My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 190KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #if defined(MESH_BED_LEVELING)
  35. #include "mesh_bed_leveling.h"
  36. #endif // MESH_BED_LEVELING
  37. #include "ultralcd.h"
  38. #include "planner.h"
  39. #include "stepper.h"
  40. #include "temperature.h"
  41. #include "motion_control.h"
  42. #include "cardreader.h"
  43. #include "watchdog.h"
  44. #include "ConfigurationStore.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #if NUM_SERVOS > 0
  53. #include "Servo.h"
  54. #endif
  55. #if HAS_DIGIPOTSS
  56. #include <SPI.h>
  57. #endif
  58. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  59. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. //Implemented Codes
  61. //-------------------
  62. // G0 -> G1
  63. // G1 - Coordinated Movement X Y Z E
  64. // G2 - CW ARC
  65. // G3 - CCW ARC
  66. // G4 - Dwell S<seconds> or P<milliseconds>
  67. // G10 - retract filament according to settings of M207
  68. // G11 - retract recover filament according to settings of M208
  69. // G28 - Home all Axis
  70. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  71. // G30 - Single Z Probe, probes bed at current XY location.
  72. // G31 - Dock sled (Z_PROBE_SLED only)
  73. // G32 - Undock sled (Z_PROBE_SLED only)
  74. // G90 - Use Absolute Coordinates
  75. // G91 - Use Relative Coordinates
  76. // G92 - Set current position to coordinates given
  77. // M Codes
  78. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  79. // M1 - Same as M0
  80. // M17 - Enable/Power all stepper motors
  81. // M18 - Disable all stepper motors; same as M84
  82. // M20 - List SD card
  83. // M21 - Init SD card
  84. // M22 - Release SD card
  85. // M23 - Select SD file (M23 filename.g)
  86. // M24 - Start/resume SD print
  87. // M25 - Pause SD print
  88. // M26 - Set SD position in bytes (M26 S12345)
  89. // M27 - Report SD print status
  90. // M28 - Start SD write (M28 filename.g)
  91. // M29 - Stop SD write
  92. // M30 - Delete file from SD (M30 filename.g)
  93. // M31 - Output time since last M109 or SD card start to serial
  94. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  95. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  96. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  97. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  99. // M80 - Turn on Power Supply
  100. // M81 - Turn off Power Supply
  101. // M82 - Set E codes absolute (default)
  102. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  103. // M84 - Disable steppers until next move,
  104. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  105. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. // M92 - Set axis_steps_per_unit - same syntax as G92
  107. // M104 - Set extruder target temp
  108. // M105 - Read current temp
  109. // M106 - Fan on
  110. // M107 - Fan off
  111. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. // M112 - Emergency stop
  115. // M114 - Output current position to serial port
  116. // M115 - Capabilities string
  117. // M117 - display message
  118. // M119 - Output Endstop status to serial port
  119. // M120 - Enable endstop detection
  120. // M121 - Disable endstop detection
  121. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  122. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  123. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  124. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  125. // M140 - Set bed target temp
  126. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  127. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  129. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  130. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  131. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  132. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  133. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  134. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  135. // M206 - Set additional homing offset
  136. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  137. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  138. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  139. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  140. // M220 S<factor in percent>- set speed factor override percentage
  141. // M221 S<factor in percent>- set extrude factor override percentage
  142. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  143. // M240 - Trigger a camera to take a photograph
  144. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  145. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  146. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  147. // M301 - Set PID parameters P I and D
  148. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  149. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  150. // M304 - Set bed PID parameters P I and D
  151. // M380 - Activate solenoid on active extruder
  152. // M381 - Disable all solenoids
  153. // M400 - Finish all moves
  154. // M401 - Lower z-probe if present
  155. // M402 - Raise z-probe if present
  156. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  157. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  158. // M406 - Turn off Filament Sensor extrusion control
  159. // M407 - Displays measured filament diameter
  160. // M500 - Store parameters in EEPROM
  161. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  162. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  163. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  164. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  165. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  166. // M665 - Set delta configurations
  167. // M666 - Set delta endstop adjustment
  168. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  169. // M907 - Set digital trimpot motor current using axis codes.
  170. // M908 - Control digital trimpot directly.
  171. // M350 - Set microstepping mode.
  172. // M351 - Toggle MS1 MS2 pins directly.
  173. // ************ SCARA Specific - This can change to suit future G-code regulations
  174. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  175. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  176. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  177. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  178. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  179. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  180. //************* SCARA End ***************
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. #ifdef SDSUPPORT
  184. CardReader card;
  185. #endif
  186. float homing_feedrate[] = HOMING_FEEDRATE;
  187. #ifdef ENABLE_AUTO_BED_LEVELING
  188. int xy_travel_speed = XY_TRAVEL_SPEED;
  189. #endif
  190. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  191. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  192. int feedmultiply = 100; //100->1 200->2
  193. int saved_feedmultiply;
  194. int extrudemultiply = 100; //100->1 200->2
  195. int extruder_multiply[EXTRUDERS] = { 100
  196. #if EXTRUDERS > 1
  197. , 100
  198. #if EXTRUDERS > 2
  199. , 100
  200. #if EXTRUDERS > 3
  201. , 100
  202. #endif
  203. #endif
  204. #endif
  205. };
  206. bool volumetric_enabled = false;
  207. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  208. #if EXTRUDERS > 1
  209. , DEFAULT_NOMINAL_FILAMENT_DIA
  210. #if EXTRUDERS > 2
  211. , DEFAULT_NOMINAL_FILAMENT_DIA
  212. #if EXTRUDERS > 3
  213. , DEFAULT_NOMINAL_FILAMENT_DIA
  214. #endif
  215. #endif
  216. #endif
  217. };
  218. float volumetric_multiplier[EXTRUDERS] = {1.0
  219. #if EXTRUDERS > 1
  220. , 1.0
  221. #if EXTRUDERS > 2
  222. , 1.0
  223. #if EXTRUDERS > 3
  224. , 1.0
  225. #endif
  226. #endif
  227. #endif
  228. };
  229. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  230. float home_offset[3] = { 0, 0, 0 };
  231. #ifdef DELTA
  232. float endstop_adj[3] = { 0, 0, 0 };
  233. #endif
  234. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  235. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  236. bool axis_known_position[3] = { false, false, false };
  237. float zprobe_zoffset;
  238. // Extruder offset
  239. #if EXTRUDERS > 1
  240. #ifndef DUAL_X_CARRIAGE
  241. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  242. #else
  243. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  244. #endif
  245. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  246. #if defined(EXTRUDER_OFFSET_X)
  247. EXTRUDER_OFFSET_X
  248. #else
  249. 0
  250. #endif
  251. ,
  252. #if defined(EXTRUDER_OFFSET_Y)
  253. EXTRUDER_OFFSET_Y
  254. #else
  255. 0
  256. #endif
  257. };
  258. #endif
  259. uint8_t active_extruder = 0;
  260. int fanSpeed = 0;
  261. #ifdef SERVO_ENDSTOPS
  262. int servo_endstops[] = SERVO_ENDSTOPS;
  263. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  264. #endif
  265. #ifdef BARICUDA
  266. int ValvePressure = 0;
  267. int EtoPPressure = 0;
  268. #endif
  269. #ifdef FWRETRACT
  270. bool autoretract_enabled = false;
  271. bool retracted[EXTRUDERS] = { false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #if EXTRUDERS > 3
  277. , false
  278. #endif
  279. #endif
  280. #endif
  281. };
  282. bool retracted_swap[EXTRUDERS] = { false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #if EXTRUDERS > 3
  288. , false
  289. #endif
  290. #endif
  291. #endif
  292. };
  293. float retract_length = RETRACT_LENGTH;
  294. float retract_length_swap = RETRACT_LENGTH_SWAP;
  295. float retract_feedrate = RETRACT_FEEDRATE;
  296. float retract_zlift = RETRACT_ZLIFT;
  297. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  298. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  299. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  300. #endif // FWRETRACT
  301. #ifdef ULTIPANEL
  302. bool powersupply =
  303. #ifdef PS_DEFAULT_OFF
  304. false
  305. #else
  306. true
  307. #endif
  308. ;
  309. #endif
  310. #ifdef DELTA
  311. float delta[3] = { 0, 0, 0 };
  312. #define SIN_60 0.8660254037844386
  313. #define COS_60 0.5
  314. // these are the default values, can be overriden with M665
  315. float delta_radius = DELTA_RADIUS;
  316. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  317. float delta_tower1_y = -COS_60 * delta_radius;
  318. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  319. float delta_tower2_y = -COS_60 * delta_radius;
  320. float delta_tower3_x = 0; // back middle tower
  321. float delta_tower3_y = delta_radius;
  322. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  323. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  324. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  325. #ifdef ENABLE_AUTO_BED_LEVELING
  326. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  327. #endif
  328. #endif
  329. #ifdef SCARA
  330. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. bool cancel_heatup = false;
  334. #ifdef FILAMENT_SENSOR
  335. //Variables for Filament Sensor input
  336. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  337. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  338. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  339. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  340. int delay_index1=0; //index into ring buffer
  341. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  342. float delay_dist=0; //delay distance counter
  343. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  344. #endif
  345. #ifdef FILAMENT_RUNOUT_SENSOR
  346. static bool filrunoutEnqued = false;
  347. #endif
  348. const char errormagic[] PROGMEM = "Error:";
  349. const char echomagic[] PROGMEM = "echo:";
  350. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  351. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  352. static float offset[3] = { 0, 0, 0 };
  353. static bool home_all_axis = true;
  354. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  355. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  356. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  357. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  358. static bool fromsd[BUFSIZE];
  359. static int bufindr = 0;
  360. static int bufindw = 0;
  361. static int buflen = 0;
  362. static char serial_char;
  363. static int serial_count = 0;
  364. static boolean comment_mode = false;
  365. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  366. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  367. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  368. // Inactivity shutdown
  369. static unsigned long previous_millis_cmd = 0;
  370. static unsigned long max_inactive_time = 0;
  371. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  372. unsigned long starttime = 0; ///< Print job start time
  373. unsigned long stoptime = 0; ///< Print job stop time
  374. static uint8_t tmp_extruder;
  375. bool Stopped = false;
  376. #if NUM_SERVOS > 0
  377. Servo servos[NUM_SERVOS];
  378. #endif
  379. bool CooldownNoWait = true;
  380. bool target_direction;
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. //Injects the next command from the pending sequence of commands, when possible
  415. //Return false if and only if no command was pending
  416. static bool drain_queued_commands_P()
  417. {
  418. char cmd[30];
  419. if(!queued_commands_P)
  420. return false;
  421. // Get the next 30 chars from the sequence of gcodes to run
  422. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  423. cmd[sizeof(cmd)-1]= 0;
  424. // Look for the end of line, or the end of sequence
  425. size_t i= 0;
  426. char c;
  427. while( (c= cmd[i]) && c!='\n' )
  428. ++i; // look for the end of this gcode command
  429. cmd[i]= 0;
  430. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  431. {
  432. if(c)
  433. queued_commands_P+= i+1; // move to next command
  434. else
  435. queued_commands_P= NULL; // will have no more commands in the sequence
  436. }
  437. return true;
  438. }
  439. //Record one or many commands to run from program memory.
  440. //Aborts the current queue, if any.
  441. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  442. void enquecommands_P(const char* pgcode)
  443. {
  444. queued_commands_P= pgcode;
  445. drain_queued_commands_P(); // first command exectuted asap (when possible)
  446. }
  447. //adds a single command to the main command buffer, from RAM
  448. //that is really done in a non-safe way.
  449. //needs overworking someday
  450. //Returns false if it failed to do so
  451. bool enquecommand(const char *cmd)
  452. {
  453. if(*cmd==';')
  454. return false;
  455. if(buflen >= BUFSIZE)
  456. return false;
  457. //this is dangerous if a mixing of serial and this happens
  458. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  459. SERIAL_ECHO_START;
  460. SERIAL_ECHOPGM(MSG_Enqueing);
  461. SERIAL_ECHO(cmdbuffer[bufindw]);
  462. SERIAL_ECHOLNPGM("\"");
  463. bufindw= (bufindw + 1)%BUFSIZE;
  464. buflen += 1;
  465. return true;
  466. }
  467. void setup_killpin()
  468. {
  469. #if defined(KILL_PIN) && KILL_PIN > -1
  470. SET_INPUT(KILL_PIN);
  471. WRITE(KILL_PIN,HIGH);
  472. #endif
  473. }
  474. void setup_filrunoutpin()
  475. {
  476. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  477. pinMode(FILRUNOUT_PIN,INPUT);
  478. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  479. WRITE(FILLRUNOUT_PIN,HIGH);
  480. #endif
  481. #endif
  482. }
  483. // Set home pin
  484. void setup_homepin(void)
  485. {
  486. #if defined(HOME_PIN) && HOME_PIN > -1
  487. SET_INPUT(HOME_PIN);
  488. WRITE(HOME_PIN,HIGH);
  489. #endif
  490. }
  491. void setup_photpin()
  492. {
  493. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  494. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  495. #endif
  496. }
  497. void setup_powerhold()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. OUT_WRITE(SUICIDE_PIN, HIGH);
  501. #endif
  502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  503. #if defined(PS_DEFAULT_OFF)
  504. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. OUT_WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. // Set position of Servo Endstops that are defined
  534. #ifdef SERVO_ENDSTOPS
  535. for(int8_t i = 0; i < 3; i++)
  536. {
  537. if(servo_endstops[i] > -1) {
  538. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  539. }
  540. }
  541. #endif
  542. #if SERVO_LEVELING
  543. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  544. servos[servo_endstops[Z_AXIS]].detach();
  545. #endif
  546. }
  547. void setup()
  548. {
  549. setup_killpin();
  550. setup_filrunoutpin();
  551. setup_powerhold();
  552. MYSERIAL.begin(BAUDRATE);
  553. SERIAL_PROTOCOLLNPGM("start");
  554. SERIAL_ECHO_START;
  555. // Check startup - does nothing if bootloader sets MCUSR to 0
  556. byte mcu = MCUSR;
  557. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  558. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  559. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  560. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  561. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  562. MCUSR=0;
  563. SERIAL_ECHOPGM(MSG_MARLIN);
  564. SERIAL_ECHOLNPGM(STRING_VERSION);
  565. #ifdef STRING_VERSION_CONFIG_H
  566. #ifdef STRING_CONFIG_H_AUTHOR
  567. SERIAL_ECHO_START;
  568. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  569. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  570. SERIAL_ECHOPGM(MSG_AUTHOR);
  571. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  572. SERIAL_ECHOPGM("Compiled: ");
  573. SERIAL_ECHOLNPGM(__DATE__);
  574. #endif // STRING_CONFIG_H_AUTHOR
  575. #endif // STRING_VERSION_CONFIG_H
  576. SERIAL_ECHO_START;
  577. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  578. SERIAL_ECHO(freeMemory());
  579. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  580. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  581. for(int8_t i = 0; i < BUFSIZE; i++)
  582. {
  583. fromsd[i] = false;
  584. }
  585. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  586. Config_RetrieveSettings();
  587. tp_init(); // Initialize temperature loop
  588. plan_init(); // Initialize planner;
  589. watchdog_init();
  590. st_init(); // Initialize stepper, this enables interrupts!
