My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 287KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. float constexpr homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define SIN_60 0.8660254037844386
  408. #define COS_60 0.5
  409. float delta[ABC],
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. float delta_safe_distance_from_top();
  429. #else
  430. static bool home_all_axis = true;
  431. #endif
  432. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  433. int nonlinear_grid_spacing[2] = { 0 };
  434. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  435. #endif
  436. #if IS_SCARA
  437. // Float constants for SCARA calculations
  438. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  439. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  440. L2_2 = sq(float(L2));
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  442. delta[ABC];
  443. #endif
  444. float cartes[XYZ] = { 0 };
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  448. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  449. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  450. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  451. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  452. #endif
  453. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  454. static bool filament_ran_out = false;
  455. #endif
  456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  457. FilamentChangeMenuResponse filament_change_menu_response;
  458. #endif
  459. #if ENABLED(MIXING_EXTRUDER)
  460. float mixing_factor[MIXING_STEPPERS];
  461. #if MIXING_VIRTUAL_TOOLS > 1
  462. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  463. #endif
  464. #endif
  465. static bool send_ok[BUFSIZE];
  466. #if HAS_SERVOS
  467. Servo servo[NUM_SERVOS];
  468. #define MOVE_SERVO(I, P) servo[I].move(P)
  469. #if HAS_Z_SERVO_ENDSTOP
  470. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  471. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  472. #endif
  473. #endif
  474. #ifdef CHDK
  475. millis_t chdkHigh = 0;
  476. boolean chdkActive = false;
  477. #endif
  478. #if ENABLED(PID_EXTRUSION_SCALING)
  479. int lpq_len = 20;
  480. #endif
  481. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  482. static MarlinBusyState busy_state = NOT_BUSY;
  483. static millis_t next_busy_signal_ms = 0;
  484. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  485. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  486. #else
  487. #define host_keepalive() ;
  488. #define KEEPALIVE_STATE(n) ;
  489. #endif // HOST_KEEPALIVE_FEATURE
  490. #define DEFINE_PGM_READ_ANY(type, reader) \
  491. static inline type pgm_read_any(const type *p) \
  492. { return pgm_read_##reader##_near(p); }
  493. DEFINE_PGM_READ_ANY(float, float);
  494. DEFINE_PGM_READ_ANY(signed char, byte);
  495. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  496. static const PROGMEM type array##_P[XYZ] = \
  497. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  498. static inline type array(int axis) \
  499. { return pgm_read_any(&array##_P[axis]); }
  500. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  504. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  505. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  506. /**
  507. * ***************************************************************************
  508. * ******************************** FUNCTIONS ********************************
  509. * ***************************************************************************
  510. */
  511. void stop();
  512. void get_available_commands();
  513. void process_next_command();
  514. void prepare_move_to_destination();
  515. void get_cartesian_from_steppers();
  516. void set_current_from_steppers_for_axis(const AxisEnum axis);
  517. #if ENABLED(ARC_SUPPORT)
  518. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  519. #endif
  520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  521. void plan_cubic_move(const float offset[4]);
  522. #endif
  523. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  525. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  531. static void report_current_position();
  532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  533. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  534. serialprintPGM(prefix);
  535. SERIAL_ECHOPAIR("(", x);
  536. SERIAL_ECHOPAIR(", ", y);
  537. SERIAL_ECHOPAIR(", ", z);
  538. SERIAL_ECHOPGM(")");
  539. if (suffix) serialprintPGM(suffix);
  540. else SERIAL_EOL;
  541. }
  542. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  543. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  544. }
  545. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  546. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  547. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  548. }
  549. #endif
  550. #define DEBUG_POS(SUFFIX,VAR) do { \
  551. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  552. #endif
  553. /**
  554. * sync_plan_position
  555. *
  556. * Set the planner/stepper positions directly from current_position with
  557. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  558. */
  559. inline void sync_plan_position() {
  560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  561. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  562. #endif
  563. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. }
  565. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  566. #if IS_KINEMATIC
  567. inline void sync_plan_position_kinematic() {
  568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  569. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  570. #endif
  571. inverse_kinematics(current_position);
  572. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  573. }
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  575. #else
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  577. #endif
  578. #if ENABLED(SDSUPPORT)
  579. #include "SdFatUtil.h"
  580. int freeMemory() { return SdFatUtil::FreeRam(); }
  581. #else
  582. extern "C" {
  583. extern unsigned int __bss_end;
  584. extern unsigned int __heap_start;
  585. extern void* __brkval;
  586. int freeMemory() {
  587. int free_memory;
  588. if ((int)__brkval == 0)
  589. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  590. else
  591. free_memory = ((int)&free_memory) - ((int)__brkval);
  592. return free_memory;
  593. }
  594. }
  595. #endif //!SDSUPPORT
  596. #if ENABLED(DIGIPOT_I2C)
  597. extern void digipot_i2c_set_current(int channel, float current);
  598. extern void digipot_i2c_init();
  599. #endif
  600. /**
  601. * Inject the next "immediate" command, when possible.
  602. * Return true if any immediate commands remain to inject.
  603. */
  604. static bool drain_queued_commands_P() {
  605. if (queued_commands_P != NULL) {
  606. size_t i = 0;
  607. char c, cmd[30];
  608. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  609. cmd[sizeof(cmd) - 1] = '\0';
  610. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  611. cmd[i] = '\0';
  612. if (enqueue_and_echo_command(cmd)) { // success?
  613. if (c) // newline char?
  614. queued_commands_P += i + 1; // advance to the next command
  615. else
  616. queued_commands_P = NULL; // nul char? no more commands
  617. }
  618. }
  619. return (queued_commands_P != NULL); // return whether any more remain
  620. }
  621. /**
  622. * Record one or many commands to run from program memory.
  623. * Aborts the current queue, if any.
  624. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  625. */
  626. void enqueue_and_echo_commands_P(const char* pgcode) {
  627. queued_commands_P = pgcode;
  628. drain_queued_commands_P(); // first command executed asap (when possible)
  629. }
  630. void clear_command_queue() {
  631. cmd_queue_index_r = cmd_queue_index_w;
  632. commands_in_queue = 0;
  633. }
  634. /**
  635. * Once a new command is in the ring buffer, call this to commit it
  636. */
  637. inline void _commit_command(bool say_ok) {
  638. send_ok[cmd_queue_index_w] = say_ok;
  639. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  640. commands_in_queue++;
  641. }
  642. /**
  643. * Copy a command directly into the main command buffer, from RAM.
  644. * Returns true if successfully adds the command
  645. */
  646. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  647. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  648. strcpy(command_queue[cmd_queue_index_w], cmd);
  649. _commit_command(say_ok);
  650. return true;
  651. }
  652. void enqueue_and_echo_command_now(const char* cmd) {
  653. while (!enqueue_and_echo_command(cmd)) idle();
  654. }
  655. /**
  656. * Enqueue with Serial Echo
  657. */
  658. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  659. if (_enqueuecommand(cmd, say_ok)) {
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  662. SERIAL_ECHOLNPGM("\"");
  663. return true;
  664. }
  665. return false;
  666. }
  667. void setup_killpin() {
  668. #if HAS_KILL
  669. SET_INPUT(KILL_PIN);
  670. WRITE(KILL_PIN, HIGH);
  671. #endif
  672. }
  673. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  674. void setup_filrunoutpin() {
  675. pinMode(FIL_RUNOUT_PIN, INPUT);
  676. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  677. WRITE(FIL_RUNOUT_PIN, HIGH);
  678. #endif
  679. }
  680. #endif
  681. // Set home pin
  682. void setup_homepin(void) {
  683. #if HAS_HOME
  684. SET_INPUT(HOME_PIN);
  685. WRITE(HOME_PIN, HIGH);
  686. #endif
  687. }
  688. void setup_photpin() {
  689. #if HAS_PHOTOGRAPH
  690. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  691. #endif
  692. }
  693. void setup_powerhold() {
  694. #if HAS_SUICIDE
  695. OUT_WRITE(SUICIDE_PIN, HIGH);
  696. #endif
  697. #if HAS_POWER_SWITCH
  698. #if ENABLED(PS_DEFAULT_OFF)
  699. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  700. #else
  701. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  702. #endif
  703. #endif
  704. }
  705. void suicide() {
  706. #if HAS_SUICIDE
  707. OUT_WRITE(SUICIDE_PIN, LOW);
  708. #endif
  709. }
  710. void servo_init() {
  711. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  712. servo[0].attach(SERVO0_PIN);
  713. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  714. #endif
  715. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  716. servo[1].attach(SERVO1_PIN);
  717. servo[1].detach();
  718. #endif
  719. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  720. servo[2].attach(SERVO2_PIN);
  721. servo[2].detach();
  722. #endif
  723. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  724. servo[3].attach(SERVO3_PIN);
  725. servo[3].detach();
  726. #endif
  727. #if HAS_Z_SERVO_ENDSTOP
  728. /**
  729. * Set position of Z Servo Endstop
  730. *
  731. * The servo might be deployed and positioned too low to stow
  732. * when starting up the machine or rebooting the board.
  733. * There's no way to know where the nozzle is positioned until
  734. * homing has been done - no homing with z-probe without init!
  735. *
  736. */
  737. STOW_Z_SERVO();
  738. #endif
  739. }
  740. /**
  741. * Stepper Reset (RigidBoard, et.al.)
  742. */
  743. #if HAS_STEPPER_RESET
  744. void disableStepperDrivers() {
  745. pinMode(STEPPER_RESET_PIN, OUTPUT);
  746. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  747. }
  748. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  749. #endif
  750. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  751. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  752. i2c.receive(bytes);
  753. }
  754. void i2c_on_request() { // just send dummy data for now
  755. i2c.reply("Hello World!\n");
  756. }
  757. #endif
  758. void gcode_line_error(const char* err, bool doFlush = true) {
  759. SERIAL_ERROR_START;
  760. serialprintPGM(err);
  761. SERIAL_ERRORLN(gcode_LastN);
  762. //Serial.println(gcode_N);
  763. if (doFlush) FlushSerialRequestResend();
  764. serial_count = 0;
  765. }
  766. inline void get_serial_commands() {
  767. static char serial_line_buffer[MAX_CMD_SIZE];
  768. static boolean serial_comment_mode = false;
  769. // If the command buffer is empty for too long,
  770. // send "wait" to indicate Marlin is still waiting.
  771. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  772. static millis_t last_command_time = 0;
  773. millis_t ms = millis();
  774. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  775. SERIAL_ECHOLNPGM(MSG_WAIT);
  776. last_command_time = ms;
  777. }
  778. #endif
  779. /**
  780. * Loop while serial characters are incoming and the queue is not full
  781. */
  782. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  783. char serial_char = MYSERIAL.read();
  784. /**
  785. * If the character ends the line
  786. */
  787. if (serial_char == '\n' || serial_char == '\r') {
  788. serial_comment_mode = false; // end of line == end of comment
  789. if (!serial_count) continue; // skip empty lines
  790. serial_line_buffer[serial_count] = 0; // terminate string
  791. serial_count = 0; //reset buffer
  792. char* command = serial_line_buffer;
  793. while (*command == ' ') command++; // skip any leading spaces
  794. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  795. char* apos = strchr(command, '*');
  796. if (npos) {
  797. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  798. if (M110) {
  799. char* n2pos = strchr(command + 4, 'N');
  800. if (n2pos) npos = n2pos;
  801. }
  802. gcode_N = strtol(npos + 1, NULL, 10);
  803. if (gcode_N != gcode_LastN + 1 && !M110) {
  804. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  805. return;
  806. }
  807. if (apos) {
  808. byte checksum = 0, count = 0;
  809. while (command[count] != '*') checksum ^= command[count++];
  810. if (strtol(apos + 1, NULL, 10) != checksum) {
  811. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  812. return;
  813. }
  814. // if no errors, continue parsing
  815. }
  816. else {
  817. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  818. return;
  819. }
  820. gcode_LastN = gcode_N;
  821. // if no errors, continue parsing
  822. }
  823. else if (apos) { // No '*' without 'N'
  824. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  825. return;
  826. }
  827. // Movement commands alert when stopped
  828. if (IsStopped()) {
  829. char* gpos = strchr(command, 'G');
  830. if (gpos) {
  831. int codenum = strtol(gpos + 1, NULL, 10);
  832. switch (codenum) {
  833. case 0:
  834. case 1:
  835. case 2:
  836. case 3:
  837. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  838. LCD_MESSAGEPGM(MSG_STOPPED);
  839. break;
  840. }
  841. }
  842. }
  843. #if DISABLED(EMERGENCY_PARSER)
  844. // If command was e-stop process now
  845. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  846. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  847. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  848. #endif
  849. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  850. last_command_time = ms;
  851. #endif
  852. // Add the command to the queue
  853. _enqueuecommand(serial_line_buffer, true);
  854. }
  855. else if (serial_count >= MAX_CMD_SIZE - 1) {
  856. // Keep fetching, but ignore normal characters beyond the max length
  857. // The command will be injected when EOL is reached
  858. }
  859. else if (serial_char == '\\') { // Handle escapes
  860. if (MYSERIAL.available() > 0) {
  861. // if we have one more character, copy it over
  862. serial_char = MYSERIAL.read();
  863. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  864. }
  865. // otherwise do nothing
  866. }
  867. else { // it's not a newline, carriage return or escape char
  868. if (serial_char == ';') serial_comment_mode = true;
  869. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  870. }
  871. } // queue has space, serial has data
  872. }
  873. #if ENABLED(SDSUPPORT)
  874. inline void get_sdcard_commands() {
  875. static bool stop_buffering = false,
  876. sd_comment_mode = false;
  877. if (!card.sdprinting) return;
  878. /**
  879. * '#' stops reading from SD to the buffer prematurely, so procedural
  880. * macro calls are possible. If it occurs, stop_buffering is triggered
  881. * and the buffer is run dry; this character _can_ occur in serial com
  882. * due to checksums, however, no checksums are used in SD printing.
  883. */
  884. if (commands_in_queue == 0) stop_buffering = false;
  885. uint16_t sd_count = 0;
  886. bool card_eof = card.eof();
  887. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  888. int16_t n = card.get();
  889. char sd_char = (char)n;
  890. card_eof = card.eof();
  891. if (card_eof || n == -1
  892. || sd_char == '\n' || sd_char == '\r'
  893. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  894. ) {
  895. if (card_eof) {
  896. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  897. card.printingHasFinished();
  898. card.checkautostart(true);
  899. }
  900. else if (n == -1) {
  901. SERIAL_ERROR_START;
  902. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  903. }
  904. if (sd_char == '#') stop_buffering = true;
  905. sd_comment_mode = false; //for new command
  906. if (!sd_count) continue; //skip empty lines
  907. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  908. sd_count = 0; //clear buffer
  909. _commit_command(false);
  910. }
  911. else if (sd_count >= MAX_CMD_SIZE - 1) {
  912. /**
  913. * Keep fetching, but ignore normal characters beyond the max length
  914. * The command will be injected when EOL is reached
  915. */
  916. }
  917. else {
  918. if (sd_char == ';') sd_comment_mode = true;
  919. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  920. }
  921. }
  922. }
  923. #endif // SDSUPPORT
  924. /**
  925. * Add to the circular command queue the next command from:
  926. * - The command-injection queue (queued_commands_P)
  927. * - The active serial input (usually USB)
  928. * - The SD card file being actively printed
  929. */
  930. void get_available_commands() {
  931. // if any immediate commands remain, don't get other commands yet
  932. if (drain_queued_commands_P()) return;
  933. get_serial_commands();
  934. #if ENABLED(SDSUPPORT)
  935. get_sdcard_commands();
  936. #endif
  937. }
  938. inline bool code_has_value() {
  939. int i = 1;
  940. char c = seen_pointer[i];
  941. while (c == ' ') c = seen_pointer[++i];
  942. if (c == '-' || c == '+') c = seen_pointer[++i];
  943. if (c == '.') c = seen_pointer[++i];
  944. return NUMERIC(c);
  945. }
  946. inline float code_value_float() {
  947. float ret;
  948. char* e = strchr(seen_pointer, 'E');
  949. if (e) {
  950. *e = 0;
  951. ret = strtod(seen_pointer + 1, NULL);
  952. *e = 'E';
  953. }
  954. else
  955. ret = strtod(seen_pointer + 1, NULL);
  956. return ret;
  957. }
  958. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  959. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  960. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  961. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  962. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  963. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  964. #if ENABLED(INCH_MODE_SUPPORT)
  965. inline void set_input_linear_units(LinearUnit units) {
  966. switch (units) {
  967. case LINEARUNIT_INCH:
  968. linear_unit_factor = 25.4;
  969. break;
  970. case LINEARUNIT_MM:
  971. default:
  972. linear_unit_factor = 1.0;
  973. break;
  974. }
  975. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  976. }
  977. inline float axis_unit_factor(int axis) {
  978. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  979. }
  980. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  981. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  982. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  983. #else
  984. inline float code_value_linear_units() { return code_value_float(); }
  985. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  986. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  987. #endif
  988. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  989. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  990. float code_value_temp_abs() {
  991. switch (input_temp_units) {
  992. case TEMPUNIT_C:
  993. return code_value_float();
  994. case TEMPUNIT_F:
  995. return (code_value_float() - 32) * 0.5555555556;
  996. case TEMPUNIT_K:
  997. return code_value_float() - 272.15;
  998. default:
  999. return code_value_float();
  1000. }
  1001. }
  1002. float code_value_temp_diff() {
  1003. switch (input_temp_units) {
  1004. case TEMPUNIT_C:
  1005. case TEMPUNIT_K:
  1006. return code_value_float();
  1007. case TEMPUNIT_F:
  1008. return code_value_float() * 0.5555555556;
  1009. default:
  1010. return code_value_float();
  1011. }
  1012. }
  1013. #else
  1014. float code_value_temp_abs() { return code_value_float(); }
  1015. float code_value_temp_diff() { return code_value_float(); }
  1016. #endif
  1017. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1018. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1019. bool code_seen(char code) {
  1020. seen_pointer = strchr(current_command_args, code);
  1021. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1022. }
  1023. /**
  1024. * Set target_extruder from the T parameter or the active_extruder
  1025. *
  1026. * Returns TRUE if the target is invalid
  1027. */
  1028. bool get_target_extruder_from_command(int code) {
  1029. if (code_seen('T')) {
  1030. if (code_value_byte() >= EXTRUDERS) {
  1031. SERIAL_ECHO_START;
  1032. SERIAL_CHAR('M');
  1033. SERIAL_ECHO(code);
  1034. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1035. return true;
  1036. }
  1037. target_extruder = code_value_byte();
  1038. }
  1039. else
  1040. target_extruder = active_extruder;
  1041. return false;
  1042. }
  1043. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1044. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1045. #endif
  1046. #if ENABLED(DUAL_X_CARRIAGE)
  1047. #define DXC_FULL_CONTROL_MODE 0
  1048. #define DXC_AUTO_PARK_MODE 1
  1049. #define DXC_DUPLICATION_MODE 2
  1050. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1051. static float x_home_pos(int extruder) {
  1052. if (extruder == 0)
  1053. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1054. else
  1055. /**
  1056. * In dual carriage mode the extruder offset provides an override of the
  1057. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1058. * This allow soft recalibration of the second extruder offset position
  1059. * without firmware reflash (through the M218 command).
  1060. */
  1061. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1062. }
  1063. static int x_home_dir(int extruder) {
  1064. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1065. }
  1066. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1067. static bool active_extruder_parked = false; // used in mode 1 & 2
  1068. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1069. static millis_t delayed_move_time = 0; // used in mode 1
  1070. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1071. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1072. #endif //DUAL_X_CARRIAGE
  1073. /**
  1074. * Software endstops can be used to monitor the open end of
  1075. * an axis that has a hardware endstop on the other end. Or
  1076. * they can prevent axes from moving past endstops and grinding.
  1077. *
  1078. * To keep doing their job as the coordinate system changes,
  1079. * the software endstop positions must be refreshed to remain
  1080. * at the same positions relative to the machine.
  1081. */
  1082. void update_software_endstops(AxisEnum axis) {
  1083. float offs = LOGICAL_POSITION(0, axis);
  1084. #if ENABLED(DUAL_X_CARRIAGE)
  1085. if (axis == X_AXIS) {
  1086. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1087. if (active_extruder != 0) {
  1088. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1089. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1090. return;
  1091. }
  1092. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1093. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1094. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1095. return;
  1096. }
  1097. }
  1098. else
  1099. #endif
  1100. {
  1101. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1102. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1103. }
  1104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1105. if (DEBUGGING(LEVELING)) {
  1106. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1107. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1108. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1109. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1110. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1111. }
  1112. #endif
  1113. #if ENABLED(DELTA)
  1114. if (axis == Z_AXIS)
  1115. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1116. #endif
  1117. }
  1118. /**
  1119. * Change the home offset for an axis, update the current
  1120. * position and the software endstops to retain the same
  1121. * relative distance to the new home.
  1122. *
  1123. * Since this changes the current_position, code should
  1124. * call sync_plan_position soon after this.
  1125. */
  1126. static void set_home_offset(AxisEnum axis, float v) {
  1127. current_position[axis] += v - home_offset[axis];
  1128. home_offset[axis] = v;
  1129. update_software_endstops(axis);
  1130. }
  1131. /**
  1132. * Set an axis' current position to its home position (after homing).
  1133. *
  1134. * For Core and Cartesian robots this applies one-to-one when an
  1135. * individual axis has been homed.
  1136. *
  1137. * DELTA should wait until all homing is done before setting the XYZ
  1138. * current_position to home, because homing is a single operation.
  1139. * In the case where the axis positions are already known and previously
  1140. * homed, DELTA could home to X or Y individually by moving either one
  1141. * to the center. However, homing Z always homes XY and Z.
  1142. *
  1143. * SCARA should wait until all XY homing is done before setting the XY
  1144. * current_position to home, because neither X nor Y is at home until
  1145. * both are at home. Z can however be homed individually.
  1146. *
  1147. */
  1148. static void set_axis_is_at_home(AxisEnum axis) {
  1149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1150. if (DEBUGGING(LEVELING)) {
  1151. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1152. SERIAL_ECHOLNPGM(")");
  1153. }
  1154. #endif
  1155. axis_known_position[axis] = axis_homed[axis] = true;
  1156. position_shift[axis] = 0;
  1157. update_software_endstops(axis);
  1158. #if ENABLED(DUAL_X_CARRIAGE)
  1159. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1160. if (active_extruder != 0)
  1161. current_position[X_AXIS] = x_home_pos(active_extruder);
  1162. else
  1163. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1164. update_software_endstops(X_AXIS);
  1165. return;
  1166. }
  1167. #endif
  1168. #if ENABLED(MORGAN_SCARA)
  1169. /**
  1170. * Morgan SCARA homes XY at the same time
  1171. */
  1172. if (axis == X_AXIS || axis == Y_AXIS) {
  1173. float homeposition[XYZ];
  1174. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1175. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1176. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1177. /**
  1178. * Get Home position SCARA arm angles using inverse kinematics,
  1179. * and calculate homing offset using forward kinematics
  1180. */
  1181. inverse_kinematics(homeposition);
  1182. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1183. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1184. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1185. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1186. /**
  1187. * SCARA home positions are based on configuration since the actual
  1188. * limits are determined by the inverse kinematic transform.
  1189. */
  1190. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1191. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1192. }
  1193. else
  1194. #endif
  1195. {
  1196. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1197. }
  1198. /**
  1199. * Z Probe Z Homing? Account for the probe's Z offset.
  1200. */
  1201. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1202. if (axis == Z_AXIS) {
  1203. #if HOMING_Z_WITH_PROBE
  1204. current_position[Z_AXIS] -= zprobe_zoffset;
  1205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1206. if (DEBUGGING(LEVELING)) {
  1207. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1208. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1209. }
  1210. #endif
  1211. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1212. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1213. #endif
  1214. }
  1215. #endif
  1216. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1217. if (DEBUGGING(LEVELING)) {
  1218. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1219. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1220. DEBUG_POS("", current_position);
  1221. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1222. SERIAL_ECHOLNPGM(")");
  1223. }
  1224. #endif
  1225. }
  1226. /**
  1227. * Some planner shorthand inline functions
  1228. */
  1229. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1230. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1231. int hbd = homing_bump_divisor[axis];
  1232. if (hbd < 1) {
  1233. hbd = 10;
  1234. SERIAL_ECHO_START;
  1235. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1236. }
  1237. return homing_feedrate_mm_s[axis] / hbd;
  1238. }
  1239. //
  1240. // line_to_current_position
  1241. // Move the planner to the current position from wherever it last moved
  1242. // (or from wherever it has been told it is located).
  1243. //
  1244. inline void line_to_current_position() {
  1245. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1246. }
  1247. //
  1248. // line_to_destination
  1249. // Move the planner, not necessarily synced with current_position
  1250. //
  1251. inline void line_to_destination(float fr_mm_s) {
  1252. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1253. }
  1254. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1255. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1256. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1257. #if IS_KINEMATIC
  1258. /**
  1259. * Calculate delta, start a line, and set current_position to destination
  1260. */
  1261. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1263. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1264. #endif
  1265. refresh_cmd_timeout();
  1266. inverse_kinematics(destination);
  1267. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1268. set_current_to_destination();
  1269. }
  1270. #endif
  1271. /**
  1272. * Plan a move to (X, Y, Z) and set the current_position
  1273. * The final current_position may not be the one that was requested
  1274. */
  1275. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1276. float old_feedrate_mm_s = feedrate_mm_s;
  1277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1278. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1279. #endif
  1280. #if ENABLED(DELTA)
  1281. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1282. set_destination_to_current(); // sync destination at the start
  1283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1284. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1285. #endif
  1286. // when in the danger zone
  1287. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1288. if (z > delta_clip_start_height) { // staying in the danger zone
  1289. destination[X_AXIS] = x; // move directly (uninterpolated)
  1290. destination[Y_AXIS] = y;
  1291. destination[Z_AXIS] = z;
  1292. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1295. #endif
  1296. return;
  1297. }
  1298. else {
  1299. destination[Z_AXIS] = delta_clip_start_height;
  1300. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1303. #endif
  1304. }
  1305. }
  1306. if (z > current_position[Z_AXIS]) { // raising?
  1307. destination[Z_AXIS] = z;
  1308. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1310. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1311. #endif
  1312. }
  1313. destination[X_AXIS] = x;
  1314. destination[Y_AXIS] = y;
  1315. prepare_move_to_destination(); // set_current_to_destination
  1316. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1317. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1318. #endif
  1319. if (z < current_position[Z_AXIS]) { // lowering?
  1320. destination[Z_AXIS] = z;
  1321. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1324. #endif
  1325. }
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1328. #endif
  1329. #elif IS_SCARA
  1330. set_destination_to_current();
  1331. // If Z needs to raise, do it before moving XY
  1332. if (current_position[Z_AXIS] < z) {
  1333. destination[Z_AXIS] = z;
  1334. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1335. }
  1336. destination[X_AXIS] = x;
  1337. destination[Y_AXIS] = y;
  1338. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1339. // If Z needs to lower, do it after moving XY
  1340. if (current_position[Z_AXIS] > z) {
  1341. destination[Z_AXIS] = z;
  1342. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1343. }
  1344. #else
  1345. // If Z needs to raise, do it before moving XY
  1346. if (current_position[Z_AXIS] < z) {
  1347. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1348. current_position[Z_AXIS] = z;
  1349. line_to_current_position();
  1350. }
  1351. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1352. current_position[X_AXIS] = x;
  1353. current_position[Y_AXIS] = y;
  1354. line_to_current_position();
  1355. // If Z needs to lower, do it after moving XY
  1356. if (current_position[Z_AXIS] > z) {
  1357. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1358. current_position[Z_AXIS] = z;
  1359. line_to_current_position();
  1360. }
  1361. #endif
  1362. stepper.synchronize();
  1363. feedrate_mm_s = old_feedrate_mm_s;
  1364. }
  1365. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1366. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1367. }
  1368. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1369. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1370. }
  1371. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1372. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1373. }
  1374. //
  1375. // Prepare to do endstop or probe moves
  1376. // with custom feedrates.
