;
  1318. #ifdef DELTA
  1319. sync_plan_position_delta();
  1320. #else
  1321. sync_plan_position();
  1322. #endif
  1323. prepare_move();
  1324. }
  1325. }
  1326. else {
  1327. if (retract_zlift > 0.01) {
  1328. current_position[Z_AXIS] += retract_zlift;
  1329. #ifdef DELTA
  1330. sync_plan_position_delta();
  1331. #else
  1332. sync_plan_position();
  1333. #endif
  1334. //prepare_move();
  1335. }
  1336. feedrate = retract_recover_feedrate * 60;
  1337. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1338. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1339. plan_set_e_position(current_position[E_AXIS]);
  1340. prepare_move();
  1341. }
  1342. feedrate = oldFeedrate;
  1343. retracted[active_extruder] = retract;
  1344. } // retract()
  1345. #endif // FWRETRACT
  1346. #ifdef Z_PROBE_SLED
  1347. #ifndef SLED_DOCKING_OFFSET
  1348. #define SLED_DOCKING_OFFSET 0
  1349. #endif
  1350. //
  1351. // Method to dock/undock a sled designed by Charles Bell.
  1352. //
  1353. // dock[in] If true, move to MAX_X and engage the electromagnet
  1354. // offset[in] The additional distance to move to adjust docking location
  1355. //
  1356. static void dock_sled(bool dock, int offset=0) {
  1357. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1358. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1359. SERIAL_ECHO_START;
  1360. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1361. return;
  1362. }
  1363. if (dock) {
  1364. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1365. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1366. } else {
  1367. float z_loc = current_position[Z_AXIS];
  1368. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1369. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1370. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1371. }
  1372. }
  1373. #endif // Z_PROBE_SLED
  1374. /**
  1375. *
  1376. * G-Code Handler functions
  1377. *
  1378. */
  1379. /**
  1380. * G0, G1: Coordinated movement of X Y Z E axes
  1381. */
  1382. inline void gcode_G0_G1() {
  1383. if (!Stopped) {
  1384. get_coordinates(); // For X Y Z E F
  1385. #ifdef FWRETRACT
  1386. if (autoretract_enabled)
  1387. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1388. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1389. // Is this move an attempt to retract or recover?
  1390. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1391. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1392. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1393. retract(!retracted[active_extruder]);
  1394. return;
  1395. }
  1396. }
  1397. #endif //FWRETRACT
  1398. prepare_move();
  1399. //ClearToSend();
  1400. }
  1401. }
  1402. /**
  1403. * G2: Clockwise Arc
  1404. * G3: Counterclockwise Arc
  1405. */
  1406. inline void gcode_G2_G3(bool clockwise) {
  1407. if (!Stopped) {
  1408. get_arc_coordinates();
  1409. prepare_arc_move(clockwise);
  1410. }
  1411. }
  1412. /**
  1413. * G4: Dwell S<seconds> or P<milliseconds>
  1414. */
  1415. inline void gcode_G4() {
  1416. unsigned long codenum=0;
  1417. LCD_MESSAGEPGM(MSG_DWELL);
  1418. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1419. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1420. st_synchronize();
  1421. refresh_cmd_timeout();
  1422. codenum += previous_millis_cmd; // keep track of when we started waiting
  1423. while (millis() < codenum) {
  1424. manage_heater();
  1425. manage_inactivity();
  1426. lcd_update();
  1427. }
  1428. }
  1429. #ifdef FWRETRACT
  1430. /**
  1431. * G10 - Retract filament according to settings of M207
  1432. * G11 - Recover filament according to settings of M208
  1433. */
  1434. inline void gcode_G10_G11(bool doRetract=false) {
  1435. #if EXTRUDERS > 1
  1436. if (doRetract) {
  1437. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1438. }
  1439. #endif
  1440. retract(doRetract
  1441. #if EXTRUDERS > 1
  1442. , retracted_swap[active_extruder]
  1443. #endif
  1444. );
  1445. }
  1446. #endif //FWRETRACT
  1447. /**
  1448. * G28: Home all axes according to settings
  1449. *
  1450. * Parameters
  1451. *
  1452. * None Home to all axes with no parameters.
  1453. * With QUICK_HOME enabled XY will home together, then Z.
  1454. *
  1455. * Cartesian parameters
  1456. *
  1457. * X Home to the X endstop
  1458. * Y Home to the Y endstop
  1459. * Z Home to the Z endstop
  1460. *
  1461. * If numbers are included with XYZ set the position as with G92
  1462. * Currently adds the home_offset, which may be wrong and removed soon.
  1463. *
  1464. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1465. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1466. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1467. */
  1468. inline void gcode_G28() {
  1469. // For auto bed leveling, clear the level matrix
  1470. #ifdef ENABLE_AUTO_BED_LEVELING
  1471. plan_bed_level_matrix.set_to_identity();
  1472. #ifdef DELTA
  1473. reset_bed_level();
  1474. #endif
  1475. #endif
  1476. // For manual bed leveling deactivate the matrix temporarily
  1477. #ifdef MESH_BED_LEVELING
  1478. uint8_t mbl_was_active = mbl.active;
  1479. mbl.active = 0;
  1480. #endif
  1481. saved_feedrate = feedrate;
  1482. saved_feedmultiply = feedmultiply;
  1483. feedmultiply = 100;
  1484. refresh_cmd_timeout();
  1485. enable_endstops(true);
  1486. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1487. feedrate = 0.0;
  1488. #ifdef DELTA
  1489. // A delta can only safely home all axis at the same time
  1490. // all axis have to home at the same time
  1491. // Pretend the current position is 0,0,0
  1492. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1493. sync_plan_position();
  1494. // Move all carriages up together until the first endstop is hit.
  1495. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1496. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1497. line_to_destination();
  1498. st_synchronize();
  1499. endstops_hit_on_purpose(); // clear endstop hit flags
  1500. // Destination reached
  1501. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1502. // take care of back off and rehome now we are all at the top
  1503. HOMEAXIS(X);
  1504. HOMEAXIS(Y);
  1505. HOMEAXIS(Z);
  1506. sync_plan_position_delta();
  1507. #else // NOT DELTA
  1508. bool homeX = code_seen(axis_codes[X_AXIS]),
  1509. homeY = code_seen(axis_codes[Y_AXIS]),
  1510. homeZ = code_seen(axis_codes[Z_AXIS]);
  1511. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1512. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1513. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1514. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1515. // Raise Z before homing any other axes
  1516. if (home_all_axis || homeZ) {
  1517. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1518. feedrate = max_feedrate[Z_AXIS];
  1519. line_to_destination();
  1520. st_synchronize();
  1521. }
  1522. #endif
  1523. #ifdef QUICK_HOME
  1524. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1525. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1526. #ifdef DUAL_X_CARRIAGE
  1527. int x_axis_home_dir = x_home_dir(active_extruder);
  1528. extruder_duplication_enabled = false;
  1529. #else
  1530. int x_axis_home_dir = home_dir(X_AXIS);
  1531. #endif
  1532. sync_plan_position();
  1533. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1534. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1535. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1536. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1537. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1538. line_to_destination();
  1539. st_synchronize();
  1540. axis_is_at_home(X_AXIS);
  1541. axis_is_at_home(Y_AXIS);
  1542. sync_plan_position();
  1543. destination[X_AXIS] = current_position[X_AXIS];
  1544. destination[Y_AXIS] = current_position[Y_AXIS];
  1545. line_to_destination();
  1546. feedrate = 0.0;
  1547. st_synchronize();
  1548. endstops_hit_on_purpose(); // clear endstop hit flags
  1549. current_position[X_AXIS] = destination[X_AXIS];
  1550. current_position[Y_AXIS] = destination[Y_AXIS];
  1551. #ifndef SCARA
  1552. current_position[Z_AXIS] = destination[Z_AXIS];
  1553. #endif
  1554. }
  1555. #endif // QUICK_HOME
  1556. // Home X
  1557. if (home_all_axis || homeX) {
  1558. #ifdef DUAL_X_CARRIAGE
  1559. int tmp_extruder = active_extruder;
  1560. extruder_duplication_enabled = false;
  1561. active_extruder = !active_extruder;
  1562. HOMEAXIS(X);
  1563. inactive_extruder_x_pos = current_position[X_AXIS];
  1564. active_extruder = tmp_extruder;
  1565. HOMEAXIS(X);
  1566. // reset state used by the different modes
  1567. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1568. delayed_move_time = 0;
  1569. active_extruder_parked = true;
  1570. #else
  1571. HOMEAXIS(X);
  1572. #endif
  1573. }
  1574. // Home Y
  1575. if (home_all_axis || homeY) HOMEAXIS(Y);
  1576. // Set the X position, if included
  1577. // Adds the home_offset as well, which may be wrong
  1578. if (code_seen(axis_codes[X_AXIS])) {
  1579. float v = code_value();
  1580. if (v) current_position[X_AXIS] = v
  1581. #ifndef SCARA
  1582. + home_offset[X_AXIS]
  1583. #endif
  1584. ;
  1585. }
  1586. // Set the Y position, if included
  1587. // Adds the home_offset as well, which may be wrong
  1588. if (code_seen(axis_codes[Y_AXIS])) {
  1589. float v = code_value();
  1590. if (v) current_position[Y_AXIS] = v
  1591. #ifndef SCARA
  1592. + home_offset[Y_AXIS]
  1593. #endif
  1594. ;
  1595. }
  1596. // Home Z last if homing towards the bed
  1597. #if Z_HOME_DIR < 0
  1598. #ifndef Z_SAFE_HOMING
  1599. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1600. #else // Z_SAFE_HOMING
  1601. if (home_all_axis) {
  1602. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1603. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1604. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1605. feedrate = XY_TRAVEL_SPEED;
  1606. current_position[Z_AXIS] = 0;
  1607. sync_plan_position();
  1608. line_to_destination();
  1609. st_synchronize();
  1610. current_position[X_AXIS] = destination[X_AXIS];
  1611. current_position[Y_AXIS] = destination[Y_AXIS];
  1612. HOMEAXIS(Z);
  1613. }
  1614. // Let's see if X and Y are homed and probe is inside bed area.
  1615. if (homeZ) {
  1616. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1617. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1618. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1619. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1620. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1621. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1622. current_position[Z_AXIS] = 0;
  1623. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1624. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1625. feedrate = max_feedrate[Z_AXIS];
  1626. line_to_destination();
  1627. st_synchronize();
  1628. HOMEAXIS(Z);
  1629. }
  1630. else {
  1631. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1632. SERIAL_ECHO_START;
  1633. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1634. }
  1635. }
  1636. else {
  1637. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1638. SERIAL_ECHO_START;
  1639. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1640. }
  1641. }
  1642. #endif // Z_SAFE_HOMING
  1643. #endif // Z_HOME_DIR < 0
  1644. // Set the Z position, if included
  1645. // Adds the home_offset as well, which may be wrong
  1646. if (code_seen(axis_codes[Z_AXIS])) {
  1647. float v = code_value();
  1648. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1649. }
  1650. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1651. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1652. #endif
  1653. sync_plan_position();
  1654. #endif // else DELTA
  1655. #ifdef SCARA
  1656. sync_plan_position_delta();
  1657. #endif
  1658. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1659. enable_endstops(false);
  1660. #endif
  1661. // For manual leveling move back to 0,0
  1662. #ifdef MESH_BED_LEVELING
  1663. if (mbl_was_active) {
  1664. current_position[X_AXIS] = mbl.get_x(0);
  1665. current_position[Y_AXIS] = mbl.get_y(0);
  1666. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1667. feedrate = homing_feedrate[X_AXIS];
  1668. line_to_destination();
  1669. st_synchronize();
  1670. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1671. sync_plan_position();
  1672. mbl.active = 1;
  1673. }
  1674. #endif
  1675. feedrate = saved_feedrate;
  1676. feedmultiply = saved_feedmultiply;
  1677. refresh_cmd_timeout();
  1678. endstops_hit_on_purpose(); // clear endstop hit flags
  1679. }
  1680. #ifdef MESH_BED_LEVELING
  1681. enum MeshLevelingState { MeshReport, MeshStart, MeshNext };
  1682. /**
  1683. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1684. * mesh to compensate for variable bed height
  1685. *
  1686. * Parameters With MESH_BED_LEVELING:
  1687. *
  1688. * S0 Produce a mesh report
  1689. * S1 Start probing mesh points
  1690. * S2 Probe the next mesh point
  1691. *
  1692. */
  1693. inline void gcode_G29() {
  1694. static int probe_point = -1;
  1695. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_long() : MeshReport;
  1696. if (state < 0 || state > 2) {
  1697. SERIAL_PROTOCOLLNPGM("S out of range (0-2).");
  1698. return;
  1699. }
  1700. switch(state) {
  1701. case MeshReport:
  1702. if (mbl.active) {
  1703. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1704. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1705. SERIAL_PROTOCOLPGM(",");
  1706. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1707. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1708. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1709. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1710. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1711. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1712. SERIAL_PROTOCOLPGM(" ");
  1713. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1714. }
  1715. SERIAL_EOL;
  1716. }
  1717. }
  1718. else
  1719. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1720. break;
  1721. case MeshStart:
  1722. mbl.reset();
  1723. probe_point = 0;
  1724. enquecommands_P(PSTR("G28\nG29 S2"));
  1725. break;
  1726. case MeshNext:
  1727. if (probe_point < 0) {
  1728. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1729. return;
  1730. }
  1731. int ix, iy;
  1732. if (probe_point == 0) {
  1733. // Set Z to a positive value before recording the first Z.
  1734. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1735. sync_plan_position();
  1736. }
  1737. else {
  1738. // For others, save the Z of the previous point, then raise Z again.
  1739. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1740. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1741. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1742. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1743. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1745. st_synchronize();
  1746. }
  1747. // Is there another point to sample? Move there.
  1748. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1749. ix = probe_point % MESH_NUM_X_POINTS;
  1750. iy = probe_point / MESH_NUM_X_POINTS;
  1751. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1752. current_position[X_AXIS] = mbl.get_x(ix);
  1753. current_position[Y_AXIS] = mbl.get_y(iy);
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1755. st_synchronize();
  1756. probe_point++;
  1757. }
  1758. else {
  1759. // After recording the last point, activate the mbl and home
  1760. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1761. probe_point = -1;
  1762. mbl.active = 1;
  1763. enquecommands_P(PSTR("G28"));
  1764. }
  1765. } // switch(state)
  1766. }
  1767. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1768. /**
  1769. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1770. * Will fail if the printer has not been homed with G28.
  1771. *
  1772. * Enhanced G29 Auto Bed Leveling Probe Routine
  1773. *
  1774. * Parameters With AUTO_BED_LEVELING_GRID:
  1775. *
  1776. * P Set the size of the grid that will be probed (P x P points).