  591. setup_photpin();
  592. servo_init();
  593. lcd_init();
  594. _delay_ms(1000); // wait 1sec to display the splash screen
  595. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  596. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  597. #endif
  598. #ifdef DIGIPOT_I2C
  599. digipot_i2c_init();
  600. #endif
  601. #ifdef Z_PROBE_SLED
  602. pinMode(SERVO0_PIN, OUTPUT);
  603. digitalWrite(SERVO0_PIN, LOW); // turn it off
  604. #endif // Z_PROBE_SLED
  605. setup_homepin();
  606. #ifdef STAT_LED_RED
  607. pinMode(STAT_LED_RED, OUTPUT);
  608. digitalWrite(STAT_LED_RED, LOW); // turn it off
  609. #endif
  610. #ifdef STAT_LED_BLUE
  611. pinMode(STAT_LED_BLUE, OUTPUT);
  612. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  613. #endif
  614. }
  615. void loop()
  616. {
  617. if(buflen < (BUFSIZE-1))
  618. get_command();
  619. #ifdef SDSUPPORT
  620. card.checkautostart(false);
  621. #endif
  622. if(buflen)
  623. {
  624. #ifdef SDSUPPORT
  625. if(card.saving)
  626. {
  627. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  628. {
  629. card.write_command(cmdbuffer[bufindr]);
  630. if(card.logging)
  631. {
  632. process_commands();
  633. }
  634. else
  635. {
  636. SERIAL_PROTOCOLLNPGM(MSG_OK);
  637. }
  638. }
  639. else
  640. {
  641. card.closefile();
  642. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  643. }
  644. }
  645. else
  646. {
  647. process_commands();
  648. }
  649. #else
  650. process_commands();
  651. #endif //SDSUPPORT
  652. buflen = (buflen-1);
  653. bufindr = (bufindr + 1)%BUFSIZE;
  654. }
  655. //check heater every n milliseconds
  656. manage_heater();
  657. manage_inactivity();
  658. checkHitEndstops();
  659. lcd_update();
  660. }
  661. void get_command()
  662. {
  663. if(drain_queued_commands_P()) // priority is given to non-serial commands
  664. return;
  665. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  666. serial_char = MYSERIAL.read();
  667. if(serial_char == '\n' ||
  668. serial_char == '\r' ||
  669. serial_count >= (MAX_CMD_SIZE - 1) )
  670. {
  671. // end of line == end of comment
  672. comment_mode = false;
  673. if(!serial_count) {
  674. // short cut for empty lines
  675. return;
  676. }
  677. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  678. fromsd[bufindw] = false;
  679. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  680. {
  681. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  682. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  683. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  684. SERIAL_ERROR_START;
  685. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  686. SERIAL_ERRORLN(gcode_LastN);
  687. //Serial.println(gcode_N);
  688. FlushSerialRequestResend();
  689. serial_count = 0;
  690. return;
  691. }
  692. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  693. {
  694. byte checksum = 0;
  695. byte count = 0;
  696. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  697. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  698. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  699. SERIAL_ERROR_START;
  700. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  701. SERIAL_ERRORLN(gcode_LastN);
  702. FlushSerialRequestResend();
  703. serial_count = 0;
  704. return;
  705. }
  706. //if no errors, continue parsing
  707. }
  708. else
  709. {
  710. SERIAL_ERROR_START;
  711. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  712. SERIAL_ERRORLN(gcode_LastN);
  713. FlushSerialRequestResend();
  714. serial_count = 0;
  715. return;
  716. }
  717. gcode_LastN = gcode_N;
  718. //if no errors, continue parsing
  719. }
  720. else // if we don't receive 'N' but still see '*'
  721. {
  722. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  723. {
  724. SERIAL_ERROR_START;
  725. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  726. SERIAL_ERRORLN(gcode_LastN);
  727. serial_count = 0;
  728. return;
  729. }
  730. }
  731. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  732. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  733. switch(strtol(strchr_pointer + 1, NULL, 10)){
  734. case 0:
  735. case 1:
  736. case 2:
  737. case 3:
  738. if (Stopped == true) {
  739. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  740. LCD_MESSAGEPGM(MSG_STOPPED);
  741. }
  742. break;
  743. default:
  744. break;
  745. }
  746. }
  747. //If command was e-stop process now
  748. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  749. kill();
  750. bufindw = (bufindw + 1)%BUFSIZE;
  751. buflen += 1;
  752. serial_count = 0; //clear buffer
  753. }
  754. else if(serial_char == '\\') { //Handle escapes
  755. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  756. // if we have one more character, copy it over
  757. serial_char = MYSERIAL.read();
  758. cmdbuffer[bufindw][serial_count++] = serial_char;
  759. }
  760. //otherwise do nothing
  761. }
  762. else { // its not a newline, carriage return or escape char
  763. if(serial_char == ';') comment_mode = true;
  764. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  765. }
  766. }
  767. #ifdef SDSUPPORT
  768. if(!card.sdprinting || serial_count!=0){
  769. return;
  770. }
  771. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  772. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  773. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  774. static bool stop_buffering=false;
  775. if(buflen==0) stop_buffering=false;
  776. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  777. int16_t n=card.get();
  778. serial_char = (char)n;
  779. if(serial_char == '\n' ||
  780. serial_char == '\r' ||
  781. (serial_char == '#' && comment_mode == false) ||
  782. (serial_char == ':' && comment_mode == false) ||
  783. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  784. {
  785. if(card.eof()){
  786. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  787. stoptime=millis();
  788. char time[30];
  789. unsigned long t=(stoptime-starttime)/1000;
  790. int hours, minutes;
  791. minutes=(t/60)%60;
  792. hours=t/60/60;
  793. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  794. SERIAL_ECHO_START;
  795. SERIAL_ECHOLN(time);
  796. lcd_setstatus(time);
  797. card.printingHasFinished();
  798. card.checkautostart(true);
  799. }
  800. if(serial_char=='#')
  801. stop_buffering=true;
  802. if(!serial_count)
  803. {
  804. comment_mode = false; //for new command
  805. return; //if empty line
  806. }
  807. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  808. // if(!comment_mode){
  809. fromsd[bufindw] = true;
  810. buflen += 1;
  811. bufindw = (bufindw + 1)%BUFSIZE;
  812. // }
  813. comment_mode = false; //for new command
  814. serial_count = 0; //clear buffer
  815. }
  816. else
  817. {
  818. if(serial_char == ';') comment_mode = true;
  819. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  820. }
  821. }
  822. #endif //SDSUPPORT
  823. }
  824. float code_value()
  825. {
  826. return (strtod(strchr_pointer + 1, NULL));
  827. }
  828. long code_value_long()
  829. {
  830. return (strtol(strchr_pointer + 1, NULL, 10));
  831. }
  832. bool code_seen(char code)
  833. {
  834. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  835. return (strchr_pointer != NULL); //Return True if a character was found
  836. }
  837. #define DEFINE_PGM_READ_ANY(type, reader) \
  838. static inline type pgm_read_any(const type *p) \
  839. { return pgm_read_##reader##_near(p); }
  840. DEFINE_PGM_READ_ANY(float, float);
  841. DEFINE_PGM_READ_ANY(signed char, byte);
  842. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  843. static const PROGMEM type array##_P[3] = \
  844. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  845. static inline type array(int axis) \
  846. { return pgm_read_any(&array##_P[axis]); }
  847. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  848. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  849. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  850. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  851. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  852. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  853. #ifdef DUAL_X_CARRIAGE
  854. #if EXTRUDERS == 1 || defined(COREXY) \
  855. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  856. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  857. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  858. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  859. #endif
  860. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  861. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  862. #endif
  863. #define DXC_FULL_CONTROL_MODE 0
  864. #define DXC_AUTO_PARK_MODE 1
  865. #define DXC_DUPLICATION_MODE 2
  866. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  867. static float x_home_pos(int extruder) {
  868. if (extruder == 0)
  869. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  870. else
  871. // In dual carriage mode the extruder offset provides an override of the
  872. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  873. // This allow soft recalibration of the second extruder offset position without firmware reflash
  874. // (through the M218 command).
  875. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  876. }
  877. static int x_home_dir(int extruder) {
  878. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  879. }
  880. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  881. static bool active_extruder_parked = false; // used in mode 1 & 2
  882. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  883. static unsigned long delayed_move_time = 0; // used in mode 1
  884. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  885. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  886. bool extruder_duplication_enabled = false; // used in mode 2
  887. #endif //DUAL_X_CARRIAGE
  888. static void axis_is_at_home(int axis) {
  889. #ifdef DUAL_X_CARRIAGE
  890. if (axis == X_AXIS) {
  891. if (active_extruder != 0) {
  892. current_position[X_AXIS] = x_home_pos(active_extruder);
  893. min_pos[X_AXIS] = X2_MIN_POS;
  894. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  895. return;
  896. }
  897. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  898. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  899. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  900. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  901. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  902. return;
  903. }
  904. }
  905. #endif
  906. #ifdef SCARA
  907. float homeposition[3];
  908. char i;
  909. if (axis < 2)
  910. {
  911. for (i=0; i<3; i++)
  912. {
  913. homeposition[i] = base_home_pos(i);
  914. }
  915. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  916. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  917. // Works out real Homeposition angles using inverse kinematics,
  918. // and calculates homing offset using forward kinematics
  919. calculate_delta(homeposition);
  920. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  921. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  922. for (i=0; i<2; i++)
  923. {
  924. delta[i] -= home_offset[i];
  925. }
  926. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  927. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  928. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  929. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  930. calculate_SCARA_forward_Transform(delta);
  931. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  932. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  933. current_position[axis] = delta[axis];
  934. // SCARA home positions are based on configuration since the actual limits are determined by the
  935. // inverse kinematic transform.
  936. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  937. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  938. }
  939. else
  940. {
  941. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  942. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  943. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  944. }
  945. #else
  946. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  947. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  948. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  949. #endif
  950. }
  951. #ifdef ENABLE_AUTO_BED_LEVELING
  952. #ifdef AUTO_BED_LEVELING_GRID
  953. #ifndef DELTA
  954. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  955. {
  956. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  957. planeNormal.debug("planeNormal");
  958. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  959. //bedLevel.debug("bedLevel");
  960. //plan_bed_level_matrix.debug("bed level before");
  961. //vector_3 uncorrected_position = plan_get_position_mm();
  962. //uncorrected_position.debug("position before");
  963. vector_3 corrected_position = plan_get_position();
  964. // corrected_position.debug("position after");
  965. current_position[X_AXIS] = corrected_position.x;
  966. current_position[Y_AXIS] = corrected_position.y;
  967. current_position[Z_AXIS] = corrected_position.z;
  968. // put the bed at 0 so we don't go below it.
  969. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  971. }
  972. #endif
  973. #else // not AUTO_BED_LEVELING_GRID
  974. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  975. plan_bed_level_matrix.set_to_identity();
  976. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  977. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  978. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  979. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  980. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  981. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  982. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  983. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  984. vector_3 corrected_position = plan_get_position();
  985. current_position[X_AXIS] = corrected_position.x;
  986. current_position[Y_AXIS] = corrected_position.y;
  987. current_position[Z_AXIS] = corrected_position.z;
  988. // put the bed at 0 so we don't go below it.
  989. current_position[Z_AXIS] = zprobe_zoffset;
  990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  991. }
  992. #endif // AUTO_BED_LEVELING_GRID
  993. static void run_z_probe() {
  994. #ifdef DELTA
  995. float start_z = current_position[Z_AXIS];
  996. long start_steps = st_get_position(Z_AXIS);
  997. // move down slowly until you find the bed
  998. feedrate = homing_feedrate[Z_AXIS] / 4;
  999. destination[Z_AXIS] = -10;
  1000. prepare_move_raw();
  1001. st_synchronize();
  1002. endstops_hit_on_purpose();
  1003. // we have to let the planner know where we are right now as it is not where we said to go.
  1004. long stop_steps = st_get_position(Z_AXIS);
  1005. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1006. current_position[Z_AXIS] = mm;
  1007. calculate_delta(current_position);
  1008. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1009. #else
  1010. plan_bed_level_matrix.set_to_identity();
  1011. feedrate = homing_feedrate[Z_AXIS];
  1012. // move down until you find the bed
  1013. float zPosition = -10;
  1014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1015. st_synchronize();
  1016. // we have to let the planner know where we are right now as it is not where we said to go.
  1017. zPosition = st_get_position_mm(Z_AXIS);
  1018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1019. // move up the retract distance
  1020. zPosition += home_retract_mm(Z_AXIS);
  1021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1022. st_synchronize();
  1023. // move back down slowly to find bed
  1024. if (homing_bump_divisor[Z_AXIS] >= 1)
  1025. {
  1026. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1027. }
  1028. else
  1029. {
  1030. feedrate = homing_feedrate[Z_AXIS]/10;
  1031. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1032. }
  1033. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1035. st_synchronize();
  1036. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1037. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1038. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1039. #endif
  1040. }
  1041. static void do_blocking_move_to(float x, float y, float z) {
  1042. float oldFeedRate = feedrate;
  1043. #ifdef DELTA
  1044. feedrate = XY_TRAVEL_SPEED;
  1045. destination[X_AXIS] = x;
  1046. destination[Y_AXIS] = y;
  1047. destination[Z_AXIS] = z;
  1048. prepare_move_raw();
  1049. st_synchronize();
  1050. #else
  1051. feedrate = homing_feedrate[Z_AXIS];
  1052. current_position[Z_AXIS] = z;
  1053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1054. st_synchronize();
  1055. feedrate = xy_travel_speed;
  1056. current_position[X_AXIS] = x;
  1057. current_position[Y_AXIS] = y;
  1058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1059. st_synchronize();
  1060. #endif
  1061. feedrate = oldFeedRate;
  1062. }
  1063. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1064. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1065. }
  1066. static void setup_for_endstop_move() {
  1067. saved_feedrate = feedrate;
  1068. saved_feedmultiply = feedmultiply;
  1069. feedmultiply = 100;
  1070. previous_millis_cmd = millis();
  1071. enable_endstops(true);
  1072. }
  1073. static void clean_up_after_endstop_move() {
  1074. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1075. enable_endstops(false);
  1076. #endif
  1077. feedrate = saved_feedrate;
  1078. feedmultiply = saved_feedmultiply;
  1079. previous_millis_cmd = millis();
  1080. }
  1081. static void engage_z_probe() {
  1082. // Engage Z Servo endstop if enabled
  1083. #ifdef SERVO_ENDSTOPS
  1084. if (servo_endstops[Z_AXIS] > -1) {
  1085. #if SERVO_LEVELING
  1086. servos[servo_endstops[Z_AXIS]].attach(0);
  1087. #endif
  1088. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1089. #if SERVO_LEVELING
  1090. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1091. servos[servo_endstops[Z_AXIS]].detach();
  1092. #endif
  1093. }
  1094. #elif defined(Z_PROBE_ALLEN_KEY)
  1095. feedrate = homing_feedrate[X_AXIS];
  1096. // Move to the start position to initiate deployment
  1097. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1098. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1099. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1100. prepare_move_raw();
  1101. // Home X to touch the belt
  1102. feedrate = homing_feedrate[X_AXIS]/10;
  1103. destination[X_AXIS] = 0;
  1104. prepare_move_raw();
  1105. // Home Y for safety
  1106. feedrate = homing_feedrate[X_AXIS]/2;
  1107. destination[Y_AXIS] = 0;
  1108. prepare_move_raw();
  1109. st_synchronize();
  1110. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1111. if (z_min_endstop)
  1112. {
  1113. if (!Stopped)
  1114. {
  1115. SERIAL_ERROR_START;
  1116. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1117. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1118. }
  1119. Stop();
  1120. }
  1121. #endif
  1122. }
  1123. static void retract_z_probe() {
  1124. // Retract Z Servo endstop if enabled
  1125. #ifdef SERVO_ENDSTOPS
  1126. if (servo_endstops[Z_AXIS] > -1)
  1127. {
  1128. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1129. st_synchronize();
  1130. #if SERVO_LEVELING
  1131. servos[servo_endstops[Z_AXIS]].attach(0);
  1132. #endif
  1133. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1134. #if SERVO_LEVELING
  1135. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1136. servos[servo_endstops[Z_AXIS]].detach();
  1137. #endif
  1138. }
  1139. #elif defined(Z_PROBE_ALLEN_KEY)
  1140. // Move up for safety
  1141. feedrate = homing_feedrate[X_AXIS];
  1142. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1143. prepare_move_raw();
  1144. // Move to the start position to initiate retraction
  1145. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1146. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1147. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1148. prepare_move_raw();
  1149. // Move the nozzle down to push the probe into retracted position
  1150. feedrate = homing_feedrate[Z_AXIS]/10;
  1151. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1152. prepare_move_raw();
  1153. // Move up for safety
  1154. feedrate = homing_feedrate[Z_AXIS]/2;
  1155. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1156. prepare_move_raw();
  1157. // Home XY for safety
  1158. feedrate = homing_feedrate[X_AXIS]/2;
  1159. destination[X_AXIS] = 0;
  1160. destination[Y_AXIS] = 0;
  1161. prepare_move_raw();
  1162. st_synchronize();
  1163. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1164. if (!z_min_endstop)
  1165. {
  1166. if (!Stopped)
  1167. {
  1168. SERIAL_ERROR_START;
  1169. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1170. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1171. }
  1172. Stop();
  1173. }
  1174. #endif
  1175. }
  1176. enum ProbeAction
  1177. {
  1178. ProbeStay = 0,
  1179. ProbeEngage = (1 << 0),
  1180. ProbeRetract = (1 << 1),
  1181. ProbeEngageAndRectract = (ProbeEngage | ProbeRetract),
  1182. };
  1183. /// Probe bed height at position (x,y), returns the measured z value
  1184. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRectract, int verbose_level=1) {
  1185. // move to right place
  1186. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1187. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1188. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1189. if (retract_action & ProbeEngage) engage_z_probe();
  1190. #endif
  1191. run_z_probe();
  1192. float measured_z = current_position[Z_AXIS];
  1193. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1194. if (retract_action & ProbeRetract) retract_z_probe();
  1195. #endif
  1196. if (verbose_level > 2) {
  1197. SERIAL_PROTOCOLPGM(MSG_BED);
  1198. SERIAL_PROTOCOLPGM(" X: ");
  1199. SERIAL_PROTOCOL(x + 0.0001);
  1200. SERIAL_PROTOCOLPGM(" Y: ");
  1201. SERIAL_PROTOCOL(y + 0.0001);
  1202. SERIAL_PROTOCOLPGM(" Z: ");
  1203. SERIAL_PROTOCOL(measured_z + 0.0001);
  1204. SERIAL_EOL;
  1205. }
  1206. return measured_z;
  1207. }
  1208. #ifdef DELTA
  1209. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1210. if (bed_level[x][y] != 0.0) {
  1211. return; // Don't overwrite good values.
  1212. }
  1213. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1214. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1215. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1216. float median = c; // Median is robust (ignores outliers).
  1217. if (a < b) {
  1218. if (b < c) median = b;
  1219. if (c < a) median = a;
  1220. } else { // b <= a
  1221. if (c < b) median = b;
  1222. if (a < c) median = a;
  1223. }
  1224. bed_level[x][y] = median;
  1225. }
  1226. // Fill in the unprobed points (corners of circular print surface)
  1227. // using linear extrapolation, away from the center.
  1228. static void extrapolate_unprobed_bed_level() {
  1229. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1230. for (int y = 0; y <= half; y++) {
  1231. for (int x = 0; x <= half; x++) {
  1232. if (x + y < 3) continue;
  1233. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1234. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1235. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1236. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1237. }
  1238. }
  1239. }
  1240. // Print calibration results for plotting or manual frame adjustment.
  1241. static void print_bed_level() {
  1242. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1243. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1244. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1245. SERIAL_PROTOCOLPGM(" ");
  1246. }
  1247. SERIAL_ECHOLN("");
  1248. }
  1249. }
  1250. // Reset calibration results to zero.
  1251. void reset_bed_level() {
  1252. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1253. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1254. bed_level[x][y] = 0.0;
  1255. }
  1256. }
  1257. }
  1258. #endif // DELTA
  1259. #endif // ENABLE_AUTO_BED_LEVELING
  1260. static void homeaxis(int axis) {
  1261. #define HOMEAXIS_DO(LETTER) \
  1262. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1263. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1264. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1265. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1266. 0) {
  1267. int axis_home_dir = home_dir(axis);
  1268. #ifdef DUAL_X_CARRIAGE
  1269. if (axis == X_AXIS)
  1270. axis_home_dir = x_home_dir(active_extruder);
  1271. #endif
  1272. current_position[axis] = 0;
  1273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1274. #ifndef Z_PROBE_SLED
  1275. // Engage Servo endstop if enabled
  1276. #ifdef SERVO_ENDSTOPS
  1277. #if SERVO_LEVELING
  1278. if (axis==Z_AXIS) {
  1279. engage_z_probe();
  1280. }
  1281. else
  1282. #endif
  1283. if (servo_endstops[axis] > -1) {
  1284. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1285. }
  1286. #endif
  1287. #endif // Z_PROBE_SLED
  1288. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1289. feedrate = homing_feedrate[axis];
  1290. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1291. st_synchronize();
  1292. current_position[axis] = 0;
  1293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1294. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1295. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1298. if (homing_bump_divisor[axis] >= 1)
  1299. {
  1300. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1301. }
  1302. else
  1303. {
  1304. feedrate = homing_feedrate[axis]/10;
  1305. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1306. }
  1307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1308. st_synchronize();
  1309. #ifdef DELTA
  1310. // retrace by the amount specified in endstop_adj
  1311. if (endstop_adj[axis] * axis_home_dir < 0) {
  1312. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1313. destination[axis] = endstop_adj[axis];
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. }
  1317. #endif
  1318. axis_is_at_home(axis);
  1319. destination[axis] = current_position[axis];
  1320. feedrate = 0.0;
  1321. endstops_hit_on_purpose();
  1322. axis_known_position[axis] = true;
  1323. // Retract Servo endstop if enabled
  1324. #ifdef SERVO_ENDSTOPS
  1325. if (servo_endstops[axis] > -1) {
  1326. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1327. }
  1328. #endif
  1329. #if SERVO_LEVELING
  1330. #ifndef Z_PROBE_SLED
  1331. if (axis==Z_AXIS) retract_z_probe();
  1332. #endif
  1333. #endif
  1334. }
  1335. }
  1336. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1337. void refresh_cmd_timeout(void)
  1338. {
  1339. previous_millis_cmd = millis();
  1340. }
  1341. #ifdef FWRETRACT
  1342. void retract(bool retracting, bool swapretract = false) {
  1343. if(retracting && !retracted[active_extruder]) {
  1344. destination[X_AXIS]=current_position[X_AXIS];
  1345. destination[Y_AXIS]=current_position[Y_AXIS];
  1346. destination[Z_AXIS]=current_position[Z_AXIS];
  1347. destination[E_AXIS]=current_position[E_AXIS];
  1348. if (swapretract) {
  1349. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1350. } else {
  1351. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1352. }
  1353. plan_set_e_position(current_position[E_AXIS]);
  1354. float oldFeedrate = feedrate;
  1355. feedrate=retract_feedrate*60;
  1356. retracted[active_extruder]=true;
  1357. prepare_move();
  1358. if(retract_zlift > 0.01) {
  1359. current_position[Z_AXIS]-=retract_zlift;
  1360. #ifdef DELTA
  1361. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1362. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1363. #else
  1364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1365. #endif
  1366. prepare_move();
  1367. }
  1368. feedrate = oldFeedrate;
  1369. } else if(!retracting && retracted[active_extruder]) {
  1370. destination[X_AXIS]=current_position[X_AXIS];
  1371. destination[Y_AXIS]=current_position[Y_AXIS];
  1372. destination[Z_AXIS]=current_position[Z_AXIS];
  1373. destination[E_AXIS]=current_position[E_AXIS];
  1374. if(retract_zlift > 0.01) {
  1375. current_position[Z_AXIS]+=retract_zlift;
  1376. #ifdef DELTA
  1377. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1378. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1379. #else
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. #endif
  1382. //prepare_move();
  1383. }
  1384. if (swapretract) {
  1385. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1386. } else {
  1387. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1388. }
  1389. plan_set_e_position(current_position[E_AXIS]);
  1390. float oldFeedrate = feedrate;
  1391. feedrate=retract_recover_feedrate*60;
  1392. retracted[active_extruder]=false;
  1393. prepare_move();
  1394. feedrate = oldFeedrate;
  1395. }
  1396. } //retract
  1397. #endif //FWRETRACT
  1398. #ifdef Z_PROBE_SLED
  1399. #ifndef SLED_DOCKING_OFFSET
  1400. #define SLED_DOCKING_OFFSET 0
  1401. #endif
  1402. //
  1403. // Method to dock/undock a sled designed by Charles Bell.