  1377. //
  1378. // - Save current feedrates
  1379. // - Reset the rate multiplier
  1380. // - Reset the command timeout
  1381. // - Enable the endstops (for endstop moves)
  1382. //
  1383. static void setup_for_endstop_or_probe_move() {
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1386. #endif
  1387. saved_feedrate_mm_s = feedrate_mm_s;
  1388. saved_feedrate_percentage = feedrate_percentage;
  1389. feedrate_percentage = 100;
  1390. refresh_cmd_timeout();
  1391. }
  1392. static void clean_up_after_endstop_or_probe_move() {
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1395. #endif
  1396. feedrate_mm_s = saved_feedrate_mm_s;
  1397. feedrate_percentage = saved_feedrate_percentage;
  1398. refresh_cmd_timeout();
  1399. }
  1400. #if HAS_BED_PROBE
  1401. /**
  1402. * Raise Z to a minimum height to make room for a probe to move
  1403. */
  1404. inline void do_probe_raise(float z_raise) {
  1405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1406. if (DEBUGGING(LEVELING)) {
  1407. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1408. SERIAL_ECHOLNPGM(")");
  1409. }
  1410. #endif
  1411. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1412. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1413. if (z_dest > current_position[Z_AXIS])
  1414. do_blocking_move_to_z(z_dest);
  1415. }
  1416. #endif //HAS_BED_PROBE
  1417. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1418. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1419. const bool xx = x && !axis_homed[X_AXIS],
  1420. yy = y && !axis_homed[Y_AXIS],
  1421. zz = z && !axis_homed[Z_AXIS];
  1422. if (xx || yy || zz) {
  1423. SERIAL_ECHO_START;
  1424. SERIAL_ECHOPGM(MSG_HOME " ");
  1425. if (xx) SERIAL_ECHOPGM(MSG_X);
  1426. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1427. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1428. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1429. #if ENABLED(ULTRA_LCD)
  1430. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1431. strcat_P(message, PSTR(MSG_HOME " "));
  1432. if (xx) strcat_P(message, PSTR(MSG_X));
  1433. if (yy) strcat_P(message, PSTR(MSG_Y));
  1434. if (zz) strcat_P(message, PSTR(MSG_Z));
  1435. strcat_P(message, PSTR(" " MSG_FIRST));
  1436. lcd_setstatus(message);
  1437. #endif
  1438. return true;
  1439. }
  1440. return false;
  1441. }
  1442. #endif
  1443. #if ENABLED(Z_PROBE_SLED)
  1444. #ifndef SLED_DOCKING_OFFSET
  1445. #define SLED_DOCKING_OFFSET 0
  1446. #endif
  1447. /**
  1448. * Method to dock/undock a sled designed by Charles Bell.
  1449. *
  1450. * stow[in] If false, move to MAX_X and engage the solenoid
  1451. * If true, move to MAX_X and release the solenoid
  1452. */
  1453. static void dock_sled(bool stow) {
  1454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1455. if (DEBUGGING(LEVELING)) {
  1456. SERIAL_ECHOPAIR("dock_sled(", stow);
  1457. SERIAL_ECHOLNPGM(")");
  1458. }
  1459. #endif
  1460. // Dock sled a bit closer to ensure proper capturing
  1461. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1462. #if PIN_EXISTS(SLED)
  1463. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1464. #endif
  1465. }
  1466. #endif // Z_PROBE_SLED
  1467. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1468. void run_deploy_moves_script() {
  1469. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1470. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1471. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1472. #endif
  1473. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1474. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1475. #endif
  1476. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1477. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1478. #endif
  1479. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1480. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1481. #endif
  1482. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1483. #endif
  1484. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1485. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1486. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1487. #endif
  1488. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1489. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1490. #endif
  1491. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1492. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1493. #endif
  1494. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1495. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1496. #endif
  1497. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1498. #endif
  1499. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1500. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1501. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1502. #endif
  1503. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1504. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1505. #endif
  1506. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1507. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1508. #endif
  1509. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1510. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1511. #endif
  1512. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1513. #endif
  1514. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1515. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1516. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1517. #endif
  1518. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1519. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1520. #endif
  1521. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1522. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1523. #endif
  1524. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1525. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1526. #endif
  1527. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1528. #endif
  1529. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1530. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1531. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1532. #endif
  1533. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1534. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1535. #endif
  1536. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1537. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1538. #endif
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1541. #endif
  1542. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1543. #endif
  1544. }
  1545. void run_stow_moves_script() {
  1546. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1547. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1548. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1549. #endif
  1550. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1551. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1552. #endif
  1553. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1554. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1557. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1558. #endif
  1559. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1560. #endif
  1561. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1562. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1563. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1564. #endif
  1565. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1566. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1569. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1572. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1573. #endif
  1574. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1575. #endif
  1576. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1577. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1578. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1579. #endif
  1580. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1581. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1584. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1587. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1588. #endif
  1589. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1590. #endif
  1591. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1592. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1593. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1596. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1599. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1602. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1603. #endif
  1604. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1605. #endif
  1606. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1607. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1608. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1611. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1614. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1617. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1618. #endif
  1619. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1620. #endif
  1621. }
  1622. #endif
  1623. #if HAS_BED_PROBE
  1624. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1625. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1626. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1627. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1628. #else
  1629. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1630. #endif
  1631. #endif
  1632. #define DEPLOY_PROBE() set_probe_deployed(true)
  1633. #define STOW_PROBE() set_probe_deployed(false)
  1634. #if ENABLED(BLTOUCH)
  1635. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1636. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1637. }
  1638. #endif
  1639. // returns false for ok and true for failure
  1640. static bool set_probe_deployed(bool deploy) {
  1641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1642. if (DEBUGGING(LEVELING)) {
  1643. DEBUG_POS("set_probe_deployed", current_position);
  1644. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1645. }
  1646. #endif
  1647. if (endstops.z_probe_enabled == deploy) return false;
  1648. // Make room for probe
  1649. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1650. // When deploying make sure BLTOUCH is not already triggered
  1651. #if ENABLED(BLTOUCH)
  1652. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1653. #endif
  1654. #if ENABLED(Z_PROBE_SLED)
  1655. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1656. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1657. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1658. #endif
  1659. float oldXpos = current_position[X_AXIS],
  1660. oldYpos = current_position[Y_AXIS];
  1661. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1662. // If endstop is already false, the Z probe is deployed
  1663. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1664. // Would a goto be less ugly?
  1665. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1666. // for a triggered when stowed manual probe.
  1667. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1668. // otherwise an Allen-Key probe can't be stowed.
  1669. #endif
  1670. #if ENABLED(Z_PROBE_SLED)
  1671. dock_sled(!deploy);
  1672. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1673. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1674. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1675. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1676. #endif
  1677. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1678. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1679. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1680. if (IsRunning()) {
  1681. SERIAL_ERROR_START;
  1682. SERIAL_ERRORLNPGM("Z-Probe failed");
  1683. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1684. }
  1685. stop();
  1686. return true;
  1687. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1688. #endif
  1689. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1690. endstops.enable_z_probe(deploy);
  1691. return false;
  1692. }
  1693. static void do_probe_move(float z, float fr_mm_m) {
  1694. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1695. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1696. #endif
  1697. // Deploy BLTouch at the start of any probe
  1698. #if ENABLED(BLTOUCH)
  1699. set_bltouch_deployed(true);
  1700. #endif
  1701. // Move down until probe triggered
  1702. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1703. // Retract BLTouch immediately after a probe
  1704. #if ENABLED(BLTOUCH)
  1705. set_bltouch_deployed(false);
  1706. #endif
  1707. // Clear endstop flags
  1708. endstops.hit_on_purpose();
  1709. // Tell the planner where we actually are
  1710. planner.sync_from_steppers();
  1711. // Get Z where the steppers were interrupted
  1712. set_current_from_steppers_for_axis(Z_AXIS);
  1713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1714. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1715. #endif
  1716. }
  1717. // Do a single Z probe and return with current_position[Z_AXIS]
  1718. // at the height where the probe triggered.
  1719. static float run_z_probe() {
  1720. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1721. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1722. #endif
  1723. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1724. refresh_cmd_timeout();
  1725. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1726. // Do a first probe at the fast speed
  1727. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1728. // move up by the bump distance
  1729. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1730. #else
  1731. // If the nozzle is above the travel height then
  1732. // move down quickly before doing the slow probe
  1733. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1734. if (z < current_position[Z_AXIS])
  1735. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1736. #endif
  1737. // move down slowly to find bed
  1738. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1739. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1740. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1741. #endif
  1742. return current_position[Z_AXIS];
  1743. }
  1744. //
  1745. // - Move to the given XY
  1746. // - Deploy the probe, if not already deployed
  1747. // - Probe the bed, get the Z position
  1748. // - Depending on the 'stow' flag
  1749. // - Stow the probe, or
  1750. // - Raise to the BETWEEN height
  1751. // - Return the probed Z position
  1752. //
  1753. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1755. if (DEBUGGING(LEVELING)) {
  1756. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1757. SERIAL_ECHOPAIR(", ", y);
  1758. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1759. SERIAL_ECHOLNPGM(")");
  1760. DEBUG_POS("", current_position);
  1761. }
  1762. #endif
  1763. float old_feedrate_mm_s = feedrate_mm_s;
  1764. // Ensure a minimum height before moving the probe
  1765. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1766. // Move to the XY where we shall probe
  1767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1768. if (DEBUGGING(LEVELING)) {
  1769. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1770. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1771. SERIAL_ECHOLNPGM(")");
  1772. }
  1773. #endif
  1774. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1775. // Move the probe to the given XY
  1776. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1777. if (DEPLOY_PROBE()) return NAN;
  1778. float measured_z = run_z_probe();
  1779. if (!stow)
  1780. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1781. else
  1782. if (STOW_PROBE()) return NAN;
  1783. if (verbose_level > 2) {
  1784. SERIAL_PROTOCOLPGM("Bed X: ");
  1785. SERIAL_PROTOCOL_F(x, 3);
  1786. SERIAL_PROTOCOLPGM(" Y: ");
  1787. SERIAL_PROTOCOL_F(y, 3);
  1788. SERIAL_PROTOCOLPGM(" Z: ");
  1789. SERIAL_PROTOCOL_F(measured_z, 3);
  1790. SERIAL_EOL;
  1791. }
  1792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1793. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1794. #endif
  1795. feedrate_mm_s = old_feedrate_mm_s;
  1796. return measured_z;
  1797. }
  1798. #endif // HAS_BED_PROBE
  1799. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1800. /**
  1801. * Reset calibration results to zero.
  1802. */
  1803. void reset_bed_level() {
  1804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1805. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1806. #endif
  1807. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1808. planner.bed_level_matrix.set_to_identity();
  1809. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1810. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1811. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1812. #endif
  1813. }
  1814. #endif // AUTO_BED_LEVELING_FEATURE
  1815. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1816. /**
  1817. * Extrapolate a single point from its neighbors
  1818. */
  1819. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1820. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1821. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1822. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1823. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1824. // Median is robust (ignores outliers).
  1825. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1826. : ((c < b) ? b : (a < c) ? a : c);
  1827. }
  1828. /**
  1829. * Fill in the unprobed points (corners of circular print surface)
  1830. * using linear extrapolation, away from the center.
  1831. */
  1832. static void extrapolate_unprobed_bed_level() {
  1833. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1834. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1835. for (uint8_t y = 0; y <= half_y; y++) {
  1836. for (uint8_t x = 0; x <= half_x; x++) {
  1837. if (x + y < 3) continue;
  1838. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1839. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1840. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1841. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1842. }
  1843. }
  1844. }
  1845. /**
  1846. * Print calibration results for plotting or manual frame adjustment.
  1847. */
  1848. static void print_bed_level() {
  1849. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1850. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1851. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1852. SERIAL_PROTOCOLCHAR(' ');
  1853. }
  1854. SERIAL_EOL;
  1855. }
  1856. }
  1857. #endif // AUTO_BED_LEVELING_NONLINEAR
  1858. /**
  1859. * Home an individual linear axis
  1860. */
  1861. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s=0.0) {
  1862. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1863. bool deploy_bltouch = (axis == Z_AXIS && where < 0);
  1864. if (deploy_bltouch) set_bltouch_deployed(true);
  1865. #endif
  1866. current_position[axis] = 0;
  1867. sync_plan_position();
  1868. current_position[axis] = where;
  1869. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1870. stepper.synchronize();
  1871. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1872. if (deploy_bltouch) set_bltouch_deployed(false);
  1873. #endif
  1874. endstops.hit_on_purpose();
  1875. }
  1876. /**
  1877. * Home an individual "raw axis" to its endstop.
  1878. * This applies to XYZ on Cartesian and Core robots, and
  1879. * to the individual ABC steppers on DELTA and SCARA.
  1880. *
  1881. * At the end of the procedure the axis is marked as
  1882. * homed and the current position of that axis is updated.
  1883. * Kinematic robots should wait till all axes are homed
  1884. * before updating the current position.
  1885. */
  1886. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1887. static void homeaxis(AxisEnum axis) {
  1888. #if IS_SCARA
  1889. // Only Z homing (with probe) is permitted
  1890. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1891. #else
  1892. #define CAN_HOME(A) \
  1893. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1894. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1895. #endif
  1896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1897. if (DEBUGGING(LEVELING)) {
  1898. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1899. SERIAL_ECHOLNPGM(")");
  1900. }
  1901. #endif
  1902. int axis_home_dir =
  1903. #if ENABLED(DUAL_X_CARRIAGE)
  1904. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1905. #endif
  1906. home_dir(axis);
  1907. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1908. #if HOMING_Z_WITH_PROBE
  1909. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1910. #endif
  1911. // Set a flag for Z motor locking
  1912. #if ENABLED(Z_DUAL_ENDSTOPS)
  1913. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1914. #endif
  1915. // When homing Z with probe respect probe clearance
  1916. const float bump = axis_home_dir * (
  1917. #if HOMING_Z_WITH_PROBE
  1918. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  1919. #endif
  1920. home_bump_mm(axis)
  1921. );
  1922. // 1. Fast move towards endstop until triggered
  1923. // 2. Move away from the endstop by the axis HOME_BUMP_MM
  1924. // 3. Slow move towards endstop until triggered
  1925. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1926. do_homing_move(axis, -bump);
  1927. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  1928. #if ENABLED(Z_DUAL_ENDSTOPS)
  1929. if (axis == Z_AXIS) {
  1930. float adj = fabs(z_endstop_adj);
  1931. bool lockZ1;
  1932. if (axis_home_dir > 0) {
  1933. adj = -adj;
  1934. lockZ1 = (z_endstop_adj > 0);
  1935. }
  1936. else
  1937. lockZ1 = (z_endstop_adj < 0);
  1938. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1939. // Move to the adjusted endstop height
  1940. do_homing_move(axis, adj);
  1941. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1942. stepper.set_homing_flag(false);
  1943. } // Z_AXIS
  1944. #endif
  1945. #if IS_SCARA
  1946. set_axis_is_at_home(axis);
  1947. SYNC_PLAN_POSITION_KINEMATIC();
  1948. #elif ENABLED(DELTA)
  1949. // Delta has already moved all three towers up in G28
  1950. // so here it re-homes each tower in turn.
  1951. // Delta homing treats the axes as normal linear axes.
  1952. // retrace by the amount specified in endstop_adj
  1953. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) {
  1956. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1957. DEBUG_POS("", current_position);
  1958. }
  1959. #endif
  1960. do_homing_move(axis, endstop_adj[axis]);
  1961. }
  1962. #else
  1963. // For cartesian/core machines,
  1964. // set the axis to its home position
  1965. set_axis_is_at_home(axis);
  1966. sync_plan_position();
  1967. destination[axis] = current_position[axis];
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1970. #endif
  1971. #endif
  1972. // Put away the Z probe
  1973. #if HOMING_Z_WITH_PROBE
  1974. if (axis == Z_AXIS && STOW_PROBE()) return;
  1975. #endif
  1976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1977. if (DEBUGGING(LEVELING)) {
  1978. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1979. SERIAL_ECHOLNPGM(")");
  1980. }
  1981. #endif
  1982. } // homeaxis()
  1983. #if ENABLED(FWRETRACT)
  1984. void retract(bool retracting, bool swapping = false) {
  1985. if (retracting == retracted[active_extruder]) return;
  1986. float old_feedrate_mm_s = feedrate_mm_s;
  1987. set_destination_to_current();
  1988. if (retracting) {
  1989. feedrate_mm_s = retract_feedrate_mm_s;
  1990. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1991. sync_plan_position_e();
  1992. prepare_move_to_destination();
  1993. if (retract_zlift > 0.01) {
  1994. current_position[Z_AXIS] -= retract_zlift;
  1995. SYNC_PLAN_POSITION_KINEMATIC();
  1996. prepare_move_to_destination();
  1997. }
  1998. }
  1999. else {
  2000. if (retract_zlift > 0.01) {
  2001. current_position[Z_AXIS] += retract_zlift;
  2002. SYNC_PLAN_POSITION_KINEMATIC();
  2003. }
  2004. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2005. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2006. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2007. sync_plan_position_e();
  2008. prepare_move_to_destination();
  2009. }
  2010. feedrate_mm_s = old_feedrate_mm_s;
  2011. retracted[active_extruder] = retracting;
  2012. } // retract()
  2013. #endif // FWRETRACT
  2014. #if ENABLED(MIXING_EXTRUDER)
  2015. void normalize_mix() {
  2016. float mix_total = 0.0;
  2017. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2018. float v = mixing_factor[i];
  2019. if (v < 0) v = mixing_factor[i] = 0;
  2020. mix_total += v;
  2021. }
  2022. // Scale all values if they don't add up to ~1.0
  2023. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2024. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2025. float mix_scale = 1.0 / mix_total;
  2026. for (int i = 0; i < MIXING_STEPPERS; i++)
  2027. mixing_factor[i] *= mix_scale;
  2028. }
  2029. }
  2030. #if ENABLED(DIRECT_MIXING_IN_G1)
  2031. // Get mixing parameters from the GCode
  2032. // Factors that are left out are set to 0
  2033. // The total "must" be 1.0 (but it will be normalized)
  2034. void gcode_get_mix() {
  2035. const char* mixing_codes = "ABCDHI";
  2036. for (int i = 0; i < MIXING_STEPPERS; i++)
  2037. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2038. normalize_mix();
  2039. }
  2040. #endif
  2041. #endif
  2042. /**
  2043. * ***************************************************************************
  2044. * ***************************** G-CODE HANDLING *****************************
  2045. * ***************************************************************************
  2046. */
  2047. /**
  2048. * Set XYZE destination and feedrate from the current GCode command
  2049. *
  2050. * - Set destination from included axis codes
  2051. * - Set to current for missing axis codes
  2052. * - Set the feedrate, if included
  2053. */
  2054. void gcode_get_destination() {
  2055. LOOP_XYZE(i) {
  2056. if (code_seen(axis_codes[i]))
  2057. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2058. else
  2059. destination[i] = current_position[i];
  2060. }
  2061. if (code_seen('F') && code_value_linear_units() > 0.0)
  2062. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2063. #if ENABLED(PRINTCOUNTER)
  2064. if (!DEBUGGING(DRYRUN))
  2065. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2066. #endif
  2067. // Get ABCDHI mixing factors
  2068. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2069. gcode_get_mix();
  2070. #endif
  2071. }
  2072. void unknown_command_error() {
  2073. SERIAL_ECHO_START;
  2074. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2075. SERIAL_ECHOLNPGM("\"");
  2076. }
  2077. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2078. /**
  2079. * Output a "busy" message at regular intervals
  2080. * while the machine is not accepting commands.
  2081. */
  2082. void host_keepalive() {
  2083. millis_t ms = millis();
  2084. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2085. if (PENDING(ms, next_busy_signal_ms)) return;
  2086. switch (busy_state) {
  2087. case IN_HANDLER:
  2088. case IN_PROCESS:
  2089. SERIAL_ECHO_START;
  2090. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2091. break;
  2092. case PAUSED_FOR_USER:
  2093. SERIAL_ECHO_START;
  2094. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2095. break;
  2096. case PAUSED_FOR_INPUT:
  2097. SERIAL_ECHO_START;
  2098. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2099. break;
  2100. default:
  2101. break;
  2102. }
  2103. }
  2104. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2105. }
  2106. #endif //HOST_KEEPALIVE_FEATURE
  2107. bool position_is_reachable(float target[XYZ]
  2108. #if HAS_BED_PROBE
  2109. , bool by_probe=false
  2110. #endif
  2111. ) {
  2112. float dx = RAW_X_POSITION(target[X_AXIS]),
  2113. dy = RAW_Y_POSITION(target[Y_AXIS]),
  2114. dz = RAW_Z_POSITION(target[Z_AXIS]);
  2115. #if HAS_BED_PROBE
  2116. if (by_probe) {
  2117. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2118. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2119. }
  2120. #endif
  2121. #if IS_SCARA
  2122. #if MIDDLE_DEAD_ZONE_R > 0
  2123. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2124. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2125. #else
  2126. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2127. #endif
  2128. #elif ENABLED(DELTA)
  2129. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2130. #else
  2131. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2132. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2133. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2134. #endif
  2135. }
  2136. /**************************************************
  2137. ***************** GCode Handlers *****************
  2138. **************************************************/
  2139. /**
  2140. * G0, G1: Coordinated movement of X Y Z E axes
  2141. */
  2142. inline void gcode_G0_G1(
  2143. #if IS_SCARA
  2144. bool fast_move=false
  2145. #endif
  2146. ) {
  2147. if (IsRunning()) {
  2148. gcode_get_destination(); // For X Y Z E F
  2149. #if ENABLED(FWRETRACT)
  2150. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2151. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2152. // Is this move an attempt to retract or recover?
  2153. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2154. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2155. sync_plan_position_e(); // AND from the planner
  2156. retract(!retracted[active_extruder]);
  2157. return;
  2158. }
  2159. }
  2160. #endif //FWRETRACT
  2161. #if IS_SCARA
  2162. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2163. #else
  2164. prepare_move_to_destination();
  2165. #endif
  2166. }
  2167. }
  2168. /**
  2169. * G2: Clockwise Arc
  2170. * G3: Counterclockwise Arc
  2171. *
  2172. * This command has two forms: IJ-form and R-form.
  2173. *
  2174. * - I specifies an X offset. J specifies a Y offset.
  2175. * At least one of the IJ parameters is required.
  2176. * X and Y can be omitted to do a complete circle.
  2177. * The given XY is not error-checked. The arc ends
  2178. * based on the angle of the destination.
  2179. * Mixing I or J with R will throw an error.
  2180. *
  2181. * - R specifies the radius. X or Y is required.
  2182. * Omitting both X and Y will throw an error.
  2183. * X or Y must differ from the current XY.
  2184. * Mixing R with I or J will throw an error.
  2185. *
  2186. * Examples:
  2187. *
  2188. * G2 I10 ; CW circle centered at X+10
  2189. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2190. */
  2191. #if ENABLED(ARC_SUPPORT)
  2192. inline void gcode_G2_G3(bool clockwise) {
  2193. if (IsRunning()) {
  2194. #if ENABLED(SF_ARC_FIX)
  2195. bool relative_mode_backup = relative_mode;
  2196. relative_mode = true;
  2197. #endif
  2198. gcode_get_destination();
  2199. #if ENABLED(SF_ARC_FIX)
  2200. relative_mode = relative_mode_backup;
  2201. #endif
  2202. float arc_offset[2] = { 0.0, 0.0 };
  2203. if (code_seen('R')) {
  2204. const float r = code_value_axis_units(X_AXIS),
  2205. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2206. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2207. if (r && (x2 != x1 || y2 != y1)) {
  2208. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2209. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2210. d = HYPOT(dx, dy), // Linear distance between the points
  2211. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2212. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2213. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2214. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2215. arc_offset[X_AXIS] = cx - x1;
  2216. arc_offset[Y_AXIS] = cy - y1;
  2217. }
  2218. }
  2219. else {
  2220. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2221. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2222. }
  2223. if (arc_offset[0] || arc_offset[1]) {
  2224. // Send an arc to the planner
  2225. plan_arc(destination, arc_offset, clockwise);
  2226. refresh_cmd_timeout();
  2227. }
  2228. else {
  2229. // Bad arguments
  2230. SERIAL_ERROR_START;
  2231. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2232. }
  2233. }
  2234. }
  2235. #endif
  2236. /**
  2237. * G4: Dwell S<seconds> or P<milliseconds>
  2238. */
  2239. inline void gcode_G4() {
  2240. millis_t dwell_ms = 0;
  2241. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2242. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2243. stepper.synchronize();
  2244. refresh_cmd_timeout();
  2245. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2246. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2247. while (PENDING(millis(), dwell_ms)) idle();
  2248. }
  2249. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2250. /**
  2251. * Parameters interpreted according to:
  2252. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2253. * However I, J omission is not supported at this point; all
  2254. * parameters can be omitted and default to zero.
  2255. */
  2256. /**
  2257. * G5: Cubic B-spline
  2258. */
  2259. inline void gcode_G5() {
  2260. if (IsRunning()) {
  2261. gcode_get_destination();
  2262. float offset[] = {
  2263. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2264. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2265. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2266. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2267. };
  2268. plan_cubic_move(offset);
  2269. }
  2270. }
  2271. #endif // BEZIER_CURVE_SUPPORT
  2272. #if ENABLED(FWRETRACT)
  2273. /**
  2274. * G10 - Retract filament according to settings of M207
  2275. * G11 - Recover filament according to settings of M208
  2276. */
  2277. inline void gcode_G10_G11(bool doRetract=false) {
  2278. #if EXTRUDERS > 1
  2279. if (doRetract) {
  2280. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2281. }
  2282. #endif
  2283. retract(doRetract
  2284. #if EXTRUDERS > 1
  2285. , retracted_swap[active_extruder]
  2286. #endif
  2287. );
  2288. }
  2289. #endif //FWRETRACT
  2290. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2291. /**
  2292. * G12: Clean the nozzle
  2293. */
  2294. inline void gcode_G12() {
  2295. // Don't allow nozzle cleaning without homing first
  2296. if (axis_unhomed_error(true, true, true)) { return; }
  2297. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2298. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2299. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2300. Nozzle::clean(pattern, strokes, objects);
  2301. }
  2302. #endif
  2303. #if ENABLED(INCH_MODE_SUPPORT)
  2304. /**
  2305. * G20: Set input mode to inches
  2306. */
  2307. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2308. /**
  2309. * G21: Set input mode to millimeters
  2310. */
  2311. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2312. #endif
  2313. #if ENABLED(NOZZLE_PARK_FEATURE)
  2314. /**
  2315. * G27: Park the nozzle
  2316. */
  2317. inline void gcode_G27() {
  2318. // Don't allow nozzle parking without homing first
  2319. if (axis_unhomed_error(true, true, true)) { return; }
  2320. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2321. Nozzle::park(z_action);
  2322. }
  2323. #endif // NOZZLE_PARK_FEATURE
  2324. #if ENABLED(QUICK_HOME)
  2325. static void quick_home_xy() {
  2326. // Pretend the current position is 0,0
  2327. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2328. sync_plan_position();
  2329. int x_axis_home_dir =
  2330. #if ENABLED(DUAL_X_CARRIAGE)
  2331. x_home_dir(active_extruder)
  2332. #else
  2333. home_dir(X_AXIS)
  2334. #endif
  2335. ;
  2336. float mlx = max_length(X_AXIS),
  2337. mly = max_length(Y_AXIS),
  2338. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2339. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2340. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2341. endstops.hit_on_purpose(); // clear endstop hit flags
  2342. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2343. }
  2344. #endif // QUICK_HOME
  2345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2346. void log_machine_info() {
  2347. SERIAL_ECHOPGM("Machine Type: ");
  2348. #if ENABLED(DELTA)
  2349. SERIAL_ECHOLNPGM("Delta");
  2350. #elif IS_SCARA
  2351. SERIAL_ECHOLNPGM("SCARA");
  2352. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2353. SERIAL_ECHOLNPGM("Core");
  2354. #else
  2355. SERIAL_ECHOLNPGM("Cartesian");
  2356. #endif
  2357. SERIAL_ECHOPGM("Probe: ");
  2358. #if ENABLED(FIX_MOUNTED_PROBE)
  2359. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2360. #elif HAS_Z_SERVO_ENDSTOP
  2361. SERIAL_ECHOLNPGM("SERVO PROBE");
  2362. #elif ENABLED(BLTOUCH)
  2363. SERIAL_ECHOLNPGM("BLTOUCH");
  2364. #elif ENABLED(Z_PROBE_SLED)
  2365. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2366. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2367. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2368. #else
  2369. SERIAL_ECHOLNPGM("NONE");
  2370. #endif
  2371. #if HAS_BED_PROBE
  2372. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2373. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2374. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2375. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2376. SERIAL_ECHOPGM(" (Right");
  2377. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2378. SERIAL_ECHOPGM(" (Left");
  2379. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2380. SERIAL_ECHOPGM(" (Middle");
  2381. #else
  2382. SERIAL_ECHOPGM(" (Aligned With");
  2383. #endif
  2384. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2385. SERIAL_ECHOPGM("-Back");
  2386. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2387. SERIAL_ECHOPGM("-Front");
  2388. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2389. SERIAL_ECHOPGM("-Center");
  2390. #endif
  2391. if (zprobe_zoffset < 0)
  2392. SERIAL_ECHOPGM(" & Below");
  2393. else if (zprobe_zoffset > 0)
  2394. SERIAL_ECHOPGM(" & Above");
  2395. else
  2396. SERIAL_ECHOPGM(" & Same Z as");
  2397. SERIAL_ECHOLNPGM(" Nozzle)");
  2398. #endif
  2399. }
  2400. #endif // DEBUG_LEVELING_FEATURE
  2401. #if ENABLED(DELTA)
  2402. /**
  2403. * A delta can only safely home all axes at the same time
  2404. * This is like quick_home_xy() but for 3 towers.