  1777. * Not supported by non-linear delta printer bed leveling.
  1778. * Example: "G29 P4"
  1779. *
  1780. * S Set the XY travel speed between probe points (in mm/min)
  1781. *
  1782. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1783. * or clean the rotation Matrix. Useful to check the topology
  1784. * after a first run of G29.
  1785. *
  1786. * V Set the verbose level (0-4). Example: "G29 V3"
  1787. *
  1788. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1789. * This is useful for manual bed leveling and finding flaws in the bed (to
  1790. * assist with part placement).
  1791. * Not supported by non-linear delta printer bed leveling.
  1792. *
  1793. * F Set the Front limit of the probing grid
  1794. * B Set the Back limit of the probing grid
  1795. * L Set the Left limit of the probing grid
  1796. * R Set the Right limit of the probing grid
  1797. *
  1798. * Global Parameters:
  1799. *
  1800. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1801. * Include "E" to engage/disengage the probe for each sample.
  1802. * There's no extra effect if you have a fixed probe.
  1803. * Usage: "G29 E" or "G29 e"
  1804. *
  1805. */
  1806. inline void gcode_G29() {
  1807. // Don't allow auto-leveling without homing first
  1808. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1809. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1810. SERIAL_ECHO_START;
  1811. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1812. return;
  1813. }
  1814. int verbose_level = code_seen('V') || code_seen('v') ? code_value_long() : 1;
  1815. if (verbose_level < 0 || verbose_level > 4) {
  1816. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1817. return;
  1818. }
  1819. bool dryrun = code_seen('D') || code_seen('d'),
  1820. engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1821. #ifdef AUTO_BED_LEVELING_GRID
  1822. #ifndef DELTA
  1823. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1824. #endif
  1825. if (verbose_level > 0) {
  1826. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1827. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1828. }
  1829. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1830. #ifndef DELTA
  1831. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1832. if (auto_bed_leveling_grid_points < 2) {
  1833. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1834. return;
  1835. }
  1836. #endif
  1837. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1838. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1839. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1840. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1841. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1842. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1843. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1844. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1845. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1846. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1847. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1848. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1849. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1850. if (left_out || right_out || front_out || back_out) {
  1851. if (left_out) {
  1852. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1853. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1854. }
  1855. if (right_out) {
  1856. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1857. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1858. }
  1859. if (front_out) {
  1860. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1861. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1862. }
  1863. if (back_out) {
  1864. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1865. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1866. }
  1867. return;
  1868. }
  1869. #endif // AUTO_BED_LEVELING_GRID
  1870. #ifdef Z_PROBE_SLED
  1871. dock_sled(false); // engage (un-dock) the probe
  1872. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1873. deploy_z_probe();
  1874. #endif
  1875. st_synchronize();
  1876. if (!dryrun) {
  1877. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1878. plan_bed_level_matrix.set_to_identity();
  1879. #ifdef DELTA
  1880. reset_bed_level();
  1881. #else //!DELTA
  1882. //vector_3 corrected_position = plan_get_position_mm();
  1883. //corrected_position.debug("position before G29");
  1884. vector_3 uncorrected_position = plan_get_position();
  1885. //uncorrected_position.debug("position during G29");
  1886. current_position[X_AXIS] = uncorrected_position.x;
  1887. current_position[Y_AXIS] = uncorrected_position.y;
  1888. current_position[Z_AXIS] = uncorrected_position.z;
  1889. sync_plan_position();
  1890. #endif // !DELTA
  1891. }
  1892. setup_for_endstop_move();
  1893. feedrate = homing_feedrate[Z_AXIS];
  1894. #ifdef AUTO_BED_LEVELING_GRID
  1895. // probe at the points of a lattice grid
  1896. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1897. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1898. #ifdef DELTA
  1899. delta_grid_spacing[0] = xGridSpacing;
  1900. delta_grid_spacing[1] = yGridSpacing;
  1901. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1902. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1903. #else // !DELTA
  1904. // solve the plane equation ax + by + d = z
  1905. // A is the matrix with rows [x y 1] for all the probed points
  1906. // B is the vector of the Z positions
  1907. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1908. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1909. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1910. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1911. eqnBVector[abl2], // "B" vector of Z points
  1912. mean = 0.0;
  1913. #endif // !DELTA
  1914. int probePointCounter = 0;
  1915. bool zig = true;
  1916. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1917. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1918. int xStart, xStop, xInc;
  1919. if (zig) {
  1920. xStart = 0;
  1921. xStop = auto_bed_leveling_grid_points;
  1922. xInc = 1;
  1923. }
  1924. else {
  1925. xStart = auto_bed_leveling_grid_points - 1;
  1926. xStop = -1;
  1927. xInc = -1;
  1928. }
  1929. #ifndef DELTA
  1930. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1931. // This gets the probe points in more readable order.
  1932. if (!do_topography_map) zig = !zig;
  1933. #endif
  1934. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1935. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1936. // raise extruder
  1937. float measured_z,
  1938. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1939. #ifdef DELTA
  1940. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1941. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1942. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1943. #endif //DELTA
  1944. // Enhanced G29 - Do not retract servo between probes
  1945. ProbeAction act;
  1946. if (engage_probe_for_each_reading)
  1947. act = ProbeEngageAndRetract;
  1948. else if (yProbe == front_probe_bed_position && xCount == 0)
  1949. act = ProbeEngage;
  1950. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1951. act = ProbeRetract;
  1952. else
  1953. act = ProbeStay;
  1954. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1955. #ifndef DELTA
  1956. mean += measured_z;
  1957. eqnBVector[probePointCounter] = measured_z;
  1958. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1959. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1960. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1961. #else
  1962. bed_level[xCount][yCount] = measured_z + z_offset;
  1963. #endif
  1964. probePointCounter++;
  1965. manage_heater();
  1966. manage_inactivity();
  1967. lcd_update();
  1968. } //xProbe
  1969. } //yProbe
  1970. clean_up_after_endstop_move();
  1971. #ifdef DELTA
  1972. if (!dryrun) extrapolate_unprobed_bed_level();
  1973. print_bed_level();
  1974. #else // !DELTA
  1975. // solve lsq problem
  1976. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1977. mean /= abl2;
  1978. if (verbose_level) {
  1979. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1980. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1981. SERIAL_PROTOCOLPGM(" b: ");
  1982. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1983. SERIAL_PROTOCOLPGM(" d: ");
  1984. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1985. SERIAL_EOL;
  1986. if (verbose_level > 2) {
  1987. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1988. SERIAL_PROTOCOL_F(mean, 8);
  1989. SERIAL_EOL;
  1990. }
  1991. }
  1992. // Show the Topography map if enabled
  1993. if (do_topography_map) {
  1994. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1995. SERIAL_PROTOCOLPGM("+-----------+\n");
  1996. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1997. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1998. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1999. SERIAL_PROTOCOLPGM("+-----------+\n");
  2000. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2001. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2002. int ind = yy * auto_bed_leveling_grid_points + xx;
  2003. float diff = eqnBVector[ind] - mean;
  2004. if (diff >= 0.0)
  2005. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2006. else
  2007. SERIAL_PROTOCOLPGM(" ");
  2008. SERIAL_PROTOCOL_F(diff, 5);
  2009. } // xx
  2010. SERIAL_EOL;
  2011. } // yy
  2012. SERIAL_EOL;
  2013. } //do_topography_map
  2014. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2015. free(plane_equation_coefficients);
  2016. #endif //!DELTA
  2017. #else // !AUTO_BED_LEVELING_GRID
  2018. // Actions for each probe
  2019. ProbeAction p1, p2, p3;
  2020. if (engage_probe_for_each_reading)
  2021. p1 = p2 = p3 = ProbeEngageAndRetract;
  2022. else
  2023. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2024. // Probe at 3 arbitrary points
  2025. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2026. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2027. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2028. clean_up_after_endstop_move();
  2029. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2030. #endif // !AUTO_BED_LEVELING_GRID
  2031. #ifndef DELTA
  2032. if (verbose_level > 0)
  2033. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2034. if (!dryrun) {
  2035. // Correct the Z height difference from z-probe position and hotend tip position.
  2036. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2037. // When the bed is uneven, this height must be corrected.
  2038. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2039. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2040. z_tmp = current_position[Z_AXIS],
  2041. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2042. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2043. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2044. sync_plan_position();
  2045. }
  2046. #endif // !DELTA
  2047. #ifdef Z_PROBE_SLED
  2048. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2049. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2050. stow_z_probe();
  2051. #endif
  2052. #ifdef Z_PROBE_END_SCRIPT
  2053. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2054. st_synchronize();
  2055. #endif
  2056. }
  2057. #ifndef Z_PROBE_SLED
  2058. inline void gcode_G30() {
  2059. deploy_z_probe(); // Engage Z Servo endstop if available
  2060. st_synchronize();
  2061. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2062. setup_for_endstop_move();
  2063. feedrate = homing_feedrate[Z_AXIS];
  2064. run_z_probe();
  2065. SERIAL_PROTOCOLPGM(MSG_BED);
  2066. SERIAL_PROTOCOLPGM(" X: ");
  2067. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2068. SERIAL_PROTOCOLPGM(" Y: ");
  2069. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2070. SERIAL_PROTOCOLPGM(" Z: ");
  2071. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2072. SERIAL_EOL;
  2073. clean_up_after_endstop_move();
  2074. stow_z_probe(); // Retract Z Servo endstop if available
  2075. }
  2076. #endif //!Z_PROBE_SLED
  2077. #endif //ENABLE_AUTO_BED_LEVELING
  2078. /**
  2079. * G92: Set current position to given X Y Z E
  2080. */
  2081. inline void gcode_G92() {
  2082. if (!code_seen(axis_codes[E_AXIS]))
  2083. st_synchronize();
  2084. bool didXYZ = false;
  2085. for (int i = 0; i < NUM_AXIS; i++) {
  2086. if (code_seen(axis_codes[i])) {
  2087. float v = current_position[i] = code_value();
  2088. if (i == E_AXIS)
  2089. plan_set_e_position(v);
  2090. else
  2091. didXYZ = true;
  2092. }
  2093. }
  2094. if (didXYZ) sync_plan_position();
  2095. }
  2096. #ifdef ULTIPANEL
  2097. /**
  2098. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2099. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2100. */
  2101. inline void gcode_M0_M1() {
  2102. char *src = strchr_pointer + 2;
  2103. unsigned long codenum = 0;
  2104. bool hasP = false, hasS = false;
  2105. if (code_seen('P')) {
  2106. codenum = code_value(); // milliseconds to wait
  2107. hasP = codenum > 0;
  2108. }
  2109. if (code_seen('S')) {
  2110. codenum = code_value() * 1000; // seconds to wait
  2111. hasS = codenum > 0;
  2112. }
  2113. char* starpos = strchr(src, '*');
  2114. if (starpos != NULL) *(starpos) = '\0';
  2115. while (*src == ' ') ++src;
  2116. if (!hasP && !hasS && *src != '\0')
  2117. lcd_setstatus(src, true);
  2118. else {
  2119. LCD_MESSAGEPGM(MSG_USERWAIT);
  2120. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2121. dontExpireStatus();
  2122. #endif
  2123. }
  2124. lcd_ignore_click();
  2125. st_synchronize();
  2126. refresh_cmd_timeout();
  2127. if (codenum > 0) {
  2128. codenum += previous_millis_cmd; // keep track of when we started waiting
  2129. while(millis() < codenum && !lcd_clicked()) {
  2130. manage_heater();
  2131. manage_inactivity();
  2132. lcd_update();
  2133. }
  2134. lcd_ignore_click(false);
  2135. }
  2136. else {
  2137. if (!lcd_detected()) return;
  2138. while (!lcd_clicked()) {
  2139. manage_heater();
  2140. manage_inactivity();
  2141. lcd_update();
  2142. }
  2143. }
  2144. if (IS_SD_PRINTING)
  2145. LCD_MESSAGEPGM(MSG_RESUMING);
  2146. else
  2147. LCD_MESSAGEPGM(WELCOME_MSG);
  2148. }
  2149. #endif // ULTIPANEL
  2150. /**
  2151. * M17: Enable power on all stepper motors
  2152. */
  2153. inline void gcode_M17() {
  2154. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2155. enable_x();
  2156. enable_y();
  2157. enable_z();
  2158. enable_e0();
  2159. enable_e1();
  2160. enable_e2();
  2161. enable_e3();
  2162. }
  2163. #ifdef SDSUPPORT
  2164. /**
  2165. * M20: List SD card to serial output
  2166. */
  2167. inline void gcode_M20() {
  2168. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2169. card.ls();
  2170. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2171. }
  2172. /**
  2173. * M21: Init SD Card
  2174. */
  2175. inline void gcode_M21() {
  2176. card.initsd();
  2177. }
  2178. /**
  2179. * M22: Release SD Card
  2180. */
  2181. inline void gcode_M22() {
  2182. card.release();
  2183. }
  2184. /**
  2185. * M23: Select a file
  2186. */
  2187. inline void gcode_M23() {
  2188. char* codepos = strchr_pointer + 4;
  2189. char* starpos = strchr(codepos, '*');
  2190. if (starpos) *starpos = '\0';
  2191. card.openFile(codepos, true);
  2192. }
  2193. /**
  2194. * M24: Start SD Print
  2195. */
  2196. inline void gcode_M24() {
  2197. card.startFileprint();
  2198. starttime = millis();
  2199. }
  2200. /**
  2201. * M25: Pause SD Print
  2202. */
  2203. inline void gcode_M25() {
  2204. card.pauseSDPrint();
  2205. }
  2206. /**
  2207. * M26: Set SD Card file index
  2208. */
  2209. inline void gcode_M26() {
  2210. if (card.cardOK && code_seen('S'))
  2211. card.setIndex(code_value_long());
  2212. }
  2213. /**
  2214. * M27: Get SD Card status
  2215. */
  2216. inline void gcode_M27() {
  2217. card.getStatus();
  2218. }
  2219. /**
  2220. * M28: Start SD Write
  2221. */
  2222. inline void gcode_M28() {
  2223. char* codepos = strchr_pointer + 4;
  2224. char* starpos = strchr(codepos, '*');
  2225. if (starpos) {
  2226. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2227. strchr_pointer = strchr(npos, ' ') + 1;
  2228. *(starpos) = '\0';
  2229. }
  2230. card.openFile(codepos, false);
  2231. }
  2232. /**
  2233. * M29: Stop SD Write
  2234. * Processed in write to file routine above
  2235. */
  2236. inline void gcode_M29() {
  2237. // card.saving = false;
  2238. }
  2239. /**
  2240. * M30 <filename>: Delete SD Card file
  2241. */
  2242. inline void gcode_M30() {
  2243. if (card.cardOK) {
  2244. card.closefile();
  2245. char* starpos = strchr(strchr_pointer + 4, '*');
  2246. if (starpos) {
  2247. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2248. strchr_pointer = strchr(npos, ' ') + 1;
  2249. *(starpos) = '\0';
  2250. }
  2251. card.removeFile(strchr_pointer + 4);
  2252. }
  2253. }
  2254. #endif
  2255. /**
  2256. * M31: Get the time since the start of SD Print (or last M109)
  2257. */
  2258. inline void gcode_M31() {
  2259. stoptime = millis();
  2260. unsigned long t = (stoptime - starttime) / 1000;
  2261. int min = t / 60, sec = t % 60;
  2262. char time[30];
  2263. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2264. SERIAL_ECHO_START;
  2265. SERIAL_ECHOLN(time);
  2266. lcd_setstatus(time);
  2267. autotempShutdown();
  2268. }
  2269. #ifdef SDSUPPORT
  2270. /**
  2271. * M32: Select file and start SD Print
  2272. */
  2273. inline void gcode_M32() {
  2274. if (card.sdprinting)
  2275. st_synchronize();
  2276. char* codepos = strchr_pointer + 4;
  2277. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2278. if (! namestartpos)
  2279. namestartpos = codepos; //default name position, 4 letters after the M
  2280. else
  2281. namestartpos++; //to skip the '!'