  1404. //
  1405. // dock[in] If true, move to MAX_X and engage the electromagnet
  1406. // offset[in] The additional distance to move to adjust docking location
  1407. //
  1408. static void dock_sled(bool dock, int offset=0) {
  1409. int z_loc;
  1410. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1411. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1412. SERIAL_ECHO_START;
  1413. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1414. return;
  1415. }
  1416. if (dock) {
  1417. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1418. current_position[Y_AXIS],
  1419. current_position[Z_AXIS]);
  1420. // turn off magnet
  1421. digitalWrite(SERVO0_PIN, LOW);
  1422. } else {
  1423. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1424. z_loc = Z_RAISE_BEFORE_PROBING;
  1425. else
  1426. z_loc = current_position[Z_AXIS];
  1427. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1428. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1429. // turn on magnet
  1430. digitalWrite(SERVO0_PIN, HIGH);
  1431. }
  1432. }
  1433. #endif
  1434. /**
  1435. *
  1436. * G-Code Handler functions
  1437. *
  1438. */
  1439. /**
  1440. * G0, G1: Coordinated movement of X Y Z E axes
  1441. */
  1442. inline void gcode_G0_G1() {
  1443. if (!Stopped) {
  1444. get_coordinates(); // For X Y Z E F
  1445. #ifdef FWRETRACT
  1446. if (autoretract_enabled)
  1447. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1448. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1449. // Is this move an attempt to retract or recover?
  1450. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1451. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1452. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1453. retract(!retracted[active_extruder]);
  1454. return;
  1455. }
  1456. }
  1457. #endif //FWRETRACT
  1458. prepare_move();
  1459. //ClearToSend();
  1460. }
  1461. }
  1462. /**
  1463. * G2: Clockwise Arc
  1464. * G3: Counterclockwise Arc
  1465. */
  1466. inline void gcode_G2_G3(bool clockwise) {
  1467. if (!Stopped) {
  1468. get_arc_coordinates();
  1469. prepare_arc_move(clockwise);
  1470. }
  1471. }
  1472. /**
  1473. * G4: Dwell S<seconds> or P<milliseconds>
  1474. */
  1475. inline void gcode_G4() {
  1476. unsigned long codenum=0;
  1477. LCD_MESSAGEPGM(MSG_DWELL);
  1478. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1479. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1480. st_synchronize();
  1481. previous_millis_cmd = millis();
  1482. codenum += previous_millis_cmd; // keep track of when we started waiting
  1483. while(millis() < codenum) {
  1484. manage_heater();
  1485. manage_inactivity();
  1486. lcd_update();
  1487. }
  1488. }
  1489. #ifdef FWRETRACT
  1490. /**
  1491. * G10 - Retract filament according to settings of M207
  1492. * G11 - Recover filament according to settings of M208
  1493. */
  1494. inline void gcode_G10_G11(bool doRetract=false) {
  1495. #if EXTRUDERS > 1
  1496. if (doRetract) {
  1497. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1498. }
  1499. #endif
  1500. retract(doRetract
  1501. #if EXTRUDERS > 1
  1502. , retracted_swap[active_extruder]
  1503. #endif
  1504. );
  1505. }
  1506. #endif //FWRETRACT
  1507. /**
  1508. * G28: Home all axes, one at a time
  1509. */
  1510. inline void gcode_G28() {
  1511. #ifdef ENABLE_AUTO_BED_LEVELING
  1512. #ifdef DELTA
  1513. reset_bed_level();
  1514. #else
  1515. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1516. #endif
  1517. #endif
  1518. #if defined(MESH_BED_LEVELING)
  1519. uint8_t mbl_was_active = mbl.active;
  1520. mbl.active = 0;
  1521. #endif // MESH_BED_LEVELING
  1522. saved_feedrate = feedrate;
  1523. saved_feedmultiply = feedmultiply;
  1524. feedmultiply = 100;
  1525. previous_millis_cmd = millis();
  1526. enable_endstops(true);
  1527. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1528. feedrate = 0.0;
  1529. #ifdef DELTA
  1530. // A delta can only safely home all axis at the same time
  1531. // all axis have to home at the same time
  1532. // Move all carriages up together until the first endstop is hit.
  1533. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1535. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1536. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1538. st_synchronize();
  1539. endstops_hit_on_purpose();
  1540. // Destination reached
  1541. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1542. // take care of back off and rehome now we are all at the top
  1543. HOMEAXIS(X);
  1544. HOMEAXIS(Y);
  1545. HOMEAXIS(Z);
  1546. calculate_delta(current_position);
  1547. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1548. #else // NOT DELTA
  1549. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1550. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1551. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1552. HOMEAXIS(Z);
  1553. }
  1554. #endif
  1555. #ifdef QUICK_HOME
  1556. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1557. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1558. #ifndef DUAL_X_CARRIAGE
  1559. int x_axis_home_dir = home_dir(X_AXIS);
  1560. #else
  1561. int x_axis_home_dir = x_home_dir(active_extruder);
  1562. extruder_duplication_enabled = false;
  1563. #endif
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1566. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1567. feedrate = homing_feedrate[X_AXIS];
  1568. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1569. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1570. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1571. } else {
  1572. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1573. }
  1574. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. axis_is_at_home(X_AXIS);
  1577. axis_is_at_home(Y_AXIS);
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1579. destination[X_AXIS] = current_position[X_AXIS];
  1580. destination[Y_AXIS] = current_position[Y_AXIS];
  1581. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1582. feedrate = 0.0;
  1583. st_synchronize();
  1584. endstops_hit_on_purpose();
  1585. current_position[X_AXIS] = destination[X_AXIS];
  1586. current_position[Y_AXIS] = destination[Y_AXIS];
  1587. #ifndef SCARA
  1588. current_position[Z_AXIS] = destination[Z_AXIS];
  1589. #endif
  1590. }
  1591. #endif //QUICK_HOME
  1592. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1593. #ifdef DUAL_X_CARRIAGE
  1594. int tmp_extruder = active_extruder;
  1595. extruder_duplication_enabled = false;
  1596. active_extruder = !active_extruder;
  1597. HOMEAXIS(X);
  1598. inactive_extruder_x_pos = current_position[X_AXIS];
  1599. active_extruder = tmp_extruder;
  1600. HOMEAXIS(X);
  1601. // reset state used by the different modes
  1602. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1603. delayed_move_time = 0;
  1604. active_extruder_parked = true;
  1605. #else
  1606. HOMEAXIS(X);
  1607. #endif
  1608. }
  1609. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1610. if (code_seen(axis_codes[X_AXIS])) {
  1611. if (code_value_long() != 0) {
  1612. current_position[X_AXIS] = code_value()
  1613. #ifndef SCARA
  1614. + home_offset[X_AXIS]
  1615. #endif
  1616. ;
  1617. }
  1618. }
  1619. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1620. current_position[Y_AXIS] = code_value()
  1621. #ifndef SCARA
  1622. + home_offset[Y_AXIS]
  1623. #endif
  1624. ;
  1625. }
  1626. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1627. #ifndef Z_SAFE_HOMING
  1628. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1629. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1630. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1631. feedrate = max_feedrate[Z_AXIS];
  1632. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1633. st_synchronize();
  1634. #endif
  1635. HOMEAXIS(Z);
  1636. }
  1637. #else // Z_SAFE_HOMING
  1638. if (home_all_axis) {
  1639. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1640. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1641. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1642. feedrate = XY_TRAVEL_SPEED / 60;
  1643. current_position[Z_AXIS] = 0;
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1645. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1646. st_synchronize();
  1647. current_position[X_AXIS] = destination[X_AXIS];
  1648. current_position[Y_AXIS] = destination[Y_AXIS];
  1649. HOMEAXIS(Z);
  1650. }
  1651. // Let's see if X and Y are homed and probe is inside bed area.
  1652. if (code_seen(axis_codes[Z_AXIS])) {
  1653. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1654. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1655. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1656. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1657. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1658. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1659. current_position[Z_AXIS] = 0;
  1660. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1661. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1662. feedrate = max_feedrate[Z_AXIS];
  1663. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1664. st_synchronize();
  1665. HOMEAXIS(Z);
  1666. }
  1667. else {
  1668. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1669. SERIAL_ECHO_START;
  1670. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1671. }
  1672. }
  1673. else {
  1674. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1675. SERIAL_ECHO_START;
  1676. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1677. }
  1678. }
  1679. #endif // Z_SAFE_HOMING
  1680. #endif // Z_HOME_DIR < 0
  1681. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1682. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1683. #ifdef ENABLE_AUTO_BED_LEVELING
  1684. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1685. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1686. #endif
  1687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1688. #endif // else DELTA
  1689. #ifdef SCARA
  1690. calculate_delta(current_position);
  1691. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1692. #endif
  1693. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1694. enable_endstops(false);
  1695. #endif
  1696. #if defined(MESH_BED_LEVELING)
  1697. if (mbl_was_active) {
  1698. current_position[X_AXIS] = mbl.get_x(0);
  1699. current_position[Y_AXIS] = mbl.get_y(0);
  1700. destination[X_AXIS] = current_position[X_AXIS];
  1701. destination[Y_AXIS] = current_position[Y_AXIS];
  1702. destination[Z_AXIS] = current_position[Z_AXIS];
  1703. destination[E_AXIS] = current_position[E_AXIS];
  1704. feedrate = homing_feedrate[X_AXIS];
  1705. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1706. st_synchronize();
  1707. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1708. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1709. mbl.active = 1;
  1710. }
  1711. #endif
  1712. feedrate = saved_feedrate;
  1713. feedmultiply = saved_feedmultiply;
  1714. previous_millis_cmd = millis();
  1715. endstops_hit_on_purpose();
  1716. }
  1717. #if defined(MESH_BED_LEVELING)
  1718. inline void gcode_G29() {
  1719. static int probe_point = -1;
  1720. int state = 0;
  1721. if (code_seen('S') || code_seen('s')) {
  1722. state = code_value_long();
  1723. if (state < 0 || state > 2) {
  1724. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1725. return;
  1726. }
  1727. }
  1728. if (state == 0) { // Dump mesh_bed_leveling
  1729. if (mbl.active) {
  1730. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1731. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1732. SERIAL_PROTOCOLPGM(",");
  1733. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1734. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1735. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1736. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1737. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1738. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1739. SERIAL_PROTOCOLPGM(" ");
  1740. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1741. }
  1742. SERIAL_EOL;
  1743. }
  1744. } else {
  1745. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1746. }
  1747. } else if (state == 1) { // Begin probing mesh points
  1748. mbl.reset();
  1749. probe_point = 0;
  1750. enquecommands_P(PSTR("G28"));
  1751. enquecommands_P(PSTR("G29 S2"));
  1752. } else if (state == 2) { // Goto next point
  1753. if (probe_point < 0) {
  1754. SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
  1755. return;
  1756. }
  1757. int ix, iy;
  1758. if (probe_point == 0) {
  1759. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. } else {
  1762. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1763. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1764. if (iy&1) { // Zig zag
  1765. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1766. }
  1767. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1768. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1770. st_synchronize();
  1771. }
  1772. if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
  1773. SERIAL_PROTOCOLPGM("Mesh done.\n");
  1774. probe_point = -1;
  1775. mbl.active = 1;
  1776. enquecommands_P(PSTR("G28"));
  1777. return;
  1778. }
  1779. ix = probe_point % MESH_NUM_X_POINTS;
  1780. iy = probe_point / MESH_NUM_X_POINTS;
  1781. if (iy&1) { // Zig zag
  1782. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1783. }
  1784. current_position[X_AXIS] = mbl.get_x(ix);
  1785. current_position[Y_AXIS] = mbl.get_y(iy);
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1787. st_synchronize();
  1788. probe_point++;
  1789. }
  1790. }
  1791. #endif
  1792. #ifdef ENABLE_AUTO_BED_LEVELING
  1793. // Define the possible boundaries for probing based on set limits
  1794. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1795. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1796. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1797. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1798. #ifdef AUTO_BED_LEVELING_GRID
  1799. // Make sure probing points are reachable
  1800. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1801. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1802. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1803. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1804. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1805. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1806. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1807. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1808. #endif
  1809. #else // !AUTO_BED_LEVELING_GRID
  1810. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1811. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1812. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1813. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1814. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1815. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1816. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1817. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1818. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1819. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1820. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1821. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1822. #endif
  1823. #endif // !AUTO_BED_LEVELING_GRID
  1824. /**
  1825. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1826. * Will fail if the printer has not been homed with G28.
  1827. *
  1828. * Enhanced G29 Auto Bed Leveling Probe Routine
  1829. *
  1830. * Parameters With AUTO_BED_LEVELING_GRID:
  1831. *
  1832. * P Set the size of the grid that will be probed (P x P points).
  1833. * Not supported by non-linear delta printer bed leveling.
  1834. * Example: "G29 P4"
  1835. *
  1836. * S Set the XY travel speed between probe points (in mm/min)
  1837. *
  1838. * V Set the verbose level (0-4). Example: "G29 V3"
  1839. *
  1840. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1841. * This is useful for manual bed leveling and finding flaws in the bed (to
  1842. * assist with part placement).
  1843. * Not supported by non-linear delta printer bed leveling.
  1844. *
  1845. * F Set the Front limit of the probing grid
  1846. * B Set the Back limit of the probing grid
  1847. * L Set the Left limit of the probing grid
  1848. * R Set the Right limit of the probing grid
  1849. *
  1850. * Global Parameters:
  1851. *
  1852. * E/e By default G29 engages / disengages the probe for each point.
  1853. * Include "E" to engage and disengage the probe just once.
  1854. * There's no extra effect if you have a fixed probe.
  1855. * Usage: "G29 E" or "G29 e"
  1856. *
  1857. */
  1858. inline void gcode_G29() {
  1859. // Prevent user from running a G29 without first homing in X and Y
  1860. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1861. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1862. SERIAL_ECHO_START;
  1863. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1864. return;
  1865. }
  1866. int verbose_level = 1;
  1867. float x_tmp, y_tmp, z_tmp, real_z;
  1868. if (code_seen('V') || code_seen('v')) {
  1869. verbose_level = code_value_long();
  1870. if (verbose_level < 0 || verbose_level > 4) {
  1871. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1872. return;
  1873. }
  1874. }
  1875. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1876. #ifdef AUTO_BED_LEVELING_GRID
  1877. #ifndef DELTA
  1878. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1879. #endif
  1880. if (verbose_level > 0)
  1881. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1882. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1883. #ifndef DELTA
  1884. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1885. if (auto_bed_leveling_grid_points < 2) {
  1886. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1887. return;
  1888. }
  1889. #endif
  1890. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1891. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1892. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1893. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1894. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1895. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1896. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1897. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1898. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1899. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1900. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1901. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1902. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1903. if (left_out || right_out || front_out || back_out) {
  1904. if (left_out) {
  1905. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1906. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1907. }
  1908. if (right_out) {
  1909. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1910. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1911. }
  1912. if (front_out) {
  1913. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1914. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1915. }
  1916. if (back_out) {
  1917. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1918. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1919. }
  1920. return;
  1921. }
  1922. #endif // AUTO_BED_LEVELING_GRID
  1923. #ifdef Z_PROBE_SLED
  1924. dock_sled(false); // engage (un-dock) the probe
  1925. #elif not defined(SERVO_ENDSTOPS)
  1926. engage_z_probe();
  1927. #endif
  1928. st_synchronize();
  1929. #ifdef DELTA
  1930. reset_bed_level();
  1931. #else
  1932. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1933. //vector_3 corrected_position = plan_get_position_mm();
  1934. //corrected_position.debug("position before G29");
  1935. plan_bed_level_matrix.set_to_identity();
  1936. vector_3 uncorrected_position = plan_get_position();
  1937. //uncorrected_position.debug("position during G29");
  1938. current_position[X_AXIS] = uncorrected_position.x;
  1939. current_position[Y_AXIS] = uncorrected_position.y;
  1940. current_position[Z_AXIS] = uncorrected_position.z;
  1941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. #endif
  1943. setup_for_endstop_move();
  1944. feedrate = homing_feedrate[Z_AXIS];
  1945. #ifdef AUTO_BED_LEVELING_GRID
  1946. // probe at the points of a lattice grid
  1947. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1948. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1949. #ifndef DELTA
  1950. // solve the plane equation ax + by + d = z
  1951. // A is the matrix with rows [x y 1] for all the probed points
  1952. // B is the vector of the Z positions
  1953. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1954. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1955. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1956. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1957. eqnBVector[abl2], // "B" vector of Z points
  1958. mean = 0.0;
  1959. #else
  1960. delta_grid_spacing[0] = xGridSpacing;
  1961. delta_grid_spacing[1] = yGridSpacing;
  1962. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1963. if (code_seen(axis_codes[Z_AXIS])) {
  1964. z_offset += code_value();
  1965. }
  1966. #endif
  1967. int probePointCounter = 0;
  1968. bool zig = true;
  1969. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1970. {
  1971. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1972. int xStart, xStop, xInc;
  1973. if (zig)
  1974. {
  1975. xStart = 0;
  1976. xStop = auto_bed_leveling_grid_points;
  1977. xInc = 1;
  1978. zig = false;
  1979. }
  1980. else
  1981. {
  1982. xStart = auto_bed_leveling_grid_points - 1;
  1983. xStop = -1;
  1984. xInc = -1;
  1985. zig = true;
  1986. }
  1987. #ifndef DELTA
  1988. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1989. // This gets the probe points in more readable order.
