My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

temperature.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistortables.h"
  28. #include "MarlinConfig.h"
  29. #if ENABLED(PID_EXTRUSION_SCALING)
  30. #include "stepper.h"
  31. #endif
  32. #ifndef SOFT_PWM_SCALE
  33. #define SOFT_PWM_SCALE 0
  34. #endif
  35. #define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
  36. #if HOTENDS == 1
  37. #define HOTEND_INDEX 0
  38. #define EXTRUDER_IDX 0
  39. #else
  40. #define HOTEND_INDEX e
  41. #define EXTRUDER_IDX active_extruder
  42. #endif
  43. /**
  44. * States for ADC reading in the ISR
  45. */
  46. enum ADCSensorState {
  47. #if HAS_TEMP_0
  48. PrepareTemp_0,
  49. MeasureTemp_0,
  50. #endif
  51. #if HAS_TEMP_1
  52. PrepareTemp_1,
  53. MeasureTemp_1,
  54. #endif
  55. #if HAS_TEMP_2
  56. PrepareTemp_2,
  57. MeasureTemp_2,
  58. #endif
  59. #if HAS_TEMP_3
  60. PrepareTemp_3,
  61. MeasureTemp_3,
  62. #endif
  63. #if HAS_TEMP_4
  64. PrepareTemp_4,
  65. MeasureTemp_4,
  66. #endif
  67. #if HAS_TEMP_BED
  68. PrepareTemp_BED,
  69. MeasureTemp_BED,
  70. #endif
  71. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  72. Prepare_FILWIDTH,
  73. Measure_FILWIDTH,
  74. #endif
  75. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  76. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  77. };
  78. // Minimum number of Temperature::ISR loops between sensor readings.
  79. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  80. // get all oversampled sensor readings
  81. #define MIN_ADC_ISR_LOOPS 10
  82. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  83. class Temperature {
  84. public:
  85. static float current_temperature[HOTENDS],
  86. current_temperature_bed;
  87. static int16_t current_temperature_raw[HOTENDS],
  88. target_temperature[HOTENDS],
  89. current_temperature_bed_raw,
  90. target_temperature_bed;
  91. static volatile bool in_temp_isr;
  92. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  93. static float redundant_temperature;
  94. #endif
  95. static uint8_t soft_pwm_bed;
  96. #if ENABLED(FAN_SOFT_PWM)
  97. static uint8_t fanSpeedSoftPwm[FAN_COUNT];
  98. #endif
  99. #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
  100. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0))
  101. #endif
  102. #if ENABLED(PIDTEMP)
  103. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  104. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  105. #if ENABLED(PID_EXTRUSION_SCALING)
  106. static float Kc[HOTENDS];
  107. #endif
  108. #define PID_PARAM(param, h) Temperature::param[h]
  109. #else
  110. static float Kp, Ki, Kd;
  111. #if ENABLED(PID_EXTRUSION_SCALING)
  112. static float Kc;
  113. #endif
  114. #define PID_PARAM(param, h) Temperature::param
  115. #endif // PID_PARAMS_PER_HOTEND
  116. // Apply the scale factors to the PID values
  117. #define scalePID_i(i) ( (i) * PID_dT )
  118. #define unscalePID_i(i) ( (i) / PID_dT )
  119. #define scalePID_d(d) ( (d) / PID_dT )
  120. #define unscalePID_d(d) ( (d) * PID_dT )
  121. #endif
  122. #if ENABLED(PIDTEMPBED)
  123. static float bedKp, bedKi, bedKd;
  124. #endif
  125. #if ENABLED(BABYSTEPPING)
  126. static volatile int babystepsTodo[3];
  127. #endif
  128. #if WATCH_HOTENDS
  129. static int watch_target_temp[HOTENDS];
  130. static millis_t watch_heater_next_ms[HOTENDS];
  131. #endif
  132. #if WATCH_THE_BED
  133. static int watch_target_bed_temp;
  134. static millis_t watch_bed_next_ms;
  135. #endif
  136. #if ENABLED(PREVENT_COLD_EXTRUSION)
  137. static bool allow_cold_extrude;
  138. static float extrude_min_temp;
  139. static bool tooColdToExtrude(uint8_t e) {
  140. #if HOTENDS == 1
  141. UNUSED(e);
  142. #endif
  143. return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
  144. }
  145. #else
  146. static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