  2405. */
  2406. inline void home_delta() {
  2407. // Init the current position of all carriages to 0,0,0
  2408. memset(current_position, 0, sizeof(current_position));
  2409. sync_plan_position();
  2410. // Move all carriages together linearly until an endstop is hit.
  2411. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2412. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate_mm_s[X_AXIS], active_extruder);
  2413. stepper.synchronize();
  2414. endstops.hit_on_purpose(); // clear endstop hit flags
  2415. // Probably not needed. Double-check this line:
  2416. memset(current_position, 0, sizeof(current_position));
  2417. // At least one carriage has reached the top.
  2418. // Now back off and re-home each carriage separately.
  2419. HOMEAXIS(A);
  2420. HOMEAXIS(B);
  2421. HOMEAXIS(C);
  2422. // Set all carriages to their home positions
  2423. // Do this here all at once for Delta, because
  2424. // XYZ isn't ABC. Applying this per-tower would
  2425. // give the impression that they are the same.
  2426. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2427. SYNC_PLAN_POSITION_KINEMATIC();
  2428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2429. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2430. #endif
  2431. }
  2432. #endif // DELTA
  2433. #if ENABLED(Z_SAFE_HOMING)
  2434. inline void home_z_safely() {
  2435. // Disallow Z homing if X or Y are unknown
  2436. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2437. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2438. SERIAL_ECHO_START;
  2439. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2440. return;
  2441. }
  2442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2443. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2444. #endif
  2445. SYNC_PLAN_POSITION_KINEMATIC();
  2446. /**
  2447. * Move the Z probe (or just the nozzle) to the safe homing point
  2448. */
  2449. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2450. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2451. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2452. #if HAS_BED_PROBE
  2453. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2454. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2455. #endif
  2456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2457. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2458. #endif
  2459. if (position_is_reachable(
  2460. destination
  2461. #if HAS_BED_PROBE
  2462. , true
  2463. #endif
  2464. )
  2465. ) {
  2466. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2467. HOMEAXIS(Z);
  2468. }
  2469. else {
  2470. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2471. SERIAL_ECHO_START;
  2472. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2473. }
  2474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2475. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2476. #endif
  2477. }
  2478. #endif // Z_SAFE_HOMING
  2479. /**
  2480. * G28: Home all axes according to settings
  2481. *
  2482. * Parameters
  2483. *
  2484. * None Home to all axes with no parameters.
  2485. * With QUICK_HOME enabled XY will home together, then Z.
  2486. *
  2487. * Cartesian parameters
  2488. *
  2489. * X Home to the X endstop
  2490. * Y Home to the Y endstop
  2491. * Z Home to the Z endstop
  2492. *
  2493. */
  2494. inline void gcode_G28() {
  2495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2496. if (DEBUGGING(LEVELING)) {
  2497. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2498. log_machine_info();
  2499. }
  2500. #endif
  2501. // Wait for planner moves to finish!
  2502. stepper.synchronize();
  2503. // For auto bed leveling, clear the level matrix
  2504. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2505. reset_bed_level();
  2506. #endif
  2507. // Always home with tool 0 active
  2508. #if HOTENDS > 1
  2509. uint8_t old_tool_index = active_extruder;
  2510. tool_change(0, 0, true);
  2511. #endif
  2512. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2513. extruder_duplication_enabled = false;
  2514. #endif
  2515. /**
  2516. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2517. * on again when homing all axis
  2518. */
  2519. #if ENABLED(MESH_BED_LEVELING)
  2520. float pre_home_z = MESH_HOME_SEARCH_Z;
  2521. if (mbl.active()) {
  2522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2523. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2524. #endif
  2525. // Save known Z position if already homed
  2526. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2527. pre_home_z = current_position[Z_AXIS];
  2528. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2529. }
  2530. mbl.set_active(false);
  2531. current_position[Z_AXIS] = pre_home_z;
  2532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2533. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2534. #endif
  2535. }
  2536. #endif
  2537. setup_for_endstop_or_probe_move();
  2538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2539. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2540. #endif
  2541. endstops.enable(true); // Enable endstops for next homing move
  2542. #if ENABLED(DELTA)
  2543. home_delta();
  2544. #else // NOT DELTA
  2545. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2546. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2547. set_destination_to_current();
  2548. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2549. if (home_all_axis || homeZ) {
  2550. HOMEAXIS(Z);
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2553. #endif
  2554. }
  2555. #else
  2556. if (home_all_axis || homeX || homeY) {
  2557. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2558. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2559. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2561. if (DEBUGGING(LEVELING))
  2562. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2563. #endif
  2564. do_blocking_move_to_z(destination[Z_AXIS]);
  2565. }
  2566. }
  2567. #endif
  2568. #if ENABLED(QUICK_HOME)
  2569. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2570. #endif
  2571. #if ENABLED(HOME_Y_BEFORE_X)
  2572. // Home Y
  2573. if (home_all_axis || homeY) {
  2574. HOMEAXIS(Y);
  2575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2576. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2577. #endif
  2578. }
  2579. #endif
  2580. // Home X
  2581. if (home_all_axis || homeX) {
  2582. #if ENABLED(DUAL_X_CARRIAGE)
  2583. int tmp_extruder = active_extruder;
  2584. active_extruder = !active_extruder;
  2585. HOMEAXIS(X);
  2586. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2587. active_extruder = tmp_extruder;
  2588. HOMEAXIS(X);
  2589. // reset state used by the different modes
  2590. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2591. delayed_move_time = 0;
  2592. active_extruder_parked = true;
  2593. #else
  2594. HOMEAXIS(X);
  2595. #endif
  2596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2597. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2598. #endif
  2599. }
  2600. #if DISABLED(HOME_Y_BEFORE_X)
  2601. // Home Y
  2602. if (home_all_axis || homeY) {
  2603. HOMEAXIS(Y);
  2604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2605. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2606. #endif
  2607. }
  2608. #endif
  2609. // Home Z last if homing towards the bed
  2610. #if Z_HOME_DIR < 0
  2611. if (home_all_axis || homeZ) {
  2612. #if ENABLED(Z_SAFE_HOMING)
  2613. home_z_safely();
  2614. #else
  2615. HOMEAXIS(Z);
  2616. #endif
  2617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2618. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2619. #endif
  2620. } // home_all_axis || homeZ
  2621. #endif // Z_HOME_DIR < 0
  2622. SYNC_PLAN_POSITION_KINEMATIC();
  2623. #endif // !DELTA (gcode_G28)
  2624. endstops.not_homing();
  2625. // Enable mesh leveling again
  2626. #if ENABLED(MESH_BED_LEVELING)
  2627. if (mbl.has_mesh()) {
  2628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2629. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2630. #endif
  2631. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2633. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2634. #endif
  2635. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2636. #if Z_HOME_DIR > 0
  2637. + Z_MAX_POS
  2638. #endif
  2639. ;
  2640. SYNC_PLAN_POSITION_KINEMATIC();
  2641. mbl.set_active(true);
  2642. #if ENABLED(MESH_G28_REST_ORIGIN)
  2643. current_position[Z_AXIS] = 0.0;
  2644. set_destination_to_current();
  2645. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2646. line_to_destination();
  2647. stepper.synchronize();
  2648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2649. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2650. #endif
  2651. #else
  2652. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2653. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2654. #if Z_HOME_DIR > 0
  2655. + Z_MAX_POS
  2656. #endif
  2657. ;
  2658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2659. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2660. #endif
  2661. #endif
  2662. }
  2663. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2664. current_position[Z_AXIS] = pre_home_z;
  2665. SYNC_PLAN_POSITION_KINEMATIC();
  2666. mbl.set_active(true);
  2667. current_position[Z_AXIS] = pre_home_z -
  2668. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2670. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2671. #endif
  2672. }
  2673. }
  2674. #endif
  2675. #if ENABLED(DELTA)
  2676. // move to a height where we can use the full xy-area
  2677. do_blocking_move_to_z(delta_clip_start_height);
  2678. #endif
  2679. clean_up_after_endstop_or_probe_move();
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2682. #endif
  2683. // Restore the active tool after homing
  2684. #if HOTENDS > 1
  2685. tool_change(old_tool_index, 0, true);
  2686. #endif
  2687. report_current_position();
  2688. }
  2689. #if HAS_PROBING_PROCEDURE
  2690. void out_of_range_error(const char* p_edge) {
  2691. SERIAL_PROTOCOLPGM("?Probe ");
  2692. serialprintPGM(p_edge);
  2693. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2694. }
  2695. #endif
  2696. #if ENABLED(MESH_BED_LEVELING)
  2697. inline void _mbl_goto_xy(float x, float y) {
  2698. float old_feedrate_mm_s = feedrate_mm_s;
  2699. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2700. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2701. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2702. + Z_CLEARANCE_BETWEEN_PROBES
  2703. #elif Z_HOMING_HEIGHT > 0
  2704. + Z_HOMING_HEIGHT
  2705. #endif
  2706. ;
  2707. line_to_current_position();
  2708. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2709. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2710. line_to_current_position();
  2711. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2712. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2713. line_to_current_position();
  2714. #endif
  2715. feedrate_mm_s = old_feedrate_mm_s;
  2716. stepper.synchronize();
  2717. }
  2718. /**
  2719. * G29: Mesh-based Z probe, probes a grid and produces a
  2720. * mesh to compensate for variable bed height
  2721. *
  2722. * Parameters With MESH_BED_LEVELING:
  2723. *
  2724. * S0 Produce a mesh report
  2725. * S1 Start probing mesh points
  2726. * S2 Probe the next mesh point
  2727. * S3 Xn Yn Zn.nn Manually modify a single point
  2728. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2729. * S5 Reset and disable mesh
  2730. *
  2731. * The S0 report the points as below
  2732. *
  2733. * +----> X-axis 1-n
  2734. * |
  2735. * |
  2736. * v Y-axis 1-n
  2737. *
  2738. */
  2739. inline void gcode_G29() {
  2740. static int probe_point = -1;
  2741. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2742. if (state < 0 || state > 5) {
  2743. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2744. return;
  2745. }
  2746. int8_t px, py;
  2747. switch (state) {
  2748. case MeshReport:
  2749. if (mbl.has_mesh()) {
  2750. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2751. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2752. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2753. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2754. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2755. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2756. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2757. SERIAL_PROTOCOLPGM(" ");
  2758. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2759. }
  2760. SERIAL_EOL;
  2761. }
  2762. }
  2763. else
  2764. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2765. break;
  2766. case MeshStart:
  2767. mbl.reset();
  2768. probe_point = 0;
  2769. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2770. break;
  2771. case MeshNext:
  2772. if (probe_point < 0) {
  2773. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2774. return;
  2775. }
  2776. // For each G29 S2...
  2777. if (probe_point == 0) {
  2778. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2779. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2780. #if Z_HOME_DIR > 0
  2781. + Z_MAX_POS
  2782. #endif
  2783. ;
  2784. SYNC_PLAN_POSITION_KINEMATIC();
  2785. }
  2786. else {
  2787. // For G29 S2 after adjusting Z.
  2788. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2789. }
  2790. // If there's another point to sample, move there with optional lift.
  2791. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2792. mbl.zigzag(probe_point, px, py);
  2793. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2794. probe_point++;
  2795. }
  2796. else {
  2797. // One last "return to the bed" (as originally coded) at completion
  2798. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2799. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2800. + Z_CLEARANCE_BETWEEN_PROBES
  2801. #elif Z_HOMING_HEIGHT > 0
  2802. + Z_HOMING_HEIGHT
  2803. #endif
  2804. ;
  2805. line_to_current_position();
  2806. stepper.synchronize();
  2807. // After recording the last point, activate the mbl and home
  2808. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2809. probe_point = -1;
  2810. mbl.set_has_mesh(true);
  2811. enqueue_and_echo_commands_P(PSTR("G28"));
  2812. }
  2813. break;
  2814. case MeshSet:
  2815. if (code_seen('X')) {
  2816. px = code_value_int() - 1;
  2817. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2818. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2819. return;
  2820. }
  2821. }
  2822. else {
  2823. SERIAL_PROTOCOLLNPGM("X not entered.");
  2824. return;
  2825. }
  2826. if (code_seen('Y')) {
  2827. py = code_value_int() - 1;
  2828. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2829. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2830. return;
  2831. }
  2832. }
  2833. else {
  2834. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2835. return;
  2836. }
  2837. if (code_seen('Z')) {
  2838. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2839. }
  2840. else {
  2841. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2842. return;
  2843. }
  2844. break;
  2845. case MeshSetZOffset:
  2846. if (code_seen('Z')) {
  2847. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2848. }
  2849. else {
  2850. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2851. return;
  2852. }
  2853. break;
  2854. case MeshReset:
  2855. if (mbl.active()) {
  2856. current_position[Z_AXIS] +=
  2857. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2858. mbl.reset();
  2859. SYNC_PLAN_POSITION_KINEMATIC();
  2860. }
  2861. else
  2862. mbl.reset();
  2863. } // switch(state)
  2864. report_current_position();
  2865. }
  2866. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2867. /**
  2868. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2869. * Will fail if the printer has not been homed with G28.
  2870. *
  2871. * Enhanced G29 Auto Bed Leveling Probe Routine
  2872. *
  2873. * Parameters With AUTO_BED_LEVELING_GRID:
  2874. *
  2875. * P Set the size of the grid that will be probed (P x P points).
  2876. * Not supported by non-linear delta printer bed leveling.
  2877. * Example: "G29 P4"
  2878. *
  2879. * S Set the XY travel speed between probe points (in units/min)
  2880. *
  2881. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2882. * or clean the rotation Matrix. Useful to check the topology
  2883. * after a first run of G29.
  2884. *
  2885. * V Set the verbose level (0-4). Example: "G29 V3"
  2886. *
  2887. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2888. * This is useful for manual bed leveling and finding flaws in the bed (to
  2889. * assist with part placement).
  2890. * Not supported by non-linear delta printer bed leveling.
  2891. *
  2892. * F Set the Front limit of the probing grid
  2893. * B Set the Back limit of the probing grid
  2894. * L Set the Left limit of the probing grid
  2895. * R Set the Right limit of the probing grid
  2896. *
  2897. * Global Parameters:
  2898. *
  2899. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2900. * Include "E" to engage/disengage the Z probe for each sample.
  2901. * There's no extra effect if you have a fixed Z probe.
  2902. * Usage: "G29 E" or "G29 e"
  2903. *
  2904. */
  2905. inline void gcode_G29() {
  2906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2907. if (DEBUGGING(LEVELING)) {
  2908. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2909. DEBUG_POS("", current_position);
  2910. log_machine_info();
  2911. }
  2912. #endif
  2913. // Don't allow auto-leveling without homing first
  2914. if (axis_unhomed_error(true, true, true)) return;
  2915. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2916. if (verbose_level < 0 || verbose_level > 4) {
  2917. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2918. return;
  2919. }
  2920. bool dryrun = code_seen('D'),
  2921. stow_probe_after_each = code_seen('E');
  2922. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2923. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2924. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2925. #endif
  2926. if (verbose_level > 0) {
  2927. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2928. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2929. }
  2930. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2931. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2932. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2933. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2934. if (abl_grid_points_x < 2) {
  2935. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2936. return;
  2937. }
  2938. #endif
  2939. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2940. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2941. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2942. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2943. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2944. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2945. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2946. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2947. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2948. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2949. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2950. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2951. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2952. if (left_out || right_out || front_out || back_out) {
  2953. if (left_out) {
  2954. out_of_range_error(PSTR("(L)eft"));
  2955. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2956. }
  2957. if (right_out) {
  2958. out_of_range_error(PSTR("(R)ight"));
  2959. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2960. }
  2961. if (front_out) {
  2962. out_of_range_error(PSTR("(F)ront"));
  2963. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2964. }
  2965. if (back_out) {
  2966. out_of_range_error(PSTR("(B)ack"));
  2967. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2968. }
  2969. return;
  2970. }
  2971. #endif // AUTO_BED_LEVELING_GRID
  2972. stepper.synchronize();
  2973. if (!dryrun) {
  2974. // Reset the bed_level_matrix because leveling
  2975. // needs to be done without leveling enabled.
  2976. reset_bed_level();
  2977. //
  2978. // Re-orient the current position without leveling
  2979. // based on where the steppers are positioned.
  2980. //
  2981. get_cartesian_from_steppers();
  2982. memcpy(current_position, cartes, sizeof(cartes));
  2983. // Inform the planner about the new coordinates
  2984. SYNC_PLAN_POSITION_KINEMATIC();
  2985. }
  2986. setup_for_endstop_or_probe_move();
  2987. // Deploy the probe. Probe will raise if needed.
  2988. if (DEPLOY_PROBE()) return;
  2989. float xProbe, yProbe, measured_z = 0;
  2990. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2991. // probe at the points of a lattice grid
  2992. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  2993. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  2994. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2995. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2996. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2997. float zoffset = zprobe_zoffset;
  2998. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2999. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3000. /**
  3001. * solve the plane equation ax + by + d = z
  3002. * A is the matrix with rows [x y 1] for all the probed points
  3003. * B is the vector of the Z positions
  3004. * the normal vector to the plane is formed by the coefficients of the
  3005. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3006. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3007. */
  3008. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3009. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3010. probePointCounter = -1;
  3011. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3012. eqnBVector[abl2], // "B" vector of Z points
  3013. mean = 0.0;
  3014. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3015. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3016. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3017. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3018. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3019. int8_t xStart, xStop, xInc;
  3020. if (zig) {
  3021. xStart = 0;
  3022. xStop = abl_grid_points_x;
  3023. xInc = 1;
  3024. }
  3025. else {
  3026. xStart = abl_grid_points_x - 1;
  3027. xStop = -1;
  3028. xInc = -1;
  3029. }
  3030. zig = !zig;
  3031. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3032. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3033. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3034. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3035. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3036. #endif
  3037. #if IS_KINEMATIC
  3038. // Avoid probing outside the round or hexagonal area
  3039. float pos[XYZ] = { xProbe, yProbe, 0 };
  3040. if (!position_is_reachable(pos, true)) continue;
  3041. #endif
  3042. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3043. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3044. mean += measured_z;
  3045. eqnBVector[probePointCounter] = measured_z;
  3046. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3047. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3048. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3049. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3050. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3051. #endif
  3052. idle();
  3053. } //xProbe
  3054. } //yProbe
  3055. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3057. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3058. #endif
  3059. // Probe at 3 arbitrary points
  3060. vector_3 points[3] = {
  3061. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3062. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3063. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3064. };
  3065. for (uint8_t i = 0; i < 3; ++i) {
  3066. // Retain the last probe position
  3067. xProbe = LOGICAL_X_POSITION(points[i].x);
  3068. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3069. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3070. }
  3071. if (!dryrun) {
  3072. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3073. if (planeNormal.z < 0) {
  3074. planeNormal.x *= -1;
  3075. planeNormal.y *= -1;
  3076. planeNormal.z *= -1;
  3077. }
  3078. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3079. }
  3080. #endif // AUTO_BED_LEVELING_3POINT
  3081. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3082. if (STOW_PROBE()) return;
  3083. // Restore state after probing
  3084. clean_up_after_endstop_or_probe_move();
  3085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3086. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3087. #endif
  3088. // Calculate leveling, print reports, correct the position
  3089. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3090. if (!dryrun) extrapolate_unprobed_bed_level();
  3091. print_bed_level();
  3092. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3093. // For LINEAR leveling calculate matrix, print reports, correct the position
  3094. // solve lsq problem
  3095. float plane_equation_coefficients[3];
  3096. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3097. mean /= abl2;
  3098. if (verbose_level) {
  3099. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3100. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3101. SERIAL_PROTOCOLPGM(" b: ");
  3102. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3103. SERIAL_PROTOCOLPGM(" d: ");
  3104. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3105. SERIAL_EOL;
  3106. if (verbose_level > 2) {
  3107. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3108. SERIAL_PROTOCOL_F(mean, 8);
  3109. SERIAL_EOL;
  3110. }
  3111. }
  3112. // Create the matrix but don't correct the position yet
  3113. if (!dryrun) {
  3114. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3115. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3116. );
  3117. }
  3118. // Show the Topography map if enabled
  3119. if (do_topography_map) {
  3120. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3121. " +--- BACK --+\n"
  3122. " | |\n"
  3123. " L | (+) | R\n"
  3124. " E | | I\n"
  3125. " F | (-) N (+) | G\n"
  3126. " T | | H\n"
  3127. " | (-) | T\n"
  3128. " | |\n"
  3129. " O-- FRONT --+\n"
  3130. " (0,0)");
  3131. float min_diff = 999;
  3132. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3133. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3134. int ind = indexIntoAB[xx][yy];
  3135. float diff = eqnBVector[ind] - mean,
  3136. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3137. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3138. z_tmp = 0;
  3139. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3140. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3141. if (diff >= 0.0)
  3142. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3143. else
  3144. SERIAL_PROTOCOLCHAR(' ');
  3145. SERIAL_PROTOCOL_F(diff, 5);
  3146. } // xx
  3147. SERIAL_EOL;
  3148. } // yy
  3149. SERIAL_EOL;
  3150. if (verbose_level > 3) {
  3151. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3152. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3153. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3154. int ind = indexIntoAB[xx][yy];
  3155. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3156. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3157. z_tmp = 0;
  3158. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3159. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3160. if (diff >= 0.0)
  3161. SERIAL_PROTOCOLPGM(" +");
  3162. // Include + for column alignment
  3163. else
  3164. SERIAL_PROTOCOLCHAR(' ');
  3165. SERIAL_PROTOCOL_F(diff, 5);
  3166. } // xx
  3167. SERIAL_EOL;
  3168. } // yy
  3169. SERIAL_EOL;
  3170. }
  3171. } //do_topography_map
  3172. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3173. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3174. // For LINEAR and 3POINT leveling correct the current position
  3175. if (verbose_level > 0)
  3176. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3177. if (!dryrun) {
  3178. //
  3179. // Correct the current XYZ position based on the tilted plane.
  3180. //
  3181. // 1. Get the distance from the current position to the reference point.
  3182. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3183. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3184. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3185. z_zero = 0;
  3186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3187. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3188. #endif
  3189. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3190. // 2. Apply the inverse matrix to the distance
  3191. // from the reference point to X, Y, and zero.
  3192. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3193. // 3. Get the matrix-based corrected Z.
  3194. // (Even if not used, get it for comparison.)