  2282. char* starpos = strchr(codepos, '*');
  2283. if (starpos) *(starpos) = '\0';
  2284. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2285. if (card.cardOK) {
  2286. card.openFile(namestartpos, true, !call_procedure);
  2287. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2288. card.setIndex(code_value_long());
  2289. card.startFileprint();
  2290. if (!call_procedure)
  2291. starttime = millis(); //procedure calls count as normal print time.
  2292. }
  2293. }
  2294. /**
  2295. * M928: Start SD Write
  2296. */
  2297. inline void gcode_M928() {
  2298. char* starpos = strchr(strchr_pointer + 5, '*');
  2299. if (starpos) {
  2300. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2301. strchr_pointer = strchr(npos, ' ') + 1;
  2302. *(starpos) = '\0';
  2303. }
  2304. card.openLogFile(strchr_pointer + 5);
  2305. }
  2306. #endif // SDSUPPORT
  2307. /**
  2308. * M42: Change pin status via GCode
  2309. */
  2310. inline void gcode_M42() {
  2311. if (code_seen('S')) {
  2312. int pin_status = code_value(),
  2313. pin_number = LED_PIN;
  2314. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2315. pin_number = code_value();
  2316. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2317. if (sensitive_pins[i] == pin_number) {
  2318. pin_number = -1;
  2319. break;
  2320. }
  2321. }
  2322. #if HAS_FAN
  2323. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2324. #endif
  2325. if (pin_number > -1) {
  2326. pinMode(pin_number, OUTPUT);
  2327. digitalWrite(pin_number, pin_status);
  2328. analogWrite(pin_number, pin_status);
  2329. }
  2330. } // code_seen('S')
  2331. }
  2332. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2333. #if Z_MIN_PIN == -1
  2334. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2335. #endif
  2336. /**
  2337. * M48: Z-Probe repeatability measurement function.
  2338. *
  2339. * Usage:
  2340. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2341. * P = Number of sampled points (4-50, default 10)
  2342. * X = Sample X position
  2343. * Y = Sample Y position
  2344. * V = Verbose level (0-4, default=1)
  2345. * E = Engage probe for each reading
  2346. * L = Number of legs of movement before probe
  2347. *
  2348. * This function assumes the bed has been homed. Specifically, that a G28 command
  2349. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2350. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2351. * regenerated.
  2352. *
  2353. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2354. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2355. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2356. */
  2357. inline void gcode_M48() {
  2358. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2359. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2360. if (code_seen('V') || code_seen('v')) {
  2361. verbose_level = code_value();
  2362. if (verbose_level < 0 || verbose_level > 4 ) {
  2363. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2364. return;
  2365. }
  2366. }
  2367. if (verbose_level > 0)
  2368. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2369. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2370. n_samples = code_value();
  2371. if (n_samples < 4 || n_samples > 50) {
  2372. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2373. return;
  2374. }
  2375. }
  2376. double X_probe_location, Y_probe_location,
  2377. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2378. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2379. Z_current = st_get_position_mm(Z_AXIS),
  2380. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2381. ext_position = st_get_position_mm(E_AXIS);
  2382. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  2383. if (code_seen('X') || code_seen('x')) {
  2384. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2385. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2386. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2387. return;
  2388. }
  2389. }
  2390. if (code_seen('Y') || code_seen('y')) {
  2391. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2392. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2393. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2394. return;
  2395. }
  2396. }
  2397. if (code_seen('L') || code_seen('l')) {
  2398. n_legs = code_value();
  2399. if (n_legs == 1) n_legs = 2;
  2400. if (n_legs < 0 || n_legs > 15) {
  2401. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2402. return;
  2403. }
  2404. }
  2405. //
  2406. // Do all the preliminary setup work. First raise the probe.
  2407. //
  2408. st_synchronize();
  2409. plan_bed_level_matrix.set_to_identity();
  2410. plan_buffer_line(X_current, Y_current, Z_start_location,
  2411. ext_position,
  2412. homing_feedrate[Z_AXIS] / 60,
  2413. active_extruder);
  2414. st_synchronize();
  2415. //
  2416. // Now get everything to the specified probe point So we can safely do a probe to
  2417. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2418. // use that as a starting point for each probe.
  2419. //
  2420. if (verbose_level > 2)
  2421. SERIAL_PROTOCOL("Positioning the probe...\n");
  2422. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2423. ext_position,
  2424. homing_feedrate[X_AXIS]/60,
  2425. active_extruder);
  2426. st_synchronize();
  2427. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2428. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2429. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2430. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2431. //
  2432. // OK, do the inital probe to get us close to the bed.
  2433. // Then retrace the right amount and use that in subsequent probes
  2434. //
  2435. deploy_z_probe();
  2436. setup_for_endstop_move();
  2437. run_z_probe();
  2438. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2439. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2440. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2441. ext_position,
  2442. homing_feedrate[X_AXIS]/60,
  2443. active_extruder);
  2444. st_synchronize();
  2445. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2446. if (engage_probe_for_each_reading) stow_z_probe();
  2447. for (uint16_t n=0; n < n_samples; n++) {
  2448. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2449. if (n_legs) {
  2450. unsigned long ms = millis();
  2451. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2452. theta = RADIANS(ms % 360L);
  2453. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2454. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2455. //SERIAL_ECHOPAIR(" theta: ",theta);
  2456. //SERIAL_ECHOPAIR(" direction: ",dir);
  2457. //SERIAL_EOL;
  2458. for (int l = 0; l < n_legs - 1; l++) {
  2459. ms = millis();
  2460. theta += RADIANS(dir * (ms % 20L));
  2461. radius += (ms % 10L) - 5L;
  2462. if (radius < 0.0) radius = -radius;
  2463. X_current = X_probe_location + cos(theta) * radius;
  2464. Y_current = Y_probe_location + sin(theta) * radius;
  2465. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2466. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2467. if (verbose_level > 3) {
  2468. SERIAL_ECHOPAIR("x: ", X_current);
  2469. SERIAL_ECHOPAIR("y: ", Y_current);
  2470. SERIAL_EOL;
  2471. }
  2472. do_blocking_move_to(X_current, Y_current, Z_current);
  2473. } // n_legs loop
  2474. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2475. } // n_legs
  2476. if (engage_probe_for_each_reading) {
  2477. deploy_z_probe();
  2478. delay(1000);
  2479. }
  2480. setup_for_endstop_move();
  2481. run_z_probe();
  2482. sample_set[n] = current_position[Z_AXIS];
  2483. //
  2484. // Get the current mean for the data points we have so far
  2485. //
  2486. sum = 0.0;
  2487. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2488. mean = sum / (n + 1);
  2489. //
  2490. // Now, use that mean to calculate the standard deviation for the
  2491. // data points we have so far
  2492. //
  2493. sum = 0.0;
  2494. for (int j = 0; j <= n; j++) {
  2495. float ss = sample_set[j] - mean;
  2496. sum += ss * ss;
  2497. }
  2498. sigma = sqrt(sum / (n + 1));
  2499. if (verbose_level > 1) {
  2500. SERIAL_PROTOCOL(n+1);
  2501. SERIAL_PROTOCOLPGM(" of ");
  2502. SERIAL_PROTOCOL(n_samples);
  2503. SERIAL_PROTOCOLPGM(" z: ");
  2504. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2505. if (verbose_level > 2) {
  2506. SERIAL_PROTOCOLPGM(" mean: ");
  2507. SERIAL_PROTOCOL_F(mean,6);
  2508. SERIAL_PROTOCOLPGM(" sigma: ");
  2509. SERIAL_PROTOCOL_F(sigma,6);
  2510. }
  2511. }
  2512. if (verbose_level > 0) SERIAL_EOL;
  2513. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2514. st_synchronize();
  2515. if (engage_probe_for_each_reading) {
  2516. stow_z_probe();
  2517. delay(1000);
  2518. }
  2519. }
  2520. if (!engage_probe_for_each_reading) {
  2521. stow_z_probe();
  2522. delay(1000);
  2523. }
  2524. clean_up_after_endstop_move();
  2525. // enable_endstops(true);
  2526. if (verbose_level > 0) {
  2527. SERIAL_PROTOCOLPGM("Mean: ");
  2528. SERIAL_PROTOCOL_F(mean, 6);
  2529. SERIAL_EOL;
  2530. }
  2531. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2532. SERIAL_PROTOCOL_F(sigma, 6);
  2533. SERIAL_EOL; SERIAL_EOL;
  2534. }
  2535. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2536. /**
  2537. * M104: Set hot end temperature
  2538. */
  2539. inline void gcode_M104() {
  2540. if (setTargetedHotend(104)) return;
  2541. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2542. #ifdef DUAL_X_CARRIAGE
  2543. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2544. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2545. #endif
  2546. setWatch();
  2547. }
  2548. /**
  2549. * M105: Read hot end and bed temperature
  2550. */
  2551. inline void gcode_M105() {
  2552. if (setTargetedHotend(105)) return;
  2553. #if HAS_TEMP_0
  2554. SERIAL_PROTOCOLPGM("ok T:");
  2555. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2556. SERIAL_PROTOCOLPGM(" /");
  2557. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2558. #if HAS_TEMP_BED
  2559. SERIAL_PROTOCOLPGM(" B:");
  2560. SERIAL_PROTOCOL_F(degBed(),1);
  2561. SERIAL_PROTOCOLPGM(" /");
  2562. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2563. #endif // HAS_TEMP_BED
  2564. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2565. SERIAL_PROTOCOLPGM(" T");
  2566. SERIAL_PROTOCOL(cur_extruder);
  2567. SERIAL_PROTOCOLPGM(":");
  2568. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2569. SERIAL_PROTOCOLPGM(" /");
  2570. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2571. }
  2572. #else // !HAS_TEMP_0
  2573. SERIAL_ERROR_START;
  2574. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2575. #endif
  2576. SERIAL_PROTOCOLPGM(" @:");
  2577. #ifdef EXTRUDER_WATTS
  2578. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2579. SERIAL_PROTOCOLPGM("W");
  2580. #else
  2581. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2582. #endif
  2583. SERIAL_PROTOCOLPGM(" B@:");
  2584. #ifdef BED_WATTS
  2585. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2586. SERIAL_PROTOCOLPGM("W");
  2587. #else
  2588. SERIAL_PROTOCOL(getHeaterPower(-1));
  2589. #endif
  2590. #ifdef SHOW_TEMP_ADC_VALUES
  2591. #if HAS_TEMP_BED
  2592. SERIAL_PROTOCOLPGM(" ADC B:");
  2593. SERIAL_PROTOCOL_F(degBed(),1);
  2594. SERIAL_PROTOCOLPGM("C->");
  2595. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2596. #endif
  2597. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2598. SERIAL_PROTOCOLPGM(" T");
  2599. SERIAL_PROTOCOL(cur_extruder);
  2600. SERIAL_PROTOCOLPGM(":");
  2601. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2602. SERIAL_PROTOCOLPGM("C->");
  2603. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2604. }
  2605. #endif
  2606. SERIAL_PROTOCOLLN("");
  2607. }
  2608. #if HAS_FAN
  2609. /**
  2610. * M106: Set Fan Speed
  2611. */
  2612. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2613. /**
  2614. * M107: Fan Off
  2615. */
  2616. inline void gcode_M107() { fanSpeed = 0; }
  2617. #endif //FAN_PIN
  2618. /**
  2619. * M109: Wait for extruder(s) to reach temperature
  2620. */
  2621. inline void gcode_M109() {
  2622. if (setTargetedHotend(109)) return;
  2623. LCD_MESSAGEPGM(MSG_HEATING);
  2624. CooldownNoWait = code_seen('S');
  2625. if (CooldownNoWait || code_seen('R')) {
  2626. setTargetHotend(code_value(), tmp_extruder);
  2627. #ifdef DUAL_X_CARRIAGE
  2628. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2629. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2630. #endif
  2631. }
  2632. #ifdef AUTOTEMP
  2633. autotemp_enabled = code_seen('F');
  2634. if (autotemp_enabled) autotemp_factor = code_value();
  2635. if (code_seen('S')) autotemp_min = code_value();
  2636. if (code_seen('B')) autotemp_max = code_value();
  2637. #endif
  2638. setWatch();
  2639. unsigned long timetemp = millis();
  2640. /* See if we are heating up or cooling down */
  2641. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2642. cancel_heatup = false;
  2643. #ifdef TEMP_RESIDENCY_TIME
  2644. long residencyStart = -1;
  2645. /* continue to loop until we have reached the target temp
  2646. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2647. while((!cancel_heatup)&&((residencyStart == -1) ||
  2648. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2649. #else
  2650. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2651. #endif //TEMP_RESIDENCY_TIME
  2652. { // while loop
  2653. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2654. SERIAL_PROTOCOLPGM("T:");
  2655. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2656. SERIAL_PROTOCOLPGM(" E:");
  2657. SERIAL_PROTOCOL((int)tmp_extruder);
  2658. #ifdef TEMP_RESIDENCY_TIME
  2659. SERIAL_PROTOCOLPGM(" W:");
  2660. if (residencyStart > -1) {
  2661. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2662. SERIAL_PROTOCOLLN( timetemp );
  2663. }
  2664. else {
  2665. SERIAL_PROTOCOLLN( "?" );
  2666. }
  2667. #else
  2668. SERIAL_PROTOCOLLN("");
  2669. #endif
  2670. timetemp = millis();
  2671. }
  2672. manage_heater();
  2673. manage_inactivity();
  2674. lcd_update();
  2675. #ifdef TEMP_RESIDENCY_TIME
  2676. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2677. // or when current temp falls outside the hysteresis after target temp was reached
  2678. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2679. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2680. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2681. {
  2682. residencyStart = millis();
  2683. }
  2684. #endif //TEMP_RESIDENCY_TIME
  2685. }
  2686. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2687. refresh_cmd_timeout();
  2688. starttime = previous_millis_cmd;
  2689. }
  2690. #if HAS_TEMP_BED
  2691. /**
  2692. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2693. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2694. */
  2695. inline void gcode_M190() {
  2696. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2697. CooldownNoWait = code_seen('S');
  2698. if (CooldownNoWait || code_seen('R'))
  2699. setTargetBed(code_value());
  2700. unsigned long timetemp = millis();
  2701. cancel_heatup = false;
  2702. target_direction = isHeatingBed(); // true if heating, false if cooling
  2703. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2704. unsigned long ms = millis();
  2705. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2706. timetemp = ms;
  2707. float tt = degHotend(active_extruder);
  2708. SERIAL_PROTOCOLPGM("T:");
  2709. SERIAL_PROTOCOL(tt);
  2710. SERIAL_PROTOCOLPGM(" E:");
  2711. SERIAL_PROTOCOL((int)active_extruder);
  2712. SERIAL_PROTOCOLPGM(" B:");
  2713. SERIAL_PROTOCOL_F(degBed(), 1);
  2714. SERIAL_PROTOCOLLN("");
  2715. }
  2716. manage_heater();
  2717. manage_inactivity();
  2718. lcd_update();
  2719. }
  2720. LCD_MESSAGEPGM(MSG_BED_DONE);
  2721. refresh_cmd_timeout();
  2722. }
  2723. #endif // HAS_TEMP_BED
  2724. /**
  2725. * M112: Emergency Stop
  2726. */
  2727. inline void gcode_M112() {
  2728. kill();
  2729. }
  2730. #ifdef BARICUDA
  2731. #if HAS_HEATER_1
  2732. /**
  2733. * M126: Heater 1 valve open
  2734. */
  2735. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2736. /**
  2737. * M127: Heater 1 valve close
  2738. */
  2739. inline void gcode_M127() { ValvePressure = 0; }
  2740. #endif
  2741. #if HAS_HEATER_2
  2742. /**
  2743. * M128: Heater 2 valve open
  2744. */
  2745. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2746. /**
  2747. * M129: Heater 2 valve close
  2748. */
  2749. inline void gcode_M129() { EtoPPressure = 0; }
  2750. #endif
  2751. #endif //BARICUDA
  2752. /**
  2753. * M140: Set bed temperature
  2754. */
  2755. inline void gcode_M140() {
  2756. if (code_seen('S')) setTargetBed(code_value());
  2757. }
  2758. #if HAS_POWER_SWITCH
  2759. /**
  2760. * M80: Turn on Power Supply
  2761. */
  2762. inline void gcode_M80() {
  2763. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2764. // If you have a switch on suicide pin, this is useful
  2765. // if you want to start another print with suicide feature after
  2766. // a print without suicide...