  147. #endif
  148. private:
  149. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  150. static int redundant_temperature_raw;
  151. static float redundant_temperature;
  152. #endif
  153. static volatile bool temp_meas_ready;
  154. #if ENABLED(PIDTEMP)
  155. static float temp_iState[HOTENDS],
  156. temp_dState[HOTENDS],
  157. pTerm[HOTENDS],
  158. iTerm[HOTENDS],
  159. dTerm[HOTENDS];
  160. #if ENABLED(PID_EXTRUSION_SCALING)
  161. static float cTerm[HOTENDS];
  162. static long last_e_position;
  163. static long lpq[LPQ_MAX_LEN];
  164. static int lpq_ptr;
  165. #endif
  166. static float pid_error[HOTENDS];
  167. static bool pid_reset[HOTENDS];
  168. #endif
  169. #if ENABLED(PIDTEMPBED)
  170. static float temp_iState_bed,
  171. temp_dState_bed,
  172. pTerm_bed,
  173. iTerm_bed,
  174. dTerm_bed,
  175. pid_error_bed;
  176. #else
  177. static millis_t next_bed_check_ms;
  178. #endif
  179. static uint16_t raw_temp_value[MAX_EXTRUDERS],
  180. raw_temp_bed_value;
  181. // Init min and max temp with extreme values to prevent false errors during startup
  182. static int16_t minttemp_raw[HOTENDS],
  183. maxttemp_raw[HOTENDS],
  184. minttemp[HOTENDS],
  185. maxttemp[HOTENDS];
  186. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  187. static uint8_t consecutive_low_temperature_error[HOTENDS];
  188. #endif
  189. #ifdef MILLISECONDS_PREHEAT_TIME
  190. static millis_t preheat_end_time[HOTENDS];
  191. #endif
  192. #ifdef BED_MINTEMP
  193. static int16_t bed_minttemp_raw;
  194. #endif
  195. #ifdef BED_MAXTEMP
  196. static int16_t bed_maxttemp_raw;
  197. #endif
  198. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  199. static int16_t meas_shift_index; // Index of a delayed sample in buffer
  200. #endif
  201. #if HAS_AUTO_FAN
  202. static millis_t next_auto_fan_check_ms;
  203. #endif
  204. static uint8_t soft_pwm[HOTENDS];
  205. #if ENABLED(FAN_SOFT_PWM)
  206. static uint8_t soft_pwm_fan[FAN_COUNT];
  207. #endif
  208. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  209. static int current_raw_filwidth; //Holds measured filament diameter - one extruder only
  210. #endif
  211. #if ENABLED(PROBING_HEATERS_OFF)
  212. static bool paused;
  213. static int16_t paused_hotend_temps[HOTENDS];
  214. #if HAS_TEMP_BED
  215. static int16_t paused_bed_temp;
  216. #endif
  217. #endif
  218. public:
  219. /**
  220. * Instance Methods
  221. */
  222. Temperature();
  223. void init();
  224. /**
  225. * Static (class) methods
  226. */
  227. static float analog2temp(int raw, uint8_t e);
  228. static float analog2tempBed(int raw);
  229. /**
  230. * Called from the Temperature ISR
  231. */
  232. static void isr();
  233. /**
  234. * Call periodically to manage heaters
  235. */
  236. //static void manage_heater(); // changed to address compiler error
  237. static void manage_heater() __attribute__((__optimize__("O2")));
  238. /**
  239. * Preheating hotends
  240. */
  241. #ifdef MILLISECONDS_PREHEAT_TIME
  242. static bool is_preheating(uint8_t e) {
  243. #if HOTENDS == 1
  244. UNUSED(e);
  245. #endif
  246. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  247. }
  248. static void start_preheat_time(uint8_t e) {
  249. #if HOTENDS == 1
  250. UNUSED(e);
  251. #endif
  252. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  253. }
  254. static void reset_preheat_time(uint8_t e) {
  255. #if HOTENDS == 1
  256. UNUSED(e);
  257. #endif
  258. preheat_end_time[HOTEND_INDEX] = 0;
  259. }
  260. #else
  261. #define is_preheating(n) (false)
  262. #endif
  263. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  264. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  265. static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
  266. #endif
  267. //high level conversion routines, for use outside of temperature.cpp
  268. //inline so that there is no performance decrease.