  1990. if (!topo_flag) zig = !zig;
  1991. #endif
  1992. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1993. {
  1994. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1995. // raise extruder
  1996. float measured_z,
  1997. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1998. #ifdef DELTA
  1999. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2000. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2001. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  2002. continue;
  2003. #endif //DELTA
  2004. // Enhanced G29 - Do not retract servo between probes
  2005. ProbeAction act;
  2006. if (enhanced_g29) {
  2007. if (yProbe == front_probe_bed_position && xCount == 0)
  2008. act = ProbeEngage;
  2009. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2010. act = ProbeRetract;
  2011. else
  2012. act = ProbeStay;
  2013. }
  2014. else
  2015. act = ProbeEngageAndRectract;
  2016. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2017. #ifndef DELTA
  2018. mean += measured_z;
  2019. eqnBVector[probePointCounter] = measured_z;
  2020. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2021. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2022. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2023. #else
  2024. bed_level[xCount][yCount] = measured_z + z_offset;
  2025. #endif
  2026. probePointCounter++;
  2027. } //xProbe
  2028. } //yProbe
  2029. clean_up_after_endstop_move();
  2030. #ifndef DELTA
  2031. // solve lsq problem
  2032. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2033. mean /= abl2;
  2034. if (verbose_level) {
  2035. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2036. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2037. SERIAL_PROTOCOLPGM(" b: ");
  2038. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2039. SERIAL_PROTOCOLPGM(" d: ");
  2040. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2041. SERIAL_EOL;
  2042. if (verbose_level > 2) {
  2043. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2044. SERIAL_PROTOCOL_F(mean, 8);
  2045. SERIAL_EOL;
  2046. }
  2047. }
  2048. if (topo_flag) {
  2049. int xx, yy;
  2050. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2051. #if TOPO_ORIGIN == OriginFrontLeft
  2052. SERIAL_PROTOCOLPGM("+-----------+\n");
  2053. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2054. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2055. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2056. SERIAL_PROTOCOLPGM("+-----------+\n");
  2057. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  2058. #else
  2059. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  2060. #endif
  2061. {
  2062. #if TOPO_ORIGIN == OriginBackRight
  2063. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  2064. #else
  2065. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  2066. #endif
  2067. {
  2068. int ind =
  2069. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  2070. yy * auto_bed_leveling_grid_points + xx
  2071. #elif TOPO_ORIGIN == OriginBackLeft
  2072. xx * auto_bed_leveling_grid_points + yy
  2073. #elif TOPO_ORIGIN == OriginFrontRight
  2074. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  2075. #endif
  2076. ;
  2077. float diff = eqnBVector[ind] - mean;
  2078. if (diff >= 0.0)
  2079. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2080. else
  2081. SERIAL_PROTOCOLPGM(" ");
  2082. SERIAL_PROTOCOL_F(diff, 5);
  2083. } // xx
  2084. SERIAL_EOL;
  2085. } // yy
  2086. SERIAL_EOL;
  2087. } //topo_flag
  2088. set_bed_level_equation_lsq(plane_equation_coefficients);
  2089. free(plane_equation_coefficients);
  2090. #else
  2091. extrapolate_unprobed_bed_level();
  2092. print_bed_level();
  2093. #endif
  2094. #else // !AUTO_BED_LEVELING_GRID
  2095. // Probe at 3 arbitrary points
  2096. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2097. if (enhanced_g29) {
  2098. // Basic Enhanced G29
  2099. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2100. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2101. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2102. }
  2103. else {
  2104. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level=verbose_level);
  2105. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  2106. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  2107. }
  2108. clean_up_after_endstop_move();
  2109. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2110. #endif // !AUTO_BED_LEVELING_GRID
  2111. #ifndef DELTA
  2112. if (verbose_level > 0)
  2113. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2114. // Correct the Z height difference from z-probe position and hotend tip position.
  2115. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2116. // When the bed is uneven, this height must be corrected.
  2117. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2118. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2119. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2120. z_tmp = current_position[Z_AXIS];
  2121. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2122. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2124. #endif
  2125. #ifdef Z_PROBE_SLED
  2126. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2127. #elif not defined(SERVO_ENDSTOPS)
  2128. retract_z_probe();
  2129. #endif
  2130. #ifdef Z_PROBE_END_SCRIPT
  2131. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2132. st_synchronize();
  2133. #endif
  2134. }
  2135. #ifndef Z_PROBE_SLED
  2136. inline void gcode_G30() {
  2137. engage_z_probe(); // Engage Z Servo endstop if available
  2138. st_synchronize();
  2139. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2140. setup_for_endstop_move();
  2141. feedrate = homing_feedrate[Z_AXIS];
  2142. run_z_probe();
  2143. SERIAL_PROTOCOLPGM(MSG_BED);
  2144. SERIAL_PROTOCOLPGM(" X: ");
  2145. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2146. SERIAL_PROTOCOLPGM(" Y: ");
  2147. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2148. SERIAL_PROTOCOLPGM(" Z: ");
  2149. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2150. SERIAL_EOL;
  2151. clean_up_after_endstop_move();
  2152. retract_z_probe(); // Retract Z Servo endstop if available
  2153. }
  2154. #endif //!Z_PROBE_SLED
  2155. #endif //ENABLE_AUTO_BED_LEVELING
  2156. /**
  2157. * G92: Set current position to given X Y Z E
  2158. */
  2159. inline void gcode_G92() {
  2160. if (!code_seen(axis_codes[E_AXIS]))
  2161. st_synchronize();
  2162. for (int i = 0; i < NUM_AXIS; i++) {
  2163. if (code_seen(axis_codes[i])) {
  2164. current_position[i] = code_value();
  2165. if (i == E_AXIS)
  2166. plan_set_e_position(current_position[E_AXIS]);
  2167. else
  2168. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2169. }
  2170. }
  2171. }
  2172. #ifdef ULTIPANEL
  2173. /**
  2174. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2175. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2176. */
  2177. inline void gcode_M0_M1() {
  2178. char *src = strchr_pointer + 2;
  2179. unsigned long codenum = 0;
  2180. bool hasP = false, hasS = false;
  2181. if (code_seen('P')) {
  2182. codenum = code_value(); // milliseconds to wait
  2183. hasP = codenum > 0;
  2184. }
  2185. if (code_seen('S')) {
  2186. codenum = code_value() * 1000; // seconds to wait
  2187. hasS = codenum > 0;
  2188. }
  2189. char* starpos = strchr(src, '*');
  2190. if (starpos != NULL) *(starpos) = '\0';
  2191. while (*src == ' ') ++src;
  2192. if (!hasP && !hasS && *src != '\0')
  2193. lcd_setstatus(src);
  2194. else
  2195. LCD_MESSAGEPGM(MSG_USERWAIT);
  2196. lcd_ignore_click();
  2197. st_synchronize();
  2198. previous_millis_cmd = millis();
  2199. if (codenum > 0) {
  2200. codenum += previous_millis_cmd; // keep track of when we started waiting
  2201. while(millis() < codenum && !lcd_clicked()) {
  2202. manage_heater();
  2203. manage_inactivity();
  2204. lcd_update();
  2205. }
  2206. lcd_ignore_click(false);
  2207. }
  2208. else {
  2209. if (!lcd_detected()) return;
  2210. while (!lcd_clicked()) {
  2211. manage_heater();
  2212. manage_inactivity();
  2213. lcd_update();
  2214. }
  2215. }
  2216. if (IS_SD_PRINTING)
  2217. LCD_MESSAGEPGM(MSG_RESUMING);
  2218. else
  2219. LCD_MESSAGEPGM(WELCOME_MSG);
  2220. }
  2221. #endif // ULTIPANEL
  2222. /**
  2223. * M17: Enable power on all stepper motors
  2224. */
  2225. inline void gcode_M17() {
  2226. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2227. enable_x();
  2228. enable_y();
  2229. enable_z();
  2230. enable_e0();
  2231. enable_e1();
  2232. enable_e2();
  2233. enable_e3();
  2234. }
  2235. #ifdef SDSUPPORT
  2236. /**
  2237. * M20: List SD card to serial output
  2238. */
  2239. inline void gcode_M20() {
  2240. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2241. card.ls();
  2242. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2243. }
  2244. /**
  2245. * M21: Init SD Card
  2246. */
  2247. inline void gcode_M21() {
  2248. card.initsd();
  2249. }
  2250. /**
  2251. * M22: Release SD Card
  2252. */
  2253. inline void gcode_M22() {
  2254. card.release();
  2255. }
  2256. /**
  2257. * M23: Select a file
  2258. */
  2259. inline void gcode_M23() {
  2260. char* codepos = strchr_pointer + 4;
  2261. char* starpos = strchr(codepos, '*');
  2262. if (starpos) *starpos = '\0';
  2263. card.openFile(codepos, true);
  2264. }
  2265. /**
  2266. * M24: Start SD Print
  2267. */
  2268. inline void gcode_M24() {
  2269. card.startFileprint();
  2270. starttime = millis();
  2271. }
  2272. /**
  2273. * M25: Pause SD Print
  2274. */
  2275. inline void gcode_M25() {
  2276. card.pauseSDPrint();
  2277. }
  2278. /**
  2279. * M26: Set SD Card file index
  2280. */
  2281. inline void gcode_M26() {
  2282. if (card.cardOK && code_seen('S'))
  2283. card.setIndex(code_value_long());
  2284. }
  2285. /**
  2286. * M27: Get SD Card status
  2287. */
  2288. inline void gcode_M27() {
  2289. card.getStatus();
  2290. }
  2291. /**
  2292. * M28: Start SD Write
  2293. */
  2294. inline void gcode_M28() {
  2295. char* codepos = strchr_pointer + 4;
  2296. char* starpos = strchr(codepos, '*');
  2297. if (starpos) {
  2298. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2299. strchr_pointer = strchr(npos, ' ') + 1;
  2300. *(starpos) = '\0';
  2301. }
  2302. card.openFile(codepos, false);
  2303. }
  2304. /**
  2305. * M29: Stop SD Write
  2306. * Processed in write to file routine above
  2307. */
  2308. inline void gcode_M29() {
  2309. // card.saving = false;
  2310. }
  2311. /**
  2312. * M30 <filename>: Delete SD Card file
  2313. */
  2314. inline void gcode_M30() {
  2315. if (card.cardOK) {
  2316. card.closefile();
  2317. char* starpos = strchr(strchr_pointer + 4, '*');
  2318. if (starpos) {
  2319. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2320. strchr_pointer = strchr(npos, ' ') + 1;
  2321. *(starpos) = '\0';
  2322. }
  2323. card.removeFile(strchr_pointer + 4);
  2324. }
  2325. }
  2326. #endif
  2327. /**
  2328. * M31: Get the time since the start of SD Print (or last M109)
  2329. */
  2330. inline void gcode_M31() {
  2331. stoptime = millis();
  2332. unsigned long t = (stoptime - starttime) / 1000;
  2333. int min = t / 60, sec = t % 60;
  2334. char time[30];
  2335. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2336. SERIAL_ECHO_START;
  2337. SERIAL_ECHOLN(time);
  2338. lcd_setstatus(time);
  2339. autotempShutdown();
  2340. }
  2341. #ifdef SDSUPPORT
  2342. /**
  2343. * M32: Select file and start SD Print
  2344. */
  2345. inline void gcode_M32() {
  2346. if (card.sdprinting)
  2347. st_synchronize();
  2348. char* codepos = strchr_pointer + 4;
  2349. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2350. if (! namestartpos)
  2351. namestartpos = codepos; //default name position, 4 letters after the M
  2352. else
  2353. namestartpos++; //to skip the '!'
  2354. char* starpos = strchr(codepos, '*');
  2355. if (starpos) *(starpos) = '\0';
  2356. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2357. if (card.cardOK) {
  2358. card.openFile(namestartpos, true, !call_procedure);
  2359. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2360. card.setIndex(code_value_long());
  2361. card.startFileprint();
  2362. if (!call_procedure)
  2363. starttime = millis(); //procedure calls count as normal print time.
  2364. }
  2365. }
  2366. /**
  2367. * M928: Start SD Write
  2368. */
  2369. inline void gcode_M928() {
  2370. char* starpos = strchr(strchr_pointer + 5, '*');
  2371. if (starpos) {
  2372. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2373. strchr_pointer = strchr(npos, ' ') + 1;
  2374. *(starpos) = '\0';
  2375. }
  2376. card.openLogFile(strchr_pointer + 5);
  2377. }
  2378. #endif // SDSUPPORT
  2379. /**
  2380. * M42: Change pin status via GCode
  2381. */
  2382. inline void gcode_M42() {
  2383. if (code_seen('S')) {
  2384. int pin_status = code_value(),
  2385. pin_number = LED_PIN;
  2386. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2387. pin_number = code_value();
  2388. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2389. if (sensitive_pins[i] == pin_number) {
  2390. pin_number = -1;
  2391. break;
  2392. }
  2393. }
  2394. #if defined(FAN_PIN) && FAN_PIN > -1
  2395. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2396. #endif
  2397. if (pin_number > -1) {
  2398. pinMode(pin_number, OUTPUT);
  2399. digitalWrite(pin_number, pin_status);
  2400. analogWrite(pin_number, pin_status);
  2401. }
  2402. } // code_seen('S')
  2403. }
  2404. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2405. #if Z_MIN_PIN == -1
  2406. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2407. #endif
  2408. /**
  2409. * M48: Z-Probe repeatability measurement function.
  2410. *
  2411. * Usage:
  2412. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2413. * n = Number of samples (4-50, default 10)
  2414. * X = Sample X position
  2415. * Y = Sample Y position
  2416. * V = Verbose level (0-4, default=1)
  2417. * E = Engage probe for each reading
  2418. * L = Number of legs of movement before probe
  2419. *
  2420. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2421. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2422. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2423. * regenerated.
  2424. *
  2425. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2426. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2427. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2428. */
  2429. inline void gcode_M48() {
  2430. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2431. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2432. double X_current, Y_current, Z_current;
  2433. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2434. if (code_seen('V') || code_seen('v')) {
  2435. verbose_level = code_value();
  2436. if (verbose_level < 0 || verbose_level > 4 ) {
  2437. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2438. return;
  2439. }
  2440. }
  2441. if (verbose_level > 0)
  2442. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2443. if (code_seen('n')) {
  2444. n_samples = code_value();
  2445. if (n_samples < 4 || n_samples > 50) {
  2446. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2447. return;
  2448. }
  2449. }
  2450. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2451. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2452. Z_current = st_get_position_mm(Z_AXIS);
  2453. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2454. ext_position = st_get_position_mm(E_AXIS);
  2455. if (code_seen('E') || code_seen('e'))
  2456. engage_probe_for_each_reading++;
  2457. if (code_seen('X') || code_seen('x')) {
  2458. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2459. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2460. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2461. return;
  2462. }
  2463. }
  2464. if (code_seen('Y') || code_seen('y')) {
  2465. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2466. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2467. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2468. return;
  2469. }
  2470. }
  2471. if (code_seen('L') || code_seen('l')) {
  2472. n_legs = code_value();
  2473. if (n_legs == 1) n_legs = 2;
  2474. if (n_legs < 0 || n_legs > 15) {
  2475. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2476. return;
  2477. }
  2478. }
  2479. //
  2480. // Do all the preliminary setup work. First raise the probe.
  2481. //
  2482. st_synchronize();
  2483. plan_bed_level_matrix.set_to_identity();
  2484. plan_buffer_line(X_current, Y_current, Z_start_location,
  2485. ext_position,
  2486. homing_feedrate[Z_AXIS] / 60,
  2487. active_extruder);
  2488. st_synchronize();
  2489. //
  2490. // Now get everything to the specified probe point So we can safely do a probe to
  2491. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2492. // use that as a starting point for each probe.
  2493. //
  2494. if (verbose_level > 2)
  2495. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2496. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2497. ext_position,
  2498. homing_feedrate[X_AXIS]/60,
  2499. active_extruder);
  2500. st_synchronize();
  2501. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2502. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2503. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2504. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2505. //
  2506. // OK, do the inital probe to get us close to the bed.