  2767. #if HAS_SUICIDE
  2768. OUT_WRITE(SUICIDE_PIN, HIGH);
  2769. #endif
  2770. #ifdef ULTIPANEL
  2771. powersupply = true;
  2772. LCD_MESSAGEPGM(WELCOME_MSG);
  2773. lcd_update();
  2774. #endif
  2775. }
  2776. #endif // HAS_POWER_SWITCH
  2777. /**
  2778. * M81: Turn off Power, including Power Supply, if there is one.
  2779. *
  2780. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2781. */
  2782. inline void gcode_M81() {
  2783. disable_heater();
  2784. st_synchronize();
  2785. disable_e0();
  2786. disable_e1();
  2787. disable_e2();
  2788. disable_e3();
  2789. finishAndDisableSteppers();
  2790. fanSpeed = 0;
  2791. delay(1000); // Wait 1 second before switching off
  2792. #if HAS_SUICIDE
  2793. st_synchronize();
  2794. suicide();
  2795. #elif HAS_POWER_SWITCH
  2796. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2797. #endif
  2798. #ifdef ULTIPANEL
  2799. #if HAS_POWER_SWITCH
  2800. powersupply = false;
  2801. #endif
  2802. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2803. lcd_update();
  2804. #endif
  2805. }
  2806. /**
  2807. * M82: Set E codes absolute (default)
  2808. */
  2809. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2810. /**
  2811. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2812. */
  2813. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2814. /**
  2815. * M18, M84: Disable all stepper motors
  2816. */
  2817. inline void gcode_M18_M84() {
  2818. if (code_seen('S')) {
  2819. stepper_inactive_time = code_value() * 1000;
  2820. }
  2821. else {
  2822. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2823. if (all_axis) {
  2824. st_synchronize();
  2825. disable_e0();
  2826. disable_e1();
  2827. disable_e2();
  2828. disable_e3();
  2829. finishAndDisableSteppers();
  2830. }
  2831. else {
  2832. st_synchronize();
  2833. if (code_seen('X')) disable_x();
  2834. if (code_seen('Y')) disable_y();
  2835. if (code_seen('Z')) disable_z();
  2836. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2837. if (code_seen('E')) {
  2838. disable_e0();
  2839. disable_e1();
  2840. disable_e2();
  2841. disable_e3();
  2842. }
  2843. #endif
  2844. }
  2845. }
  2846. }
  2847. /**
  2848. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2849. */
  2850. inline void gcode_M85() {
  2851. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2852. }
  2853. /**
  2854. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2855. */
  2856. inline void gcode_M92() {
  2857. for(int8_t i=0; i < NUM_AXIS; i++) {
  2858. if (code_seen(axis_codes[i])) {
  2859. if (i == E_AXIS) {
  2860. float value = code_value();
  2861. if (value < 20.0) {
  2862. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2863. max_e_jerk *= factor;
  2864. max_feedrate[i] *= factor;
  2865. axis_steps_per_sqr_second[i] *= factor;
  2866. }
  2867. axis_steps_per_unit[i] = value;
  2868. }
  2869. else {
  2870. axis_steps_per_unit[i] = code_value();
  2871. }
  2872. }
  2873. }
  2874. }
  2875. /**
  2876. * M114: Output current position to serial port
  2877. */
  2878. inline void gcode_M114() {
  2879. SERIAL_PROTOCOLPGM("X:");
  2880. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2881. SERIAL_PROTOCOLPGM(" Y:");
  2882. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2883. SERIAL_PROTOCOLPGM(" Z:");
  2884. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2885. SERIAL_PROTOCOLPGM(" E:");
  2886. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2887. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2888. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2889. SERIAL_PROTOCOLPGM(" Y:");
  2890. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2891. SERIAL_PROTOCOLPGM(" Z:");
  2892. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2893. SERIAL_PROTOCOLLN("");
  2894. #ifdef SCARA
  2895. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2896. SERIAL_PROTOCOL(delta[X_AXIS]);
  2897. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2898. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2899. SERIAL_PROTOCOLLN("");
  2900. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2901. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2902. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2903. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2904. SERIAL_PROTOCOLLN("");
  2905. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2906. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2907. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2908. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2909. SERIAL_PROTOCOLLN("");
  2910. SERIAL_PROTOCOLLN("");
  2911. #endif
  2912. }
  2913. /**
  2914. * M115: Capabilities string
  2915. */
  2916. inline void gcode_M115() {
  2917. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2918. }
  2919. /**
  2920. * M117: Set LCD Status Message
  2921. */
  2922. inline void gcode_M117() {
  2923. char* codepos = strchr_pointer + 5;
  2924. char* starpos = strchr(codepos, '*');
  2925. if (starpos) *starpos = '\0';
  2926. lcd_setstatus(codepos);
  2927. }
  2928. /**
  2929. * M119: Output endstop states to serial output
  2930. */
  2931. inline void gcode_M119() {
  2932. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2933. #if HAS_X_MIN
  2934. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2935. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2936. #endif
  2937. #if HAS_X_MAX
  2938. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2939. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2940. #endif
  2941. #if HAS_Y_MIN
  2942. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2943. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2944. #endif
  2945. #if HAS_Y_MAX
  2946. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2947. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2948. #endif
  2949. #if HAS_Z_MIN
  2950. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2951. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2952. #endif
  2953. #if HAS_Z_MAX
  2954. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2955. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2956. #endif
  2957. #if HAS_Z2_MAX
  2958. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2959. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2960. #endif
  2961. }
  2962. /**
  2963. * M120: Enable endstops
  2964. */
  2965. inline void gcode_M120() { enable_endstops(false); }
  2966. /**
  2967. * M121: Disable endstops
  2968. */
  2969. inline void gcode_M121() { enable_endstops(true); }
  2970. #ifdef BLINKM
  2971. /**
  2972. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2973. */
  2974. inline void gcode_M150() {
  2975. SendColors(
  2976. code_seen('R') ? (byte)code_value() : 0,
  2977. code_seen('U') ? (byte)code_value() : 0,
  2978. code_seen('B') ? (byte)code_value() : 0
  2979. );
  2980. }
  2981. #endif // BLINKM
  2982. /**
  2983. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2984. * T<extruder>
  2985. * D<millimeters>
  2986. */
  2987. inline void gcode_M200() {
  2988. tmp_extruder = active_extruder;
  2989. if (code_seen('T')) {
  2990. tmp_extruder = code_value();
  2991. if (tmp_extruder >= EXTRUDERS) {
  2992. SERIAL_ECHO_START;
  2993. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2994. return;
  2995. }
  2996. }
  2997. if (code_seen('D')) {
  2998. float diameter = code_value();
  2999. // setting any extruder filament size disables volumetric on the assumption that
  3000. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3001. // for all extruders
  3002. volumetric_enabled = (diameter != 0.0);
  3003. if (volumetric_enabled) {
  3004. filament_size[tmp_extruder] = diameter;
  3005. // make sure all extruders have some sane value for the filament size
  3006. for (int i=0; i<EXTRUDERS; i++)
  3007. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3008. }
  3009. }
  3010. else {
  3011. //reserved for setting filament diameter via UFID or filament measuring device
  3012. return;
  3013. }
  3014. calculate_volumetric_multipliers();
  3015. }
  3016. /**
  3017. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3018. */
  3019. inline void gcode_M201() {
  3020. for (int8_t i=0; i < NUM_AXIS; i++) {
  3021. if (code_seen(axis_codes[i])) {
  3022. max_acceleration_units_per_sq_second[i] = code_value();
  3023. }
  3024. }
  3025. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3026. reset_acceleration_rates();
  3027. }
  3028. #if 0 // Not used for Sprinter/grbl gen6
  3029. inline void gcode_M202() {
  3030. for(int8_t i=0; i < NUM_AXIS; i++) {
  3031. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3032. }
  3033. }
  3034. #endif
  3035. /**
  3036. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3037. */
  3038. inline void gcode_M203() {
  3039. for (int8_t i=0; i < NUM_AXIS; i++) {
  3040. if (code_seen(axis_codes[i])) {
  3041. max_feedrate[i] = code_value();
  3042. }
  3043. }
  3044. }
  3045. /**
  3046. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3047. *
  3048. * P = Printing moves
  3049. * R = Retract only (no X, Y, Z) moves
  3050. * T = Travel (non printing) moves
  3051. *
  3052. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3053. */
  3054. inline void gcode_M204() {
  3055. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3056. {
  3057. acceleration = code_value();
  3058. travel_acceleration = acceleration;
  3059. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3060. SERIAL_EOL;
  3061. }
  3062. if (code_seen('P'))
  3063. {
  3064. acceleration = code_value();
  3065. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3066. SERIAL_EOL;
  3067. }
  3068. if (code_seen('R'))
  3069. {
  3070. retract_acceleration = code_value();
  3071. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3072. SERIAL_EOL;
  3073. }
  3074. if (code_seen('T'))
  3075. {
  3076. travel_acceleration = code_value();
  3077. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3078. SERIAL_EOL;
  3079. }
  3080. }
  3081. /**
  3082. * M205: Set Advanced Settings
  3083. *
  3084. * S = Min Feed Rate (mm/s)
  3085. * T = Min Travel Feed Rate (mm/s)
  3086. * B = Min Segment Time (µs)
  3087. * X = Max XY Jerk (mm/s/s)
  3088. * Z = Max Z Jerk (mm/s/s)
  3089. * E = Max E Jerk (mm/s/s)
  3090. */
  3091. inline void gcode_M205() {
  3092. if (code_seen('S')) minimumfeedrate = code_value();
  3093. if (code_seen('T')) mintravelfeedrate = code_value();
  3094. if (code_seen('B')) minsegmenttime = code_value();
  3095. if (code_seen('X')) max_xy_jerk = code_value();
  3096. if (code_seen('Z')) max_z_jerk = code_value();
  3097. if (code_seen('E')) max_e_jerk = code_value();
  3098. }
  3099. /**
  3100. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3101. */
  3102. inline void gcode_M206() {
  3103. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3104. if (code_seen(axis_codes[i])) {
  3105. home_offset[i] = code_value();
  3106. }
  3107. }
  3108. #ifdef SCARA
  3109. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3110. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3111. #endif
  3112. }
  3113. #ifdef DELTA
  3114. /**
  3115. * M665: Set delta configurations
  3116. *
  3117. * L = diagonal rod
  3118. * R = delta radius
  3119. * S = segments per second
  3120. */
  3121. inline void gcode_M665() {
  3122. if (code_seen('L')) delta_diagonal_rod = code_value();
  3123. if (code_seen('R')) delta_radius = code_value();
  3124. if (code_seen('S')) delta_segments_per_second = code_value();
  3125. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3126. }
  3127. /**
  3128. * M666: Set delta endstop adjustment
  3129. */
  3130. inline void gcode_M666() {
  3131. for (int8_t i = 0; i < 3; i++) {
  3132. if (code_seen(axis_codes[i])) {
  3133. endstop_adj[i] = code_value();
  3134. }
  3135. }
  3136. }
  3137. #elif defined(Z_DUAL_ENDSTOPS)
  3138. /**
  3139. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3140. */
  3141. inline void gcode_M666() {
  3142. if (code_seen('Z')) z_endstop_adj = code_value();
  3143. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3144. SERIAL_EOL;
  3145. }
  3146. #endif // DELTA
  3147. #ifdef FWRETRACT
  3148. /**
  3149. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3150. */
  3151. inline void gcode_M207() {
  3152. if (code_seen('S')) retract_length = code_value();
  3153. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3154. if (code_seen('Z')) retract_zlift = code_value();
  3155. }
  3156. /**
  3157. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3158. */
  3159. inline void gcode_M208() {
  3160. if (code_seen('S')) retract_recover_length = code_value();
  3161. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3162. }
  3163. /**
  3164. * M209: Enable automatic retract (M209 S1)
  3165. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3166. */
  3167. inline void gcode_M209() {
  3168. if (code_seen('S')) {
  3169. int t = code_value();
  3170. switch(t) {
  3171. case 0:
  3172. autoretract_enabled = false;
  3173. break;
  3174. case 1:
  3175. autoretract_enabled = true;
  3176. break;
  3177. default:
  3178. SERIAL_ECHO_START;
  3179. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3180. SERIAL_ECHO(cmdbuffer[bufindr]);
  3181. SERIAL_ECHOLNPGM("\"");
  3182. return;
  3183. }
  3184. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3185. }
  3186. }
  3187. #endif // FWRETRACT
  3188. #if EXTRUDERS > 1
  3189. /**
  3190. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3191. */
  3192. inline void gcode_M218() {
  3193. if (setTargetedHotend(218)) return;
  3194. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3195. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3196. #ifdef DUAL_X_CARRIAGE
  3197. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3198. #endif
  3199. SERIAL_ECHO_START;
  3200. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3201. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3202. SERIAL_ECHO(" ");
  3203. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3204. SERIAL_ECHO(",");
  3205. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3206. #ifdef DUAL_X_CARRIAGE
  3207. SERIAL_ECHO(",");
  3208. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3209. #endif
  3210. }
  3211. SERIAL_EOL;
  3212. }
  3213. #endif // EXTRUDERS > 1
  3214. /**
  3215. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3216. */
  3217. inline void gcode_M220() {
  3218. if (code_seen('S')) feedmultiply = code_value();
  3219. }
  3220. /**
  3221. * M221: Set extrusion percentage (M221 T0 S95)
  3222. */