  269. //deg=degreeCelsius
  270. static int16_t degHotend(uint8_t e) {
  271. #if HOTENDS == 1
  272. UNUSED(e);
  273. #endif
  274. return current_temperature[HOTEND_INDEX];
  275. }
  276. static int16_t degBed() { return current_temperature_bed; }
  277. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  278. static int16_t rawHotendTemp(uint8_t e) {
  279. #if HOTENDS == 1
  280. UNUSED(e);
  281. #endif
  282. return current_temperature_raw[HOTEND_INDEX];
  283. }
  284. static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  285. #endif
  286. static int16_t degTargetHotend(uint8_t e) {
  287. #if HOTENDS == 1
  288. UNUSED(e);
  289. #endif
  290. return target_temperature[HOTEND_INDEX];
  291. }
  292. static int16_t degTargetBed() { return target_temperature_bed; }
  293. #if WATCH_HOTENDS
  294. static void start_watching_heater(uint8_t e = 0);
  295. #endif
  296. #if WATCH_THE_BED
  297. static void start_watching_bed();
  298. #endif
  299. static void setTargetHotend(const int16_t celsius, uint8_t e) {
  300. #if HOTENDS == 1
  301. UNUSED(e);
  302. #endif
  303. #ifdef MILLISECONDS_PREHEAT_TIME
  304. if (celsius == 0)
  305. reset_preheat_time(HOTEND_INDEX);
  306. else if (target_temperature[HOTEND_INDEX] == 0)
  307. start_preheat_time(HOTEND_INDEX);
  308. #endif
  309. target_temperature[HOTEND_INDEX] = celsius;
  310. #if WATCH_HOTENDS
  311. start_watching_heater(HOTEND_INDEX);
  312. #endif
  313. }
  314. static void setTargetBed(const int16_t celsius) {
  315. target_temperature_bed = celsius;
  316. #if WATCH_THE_BED
  317. start_watching_bed();
  318. #endif
  319. }
  320. static bool isHeatingHotend(uint8_t e) {
  321. #if HOTENDS == 1
  322. UNUSED(e);
  323. #endif
  324. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  325. }
  326. static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  327. static bool isCoolingHotend(uint8_t e) {
  328. #if HOTENDS == 1
  329. UNUSED(e);
  330. #endif
  331. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  332. }
  333. static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  334. /**
  335. * The software PWM power for a heater
  336. */
  337. static int getHeaterPower(int heater);
  338. /**
  339. * Switch off all heaters, set all target temperatures to 0
  340. */
  341. static void disable_all_heaters();
  342. /**
  343. * Perform auto-tuning for hotend or bed in response to M303
  344. */
  345. #if HAS_PID_HEATING
  346. static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
  347. #endif
  348. /**
  349. * Update the temp manager when PID values change
  350. */
  351. static void updatePID();
  352. #if ENABLED(BABYSTEPPING)
  353. static void babystep_axis(const AxisEnum axis, const int distance) {
  354. if (axis_known_position[axis]) {
  355. #if IS_CORE
  356. #if ENABLED(BABYSTEP_XY)
  357. switch (axis) {
  358. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  359. babystepsTodo[CORE_AXIS_1] += distance * 2;
  360. babystepsTodo[CORE_AXIS_2] += distance * 2;
  361. break;
  362. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  363. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  364. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  365. break;
  366. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  367. babystepsTodo[NORMAL_AXIS] += distance;
  368. break;
  369. }
  370. #elif CORE_IS_XZ || CORE_IS_YZ
  371. // Only Z stepping needs to be handled here
  372. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  373. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  374. #else
  375. babystepsTodo[Z_AXIS] += distance;
  376. #endif
  377. #else
  378. babystepsTodo[axis] += distance;
  379. #endif
  380. }
  381. }
  382. #endif // BABYSTEPPING
  383. #if ENABLED(PROBING_HEATERS_OFF)
  384. static void pause(bool p);
  385. static bool ispaused();
  386. #endif
  387. private:
  388. static void set_current_temp_raw();
  389. static void updateTemperaturesFromRawValues();
  390. #if ENABLED(HEATER_0_USES_MAX6675)
  391. static int read_max6675();
  392. #endif
  393. static void checkExtruderAutoFans();
  394. static float get_pid_output(int e);
  395. #if ENABLED(PIDTEMPBED)
  396. static float get_pid_output_bed();
  397. #endif
  398. static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
  399. static void min_temp_error(int8_t e);
  400. static void max_temp_error(int8_t e);
  401. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  402. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  403. static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  404. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  405. static TRState thermal_runaway_state_machine[HOTENDS];
  406. static millis_t thermal_runaway_timer[HOTENDS];
  407. #endif
  408. #if HAS_THERMALLY_PROTECTED_BED
  409. static TRState thermal_runaway_bed_state_machine;
  410. static millis_t thermal_runaway_bed_timer;
  411. #endif
  412. #endif // THERMAL_PROTECTION
  413. };
  414. extern Temperature thermalManager;
  415. #endif // TEMPERATURE_H