  3195. float new_z = z_real + z_zero;
  3196. // 4. Use the last measured distance to the bed, if possible
  3197. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3198. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3199. ) {
  3200. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3202. if (DEBUGGING(LEVELING)) {
  3203. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3204. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3205. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3206. }
  3207. #endif
  3208. new_z = simple_z;
  3209. }
  3210. // 5. The rotated XY and corrected Z are now current_position
  3211. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3212. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3213. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3214. SYNC_PLAN_POSITION_KINEMATIC();
  3215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3216. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3217. #endif
  3218. }
  3219. #endif // AUTO_BED_LEVELING_LINEAR
  3220. #ifdef Z_PROBE_END_SCRIPT
  3221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3222. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3223. #endif
  3224. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3225. stepper.synchronize();
  3226. #endif
  3227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3228. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3229. #endif
  3230. report_current_position();
  3231. KEEPALIVE_STATE(IN_HANDLER);
  3232. }
  3233. #endif // AUTO_BED_LEVELING_FEATURE
  3234. #if HAS_BED_PROBE
  3235. /**
  3236. * G30: Do a single Z probe at the current XY
  3237. */
  3238. inline void gcode_G30() {
  3239. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3240. reset_bed_level();
  3241. #endif
  3242. setup_for_endstop_or_probe_move();
  3243. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3244. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3245. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3246. true, 1);
  3247. SERIAL_PROTOCOLPGM("Bed X: ");
  3248. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3249. SERIAL_PROTOCOLPGM(" Y: ");
  3250. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3251. SERIAL_PROTOCOLPGM(" Z: ");
  3252. SERIAL_PROTOCOL(measured_z + 0.0001);
  3253. SERIAL_EOL;
  3254. clean_up_after_endstop_or_probe_move();
  3255. report_current_position();
  3256. }
  3257. #if ENABLED(Z_PROBE_SLED)
  3258. /**
  3259. * G31: Deploy the Z probe
  3260. */
  3261. inline void gcode_G31() { DEPLOY_PROBE(); }
  3262. /**
  3263. * G32: Stow the Z probe
  3264. */
  3265. inline void gcode_G32() { STOW_PROBE(); }
  3266. #endif // Z_PROBE_SLED
  3267. #endif // HAS_BED_PROBE
  3268. /**
  3269. * G92: Set current position to given X Y Z E
  3270. */
  3271. inline void gcode_G92() {
  3272. bool didXYZ = false,
  3273. didE = code_seen('E');
  3274. if (!didE) stepper.synchronize();
  3275. LOOP_XYZE(i) {
  3276. if (code_seen(axis_codes[i])) {
  3277. #if IS_SCARA
  3278. current_position[i] = code_value_axis_units(i);
  3279. if (i != E_AXIS) didXYZ = true;
  3280. #else
  3281. float p = current_position[i],
  3282. v = code_value_axis_units(i);
  3283. current_position[i] = v;
  3284. if (i != E_AXIS) {
  3285. didXYZ = true;
  3286. position_shift[i] += v - p; // Offset the coordinate space
  3287. update_software_endstops((AxisEnum)i);
  3288. }
  3289. #endif
  3290. }
  3291. }
  3292. if (didXYZ)
  3293. SYNC_PLAN_POSITION_KINEMATIC();
  3294. else if (didE)
  3295. sync_plan_position_e();
  3296. }
  3297. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3298. /**
  3299. * M0: Unconditional stop - Wait for user button press on LCD
  3300. * M1: Conditional stop - Wait for user button press on LCD
  3301. */
  3302. inline void gcode_M0_M1() {
  3303. char* args = current_command_args;
  3304. millis_t codenum = 0;
  3305. bool hasP = false, hasS = false;
  3306. if (code_seen('P')) {
  3307. codenum = code_value_millis(); // milliseconds to wait
  3308. hasP = codenum > 0;
  3309. }
  3310. if (code_seen('S')) {
  3311. codenum = code_value_millis_from_seconds(); // seconds to wait
  3312. hasS = codenum > 0;
  3313. }
  3314. #if ENABLED(ULTIPANEL)
  3315. if (!hasP && !hasS && *args != '\0')
  3316. lcd_setstatus(args, true);
  3317. else {
  3318. LCD_MESSAGEPGM(MSG_USERWAIT);
  3319. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3320. dontExpireStatus();
  3321. #endif
  3322. }
  3323. lcd_ignore_click();
  3324. #else
  3325. if (!hasP && !hasS && *args != '\0') {
  3326. SERIAL_ECHO_START;
  3327. SERIAL_ECHOLN(args);
  3328. }
  3329. #endif
  3330. stepper.synchronize();
  3331. refresh_cmd_timeout();
  3332. #if ENABLED(ULTIPANEL)
  3333. if (codenum > 0) {
  3334. codenum += previous_cmd_ms; // wait until this time for a click
  3335. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3336. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3337. lcd_ignore_click(false);
  3338. }
  3339. else if (lcd_detected()) {
  3340. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3341. while (!lcd_clicked()) idle();
  3342. }
  3343. else return;
  3344. if (IS_SD_PRINTING)
  3345. LCD_MESSAGEPGM(MSG_RESUMING);
  3346. else
  3347. LCD_MESSAGEPGM(WELCOME_MSG);
  3348. #else
  3349. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3350. wait_for_user = true;
  3351. if (codenum > 0) {
  3352. codenum += previous_cmd_ms; // wait until this time for an M108
  3353. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3354. }
  3355. else while (wait_for_user) idle();
  3356. wait_for_user = false;
  3357. #endif
  3358. KEEPALIVE_STATE(IN_HANDLER);
  3359. }
  3360. #endif // ULTIPANEL || EMERGENCY_PARSER
  3361. /**
  3362. * M17: Enable power on all stepper motors
  3363. */
  3364. inline void gcode_M17() {
  3365. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3366. enable_all_steppers();
  3367. }
  3368. #if ENABLED(SDSUPPORT)
  3369. /**
  3370. * M20: List SD card to serial output
  3371. */
  3372. inline void gcode_M20() {
  3373. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3374. card.ls();
  3375. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3376. }
  3377. /**
  3378. * M21: Init SD Card
  3379. */
  3380. inline void gcode_M21() { card.initsd(); }
  3381. /**
  3382. * M22: Release SD Card
  3383. */
  3384. inline void gcode_M22() { card.release(); }
  3385. /**
  3386. * M23: Open a file
  3387. */
  3388. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3389. /**
  3390. * M24: Start SD Print
  3391. */
  3392. inline void gcode_M24() {
  3393. card.startFileprint();
  3394. print_job_timer.start();
  3395. }
  3396. /**
  3397. * M25: Pause SD Print
  3398. */
  3399. inline void gcode_M25() { card.pauseSDPrint(); }
  3400. /**
  3401. * M26: Set SD Card file index
  3402. */
  3403. inline void gcode_M26() {
  3404. if (card.cardOK && code_seen('S'))
  3405. card.setIndex(code_value_long());
  3406. }
  3407. /**
  3408. * M27: Get SD Card status
  3409. */
  3410. inline void gcode_M27() { card.getStatus(); }
  3411. /**
  3412. * M28: Start SD Write
  3413. */
  3414. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3415. /**
  3416. * M29: Stop SD Write
  3417. * Processed in write to file routine above
  3418. */
  3419. inline void gcode_M29() {
  3420. // card.saving = false;
  3421. }
  3422. /**
  3423. * M30 <filename>: Delete SD Card file
  3424. */
  3425. inline void gcode_M30() {
  3426. if (card.cardOK) {
  3427. card.closefile();
  3428. card.removeFile(current_command_args);
  3429. }
  3430. }
  3431. #endif // SDSUPPORT
  3432. /**
  3433. * M31: Get the time since the start of SD Print (or last M109)
  3434. */
  3435. inline void gcode_M31() {
  3436. char buffer[21];
  3437. duration_t elapsed = print_job_timer.duration();
  3438. elapsed.toString(buffer);
  3439. lcd_setstatus(buffer);
  3440. SERIAL_ECHO_START;
  3441. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3442. thermalManager.autotempShutdown();
  3443. }
  3444. #if ENABLED(SDSUPPORT)
  3445. /**
  3446. * M32: Select file and start SD Print
  3447. */
  3448. inline void gcode_M32() {
  3449. if (card.sdprinting)
  3450. stepper.synchronize();
  3451. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3452. if (!namestartpos)
  3453. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3454. else
  3455. namestartpos++; //to skip the '!'
  3456. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3457. if (card.cardOK) {
  3458. card.openFile(namestartpos, true, call_procedure);
  3459. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3460. card.setIndex(code_value_long());
  3461. card.startFileprint();
  3462. // Procedure calls count as normal print time.
  3463. if (!call_procedure) print_job_timer.start();
  3464. }
  3465. }
  3466. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3467. /**
  3468. * M33: Get the long full path of a file or folder
  3469. *
  3470. * Parameters:
  3471. * <dospath> Case-insensitive DOS-style path to a file or folder
  3472. *
  3473. * Example:
  3474. * M33 miscel~1/armchair/armcha~1.gco
  3475. *
  3476. * Output:
  3477. * /Miscellaneous/Armchair/Armchair.gcode
  3478. */
  3479. inline void gcode_M33() {
  3480. card.printLongPath(current_command_args);
  3481. }
  3482. #endif
  3483. /**
  3484. * M928: Start SD Write
  3485. */
  3486. inline void gcode_M928() {
  3487. card.openLogFile(current_command_args);
  3488. }
  3489. #endif // SDSUPPORT
  3490. /**
  3491. * M42: Change pin status via GCode
  3492. *
  3493. * P<pin> Pin number (LED if omitted)
  3494. * S<byte> Pin status from 0 - 255
  3495. */
  3496. inline void gcode_M42() {
  3497. if (!code_seen('S')) return;
  3498. int pin_status = code_value_int();
  3499. if (pin_status < 0 || pin_status > 255) return;
  3500. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3501. if (pin_number < 0) return;
  3502. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3503. if (pin_number == sensitive_pins[i]) return;
  3504. pinMode(pin_number, OUTPUT);
  3505. digitalWrite(pin_number, pin_status);
  3506. analogWrite(pin_number, pin_status);
  3507. #if FAN_COUNT > 0
  3508. switch (pin_number) {
  3509. #if HAS_FAN0
  3510. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3511. #endif
  3512. #if HAS_FAN1
  3513. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3514. #endif
  3515. #if HAS_FAN2
  3516. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3517. #endif
  3518. }
  3519. #endif
  3520. }
  3521. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3522. /**
  3523. * M48: Z probe repeatability measurement function.
  3524. *
  3525. * Usage:
  3526. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3527. * P = Number of sampled points (4-50, default 10)
  3528. * X = Sample X position
  3529. * Y = Sample Y position
  3530. * V = Verbose level (0-4, default=1)
  3531. * E = Engage Z probe for each reading
  3532. * L = Number of legs of movement before probe
  3533. * S = Schizoid (Or Star if you prefer)
  3534. *
  3535. * This function assumes the bed has been homed. Specifically, that a G28 command
  3536. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3537. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3538. * regenerated.
  3539. */
  3540. inline void gcode_M48() {
  3541. if (axis_unhomed_error(true, true, true)) return;
  3542. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3543. if (verbose_level < 0 || verbose_level > 4) {
  3544. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3545. return;
  3546. }
  3547. if (verbose_level > 0)
  3548. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3549. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3550. if (n_samples < 4 || n_samples > 50) {
  3551. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3552. return;
  3553. }
  3554. float X_current = current_position[X_AXIS],
  3555. Y_current = current_position[Y_AXIS];
  3556. bool stow_probe_after_each = code_seen('E');
  3557. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3558. #if DISABLED(DELTA)
  3559. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3560. out_of_range_error(PSTR("X"));
  3561. return;
  3562. }
  3563. #endif
  3564. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3565. #if DISABLED(DELTA)
  3566. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3567. out_of_range_error(PSTR("Y"));
  3568. return;
  3569. }
  3570. #else
  3571. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3572. if (!position_is_reachable(pos, true)) {
  3573. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3574. return;
  3575. }
  3576. #endif
  3577. bool seen_L = code_seen('L');
  3578. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3579. if (n_legs > 15) {
  3580. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3581. return;
  3582. }
  3583. if (n_legs == 1) n_legs = 2;
  3584. bool schizoid_flag = code_seen('S');
  3585. if (schizoid_flag && !seen_L) n_legs = 7;
  3586. /**
  3587. * Now get everything to the specified probe point So we can safely do a
  3588. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3589. * we don't want to use that as a starting point for each probe.
  3590. */
  3591. if (verbose_level > 2)
  3592. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3593. // Disable bed level correction in M48 because we want the raw data when we probe
  3594. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3595. reset_bed_level();
  3596. #endif
  3597. setup_for_endstop_or_probe_move();
  3598. // Move to the first point, deploy, and probe
  3599. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3600. randomSeed(millis());
  3601. double mean = 0, sigma = 0, sample_set[n_samples];
  3602. for (uint8_t n = 0; n < n_samples; n++) {
  3603. if (n_legs) {
  3604. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3605. float angle = random(0.0, 360.0),
  3606. radius = random(
  3607. #if ENABLED(DELTA)
  3608. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3609. #else
  3610. 5, X_MAX_LENGTH / 8
  3611. #endif
  3612. );
  3613. if (verbose_level > 3) {
  3614. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3615. SERIAL_ECHOPAIR(" angle: ", angle);
  3616. SERIAL_ECHOPGM(" Direction: ");
  3617. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3618. SERIAL_ECHOLNPGM("Clockwise");
  3619. }
  3620. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3621. double delta_angle;
  3622. if (schizoid_flag)
  3623. // The points of a 5 point star are 72 degrees apart. We need to
  3624. // skip a point and go to the next one on the star.
  3625. delta_angle = dir * 2.0 * 72.0;
  3626. else
  3627. // If we do this line, we are just trying to move further
  3628. // around the circle.
  3629. delta_angle = dir * (float) random(25, 45);
  3630. angle += delta_angle;
  3631. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3632. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3633. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3634. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3635. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3636. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3637. #if DISABLED(DELTA)
  3638. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3639. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3640. #else
  3641. // If we have gone out too far, we can do a simple fix and scale the numbers
  3642. // back in closer to the origin.
  3643. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3644. X_current /= 1.25;
  3645. Y_current /= 1.25;
  3646. if (verbose_level > 3) {
  3647. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3648. SERIAL_ECHOLNPAIR(", ", Y_current);
  3649. }
  3650. }
  3651. #endif
  3652. if (verbose_level > 3) {
  3653. SERIAL_PROTOCOLPGM("Going to:");
  3654. SERIAL_ECHOPAIR(" X", X_current);
  3655. SERIAL_ECHOPAIR(" Y", Y_current);
  3656. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3657. }
  3658. do_blocking_move_to_xy(X_current, Y_current);
  3659. } // n_legs loop
  3660. } // n_legs
  3661. // Probe a single point
  3662. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3663. /**
  3664. * Get the current mean for the data points we have so far
  3665. */
  3666. double sum = 0.0;
  3667. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3668. mean = sum / (n + 1);
  3669. /**
  3670. * Now, use that mean to calculate the standard deviation for the
  3671. * data points we have so far
  3672. */
  3673. sum = 0.0;
  3674. for (uint8_t j = 0; j <= n; j++)
  3675. sum += sq(sample_set[j] - mean);
  3676. sigma = sqrt(sum / (n + 1));
  3677. if (verbose_level > 0) {
  3678. if (verbose_level > 1) {
  3679. SERIAL_PROTOCOL(n + 1);
  3680. SERIAL_PROTOCOLPGM(" of ");
  3681. SERIAL_PROTOCOL((int)n_samples);
  3682. SERIAL_PROTOCOLPGM(" z: ");
  3683. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3684. if (verbose_level > 2) {
  3685. SERIAL_PROTOCOLPGM(" mean: ");
  3686. SERIAL_PROTOCOL_F(mean, 6);
  3687. SERIAL_PROTOCOLPGM(" sigma: ");
  3688. SERIAL_PROTOCOL_F(sigma, 6);
  3689. }
  3690. }
  3691. SERIAL_EOL;
  3692. }
  3693. } // End of probe loop
  3694. if (STOW_PROBE()) return;
  3695. if (verbose_level > 0) {
  3696. SERIAL_PROTOCOLPGM("Mean: ");
  3697. SERIAL_PROTOCOL_F(mean, 6);
  3698. SERIAL_EOL;
  3699. }
  3700. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3701. SERIAL_PROTOCOL_F(sigma, 6);
  3702. SERIAL_EOL; SERIAL_EOL;
  3703. clean_up_after_endstop_or_probe_move();
  3704. report_current_position();
  3705. }
  3706. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3707. /**
  3708. * M75: Start print timer
  3709. */
  3710. inline void gcode_M75() { print_job_timer.start(); }
  3711. /**
  3712. * M76: Pause print timer
  3713. */
  3714. inline void gcode_M76() { print_job_timer.pause(); }
  3715. /**
  3716. * M77: Stop print timer
  3717. */
  3718. inline void gcode_M77() { print_job_timer.stop(); }
  3719. #if ENABLED(PRINTCOUNTER)
  3720. /**
  3721. * M78: Show print statistics
  3722. */
  3723. inline void gcode_M78() {
  3724. // "M78 S78" will reset the statistics
  3725. if (code_seen('S') && code_value_int() == 78)
  3726. print_job_timer.initStats();
  3727. else
  3728. print_job_timer.showStats();
  3729. }
  3730. #endif
  3731. /**
  3732. * M104: Set hot end temperature
  3733. */
  3734. inline void gcode_M104() {
  3735. if (get_target_extruder_from_command(104)) return;
  3736. if (DEBUGGING(DRYRUN)) return;
  3737. #if ENABLED(SINGLENOZZLE)
  3738. if (target_extruder != active_extruder) return;
  3739. #endif
  3740. if (code_seen('S')) {
  3741. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3742. #if ENABLED(DUAL_X_CARRIAGE)
  3743. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3744. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3745. #endif
  3746. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3747. /**
  3748. * Stop the timer at the end of print, starting is managed by
  3749. * 'heat and wait' M109.
  3750. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3751. * stand by mode, for instance in a dual extruder setup, without affecting
  3752. * the running print timer.
  3753. */
  3754. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3755. print_job_timer.stop();
  3756. LCD_MESSAGEPGM(WELCOME_MSG);
  3757. }
  3758. #endif
  3759. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3760. }
  3761. }
  3762. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3763. void print_heaterstates() {
  3764. #if HAS_TEMP_HOTEND
  3765. SERIAL_PROTOCOLPGM(" T:");
  3766. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3767. SERIAL_PROTOCOLPGM(" /");
  3768. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3769. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3770. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3771. SERIAL_CHAR(')');
  3772. #endif
  3773. #endif
  3774. #if HAS_TEMP_BED
  3775. SERIAL_PROTOCOLPGM(" B:");
  3776. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3777. SERIAL_PROTOCOLPGM(" /");
  3778. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3779. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3780. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3781. SERIAL_CHAR(')');
  3782. #endif
  3783. #endif
  3784. #if HOTENDS > 1
  3785. HOTEND_LOOP() {
  3786. SERIAL_PROTOCOLPAIR(" T", e);
  3787. SERIAL_PROTOCOLCHAR(':');
  3788. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3789. SERIAL_PROTOCOLPGM(" /");
  3790. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3791. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3792. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3793. SERIAL_CHAR(')');
  3794. #endif
  3795. }
  3796. #endif
  3797. SERIAL_PROTOCOLPGM(" @:");
  3798. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3799. #if HAS_TEMP_BED
  3800. SERIAL_PROTOCOLPGM(" B@:");
  3801. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3802. #endif
  3803. #if HOTENDS > 1
  3804. HOTEND_LOOP() {
  3805. SERIAL_PROTOCOLPAIR(" @", e);
  3806. SERIAL_PROTOCOLCHAR(':');
  3807. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3808. }
  3809. #endif
  3810. }
  3811. #endif
  3812. /**
  3813. * M105: Read hot end and bed temperature
  3814. */
  3815. inline void gcode_M105() {
  3816. if (get_target_extruder_from_command(105)) return;
  3817. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3818. SERIAL_PROTOCOLPGM(MSG_OK);
  3819. print_heaterstates();
  3820. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3821. SERIAL_ERROR_START;
  3822. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3823. #endif
  3824. SERIAL_EOL;
  3825. }
  3826. #if FAN_COUNT > 0
  3827. /**
  3828. * M106: Set Fan Speed
  3829. *
  3830. * S<int> Speed between 0-255
  3831. * P<index> Fan index, if more than one fan
  3832. */
  3833. inline void gcode_M106() {
  3834. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3835. p = code_seen('P') ? code_value_ushort() : 0;
  3836. NOMORE(s, 255);
  3837. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3838. }
  3839. /**
  3840. * M107: Fan Off
  3841. */
  3842. inline void gcode_M107() {
  3843. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3844. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3845. }
  3846. #endif // FAN_COUNT > 0
  3847. #if DISABLED(EMERGENCY_PARSER)
  3848. /**
  3849. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3850. */
  3851. inline void gcode_M108() { wait_for_heatup = false; }
  3852. /**
  3853. * M112: Emergency Stop
  3854. */
  3855. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3856. /**
  3857. * M410: Quickstop - Abort all planned moves
  3858. *
  3859. * This will stop the carriages mid-move, so most likely they
  3860. * will be out of sync with the stepper position after this.
  3861. */
  3862. inline void gcode_M410() { quickstop_stepper(); }
  3863. #endif
  3864. #ifndef MIN_COOLING_SLOPE_DEG
  3865. #define MIN_COOLING_SLOPE_DEG 1.50
  3866. #endif
  3867. #ifndef MIN_COOLING_SLOPE_TIME
  3868. #define MIN_COOLING_SLOPE_TIME 60
  3869. #endif
  3870. /**
  3871. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3872. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3873. */
  3874. inline void gcode_M109() {
  3875. if (get_target_extruder_from_command(109)) return;
  3876. if (DEBUGGING(DRYRUN)) return;
  3877. #if ENABLED(SINGLENOZZLE)
  3878. if (target_extruder != active_extruder) return;
  3879. #endif
  3880. bool no_wait_for_cooling = code_seen('S');
  3881. if (no_wait_for_cooling || code_seen('R')) {
  3882. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3883. #if ENABLED(DUAL_X_CARRIAGE)
  3884. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3885. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3886. #endif
  3887. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3888. /**
  3889. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3890. * stand by mode, for instance in a dual extruder setup, without affecting
  3891. * the running print timer.
  3892. */
  3893. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3894. print_job_timer.stop();
  3895. LCD_MESSAGEPGM(WELCOME_MSG);
  3896. }
  3897. /**
  3898. * We do not check if the timer is already running because this check will
  3899. * be done for us inside the Stopwatch::start() method thus a running timer
  3900. * will not restart.
  3901. */
  3902. else print_job_timer.start();
  3903. #endif
  3904. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3905. }
  3906. #if ENABLED(AUTOTEMP)
  3907. planner.autotemp_M109();
  3908. #endif
  3909. #if TEMP_RESIDENCY_TIME > 0
  3910. millis_t residency_start_ms = 0;
  3911. // Loop until the temperature has stabilized
  3912. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3913. #else
  3914. // Loop until the temperature is very close target
  3915. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3916. #endif //TEMP_RESIDENCY_TIME > 0
  3917. float theTarget = -1.0, old_temp = 9999.0;
  3918. bool wants_to_cool = false;
  3919. wait_for_heatup = true;
  3920. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3921. KEEPALIVE_STATE(NOT_BUSY);
  3922. do {
  3923. // Target temperature might be changed during the loop
  3924. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3925. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3926. theTarget = thermalManager.degTargetHotend(target_extruder);
  3927. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3928. if (no_wait_for_cooling && wants_to_cool) break;
  3929. }
  3930. now = millis();
  3931. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3932. next_temp_ms = now + 1000UL;
  3933. print_heaterstates();
  3934. #if TEMP_RESIDENCY_TIME > 0
  3935. SERIAL_PROTOCOLPGM(" W:");
  3936. if (residency_start_ms) {
  3937. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3938. SERIAL_PROTOCOLLN(rem);
  3939. }
  3940. else {
  3941. SERIAL_PROTOCOLLNPGM("?");
  3942. }
  3943. #else
  3944. SERIAL_EOL;
  3945. #endif
  3946. }
  3947. idle();
  3948. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3949. float temp = thermalManager.degHotend(target_extruder);
  3950. #if TEMP_RESIDENCY_TIME > 0
  3951. float temp_diff = fabs(theTarget - temp);
  3952. if (!residency_start_ms) {
  3953. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3954. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3955. }
  3956. else if (temp_diff > TEMP_HYSTERESIS) {
  3957. // Restart the timer whenever the temperature falls outside the hysteresis.
  3958. residency_start_ms = now;
  3959. }
  3960. #endif //TEMP_RESIDENCY_TIME > 0
  3961. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3962. if (wants_to_cool) {
  3963. // break after MIN_COOLING_SLOPE_TIME seconds
  3964. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3965. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3966. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3967. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3968. old_temp = temp;
  3969. }
  3970. }
  3971. } while (wait_for_heatup && TEMP_CONDITIONS);
  3972. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3973. KEEPALIVE_STATE(IN_HANDLER);
  3974. }
  3975. #if HAS_TEMP_BED
  3976. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3977. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3978. #endif
  3979. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3980. #define MIN_COOLING_SLOPE_TIME_BED 60
  3981. #endif
  3982. /**
  3983. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3984. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3985. */
  3986. inline void gcode_M190() {
  3987. if (DEBUGGING(DRYRUN)) return;
  3988. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3989. bool no_wait_for_cooling = code_seen('S');
  3990. if (no_wait_for_cooling || code_seen('R')) {
  3991. thermalManager.setTargetBed(code_value_temp_abs());
  3992. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3993. if (code_value_temp_abs() > BED_MINTEMP) {
  3994. /**
  3995. * We start the timer when 'heating and waiting' command arrives, LCD
  3996. * functions never wait. Cooling down managed by extruders.
  3997. *
  3998. * We do not check if the timer is already running because this check will
  3999. * be done for us inside the Stopwatch::start() method thus a running timer
  4000. * will not restart.
  4001. */
  4002. print_job_timer.start();
  4003. }
  4004. #endif
  4005. }
  4006. #if TEMP_BED_RESIDENCY_TIME > 0
  4007. millis_t residency_start_ms = 0;
  4008. // Loop until the temperature has stabilized
  4009. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4010. #else
  4011. // Loop until the temperature is very close target
  4012. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4013. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4014. float theTarget = -1.0, old_temp = 9999.0;
  4015. bool wants_to_cool = false;
  4016. wait_for_heatup = true;
  4017. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4018. KEEPALIVE_STATE(NOT_BUSY);
  4019. target_extruder = active_extruder; // for print_heaterstates
  4020. do {
  4021. // Target temperature might be changed during the loop
  4022. if (theTarget != thermalManager.degTargetBed()) {
  4023. wants_to_cool = thermalManager.isCoolingBed();
  4024. theTarget = thermalManager.degTargetBed();
  4025. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4026. if (no_wait_for_cooling && wants_to_cool) break;
  4027. }
  4028. now = millis();
  4029. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4030. next_temp_ms = now + 1000UL;
  4031. print_heaterstates();
  4032. #if TEMP_BED_RESIDENCY_TIME > 0
  4033. SERIAL_PROTOCOLPGM(" W:");
  4034. if (residency_start_ms) {
  4035. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4036. SERIAL_PROTOCOLLN(rem);
  4037. }
  4038. else {
  4039. SERIAL_PROTOCOLLNPGM("?");
  4040. }
  4041. #else
  4042. SERIAL_EOL;
  4043. #endif
  4044. }
  4045. idle();
  4046. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4047. float temp = thermalManager.degBed();
  4048. #if TEMP_BED_RESIDENCY_TIME > 0
  4049. float temp_diff = fabs(theTarget - temp);
  4050. if (!residency_start_ms) {
  4051. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4052. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4053. }
  4054. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4055. // Restart the timer whenever the temperature falls outside the hysteresis.
  4056. residency_start_ms = now;
  4057. }
  4058. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4059. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4060. if (wants_to_cool) {
  4061. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4062. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4063. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4064. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4065. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4066. old_temp = temp;
  4067. }
  4068. }
  4069. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4070. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4071. KEEPALIVE_STATE(IN_HANDLER);
  4072. }
  4073. #endif // HAS_TEMP_BED
  4074. /**
  4075. * M110: Set Current Line Number
  4076. */
  4077. inline void gcode_M110() {
  4078. if (code_seen('N')) gcode_N = code_value_long();
  4079. }
  4080. /**
  4081. * M111: Set the debug level
  4082. */
  4083. inline void gcode_M111() {
  4084. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4085. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4086. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4087. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4088. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4089. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4091. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4092. #endif
  4093. const static char* const debug_strings[] PROGMEM = {
  4094. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4096. str_debug_32
  4097. #endif
  4098. };
  4099. SERIAL_ECHO_START;
  4100. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4101. if (marlin_debug_flags) {
  4102. uint8_t comma = 0;
  4103. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4104. if (TEST(marlin_debug_flags, i)) {
  4105. if (comma++) SERIAL_CHAR(',');
  4106. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4107. }
  4108. }
  4109. }
  4110. else {
  4111. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4112. }
  4113. SERIAL_EOL;
  4114. }
  4115. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4116. /**
  4117. * M113: Get or set Host Keepalive interval (0 to disable)
  4118. *
  4119. * S<seconds> Optional. Set the keepalive interval.
  4120. */
  4121. inline void gcode_M113() {
  4122. if (code_seen('S')) {
  4123. host_keepalive_interval = code_value_byte();
  4124. NOMORE(host_keepalive_interval, 60);
  4125. }
  4126. else {
  4127. SERIAL_ECHO_START;
  4128. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4129. }
  4130. }
  4131. #endif
  4132. #if ENABLED(BARICUDA)
  4133. #if HAS_HEATER_1
  4134. /**
  4135. * M126: Heater 1 valve open
  4136. */
  4137. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4138. /**
  4139. * M127: Heater 1 valve close
  4140. */
  4141. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4142. #endif
  4143. #if HAS_HEATER_2
  4144. /**
  4145. * M128: Heater 2 valve open
  4146. */
  4147. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4148. /**
  4149. * M129: Heater 2 valve close
  4150. */
  4151. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4152. #endif
  4153. #endif //BARICUDA
  4154. /**
  4155. * M140: Set bed temperature
  4156. */
  4157. inline void gcode_M140() {
  4158. if (DEBUGGING(DRYRUN)) return;
  4159. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4160. }
  4161. #if ENABLED(ULTIPANEL)
  4162. /**
  4163. * M145: Set the heatup state for a material in the LCD menu
  4164. * S<material> (0=PLA, 1=ABS)
  4165. * H<hotend temp>
  4166. * B<bed temp>
  4167. * F<fan speed>
  4168. */
  4169. inline void gcode_M145() {
  4170. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4171. if (material < 0 || material > 1) {
  4172. SERIAL_ERROR_START;
  4173. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4174. }
  4175. else {
  4176. int v;
  4177. switch (material) {
  4178. case 0:
  4179. if (code_seen('H')) {
  4180. v = code_value_int();
  4181. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4182. }
  4183. if (code_seen('F')) {
  4184. v = code_value_int();
  4185. preheatFanSpeed1 = constrain(v, 0, 255);
  4186. }
  4187. #if TEMP_SENSOR_BED != 0
  4188. if (code_seen('B')) {
  4189. v = code_value_int();
  4190. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4191. }
  4192. #endif
  4193. break;
  4194. case 1:
  4195. if (code_seen('H')) {
  4196. v = code_value_int();
  4197. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4198. }
  4199. if (code_seen('F')) {
  4200. v = code_value_int();
  4201. preheatFanSpeed2 = constrain(v, 0, 255);
  4202. }
  4203. #if TEMP_SENSOR_BED != 0
  4204. if (code_seen('B')) {
  4205. v = code_value_int();
  4206. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4207. }
  4208. #endif
  4209. break;
  4210. }
  4211. }
  4212. }
  4213. #endif // ULTIPANEL
  4214. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4215. /**
  4216. * M149: Set temperature units
  4217. */
  4218. inline void gcode_M149() {
  4219. if (code_seen('C')) {
  4220. set_input_temp_units(TEMPUNIT_C);
  4221. } else if (code_seen('K')) {
  4222. set_input_temp_units(TEMPUNIT_K);
  4223. } else if (code_seen('F')) {
  4224. set_input_temp_units(TEMPUNIT_F);
  4225. }
  4226. }
  4227. #endif
  4228. #if HAS_POWER_SWITCH
  4229. /**
  4230. * M80: Turn on Power Supply
  4231. */
  4232. inline void gcode_M80() {
  4233. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4234. /**
  4235. * If you have a switch on suicide pin, this is useful
  4236. * if you want to start another print with suicide feature after
  4237. * a print without suicide...