  3223. inline void gcode_M221() {
  3224. if (code_seen('S')) {
  3225. int sval = code_value();
  3226. if (code_seen('T')) {
  3227. if (setTargetedHotend(221)) return;
  3228. extruder_multiply[tmp_extruder] = sval;
  3229. }
  3230. else {
  3231. extruder_multiply[active_extruder] = sval;
  3232. }
  3233. }
  3234. }
  3235. /**
  3236. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3237. */
  3238. inline void gcode_M226() {
  3239. if (code_seen('P')) {
  3240. int pin_number = code_value();
  3241. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3242. if (pin_state >= -1 && pin_state <= 1) {
  3243. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3244. if (sensitive_pins[i] == pin_number) {
  3245. pin_number = -1;
  3246. break;
  3247. }
  3248. }
  3249. if (pin_number > -1) {
  3250. int target = LOW;
  3251. st_synchronize();
  3252. pinMode(pin_number, INPUT);
  3253. switch(pin_state){
  3254. case 1:
  3255. target = HIGH;
  3256. break;
  3257. case 0:
  3258. target = LOW;
  3259. break;
  3260. case -1:
  3261. target = !digitalRead(pin_number);
  3262. break;
  3263. }
  3264. while(digitalRead(pin_number) != target) {
  3265. manage_heater();
  3266. manage_inactivity();
  3267. lcd_update();
  3268. }
  3269. } // pin_number > -1
  3270. } // pin_state -1 0 1
  3271. } // code_seen('P')
  3272. }
  3273. #if NUM_SERVOS > 0
  3274. /**
  3275. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3276. */
  3277. inline void gcode_M280() {
  3278. int servo_index = code_seen('P') ? code_value() : -1;
  3279. int servo_position = 0;
  3280. if (code_seen('S')) {
  3281. servo_position = code_value();
  3282. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3283. #if SERVO_LEVELING
  3284. servos[servo_index].attach(0);
  3285. #endif
  3286. servos[servo_index].write(servo_position);
  3287. #if SERVO_LEVELING
  3288. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3289. servos[servo_index].detach();
  3290. #endif
  3291. }
  3292. else {
  3293. SERIAL_ECHO_START;
  3294. SERIAL_ECHO("Servo ");
  3295. SERIAL_ECHO(servo_index);
  3296. SERIAL_ECHOLN(" out of range");
  3297. }
  3298. }
  3299. else if (servo_index >= 0) {
  3300. SERIAL_PROTOCOL(MSG_OK);
  3301. SERIAL_PROTOCOL(" Servo ");
  3302. SERIAL_PROTOCOL(servo_index);
  3303. SERIAL_PROTOCOL(": ");
  3304. SERIAL_PROTOCOL(servos[servo_index].read());
  3305. SERIAL_PROTOCOLLN("");
  3306. }
  3307. }
  3308. #endif // NUM_SERVOS > 0
  3309. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3310. /**
  3311. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3312. */
  3313. inline void gcode_M300() {
  3314. int beepS = code_seen('S') ? code_value() : 110;
  3315. int beepP = code_seen('P') ? code_value() : 1000;
  3316. if (beepS > 0) {
  3317. #if BEEPER > 0
  3318. tone(BEEPER, beepS);
  3319. delay(beepP);
  3320. noTone(BEEPER);
  3321. #elif defined(ULTRALCD)
  3322. lcd_buzz(beepS, beepP);
  3323. #elif defined(LCD_USE_I2C_BUZZER)
  3324. lcd_buzz(beepP, beepS);
  3325. #endif
  3326. }
  3327. else {
  3328. delay(beepP);
  3329. }
  3330. }
  3331. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3332. #ifdef PIDTEMP
  3333. /**
  3334. * M301: Set PID parameters P I D (and optionally C)
  3335. */
  3336. inline void gcode_M301() {
  3337. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3338. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3339. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3340. if (e < EXTRUDERS) { // catch bad input value
  3341. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3342. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3343. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3344. #ifdef PID_ADD_EXTRUSION_RATE
  3345. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3346. #endif
  3347. updatePID();
  3348. SERIAL_PROTOCOL(MSG_OK);
  3349. #ifdef PID_PARAMS_PER_EXTRUDER
  3350. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3351. SERIAL_PROTOCOL(e);
  3352. #endif // PID_PARAMS_PER_EXTRUDER
  3353. SERIAL_PROTOCOL(" p:");
  3354. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3355. SERIAL_PROTOCOL(" i:");
  3356. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3357. SERIAL_PROTOCOL(" d:");
  3358. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3359. #ifdef PID_ADD_EXTRUSION_RATE
  3360. SERIAL_PROTOCOL(" c:");
  3361. //Kc does not have scaling applied above, or in resetting defaults
  3362. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3363. #endif
  3364. SERIAL_PROTOCOLLN("");
  3365. }
  3366. else {
  3367. SERIAL_ECHO_START;
  3368. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3369. }
  3370. }
  3371. #endif // PIDTEMP
  3372. #ifdef PIDTEMPBED
  3373. inline void gcode_M304() {
  3374. if (code_seen('P')) bedKp = code_value();
  3375. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3376. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3377. updatePID();
  3378. SERIAL_PROTOCOL(MSG_OK);
  3379. SERIAL_PROTOCOL(" p:");
  3380. SERIAL_PROTOCOL(bedKp);
  3381. SERIAL_PROTOCOL(" i:");
  3382. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3383. SERIAL_PROTOCOL(" d:");
  3384. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3385. SERIAL_PROTOCOLLN("");
  3386. }
  3387. #endif // PIDTEMPBED
  3388. #if defined(CHDK) || HAS_PHOTOGRAPH
  3389. /**
  3390. * M240: Trigger a camera by emulating a Canon RC-1
  3391. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3392. */
  3393. inline void gcode_M240() {
  3394. #ifdef CHDK
  3395. OUT_WRITE(CHDK, HIGH);
  3396. chdkHigh = millis();
  3397. chdkActive = true;
  3398. #elif HAS_PHOTOGRAPH
  3399. const uint8_t NUM_PULSES = 16;
  3400. const float PULSE_LENGTH = 0.01524;
  3401. for (int i = 0; i < NUM_PULSES; i++) {
  3402. WRITE(PHOTOGRAPH_PIN, HIGH);
  3403. _delay_ms(PULSE_LENGTH);
  3404. WRITE(PHOTOGRAPH_PIN, LOW);
  3405. _delay_ms(PULSE_LENGTH);
  3406. }
  3407. delay(7.33);
  3408. for (int i = 0; i < NUM_PULSES; i++) {
  3409. WRITE(PHOTOGRAPH_PIN, HIGH);
  3410. _delay_ms(PULSE_LENGTH);
  3411. WRITE(PHOTOGRAPH_PIN, LOW);
  3412. _delay_ms(PULSE_LENGTH);
  3413. }
  3414. #endif // !CHDK && HAS_PHOTOGRAPH
  3415. }
  3416. #endif // CHDK || PHOTOGRAPH_PIN
  3417. #ifdef DOGLCD
  3418. /**
  3419. * M250: Read and optionally set the LCD contrast
  3420. */
  3421. inline void gcode_M250() {
  3422. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3423. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3424. SERIAL_PROTOCOL(lcd_contrast);
  3425. SERIAL_PROTOCOLLN("");
  3426. }
  3427. #endif // DOGLCD
  3428. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3429. /**
  3430. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3431. */
  3432. inline void gcode_M302() {
  3433. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3434. }
  3435. #endif // PREVENT_DANGEROUS_EXTRUDE
  3436. /**
  3437. * M303: PID relay autotune
  3438. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3439. * E<extruder> (-1 for the bed)
  3440. * C<cycles>
  3441. */
  3442. inline void gcode_M303() {
  3443. int e = code_seen('E') ? code_value_long() : 0;
  3444. int c = code_seen('C') ? code_value_long() : 5;
  3445. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3446. PID_autotune(temp, e, c);
  3447. }
  3448. #ifdef SCARA
  3449. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3450. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3451. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3452. if (! Stopped) {
  3453. //get_coordinates(); // For X Y Z E F
  3454. delta[X_AXIS] = delta_x;
  3455. delta[Y_AXIS] = delta_y;
  3456. calculate_SCARA_forward_Transform(delta);
  3457. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3458. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3459. prepare_move();
  3460. //ClearToSend();
  3461. return true;
  3462. }
  3463. return false;
  3464. }
  3465. /**
  3466. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3467. */
  3468. inline bool gcode_M360() {
  3469. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3470. return SCARA_move_to_cal(0, 120);
  3471. }
  3472. /**
  3473. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3474. */
  3475. inline bool gcode_M361() {
  3476. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3477. return SCARA_move_to_cal(90, 130);
  3478. }
  3479. /**
  3480. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3481. */
  3482. inline bool gcode_M362() {
  3483. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3484. return SCARA_move_to_cal(60, 180);
  3485. }
  3486. /**
  3487. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3488. */
  3489. inline bool gcode_M363() {
  3490. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3491. return SCARA_move_to_cal(50, 90);
  3492. }
  3493. /**
  3494. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3495. */
  3496. inline bool gcode_M364() {
  3497. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3498. return SCARA_move_to_cal(45, 135);
  3499. }
  3500. /**
  3501. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3502. */
  3503. inline void gcode_M365() {
  3504. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3505. if (code_seen(axis_codes[i])) {
  3506. axis_scaling[i] = code_value();
  3507. }
  3508. }
  3509. }
  3510. #endif // SCARA
  3511. #ifdef EXT_SOLENOID
  3512. void enable_solenoid(uint8_t num) {
  3513. switch(num) {
  3514. case 0:
  3515. OUT_WRITE(SOL0_PIN, HIGH);
  3516. break;
  3517. #if HAS_SOLENOID_1
  3518. case 1:
  3519. OUT_WRITE(SOL1_PIN, HIGH);
  3520. break;
  3521. #endif
  3522. #if HAS_SOLENOID_2
  3523. case 2:
  3524. OUT_WRITE(SOL2_PIN, HIGH);
  3525. break;
  3526. #endif
  3527. #if HAS_SOLENOID_3
  3528. case 3:
  3529. OUT_WRITE(SOL3_PIN, HIGH);
  3530. break;
  3531. #endif
  3532. default:
  3533. SERIAL_ECHO_START;
  3534. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3535. break;
  3536. }
  3537. }
  3538. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3539. void disable_all_solenoids() {
  3540. OUT_WRITE(SOL0_PIN, LOW);
  3541. OUT_WRITE(SOL1_PIN, LOW);
  3542. OUT_WRITE(SOL2_PIN, LOW);
  3543. OUT_WRITE(SOL3_PIN, LOW);
  3544. }
  3545. /**
  3546. * M380: Enable solenoid on the active extruder
  3547. */
  3548. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3549. /**
  3550. * M381: Disable all solenoids
  3551. */
  3552. inline void gcode_M381() { disable_all_solenoids(); }
  3553. #endif // EXT_SOLENOID
  3554. /**
  3555. * M400: Finish all moves
  3556. */
  3557. inline void gcode_M400() { st_synchronize(); }
  3558. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3559. /**
  3560. * M401: Engage Z Servo endstop if available
  3561. */
  3562. inline void gcode_M401() { deploy_z_probe(); }
  3563. /**
  3564. * M402: Retract Z Servo endstop if enabled
  3565. */
  3566. inline void gcode_M402() { stow_z_probe(); }
  3567. #endif
  3568. #ifdef FILAMENT_SENSOR
  3569. /**
  3570. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3571. */
  3572. inline void gcode_M404() {
  3573. #if HAS_FILWIDTH
  3574. if (code_seen('W')) {
  3575. filament_width_nominal = code_value();
  3576. }
  3577. else {
  3578. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3579. SERIAL_PROTOCOLLN(filament_width_nominal);
  3580. }
  3581. #endif
  3582. }
  3583. /**
  3584. * M405: Turn on filament sensor for control
  3585. */
  3586. inline void gcode_M405() {
  3587. if (code_seen('D')) meas_delay_cm = code_value();
  3588. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3589. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3590. int temp_ratio = widthFil_to_size_ratio();
  3591. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3592. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3593. delay_index1 = delay_index2 = 0;
  3594. }
  3595. filament_sensor = true;
  3596. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3597. //SERIAL_PROTOCOL(filament_width_meas);
  3598. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3599. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3600. }
  3601. /**
  3602. * M406: Turn off filament sensor for control
  3603. */
  3604. inline void gcode_M406() { filament_sensor = false; }
  3605. /**
  3606. * M407: Get measured filament diameter on serial output
  3607. */
  3608. inline void gcode_M407() {
  3609. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3610. SERIAL_PROTOCOLLN(filament_width_meas);
  3611. }
  3612. #endif // FILAMENT_SENSOR
  3613. /**
  3614. * M500: Store settings in EEPROM
  3615. */
  3616. inline void gcode_M500() {
  3617. Config_StoreSettings();
  3618. }
  3619. /**
  3620. * M501: Read settings from EEPROM
  3621. */
  3622. inline void gcode_M501() {
  3623. Config_RetrieveSettings();
  3624. }
  3625. /**
  3626. * M502: Revert to default settings
  3627. */
  3628. inline void gcode_M502() {
  3629. Config_ResetDefault();
  3630. }
  3631. /**
  3632. * M503: print settings currently in memory
  3633. */
  3634. inline void gcode_M503() {
  3635. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3636. }
  3637. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3638. /**
  3639. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3640. */
  3641. inline void gcode_M540() {
  3642. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3643. }
  3644. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3645. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3646. inline void gcode_SET_Z_PROBE_OFFSET() {
  3647. float value;
  3648. if (code_seen('Z')) {
  3649. value = code_value();
  3650. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3651. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3652. SERIAL_ECHO_START;
  3653. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3654. SERIAL_PROTOCOLLN("");
  3655. }
  3656. else {
  3657. SERIAL_ECHO_START;
  3658. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3659. SERIAL_ECHOPGM(MSG_Z_MIN);
  3660. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3661. SERIAL_ECHOPGM(MSG_Z_MAX);
  3662. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3663. SERIAL_PROTOCOLLN("");
  3664. }
  3665. }
  3666. else {
  3667. SERIAL_ECHO_START;
  3668. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3669. SERIAL_ECHO(-zprobe_zoffset);
  3670. SERIAL_PROTOCOLLN("");
  3671. }
  3672. }
  3673. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3674. #ifdef FILAMENTCHANGEENABLE
  3675. /**
  3676. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3677. */
  3678. inline void gcode_M600() {
  3679. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3680. for (int i=0; i<NUM_AXIS; i++)