  2507. // Then retrace the right amount and use that in subsequent probes
  2508. //
  2509. engage_z_probe();
  2510. setup_for_endstop_move();
  2511. run_z_probe();
  2512. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2513. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2514. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2515. ext_position,
  2516. homing_feedrate[X_AXIS]/60,
  2517. active_extruder);
  2518. st_synchronize();
  2519. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2520. if (engage_probe_for_each_reading) retract_z_probe();
  2521. for (n=0; n < n_samples; n++) {
  2522. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2523. if (n_legs) {
  2524. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2525. int l;
  2526. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2527. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2528. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2529. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2530. //SERIAL_ECHOPAIR(" theta: ",theta);
  2531. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2532. //SERIAL_PROTOCOLLNPGM("");
  2533. float dir = rotational_direction ? 1 : -1;
  2534. for (l = 0; l < n_legs - 1; l++) {
  2535. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2536. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2537. if (radius < 0.0) radius = -radius;
  2538. X_current = X_probe_location + cos(theta) * radius;
  2539. Y_current = Y_probe_location + sin(theta) * radius;
  2540. // Make sure our X & Y are sane
  2541. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2542. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2543. if (verbose_level > 3) {
  2544. SERIAL_ECHOPAIR("x: ", X_current);
  2545. SERIAL_ECHOPAIR("y: ", Y_current);
  2546. SERIAL_PROTOCOLLNPGM("");
  2547. }
  2548. do_blocking_move_to( X_current, Y_current, Z_current );
  2549. }
  2550. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2551. }
  2552. if (engage_probe_for_each_reading) {
  2553. engage_z_probe();
  2554. delay(1000);
  2555. }
  2556. setup_for_endstop_move();
  2557. run_z_probe();
  2558. sample_set[n] = current_position[Z_AXIS];
  2559. //
  2560. // Get the current mean for the data points we have so far
  2561. //
  2562. sum = 0.0;
  2563. for (j=0; j<=n; j++) sum += sample_set[j];
  2564. mean = sum / (double (n+1));
  2565. //
  2566. // Now, use that mean to calculate the standard deviation for the
  2567. // data points we have so far
  2568. //
  2569. sum = 0.0;
  2570. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2571. sigma = sqrt( sum / (double (n+1)) );
  2572. if (verbose_level > 1) {
  2573. SERIAL_PROTOCOL(n+1);
  2574. SERIAL_PROTOCOL(" of ");
  2575. SERIAL_PROTOCOL(n_samples);
  2576. SERIAL_PROTOCOLPGM(" z: ");
  2577. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2578. }
  2579. if (verbose_level > 2) {
  2580. SERIAL_PROTOCOL(" mean: ");
  2581. SERIAL_PROTOCOL_F(mean,6);
  2582. SERIAL_PROTOCOL(" sigma: ");
  2583. SERIAL_PROTOCOL_F(sigma,6);
  2584. }
  2585. if (verbose_level > 0) SERIAL_EOL;
  2586. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2587. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2588. st_synchronize();
  2589. if (engage_probe_for_each_reading) {
  2590. retract_z_probe();
  2591. delay(1000);
  2592. }
  2593. }
  2594. retract_z_probe();
  2595. delay(1000);
  2596. clean_up_after_endstop_move();
  2597. // enable_endstops(true);
  2598. if (verbose_level > 0) {
  2599. SERIAL_PROTOCOLPGM("Mean: ");
  2600. SERIAL_PROTOCOL_F(mean, 6);
  2601. SERIAL_EOL;
  2602. }
  2603. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2604. SERIAL_PROTOCOL_F(sigma, 6);
  2605. SERIAL_EOL; SERIAL_EOL;
  2606. }
  2607. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2608. /**
  2609. * M104: Set hot end temperature
  2610. */
  2611. inline void gcode_M104() {
  2612. if (setTargetedHotend(104)) return;
  2613. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2614. #ifdef DUAL_X_CARRIAGE
  2615. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2616. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2617. #endif
  2618. setWatch();
  2619. }
  2620. /**
  2621. * M105: Read hot end and bed temperature
  2622. */
  2623. inline void gcode_M105() {
  2624. if (setTargetedHotend(105)) return;
  2625. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2626. SERIAL_PROTOCOLPGM("ok T:");
  2627. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2628. SERIAL_PROTOCOLPGM(" /");
  2629. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2630. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2631. SERIAL_PROTOCOLPGM(" B:");
  2632. SERIAL_PROTOCOL_F(degBed(),1);
  2633. SERIAL_PROTOCOLPGM(" /");
  2634. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2635. #endif //TEMP_BED_PIN
  2636. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2637. SERIAL_PROTOCOLPGM(" T");
  2638. SERIAL_PROTOCOL(cur_extruder);
  2639. SERIAL_PROTOCOLPGM(":");
  2640. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2641. SERIAL_PROTOCOLPGM(" /");
  2642. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2643. }
  2644. #else
  2645. SERIAL_ERROR_START;
  2646. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2647. #endif
  2648. SERIAL_PROTOCOLPGM(" @:");
  2649. #ifdef EXTRUDER_WATTS
  2650. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2651. SERIAL_PROTOCOLPGM("W");
  2652. #else
  2653. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2654. #endif
  2655. SERIAL_PROTOCOLPGM(" B@:");
  2656. #ifdef BED_WATTS
  2657. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2658. SERIAL_PROTOCOLPGM("W");
  2659. #else
  2660. SERIAL_PROTOCOL(getHeaterPower(-1));
  2661. #endif
  2662. #ifdef SHOW_TEMP_ADC_VALUES
  2663. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2664. SERIAL_PROTOCOLPGM(" ADC B:");
  2665. SERIAL_PROTOCOL_F(degBed(),1);
  2666. SERIAL_PROTOCOLPGM("C->");
  2667. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2668. #endif
  2669. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2670. SERIAL_PROTOCOLPGM(" T");
  2671. SERIAL_PROTOCOL(cur_extruder);
  2672. SERIAL_PROTOCOLPGM(":");
  2673. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2674. SERIAL_PROTOCOLPGM("C->");
  2675. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2676. }
  2677. #endif
  2678. SERIAL_PROTOCOLLN("");
  2679. }
  2680. #if defined(FAN_PIN) && FAN_PIN > -1
  2681. /**
  2682. * M106: Set Fan Speed
  2683. */
  2684. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2685. /**
  2686. * M107: Fan Off
  2687. */
  2688. inline void gcode_M107() { fanSpeed = 0; }
  2689. #endif //FAN_PIN
  2690. /**
  2691. * M109: Wait for extruder(s) to reach temperature
  2692. */
  2693. inline void gcode_M109() {
  2694. if (setTargetedHotend(109)) return;
  2695. LCD_MESSAGEPGM(MSG_HEATING);
  2696. CooldownNoWait = code_seen('S');
  2697. if (CooldownNoWait || code_seen('R')) {
  2698. setTargetHotend(code_value(), tmp_extruder);
  2699. #ifdef DUAL_X_CARRIAGE
  2700. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2701. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2702. #endif
  2703. }
  2704. #ifdef AUTOTEMP
  2705. autotemp_enabled = code_seen('F');
  2706. if (autotemp_enabled) autotemp_factor = code_value();
  2707. if (code_seen('S')) autotemp_min = code_value();
  2708. if (code_seen('B')) autotemp_max = code_value();
  2709. #endif
  2710. setWatch();
  2711. unsigned long timetemp = millis();
  2712. /* See if we are heating up or cooling down */
  2713. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2714. cancel_heatup = false;
  2715. #ifdef TEMP_RESIDENCY_TIME
  2716. long residencyStart = -1;
  2717. /* continue to loop until we have reached the target temp
  2718. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2719. while((!cancel_heatup)&&((residencyStart == -1) ||
  2720. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2721. #else
  2722. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2723. #endif //TEMP_RESIDENCY_TIME
  2724. { // while loop
  2725. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2726. SERIAL_PROTOCOLPGM("T:");
  2727. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2728. SERIAL_PROTOCOLPGM(" E:");
  2729. SERIAL_PROTOCOL((int)tmp_extruder);
  2730. #ifdef TEMP_RESIDENCY_TIME
  2731. SERIAL_PROTOCOLPGM(" W:");
  2732. if (residencyStart > -1) {
  2733. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2734. SERIAL_PROTOCOLLN( timetemp );
  2735. }
  2736. else {
  2737. SERIAL_PROTOCOLLN( "?" );
  2738. }
  2739. #else
  2740. SERIAL_PROTOCOLLN("");
  2741. #endif
  2742. timetemp = millis();
  2743. }
  2744. manage_heater();
  2745. manage_inactivity();
  2746. lcd_update();
  2747. #ifdef TEMP_RESIDENCY_TIME
  2748. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2749. // or when current temp falls outside the hysteresis after target temp was reached
  2750. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2751. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2752. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2753. {
  2754. residencyStart = millis();
  2755. }
  2756. #endif //TEMP_RESIDENCY_TIME
  2757. }
  2758. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2759. starttime = previous_millis_cmd = millis();
  2760. }
  2761. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2762. /**
  2763. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2764. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2765. */
  2766. inline void gcode_M190() {
  2767. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2768. CooldownNoWait = code_seen('S');
  2769. if (CooldownNoWait || code_seen('R'))
  2770. setTargetBed(code_value());
  2771. unsigned long timetemp = millis();
  2772. cancel_heatup = false;
  2773. target_direction = isHeatingBed(); // true if heating, false if cooling
  2774. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2775. unsigned long ms = millis();
  2776. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2777. timetemp = ms;
  2778. float tt = degHotend(active_extruder);
  2779. SERIAL_PROTOCOLPGM("T:");
  2780. SERIAL_PROTOCOL(tt);
  2781. SERIAL_PROTOCOLPGM(" E:");
  2782. SERIAL_PROTOCOL((int)active_extruder);
  2783. SERIAL_PROTOCOLPGM(" B:");
  2784. SERIAL_PROTOCOL_F(degBed(), 1);
  2785. SERIAL_PROTOCOLLN("");
  2786. }
  2787. manage_heater();
  2788. manage_inactivity();
  2789. lcd_update();
  2790. }
  2791. LCD_MESSAGEPGM(MSG_BED_DONE);
  2792. previous_millis_cmd = millis();
  2793. }
  2794. #endif // TEMP_BED_PIN > -1
  2795. /**
  2796. * M112: Emergency Stop
  2797. */
  2798. inline void gcode_M112() {
  2799. kill();
  2800. }
  2801. #ifdef BARICUDA
  2802. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2803. /**
  2804. * M126: Heater 1 valve open
  2805. */
  2806. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2807. /**
  2808. * M127: Heater 1 valve close
  2809. */
  2810. inline void gcode_M127() { ValvePressure = 0; }
  2811. #endif
  2812. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2813. /**
  2814. * M128: Heater 2 valve open
  2815. */
  2816. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2817. /**
  2818. * M129: Heater 2 valve close
  2819. */
  2820. inline void gcode_M129() { EtoPPressure = 0; }
  2821. #endif
  2822. #endif //BARICUDA
  2823. /**
  2824. * M140: Set bed temperature
  2825. */
  2826. inline void gcode_M140() {
  2827. if (code_seen('S')) setTargetBed(code_value());
  2828. }
  2829. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2830. /**
  2831. * M80: Turn on Power Supply
  2832. */
  2833. inline void gcode_M80() {
  2834. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2835. // If you have a switch on suicide pin, this is useful
  2836. // if you want to start another print with suicide feature after
  2837. // a print without suicide...
  2838. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2839. OUT_WRITE(SUICIDE_PIN, HIGH);
  2840. #endif
  2841. #ifdef ULTIPANEL
  2842. powersupply = true;
  2843. LCD_MESSAGEPGM(WELCOME_MSG);
  2844. lcd_update();
  2845. #endif
  2846. }
  2847. #endif // PS_ON_PIN
  2848. /**
  2849. * M81: Turn off Power Supply
  2850. */
  2851. inline void gcode_M81() {
  2852. disable_heater();
  2853. st_synchronize();
  2854. disable_e0();
  2855. disable_e1();
  2856. disable_e2();
  2857. disable_e3();
  2858. finishAndDisableSteppers();
  2859. fanSpeed = 0;
  2860. delay(1000); // Wait 1 second before switching off
  2861. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2862. st_synchronize();
  2863. suicide();
  2864. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2865. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2866. #endif
  2867. #ifdef ULTIPANEL
  2868. powersupply = false;
  2869. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2870. lcd_update();
  2871. #endif
  2872. }
  2873. /**
  2874. * M82: Set E codes absolute (default)
  2875. */
  2876. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2877. /**
  2878. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2879. */
  2880. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2881. /**
  2882. * M18, M84: Disable all stepper motors
  2883. */
  2884. inline void gcode_M18_M84() {
  2885. if (code_seen('S')) {
  2886. stepper_inactive_time = code_value() * 1000;
  2887. }
  2888. else {
  2889. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2890. if (all_axis) {
  2891. st_synchronize();
  2892. disable_e0();
  2893. disable_e1();
  2894. disable_e2();
  2895. disable_e3();
  2896. finishAndDisableSteppers();
  2897. }
  2898. else {
  2899. st_synchronize();
  2900. if (code_seen('X')) disable_x();
  2901. if (code_seen('Y')) disable_y();
  2902. if (code_seen('Z')) disable_z();
  2903. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2904. if (code_seen('E')) {
  2905. disable_e0();
  2906. disable_e1();
  2907. disable_e2();
  2908. disable_e3();
  2909. }
  2910. #endif
  2911. }
  2912. }
  2913. }
  2914. /**
  2915. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2916. */
  2917. inline void gcode_M85() {
  2918. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2919. }
  2920. /**
  2921. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2922. */
  2923. inline void gcode_M92() {
  2924. for(int8_t i=0; i < NUM_AXIS; i++) {
  2925. if (code_seen(axis_codes[i])) {
  2926. if (i == E_AXIS) {
  2927. float value = code_value();
  2928. if (value < 20.0) {
  2929. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2930. max_e_jerk *= factor;
  2931. max_feedrate[i] *= factor;
  2932. axis_steps_per_sqr_second[i] *= factor;
  2933. }
  2934. axis_steps_per_unit[i] = value;
  2935. }
  2936. else {
  2937. axis_steps_per_unit[i] = code_value();
  2938. }
  2939. }
  2940. }
  2941. }
  2942. /**
  2943. * M114: Output current position to serial port
  2944. */
  2945. inline void gcode_M114() {
  2946. SERIAL_PROTOCOLPGM("X:");
  2947. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2948. SERIAL_PROTOCOLPGM(" Y:");
  2949. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2950. SERIAL_PROTOCOLPGM(" Z:");
  2951. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2952. SERIAL_PROTOCOLPGM(" E:");
  2953. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2954. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2955. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2956. SERIAL_PROTOCOLPGM(" Y:");
  2957. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2958. SERIAL_PROTOCOLPGM(" Z:");
  2959. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2960. SERIAL_PROTOCOLLN("");
  2961. #ifdef SCARA
  2962. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2963. SERIAL_PROTOCOL(delta[X_AXIS]);
  2964. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2965. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2966. SERIAL_PROTOCOLLN("");
  2967. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2968. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2969. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2970. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2971. SERIAL_PROTOCOLLN("");
  2972. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2973. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2974. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2975. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2976. SERIAL_PROTOCOLLN("");
  2977. SERIAL_PROTOCOLLN("");
  2978. #endif
  2979. }
  2980. /**
  2981. * M115: Capabilities string
  2982. */
  2983. inline void gcode_M115() {
  2984. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2985. }
  2986. /**
  2987. * M117: Set LCD Status Message
  2988. */
  2989. inline void gcode_M117() {
  2990. char* codepos = strchr_pointer + 5;
  2991. char* starpos = strchr(codepos, '*');
  2992. if (starpos) *starpos = '\0';
  2993. lcd_setstatus(codepos);
  2994. }
  2995. /**
  2996. * M119: Output endstop states to serial output
  2997. */
  2998. inline void gcode_M119() {
  2999. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3000. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3001. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3002. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3003. #endif
  3004. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3005. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3006. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3007. #endif
  3008. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3009. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3010. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3011. #endif
  3012. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3013. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3014. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3015. #endif
  3016. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3017. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3018. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3019. #endif
  3020. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3021. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3022. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3023. #endif
  3024. }
  3025. /**
  3026. * M120: Enable endstops
  3027. */
  3028. inline void gcode_M120() { enable_endstops(false); }
  3029. /**
  3030. * M121: Disable endstops
  3031. */
  3032. inline void gcode_M121() { enable_endstops(true); }
  3033. #ifdef BLINKM
  3034. /**
  3035. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3036. */
  3037. inline void gcode_M150() {
  3038. SendColors(
  3039. code_seen('R') ? (byte)code_value() : 0,
  3040. code_seen('U') ? (byte)code_value() : 0,
  3041. code_seen('B') ? (byte)code_value() : 0
  3042. );
  3043. }
  3044. #endif // BLINKM
  3045. /**
  3046. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3047. * T<extruder>
  3048. * D<millimeters>
  3049. */
  3050. inline void gcode_M200() {
  3051. tmp_extruder = active_extruder;
  3052. if (code_seen('T')) {
  3053. tmp_extruder = code_value();
  3054. if (tmp_extruder >= EXTRUDERS) {
  3055. SERIAL_ECHO_START;
  3056. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3057. return;
  3058. }
  3059. }
  3060. float area = .0;
  3061. if (code_seen('D')) {
  3062. float diameter = code_value();
  3063. // setting any extruder filament size disables volumetric on the assumption that
  3064. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3065. // for all extruders
  3066. volumetric_enabled = (diameter != 0.0);
  3067. if (volumetric_enabled) {
  3068. filament_size[tmp_extruder] = diameter;
  3069. // make sure all extruders have some sane value for the filament size
  3070. for (int i=0; i<EXTRUDERS; i++)
  3071. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3072. }
  3073. }
  3074. else {
  3075. //reserved for setting filament diameter via UFID or filament measuring device
  3076. return;
  3077. }
  3078. calculate_volumetric_multipliers();
  3079. }
  3080. /**
  3081. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3082. */
  3083. inline void gcode_M201() {
  3084. for (int8_t i=0; i < NUM_AXIS; i++) {
  3085. if (code_seen(axis_codes[i])) {
  3086. max_acceleration_units_per_sq_second[i] = code_value();
  3087. }
  3088. }
  3089. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3090. reset_acceleration_rates();
  3091. }
  3092. #if 0 // Not used for Sprinter/grbl gen6
  3093. inline void gcode_M202() {
  3094. for(int8_t i=0; i < NUM_AXIS; i++) {
  3095. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3096. }
  3097. }
  3098. #endif
  3099. /**
  3100. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3101. */
  3102. inline void gcode_M203() {
  3103. for (int8_t i=0; i < NUM_AXIS; i++) {
  3104. if (code_seen(axis_codes[i])) {
  3105. max_feedrate[i] = code_value();
  3106. }
  3107. }
  3108. }
  3109. /**
  3110. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3111. *
  3112. * P = Printing moves
  3113. * R = Retract only (no X, Y, Z) moves
  3114. * T = Travel (non printing) moves
  3115. *
  3116. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3117. */
  3118. inline void gcode_M204() {
  3119. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3120. {
  3121. acceleration = code_value();
  3122. travel_acceleration = acceleration;
  3123. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3124. SERIAL_EOL;
  3125. }
  3126. if (code_seen('P'))
  3127. {
  3128. acceleration = code_value();
  3129. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3130. SERIAL_EOL;
  3131. }
  3132. if (code_seen('R'))
  3133. {
  3134. retract_acceleration = code_value();
  3135. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3136. SERIAL_EOL;
  3137. }
  3138. if (code_seen('T'))
  3139. {
  3140. travel_acceleration = code_value();
  3141. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3142. SERIAL_EOL;
  3143. }
  3144. }
  3145. /**
  3146. * M205: Set Advanced Settings
  3147. *
  3148. * S = Min Feed Rate (mm/s)
  3149. * T = Min Travel Feed Rate (mm/s)
  3150. * B = Min Segment Time (µs)
  3151. * X = Max XY Jerk (mm/s/s)
  3152. * Z = Max Z Jerk (mm/s/s)
  3153. * E = Max E Jerk (mm/s/s)
  3154. */
  3155. inline void gcode_M205() {
  3156. if (code_seen('S')) minimumfeedrate = code_value();
  3157. if (code_seen('T')) mintravelfeedrate = code_value();
  3158. if (code_seen('B')) minsegmenttime = code_value();
  3159. if (code_seen('X')) max_xy_jerk = code_value();
  3160. if (code_seen('Z')) max_z_jerk = code_value();
  3161. if (code_seen('E')) max_e_jerk = code_value();
  3162. }
  3163. /**
  3164. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3165. */
  3166. inline void gcode_M206() {
  3167. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3168. if (code_seen(axis_codes[i])) {
  3169. home_offset[i] = code_value();
  3170. }
  3171. }
  3172. #ifdef SCARA
  3173. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3174. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3175. #endif
  3176. }
  3177. #ifdef DELTA
  3178. /**
  3179. * M665: Set delta configurations
  3180. *