  4238. */
  4239. #if HAS_SUICIDE
  4240. OUT_WRITE(SUICIDE_PIN, HIGH);
  4241. #endif
  4242. #if ENABLED(ULTIPANEL)
  4243. powersupply = true;
  4244. LCD_MESSAGEPGM(WELCOME_MSG);
  4245. lcd_update();
  4246. #endif
  4247. }
  4248. #endif // HAS_POWER_SWITCH
  4249. /**
  4250. * M81: Turn off Power, including Power Supply, if there is one.
  4251. *
  4252. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4253. */
  4254. inline void gcode_M81() {
  4255. thermalManager.disable_all_heaters();
  4256. stepper.finish_and_disable();
  4257. #if FAN_COUNT > 0
  4258. #if FAN_COUNT > 1
  4259. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4260. #else
  4261. fanSpeeds[0] = 0;
  4262. #endif
  4263. #endif
  4264. delay(1000); // Wait 1 second before switching off
  4265. #if HAS_SUICIDE
  4266. stepper.synchronize();
  4267. suicide();
  4268. #elif HAS_POWER_SWITCH
  4269. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4270. #endif
  4271. #if ENABLED(ULTIPANEL)
  4272. #if HAS_POWER_SWITCH
  4273. powersupply = false;
  4274. #endif
  4275. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4276. lcd_update();
  4277. #endif
  4278. }
  4279. /**
  4280. * M82: Set E codes absolute (default)
  4281. */
  4282. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4283. /**
  4284. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4285. */
  4286. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4287. /**
  4288. * M18, M84: Disable all stepper motors
  4289. */
  4290. inline void gcode_M18_M84() {
  4291. if (code_seen('S')) {
  4292. stepper_inactive_time = code_value_millis_from_seconds();
  4293. }
  4294. else {
  4295. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4296. if (all_axis) {
  4297. stepper.finish_and_disable();
  4298. }
  4299. else {
  4300. stepper.synchronize();
  4301. if (code_seen('X')) disable_x();
  4302. if (code_seen('Y')) disable_y();
  4303. if (code_seen('Z')) disable_z();
  4304. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4305. if (code_seen('E')) {
  4306. disable_e0();
  4307. disable_e1();
  4308. disable_e2();
  4309. disable_e3();
  4310. }
  4311. #endif
  4312. }
  4313. }
  4314. }
  4315. /**
  4316. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4317. */
  4318. inline void gcode_M85() {
  4319. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4320. }
  4321. /**
  4322. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4323. * (Follows the same syntax as G92)
  4324. */
  4325. inline void gcode_M92() {
  4326. LOOP_XYZE(i) {
  4327. if (code_seen(axis_codes[i])) {
  4328. if (i == E_AXIS) {
  4329. float value = code_value_per_axis_unit(i);
  4330. if (value < 20.0) {
  4331. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4332. planner.max_e_jerk *= factor;
  4333. planner.max_feedrate_mm_s[i] *= factor;
  4334. planner.max_acceleration_steps_per_s2[i] *= factor;
  4335. }
  4336. planner.axis_steps_per_mm[i] = value;
  4337. }
  4338. else {
  4339. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4340. }
  4341. }
  4342. }
  4343. planner.refresh_positioning();
  4344. }
  4345. /**
  4346. * Output the current position to serial
  4347. */
  4348. static void report_current_position() {
  4349. SERIAL_PROTOCOLPGM("X:");
  4350. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4351. SERIAL_PROTOCOLPGM(" Y:");
  4352. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4353. SERIAL_PROTOCOLPGM(" Z:");
  4354. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4355. SERIAL_PROTOCOLPGM(" E:");
  4356. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4357. stepper.report_positions();
  4358. #if IS_SCARA
  4359. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4360. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4361. SERIAL_EOL;
  4362. #endif
  4363. }
  4364. /**
  4365. * M114: Output current position to serial port
  4366. */
  4367. inline void gcode_M114() { report_current_position(); }
  4368. /**
  4369. * M115: Capabilities string
  4370. */
  4371. inline void gcode_M115() {
  4372. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4373. }
  4374. /**
  4375. * M117: Set LCD Status Message
  4376. */
  4377. inline void gcode_M117() {
  4378. lcd_setstatus(current_command_args);
  4379. }
  4380. /**
  4381. * M119: Output endstop states to serial output
  4382. */
  4383. inline void gcode_M119() { endstops.M119(); }
  4384. /**
  4385. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4386. */
  4387. inline void gcode_M120() { endstops.enable_globally(true); }
  4388. /**
  4389. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4390. */
  4391. inline void gcode_M121() { endstops.enable_globally(false); }
  4392. #if ENABLED(BLINKM)
  4393. /**
  4394. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4395. */
  4396. inline void gcode_M150() {
  4397. SendColors(
  4398. code_seen('R') ? code_value_byte() : 0,
  4399. code_seen('U') ? code_value_byte() : 0,
  4400. code_seen('B') ? code_value_byte() : 0
  4401. );
  4402. }
  4403. #endif // BLINKM
  4404. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4405. /**
  4406. * M155: Send data to a I2C slave device
  4407. *
  4408. * This is a PoC, the formating and arguments for the GCODE will
  4409. * change to be more compatible, the current proposal is:
  4410. *
  4411. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4412. *
  4413. * M155 B<byte-1 value in base 10>
  4414. * M155 B<byte-2 value in base 10>
  4415. * M155 B<byte-3 value in base 10>
  4416. *
  4417. * M155 S1 ; Send the buffered data and reset the buffer
  4418. * M155 R1 ; Reset the buffer without sending data
  4419. *
  4420. */
  4421. inline void gcode_M155() {
  4422. // Set the target address
  4423. if (code_seen('A')) i2c.address(code_value_byte());
  4424. // Add a new byte to the buffer
  4425. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4426. // Flush the buffer to the bus
  4427. if (code_seen('S')) i2c.send();
  4428. // Reset and rewind the buffer
  4429. else if (code_seen('R')) i2c.reset();
  4430. }
  4431. /**
  4432. * M156: Request X bytes from I2C slave device
  4433. *
  4434. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4435. */
  4436. inline void gcode_M156() {
  4437. if (code_seen('A')) i2c.address(code_value_byte());
  4438. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4439. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4440. i2c.relay(bytes);
  4441. }
  4442. else {
  4443. SERIAL_ERROR_START;
  4444. SERIAL_ERRORLN("Bad i2c request");
  4445. }
  4446. }
  4447. #endif // EXPERIMENTAL_I2CBUS
  4448. /**
  4449. * M200: Set filament diameter and set E axis units to cubic units
  4450. *
  4451. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4452. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4453. */
  4454. inline void gcode_M200() {
  4455. if (get_target_extruder_from_command(200)) return;
  4456. if (code_seen('D')) {
  4457. // setting any extruder filament size disables volumetric on the assumption that
  4458. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4459. // for all extruders
  4460. volumetric_enabled = (code_value_linear_units() != 0.0);
  4461. if (volumetric_enabled) {
  4462. filament_size[target_extruder] = code_value_linear_units();
  4463. // make sure all extruders have some sane value for the filament size
  4464. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4465. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4466. }
  4467. }
  4468. else {
  4469. //reserved for setting filament diameter via UFID or filament measuring device
  4470. return;
  4471. }
  4472. calculate_volumetric_multipliers();
  4473. }
  4474. /**
  4475. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4476. */
  4477. inline void gcode_M201() {
  4478. LOOP_XYZE(i) {
  4479. if (code_seen(axis_codes[i])) {
  4480. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4481. }
  4482. }
  4483. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4484. planner.reset_acceleration_rates();
  4485. }
  4486. #if 0 // Not used for Sprinter/grbl gen6
  4487. inline void gcode_M202() {
  4488. LOOP_XYZE(i) {
  4489. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4490. }
  4491. }
  4492. #endif
  4493. /**
  4494. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4495. */
  4496. inline void gcode_M203() {
  4497. LOOP_XYZE(i)
  4498. if (code_seen(axis_codes[i]))
  4499. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4500. }
  4501. /**
  4502. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4503. *
  4504. * P = Printing moves
  4505. * R = Retract only (no X, Y, Z) moves
  4506. * T = Travel (non printing) moves
  4507. *
  4508. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4509. */
  4510. inline void gcode_M204() {
  4511. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4512. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4513. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4514. }
  4515. if (code_seen('P')) {
  4516. planner.acceleration = code_value_linear_units();
  4517. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4518. }
  4519. if (code_seen('R')) {
  4520. planner.retract_acceleration = code_value_linear_units();
  4521. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4522. }
  4523. if (code_seen('T')) {
  4524. planner.travel_acceleration = code_value_linear_units();
  4525. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4526. }
  4527. }
  4528. /**
  4529. * M205: Set Advanced Settings
  4530. *
  4531. * S = Min Feed Rate (units/s)
  4532. * T = Min Travel Feed Rate (units/s)
  4533. * B = Min Segment Time (µs)
  4534. * X = Max XY Jerk (units/sec^2)
  4535. * Z = Max Z Jerk (units/sec^2)
  4536. * E = Max E Jerk (units/sec^2)
  4537. */
  4538. inline void gcode_M205() {
  4539. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4540. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4541. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4542. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4543. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4544. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4545. }
  4546. /**
  4547. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4548. */
  4549. inline void gcode_M206() {
  4550. LOOP_XYZ(i)
  4551. if (code_seen(axis_codes[i]))
  4552. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4553. #if ENABLED(MORGAN_SCARA)
  4554. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4555. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4556. #endif
  4557. SYNC_PLAN_POSITION_KINEMATIC();
  4558. report_current_position();
  4559. }
  4560. #if ENABLED(DELTA)
  4561. /**
  4562. * M665: Set delta configurations
  4563. *
  4564. * L = diagonal rod
  4565. * R = delta radius
  4566. * S = segments per second
  4567. * A = Alpha (Tower 1) diagonal rod trim
  4568. * B = Beta (Tower 2) diagonal rod trim
  4569. * C = Gamma (Tower 3) diagonal rod trim
  4570. */
  4571. inline void gcode_M665() {
  4572. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4573. if (code_seen('R')) delta_radius = code_value_linear_units();
  4574. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4575. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4576. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4577. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4578. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4579. }
  4580. /**
  4581. * M666: Set delta endstop adjustment
  4582. */
  4583. inline void gcode_M666() {
  4584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4585. if (DEBUGGING(LEVELING)) {
  4586. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4587. }
  4588. #endif
  4589. LOOP_XYZ(i) {
  4590. if (code_seen(axis_codes[i])) {
  4591. endstop_adj[i] = code_value_axis_units(i);
  4592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4593. if (DEBUGGING(LEVELING)) {
  4594. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4595. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4596. }
  4597. #endif
  4598. }
  4599. }
  4600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4601. if (DEBUGGING(LEVELING)) {
  4602. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4603. }
  4604. #endif
  4605. }
  4606. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4607. /**
  4608. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4609. */
  4610. inline void gcode_M666() {
  4611. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4612. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4613. }
  4614. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4615. #if ENABLED(FWRETRACT)
  4616. /**
  4617. * M207: Set firmware retraction values
  4618. *
  4619. * S[+units] retract_length
  4620. * W[+units] retract_length_swap (multi-extruder)
  4621. * F[units/min] retract_feedrate_mm_s
  4622. * Z[units] retract_zlift
  4623. */
  4624. inline void gcode_M207() {
  4625. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4626. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4627. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4628. #if EXTRUDERS > 1
  4629. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4630. #endif
  4631. }
  4632. /**
  4633. * M208: Set firmware un-retraction values
  4634. *
  4635. * S[+units] retract_recover_length (in addition to M207 S*)
  4636. * W[+units] retract_recover_length_swap (multi-extruder)
  4637. * F[units/min] retract_recover_feedrate_mm_s
  4638. */
  4639. inline void gcode_M208() {
  4640. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4641. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4642. #if EXTRUDERS > 1
  4643. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4644. #endif
  4645. }
  4646. /**
  4647. * M209: Enable automatic retract (M209 S1)
  4648. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4649. */
  4650. inline void gcode_M209() {
  4651. if (code_seen('S')) {
  4652. autoretract_enabled = code_value_bool();
  4653. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4654. }
  4655. }
  4656. #endif // FWRETRACT
  4657. /**
  4658. * M211: Enable, Disable, and/or Report software endstops
  4659. *
  4660. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4661. */
  4662. inline void gcode_M211() {
  4663. SERIAL_ECHO_START;
  4664. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4665. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4666. #endif
  4667. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4668. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4669. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4670. #else
  4671. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4672. SERIAL_ECHOPGM(MSG_OFF);
  4673. #endif
  4674. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4675. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4676. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4677. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4678. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4679. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4680. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4681. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4682. }
  4683. #if HOTENDS > 1
  4684. /**
  4685. * M218 - set hotend offset (in linear units)
  4686. *
  4687. * T<tool>
  4688. * X<xoffset>
  4689. * Y<yoffset>
  4690. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4691. */
  4692. inline void gcode_M218() {
  4693. if (get_target_extruder_from_command(218)) return;
  4694. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4695. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4696. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4697. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4698. #endif
  4699. SERIAL_ECHO_START;
  4700. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4701. HOTEND_LOOP() {
  4702. SERIAL_CHAR(' ');
  4703. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4704. SERIAL_CHAR(',');
  4705. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4706. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4707. SERIAL_CHAR(',');
  4708. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4709. #endif
  4710. }
  4711. SERIAL_EOL;
  4712. }
  4713. #endif // HOTENDS > 1
  4714. /**
  4715. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4716. */
  4717. inline void gcode_M220() {
  4718. if (code_seen('S')) feedrate_percentage = code_value_int();
  4719. }
  4720. /**
  4721. * M221: Set extrusion percentage (M221 T0 S95)
  4722. */
  4723. inline void gcode_M221() {
  4724. if (get_target_extruder_from_command(221)) return;
  4725. if (code_seen('S'))
  4726. flow_percentage[target_extruder] = code_value_int();
  4727. }
  4728. /**
  4729. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4730. */
  4731. inline void gcode_M226() {
  4732. if (code_seen('P')) {
  4733. int pin_number = code_value_int();
  4734. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4735. if (pin_state >= -1 && pin_state <= 1) {
  4736. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4737. if (sensitive_pins[i] == pin_number) {
  4738. pin_number = -1;
  4739. break;
  4740. }
  4741. }
  4742. if (pin_number > -1) {
  4743. int target = LOW;
  4744. stepper.synchronize();
  4745. pinMode(pin_number, INPUT);
  4746. switch (pin_state) {
  4747. case 1:
  4748. target = HIGH;
  4749. break;
  4750. case 0:
  4751. target = LOW;
  4752. break;
  4753. case -1:
  4754. target = !digitalRead(pin_number);
  4755. break;
  4756. }
  4757. while (digitalRead(pin_number) != target) idle();
  4758. } // pin_number > -1
  4759. } // pin_state -1 0 1
  4760. } // code_seen('P')
  4761. }
  4762. #if HAS_SERVOS
  4763. /**
  4764. * M280: Get or set servo position. P<index> [S<angle>]
  4765. */
  4766. inline void gcode_M280() {
  4767. if (!code_seen('P')) return;
  4768. int servo_index = code_value_int();
  4769. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4770. if (code_seen('S'))
  4771. MOVE_SERVO(servo_index, code_value_int());
  4772. else {
  4773. SERIAL_ECHO_START;
  4774. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4775. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4776. }
  4777. }
  4778. else {
  4779. SERIAL_ERROR_START;
  4780. SERIAL_ECHOPAIR("Servo ", servo_index);
  4781. SERIAL_ECHOLNPGM(" out of range");
  4782. }
  4783. }
  4784. #endif // HAS_SERVOS
  4785. #if HAS_BUZZER
  4786. /**
  4787. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4788. */
  4789. inline void gcode_M300() {
  4790. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4791. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4792. // Limits the tone duration to 0-5 seconds.
  4793. NOMORE(duration, 5000);
  4794. BUZZ(duration, frequency);
  4795. }
  4796. #endif // HAS_BUZZER
  4797. #if ENABLED(PIDTEMP)
  4798. /**
  4799. * M301: Set PID parameters P I D (and optionally C, L)
  4800. *
  4801. * P[float] Kp term
  4802. * I[float] Ki term (unscaled)
  4803. * D[float] Kd term (unscaled)
  4804. *
  4805. * With PID_EXTRUSION_SCALING:
  4806. *
  4807. * C[float] Kc term
  4808. * L[float] LPQ length
  4809. */
  4810. inline void gcode_M301() {
  4811. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4812. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4813. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4814. if (e < HOTENDS) { // catch bad input value
  4815. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4816. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4817. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4818. #if ENABLED(PID_EXTRUSION_SCALING)
  4819. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4820. if (code_seen('L')) lpq_len = code_value_float();
  4821. NOMORE(lpq_len, LPQ_MAX_LEN);
  4822. #endif
  4823. thermalManager.updatePID();
  4824. SERIAL_ECHO_START;
  4825. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4826. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4827. #endif // PID_PARAMS_PER_HOTEND
  4828. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4829. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4830. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4831. #if ENABLED(PID_EXTRUSION_SCALING)
  4832. //Kc does not have scaling applied above, or in resetting defaults
  4833. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4834. #endif
  4835. SERIAL_EOL;
  4836. }
  4837. else {
  4838. SERIAL_ERROR_START;
  4839. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4840. }
  4841. }
  4842. #endif // PIDTEMP
  4843. #if ENABLED(PIDTEMPBED)
  4844. inline void gcode_M304() {
  4845. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4846. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4847. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4848. thermalManager.updatePID();
  4849. SERIAL_ECHO_START;
  4850. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4851. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4852. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4853. }
  4854. #endif // PIDTEMPBED
  4855. #if defined(CHDK) || HAS_PHOTOGRAPH
  4856. /**
  4857. * M240: Trigger a camera by emulating a Canon RC-1
  4858. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4859. */
  4860. inline void gcode_M240() {
  4861. #ifdef CHDK
  4862. OUT_WRITE(CHDK, HIGH);
  4863. chdkHigh = millis();
  4864. chdkActive = true;
  4865. #elif HAS_PHOTOGRAPH
  4866. const uint8_t NUM_PULSES = 16;
  4867. const float PULSE_LENGTH = 0.01524;
  4868. for (int i = 0; i < NUM_PULSES; i++) {
  4869. WRITE(PHOTOGRAPH_PIN, HIGH);
  4870. _delay_ms(PULSE_LENGTH);
  4871. WRITE(PHOTOGRAPH_PIN, LOW);
  4872. _delay_ms(PULSE_LENGTH);
  4873. }
  4874. delay(7.33);
  4875. for (int i = 0; i < NUM_PULSES; i++) {
  4876. WRITE(PHOTOGRAPH_PIN, HIGH);
  4877. _delay_ms(PULSE_LENGTH);
  4878. WRITE(PHOTOGRAPH_PIN, LOW);
  4879. _delay_ms(PULSE_LENGTH);
  4880. }
  4881. #endif // !CHDK && HAS_PHOTOGRAPH
  4882. }
  4883. #endif // CHDK || PHOTOGRAPH_PIN
  4884. #if HAS_LCD_CONTRAST
  4885. /**
  4886. * M250: Read and optionally set the LCD contrast
  4887. */
  4888. inline void gcode_M250() {
  4889. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4890. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4891. SERIAL_PROTOCOL(lcd_contrast);
  4892. SERIAL_EOL;
  4893. }
  4894. #endif // HAS_LCD_CONTRAST
  4895. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4896. /**
  4897. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4898. *
  4899. * S<temperature> sets the minimum extrude temperature
  4900. * P<bool> enables (1) or disables (0) cold extrusion
  4901. *
  4902. * Examples:
  4903. *
  4904. * M302 ; report current cold extrusion state
  4905. * M302 P0 ; enable cold extrusion checking
  4906. * M302 P1 ; disables cold extrusion checking
  4907. * M302 S0 ; always allow extrusion (disables checking)
  4908. * M302 S170 ; only allow extrusion above 170
  4909. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4910. */
  4911. inline void gcode_M302() {
  4912. bool seen_S = code_seen('S');
  4913. if (seen_S) {
  4914. thermalManager.extrude_min_temp = code_value_temp_abs();
  4915. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4916. }
  4917. if (code_seen('P'))
  4918. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4919. else if (!seen_S) {
  4920. // Report current state
  4921. SERIAL_ECHO_START;
  4922. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4923. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4924. SERIAL_ECHOLNPGM("C)");
  4925. }
  4926. }
  4927. #endif // PREVENT_COLD_EXTRUSION
  4928. /**
  4929. * M303: PID relay autotune
  4930. *
  4931. * S<temperature> sets the target temperature. (default 150C)
  4932. * E<extruder> (-1 for the bed) (default 0)
  4933. * C<cycles>
  4934. * U<bool> with a non-zero value will apply the result to current settings
  4935. */
  4936. inline void gcode_M303() {
  4937. #if HAS_PID_HEATING
  4938. int e = code_seen('E') ? code_value_int() : 0;
  4939. int c = code_seen('C') ? code_value_int() : 5;
  4940. bool u = code_seen('U') && code_value_bool();
  4941. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4942. if (e >= 0 && e < HOTENDS)
  4943. target_extruder = e;
  4944. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4945. thermalManager.PID_autotune(temp, e, c, u);
  4946. KEEPALIVE_STATE(IN_HANDLER);
  4947. #else
  4948. SERIAL_ERROR_START;
  4949. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4950. #endif
  4951. }
  4952. #if ENABLED(MORGAN_SCARA)
  4953. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4954. if (IsRunning()) {
  4955. forward_kinematics_SCARA(delta_a, delta_b);
  4956. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  4957. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  4958. destination[Z_AXIS] = current_position[Z_AXIS];
  4959. prepare_move_to_destination();
  4960. return true;
  4961. }
  4962. return false;
  4963. }
  4964. /**
  4965. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4966. */
  4967. inline bool gcode_M360() {
  4968. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4969. return SCARA_move_to_cal(0, 120);
  4970. }
  4971. /**
  4972. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4973. */
  4974. inline bool gcode_M361() {
  4975. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4976. return SCARA_move_to_cal(90, 130);
  4977. }
  4978. /**
  4979. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4980. */
  4981. inline bool gcode_M362() {
  4982. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4983. return SCARA_move_to_cal(60, 180);
  4984. }
  4985. /**
  4986. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4987. */
  4988. inline bool gcode_M363() {
  4989. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4990. return SCARA_move_to_cal(50, 90);
  4991. }
  4992. /**
  4993. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4994. */
  4995. inline bool gcode_M364() {
  4996. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4997. return SCARA_move_to_cal(45, 135);
  4998. }
  4999. #endif // SCARA
  5000. #if ENABLED(EXT_SOLENOID)
  5001. void enable_solenoid(uint8_t num) {
  5002. switch (num) {
  5003. case 0:
  5004. OUT_WRITE(SOL0_PIN, HIGH);
  5005. break;
  5006. #if HAS_SOLENOID_1
  5007. case 1:
  5008. OUT_WRITE(SOL1_PIN, HIGH);
  5009. break;
  5010. #endif
  5011. #if HAS_SOLENOID_2
  5012. case 2:
  5013. OUT_WRITE(SOL2_PIN, HIGH);
  5014. break;
  5015. #endif
  5016. #if HAS_SOLENOID_3
  5017. case 3:
  5018. OUT_WRITE(SOL3_PIN, HIGH);
  5019. break;
  5020. #endif
  5021. default:
  5022. SERIAL_ECHO_START;
  5023. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5024. break;
  5025. }
  5026. }
  5027. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5028. void disable_all_solenoids() {
  5029. OUT_WRITE(SOL0_PIN, LOW);
  5030. OUT_WRITE(SOL1_PIN, LOW);
  5031. OUT_WRITE(SOL2_PIN, LOW);
  5032. OUT_WRITE(SOL3_PIN, LOW);
  5033. }
  5034. /**
  5035. * M380: Enable solenoid on the active extruder
  5036. */
  5037. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5038. /**
  5039. * M381: Disable all solenoids
  5040. */
  5041. inline void gcode_M381() { disable_all_solenoids(); }
  5042. #endif // EXT_SOLENOID
  5043. /**
  5044. * M400: Finish all moves
  5045. */
  5046. inline void gcode_M400() { stepper.synchronize(); }
  5047. #if HAS_BED_PROBE
  5048. /**
  5049. * M401: Engage Z Servo endstop if available
  5050. */
  5051. inline void gcode_M401() { DEPLOY_PROBE(); }
  5052. /**
  5053. * M402: Retract Z Servo endstop if enabled
  5054. */
  5055. inline void gcode_M402() { STOW_PROBE(); }
  5056. #endif // HAS_BED_PROBE
  5057. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5058. /**
  5059. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5060. */
  5061. inline void gcode_M404() {
  5062. if (code_seen('W')) {
  5063. filament_width_nominal = code_value_linear_units();
  5064. }
  5065. else {
  5066. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5067. SERIAL_PROTOCOLLN(filament_width_nominal);
  5068. }
  5069. }
  5070. /**
  5071. * M405: Turn on filament sensor for control
  5072. */
  5073. inline void gcode_M405() {
  5074. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5075. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5076. if (code_seen('D')) meas_delay_cm = code_value_int();
  5077. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5078. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5079. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5080. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5081. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5082. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5083. }
  5084. filament_sensor = true;
  5085. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5086. //SERIAL_PROTOCOL(filament_width_meas);
  5087. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5088. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5089. }
  5090. /**
  5091. * M406: Turn off filament sensor for control
  5092. */
  5093. inline void gcode_M406() { filament_sensor = false; }
  5094. /**
  5095. * M407: Get measured filament diameter on serial output
  5096. */
  5097. inline void gcode_M407() {
  5098. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5099. SERIAL_PROTOCOLLN(filament_width_meas);
  5100. }
  5101. #endif // FILAMENT_WIDTH_SENSOR
  5102. void quickstop_stepper() {
  5103. stepper.quick_stop();
  5104. stepper.synchronize();
  5105. set_current_from_steppers_for_axis(ALL_AXES);
  5106. SYNC_PLAN_POSITION_KINEMATIC();
  5107. }
  5108. #if ENABLED(MESH_BED_LEVELING)
  5109. /**
  5110. * M420: Enable/Disable Mesh Bed Leveling
  5111. */
  5112. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5113. /**
  5114. * M421: Set a single Mesh Bed Leveling Z coordinate
  5115. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5116. */
  5117. inline void gcode_M421() {
  5118. int8_t px = 0, py = 0;
  5119. float z = 0;
  5120. bool hasX, hasY, hasZ, hasI, hasJ;
  5121. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5122. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5123. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5124. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5125. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5126. if (hasX && hasY && hasZ) {
  5127. if (px >= 0 && py >= 0)
  5128. mbl.set_z(px, py, z);
  5129. else {
  5130. SERIAL_ERROR_START;
  5131. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5132. }
  5133. }
  5134. else if (hasI && hasJ && hasZ) {
  5135. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5136. mbl.set_z(px, py, z);
  5137. else {
  5138. SERIAL_ERROR_START;
  5139. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5140. }
  5141. }
  5142. else {
  5143. SERIAL_ERROR_START;
  5144. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5145. }
  5146. }
  5147. #endif
  5148. /**
  5149. * M428: Set home_offset based on the distance between the
  5150. * current_position and the nearest "reference point."