  3681. target[i] = lastpos[i] = current_position[i];
  3682. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3683. #ifdef DELTA
  3684. #define RUNPLAN calculate_delta(target); BASICPLAN
  3685. #else
  3686. #define RUNPLAN BASICPLAN
  3687. #endif
  3688. //retract by E
  3689. if (code_seen('E')) target[E_AXIS] += code_value();
  3690. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3691. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3692. #endif
  3693. RUNPLAN;
  3694. //lift Z
  3695. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3696. #ifdef FILAMENTCHANGE_ZADD
  3697. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3698. #endif
  3699. RUNPLAN;
  3700. //move xy
  3701. if (code_seen('X')) target[X_AXIS] = code_value();
  3702. #ifdef FILAMENTCHANGE_XPOS
  3703. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3704. #endif
  3705. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3706. #ifdef FILAMENTCHANGE_YPOS
  3707. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3708. #endif
  3709. RUNPLAN;
  3710. if (code_seen('L')) target[E_AXIS] += code_value();
  3711. #ifdef FILAMENTCHANGE_FINALRETRACT
  3712. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3713. #endif
  3714. RUNPLAN;
  3715. //finish moves
  3716. st_synchronize();
  3717. //disable extruder steppers so filament can be removed
  3718. disable_e0();
  3719. disable_e1();
  3720. disable_e2();
  3721. disable_e3();
  3722. delay(100);
  3723. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3724. uint8_t cnt = 0;
  3725. while (!lcd_clicked()) {
  3726. cnt++;
  3727. manage_heater();
  3728. manage_inactivity(true);
  3729. lcd_update();
  3730. if (cnt == 0) {
  3731. #if BEEPER > 0
  3732. OUT_WRITE(BEEPER,HIGH);
  3733. delay(3);
  3734. WRITE(BEEPER,LOW);
  3735. delay(3);
  3736. #else
  3737. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3738. lcd_buzz(1000/6, 100);
  3739. #else
  3740. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3741. #endif
  3742. #endif
  3743. }
  3744. } // while(!lcd_clicked)
  3745. //return to normal
  3746. if (code_seen('L')) target[E_AXIS] -= code_value();
  3747. #ifdef FILAMENTCHANGE_FINALRETRACT
  3748. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3749. #endif
  3750. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3751. plan_set_e_position(current_position[E_AXIS]);
  3752. RUNPLAN; //should do nothing
  3753. lcd_reset_alert_level();
  3754. #ifdef DELTA
  3755. calculate_delta(lastpos);
  3756. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3757. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3758. #else
  3759. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3760. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3761. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3762. #endif
  3763. #ifdef FILAMENT_RUNOUT_SENSOR
  3764. filrunoutEnqued = false;
  3765. #endif
  3766. }
  3767. #endif // FILAMENTCHANGEENABLE
  3768. #ifdef DUAL_X_CARRIAGE
  3769. /**
  3770. * M605: Set dual x-carriage movement mode
  3771. *
  3772. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3773. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3774. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3775. * millimeters x-offset and an optional differential hotend temperature of
  3776. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3777. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3778. *
  3779. * Note: the X axis should be homed after changing dual x-carriage mode.
  3780. */
  3781. inline void gcode_M605() {
  3782. st_synchronize();
  3783. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3784. switch(dual_x_carriage_mode) {
  3785. case DXC_DUPLICATION_MODE:
  3786. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3787. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3788. SERIAL_ECHO_START;
  3789. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3790. SERIAL_ECHO(" ");
  3791. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3792. SERIAL_ECHO(",");
  3793. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3794. SERIAL_ECHO(" ");
  3795. SERIAL_ECHO(duplicate_extruder_x_offset);
  3796. SERIAL_ECHO(",");
  3797. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3798. break;
  3799. case DXC_FULL_CONTROL_MODE:
  3800. case DXC_AUTO_PARK_MODE:
  3801. break;
  3802. default:
  3803. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3804. break;
  3805. }
  3806. active_extruder_parked = false;
  3807. extruder_duplication_enabled = false;
  3808. delayed_move_time = 0;
  3809. }
  3810. #endif // DUAL_X_CARRIAGE
  3811. /**
  3812. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3813. */
  3814. inline void gcode_M907() {
  3815. #if HAS_DIGIPOTSS
  3816. for (int i=0;i<NUM_AXIS;i++)
  3817. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3818. if (code_seen('B')) digipot_current(4, code_value());
  3819. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3820. #endif
  3821. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3822. if (code_seen('X')) digipot_current(0, code_value());
  3823. #endif
  3824. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3825. if (code_seen('Z')) digipot_current(1, code_value());
  3826. #endif
  3827. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3828. if (code_seen('E')) digipot_current(2, code_value());
  3829. #endif
  3830. #ifdef DIGIPOT_I2C
  3831. // this one uses actual amps in floating point
  3832. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3833. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3834. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3835. #endif
  3836. }
  3837. #if HAS_DIGIPOTSS
  3838. /**
  3839. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3840. */
  3841. inline void gcode_M908() {
  3842. digitalPotWrite(
  3843. code_seen('P') ? code_value() : 0,
  3844. code_seen('S') ? code_value() : 0
  3845. );
  3846. }
  3847. #endif // HAS_DIGIPOTSS
  3848. #if HAS_MICROSTEPS
  3849. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3850. inline void gcode_M350() {
  3851. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3852. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3853. if(code_seen('B')) microstep_mode(4,code_value());
  3854. microstep_readings();
  3855. }
  3856. /**
  3857. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3858. * S# determines MS1 or MS2, X# sets the pin high/low.
  3859. */
  3860. inline void gcode_M351() {
  3861. if (code_seen('S')) switch(code_value_long()) {
  3862. case 1:
  3863. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3864. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3865. break;
  3866. case 2:
  3867. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3868. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3869. break;
  3870. }
  3871. microstep_readings();
  3872. }
  3873. #endif // HAS_MICROSTEPS
  3874. /**
  3875. * M999: Restart after being stopped
  3876. */
  3877. inline void gcode_M999() {
  3878. Stopped = false;
  3879. lcd_reset_alert_level();
  3880. gcode_LastN = Stopped_gcode_LastN;
  3881. FlushSerialRequestResend();
  3882. }
  3883. inline void gcode_T() {
  3884. tmp_extruder = code_value();
  3885. if (tmp_extruder >= EXTRUDERS) {
  3886. SERIAL_ECHO_START;
  3887. SERIAL_ECHO("T");
  3888. SERIAL_ECHO(tmp_extruder);
  3889. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3890. }
  3891. else {
  3892. #if EXTRUDERS > 1
  3893. bool make_move = false;
  3894. #endif
  3895. if (code_seen('F')) {
  3896. #if EXTRUDERS > 1
  3897. make_move = true;
  3898. #endif
  3899. next_feedrate = code_value();
  3900. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3901. }
  3902. #if EXTRUDERS > 1
  3903. if (tmp_extruder != active_extruder) {
  3904. // Save current position to return to after applying extruder offset
  3905. memcpy(destination, current_position, sizeof(destination));
  3906. #ifdef DUAL_X_CARRIAGE
  3907. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3908. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3909. // Park old head: 1) raise 2) move to park position 3) lower
  3910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3911. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3912. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3913. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3914. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3915. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3916. st_synchronize();
  3917. }
  3918. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3919. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3920. extruder_offset[Y_AXIS][active_extruder] +
  3921. extruder_offset[Y_AXIS][tmp_extruder];
  3922. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3923. extruder_offset[Z_AXIS][active_extruder] +
  3924. extruder_offset[Z_AXIS][tmp_extruder];
  3925. active_extruder = tmp_extruder;
  3926. // This function resets the max/min values - the current position may be overwritten below.
  3927. axis_is_at_home(X_AXIS);
  3928. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3929. current_position[X_AXIS] = inactive_extruder_x_pos;
  3930. inactive_extruder_x_pos = destination[X_AXIS];
  3931. }
  3932. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3933. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3934. if (active_extruder == 0 || active_extruder_parked)
  3935. current_position[X_AXIS] = inactive_extruder_x_pos;
  3936. else
  3937. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3938. inactive_extruder_x_pos = destination[X_AXIS];
  3939. extruder_duplication_enabled = false;
  3940. }
  3941. else {
  3942. // record raised toolhead position for use by unpark
  3943. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3944. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3945. active_extruder_parked = true;
  3946. delayed_move_time = 0;
  3947. }
  3948. #else // !DUAL_X_CARRIAGE
  3949. // Offset extruder (only by XY)
  3950. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3951. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3952. // Set the new active extruder and position
  3953. active_extruder = tmp_extruder;
  3954. #endif // !DUAL_X_CARRIAGE
  3955. #ifdef DELTA
  3956. sync_plan_position_delta();
  3957. #else
  3958. sync_plan_position();
  3959. #endif
  3960. // Move to the old position if 'F' was in the parameters
  3961. if (make_move && !Stopped) prepare_move();
  3962. }
  3963. #ifdef EXT_SOLENOID
  3964. st_synchronize();
  3965. disable_all_solenoids();
  3966. enable_solenoid_on_active_extruder();
  3967. #endif // EXT_SOLENOID
  3968. #endif // EXTRUDERS > 1
  3969. SERIAL_ECHO_START;
  3970. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3971. SERIAL_PROTOCOLLN((int)active_extruder);
  3972. }
  3973. }
  3974. /**
  3975. * Process Commands and dispatch them to handlers
  3976. * This is called from the main loop()
  3977. */
  3978. void process_commands() {
  3979. if (code_seen('G')) {
  3980. int gCode = code_value_long();
  3981. switch(gCode) {
  3982. // G0, G1
  3983. case 0:
  3984. case 1:
  3985. gcode_G0_G1();
  3986. break;
  3987. // G2, G3
  3988. #ifndef SCARA
  3989. case 2: // G2 - CW ARC
  3990. case 3: // G3 - CCW ARC
  3991. gcode_G2_G3(gCode == 2);
  3992. break;
  3993. #endif
  3994. // G4 Dwell
  3995. case 4:
  3996. gcode_G4();
  3997. break;
  3998. #ifdef FWRETRACT
  3999. case 10: // G10: retract
  4000. case 11: // G11: retract_recover
  4001. gcode_G10_G11(gCode == 10);
  4002. break;
  4003. #endif //FWRETRACT
  4004. case 28: // G28: Home all axes, one at a time
  4005. gcode_G28();
  4006. break;
  4007. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4008. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4009. gcode_G29();
  4010. break;
  4011. #endif
  4012. #ifdef ENABLE_AUTO_BED_LEVELING
  4013. #ifndef Z_PROBE_SLED
  4014. case 30: // G30 Single Z Probe
  4015. gcode_G30();
  4016. break;
  4017. #else // Z_PROBE_SLED
  4018. case 31: // G31: dock the sled
  4019. case 32: // G32: undock the sled
  4020. dock_sled(gCode == 31);
  4021. break;
  4022. #endif // Z_PROBE_SLED
  4023. #endif // ENABLE_AUTO_BED_LEVELING
  4024. case 90: // G90
  4025. relative_mode = false;
  4026. break;
  4027. case 91: // G91
  4028. relative_mode = true;
  4029. break;
  4030. case 92: // G92
  4031. gcode_G92();
  4032. break;
  4033. }
  4034. }
  4035. else if (code_seen('M')) {
  4036. switch( code_value_long() ) {
  4037. #ifdef ULTIPANEL
  4038. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4039. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4040. gcode_M0_M1();
  4041. break;
  4042. #endif // ULTIPANEL
  4043. case 17:
  4044. gcode_M17();
  4045. break;
  4046. #ifdef SDSUPPORT
  4047. case 20: // M20 - list SD card
  4048. gcode_M20(); break;
  4049. case 21: // M21 - init SD card
  4050. gcode_M21(); break;
  4051. case 22: //M22 - release SD card
  4052. gcode_M22(); break;
  4053. case 23: //M23 - Select file
  4054. gcode_M23(); break;
  4055. case 24: //M24 - Start SD print
  4056. gcode_M24(); break;
  4057. case 25: //M25 - Pause SD print
  4058. gcode_M25(); break;
  4059. case 26: //M26 - Set SD index
  4060. gcode_M26(); break;
  4061. case 27: //M27 - Get SD status
  4062. gcode_M27(); break;
  4063. case 28: //M28 - Start SD write
  4064. gcode_M28(); break;
  4065. case 29: //M29 - Stop SD write
  4066. gcode_M29(); break;
  4067. case 30: //M30 <filename> Delete File
  4068. gcode_M30(); break;
  4069. case 32: //M32 - Select file and start SD print
  4070. gcode_M32(); break;
  4071. case 928: //M928 - Start SD write
  4072. gcode_M928(); break;
  4073. #endif //SDSUPPORT
  4074. case 31: //M31 take time since the start of the SD print or an M109 command
  4075. gcode_M31();
  4076. break;
  4077. case 42: //M42 -Change pin status via gcode
  4078. gcode_M42();
  4079. break;
  4080. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4081. case 48: // M48 Z-Probe repeatability
  4082. gcode_M48();
  4083. break;
  4084. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4085. case 104: // M104
  4086. gcode_M104();
  4087. break;
  4088. case 112: // M112 Emergency Stop
  4089. gcode_M112();
  4090. break;
  4091. case 140: // M140 Set bed temp
  4092. gcode_M140();
  4093. break;
  4094. case 105: // M105 Read current temperature
  4095. gcode_M105();
  4096. return;
  4097. break;
  4098. case 109: // M109 Wait for temperature
  4099. gcode_M109();
  4100. break;
  4101. #if HAS_TEMP_BED
  4102. case 190: // M190 - Wait for bed heater to reach target.