  3181. * L = diagonal rod
  3182. * R = delta radius
  3183. * S = segments per second
  3184. */
  3185. inline void gcode_M665() {
  3186. if (code_seen('L')) delta_diagonal_rod = code_value();
  3187. if (code_seen('R')) delta_radius = code_value();
  3188. if (code_seen('S')) delta_segments_per_second = code_value();
  3189. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3190. }
  3191. /**
  3192. * M666: Set delta endstop adjustment
  3193. */
  3194. inline void gcode_M666() {
  3195. for (int8_t i = 0; i < 3; i++) {
  3196. if (code_seen(axis_codes[i])) {
  3197. endstop_adj[i] = code_value();
  3198. }
  3199. }
  3200. }
  3201. #endif // DELTA
  3202. #ifdef FWRETRACT
  3203. /**
  3204. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3205. */
  3206. inline void gcode_M207() {
  3207. if (code_seen('S')) retract_length = code_value();
  3208. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3209. if (code_seen('Z')) retract_zlift = code_value();
  3210. }
  3211. /**
  3212. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3213. */
  3214. inline void gcode_M208() {
  3215. if (code_seen('S')) retract_recover_length = code_value();
  3216. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3217. }
  3218. /**
  3219. * M209: Enable automatic retract (M209 S1)
  3220. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3221. */
  3222. inline void gcode_M209() {
  3223. if (code_seen('S')) {
  3224. int t = code_value();
  3225. switch(t) {
  3226. case 0:
  3227. autoretract_enabled = false;
  3228. break;
  3229. case 1:
  3230. autoretract_enabled = true;
  3231. break;
  3232. default:
  3233. SERIAL_ECHO_START;
  3234. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3235. SERIAL_ECHO(cmdbuffer[bufindr]);
  3236. SERIAL_ECHOLNPGM("\"");
  3237. return;
  3238. }
  3239. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3240. }
  3241. }
  3242. #endif // FWRETRACT
  3243. #if EXTRUDERS > 1
  3244. /**
  3245. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3246. */
  3247. inline void gcode_M218() {
  3248. if (setTargetedHotend(218)) return;
  3249. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3250. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3251. #ifdef DUAL_X_CARRIAGE
  3252. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3253. #endif
  3254. SERIAL_ECHO_START;
  3255. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3256. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3257. SERIAL_ECHO(" ");
  3258. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3259. SERIAL_ECHO(",");
  3260. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3261. #ifdef DUAL_X_CARRIAGE
  3262. SERIAL_ECHO(",");
  3263. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3264. #endif
  3265. }
  3266. SERIAL_EOL;
  3267. }
  3268. #endif // EXTRUDERS > 1
  3269. /**
  3270. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3271. */
  3272. inline void gcode_M220() {
  3273. if (code_seen('S')) feedmultiply = code_value();
  3274. }
  3275. /**
  3276. * M221: Set extrusion percentage (M221 T0 S95)
  3277. */
  3278. inline void gcode_M221() {
  3279. if (code_seen('S')) {
  3280. int sval = code_value();
  3281. if (code_seen('T')) {
  3282. if (setTargetedHotend(221)) return;
  3283. extruder_multiply[tmp_extruder] = sval;
  3284. }
  3285. else {
  3286. extrudemultiply = sval;
  3287. }
  3288. }
  3289. }
  3290. /**
  3291. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3292. */
  3293. inline void gcode_M226() {
  3294. if (code_seen('P')) {
  3295. int pin_number = code_value();
  3296. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3297. if (pin_state >= -1 && pin_state <= 1) {
  3298. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3299. if (sensitive_pins[i] == pin_number) {
  3300. pin_number = -1;
  3301. break;
  3302. }
  3303. }
  3304. if (pin_number > -1) {
  3305. int target = LOW;
  3306. st_synchronize();
  3307. pinMode(pin_number, INPUT);
  3308. switch(pin_state){
  3309. case 1:
  3310. target = HIGH;
  3311. break;
  3312. case 0:
  3313. target = LOW;
  3314. break;
  3315. case -1:
  3316. target = !digitalRead(pin_number);
  3317. break;
  3318. }
  3319. while(digitalRead(pin_number) != target) {
  3320. manage_heater();
  3321. manage_inactivity();
  3322. lcd_update();
  3323. }
  3324. } // pin_number > -1
  3325. } // pin_state -1 0 1
  3326. } // code_seen('P')
  3327. }
  3328. #if NUM_SERVOS > 0
  3329. /**
  3330. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3331. */
  3332. inline void gcode_M280() {
  3333. int servo_index = code_seen('P') ? code_value() : -1;
  3334. int servo_position = 0;
  3335. if (code_seen('S')) {
  3336. servo_position = code_value();
  3337. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3338. #if SERVO_LEVELING
  3339. servos[servo_index].attach(0);
  3340. #endif
  3341. servos[servo_index].write(servo_position);
  3342. #if SERVO_LEVELING
  3343. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3344. servos[servo_index].detach();
  3345. #endif
  3346. }
  3347. else {
  3348. SERIAL_ECHO_START;
  3349. SERIAL_ECHO("Servo ");
  3350. SERIAL_ECHO(servo_index);
  3351. SERIAL_ECHOLN(" out of range");
  3352. }
  3353. }
  3354. else if (servo_index >= 0) {
  3355. SERIAL_PROTOCOL(MSG_OK);
  3356. SERIAL_PROTOCOL(" Servo ");
  3357. SERIAL_PROTOCOL(servo_index);
  3358. SERIAL_PROTOCOL(": ");
  3359. SERIAL_PROTOCOL(servos[servo_index].read());
  3360. SERIAL_PROTOCOLLN("");
  3361. }
  3362. }
  3363. #endif // NUM_SERVOS > 0
  3364. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3365. /**
  3366. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3367. */
  3368. inline void gcode_M300() {
  3369. int beepS = code_seen('S') ? code_value() : 110;
  3370. int beepP = code_seen('P') ? code_value() : 1000;
  3371. if (beepS > 0) {
  3372. #if BEEPER > 0
  3373. tone(BEEPER, beepS);
  3374. delay(beepP);
  3375. noTone(BEEPER);
  3376. #elif defined(ULTRALCD)
  3377. lcd_buzz(beepS, beepP);
  3378. #elif defined(LCD_USE_I2C_BUZZER)
  3379. lcd_buzz(beepP, beepS);
  3380. #endif
  3381. }
  3382. else {
  3383. delay(beepP);
  3384. }
  3385. }
  3386. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3387. #ifdef PIDTEMP
  3388. /**
  3389. * M301: Set PID parameters P I D (and optionally C)
  3390. */
  3391. inline void gcode_M301() {
  3392. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3393. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3394. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3395. if (e < EXTRUDERS) { // catch bad input value
  3396. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3397. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3398. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3399. #ifdef PID_ADD_EXTRUSION_RATE
  3400. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3401. #endif
  3402. updatePID();
  3403. SERIAL_PROTOCOL(MSG_OK);
  3404. #ifdef PID_PARAMS_PER_EXTRUDER
  3405. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3406. SERIAL_PROTOCOL(e);
  3407. #endif // PID_PARAMS_PER_EXTRUDER
  3408. SERIAL_PROTOCOL(" p:");
  3409. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3410. SERIAL_PROTOCOL(" i:");
  3411. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3412. SERIAL_PROTOCOL(" d:");
  3413. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3414. #ifdef PID_ADD_EXTRUSION_RATE
  3415. SERIAL_PROTOCOL(" c:");
  3416. //Kc does not have scaling applied above, or in resetting defaults
  3417. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3418. #endif
  3419. SERIAL_PROTOCOLLN("");
  3420. }
  3421. else {
  3422. SERIAL_ECHO_START;
  3423. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3424. }
  3425. }
  3426. #endif // PIDTEMP
  3427. #ifdef PIDTEMPBED
  3428. inline void gcode_M304() {
  3429. if (code_seen('P')) bedKp = code_value();
  3430. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3431. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3432. updatePID();
  3433. SERIAL_PROTOCOL(MSG_OK);
  3434. SERIAL_PROTOCOL(" p:");
  3435. SERIAL_PROTOCOL(bedKp);
  3436. SERIAL_PROTOCOL(" i:");
  3437. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3438. SERIAL_PROTOCOL(" d:");
  3439. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3440. SERIAL_PROTOCOLLN("");
  3441. }
  3442. #endif // PIDTEMPBED
  3443. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3444. /**
  3445. * M240: Trigger a camera by emulating a Canon RC-1
  3446. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3447. */
  3448. inline void gcode_M240() {
  3449. #ifdef CHDK
  3450. OUT_WRITE(CHDK, HIGH);
  3451. chdkHigh = millis();
  3452. chdkActive = true;
  3453. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3454. const uint8_t NUM_PULSES = 16;
  3455. const float PULSE_LENGTH = 0.01524;
  3456. for (int i = 0; i < NUM_PULSES; i++) {
  3457. WRITE(PHOTOGRAPH_PIN, HIGH);
  3458. _delay_ms(PULSE_LENGTH);
  3459. WRITE(PHOTOGRAPH_PIN, LOW);
  3460. _delay_ms(PULSE_LENGTH);
  3461. }
  3462. delay(7.33);
  3463. for (int i = 0; i < NUM_PULSES; i++) {
  3464. WRITE(PHOTOGRAPH_PIN, HIGH);
  3465. _delay_ms(PULSE_LENGTH);
  3466. WRITE(PHOTOGRAPH_PIN, LOW);
  3467. _delay_ms(PULSE_LENGTH);
  3468. }
  3469. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3470. }
  3471. #endif // CHDK || PHOTOGRAPH_PIN
  3472. #ifdef DOGLCD
  3473. /**
  3474. * M250: Read and optionally set the LCD contrast
  3475. */
  3476. inline void gcode_M250() {
  3477. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3478. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3479. SERIAL_PROTOCOL(lcd_contrast);
  3480. SERIAL_PROTOCOLLN("");
  3481. }
  3482. #endif // DOGLCD
  3483. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3484. /**
  3485. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3486. */
  3487. inline void gcode_M302() {
  3488. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3489. }
  3490. #endif // PREVENT_DANGEROUS_EXTRUDE
  3491. /**
  3492. * M303: PID relay autotune
  3493. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3494. * E<extruder> (-1 for the bed)
  3495. * C<cycles>
  3496. */
  3497. inline void gcode_M303() {
  3498. int e = code_seen('E') ? code_value_long() : 0;
  3499. int c = code_seen('C') ? code_value_long() : 5;
  3500. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3501. PID_autotune(temp, e, c);
  3502. }
  3503. #ifdef SCARA
  3504. /**
  3505. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3506. */
  3507. inline bool gcode_M360() {
  3508. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3509. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3510. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3511. if (! Stopped) {
  3512. //get_coordinates(); // For X Y Z E F
  3513. delta[X_AXIS] = 0;
  3514. delta[Y_AXIS] = 120;
  3515. calculate_SCARA_forward_Transform(delta);
  3516. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3517. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3518. prepare_move();
  3519. //ClearToSend();
  3520. return true;
  3521. }
  3522. return false;
  3523. }
  3524. /**
  3525. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3526. */
  3527. inline bool gcode_M361() {
  3528. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3529. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3530. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3531. if (! Stopped) {
  3532. //get_coordinates(); // For X Y Z E F
  3533. delta[X_AXIS] = 90;
  3534. delta[Y_AXIS] = 130;
  3535. calculate_SCARA_forward_Transform(delta);
  3536. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3537. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3538. prepare_move();
  3539. //ClearToSend();
  3540. return true;
  3541. }
  3542. return false;
  3543. }
  3544. /**
  3545. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3546. */
  3547. inline bool gcode_M362() {
  3548. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3549. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3550. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3551. if (! Stopped) {
  3552. //get_coordinates(); // For X Y Z E F
  3553. delta[X_AXIS] = 60;
  3554. delta[Y_AXIS] = 180;
  3555. calculate_SCARA_forward_Transform(delta);
  3556. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3557. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3558. prepare_move();
  3559. //ClearToSend();
  3560. return true;
  3561. }
  3562. return false;
  3563. }
  3564. /**
  3565. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3566. */
  3567. inline bool gcode_M363() {
  3568. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3569. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3570. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3571. if (! Stopped) {
  3572. //get_coordinates(); // For X Y Z E F
  3573. delta[X_AXIS] = 50;
  3574. delta[Y_AXIS] = 90;
  3575. calculate_SCARA_forward_Transform(delta);
  3576. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3577. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3578. prepare_move();
  3579. //ClearToSend();
  3580. return true;
  3581. }
  3582. return false;
  3583. }
  3584. /**
  3585. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3586. */
  3587. inline bool gcode_M364() {
  3588. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3589. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3590. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3591. if (! Stopped) {
  3592. //get_coordinates(); // For X Y Z E F
  3593. delta[X_AXIS] = 45;
  3594. delta[Y_AXIS] = 135;
  3595. calculate_SCARA_forward_Transform(delta);
  3596. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3597. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3598. prepare_move();
  3599. //ClearToSend();
  3600. return true;
  3601. }
  3602. return false;
  3603. }
  3604. /**
  3605. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3606. */
  3607. inline void gcode_M365() {
  3608. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3609. if (code_seen(axis_codes[i])) {
  3610. axis_scaling[i] = code_value();
  3611. }
  3612. }
  3613. }
  3614. #endif // SCARA
  3615. #ifdef EXT_SOLENOID
  3616. void enable_solenoid(uint8_t num) {
  3617. switch(num) {
  3618. case 0:
  3619. OUT_WRITE(SOL0_PIN, HIGH);
  3620. break;
  3621. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3622. case 1:
  3623. OUT_WRITE(SOL1_PIN, HIGH);
  3624. break;
  3625. #endif
  3626. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3627. case 2:
  3628. OUT_WRITE(SOL2_PIN, HIGH);
  3629. break;
  3630. #endif
  3631. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3632. case 3:
  3633. OUT_WRITE(SOL3_PIN, HIGH);
  3634. break;
  3635. #endif
  3636. default:
  3637. SERIAL_ECHO_START;
  3638. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3639. break;
  3640. }
  3641. }
  3642. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3643. void disable_all_solenoids() {
  3644. OUT_WRITE(SOL0_PIN, LOW);
  3645. OUT_WRITE(SOL1_PIN, LOW);
  3646. OUT_WRITE(SOL2_PIN, LOW);
  3647. OUT_WRITE(SOL3_PIN, LOW);
  3648. }
  3649. /**
  3650. * M380: Enable solenoid on the active extruder
  3651. */
  3652. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3653. /**
  3654. * M381: Disable all solenoids
  3655. */
  3656. inline void gcode_M381() { disable_all_solenoids(); }
  3657. #endif // EXT_SOLENOID
  3658. /**
  3659. * M400: Finish all moves
  3660. */
  3661. inline void gcode_M400() { st_synchronize(); }
  3662. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3663. /**
  3664. * M401: Engage Z Servo endstop if available
  3665. */
  3666. inline void gcode_M401() { engage_z_probe(); }
  3667. /**
  3668. * M402: Retract Z Servo endstop if enabled
  3669. */
  3670. inline void gcode_M402() { retract_z_probe(); }
  3671. #endif
  3672. #ifdef FILAMENT_SENSOR
  3673. /**
  3674. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3675. */
  3676. inline void gcode_M404() {
  3677. #if FILWIDTH_PIN > -1
  3678. if (code_seen('W')) {
  3679. filament_width_nominal = code_value();
  3680. }
  3681. else {
  3682. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3683. SERIAL_PROTOCOLLN(filament_width_nominal);
  3684. }
  3685. #endif
  3686. }
  3687. /**
  3688. * M405: Turn on filament sensor for control
  3689. */
  3690. inline void gcode_M405() {
  3691. if (code_seen('D')) meas_delay_cm = code_value();
  3692. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3693. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3694. int temp_ratio = widthFil_to_size_ratio();
  3695. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3696. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3697. delay_index1 = delay_index2 = 0;
  3698. }
  3699. filament_sensor = true;
  3700. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3701. //SERIAL_PROTOCOL(filament_width_meas);
  3702. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3703. //SERIAL_PROTOCOL(extrudemultiply);
  3704. }
  3705. /**
  3706. * M406: Turn off filament sensor for control
  3707. */
  3708. inline void gcode_M406() { filament_sensor = false; }
  3709. /**
  3710. * M407: Get measured filament diameter on serial output
  3711. */
  3712. inline void gcode_M407() {
  3713. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3714. SERIAL_PROTOCOLLN(filament_width_meas);
  3715. }
  3716. #endif // FILAMENT_SENSOR
  3717. /**
  3718. * M500: Store settings in EEPROM
  3719. */
  3720. inline void gcode_M500() {
  3721. Config_StoreSettings();
  3722. }
  3723. /**
  3724. * M501: Read settings from EEPROM
  3725. */
  3726. inline void gcode_M501() {
  3727. Config_RetrieveSettings();
  3728. }
  3729. /**
  3730. * M502: Revert to default settings
  3731. */
  3732. inline void gcode_M502() {
  3733. Config_ResetDefault();
  3734. }
  3735. /**
  3736. * M503: print settings currently in memory
  3737. */
  3738. inline void gcode_M503() {
  3739. Config_PrintSettings(code_seen('S') && code_value == 0);
  3740. }
  3741. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3742. /**
  3743. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3744. */
  3745. inline void gcode_M540() {
  3746. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3747. }
  3748. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3749. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3750. inline void gcode_SET_Z_PROBE_OFFSET() {
  3751. float value;
  3752. if (code_seen('Z')) {
  3753. value = code_value();
  3754. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3755. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3756. SERIAL_ECHO_START;
  3757. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3758. SERIAL_PROTOCOLLN("");
  3759. }
  3760. else {
  3761. SERIAL_ECHO_START;
  3762. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3763. SERIAL_ECHOPGM(MSG_Z_MIN);
  3764. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3765. SERIAL_ECHOPGM(MSG_Z_MAX);
  3766. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3767. SERIAL_PROTOCOLLN("");
  3768. }
  3769. }
  3770. else {
  3771. SERIAL_ECHO_START;
  3772. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3773. SERIAL_ECHO(-zprobe_zoffset);
  3774. SERIAL_PROTOCOLLN("");
  3775. }
  3776. }
  3777. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3778. #ifdef FILAMENTCHANGEENABLE
  3779. /**
  3780. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3781. */
  3782. inline void gcode_M600() {
  3783. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3784. for (int i=0; i<NUM_AXIS; i++)
  3785. target[i] = lastpos[i] = current_position[i];
  3786. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3787. #ifdef DELTA
  3788. #define RUNPLAN calculate_delta(target); BASICPLAN
  3789. #else
  3790. #define RUNPLAN BASICPLAN
  3791. #endif
  3792. //retract by E
  3793. if (code_seen('E')) target[E_AXIS] += code_value();
  3794. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3795. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3796. #endif
  3797. RUNPLAN;
  3798. //lift Z
  3799. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3800. #ifdef FILAMENTCHANGE_ZADD
  3801. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3802. #endif
  3803. RUNPLAN;
  3804. //move xy
  3805. if (code_seen('X')) target[X_AXIS] = code_value();
  3806. #ifdef FILAMENTCHANGE_XPOS
  3807. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3808. #endif
  3809. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3810. #ifdef FILAMENTCHANGE_YPOS
  3811. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3812. #endif
  3813. RUNPLAN;
  3814. if (code_seen('L')) target[E_AXIS] += code_value();
  3815. #ifdef FILAMENTCHANGE_FINALRETRACT
  3816. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3817. #endif
  3818. RUNPLAN;
  3819. //finish moves
  3820. st_synchronize();
  3821. //disable extruder steppers so filament can be removed
  3822. disable_e0();
  3823. disable_e1();
  3824. disable_e2();
  3825. disable_e3();
  3826. delay(100);
  3827. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3828. uint8_t cnt = 0;
  3829. while (!lcd_clicked()) {
  3830. cnt++;
  3831. manage_heater();
  3832. manage_inactivity(true);
  3833. lcd_update();
  3834. if (cnt == 0) {
  3835. #if BEEPER > 0
  3836. OUT_WRITE(BEEPER,HIGH);
  3837. delay(3);
  3838. WRITE(BEEPER,LOW);
  3839. delay(3);
  3840. #else
  3841. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3842. lcd_buzz(1000/6, 100);
  3843. #else
  3844. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3845. #endif
  3846. #endif
  3847. }
  3848. } // while(!lcd_clicked)
  3849. //return to normal
  3850. if (code_seen('L')) target[E_AXIS] -= code_value();
  3851. #ifdef FILAMENTCHANGE_FINALRETRACT
  3852. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3853. #endif
  3854. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3855. plan_set_e_position(current_position[E_AXIS]);
  3856. RUNPLAN; //should do nothing
  3857. lcd_reset_alert_level();
  3858. #ifdef DELTA
  3859. calculate_delta(lastpos);
  3860. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3861. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3862. #else
  3863. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3864. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3865. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3866. #endif
  3867. #ifdef FILAMENT_RUNOUT_SENSOR
  3868. filrunoutEnqued = false;
  3869. #endif
  3870. }
  3871. #endif // FILAMENTCHANGEENABLE
  3872. #ifdef DUAL_X_CARRIAGE
  3873. /**
  3874. * M605: Set dual x-carriage movement mode
  3875. *
  3876. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3877. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3878. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3879. * millimeters x-offset and an optional differential hotend temperature of
  3880. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3881. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3882. *
  3883. * Note: the X axis should be homed after changing dual x-carriage mode.