  5151. * If an axis is past center its endstop position
  5152. * is the reference-point. Otherwise it uses 0. This allows
  5153. * the Z offset to be set near the bed when using a max endstop.
  5154. *
  5155. * M428 can't be used more than 2cm away from 0 or an endstop.
  5156. *
  5157. * Use M206 to set these values directly.
  5158. */
  5159. inline void gcode_M428() {
  5160. bool err = false;
  5161. LOOP_XYZ(i) {
  5162. if (axis_homed[i]) {
  5163. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5164. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5165. if (diff > -20 && diff < 20) {
  5166. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5167. }
  5168. else {
  5169. SERIAL_ERROR_START;
  5170. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5171. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5172. BUZZ(200, 40);
  5173. err = true;
  5174. break;
  5175. }
  5176. }
  5177. }
  5178. if (!err) {
  5179. SYNC_PLAN_POSITION_KINEMATIC();
  5180. report_current_position();
  5181. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5182. BUZZ(200, 659);
  5183. BUZZ(200, 698);
  5184. }
  5185. }
  5186. /**
  5187. * M500: Store settings in EEPROM
  5188. */
  5189. inline void gcode_M500() {
  5190. Config_StoreSettings();
  5191. }
  5192. /**
  5193. * M501: Read settings from EEPROM
  5194. */
  5195. inline void gcode_M501() {
  5196. Config_RetrieveSettings();
  5197. }
  5198. /**
  5199. * M502: Revert to default settings
  5200. */
  5201. inline void gcode_M502() {
  5202. Config_ResetDefault();
  5203. }
  5204. /**
  5205. * M503: print settings currently in memory
  5206. */
  5207. inline void gcode_M503() {
  5208. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5209. }
  5210. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5211. /**
  5212. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5213. */
  5214. inline void gcode_M540() {
  5215. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5216. }
  5217. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5218. #if HAS_BED_PROBE
  5219. inline void gcode_M851() {
  5220. SERIAL_ECHO_START;
  5221. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5222. SERIAL_CHAR(' ');
  5223. if (code_seen('Z')) {
  5224. float value = code_value_axis_units(Z_AXIS);
  5225. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5226. zprobe_zoffset = value;
  5227. SERIAL_ECHO(zprobe_zoffset);
  5228. }
  5229. else {
  5230. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5231. SERIAL_CHAR(' ');
  5232. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5233. }
  5234. }
  5235. else {
  5236. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5237. }
  5238. SERIAL_EOL;
  5239. }
  5240. #endif // HAS_BED_PROBE
  5241. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5242. /**
  5243. * M600: Pause for filament change
  5244. *
  5245. * E[distance] - Retract the filament this far (negative value)
  5246. * Z[distance] - Move the Z axis by this distance
  5247. * X[position] - Move to this X position, with Y
  5248. * Y[position] - Move to this Y position, with X
  5249. * L[distance] - Retract distance for removal (manual reload)
  5250. *
  5251. * Default values are used for omitted arguments.
  5252. *
  5253. */
  5254. inline void gcode_M600() {
  5255. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5256. SERIAL_ERROR_START;
  5257. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5258. return;
  5259. }
  5260. // Show initial message and wait for synchronize steppers
  5261. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5262. stepper.synchronize();
  5263. float lastpos[NUM_AXIS];
  5264. // Save current position of all axes
  5265. LOOP_XYZE(i)
  5266. lastpos[i] = destination[i] = current_position[i];
  5267. // Define runplan for move axes
  5268. #if IS_KINEMATIC
  5269. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5270. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5271. #else
  5272. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5273. #endif
  5274. KEEPALIVE_STATE(IN_HANDLER);
  5275. // Initial retract before move to filament change position
  5276. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5277. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5278. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5279. #endif
  5280. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5281. // Lift Z axis
  5282. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5283. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5284. FILAMENT_CHANGE_Z_ADD
  5285. #else
  5286. 0
  5287. #endif
  5288. ;
  5289. if (z_lift > 0) {
  5290. destination[Z_AXIS] += z_lift;
  5291. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5292. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5293. }
  5294. // Move XY axes to filament exchange position
  5295. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5296. #ifdef FILAMENT_CHANGE_X_POS
  5297. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5298. #endif
  5299. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5300. #ifdef FILAMENT_CHANGE_Y_POS
  5301. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5302. #endif
  5303. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5304. stepper.synchronize();
  5305. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5306. // Unload filament
  5307. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5308. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5309. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5310. #endif
  5311. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5312. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5313. stepper.synchronize();
  5314. disable_e0();
  5315. disable_e1();
  5316. disable_e2();
  5317. disable_e3();
  5318. delay(100);
  5319. #if HAS_BUZZER
  5320. millis_t next_tick = 0;
  5321. #endif
  5322. // Wait for filament insert by user and press button
  5323. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5324. while (!lcd_clicked()) {
  5325. #if HAS_BUZZER
  5326. millis_t ms = millis();
  5327. if (ms >= next_tick) {
  5328. BUZZ(300, 2000);
  5329. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5330. }
  5331. #endif
  5332. idle(true);
  5333. }
  5334. delay(100);
  5335. while (lcd_clicked()) idle(true);
  5336. delay(100);
  5337. // Show load message
  5338. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5339. // Load filament
  5340. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5341. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5342. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5343. #endif
  5344. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5345. stepper.synchronize();
  5346. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5347. do {
  5348. // Extrude filament to get into hotend
  5349. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5350. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5351. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5352. stepper.synchronize();
  5353. // Ask user if more filament should be extruded
  5354. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5355. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5356. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5357. KEEPALIVE_STATE(IN_HANDLER);
  5358. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5359. #endif
  5360. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5361. KEEPALIVE_STATE(IN_HANDLER);
  5362. // Set extruder to saved position
  5363. current_position[E_AXIS] = lastpos[E_AXIS];
  5364. destination[E_AXIS] = lastpos[E_AXIS];
  5365. planner.set_e_position_mm(current_position[E_AXIS]);
  5366. #if IS_KINEMATIC
  5367. // Move XYZ to starting position, then E
  5368. inverse_kinematics(lastpos);
  5369. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5370. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5371. #else
  5372. // Move XY to starting position, then Z, then E
  5373. destination[X_AXIS] = lastpos[X_AXIS];
  5374. destination[Y_AXIS] = lastpos[Y_AXIS];
  5375. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5376. destination[Z_AXIS] = lastpos[Z_AXIS];
  5377. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5378. #endif
  5379. stepper.synchronize();
  5380. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5381. filament_ran_out = false;
  5382. #endif
  5383. // Show status screen
  5384. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5385. }
  5386. #endif // FILAMENT_CHANGE_FEATURE
  5387. #if ENABLED(DUAL_X_CARRIAGE)
  5388. /**
  5389. * M605: Set dual x-carriage movement mode
  5390. *
  5391. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5392. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5393. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5394. * units x-offset and an optional differential hotend temperature of
  5395. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5396. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5397. *
  5398. * Note: the X axis should be homed after changing dual x-carriage mode.
  5399. */
  5400. inline void gcode_M605() {
  5401. stepper.synchronize();
  5402. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5403. switch (dual_x_carriage_mode) {
  5404. case DXC_DUPLICATION_MODE:
  5405. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5406. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5407. SERIAL_ECHO_START;
  5408. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5409. SERIAL_CHAR(' ');
  5410. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5411. SERIAL_CHAR(',');
  5412. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5413. SERIAL_CHAR(' ');
  5414. SERIAL_ECHO(duplicate_extruder_x_offset);
  5415. SERIAL_CHAR(',');
  5416. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5417. break;
  5418. case DXC_FULL_CONTROL_MODE:
  5419. case DXC_AUTO_PARK_MODE:
  5420. break;
  5421. default:
  5422. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5423. break;
  5424. }
  5425. active_extruder_parked = false;
  5426. extruder_duplication_enabled = false;
  5427. delayed_move_time = 0;
  5428. }
  5429. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5430. inline void gcode_M605() {
  5431. stepper.synchronize();
  5432. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5433. SERIAL_ECHO_START;
  5434. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5435. }
  5436. #endif // M605
  5437. #if ENABLED(LIN_ADVANCE)
  5438. /**
  5439. * M905: Set advance factor
  5440. */
  5441. inline void gcode_M905() {
  5442. stepper.synchronize();
  5443. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5444. }
  5445. #endif
  5446. /**
  5447. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5448. */
  5449. inline void gcode_M907() {
  5450. #if HAS_DIGIPOTSS
  5451. LOOP_XYZE(i)
  5452. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5453. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5454. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5455. #endif
  5456. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5457. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5458. #endif
  5459. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5460. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5461. #endif
  5462. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5463. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5464. #endif
  5465. #if ENABLED(DIGIPOT_I2C)
  5466. // this one uses actual amps in floating point
  5467. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5468. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5469. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5470. #endif
  5471. #if ENABLED(DAC_STEPPER_CURRENT)
  5472. if (code_seen('S')) {
  5473. float dac_percent = code_value_float();
  5474. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5475. }
  5476. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5477. #endif
  5478. }
  5479. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5480. /**
  5481. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5482. */
  5483. inline void gcode_M908() {
  5484. #if HAS_DIGIPOTSS
  5485. stepper.digitalPotWrite(
  5486. code_seen('P') ? code_value_int() : 0,
  5487. code_seen('S') ? code_value_int() : 0
  5488. );
  5489. #endif
  5490. #ifdef DAC_STEPPER_CURRENT
  5491. dac_current_raw(
  5492. code_seen('P') ? code_value_byte() : -1,
  5493. code_seen('S') ? code_value_ushort() : 0
  5494. );
  5495. #endif
  5496. }
  5497. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5498. inline void gcode_M909() { dac_print_values(); }
  5499. inline void gcode_M910() { dac_commit_eeprom(); }
  5500. #endif
  5501. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5502. #if HAS_MICROSTEPS
  5503. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5504. inline void gcode_M350() {
  5505. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5506. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5507. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5508. stepper.microstep_readings();
  5509. }
  5510. /**
  5511. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5512. * S# determines MS1 or MS2, X# sets the pin high/low.
  5513. */
  5514. inline void gcode_M351() {
  5515. if (code_seen('S')) switch (code_value_byte()) {
  5516. case 1:
  5517. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5518. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5519. break;
  5520. case 2:
  5521. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5522. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5523. break;
  5524. }
  5525. stepper.microstep_readings();
  5526. }
  5527. #endif // HAS_MICROSTEPS
  5528. #if ENABLED(MIXING_EXTRUDER)
  5529. /**
  5530. * M163: Set a single mix factor for a mixing extruder
  5531. * This is called "weight" by some systems.
  5532. *
  5533. * S[index] The channel index to set
  5534. * P[float] The mix value
  5535. *
  5536. */
  5537. inline void gcode_M163() {
  5538. int mix_index = code_seen('S') ? code_value_int() : 0;
  5539. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5540. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5541. }
  5542. #if MIXING_VIRTUAL_TOOLS > 1
  5543. /**
  5544. * M164: Store the current mix factors as a virtual tool.
  5545. *
  5546. * S[index] The virtual tool to store
  5547. *
  5548. */
  5549. inline void gcode_M164() {
  5550. int tool_index = code_seen('S') ? code_value_int() : 0;
  5551. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5552. normalize_mix();
  5553. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5554. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5555. }
  5556. }
  5557. #endif
  5558. #if ENABLED(DIRECT_MIXING_IN_G1)
  5559. /**
  5560. * M165: Set multiple mix factors for a mixing extruder.
  5561. * Factors that are left out will be set to 0.
  5562. * All factors together must add up to 1.0.
  5563. *
  5564. * A[factor] Mix factor for extruder stepper 1
  5565. * B[factor] Mix factor for extruder stepper 2
  5566. * C[factor] Mix factor for extruder stepper 3
  5567. * D[factor] Mix factor for extruder stepper 4
  5568. * H[factor] Mix factor for extruder stepper 5
  5569. * I[factor] Mix factor for extruder stepper 6
  5570. *
  5571. */
  5572. inline void gcode_M165() { gcode_get_mix(); }
  5573. #endif
  5574. #endif // MIXING_EXTRUDER
  5575. /**
  5576. * M999: Restart after being stopped
  5577. *
  5578. * Default behaviour is to flush the serial buffer and request
  5579. * a resend to the host starting on the last N line received.
  5580. *
  5581. * Sending "M999 S1" will resume printing without flushing the
  5582. * existing command buffer.
  5583. *
  5584. */
  5585. inline void gcode_M999() {
  5586. Running = true;
  5587. lcd_reset_alert_level();
  5588. if (code_seen('S') && code_value_bool()) return;
  5589. // gcode_LastN = Stopped_gcode_LastN;
  5590. FlushSerialRequestResend();
  5591. }
  5592. #if ENABLED(SWITCHING_EXTRUDER)
  5593. inline void move_extruder_servo(uint8_t e) {
  5594. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5595. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5596. }
  5597. #endif
  5598. inline void invalid_extruder_error(const uint8_t &e) {
  5599. SERIAL_ECHO_START;
  5600. SERIAL_CHAR('T');
  5601. SERIAL_PROTOCOL_F(e, DEC);
  5602. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5603. }
  5604. /**
  5605. * Perform a tool-change, which may result in moving the
  5606. * previous tool out of the way and the new tool into place.
  5607. */
  5608. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5609. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5610. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5611. invalid_extruder_error(tmp_extruder);
  5612. return;
  5613. }
  5614. // T0-Tnnn: Switch virtual tool by changing the mix
  5615. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5616. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5617. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5618. #if HOTENDS > 1
  5619. if (tmp_extruder >= EXTRUDERS) {
  5620. invalid_extruder_error(tmp_extruder);
  5621. return;
  5622. }
  5623. float old_feedrate_mm_s = feedrate_mm_s;
  5624. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5625. if (tmp_extruder != active_extruder) {
  5626. if (!no_move && axis_unhomed_error(true, true, true)) {
  5627. SERIAL_ECHOLNPGM("No move on toolchange");
  5628. no_move = true;
  5629. }
  5630. // Save current position to destination, for use later
  5631. set_destination_to_current();
  5632. #if ENABLED(DUAL_X_CARRIAGE)
  5633. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5634. if (DEBUGGING(LEVELING)) {
  5635. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5636. switch (dual_x_carriage_mode) {
  5637. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5638. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5639. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5640. }
  5641. }
  5642. #endif
  5643. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5644. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5645. ) {
  5646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5647. if (DEBUGGING(LEVELING)) {
  5648. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5649. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5650. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5651. }
  5652. #endif
  5653. // Park old head: 1) raise 2) move to park position 3) lower
  5654. for (uint8_t i = 0; i < 3; i++)
  5655. planner.buffer_line(
  5656. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5657. current_position[Y_AXIS],
  5658. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5659. current_position[E_AXIS],
  5660. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5661. active_extruder
  5662. );
  5663. stepper.synchronize();
  5664. }
  5665. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5666. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5667. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5668. active_extruder = tmp_extruder;
  5669. // This function resets the max/min values - the current position may be overwritten below.
  5670. set_axis_is_at_home(X_AXIS);
  5671. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5672. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5673. #endif
  5674. switch (dual_x_carriage_mode) {
  5675. case DXC_FULL_CONTROL_MODE:
  5676. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5677. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5678. break;
  5679. case DXC_DUPLICATION_MODE:
  5680. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5681. if (active_extruder_parked)
  5682. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5683. else
  5684. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5685. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5686. extruder_duplication_enabled = false;
  5687. break;
  5688. default:
  5689. // record raised toolhead position for use by unpark
  5690. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5691. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5692. active_extruder_parked = true;
  5693. delayed_move_time = 0;
  5694. break;
  5695. }
  5696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5697. if (DEBUGGING(LEVELING)) {
  5698. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5699. DEBUG_POS("New extruder (parked)", current_position);
  5700. }
  5701. #endif
  5702. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5703. #else // !DUAL_X_CARRIAGE
  5704. #if ENABLED(SWITCHING_EXTRUDER)
  5705. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5706. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5707. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5708. // Always raise by some amount
  5709. planner.buffer_line(
  5710. current_position[X_AXIS],
  5711. current_position[Y_AXIS],
  5712. current_position[Z_AXIS] + z_raise,
  5713. current_position[E_AXIS],
  5714. planner.max_feedrate_mm_s[Z_AXIS],
  5715. active_extruder
  5716. );
  5717. stepper.synchronize();
  5718. move_extruder_servo(active_extruder);
  5719. delay(500);
  5720. // Move back down, if needed
  5721. if (z_raise != z_diff) {
  5722. planner.buffer_line(
  5723. current_position[X_AXIS],
  5724. current_position[Y_AXIS],
  5725. current_position[Z_AXIS] + z_diff,
  5726. current_position[E_AXIS],
  5727. planner.max_feedrate_mm_s[Z_AXIS],
  5728. active_extruder
  5729. );
  5730. stepper.synchronize();
  5731. }
  5732. #endif
  5733. /**
  5734. * Set current_position to the position of the new nozzle.
  5735. * Offsets are based on linear distance, so we need to get
  5736. * the resulting position in coordinate space.
  5737. *
  5738. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5739. * - With mesh leveling, update Z for the new position
  5740. * - Otherwise, just use the raw linear distance
  5741. *
  5742. * Software endstops are altered here too. Consider a case where:
  5743. * E0 at X=0 ... E1 at X=10
  5744. * When we switch to E1 now X=10, but E1 can't move left.
  5745. * To express this we apply the change in XY to the software endstops.
  5746. * E1 can move farther right than E0, so the right limit is extended.
  5747. *
  5748. * Note that we don't adjust the Z software endstops. Why not?
  5749. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5750. * because the bed is 1mm lower at the new position. As long as
  5751. * the first nozzle is out of the way, the carriage should be
  5752. * allowed to move 1mm lower. This technically "breaks" the
  5753. * Z software endstop. But this is technically correct (and
  5754. * there is no viable alternative).
  5755. */
  5756. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5757. // Offset extruder, make sure to apply the bed level rotation matrix
  5758. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5759. hotend_offset[Y_AXIS][tmp_extruder],
  5760. 0),
  5761. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5762. hotend_offset[Y_AXIS][active_extruder],
  5763. 0),
  5764. offset_vec = tmp_offset_vec - act_offset_vec;
  5765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5766. if (DEBUGGING(LEVELING)) {
  5767. tmp_offset_vec.debug("tmp_offset_vec");
  5768. act_offset_vec.debug("act_offset_vec");
  5769. offset_vec.debug("offset_vec (BEFORE)");
  5770. }
  5771. #endif
  5772. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5773. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5774. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5775. #endif
  5776. // Adjustments to the current position
  5777. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5778. current_position[Z_AXIS] += offset_vec.z;
  5779. #else // !AUTO_BED_LEVELING_LINEAR
  5780. float xydiff[2] = {
  5781. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5782. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5783. };
  5784. #if ENABLED(MESH_BED_LEVELING)
  5785. if (mbl.active()) {
  5786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5787. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5788. #endif
  5789. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5790. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5791. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5793. if (DEBUGGING(LEVELING))
  5794. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5795. #endif
  5796. }
  5797. #endif // MESH_BED_LEVELING
  5798. #endif // !AUTO_BED_LEVELING_FEATURE
  5799. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5800. if (DEBUGGING(LEVELING)) {
  5801. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5802. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5803. SERIAL_ECHOLNPGM(" }");
  5804. }
  5805. #endif
  5806. // The newly-selected extruder XY is actually at...
  5807. current_position[X_AXIS] += xydiff[X_AXIS];
  5808. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5809. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5810. position_shift[i] += xydiff[i];
  5811. update_software_endstops((AxisEnum)i);
  5812. }
  5813. // Set the new active extruder
  5814. active_extruder = tmp_extruder;
  5815. #endif // !DUAL_X_CARRIAGE
  5816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5817. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5818. #endif
  5819. // Tell the planner the new "current position"
  5820. SYNC_PLAN_POSITION_KINEMATIC();
  5821. // Move to the "old position" (move the extruder into place)
  5822. if (!no_move && IsRunning()) {
  5823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5824. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5825. #endif
  5826. prepare_move_to_destination();
  5827. }
  5828. } // (tmp_extruder != active_extruder)
  5829. stepper.synchronize();
  5830. #if ENABLED(EXT_SOLENOID)
  5831. disable_all_solenoids();
  5832. enable_solenoid_on_active_extruder();
  5833. #endif // EXT_SOLENOID
  5834. feedrate_mm_s = old_feedrate_mm_s;
  5835. #else // HOTENDS <= 1
  5836. // Set the new active extruder
  5837. active_extruder = tmp_extruder;
  5838. UNUSED(fr_mm_s);
  5839. UNUSED(no_move);
  5840. #endif // HOTENDS <= 1
  5841. SERIAL_ECHO_START;
  5842. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5843. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5844. }
  5845. /**
  5846. * T0-T3: Switch tool, usually switching extruders
  5847. *
  5848. * F[units/min] Set the movement feedrate
  5849. * S1 Don't move the tool in XY after change
  5850. */
  5851. inline void gcode_T(uint8_t tmp_extruder) {
  5852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5853. if (DEBUGGING(LEVELING)) {
  5854. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5855. SERIAL_ECHOLNPGM(")");
  5856. DEBUG_POS("BEFORE", current_position);
  5857. }
  5858. #endif
  5859. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5860. tool_change(tmp_extruder);
  5861. #elif HOTENDS > 1
  5862. tool_change(
  5863. tmp_extruder,
  5864. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5865. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5866. );
  5867. #endif
  5868. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5869. if (DEBUGGING(LEVELING)) {
  5870. DEBUG_POS("AFTER", current_position);
  5871. SERIAL_ECHOLNPGM("<<< gcode_T");
  5872. }
  5873. #endif
  5874. }
  5875. /**
  5876. * Process a single command and dispatch it to its handler
  5877. * This is called from the main loop()
  5878. */
  5879. void process_next_command() {
  5880. current_command = command_queue[cmd_queue_index_r];
  5881. if (DEBUGGING(ECHO)) {
  5882. SERIAL_ECHO_START;
  5883. SERIAL_ECHOLN(current_command);
  5884. }
  5885. // Sanitize the current command:
  5886. // - Skip leading spaces
  5887. // - Bypass N[-0-9][0-9]*[ ]*
  5888. // - Overwrite * with nul to mark the end
  5889. while (*current_command == ' ') ++current_command;
  5890. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5891. current_command += 2; // skip N[-0-9]
  5892. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5893. while (*current_command == ' ') ++current_command; // skip [ ]*
  5894. }
  5895. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5896. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5897. char *cmd_ptr = current_command;
  5898. // Get the command code, which must be G, M, or T
  5899. char command_code = *cmd_ptr++;
  5900. // Skip spaces to get the numeric part
  5901. while (*cmd_ptr == ' ') cmd_ptr++;
  5902. uint16_t codenum = 0; // define ahead of goto
  5903. // Bail early if there's no code
  5904. bool code_is_good = NUMERIC(*cmd_ptr);
  5905. if (!code_is_good) goto ExitUnknownCommand;
  5906. // Get and skip the code number
  5907. do {
  5908. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5909. cmd_ptr++;
  5910. } while (NUMERIC(*cmd_ptr));
  5911. // Skip all spaces to get to the first argument, or nul
  5912. while (*cmd_ptr == ' ') cmd_ptr++;
  5913. // The command's arguments (if any) start here, for sure!
  5914. current_command_args = cmd_ptr;
  5915. KEEPALIVE_STATE(IN_HANDLER);
  5916. // Handle a known G, M, or T
  5917. switch (command_code) {
  5918. case 'G': switch (codenum) {
  5919. // G0, G1
  5920. case 0:
  5921. case 1:
  5922. #if IS_SCARA
  5923. gcode_G0_G1(codenum == 0);
  5924. #else
  5925. gcode_G0_G1();
  5926. #endif
  5927. break;
  5928. // G2, G3
  5929. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5930. case 2: // G2 - CW ARC
  5931. case 3: // G3 - CCW ARC
  5932. gcode_G2_G3(codenum == 2);
  5933. break;
  5934. #endif
  5935. // G4 Dwell
  5936. case 4:
  5937. gcode_G4();
  5938. break;
  5939. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5940. // G5
  5941. case 5: // G5 - Cubic B_spline
  5942. gcode_G5();
  5943. break;
  5944. #endif // BEZIER_CURVE_SUPPORT
  5945. #if ENABLED(FWRETRACT)
  5946. case 10: // G10: retract
  5947. case 11: // G11: retract_recover
  5948. gcode_G10_G11(codenum == 10);
  5949. break;
  5950. #endif // FWRETRACT
  5951. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5952. case 12:
  5953. gcode_G12(); // G12: Nozzle Clean
  5954. break;
  5955. #endif // NOZZLE_CLEAN_FEATURE
  5956. #if ENABLED(INCH_MODE_SUPPORT)
  5957. case 20: //G20: Inch Mode
  5958. gcode_G20();
  5959. break;
  5960. case 21: //G21: MM Mode
  5961. gcode_G21();
  5962. break;
  5963. #endif // INCH_MODE_SUPPORT
  5964. #if ENABLED(NOZZLE_PARK_FEATURE)
  5965. case 27: // G27: Nozzle Park
  5966. gcode_G27();
  5967. break;
  5968. #endif // NOZZLE_PARK_FEATURE
  5969. case 28: // G28: Home all axes, one at a time
  5970. gcode_G28();
  5971. break;
  5972. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5973. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5974. gcode_G29();
  5975. break;
  5976. #endif // AUTO_BED_LEVELING_FEATURE
  5977. #if HAS_BED_PROBE
  5978. case 30: // G30 Single Z probe
  5979. gcode_G30();
  5980. break;
  5981. #if ENABLED(Z_PROBE_SLED)
  5982. case 31: // G31: dock the sled
  5983. gcode_G31();
  5984. break;
  5985. case 32: // G32: undock the sled
  5986. gcode_G32();
  5987. break;
  5988. #endif // Z_PROBE_SLED
  5989. #endif // HAS_BED_PROBE
  5990. case 90: // G90
  5991. relative_mode = false;
  5992. break;
  5993. case 91: // G91
  5994. relative_mode = true;
  5995. break;
  5996. case 92: // G92
  5997. gcode_G92();
  5998. break;
  5999. }
  6000. break;
  6001. case 'M': switch (codenum) {
  6002. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6003. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6004. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6005. gcode_M0_M1();
  6006. break;
  6007. #endif // ULTIPANEL
  6008. case 17:
  6009. gcode_M17();
  6010. break;
  6011. #if ENABLED(SDSUPPORT)
  6012. case 20: // M20 - list SD card
  6013. gcode_M20(); break;
  6014. case 21: // M21 - init SD card
  6015. gcode_M21(); break;
  6016. case 22: //M22 - release SD card
  6017. gcode_M22(); break;
  6018. case 23: //M23 - Select file
  6019. gcode_M23(); break;
  6020. case 24: //M24 - Start SD print
  6021. gcode_M24(); break;
  6022. case 25: //M25 - Pause SD print
  6023. gcode_M25(); break;
  6024. case 26: //M26 - Set SD index
  6025. gcode_M26(); break;
  6026. case 27: //M27 - Get SD status
  6027. gcode_M27(); break;
  6028. case 28: //M28 - Start SD write
  6029. gcode_M28(); break;
  6030. case 29: //M29 - Stop SD write
  6031. gcode_M29(); break;
  6032. case 30: //M30 <filename> Delete File
  6033. gcode_M30(); break;
  6034. case 32: //M32 - Select file and start SD print
  6035. gcode_M32(); break;
  6036. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6037. case 33: //M33 - Get the long full path to a file or folder
  6038. gcode_M33(); break;
  6039. #endif // LONG_FILENAME_HOST_SUPPORT
  6040. case 928: //M928 - Start SD write
  6041. gcode_M928(); break;
  6042. #endif //SDSUPPORT
  6043. case 31: //M31 take time since the start of the SD print or an M109 command
  6044. gcode_M31();
  6045. break;
  6046. case 42: //M42 -Change pin status via gcode
  6047. gcode_M42();
  6048. break;
  6049. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6050. case 48: // M48 Z probe repeatability
  6051. gcode_M48();
  6052. break;
  6053. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6054. case 75: // Start print timer
  6055. gcode_M75();
  6056. break;
  6057. case 76: // Pause print timer
  6058. gcode_M76();
  6059. break;
  6060. case 77: // Stop print timer
  6061. gcode_M77();
  6062. break;
  6063. #if ENABLED(PRINTCOUNTER)
  6064. case 78: // Show print statistics
  6065. gcode_M78();
  6066. break;
  6067. #endif
  6068. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6069. case 100:
  6070. gcode_M100();
  6071. break;
  6072. #endif
  6073. case 104: // M104
  6074. gcode_M104();
  6075. break;
  6076. case 110: // M110: Set Current Line Number
  6077. gcode_M110();
  6078. break;
  6079. case 111: // M111: Set debug level
  6080. gcode_M111();
  6081. break;
  6082. #if DISABLED(EMERGENCY_PARSER)
  6083. case 108: // M108: Cancel Waiting
  6084. gcode_M108();
  6085. break;
  6086. case 112: // M112: Emergency Stop
  6087. gcode_M112();
  6088. break;
  6089. case 410: // M410 quickstop - Abort all the planned moves.