  4103. gcode_M190();
  4104. break;
  4105. #endif // HAS_TEMP_BED
  4106. #if HAS_FAN
  4107. case 106: //M106 Fan On
  4108. gcode_M106();
  4109. break;
  4110. case 107: //M107 Fan Off
  4111. gcode_M107();
  4112. break;
  4113. #endif // HAS_FAN
  4114. #ifdef BARICUDA
  4115. // PWM for HEATER_1_PIN
  4116. #if HAS_HEATER_1
  4117. case 126: // M126 valve open
  4118. gcode_M126();
  4119. break;
  4120. case 127: // M127 valve closed
  4121. gcode_M127();
  4122. break;
  4123. #endif // HAS_HEATER_1
  4124. // PWM for HEATER_2_PIN
  4125. #if HAS_HEATER_2
  4126. case 128: // M128 valve open
  4127. gcode_M128();
  4128. break;
  4129. case 129: // M129 valve closed
  4130. gcode_M129();
  4131. break;
  4132. #endif // HAS_HEATER_2
  4133. #endif // BARICUDA
  4134. #if HAS_POWER_SWITCH
  4135. case 80: // M80 - Turn on Power Supply
  4136. gcode_M80();
  4137. break;
  4138. #endif // HAS_POWER_SWITCH
  4139. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4140. gcode_M81();
  4141. break;
  4142. case 82:
  4143. gcode_M82();
  4144. break;
  4145. case 83:
  4146. gcode_M83();
  4147. break;
  4148. case 18: //compatibility
  4149. case 84: // M84
  4150. gcode_M18_M84();
  4151. break;
  4152. case 85: // M85
  4153. gcode_M85();
  4154. break;
  4155. case 92: // M92
  4156. gcode_M92();
  4157. break;
  4158. case 115: // M115
  4159. gcode_M115();
  4160. break;
  4161. case 117: // M117 display message
  4162. gcode_M117();
  4163. break;
  4164. case 114: // M114
  4165. gcode_M114();
  4166. break;
  4167. case 120: // M120
  4168. gcode_M120();
  4169. break;
  4170. case 121: // M121
  4171. gcode_M121();
  4172. break;
  4173. case 119: // M119
  4174. gcode_M119();
  4175. break;
  4176. //TODO: update for all axis, use for loop
  4177. #ifdef BLINKM
  4178. case 150: // M150
  4179. gcode_M150();
  4180. break;
  4181. #endif //BLINKM
  4182. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4183. gcode_M200();
  4184. break;
  4185. case 201: // M201
  4186. gcode_M201();
  4187. break;
  4188. #if 0 // Not used for Sprinter/grbl gen6
  4189. case 202: // M202
  4190. gcode_M202();
  4191. break;
  4192. #endif
  4193. case 203: // M203 max feedrate mm/sec
  4194. gcode_M203();
  4195. break;
  4196. case 204: // M204 acclereration S normal moves T filmanent only moves
  4197. gcode_M204();
  4198. break;
  4199. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4200. gcode_M205();
  4201. break;
  4202. case 206: // M206 additional homing offset
  4203. gcode_M206();
  4204. break;
  4205. #ifdef DELTA
  4206. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4207. gcode_M665();
  4208. break;
  4209. #endif
  4210. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4211. case 666: // M666 set delta / dual endstop adjustment
  4212. gcode_M666();
  4213. break;
  4214. #endif
  4215. #ifdef FWRETRACT
  4216. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4217. gcode_M207();
  4218. break;
  4219. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4220. gcode_M208();
  4221. break;
  4222. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4223. gcode_M209();
  4224. break;
  4225. #endif // FWRETRACT
  4226. #if EXTRUDERS > 1
  4227. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4228. gcode_M218();
  4229. break;
  4230. #endif
  4231. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4232. gcode_M220();
  4233. break;
  4234. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4235. gcode_M221();
  4236. break;
  4237. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4238. gcode_M226();
  4239. break;
  4240. #if NUM_SERVOS > 0
  4241. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4242. gcode_M280();
  4243. break;
  4244. #endif // NUM_SERVOS > 0
  4245. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4246. case 300: // M300 - Play beep tone
  4247. gcode_M300();
  4248. break;
  4249. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4250. #ifdef PIDTEMP
  4251. case 301: // M301
  4252. gcode_M301();
  4253. break;
  4254. #endif // PIDTEMP
  4255. #ifdef PIDTEMPBED
  4256. case 304: // M304
  4257. gcode_M304();
  4258. break;
  4259. #endif // PIDTEMPBED
  4260. #if defined(CHDK) || HAS_PHOTOGRAPH
  4261. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4262. gcode_M240();
  4263. break;
  4264. #endif // CHDK || PHOTOGRAPH_PIN
  4265. #ifdef DOGLCD
  4266. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4267. gcode_M250();
  4268. break;
  4269. #endif // DOGLCD
  4270. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4271. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4272. gcode_M302();
  4273. break;
  4274. #endif // PREVENT_DANGEROUS_EXTRUDE
  4275. case 303: // M303 PID autotune
  4276. gcode_M303();
  4277. break;
  4278. #ifdef SCARA
  4279. case 360: // M360 SCARA Theta pos1
  4280. if (gcode_M360()) return;
  4281. break;
  4282. case 361: // M361 SCARA Theta pos2
  4283. if (gcode_M361()) return;
  4284. break;
  4285. case 362: // M362 SCARA Psi pos1
  4286. if (gcode_M362()) return;
  4287. break;
  4288. case 363: // M363 SCARA Psi pos2
  4289. if (gcode_M363()) return;
  4290. break;
  4291. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4292. if (gcode_M364()) return;
  4293. break;
  4294. case 365: // M365 Set SCARA scaling for X Y Z
  4295. gcode_M365();
  4296. break;
  4297. #endif // SCARA
  4298. case 400: // M400 finish all moves
  4299. gcode_M400();
  4300. break;
  4301. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4302. case 401:
  4303. gcode_M401();
  4304. break;
  4305. case 402:
  4306. gcode_M402();
  4307. break;
  4308. #endif
  4309. #ifdef FILAMENT_SENSOR
  4310. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4311. gcode_M404();
  4312. break;
  4313. case 405: //M405 Turn on filament sensor for control
  4314. gcode_M405();
  4315. break;
  4316. case 406: //M406 Turn off filament sensor for control
  4317. gcode_M406();
  4318. break;
  4319. case 407: //M407 Display measured filament diameter
  4320. gcode_M407();
  4321. break;
  4322. #endif // FILAMENT_SENSOR
  4323. case 500: // M500 Store settings in EEPROM
  4324. gcode_M500();
  4325. break;
  4326. case 501: // M501 Read settings from EEPROM
  4327. gcode_M501();
  4328. break;
  4329. case 502: // M502 Revert to default settings
  4330. gcode_M502();
  4331. break;
  4332. case 503: // M503 print settings currently in memory
  4333. gcode_M503();
  4334. break;
  4335. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4336. case 540:
  4337. gcode_M540();
  4338. break;
  4339. #endif
  4340. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4341. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4342. gcode_SET_Z_PROBE_OFFSET();
  4343. break;
  4344. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4345. #ifdef FILAMENTCHANGEENABLE
  4346. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4347. gcode_M600();
  4348. break;
  4349. #endif // FILAMENTCHANGEENABLE
  4350. #ifdef DUAL_X_CARRIAGE
  4351. case 605:
  4352. gcode_M605();
  4353. break;
  4354. #endif // DUAL_X_CARRIAGE
  4355. case 907: // M907 Set digital trimpot motor current using axis codes.
  4356. gcode_M907();
  4357. break;
  4358. #if HAS_DIGIPOTSS
  4359. case 908: // M908 Control digital trimpot directly.
  4360. gcode_M908();
  4361. break;
  4362. #endif // HAS_DIGIPOTSS
  4363. #if HAS_MICROSTEPS
  4364. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4365. gcode_M350();
  4366. break;
  4367. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4368. gcode_M351();
  4369. break;
  4370. #endif // HAS_MICROSTEPS
  4371. case 999: // M999: Restart after being Stopped
  4372. gcode_M999();
  4373. break;
  4374. }
  4375. }
  4376. else if (code_seen('T')) {
  4377. gcode_T();
  4378. }
  4379. else {
  4380. SERIAL_ECHO_START;
  4381. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4382. SERIAL_ECHO(cmdbuffer[bufindr]);
  4383. SERIAL_ECHOLNPGM("\"");
  4384. }
  4385. ClearToSend();
  4386. }
  4387. void FlushSerialRequestResend() {
  4388. //char cmdbuffer[bufindr][100]="Resend:";
  4389. MYSERIAL.flush();
  4390. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4391. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4392. ClearToSend();
  4393. }
  4394. void ClearToSend() {
  4395. refresh_cmd_timeout();
  4396. #ifdef SDSUPPORT
  4397. if (fromsd[bufindr]) return;
  4398. #endif
  4399. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4400. }
  4401. void get_coordinates() {
  4402. for (int i = 0; i < NUM_AXIS; i++) {
  4403. if (code_seen(axis_codes[i]))
  4404. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4405. else
  4406. destination[i] = current_position[i];
  4407. }
  4408. if (code_seen('F')) {
  4409. next_feedrate = code_value();
  4410. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4411. }
  4412. }
  4413. void get_arc_coordinates() {
  4414. #ifdef SF_ARC_FIX
  4415. bool relative_mode_backup = relative_mode;
  4416. relative_mode = true;
  4417. #endif
  4418. get_coordinates();
  4419. #ifdef SF_ARC_FIX
  4420. relative_mode = relative_mode_backup;
  4421. #endif
  4422. offset[0] = code_seen('I') ? code_value() : 0;
  4423. offset[1] = code_seen('J') ? code_value() : 0;
  4424. }
  4425. void clamp_to_software_endstops(float target[3])
  4426. {
  4427. if (min_software_endstops) {
  4428. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4429. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4430. float negative_z_offset = 0;
  4431. #ifdef ENABLE_AUTO_BED_LEVELING
  4432. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4433. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4434. #endif
  4435. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4436. }
  4437. if (max_software_endstops) {
  4438. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4439. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4440. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4441. }
  4442. }
  4443. #ifdef DELTA
  4444. void recalc_delta_settings(float radius, float diagonal_rod) {
  4445. delta_tower1_x = -SIN_60 * radius; // front left tower
  4446. delta_tower1_y = -COS_60 * radius;
  4447. delta_tower2_x = SIN_60 * radius; // front right tower
  4448. delta_tower2_y = -COS_60 * radius;
  4449. delta_tower3_x = 0.0; // back middle tower
  4450. delta_tower3_y = radius;
  4451. delta_diagonal_rod_2 = sq(diagonal_rod);
  4452. }
  4453. void calculate_delta(float cartesian[3]) {
  4454. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4455. - sq(delta_tower1_x-cartesian[X_AXIS])
  4456. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4457. ) + cartesian[Z_AXIS];
  4458. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4459. - sq(delta_tower2_x-cartesian[X_AXIS])
  4460. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4461. ) + cartesian[Z_AXIS];
  4462. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4463. - sq(delta_tower3_x-cartesian[X_AXIS])
  4464. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4465. ) + cartesian[Z_AXIS];
  4466. /*
  4467. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4468. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4469. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4470. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4471. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4472. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4473. */
  4474. }
  4475. #ifdef ENABLE_AUTO_BED_LEVELING
  4476. // Adjust print surface height by linear interpolation over the bed_level array.
  4477. void adjust_delta(float cartesian[3]) {
  4478. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4479. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4480. float h1 = 0.001 - half, h2 = half - 0.001,
  4481. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4482. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4483. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4484. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4485. z1 = bed_level[floor_x + half][floor_y + half],
  4486. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4487. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4488. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4489. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4490. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4491. offset = (1 - ratio_x) * left + ratio_x * right;
  4492. delta[X_AXIS] += offset;
  4493. delta[Y_AXIS] += offset;
  4494. delta[Z_AXIS] += offset;
  4495. /*
  4496. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4497. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4498. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4499. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4500. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4501. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4502. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4503. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4504. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4505. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4506. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4507. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4508. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4509. */
  4510. }
  4511. #endif // ENABLE_AUTO_BED_LEVELING
  4512. #endif // DELTA
  4513. #ifdef MESH_BED_LEVELING
  4514. #if !defined(MIN)
  4515. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4516. #endif // ! MIN
  4517. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4518. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4519. {
  4520. if (!mbl.active) {
  4521. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4522. for(int8_t i=0; i < NUM_AXIS; i++) {
  4523. current_position[i] = destination[i];
  4524. }
  4525. return;
  4526. }
  4527. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4528. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4529. int ix = mbl.select_x_index(x);
  4530. int iy = mbl.select_y_index(y);
  4531. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4532. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4533. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4534. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4535. if (pix == ix && piy == iy) {
  4536. // Start and end on same mesh square
  4537. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4538. for(int8_t i=0; i < NUM_AXIS; i++) {
  4539. current_position[i] = destination[i];
  4540. }
  4541. return;
  4542. }
  4543. float nx, ny, ne, normalized_dist;
  4544. if (ix > pix && (x_splits) & BIT(ix)) {
  4545. nx = mbl.get_x(ix);
  4546. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4547. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4548. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4549. x_splits ^= BIT(ix);
  4550. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4551. nx = mbl.get_x(pix);
  4552. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4553. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4554. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4555. x_splits ^= BIT(pix);
  4556. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4557. ny = mbl.get_y(iy);
  4558. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4559. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4560. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4561. y_splits ^= BIT(iy);
  4562. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4563. ny = mbl.get_y(piy);
  4564. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4565. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4566. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4567. y_splits ^= BIT(piy);
  4568. } else {
  4569. // Already split on a border
  4570. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4571. for(int8_t i=0; i < NUM_AXIS; i++) {
  4572. current_position[i] = destination[i];
  4573. }
  4574. return;
  4575. }
  4576. // Do the split and look for more borders
  4577. destination[X_AXIS] = nx;
  4578. destination[Y_AXIS] = ny;
  4579. destination[E_AXIS] = ne;
  4580. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4581. destination[X_AXIS] = x;
  4582. destination[Y_AXIS] = y;
  4583. destination[E_AXIS] = e;
  4584. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4585. }
  4586. #endif // MESH_BED_LEVELING
  4587. void prepare_move() {
  4588. clamp_to_software_endstops(destination);
  4589. refresh_cmd_timeout();
  4590. #ifdef SCARA //for now same as delta-code
  4591. float difference[NUM_AXIS];
  4592. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4593. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4594. sq(difference[Y_AXIS]) +
  4595. sq(difference[Z_AXIS]));
  4596. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4597. if (cartesian_mm < 0.000001) { return; }
  4598. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4599. int steps = max(1, int(scara_segments_per_second * seconds));
  4600. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4601. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4602. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4603. for (int s = 1; s <= steps; s++) {
  4604. float fraction = float(s) / float(steps);
  4605. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4606. destination[i] = current_position[i] + difference[i] * fraction;
  4607. }
  4608. calculate_delta(destination);
  4609. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4610. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4611. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4612. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4613. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4614. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4615. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4616. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4617. active_extruder);
  4618. }
  4619. #endif // SCARA
  4620. #ifdef DELTA
  4621. float difference[NUM_AXIS];
  4622. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4623. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4624. sq(difference[Y_AXIS]) +
  4625. sq(difference[Z_AXIS]));
  4626. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4627. if (cartesian_mm < 0.000001) return;
  4628. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4629. int steps = max(1, int(delta_segments_per_second * seconds));
  4630. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4631. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4632. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4633. for (int s = 1; s <= steps; s++) {
  4634. float fraction = float(s) / float(steps);
  4635. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4636. calculate_delta(destination);
  4637. #ifdef ENABLE_AUTO_BED_LEVELING
  4638. adjust_delta(destination);
  4639. #endif
  4640. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4641. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4642. active_extruder);
  4643. }
  4644. #endif // DELTA
  4645. #ifdef DUAL_X_CARRIAGE
  4646. if (active_extruder_parked)
  4647. {
  4648. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4649. {
  4650. // move duplicate extruder into correct duplication position.