  3884. */
  3885. inline void gcode_M605() {
  3886. st_synchronize();
  3887. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3888. switch(dual_x_carriage_mode) {
  3889. case DXC_DUPLICATION_MODE:
  3890. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3891. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3892. SERIAL_ECHO_START;
  3893. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3894. SERIAL_ECHO(" ");
  3895. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3896. SERIAL_ECHO(",");
  3897. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3898. SERIAL_ECHO(" ");
  3899. SERIAL_ECHO(duplicate_extruder_x_offset);
  3900. SERIAL_ECHO(",");
  3901. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3902. break;
  3903. case DXC_FULL_CONTROL_MODE:
  3904. case DXC_AUTO_PARK_MODE:
  3905. break;
  3906. default:
  3907. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3908. break;
  3909. }
  3910. active_extruder_parked = false;
  3911. extruder_duplication_enabled = false;
  3912. delayed_move_time = 0;
  3913. }
  3914. #endif // DUAL_X_CARRIAGE
  3915. /**
  3916. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3917. */
  3918. inline void gcode_M907() {
  3919. #if HAS_DIGIPOTSS
  3920. for (int i=0;i<NUM_AXIS;i++)
  3921. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3922. if (code_seen('B')) digipot_current(4, code_value());
  3923. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3924. #endif
  3925. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3926. if (code_seen('X')) digipot_current(0, code_value());
  3927. #endif
  3928. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3929. if (code_seen('Z')) digipot_current(1, code_value());
  3930. #endif
  3931. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3932. if (code_seen('E')) digipot_current(2, code_value());
  3933. #endif
  3934. #ifdef DIGIPOT_I2C
  3935. // this one uses actual amps in floating point
  3936. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3937. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3938. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3939. #endif
  3940. }
  3941. #if HAS_DIGIPOTSS
  3942. /**
  3943. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3944. */
  3945. inline void gcode_M908() {
  3946. digitalPotWrite(
  3947. code_seen('P') ? code_value() : 0,
  3948. code_seen('S') ? code_value() : 0
  3949. );
  3950. }
  3951. #endif // HAS_DIGIPOTSS
  3952. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3953. inline void gcode_M350() {
  3954. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3955. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3956. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3957. if(code_seen('B')) microstep_mode(4,code_value());
  3958. microstep_readings();
  3959. #endif
  3960. }
  3961. /**
  3962. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3963. * S# determines MS1 or MS2, X# sets the pin high/low.
  3964. */
  3965. inline void gcode_M351() {
  3966. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3967. if (code_seen('S')) switch(code_value_long()) {
  3968. case 1:
  3969. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3970. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3971. break;
  3972. case 2:
  3973. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3974. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3975. break;
  3976. }
  3977. microstep_readings();
  3978. #endif
  3979. }
  3980. /**
  3981. * M999: Restart after being stopped
  3982. */
  3983. inline void gcode_M999() {
  3984. Stopped = false;
  3985. lcd_reset_alert_level();
  3986. gcode_LastN = Stopped_gcode_LastN;
  3987. FlushSerialRequestResend();
  3988. }
  3989. inline void gcode_T() {
  3990. tmp_extruder = code_value();
  3991. if (tmp_extruder >= EXTRUDERS) {
  3992. SERIAL_ECHO_START;
  3993. SERIAL_ECHO("T");
  3994. SERIAL_ECHO(tmp_extruder);
  3995. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3996. }
  3997. else {
  3998. boolean make_move = false;
  3999. if (code_seen('F')) {
  4000. make_move = true;
  4001. next_feedrate = code_value();
  4002. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4003. }
  4004. #if EXTRUDERS > 1
  4005. if (tmp_extruder != active_extruder) {
  4006. // Save current position to return to after applying extruder offset
  4007. memcpy(destination, current_position, sizeof(destination));
  4008. #ifdef DUAL_X_CARRIAGE
  4009. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  4010. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4011. // Park old head: 1) raise 2) move to park position 3) lower
  4012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4013. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4014. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4015. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4016. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4017. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4018. st_synchronize();
  4019. }
  4020. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4021. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4022. extruder_offset[Y_AXIS][active_extruder] +
  4023. extruder_offset[Y_AXIS][tmp_extruder];
  4024. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4025. extruder_offset[Z_AXIS][active_extruder] +
  4026. extruder_offset[Z_AXIS][tmp_extruder];
  4027. active_extruder = tmp_extruder;
  4028. // This function resets the max/min values - the current position may be overwritten below.
  4029. axis_is_at_home(X_AXIS);
  4030. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4031. current_position[X_AXIS] = inactive_extruder_x_pos;
  4032. inactive_extruder_x_pos = destination[X_AXIS];
  4033. }
  4034. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4035. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4036. if (active_extruder == 0 || active_extruder_parked)
  4037. current_position[X_AXIS] = inactive_extruder_x_pos;
  4038. else
  4039. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4040. inactive_extruder_x_pos = destination[X_AXIS];
  4041. extruder_duplication_enabled = false;
  4042. }
  4043. else {
  4044. // record raised toolhead position for use by unpark
  4045. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4046. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4047. active_extruder_parked = true;
  4048. delayed_move_time = 0;
  4049. }
  4050. #else // !DUAL_X_CARRIAGE
  4051. // Offset extruder (only by XY)
  4052. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4053. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4054. // Set the new active extruder and position
  4055. active_extruder = tmp_extruder;
  4056. #endif // !DUAL_X_CARRIAGE
  4057. #ifdef DELTA
  4058. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4059. //sent position to plan_set_position();
  4060. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4061. #else
  4062. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4063. #endif
  4064. // Move to the old position if 'F' was in the parameters
  4065. if (make_move && !Stopped) prepare_move();
  4066. }
  4067. #ifdef EXT_SOLENOID
  4068. st_synchronize();
  4069. disable_all_solenoids();
  4070. enable_solenoid_on_active_extruder();
  4071. #endif // EXT_SOLENOID
  4072. #endif // EXTRUDERS > 1
  4073. SERIAL_ECHO_START;
  4074. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4075. SERIAL_PROTOCOLLN((int)active_extruder);
  4076. }
  4077. }
  4078. /**
  4079. * Process Commands and dispatch them to handlers
  4080. */
  4081. void process_commands() {
  4082. if (code_seen('G')) {
  4083. int gCode = code_value_long();
  4084. switch(gCode) {
  4085. // G0, G1
  4086. case 0:
  4087. case 1:
  4088. gcode_G0_G1();
  4089. break;
  4090. // G2, G3
  4091. #ifndef SCARA
  4092. case 2: // G2 - CW ARC
  4093. case 3: // G3 - CCW ARC
  4094. gcode_G2_G3(gCode == 2);
  4095. break;
  4096. #endif
  4097. // G4 Dwell
  4098. case 4:
  4099. gcode_G4();
  4100. break;
  4101. #ifdef FWRETRACT
  4102. case 10: // G10: retract
  4103. case 11: // G11: retract_recover
  4104. gcode_G10_G11(gCode == 10);
  4105. break;
  4106. #endif //FWRETRACT
  4107. case 28: // G28: Home all axes, one at a time
  4108. gcode_G28();
  4109. break;
  4110. #if defined(MESH_BED_LEVELING)
  4111. case 29: // G29 Handle mesh based leveling
  4112. gcode_G29();
  4113. break;
  4114. #endif
  4115. #ifdef ENABLE_AUTO_BED_LEVELING
  4116. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4117. gcode_G29();
  4118. break;
  4119. #ifndef Z_PROBE_SLED
  4120. case 30: // G30 Single Z Probe
  4121. gcode_G30();
  4122. break;
  4123. #else // Z_PROBE_SLED
  4124. case 31: // G31: dock the sled
  4125. case 32: // G32: undock the sled
  4126. dock_sled(gCode == 31);
  4127. break;
  4128. #endif // Z_PROBE_SLED
  4129. #endif // ENABLE_AUTO_BED_LEVELING
  4130. case 90: // G90
  4131. relative_mode = false;
  4132. break;
  4133. case 91: // G91
  4134. relative_mode = true;
  4135. break;
  4136. case 92: // G92
  4137. gcode_G92();
  4138. break;
  4139. }
  4140. }
  4141. else if (code_seen('M')) {
  4142. switch( code_value_long() ) {
  4143. #ifdef ULTIPANEL
  4144. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4145. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4146. gcode_M0_M1();
  4147. break;
  4148. #endif // ULTIPANEL
  4149. case 17:
  4150. gcode_M17();
  4151. break;
  4152. #ifdef SDSUPPORT
  4153. case 20: // M20 - list SD card
  4154. gcode_M20(); break;
  4155. case 21: // M21 - init SD card
  4156. gcode_M21(); break;
  4157. case 22: //M22 - release SD card
  4158. gcode_M22(); break;
  4159. case 23: //M23 - Select file
  4160. gcode_M23(); break;
  4161. case 24: //M24 - Start SD print
  4162. gcode_M24(); break;
  4163. case 25: //M25 - Pause SD print
  4164. gcode_M25(); break;
  4165. case 26: //M26 - Set SD index
  4166. gcode_M26(); break;
  4167. case 27: //M27 - Get SD status
  4168. gcode_M27(); break;
  4169. case 28: //M28 - Start SD write
  4170. gcode_M28(); break;
  4171. case 29: //M29 - Stop SD write
  4172. gcode_M29(); break;
  4173. case 30: //M30 <filename> Delete File
  4174. gcode_M30(); break;
  4175. case 32: //M32 - Select file and start SD print
  4176. gcode_M32(); break;
  4177. case 928: //M928 - Start SD write
  4178. gcode_M928(); break;
  4179. #endif //SDSUPPORT
  4180. case 31: //M31 take time since the start of the SD print or an M109 command
  4181. gcode_M31();
  4182. break;
  4183. case 42: //M42 -Change pin status via gcode
  4184. gcode_M42();
  4185. break;
  4186. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4187. case 48: // M48 Z-Probe repeatability
  4188. gcode_M48();
  4189. break;
  4190. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4191. case 104: // M104
  4192. gcode_M104();
  4193. break;
  4194. case 112: // M112 Emergency Stop
  4195. gcode_M112();
  4196. break;
  4197. case 140: // M140 Set bed temp
  4198. gcode_M140();
  4199. break;
  4200. case 105: // M105 Read current temperature
  4201. gcode_M105();
  4202. return;
  4203. break;
  4204. case 109: // M109 Wait for temperature
  4205. gcode_M109();
  4206. break;
  4207. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4208. case 190: // M190 - Wait for bed heater to reach target.
  4209. gcode_M190();
  4210. break;
  4211. #endif //TEMP_BED_PIN
  4212. #if defined(FAN_PIN) && FAN_PIN > -1
  4213. case 106: //M106 Fan On
  4214. gcode_M106();
  4215. break;
  4216. case 107: //M107 Fan Off
  4217. gcode_M107();
  4218. break;
  4219. #endif //FAN_PIN
  4220. #ifdef BARICUDA
  4221. // PWM for HEATER_1_PIN
  4222. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4223. case 126: // M126 valve open
  4224. gcode_M126();
  4225. break;
  4226. case 127: // M127 valve closed
  4227. gcode_M127();
  4228. break;
  4229. #endif //HEATER_1_PIN
  4230. // PWM for HEATER_2_PIN
  4231. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4232. case 128: // M128 valve open
  4233. gcode_M128();
  4234. break;
  4235. case 129: // M129 valve closed
  4236. gcode_M129();
  4237. break;
  4238. #endif //HEATER_2_PIN
  4239. #endif //BARICUDA
  4240. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4241. case 80: // M80 - Turn on Power Supply
  4242. gcode_M80();
  4243. break;
  4244. #endif // PS_ON_PIN
  4245. case 81: // M81 - Turn off Power Supply
  4246. gcode_M81();
  4247. break;
  4248. case 82:
  4249. gcode_M82();
  4250. break;
  4251. case 83:
  4252. gcode_M83();
  4253. break;
  4254. case 18: //compatibility
  4255. case 84: // M84
  4256. gcode_M18_M84();
  4257. break;
  4258. case 85: // M85
  4259. gcode_M85();
  4260. break;
  4261. case 92: // M92
  4262. gcode_M92();
  4263. break;
  4264. case 115: // M115
  4265. gcode_M115();
  4266. break;
  4267. case 117: // M117 display message
  4268. gcode_M117();
  4269. break;
  4270. case 114: // M114
  4271. gcode_M114();
  4272. break;
  4273. case 120: // M120
  4274. gcode_M120();
  4275. break;
  4276. case 121: // M121
  4277. gcode_M121();
  4278. break;
  4279. case 119: // M119
  4280. gcode_M119();
  4281. break;
  4282. //TODO: update for all axis, use for loop
  4283. #ifdef BLINKM
  4284. case 150: // M150
  4285. gcode_M150();
  4286. break;
  4287. #endif //BLINKM
  4288. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4289. gcode_M200();
  4290. break;
  4291. case 201: // M201
  4292. gcode_M201();
  4293. break;
  4294. #if 0 // Not used for Sprinter/grbl gen6
  4295. case 202: // M202
  4296. gcode_M202();
  4297. break;
  4298. #endif
  4299. case 203: // M203 max feedrate mm/sec
  4300. gcode_M203();
  4301. break;
  4302. case 204: // M204 acclereration S normal moves T filmanent only moves
  4303. gcode_M204();
  4304. break;
  4305. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4306. gcode_M205();
  4307. break;
  4308. case 206: // M206 additional homing offset
  4309. gcode_M206();
  4310. break;
  4311. #ifdef DELTA
  4312. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4313. gcode_M665();
  4314. break;
  4315. case 666: // M666 set delta endstop adjustment
  4316. gcode_M666();
  4317. break;
  4318. #endif // DELTA
  4319. #ifdef FWRETRACT
  4320. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4321. gcode_M207();
  4322. break;
  4323. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4324. gcode_M208();
  4325. break;
  4326. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4327. gcode_M209();
  4328. break;
  4329. #endif // FWRETRACT
  4330. #if EXTRUDERS > 1
  4331. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4332. gcode_M218();
  4333. break;
  4334. #endif
  4335. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4336. gcode_M220();
  4337. break;
  4338. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4339. gcode_M221();
  4340. break;
  4341. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4342. gcode_M226();
  4343. break;
  4344. #if NUM_SERVOS > 0
  4345. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4346. gcode_M280();
  4347. break;
  4348. #endif // NUM_SERVOS > 0
  4349. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4350. case 300: // M300 - Play beep tone
  4351. gcode_M300();
  4352. break;
  4353. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4354. #ifdef PIDTEMP
  4355. case 301: // M301
  4356. gcode_M301();
  4357. break;
  4358. #endif // PIDTEMP
  4359. #ifdef PIDTEMPBED
  4360. case 304: // M304
  4361. gcode_M304();
  4362. break;
  4363. #endif // PIDTEMPBED
  4364. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4365. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4366. gcode_M240();
  4367. break;
  4368. #endif // CHDK || PHOTOGRAPH_PIN
  4369. #ifdef DOGLCD
  4370. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4371. gcode_M250();
  4372. break;
  4373. #endif // DOGLCD
  4374. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4375. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4376. gcode_M302();
  4377. break;
  4378. #endif // PREVENT_DANGEROUS_EXTRUDE
  4379. case 303: // M303 PID autotune
  4380. gcode_M303();
  4381. break;
  4382. #ifdef SCARA
  4383. case 360: // M360 SCARA Theta pos1
  4384. if (gcode_M360()) return;
  4385. break;
  4386. case 361: // M361 SCARA Theta pos2
  4387. if (gcode_M361()) return;
  4388. break;
  4389. case 362: // M362 SCARA Psi pos1
  4390. if (gcode_M362()) return;
  4391. break;
  4392. case 363: // M363 SCARA Psi pos2
  4393. if (gcode_M363()) return;
  4394. break;
  4395. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4396. if (gcode_M364()) return;
  4397. break;
  4398. case 365: // M365 Set SCARA scaling for X Y Z
  4399. gcode_M365();
  4400. break;
  4401. #endif // SCARA
  4402. case 400: // M400 finish all moves
  4403. gcode_M400();
  4404. break;
  4405. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4406. case 401:
  4407. gcode_M401();
  4408. break;
  4409. case 402:
  4410. gcode_M402();
  4411. break;
  4412. #endif
  4413. #ifdef FILAMENT_SENSOR
  4414. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4415. gcode_M404();
  4416. break;
  4417. case 405: //M405 Turn on filament sensor for control
  4418. gcode_M405();
  4419. break;
  4420. case 406: //M406 Turn off filament sensor for control
  4421. gcode_M406();
  4422. break;
  4423. case 407: //M407 Display measured filament diameter
  4424. gcode_M407();
  4425. break;
  4426. #endif // FILAMENT_SENSOR
  4427. case 500: // M500 Store settings in EEPROM
  4428. gcode_M500();
  4429. break;
  4430. case 501: // M501 Read settings from EEPROM
  4431. gcode_M501();
  4432. break;
  4433. case 502: // M502 Revert to default settings
  4434. gcode_M502();
  4435. break;
  4436. case 503: // M503 print settings currently in memory
  4437. gcode_M503();
  4438. break;
  4439. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4440. case 540:
  4441. gcode_M540();
  4442. break;
  4443. #endif
  4444. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4445. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4446. gcode_SET_Z_PROBE_OFFSET();
  4447. break;
  4448. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4449. #ifdef FILAMENTCHANGEENABLE
  4450. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4451. gcode_M600();
  4452. break;
  4453. #endif // FILAMENTCHANGEENABLE
  4454. #ifdef DUAL_X_CARRIAGE
  4455. case 605:
  4456. gcode_M605();
  4457. break;
  4458. #endif // DUAL_X_CARRIAGE
  4459. case 907: // M907 Set digital trimpot motor current using axis codes.