  6090. gcode_M410();
  6091. break;
  6092. #endif
  6093. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6094. case 113: // M113: Set Host Keepalive interval
  6095. gcode_M113();
  6096. break;
  6097. #endif
  6098. case 140: // M140: Set bed temp
  6099. gcode_M140();
  6100. break;
  6101. case 105: // M105: Read current temperature
  6102. gcode_M105();
  6103. KEEPALIVE_STATE(NOT_BUSY);
  6104. return; // "ok" already printed
  6105. case 109: // M109: Wait for temperature
  6106. gcode_M109();
  6107. break;
  6108. #if HAS_TEMP_BED
  6109. case 190: // M190: Wait for bed heater to reach target
  6110. gcode_M190();
  6111. break;
  6112. #endif // HAS_TEMP_BED
  6113. #if FAN_COUNT > 0
  6114. case 106: // M106: Fan On
  6115. gcode_M106();
  6116. break;
  6117. case 107: // M107: Fan Off
  6118. gcode_M107();
  6119. break;
  6120. #endif // FAN_COUNT > 0
  6121. #if ENABLED(BARICUDA)
  6122. // PWM for HEATER_1_PIN
  6123. #if HAS_HEATER_1
  6124. case 126: // M126: valve open
  6125. gcode_M126();
  6126. break;
  6127. case 127: // M127: valve closed
  6128. gcode_M127();
  6129. break;
  6130. #endif // HAS_HEATER_1
  6131. // PWM for HEATER_2_PIN
  6132. #if HAS_HEATER_2
  6133. case 128: // M128: valve open
  6134. gcode_M128();
  6135. break;
  6136. case 129: // M129: valve closed
  6137. gcode_M129();
  6138. break;
  6139. #endif // HAS_HEATER_2
  6140. #endif // BARICUDA
  6141. #if HAS_POWER_SWITCH
  6142. case 80: // M80: Turn on Power Supply
  6143. gcode_M80();
  6144. break;
  6145. #endif // HAS_POWER_SWITCH
  6146. case 81: // M81: Turn off Power, including Power Supply, if possible
  6147. gcode_M81();
  6148. break;
  6149. case 82:
  6150. gcode_M82();
  6151. break;
  6152. case 83:
  6153. gcode_M83();
  6154. break;
  6155. case 18: // (for compatibility)
  6156. case 84: // M84
  6157. gcode_M18_M84();
  6158. break;
  6159. case 85: // M85
  6160. gcode_M85();
  6161. break;
  6162. case 92: // M92: Set the steps-per-unit for one or more axes
  6163. gcode_M92();
  6164. break;
  6165. case 115: // M115: Report capabilities
  6166. gcode_M115();
  6167. break;
  6168. case 117: // M117: Set LCD message text, if possible
  6169. gcode_M117();
  6170. break;
  6171. case 114: // M114: Report current position
  6172. gcode_M114();
  6173. break;
  6174. case 120: // M120: Enable endstops
  6175. gcode_M120();
  6176. break;
  6177. case 121: // M121: Disable endstops
  6178. gcode_M121();
  6179. break;
  6180. case 119: // M119: Report endstop states
  6181. gcode_M119();
  6182. break;
  6183. #if ENABLED(ULTIPANEL)
  6184. case 145: // M145: Set material heatup parameters
  6185. gcode_M145();
  6186. break;
  6187. #endif
  6188. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6189. case 149:
  6190. gcode_M149();
  6191. break;
  6192. #endif
  6193. #if ENABLED(BLINKM)
  6194. case 150: // M150
  6195. gcode_M150();
  6196. break;
  6197. #endif //BLINKM
  6198. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6199. case 155:
  6200. gcode_M155();
  6201. break;
  6202. case 156:
  6203. gcode_M156();
  6204. break;
  6205. #endif //EXPERIMENTAL_I2CBUS
  6206. #if ENABLED(MIXING_EXTRUDER)
  6207. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6208. gcode_M163();
  6209. break;
  6210. #if MIXING_VIRTUAL_TOOLS > 1
  6211. case 164: // M164 S<int> save current mix as a virtual extruder
  6212. gcode_M164();
  6213. break;
  6214. #endif
  6215. #if ENABLED(DIRECT_MIXING_IN_G1)
  6216. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6217. gcode_M165();
  6218. break;
  6219. #endif
  6220. #endif
  6221. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6222. gcode_M200();
  6223. break;
  6224. case 201: // M201
  6225. gcode_M201();
  6226. break;
  6227. #if 0 // Not used for Sprinter/grbl gen6
  6228. case 202: // M202
  6229. gcode_M202();
  6230. break;
  6231. #endif
  6232. case 203: // M203 max feedrate units/sec
  6233. gcode_M203();
  6234. break;
  6235. case 204: // M204 acclereration S normal moves T filmanent only moves
  6236. gcode_M204();
  6237. break;
  6238. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6239. gcode_M205();
  6240. break;
  6241. case 206: // M206 additional homing offset
  6242. gcode_M206();
  6243. break;
  6244. #if ENABLED(DELTA)
  6245. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6246. gcode_M665();
  6247. break;
  6248. #endif
  6249. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6250. case 666: // M666 set delta / dual endstop adjustment
  6251. gcode_M666();
  6252. break;
  6253. #endif
  6254. #if ENABLED(FWRETRACT)
  6255. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6256. gcode_M207();
  6257. break;
  6258. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6259. gcode_M208();
  6260. break;
  6261. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6262. gcode_M209();
  6263. break;
  6264. #endif // FWRETRACT
  6265. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6266. gcode_M211();
  6267. break;
  6268. #if HOTENDS > 1
  6269. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6270. gcode_M218();
  6271. break;
  6272. #endif
  6273. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6274. gcode_M220();
  6275. break;
  6276. case 221: // M221 - Set Flow Percentage: S<percent>
  6277. gcode_M221();
  6278. break;
  6279. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6280. gcode_M226();
  6281. break;
  6282. #if HAS_SERVOS
  6283. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6284. gcode_M280();
  6285. break;
  6286. #endif // HAS_SERVOS
  6287. #if HAS_BUZZER
  6288. case 300: // M300 - Play beep tone
  6289. gcode_M300();
  6290. break;
  6291. #endif // HAS_BUZZER
  6292. #if ENABLED(PIDTEMP)
  6293. case 301: // M301
  6294. gcode_M301();
  6295. break;
  6296. #endif // PIDTEMP
  6297. #if ENABLED(PIDTEMPBED)
  6298. case 304: // M304
  6299. gcode_M304();
  6300. break;
  6301. #endif // PIDTEMPBED
  6302. #if defined(CHDK) || HAS_PHOTOGRAPH
  6303. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6304. gcode_M240();
  6305. break;
  6306. #endif // CHDK || PHOTOGRAPH_PIN
  6307. #if HAS_LCD_CONTRAST
  6308. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6309. gcode_M250();
  6310. break;
  6311. #endif // HAS_LCD_CONTRAST
  6312. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6313. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6314. gcode_M302();
  6315. break;
  6316. #endif // PREVENT_COLD_EXTRUSION
  6317. case 303: // M303 PID autotune
  6318. gcode_M303();
  6319. break;
  6320. #if ENABLED(MORGAN_SCARA)
  6321. case 360: // M360 SCARA Theta pos1
  6322. if (gcode_M360()) return;
  6323. break;
  6324. case 361: // M361 SCARA Theta pos2
  6325. if (gcode_M361()) return;
  6326. break;
  6327. case 362: // M362 SCARA Psi pos1
  6328. if (gcode_M362()) return;
  6329. break;
  6330. case 363: // M363 SCARA Psi pos2
  6331. if (gcode_M363()) return;
  6332. break;
  6333. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6334. if (gcode_M364()) return;
  6335. break;
  6336. #endif // SCARA
  6337. case 400: // M400 finish all moves
  6338. gcode_M400();
  6339. break;
  6340. #if HAS_BED_PROBE
  6341. case 401:
  6342. gcode_M401();
  6343. break;
  6344. case 402:
  6345. gcode_M402();
  6346. break;
  6347. #endif // HAS_BED_PROBE
  6348. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6349. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6350. gcode_M404();
  6351. break;
  6352. case 405: //M405 Turn on filament sensor for control
  6353. gcode_M405();
  6354. break;
  6355. case 406: //M406 Turn off filament sensor for control
  6356. gcode_M406();
  6357. break;
  6358. case 407: //M407 Display measured filament diameter
  6359. gcode_M407();
  6360. break;
  6361. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6362. #if ENABLED(MESH_BED_LEVELING)
  6363. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6364. gcode_M420();
  6365. break;
  6366. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6367. gcode_M421();
  6368. break;
  6369. #endif
  6370. case 428: // M428 Apply current_position to home_offset
  6371. gcode_M428();
  6372. break;
  6373. case 500: // M500 Store settings in EEPROM
  6374. gcode_M500();
  6375. break;
  6376. case 501: // M501 Read settings from EEPROM
  6377. gcode_M501();
  6378. break;
  6379. case 502: // M502 Revert to default settings
  6380. gcode_M502();
  6381. break;
  6382. case 503: // M503 print settings currently in memory
  6383. gcode_M503();
  6384. break;
  6385. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6386. case 540:
  6387. gcode_M540();
  6388. break;
  6389. #endif
  6390. #if HAS_BED_PROBE
  6391. case 851:
  6392. gcode_M851();
  6393. break;
  6394. #endif // HAS_BED_PROBE
  6395. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6396. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6397. gcode_M600();
  6398. break;
  6399. #endif // FILAMENT_CHANGE_FEATURE
  6400. #if ENABLED(DUAL_X_CARRIAGE)
  6401. case 605:
  6402. gcode_M605();
  6403. break;
  6404. #endif // DUAL_X_CARRIAGE
  6405. #if ENABLED(LIN_ADVANCE)
  6406. case 905: // M905 Set advance factor.
  6407. gcode_M905();
  6408. break;
  6409. #endif
  6410. case 907: // M907 Set digital trimpot motor current using axis codes.
  6411. gcode_M907();
  6412. break;
  6413. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6414. case 908: // M908 Control digital trimpot directly.
  6415. gcode_M908();
  6416. break;
  6417. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6418. case 909: // M909 Print digipot/DAC current value
  6419. gcode_M909();
  6420. break;
  6421. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6422. gcode_M910();
  6423. break;
  6424. #endif
  6425. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6426. #if HAS_MICROSTEPS
  6427. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6428. gcode_M350();
  6429. break;
  6430. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6431. gcode_M351();
  6432. break;
  6433. #endif // HAS_MICROSTEPS
  6434. case 999: // M999: Restart after being Stopped
  6435. gcode_M999();
  6436. break;
  6437. }
  6438. break;
  6439. case 'T':
  6440. gcode_T(codenum);
  6441. break;
  6442. default: code_is_good = false;
  6443. }
  6444. KEEPALIVE_STATE(NOT_BUSY);
  6445. ExitUnknownCommand:
  6446. // Still unknown command? Throw an error
  6447. if (!code_is_good) unknown_command_error();
  6448. ok_to_send();
  6449. }
  6450. /**
  6451. * Send a "Resend: nnn" message to the host to
  6452. * indicate that a command needs to be re-sent.
  6453. */
  6454. void FlushSerialRequestResend() {
  6455. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6456. MYSERIAL.flush();
  6457. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6458. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6459. ok_to_send();
  6460. }
  6461. /**
  6462. * Send an "ok" message to the host, indicating
  6463. * that a command was successfully processed.
  6464. *
  6465. * If ADVANCED_OK is enabled also include:
  6466. * N<int> Line number of the command, if any
  6467. * P<int> Planner space remaining
  6468. * B<int> Block queue space remaining
  6469. */
  6470. void ok_to_send() {
  6471. refresh_cmd_timeout();
  6472. if (!send_ok[cmd_queue_index_r]) return;
  6473. SERIAL_PROTOCOLPGM(MSG_OK);
  6474. #if ENABLED(ADVANCED_OK)
  6475. char* p = command_queue[cmd_queue_index_r];
  6476. if (*p == 'N') {
  6477. SERIAL_PROTOCOL(' ');
  6478. SERIAL_ECHO(*p++);
  6479. while (NUMERIC_SIGNED(*p))
  6480. SERIAL_ECHO(*p++);
  6481. }
  6482. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6483. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6484. #endif
  6485. SERIAL_EOL;
  6486. }
  6487. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6488. /**
  6489. * Constrain the given coordinates to the software endstops.
  6490. */
  6491. void clamp_to_software_endstops(float target[XYZ]) {
  6492. #if ENABLED(min_software_endstops)
  6493. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6494. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6495. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6496. #endif
  6497. #if ENABLED(max_software_endstops)
  6498. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6499. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6500. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6501. #endif
  6502. }
  6503. #endif
  6504. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6505. // Get the Z adjustment for non-linear bed leveling
  6506. float nonlinear_z_offset(float cartesian[XYZ]) {
  6507. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
  6508. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6509. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6510. float hx2 = half_x - 0.001, hx1 = -hx2,
  6511. hy2 = half_y - 0.001, hy1 = -hy2,
  6512. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6513. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6514. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6515. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6516. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6517. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6518. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6519. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6520. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6521. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6522. /*
  6523. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6524. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6525. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6526. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6527. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6528. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6529. SERIAL_ECHOPAIR(" z1=", z1);
  6530. SERIAL_ECHOPAIR(" z2=", z2);
  6531. SERIAL_ECHOPAIR(" z3=", z3);
  6532. SERIAL_ECHOPAIR(" z4=", z4);
  6533. SERIAL_ECHOPAIR(" left=", left);
  6534. SERIAL_ECHOPAIR(" right=", right);
  6535. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6536. //*/
  6537. return (1 - ratio_x) * left + ratio_x * right;
  6538. }
  6539. #endif // AUTO_BED_LEVELING_NONLINEAR
  6540. #if ENABLED(DELTA)
  6541. /**
  6542. * Recalculate factors used for delta kinematics whenever
  6543. * settings have been changed (e.g., by M665).
  6544. */
  6545. void recalc_delta_settings(float radius, float diagonal_rod) {
  6546. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6547. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6548. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6549. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6550. delta_tower3_x = 0.0; // back middle tower
  6551. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6552. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6553. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6554. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6555. }
  6556. #if ENABLED(DELTA_FAST_SQRT)
  6557. /**
  6558. * Fast inverse sqrt from Quake III Arena
  6559. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6560. */
  6561. float Q_rsqrt(float number) {
  6562. long i;
  6563. float x2, y;
  6564. const float threehalfs = 1.5f;
  6565. x2 = number * 0.5f;
  6566. y = number;
  6567. i = * ( long * ) &y; // evil floating point bit level hacking
  6568. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6569. y = * ( float * ) &i;
  6570. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6571. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6572. return y;
  6573. }
  6574. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6575. #else
  6576. #define _SQRT(n) sqrt(n)
  6577. #endif
  6578. /**
  6579. * Delta Inverse Kinematics
  6580. *
  6581. * Calculate the tower positions for a given logical
  6582. * position, storing the result in the delta[] array.
  6583. *
  6584. * This is an expensive calculation, requiring 3 square
  6585. * roots per segmented linear move, and strains the limits
  6586. * of a Mega2560 with a Graphical Display.
  6587. *
  6588. * Suggested optimizations include:
  6589. *
  6590. * - Disable the home_offset (M206) and/or position_shift (G92)
  6591. * features to remove up to 12 float additions.
  6592. *
  6593. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6594. * (see above)
  6595. */
  6596. // Macro to obtain the Z position of an individual tower
  6597. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6598. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6599. delta_tower##T##_x - raw[X_AXIS], \
  6600. delta_tower##T##_y - raw[Y_AXIS] \
  6601. ) \
  6602. )
  6603. #define DELTA_LOGICAL_IK() do { \
  6604. const float raw[XYZ] = { \
  6605. RAW_X_POSITION(logical[X_AXIS]), \
  6606. RAW_Y_POSITION(logical[Y_AXIS]), \
  6607. RAW_Z_POSITION(logical[Z_AXIS]) \
  6608. }; \
  6609. delta[A_AXIS] = DELTA_Z(1); \
  6610. delta[B_AXIS] = DELTA_Z(2); \
  6611. delta[C_AXIS] = DELTA_Z(3); \
  6612. } while(0)
  6613. #define DELTA_DEBUG() do { \
  6614. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6615. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6616. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6617. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6618. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6619. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6620. } while(0)
  6621. void inverse_kinematics(const float logical[XYZ]) {
  6622. DELTA_LOGICAL_IK();
  6623. // DELTA_DEBUG();
  6624. }
  6625. /**
  6626. * Calculate the highest Z position where the
  6627. * effector has the full range of XY motion.
  6628. */
  6629. float delta_safe_distance_from_top() {
  6630. float cartesian[XYZ] = {
  6631. LOGICAL_X_POSITION(0),
  6632. LOGICAL_Y_POSITION(0),
  6633. LOGICAL_Z_POSITION(0)
  6634. };
  6635. inverse_kinematics(cartesian);
  6636. float distance = delta[A_AXIS];
  6637. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6638. inverse_kinematics(cartesian);
  6639. return abs(distance - delta[A_AXIS]);
  6640. }
  6641. /**
  6642. * Delta Forward Kinematics
  6643. *
  6644. * See the Wikipedia article "Trilateration"
  6645. * https://en.wikipedia.org/wiki/Trilateration
  6646. *
  6647. * Establish a new coordinate system in the plane of the
  6648. * three carriage points. This system has its origin at
  6649. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6650. * plane with a Z component of zero.
  6651. * We will define unit vectors in this coordinate system
  6652. * in our original coordinate system. Then when we calculate
  6653. * the Xnew, Ynew and Znew values, we can translate back into
  6654. * the original system by moving along those unit vectors
  6655. * by the corresponding values.
  6656. *
  6657. * Variable names matched to Marlin, c-version, and avoid the
  6658. * use of any vector library.
  6659. *
  6660. * by Andreas Hardtung 2016-06-07
  6661. * based on a Java function from "Delta Robot Kinematics V3"
  6662. * by Steve Graves
  6663. *
  6664. * The result is stored in the cartes[] array.
  6665. */
  6666. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6667. // Create a vector in old coordinates along x axis of new coordinate
  6668. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6669. // Get the Magnitude of vector.
  6670. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6671. // Create unit vector by dividing by magnitude.
  6672. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6673. // Get the vector from the origin of the new system to the third point.
  6674. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6675. // Use the dot product to find the component of this vector on the X axis.
  6676. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6677. // Create a vector along the x axis that represents the x component of p13.
  6678. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6679. // Subtract the X component from the original vector leaving only Y. We use the
  6680. // variable that will be the unit vector after we scale it.
  6681. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6682. // The magnitude of Y component
  6683. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6684. // Convert to a unit vector
  6685. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6686. // The cross product of the unit x and y is the unit z
  6687. // float[] ez = vectorCrossProd(ex, ey);
  6688. float ez[3] = {
  6689. ex[1] * ey[2] - ex[2] * ey[1],
  6690. ex[2] * ey[0] - ex[0] * ey[2],
  6691. ex[0] * ey[1] - ex[1] * ey[0]
  6692. };
  6693. // We now have the d, i and j values defined in Wikipedia.
  6694. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6695. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6696. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6697. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6698. // Start from the origin of the old coordinates and add vectors in the
  6699. // old coords that represent the Xnew, Ynew and Znew to find the point
  6700. // in the old system.
  6701. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6702. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6703. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6704. };
  6705. void forward_kinematics_DELTA(float point[ABC]) {
  6706. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6707. }
  6708. #endif // DELTA
  6709. /**
  6710. * Get the stepper positions in the cartes[] array.
  6711. * Forward kinematics are applied for DELTA and SCARA.
  6712. *
  6713. * The result is in the current coordinate space with
  6714. * leveling applied. The coordinates need to be run through
  6715. * unapply_leveling to obtain the "ideal" coordinates
  6716. * suitable for current_position, etc.
  6717. */
  6718. void get_cartesian_from_steppers() {
  6719. #if ENABLED(DELTA)
  6720. forward_kinematics_DELTA(
  6721. stepper.get_axis_position_mm(A_AXIS),
  6722. stepper.get_axis_position_mm(B_AXIS),
  6723. stepper.get_axis_position_mm(C_AXIS)
  6724. );
  6725. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6726. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6727. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6728. #elif IS_SCARA
  6729. forward_kinematics_SCARA(
  6730. stepper.get_axis_position_degrees(A_AXIS),
  6731. stepper.get_axis_position_degrees(B_AXIS)
  6732. );
  6733. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6734. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6735. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6736. #else
  6737. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6738. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6739. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6740. #endif
  6741. }
  6742. /**
  6743. * Set the current_position for an axis based on
  6744. * the stepper positions, removing any leveling that
  6745. * may have been applied.
  6746. */
  6747. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6748. get_cartesian_from_steppers();
  6749. #if PLANNER_LEVELING
  6750. planner.unapply_leveling(cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS]);
  6751. #endif
  6752. if (axis == ALL_AXES)
  6753. memcpy(current_position, cartes, sizeof(cartes));
  6754. else
  6755. current_position[axis] = cartes[axis];
  6756. }
  6757. #if ENABLED(MESH_BED_LEVELING)
  6758. /**
  6759. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6760. * splitting the move where it crosses mesh borders.
  6761. */
  6762. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6763. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6764. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6765. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6766. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6767. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6768. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6769. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6770. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6771. if (cx1 == cx2 && cy1 == cy2) {
  6772. // Start and end on same mesh square
  6773. line_to_destination(fr_mm_s);
  6774. set_current_to_destination();
  6775. return;
  6776. }
  6777. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6778. float normalized_dist, end[NUM_AXIS];
  6779. // Split at the left/front border of the right/top square
  6780. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6781. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6782. memcpy(end, destination, sizeof(end));
  6783. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6784. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6785. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6786. CBI(x_splits, gcx);
  6787. }
  6788. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6789. memcpy(end, destination, sizeof(end));
  6790. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6791. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6792. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6793. CBI(y_splits, gcy);
  6794. }
  6795. else {
  6796. // Already split on a border
  6797. line_to_destination(fr_mm_s);
  6798. set_current_to_destination();
  6799. return;
  6800. }
  6801. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6802. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6803. // Do the split and look for more borders
  6804. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6805. // Restore destination from stack
  6806. memcpy(destination, end, sizeof(end));
  6807. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6808. }
  6809. #endif // MESH_BED_LEVELING
  6810. #if IS_KINEMATIC
  6811. /**
  6812. * Prepare a linear move in a DELTA or SCARA setup.
  6813. *
  6814. * This calls planner.buffer_line several times, adding
  6815. * small incremental moves for DELTA or SCARA.
  6816. */
  6817. inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
  6818. // Get the top feedrate of the move in the XY plane
  6819. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6820. // If the move is only in Z don't split up the move.
  6821. // This shortcut cannot be used if planar bed leveling
  6822. // is in use, but is fine with mesh-based bed leveling
  6823. if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
  6824. inverse_kinematics(logical);
  6825. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6826. return true;
  6827. }
  6828. // Get the distance moved in XYZ
  6829. float difference[NUM_AXIS];
  6830. LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
  6831. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6832. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6833. if (UNEAR_ZERO(cartesian_mm)) return false;
  6834. // Minimum number of seconds to move the given distance
  6835. float seconds = cartesian_mm / _feedrate_mm_s;
  6836. // The number of segments-per-second times the duration
  6837. // gives the number of segments we should produce
  6838. uint16_t segments = delta_segments_per_second * seconds;
  6839. #if IS_SCARA
  6840. NOMORE(segments, cartesian_mm * 2);
  6841. #endif
  6842. NOLESS(segments, 1);
  6843. // Each segment produces this much of the move
  6844. float inv_segments = 1.0 / segments,
  6845. segment_distance[XYZE] = {
  6846. difference[X_AXIS] * inv_segments,
  6847. difference[Y_AXIS] * inv_segments,
  6848. difference[Z_AXIS] * inv_segments,
  6849. difference[E_AXIS] * inv_segments
  6850. };
  6851. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6852. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6853. // SERIAL_ECHOLNPAIR(" segments=", segments);
  6854. // Send all the segments to the planner
  6855. #if ENABLED(DELTA) && ENABLED(USE_RAW_KINEMATICS)
  6856. #define DELTA_E raw[E_AXIS]
  6857. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
  6858. #define DELTA_IK() do { \
  6859. delta[A_AXIS] = DELTA_Z(1); \
  6860. delta[B_AXIS] = DELTA_Z(2); \
  6861. delta[C_AXIS] = DELTA_Z(3); \
  6862. } while(0)
  6863. // Get the raw current position as starting point
  6864. float raw[ABC] = {
  6865. RAW_CURRENT_POSITION(X_AXIS),
  6866. RAW_CURRENT_POSITION(Y_AXIS),
  6867. RAW_CURRENT_POSITION(Z_AXIS)
  6868. };
  6869. #else
  6870. #define DELTA_E logical[E_AXIS]
  6871. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
  6872. #if ENABLED(DELTA)
  6873. #define DELTA_IK() DELTA_LOGICAL_IK()
  6874. #else
  6875. #define DELTA_IK() inverse_kinematics(logical)
  6876. #endif
  6877. // Get the logical current position as starting point
  6878. LOOP_XYZE(i) logical[i] = current_position[i];
  6879. #endif
  6880. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  6881. // Get the starting delta for interpolation
  6882. if (segments >= 2) inverse_kinematics(logical);
  6883. for (uint16_t s = segments + 1; --s;) {
  6884. if (s > 1) {
  6885. // Save the previous delta for interpolation
  6886. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  6887. // Get the delta 2 segments ahead (rather than the next)
  6888. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  6889. DELTA_IK();
  6890. // Move to the interpolated delta position first
  6891. planner.buffer_line(
  6892. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  6893. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  6894. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  6895. logical[E_AXIS], _feedrate_mm_s, active_extruder
  6896. );
  6897. // Do an extra decrement of the loop
  6898. --s;
  6899. }
  6900. else {
  6901. // Get the last segment delta (only when segments is odd)
  6902. DELTA_NEXT(segment_distance[i])
  6903. DELTA_IK();
  6904. }
  6905. // Move to the non-interpolated position
  6906. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
  6907. }
  6908. #else
  6909. // For non-interpolated delta calculate every segment
  6910. for (uint16_t s = segments + 1; --s;) {
  6911. DELTA_NEXT(segment_distance[i])
  6912. DELTA_IK();
  6913. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6914. }
  6915. #endif
  6916. return true;
  6917. }
  6918. #else
  6919. /**
  6920. * Prepare a linear move in a Cartesian setup.