  4651. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4652. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4653. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4654. sync_plan_position();
  4655. st_synchronize();
  4656. extruder_duplication_enabled = true;
  4657. active_extruder_parked = false;
  4658. }
  4659. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4660. {
  4661. if (current_position[E_AXIS] == destination[E_AXIS])
  4662. {
  4663. // this is a travel move - skit it but keep track of current position (so that it can later
  4664. // be used as start of first non-travel move)
  4665. if (delayed_move_time != 0xFFFFFFFFUL)
  4666. {
  4667. memcpy(current_position, destination, sizeof(current_position));
  4668. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4669. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4670. delayed_move_time = millis();
  4671. return;
  4672. }
  4673. }
  4674. delayed_move_time = 0;
  4675. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4676. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4678. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4680. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4681. active_extruder_parked = false;
  4682. }
  4683. }
  4684. #endif //DUAL_X_CARRIAGE
  4685. #if !defined(DELTA) && !defined(SCARA)
  4686. // Do not use feedmultiply for E or Z only moves
  4687. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4688. line_to_destination();
  4689. } else {
  4690. #ifdef MESH_BED_LEVELING
  4691. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4692. return;
  4693. #else
  4694. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4695. #endif // MESH_BED_LEVELING
  4696. }
  4697. #endif // !(DELTA || SCARA)
  4698. for(int8_t i=0; i < NUM_AXIS; i++) {
  4699. current_position[i] = destination[i];
  4700. }
  4701. }
  4702. void prepare_arc_move(char isclockwise) {
  4703. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4704. // Trace the arc
  4705. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4706. // As far as the parser is concerned, the position is now == target. In reality the
  4707. // motion control system might still be processing the action and the real tool position
  4708. // in any intermediate location.
  4709. for(int8_t i=0; i < NUM_AXIS; i++) {
  4710. current_position[i] = destination[i];
  4711. }
  4712. refresh_cmd_timeout();
  4713. }
  4714. #if HAS_CONTROLLERFAN
  4715. unsigned long lastMotor = 0; // Last time a motor was turned on
  4716. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4717. void controllerFan() {
  4718. uint32_t ms = millis();
  4719. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4720. lastMotorCheck = ms;
  4721. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4722. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4723. #if EXTRUDERS > 1
  4724. || E1_ENABLE_READ == E_ENABLE_ON
  4725. #if HAS_X2_ENABLE
  4726. || X2_ENABLE_READ == X_ENABLE_ON
  4727. #endif
  4728. #if EXTRUDERS > 2
  4729. || E2_ENABLE_READ == E_ENABLE_ON
  4730. #if EXTRUDERS > 3
  4731. || E3_ENABLE_READ == E_ENABLE_ON
  4732. #endif
  4733. #endif
  4734. #endif
  4735. ) {
  4736. lastMotor = ms; //... set time to NOW so the fan will turn on
  4737. }
  4738. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4739. // allows digital or PWM fan output to be used (see M42 handling)
  4740. digitalWrite(CONTROLLERFAN_PIN, speed);
  4741. analogWrite(CONTROLLERFAN_PIN, speed);
  4742. }
  4743. }
  4744. #endif
  4745. #ifdef SCARA
  4746. void calculate_SCARA_forward_Transform(float f_scara[3])
  4747. {
  4748. // Perform forward kinematics, and place results in delta[3]
  4749. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4750. float x_sin, x_cos, y_sin, y_cos;
  4751. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4752. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4753. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4754. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4755. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4756. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4757. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4758. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4759. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4760. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4761. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4762. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4763. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4764. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4765. }
  4766. void calculate_delta(float cartesian[3]){
  4767. //reverse kinematics.
  4768. // Perform reversed kinematics, and place results in delta[3]
  4769. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4770. float SCARA_pos[2];
  4771. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4772. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4773. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4774. #if (Linkage_1 == Linkage_2)
  4775. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4776. #else
  4777. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4778. #endif
  4779. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4780. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4781. SCARA_K2 = Linkage_2 * SCARA_S2;
  4782. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4783. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4784. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4785. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4786. delta[Z_AXIS] = cartesian[Z_AXIS];
  4787. /*
  4788. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4789. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4790. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4791. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4792. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4793. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4794. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4795. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4796. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4797. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4798. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4799. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4800. SERIAL_ECHOLN(" ");*/
  4801. }
  4802. #endif
  4803. #ifdef TEMP_STAT_LEDS
  4804. static bool blue_led = false;
  4805. static bool red_led = false;
  4806. static uint32_t stat_update = 0;
  4807. void handle_status_leds(void) {
  4808. float max_temp = 0.0;
  4809. if(millis() > stat_update) {
  4810. stat_update += 500; // Update every 0.5s
  4811. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4812. max_temp = max(max_temp, degHotend(cur_extruder));
  4813. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4814. }
  4815. #if HAS_TEMP_BED
  4816. max_temp = max(max_temp, degTargetBed());
  4817. max_temp = max(max_temp, degBed());
  4818. #endif
  4819. if((max_temp > 55.0) && (red_led == false)) {
  4820. digitalWrite(STAT_LED_RED, 1);
  4821. digitalWrite(STAT_LED_BLUE, 0);
  4822. red_led = true;
  4823. blue_led = false;
  4824. }
  4825. if((max_temp < 54.0) && (blue_led == false)) {
  4826. digitalWrite(STAT_LED_RED, 0);
  4827. digitalWrite(STAT_LED_BLUE, 1);
  4828. red_led = false;
  4829. blue_led = true;
  4830. }
  4831. }
  4832. }
  4833. #endif
  4834. void disable_all_axes() {
  4835. disable_x();
  4836. disable_y();
  4837. disable_z();
  4838. disable_e0();
  4839. disable_e1();
  4840. disable_e2();
  4841. disable_e3();
  4842. }
  4843. /**
  4844. *
  4845. */
  4846. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4847. #if HAS_FILRUNOUT
  4848. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4849. filrunout();
  4850. #endif
  4851. if (buflen < BUFSIZE - 1) get_command();
  4852. unsigned long ms = millis();
  4853. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4854. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4855. && !ignore_stepper_queue && !blocks_queued())
  4856. disable_all_axes();
  4857. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4858. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4859. chdkActive = false;
  4860. WRITE(CHDK, LOW);
  4861. }
  4862. #endif
  4863. #if HAS_KILL
  4864. // Check if the kill button was pressed and wait just in case it was an accidental
  4865. // key kill key press
  4866. // -------------------------------------------------------------------------------
  4867. static int killCount = 0; // make the inactivity button a bit less responsive
  4868. const int KILL_DELAY = 750;
  4869. if (!READ(KILL_PIN))
  4870. killCount++;
  4871. else if (killCount > 0)
  4872. killCount--;
  4873. // Exceeded threshold and we can confirm that it was not accidental
  4874. // KILL the machine
  4875. // ----------------------------------------------------------------
  4876. if (killCount >= KILL_DELAY) kill();
  4877. #endif
  4878. #if HAS_HOME
  4879. // Check to see if we have to home, use poor man's debouncer
  4880. // ---------------------------------------------------------
  4881. static int homeDebounceCount = 0; // poor man's debouncing count
  4882. const int HOME_DEBOUNCE_DELAY = 750;
  4883. if (!READ(HOME_PIN)) {
  4884. if (!homeDebounceCount) {
  4885. enquecommands_P(PSTR("G28"));
  4886. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4887. }
  4888. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4889. homeDebounceCount++;
  4890. else
  4891. homeDebounceCount = 0;
  4892. }
  4893. #endif
  4894. #if HAS_CONTROLLERFAN
  4895. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4896. #endif
  4897. #ifdef EXTRUDER_RUNOUT_PREVENT
  4898. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4899. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4900. bool oldstatus = E0_ENABLE_READ;
  4901. enable_e0();
  4902. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4904. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4905. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4906. current_position[E_AXIS] = oldepos;
  4907. destination[E_AXIS] = oldedes;
  4908. plan_set_e_position(oldepos);
  4909. previous_millis_cmd = ms; // refresh_cmd_timeout()
  4910. st_synchronize();
  4911. E0_ENABLE_WRITE(oldstatus);
  4912. }
  4913. #endif
  4914. #ifdef DUAL_X_CARRIAGE
  4915. // handle delayed move timeout
  4916. if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
  4917. // travel moves have been received so enact them
  4918. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4919. memcpy(destination, current_position, sizeof(destination));
  4920. prepare_move();
  4921. }
  4922. #endif
  4923. #ifdef TEMP_STAT_LEDS
  4924. handle_status_leds();
  4925. #endif
  4926. check_axes_activity();
  4927. }
  4928. void kill()
  4929. {
  4930. cli(); // Stop interrupts
  4931. disable_heater();
  4932. disable_all_axes();
  4933. #if HAS_POWER_SWITCH
  4934. pinMode(PS_ON_PIN, INPUT);
  4935. #endif
  4936. SERIAL_ERROR_START;
  4937. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4938. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4939. // FMC small patch to update the LCD before ending
  4940. sei(); // enable interrupts
  4941. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  4942. cli(); // disable interrupts
  4943. suicide();
  4944. while(1) { /* Intentionally left empty */ } // Wait for reset
  4945. }
  4946. #ifdef FILAMENT_RUNOUT_SENSOR
  4947. void filrunout()
  4948. {
  4949. if filrunoutEnqued == false {
  4950. filrunoutEnqued = true;
  4951. enquecommand("M600");
  4952. }
  4953. }
  4954. #endif
  4955. void Stop()
  4956. {
  4957. disable_heater();
  4958. if(Stopped == false) {
  4959. Stopped = true;
  4960. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4961. SERIAL_ERROR_START;
  4962. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4963. LCD_MESSAGEPGM(MSG_STOPPED);
  4964. }
  4965. }
  4966. bool IsStopped() { return Stopped; };
  4967. #ifdef FAST_PWM_FAN
  4968. void setPwmFrequency(uint8_t pin, int val)
  4969. {
  4970. val &= 0x07;
  4971. switch(digitalPinToTimer(pin))
  4972. {
  4973. #if defined(TCCR0A)
  4974. case TIMER0A:
  4975. case TIMER0B:
  4976. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4977. // TCCR0B |= val;
  4978. break;
  4979. #endif
  4980. #if defined(TCCR1A)
  4981. case TIMER1A:
  4982. case TIMER1B:
  4983. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4984. // TCCR1B |= val;
  4985. break;
  4986. #endif
  4987. #if defined(TCCR2)
  4988. case TIMER2:
  4989. case TIMER2:
  4990. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4991. TCCR2 |= val;
  4992. break;
  4993. #endif
  4994. #if defined(TCCR2A)
  4995. case TIMER2A:
  4996. case TIMER2B:
  4997. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4998. TCCR2B |= val;
  4999. break;
  5000. #endif
  5001. #if defined(TCCR3A)
  5002. case TIMER3A:
  5003. case TIMER3B:
  5004. case TIMER3C:
  5005. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5006. TCCR3B |= val;
  5007. break;
  5008. #endif
  5009. #if defined(TCCR4A)
  5010. case TIMER4A:
  5011. case TIMER4B:
  5012. case TIMER4C:
  5013. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5014. TCCR4B |= val;
  5015. break;
  5016. #endif
  5017. #if defined(TCCR5A)
  5018. case TIMER5A:
  5019. case TIMER5B:
  5020. case TIMER5C:
  5021. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5022. TCCR5B |= val;
  5023. break;
  5024. #endif
  5025. }
  5026. }
  5027. #endif //FAST_PWM_FAN
  5028. bool setTargetedHotend(int code){
  5029. tmp_extruder = active_extruder;
  5030. if(code_seen('T')) {
  5031. tmp_extruder = code_value();
  5032. if(tmp_extruder >= EXTRUDERS) {
  5033. SERIAL_ECHO_START;
  5034. switch(code){
  5035. case 104:
  5036. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5037. break;
  5038. case 105:
  5039. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5040. break;
  5041. case 109:
  5042. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5043. break;
  5044. case 218:
  5045. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5046. break;
  5047. case 221:
  5048. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5049. break;
  5050. }
  5051. SERIAL_ECHOLN(tmp_extruder);
  5052. return true;
  5053. }
  5054. }
  5055. return false;
  5056. }
  5057. float calculate_volumetric_multiplier(float diameter) {
  5058. if (!volumetric_enabled || diameter == 0) return 1.0;
  5059. float d2 = diameter * 0.5;
  5060. return 1.0 / (M_PI * d2 * d2);
  5061. }
  5062. void calculate_volumetric_multipliers() {
  5063. for (int i=0; i<EXTRUDERS; i++)
  5064. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5065. }