  6921. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6922. */
  6923. inline bool prepare_move_to_destination_cartesian() {
  6924. // Do not use feedrate_percentage for E or Z only moves
  6925. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6926. line_to_destination();
  6927. }
  6928. else {
  6929. #if ENABLED(MESH_BED_LEVELING)
  6930. if (mbl.active()) {
  6931. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6932. return false;
  6933. }
  6934. else
  6935. #endif
  6936. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6937. }
  6938. return true;
  6939. }
  6940. #endif // !IS_KINEMATIC
  6941. #if ENABLED(DUAL_X_CARRIAGE)
  6942. /**
  6943. * Prepare a linear move in a dual X axis setup
  6944. */
  6945. inline bool prepare_move_to_destination_dualx() {
  6946. if (active_extruder_parked) {
  6947. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6948. // move duplicate extruder into correct duplication position.
  6949. planner.set_position_mm(
  6950. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6951. current_position[Y_AXIS],
  6952. current_position[Z_AXIS],
  6953. current_position[E_AXIS]
  6954. );
  6955. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6956. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6957. SYNC_PLAN_POSITION_KINEMATIC();
  6958. stepper.synchronize();
  6959. extruder_duplication_enabled = true;
  6960. active_extruder_parked = false;
  6961. }
  6962. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6963. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6964. // This is a travel move (with no extrusion)
  6965. // Skip it, but keep track of the current position
  6966. // (so it can be used as the start of the next non-travel move)
  6967. if (delayed_move_time != 0xFFFFFFFFUL) {
  6968. set_current_to_destination();
  6969. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6970. delayed_move_time = millis();
  6971. return false;
  6972. }
  6973. }
  6974. delayed_move_time = 0;
  6975. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6976. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6977. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6978. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6979. active_extruder_parked = false;
  6980. }
  6981. }
  6982. return true;
  6983. }
  6984. #endif // DUAL_X_CARRIAGE
  6985. /**
  6986. * Prepare a single move and get ready for the next one
  6987. *
  6988. * This may result in several calls to planner.buffer_line to
  6989. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  6990. */
  6991. void prepare_move_to_destination() {
  6992. clamp_to_software_endstops(destination);
  6993. refresh_cmd_timeout();
  6994. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6995. if (!DEBUGGING(DRYRUN)) {
  6996. if (destination[E_AXIS] != current_position[E_AXIS]) {
  6997. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6998. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6999. SERIAL_ECHO_START;
  7000. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7001. }
  7002. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7003. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7004. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7005. SERIAL_ECHO_START;
  7006. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7007. }
  7008. #endif
  7009. }
  7010. }
  7011. #endif
  7012. #if IS_KINEMATIC
  7013. if (!prepare_kinematic_move_to(destination)) return;
  7014. #else
  7015. #if ENABLED(DUAL_X_CARRIAGE)
  7016. if (!prepare_move_to_destination_dualx()) return;
  7017. #endif
  7018. if (!prepare_move_to_destination_cartesian()) return;
  7019. #endif
  7020. set_current_to_destination();
  7021. }
  7022. #if ENABLED(ARC_SUPPORT)
  7023. /**
  7024. * Plan an arc in 2 dimensions
  7025. *
  7026. * The arc is approximated by generating many small linear segments.
  7027. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7028. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7029. * larger segments will tend to be more efficient. Your slicer should have
  7030. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7031. */
  7032. void plan_arc(
  7033. float logical[NUM_AXIS], // Destination position
  7034. float* offset, // Center of rotation relative to current_position
  7035. uint8_t clockwise // Clockwise?
  7036. ) {
  7037. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7038. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7039. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7040. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7041. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7042. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7043. r_Y = -offset[Y_AXIS],
  7044. rt_X = logical[X_AXIS] - center_X,
  7045. rt_Y = logical[Y_AXIS] - center_Y;
  7046. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7047. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7048. if (angular_travel < 0) angular_travel += RADIANS(360);
  7049. if (clockwise) angular_travel -= RADIANS(360);
  7050. // Make a circle if the angular rotation is 0
  7051. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7052. angular_travel += RADIANS(360);
  7053. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7054. if (mm_of_travel < 0.001) return;
  7055. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7056. if (segments == 0) segments = 1;
  7057. float theta_per_segment = angular_travel / segments;
  7058. float linear_per_segment = linear_travel / segments;
  7059. float extruder_per_segment = extruder_travel / segments;
  7060. /**
  7061. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7062. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7063. * r_T = [cos(phi) -sin(phi);
  7064. * sin(phi) cos(phi] * r ;
  7065. *
  7066. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7067. * defined from the circle center to the initial position. Each line segment is formed by successive
  7068. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7069. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7070. * all double numbers are single precision on the Arduino. (True double precision will not have
  7071. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7072. * tool precision in some cases. Therefore, arc path correction is implemented.
  7073. *
  7074. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7075. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7076. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7077. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7078. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7079. * issue for CNC machines with the single precision Arduino calculations.
  7080. *
  7081. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7082. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7083. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7084. * This is important when there are successive arc motions.
  7085. */
  7086. // Vector rotation matrix values
  7087. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7088. float sin_T = theta_per_segment;
  7089. float arc_target[NUM_AXIS];
  7090. float sin_Ti, cos_Ti, r_new_Y;
  7091. uint16_t i;
  7092. int8_t count = 0;
  7093. // Initialize the linear axis
  7094. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7095. // Initialize the extruder axis
  7096. arc_target[E_AXIS] = current_position[E_AXIS];
  7097. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7098. millis_t next_idle_ms = millis() + 200UL;
  7099. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7100. thermalManager.manage_heater();
  7101. millis_t now = millis();
  7102. if (ELAPSED(now, next_idle_ms)) {
  7103. next_idle_ms = now + 200UL;
  7104. idle();
  7105. }
  7106. if (++count < N_ARC_CORRECTION) {
  7107. // Apply vector rotation matrix to previous r_X / 1
  7108. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7109. r_X = r_X * cos_T - r_Y * sin_T;
  7110. r_Y = r_new_Y;
  7111. }
  7112. else {
  7113. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7114. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7115. // To reduce stuttering, the sin and cos could be computed at different times.
  7116. // For now, compute both at the same time.
  7117. cos_Ti = cos(i * theta_per_segment);
  7118. sin_Ti = sin(i * theta_per_segment);
  7119. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7120. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7121. count = 0;
  7122. }
  7123. // Update arc_target location
  7124. arc_target[X_AXIS] = center_X + r_X;
  7125. arc_target[Y_AXIS] = center_Y + r_Y;
  7126. arc_target[Z_AXIS] += linear_per_segment;
  7127. arc_target[E_AXIS] += extruder_per_segment;
  7128. clamp_to_software_endstops(arc_target);
  7129. #if IS_KINEMATIC
  7130. inverse_kinematics(arc_target);
  7131. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7132. #else
  7133. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7134. #endif
  7135. }
  7136. // Ensure last segment arrives at target location.
  7137. #if IS_KINEMATIC
  7138. inverse_kinematics(logical);
  7139. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7140. #else
  7141. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7142. #endif
  7143. // As far as the parser is concerned, the position is now == target. In reality the
  7144. // motion control system might still be processing the action and the real tool position
  7145. // in any intermediate location.
  7146. set_current_to_destination();
  7147. }
  7148. #endif
  7149. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7150. void plan_cubic_move(const float offset[4]) {
  7151. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7152. // As far as the parser is concerned, the position is now == destination. In reality the
  7153. // motion control system might still be processing the action and the real tool position
  7154. // in any intermediate location.
  7155. set_current_to_destination();
  7156. }
  7157. #endif // BEZIER_CURVE_SUPPORT
  7158. #if HAS_CONTROLLERFAN
  7159. void controllerFan() {
  7160. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7161. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7162. millis_t ms = millis();
  7163. if (ELAPSED(ms, nextMotorCheck)) {
  7164. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7165. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7166. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7167. #if E_STEPPERS > 1
  7168. || E1_ENABLE_READ == E_ENABLE_ON
  7169. #if HAS_X2_ENABLE
  7170. || X2_ENABLE_READ == X_ENABLE_ON
  7171. #endif
  7172. #if E_STEPPERS > 2
  7173. || E2_ENABLE_READ == E_ENABLE_ON
  7174. #if E_STEPPERS > 3
  7175. || E3_ENABLE_READ == E_ENABLE_ON
  7176. #endif
  7177. #endif
  7178. #endif
  7179. ) {
  7180. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7181. }
  7182. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7183. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7184. // allows digital or PWM fan output to be used (see M42 handling)
  7185. digitalWrite(CONTROLLERFAN_PIN, speed);
  7186. analogWrite(CONTROLLERFAN_PIN, speed);
  7187. }
  7188. }
  7189. #endif // HAS_CONTROLLERFAN
  7190. #if ENABLED(MORGAN_SCARA)
  7191. /**
  7192. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7193. * Maths and first version by QHARLEY.
  7194. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7195. */
  7196. void forward_kinematics_SCARA(const float &a, const float &b) {
  7197. float a_sin = sin(RADIANS(a)) * L1,
  7198. a_cos = cos(RADIANS(a)) * L1,
  7199. b_sin = sin(RADIANS(b)) * L2,
  7200. b_cos = cos(RADIANS(b)) * L2;
  7201. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7202. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7203. /*
  7204. SERIAL_ECHOPAIR("Angle a=", a);
  7205. SERIAL_ECHOPAIR(" b=", b);
  7206. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7207. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7208. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7209. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7210. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7211. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7212. //*/
  7213. }
  7214. /**
  7215. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7216. *
  7217. * See http://forums.reprap.org/read.php?185,283327
  7218. *
  7219. * Maths and first version by QHARLEY.
  7220. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7221. */
  7222. void inverse_kinematics(const float logical[XYZ]) {
  7223. static float C2, S2, SK1, SK2, THETA, PSI;
  7224. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7225. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7226. if (L1 == L2)
  7227. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7228. else
  7229. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7230. S2 = sqrt(sq(C2) - 1);
  7231. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7232. SK1 = L1 + L2 * C2;
  7233. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7234. SK2 = L2 * S2;
  7235. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7236. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7237. // Angle of Arm2
  7238. PSI = atan2(S2, C2);
  7239. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7240. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7241. delta[C_AXIS] = logical[Z_AXIS];
  7242. /*
  7243. DEBUG_POS("SCARA IK", logical);
  7244. DEBUG_POS("SCARA IK", delta);
  7245. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7246. SERIAL_ECHOPAIR(",", sy);
  7247. SERIAL_ECHOPAIR(" C2=", C2);
  7248. SERIAL_ECHOPAIR(" S2=", S2);
  7249. SERIAL_ECHOPAIR(" Theta=", THETA);
  7250. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7251. //*/
  7252. }
  7253. #endif // MORGAN_SCARA
  7254. #if ENABLED(TEMP_STAT_LEDS)
  7255. static bool red_led = false;
  7256. static millis_t next_status_led_update_ms = 0;
  7257. void handle_status_leds(void) {
  7258. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7259. next_status_led_update_ms += 500; // Update every 0.5s
  7260. float max_temp = 0.0;
  7261. #if HAS_TEMP_BED
  7262. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7263. #endif
  7264. HOTEND_LOOP() {
  7265. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7266. }
  7267. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7268. if (new_led != red_led) {
  7269. red_led = new_led;
  7270. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7271. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7272. }
  7273. }
  7274. }
  7275. #endif
  7276. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7277. void handle_filament_runout() {
  7278. if (!filament_ran_out) {
  7279. filament_ran_out = true;
  7280. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7281. stepper.synchronize();
  7282. }
  7283. }
  7284. #endif // FILAMENT_RUNOUT_SENSOR
  7285. #if ENABLED(FAST_PWM_FAN)
  7286. void setPwmFrequency(uint8_t pin, int val) {
  7287. val &= 0x07;
  7288. switch (digitalPinToTimer(pin)) {
  7289. #if defined(TCCR0A)
  7290. case TIMER0A:
  7291. case TIMER0B:
  7292. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7293. // TCCR0B |= val;
  7294. break;
  7295. #endif
  7296. #if defined(TCCR1A)
  7297. case TIMER1A:
  7298. case TIMER1B:
  7299. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7300. // TCCR1B |= val;
  7301. break;
  7302. #endif
  7303. #if defined(TCCR2)
  7304. case TIMER2:
  7305. case TIMER2:
  7306. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7307. TCCR2 |= val;
  7308. break;
  7309. #endif
  7310. #if defined(TCCR2A)
  7311. case TIMER2A:
  7312. case TIMER2B:
  7313. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7314. TCCR2B |= val;
  7315. break;
  7316. #endif
  7317. #if defined(TCCR3A)
  7318. case TIMER3A:
  7319. case TIMER3B:
  7320. case TIMER3C:
  7321. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7322. TCCR3B |= val;
  7323. break;
  7324. #endif
  7325. #if defined(TCCR4A)
  7326. case TIMER4A:
  7327. case TIMER4B:
  7328. case TIMER4C:
  7329. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7330. TCCR4B |= val;
  7331. break;
  7332. #endif
  7333. #if defined(TCCR5A)
  7334. case TIMER5A:
  7335. case TIMER5B:
  7336. case TIMER5C:
  7337. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7338. TCCR5B |= val;
  7339. break;
  7340. #endif
  7341. }
  7342. }
  7343. #endif // FAST_PWM_FAN
  7344. float calculate_volumetric_multiplier(float diameter) {
  7345. if (!volumetric_enabled || diameter == 0) return 1.0;
  7346. float d2 = diameter * 0.5;
  7347. return 1.0 / (M_PI * d2 * d2);
  7348. }
  7349. void calculate_volumetric_multipliers() {
  7350. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7351. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7352. }
  7353. void enable_all_steppers() {
  7354. enable_x();
  7355. enable_y();
  7356. enable_z();
  7357. enable_e0();
  7358. enable_e1();
  7359. enable_e2();
  7360. enable_e3();
  7361. }
  7362. void disable_all_steppers() {
  7363. disable_x();
  7364. disable_y();
  7365. disable_z();
  7366. disable_e0();
  7367. disable_e1();
  7368. disable_e2();
  7369. disable_e3();
  7370. }
  7371. /**
  7372. * Manage several activities:
  7373. * - Check for Filament Runout
  7374. * - Keep the command buffer full
  7375. * - Check for maximum inactive time between commands
  7376. * - Check for maximum inactive time between stepper commands
  7377. * - Check if pin CHDK needs to go LOW
  7378. * - Check for KILL button held down
  7379. * - Check for HOME button held down
  7380. * - Check if cooling fan needs to be switched on
  7381. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7382. */
  7383. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7384. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7385. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7386. handle_filament_runout();
  7387. #endif
  7388. if (commands_in_queue < BUFSIZE) get_available_commands();
  7389. millis_t ms = millis();
  7390. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7391. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7392. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7393. #if ENABLED(DISABLE_INACTIVE_X)
  7394. disable_x();
  7395. #endif
  7396. #if ENABLED(DISABLE_INACTIVE_Y)
  7397. disable_y();
  7398. #endif
  7399. #if ENABLED(DISABLE_INACTIVE_Z)
  7400. disable_z();
  7401. #endif
  7402. #if ENABLED(DISABLE_INACTIVE_E)
  7403. disable_e0();
  7404. disable_e1();
  7405. disable_e2();
  7406. disable_e3();
  7407. #endif
  7408. }
  7409. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7410. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7411. chdkActive = false;
  7412. WRITE(CHDK, LOW);
  7413. }
  7414. #endif
  7415. #if HAS_KILL
  7416. // Check if the kill button was pressed and wait just in case it was an accidental
  7417. // key kill key press
  7418. // -------------------------------------------------------------------------------
  7419. static int killCount = 0; // make the inactivity button a bit less responsive
  7420. const int KILL_DELAY = 750;
  7421. if (!READ(KILL_PIN))
  7422. killCount++;
  7423. else if (killCount > 0)
  7424. killCount--;
  7425. // Exceeded threshold and we can confirm that it was not accidental
  7426. // KILL the machine
  7427. // ----------------------------------------------------------------
  7428. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7429. #endif
  7430. #if HAS_HOME
  7431. // Check to see if we have to home, use poor man's debouncer
  7432. // ---------------------------------------------------------
  7433. static int homeDebounceCount = 0; // poor man's debouncing count
  7434. const int HOME_DEBOUNCE_DELAY = 2500;
  7435. if (!READ(HOME_PIN)) {
  7436. if (!homeDebounceCount) {
  7437. enqueue_and_echo_commands_P(PSTR("G28"));
  7438. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7439. }
  7440. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7441. homeDebounceCount++;
  7442. else
  7443. homeDebounceCount = 0;
  7444. }
  7445. #endif
  7446. #if HAS_CONTROLLERFAN
  7447. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7448. #endif
  7449. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7450. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7451. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7452. bool oldstatus;
  7453. #if ENABLED(SWITCHING_EXTRUDER)
  7454. oldstatus = E0_ENABLE_READ;
  7455. enable_e0();
  7456. #else // !SWITCHING_EXTRUDER
  7457. switch (active_extruder) {
  7458. case 0:
  7459. oldstatus = E0_ENABLE_READ;
  7460. enable_e0();
  7461. break;
  7462. #if E_STEPPERS > 1
  7463. case 1:
  7464. oldstatus = E1_ENABLE_READ;
  7465. enable_e1();
  7466. break;
  7467. #if E_STEPPERS > 2
  7468. case 2:
  7469. oldstatus = E2_ENABLE_READ;
  7470. enable_e2();
  7471. break;
  7472. #if E_STEPPERS > 3
  7473. case 3:
  7474. oldstatus = E3_ENABLE_READ;
  7475. enable_e3();
  7476. break;
  7477. #endif
  7478. #endif
  7479. #endif
  7480. }
  7481. #endif // !SWITCHING_EXTRUDER
  7482. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7483. planner.buffer_line(
  7484. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7485. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7486. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7487. );
  7488. stepper.synchronize();
  7489. planner.set_e_position_mm(current_position[E_AXIS]);
  7490. #if ENABLED(SWITCHING_EXTRUDER)
  7491. E0_ENABLE_WRITE(oldstatus);
  7492. #else
  7493. switch (active_extruder) {
  7494. case 0:
  7495. E0_ENABLE_WRITE(oldstatus);
  7496. break;
  7497. #if E_STEPPERS > 1
  7498. case 1:
  7499. E1_ENABLE_WRITE(oldstatus);
  7500. break;
  7501. #if E_STEPPERS > 2
  7502. case 2:
  7503. E2_ENABLE_WRITE(oldstatus);
  7504. break;
  7505. #if E_STEPPERS > 3
  7506. case 3:
  7507. E3_ENABLE_WRITE(oldstatus);
  7508. break;
  7509. #endif
  7510. #endif
  7511. #endif
  7512. }
  7513. #endif // !SWITCHING_EXTRUDER
  7514. }
  7515. #endif // EXTRUDER_RUNOUT_PREVENT
  7516. #if ENABLED(DUAL_X_CARRIAGE)
  7517. // handle delayed move timeout
  7518. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7519. // travel moves have been received so enact them
  7520. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7521. set_destination_to_current();
  7522. prepare_move_to_destination();
  7523. }
  7524. #endif
  7525. #if ENABLED(TEMP_STAT_LEDS)
  7526. handle_status_leds();
  7527. #endif
  7528. planner.check_axes_activity();
  7529. }
  7530. /**
  7531. * Standard idle routine keeps the machine alive
  7532. */
  7533. void idle(
  7534. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7535. bool no_stepper_sleep/*=false*/
  7536. #endif
  7537. ) {
  7538. lcd_update();
  7539. host_keepalive();
  7540. manage_inactivity(
  7541. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7542. no_stepper_sleep
  7543. #endif
  7544. );
  7545. thermalManager.manage_heater();
  7546. #if ENABLED(PRINTCOUNTER)
  7547. print_job_timer.tick();
  7548. #endif
  7549. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7550. buzzer.tick();
  7551. #endif
  7552. }
  7553. /**
  7554. * Kill all activity and lock the machine.
  7555. * After this the machine will need to be reset.
  7556. */
  7557. void kill(const char* lcd_msg) {
  7558. SERIAL_ERROR_START;
  7559. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7560. #if ENABLED(ULTRA_LCD)
  7561. kill_screen(lcd_msg);
  7562. #else
  7563. UNUSED(lcd_msg);
  7564. #endif
  7565. delay(500); // Wait a short time
  7566. cli(); // Stop interrupts
  7567. thermalManager.disable_all_heaters();
  7568. disable_all_steppers();
  7569. #if HAS_POWER_SWITCH
  7570. pinMode(PS_ON_PIN, INPUT);
  7571. #endif
  7572. suicide();
  7573. while (1) {
  7574. #if ENABLED(USE_WATCHDOG)
  7575. watchdog_reset();
  7576. #endif
  7577. } // Wait for reset
  7578. }
  7579. /**
  7580. * Turn off heaters and stop the print in progress
  7581. * After a stop the machine may be resumed with M999
  7582. */
  7583. void stop() {
  7584. thermalManager.disable_all_heaters();
  7585. if (IsRunning()) {
  7586. Running = false;
  7587. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7588. SERIAL_ERROR_START;
  7589. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7590. LCD_MESSAGEPGM(MSG_STOPPED);
  7591. }
  7592. }
  7593. /**
  7594. * Marlin entry-point: Set up before the program loop
  7595. * - Set up the kill pin, filament runout, power hold
  7596. * - Start the serial port
  7597. * - Print startup messages and diagnostics
  7598. * - Get EEPROM or default settings
  7599. * - Initialize managers for:
  7600. * • temperature
  7601. * • planner
  7602. * • watchdog
  7603. * • stepper
  7604. * • photo pin
  7605. * • servos
  7606. * • LCD controller
  7607. * • Digipot I2C
  7608. * • Z probe sled
  7609. * • status LEDs
  7610. */
  7611. void setup() {
  7612. #ifdef DISABLE_JTAG
  7613. // Disable JTAG on AT90USB chips to free up pins for IO
  7614. MCUCR = 0x80;
  7615. MCUCR = 0x80;
  7616. #endif
  7617. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7618. setup_filrunoutpin();
  7619. #endif
  7620. setup_killpin();
  7621. setup_powerhold();
  7622. #if HAS_STEPPER_RESET
  7623. disableStepperDrivers();
  7624. #endif
  7625. MYSERIAL.begin(BAUDRATE);
  7626. SERIAL_PROTOCOLLNPGM("start");
  7627. SERIAL_ECHO_START;
  7628. // Check startup - does nothing if bootloader sets MCUSR to 0
  7629. byte mcu = MCUSR;
  7630. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7631. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7632. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7633. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7634. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7635. MCUSR = 0;
  7636. SERIAL_ECHOPGM(MSG_MARLIN);
  7637. SERIAL_CHAR(' ');
  7638. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7639. SERIAL_EOL;
  7640. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7641. SERIAL_ECHO_START;
  7642. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7643. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7644. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7645. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7646. #endif
  7647. SERIAL_ECHO_START;
  7648. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7649. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7650. // Send "ok" after commands by default
  7651. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7652. // Load data from EEPROM if available (or use defaults)
  7653. // This also updates variables in the planner, elsewhere
  7654. Config_RetrieveSettings();
  7655. // Initialize current position based on home_offset
  7656. memcpy(current_position, home_offset, sizeof(home_offset));
  7657. // Vital to init stepper/planner equivalent for current_position
  7658. SYNC_PLAN_POSITION_KINEMATIC();
  7659. thermalManager.init(); // Initialize temperature loop
  7660. #if ENABLED(USE_WATCHDOG)
  7661. watchdog_init();
  7662. #endif
  7663. stepper.init(); // Initialize stepper, this enables interrupts!
  7664. setup_photpin();
  7665. servo_init();
  7666. #if HAS_BED_PROBE
  7667. endstops.enable_z_probe(false);
  7668. #endif
  7669. #if HAS_CONTROLLERFAN
  7670. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7671. #endif
  7672. #if HAS_STEPPER_RESET
  7673. enableStepperDrivers();
  7674. #endif
  7675. #if ENABLED(DIGIPOT_I2C)
  7676. digipot_i2c_init();
  7677. #endif
  7678. #if ENABLED(DAC_STEPPER_CURRENT)
  7679. dac_init();
  7680. #endif
  7681. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7682. pinMode(SLED_PIN, OUTPUT);
  7683. digitalWrite(SLED_PIN, LOW); // turn it off
  7684. #endif // Z_PROBE_SLED
  7685. setup_homepin();
  7686. #ifdef STAT_LED_RED
  7687. pinMode(STAT_LED_RED, OUTPUT);
  7688. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7689. #endif
  7690. #ifdef STAT_LED_BLUE
  7691. pinMode(STAT_LED_BLUE, OUTPUT);
  7692. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7693. #endif
  7694. lcd_init();
  7695. #if ENABLED(SHOW_BOOTSCREEN)
  7696. #if ENABLED(DOGLCD)
  7697. safe_delay(BOOTSCREEN_TIMEOUT);
  7698. #elif ENABLED(ULTRA_LCD)
  7699. bootscreen();
  7700. lcd_init();
  7701. #endif
  7702. #endif
  7703. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7704. // Initialize mixing to 100% color 1
  7705. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7706. mixing_factor[i] = (i == 0) ? 1 : 0;
  7707. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7708. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7709. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7710. #endif
  7711. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7712. i2c.onReceive(i2c_on_receive);
  7713. i2c.onRequest(i2c_on_request);
  7714. #endif
  7715. }
  7716. /**
  7717. * The main Marlin program loop
  7718. *
  7719. * - Save or log commands to SD
  7720. * - Process available commands (if not saving)
  7721. * - Call heater manager
  7722. * - Call inactivity manager
  7723. * - Call endstop manager
  7724. * - Call LCD update
  7725. */
  7726. void loop() {
  7727. if (commands_in_queue < BUFSIZE) get_available_commands();
  7728. #if ENABLED(SDSUPPORT)
  7729. card.checkautostart(false);
  7730. #endif
  7731. if (commands_in_queue) {
  7732. #if ENABLED(SDSUPPORT)
  7733. if (card.saving) {
  7734. char* command = command_queue[cmd_queue_index_r];
  7735. if (strstr_P(command, PSTR("M29"))) {
  7736. // M29 closes the file
  7737. card.closefile();
  7738. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7739. ok_to_send();
  7740. }
  7741. else {
  7742. // Write the string from the read buffer to SD
  7743. card.write_command(command);
  7744. if (card.logging)
  7745. process_next_command(); // The card is saving because it's logging
  7746. else
  7747. ok_to_send();
  7748. }
  7749. }
  7750. else
  7751. process_next_command();
  7752. #else
  7753. process_next_command();
  7754. #endif // SDSUPPORT
  7755. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7756. if (commands_in_queue) {
  7757. --commands_in_queue;
  7758. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7759. }
  7760. }
  7761. endstops.report_state();
  7762. idle();
  7763. }