  4460. gcode_M907();
  4461. break;
  4462. #if HAS_DIGIPOTSS
  4463. case 908: // M908 Control digital trimpot directly.
  4464. gcode_M908();
  4465. break;
  4466. #endif // HAS_DIGIPOTSS
  4467. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4468. gcode_M350();
  4469. break;
  4470. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4471. gcode_M351();
  4472. break;
  4473. case 999: // M999: Restart after being Stopped
  4474. gcode_M999();
  4475. break;
  4476. }
  4477. }
  4478. else if (code_seen('T')) {
  4479. gcode_T();
  4480. }
  4481. else {
  4482. SERIAL_ECHO_START;
  4483. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4484. SERIAL_ECHO(cmdbuffer[bufindr]);
  4485. SERIAL_ECHOLNPGM("\"");
  4486. }
  4487. ClearToSend();
  4488. }
  4489. void FlushSerialRequestResend()
  4490. {
  4491. //char cmdbuffer[bufindr][100]="Resend:";
  4492. MYSERIAL.flush();
  4493. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4494. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4495. ClearToSend();
  4496. }
  4497. void ClearToSend()
  4498. {
  4499. previous_millis_cmd = millis();
  4500. #ifdef SDSUPPORT
  4501. if(fromsd[bufindr])
  4502. return;
  4503. #endif //SDSUPPORT
  4504. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4505. }
  4506. void get_coordinates()
  4507. {
  4508. bool seen[4]={false,false,false,false};
  4509. for(int8_t i=0; i < NUM_AXIS; i++) {
  4510. if(code_seen(axis_codes[i]))
  4511. {
  4512. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4513. seen[i]=true;
  4514. }
  4515. else destination[i] = current_position[i]; //Are these else lines really needed?
  4516. }
  4517. if(code_seen('F')) {
  4518. next_feedrate = code_value();
  4519. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4520. }
  4521. }
  4522. void get_arc_coordinates()
  4523. {
  4524. #ifdef SF_ARC_FIX
  4525. bool relative_mode_backup = relative_mode;
  4526. relative_mode = true;
  4527. #endif
  4528. get_coordinates();
  4529. #ifdef SF_ARC_FIX
  4530. relative_mode=relative_mode_backup;
  4531. #endif
  4532. if(code_seen('I')) {
  4533. offset[0] = code_value();
  4534. }
  4535. else {
  4536. offset[0] = 0.0;
  4537. }
  4538. if(code_seen('J')) {
  4539. offset[1] = code_value();
  4540. }
  4541. else {
  4542. offset[1] = 0.0;
  4543. }
  4544. }
  4545. void clamp_to_software_endstops(float target[3])
  4546. {
  4547. if (min_software_endstops) {
  4548. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4549. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4550. float negative_z_offset = 0;
  4551. #ifdef ENABLE_AUTO_BED_LEVELING
  4552. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4553. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4554. #endif
  4555. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4556. }
  4557. if (max_software_endstops) {
  4558. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4559. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4560. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4561. }
  4562. }
  4563. #ifdef DELTA
  4564. void recalc_delta_settings(float radius, float diagonal_rod)
  4565. {
  4566. delta_tower1_x= -SIN_60*radius; // front left tower
  4567. delta_tower1_y= -COS_60*radius;
  4568. delta_tower2_x= SIN_60*radius; // front right tower
  4569. delta_tower2_y= -COS_60*radius;
  4570. delta_tower3_x= 0.0; // back middle tower
  4571. delta_tower3_y= radius;
  4572. delta_diagonal_rod_2= sq(diagonal_rod);
  4573. }
  4574. void calculate_delta(float cartesian[3])
  4575. {
  4576. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4577. - sq(delta_tower1_x-cartesian[X_AXIS])
  4578. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4579. ) + cartesian[Z_AXIS];
  4580. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4581. - sq(delta_tower2_x-cartesian[X_AXIS])
  4582. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4583. ) + cartesian[Z_AXIS];
  4584. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4585. - sq(delta_tower3_x-cartesian[X_AXIS])
  4586. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4587. ) + cartesian[Z_AXIS];
  4588. /*
  4589. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4590. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4591. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4592. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4593. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4594. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4595. */
  4596. }
  4597. #ifdef ENABLE_AUTO_BED_LEVELING
  4598. // Adjust print surface height by linear interpolation over the bed_level array.
  4599. int delta_grid_spacing[2] = { 0, 0 };
  4600. void adjust_delta(float cartesian[3])
  4601. {
  4602. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4603. return; // G29 not done
  4604. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4605. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4606. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4607. int floor_x = floor(grid_x);
  4608. int floor_y = floor(grid_y);
  4609. float ratio_x = grid_x - floor_x;
  4610. float ratio_y = grid_y - floor_y;
  4611. float z1 = bed_level[floor_x+half][floor_y+half];
  4612. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4613. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4614. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4615. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4616. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4617. float offset = (1-ratio_x)*left + ratio_x*right;
  4618. delta[X_AXIS] += offset;
  4619. delta[Y_AXIS] += offset;
  4620. delta[Z_AXIS] += offset;
  4621. /*
  4622. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4623. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4624. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4625. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4626. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4627. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4628. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4629. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4630. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4631. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4632. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4633. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4634. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4635. */
  4636. }
  4637. #endif //ENABLE_AUTO_BED_LEVELING
  4638. void prepare_move_raw()
  4639. {
  4640. previous_millis_cmd = millis();
  4641. calculate_delta(destination);
  4642. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4643. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4644. active_extruder);
  4645. for(int8_t i=0; i < NUM_AXIS; i++) {
  4646. current_position[i] = destination[i];
  4647. }
  4648. }
  4649. #endif //DELTA
  4650. #if defined(MESH_BED_LEVELING)
  4651. #if !defined(MIN)
  4652. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4653. #endif // ! MIN
  4654. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4655. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4656. {
  4657. if (!mbl.active) {
  4658. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4659. for(int8_t i=0; i < NUM_AXIS; i++) {
  4660. current_position[i] = destination[i];
  4661. }
  4662. return;
  4663. }
  4664. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4665. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4666. int ix = mbl.select_x_index(x);
  4667. int iy = mbl.select_y_index(y);
  4668. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4669. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4670. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4671. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4672. if (pix == ix && piy == iy) {
  4673. // Start and end on same mesh square
  4674. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4675. for(int8_t i=0; i < NUM_AXIS; i++) {
  4676. current_position[i] = destination[i];
  4677. }
  4678. return;
  4679. }
  4680. float nx, ny, ne, normalized_dist;
  4681. if (ix > pix && (x_splits) & BIT(ix)) {
  4682. nx = mbl.get_x(ix);
  4683. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4684. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4685. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4686. x_splits ^= BIT(ix);
  4687. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4688. nx = mbl.get_x(pix);
  4689. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4690. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4691. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4692. x_splits ^= BIT(pix);
  4693. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4694. ny = mbl.get_y(iy);
  4695. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4696. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4697. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4698. y_splits ^= BIT(iy);
  4699. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4700. ny = mbl.get_y(piy);
  4701. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4702. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4703. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4704. y_splits ^= BIT(piy);
  4705. } else {
  4706. // Already split on a border
  4707. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4708. for(int8_t i=0; i < NUM_AXIS; i++) {
  4709. current_position[i] = destination[i];
  4710. }
  4711. return;
  4712. }
  4713. // Do the split and look for more borders
  4714. destination[X_AXIS] = nx;
  4715. destination[Y_AXIS] = ny;
  4716. destination[E_AXIS] = ne;
  4717. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4718. destination[X_AXIS] = x;
  4719. destination[Y_AXIS] = y;
  4720. destination[E_AXIS] = e;
  4721. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4722. }
  4723. #endif // MESH_BED_LEVELING
  4724. void prepare_move()
  4725. {
  4726. clamp_to_software_endstops(destination);
  4727. previous_millis_cmd = millis();
  4728. #ifdef SCARA //for now same as delta-code
  4729. float difference[NUM_AXIS];
  4730. for (int8_t i=0; i < NUM_AXIS; i++) {
  4731. difference[i] = destination[i] - current_position[i];
  4732. }
  4733. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4734. sq(difference[Y_AXIS]) +
  4735. sq(difference[Z_AXIS]));
  4736. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4737. if (cartesian_mm < 0.000001) { return; }
  4738. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4739. int steps = max(1, int(scara_segments_per_second * seconds));
  4740. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4741. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4742. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4743. for (int s = 1; s <= steps; s++) {
  4744. float fraction = float(s) / float(steps);
  4745. for(int8_t i=0; i < NUM_AXIS; i++) {
  4746. destination[i] = current_position[i] + difference[i] * fraction;
  4747. }
  4748. calculate_delta(destination);
  4749. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4750. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4751. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4752. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4753. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4754. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4755. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4756. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4757. active_extruder);
  4758. }
  4759. #endif // SCARA
  4760. #ifdef DELTA
  4761. float difference[NUM_AXIS];
  4762. for (int8_t i=0; i < NUM_AXIS; i++) {
  4763. difference[i] = destination[i] - current_position[i];
  4764. }
  4765. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4766. sq(difference[Y_AXIS]) +
  4767. sq(difference[Z_AXIS]));
  4768. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4769. if (cartesian_mm < 0.000001) { return; }
  4770. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4771. int steps = max(1, int(delta_segments_per_second * seconds));
  4772. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4773. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4774. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4775. for (int s = 1; s <= steps; s++) {
  4776. float fraction = float(s) / float(steps);
  4777. for(int8_t i=0; i < NUM_AXIS; i++) {
  4778. destination[i] = current_position[i] + difference[i] * fraction;
  4779. }
  4780. calculate_delta(destination);
  4781. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4782. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4783. active_extruder);
  4784. }
  4785. #endif // DELTA
  4786. #ifdef DUAL_X_CARRIAGE
  4787. if (active_extruder_parked)
  4788. {
  4789. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4790. {
  4791. // move duplicate extruder into correct duplication position.
  4792. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4793. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4794. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4796. st_synchronize();
  4797. extruder_duplication_enabled = true;
  4798. active_extruder_parked = false;
  4799. }
  4800. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4801. {
  4802. if (current_position[E_AXIS] == destination[E_AXIS])
  4803. {
  4804. // this is a travel move - skit it but keep track of current position (so that it can later
  4805. // be used as start of first non-travel move)
  4806. if (delayed_move_time != 0xFFFFFFFFUL)
  4807. {
  4808. memcpy(current_position, destination, sizeof(current_position));
  4809. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4810. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4811. delayed_move_time = millis();
  4812. return;
  4813. }
  4814. }
  4815. delayed_move_time = 0;
  4816. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4817. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4819. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4821. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4822. active_extruder_parked = false;
  4823. }
  4824. }
  4825. #endif //DUAL_X_CARRIAGE
  4826. #if ! (defined DELTA || defined SCARA)
  4827. // Do not use feedmultiply for E or Z only moves
  4828. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4830. } else {
  4831. #if defined(MESH_BED_LEVELING)
  4832. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4833. return;
  4834. #else
  4835. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4836. #endif // MESH_BED_LEVELING
  4837. }
  4838. #endif // !(DELTA || SCARA)
  4839. for(int8_t i=0; i < NUM_AXIS; i++) {
  4840. current_position[i] = destination[i];
  4841. }
  4842. }
  4843. void prepare_arc_move(char isclockwise) {
  4844. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4845. // Trace the arc
  4846. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4847. // As far as the parser is concerned, the position is now == target. In reality the
  4848. // motion control system might still be processing the action and the real tool position
  4849. // in any intermediate location.
  4850. for(int8_t i=0; i < NUM_AXIS; i++) {
  4851. current_position[i] = destination[i];
  4852. }
  4853. previous_millis_cmd = millis();
  4854. }
  4855. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4856. #if defined(FAN_PIN)
  4857. #if CONTROLLERFAN_PIN == FAN_PIN
  4858. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4859. #endif
  4860. #endif
  4861. unsigned long lastMotor = 0; // Last time a motor was turned on
  4862. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4863. void controllerFan() {
  4864. uint32_t ms = millis();
  4865. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4866. lastMotorCheck = ms;
  4867. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4868. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4869. #if EXTRUDERS > 1
  4870. || E1_ENABLE_READ == E_ENABLE_ON
  4871. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4872. || X2_ENABLE_READ == X_ENABLE_ON
  4873. #endif
  4874. #if EXTRUDERS > 2
  4875. || E2_ENABLE_READ == E_ENABLE_ON
  4876. #if EXTRUDERS > 3
  4877. || E3_ENABLE_READ == E_ENABLE_ON
  4878. #endif
  4879. #endif
  4880. #endif
  4881. ) {
  4882. lastMotor = ms; //... set time to NOW so the fan will turn on
  4883. }
  4884. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4885. // allows digital or PWM fan output to be used (see M42 handling)
  4886. digitalWrite(CONTROLLERFAN_PIN, speed);
  4887. analogWrite(CONTROLLERFAN_PIN, speed);
  4888. }
  4889. }
  4890. #endif
  4891. #ifdef SCARA
  4892. void calculate_SCARA_forward_Transform(float f_scara[3])
  4893. {
  4894. // Perform forward kinematics, and place results in delta[3]
  4895. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4896. float x_sin, x_cos, y_sin, y_cos;
  4897. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4898. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4899. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4900. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4901. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4902. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4903. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4904. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4905. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4906. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4907. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4908. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4909. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4910. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4911. }
  4912. void calculate_delta(float cartesian[3]){
  4913. //reverse kinematics.
  4914. // Perform reversed kinematics, and place results in delta[3]
  4915. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4916. float SCARA_pos[2];
  4917. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4918. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4919. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4920. #if (Linkage_1 == Linkage_2)
  4921. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4922. #else
  4923. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4924. #endif
  4925. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4926. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4927. SCARA_K2 = Linkage_2 * SCARA_S2;
  4928. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4929. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4930. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4931. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4932. delta[Z_AXIS] = cartesian[Z_AXIS];
  4933. /*
  4934. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4935. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4936. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4937. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4938. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4939. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4940. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4941. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4942. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4943. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4944. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4945. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4946. SERIAL_ECHOLN(" ");*/
  4947. }
  4948. #endif
  4949. #ifdef TEMP_STAT_LEDS
  4950. static bool blue_led = false;
  4951. static bool red_led = false;
  4952. static uint32_t stat_update = 0;
  4953. void handle_status_leds(void) {
  4954. float max_temp = 0.0;
  4955. if(millis() > stat_update) {
  4956. stat_update += 500; // Update every 0.5s
  4957. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4958. max_temp = max(max_temp, degHotend(cur_extruder));
  4959. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4960. }
  4961. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4962. max_temp = max(max_temp, degTargetBed());
  4963. max_temp = max(max_temp, degBed());
  4964. #endif
  4965. if((max_temp > 55.0) && (red_led == false)) {
  4966. digitalWrite(STAT_LED_RED, 1);
  4967. digitalWrite(STAT_LED_BLUE, 0);
  4968. red_led = true;
  4969. blue_led = false;
  4970. }
  4971. if((max_temp < 54.0) && (blue_led == false)) {
  4972. digitalWrite(STAT_LED_RED, 0);
  4973. digitalWrite(STAT_LED_BLUE, 1);
  4974. red_led = false;
  4975. blue_led = true;
  4976. }
  4977. }
  4978. }
  4979. #endif
  4980. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4981. {
  4982. #if defined(KILL_PIN) && KILL_PIN > -1
  4983. static int killCount = 0; // make the inactivity button a bit less responsive
  4984. const int KILL_DELAY = 750;
  4985. #endif
  4986. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4987. if(card.sdprinting) {
  4988. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4989. filrunout(); }
  4990. #endif
  4991. #if defined(HOME_PIN) && HOME_PIN > -1
  4992. static int homeDebounceCount = 0; // poor man's debouncing count
  4993. const int HOME_DEBOUNCE_DELAY = 750;
  4994. #endif
  4995. if(buflen < (BUFSIZE-1))
  4996. get_command();
  4997. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4998. if(max_inactive_time)
  4999. kill();
  5000. if(stepper_inactive_time) {
  5001. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5002. {
  5003. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5004. disable_x();
  5005. disable_y();
  5006. disable_z();
  5007. disable_e0();
  5008. disable_e1();
  5009. disable_e2();
  5010. disable_e3();
  5011. }
  5012. }
  5013. }
  5014. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5015. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5016. {
  5017. chdkActive = false;
  5018. WRITE(CHDK, LOW);
  5019. }
  5020. #endif
  5021. #if defined(KILL_PIN) && KILL_PIN > -1
  5022. // Check if the kill button was pressed and wait just in case it was an accidental
  5023. // key kill key press
  5024. // -------------------------------------------------------------------------------
  5025. if( 0 == READ(KILL_PIN) )
  5026. {
  5027. killCount++;
  5028. }
  5029. else if (killCount > 0)
  5030. {
  5031. killCount--;
  5032. }
  5033. // Exceeded threshold and we can confirm that it was not accidental
  5034. // KILL the machine
  5035. // ----------------------------------------------------------------
  5036. if ( killCount >= KILL_DELAY)
  5037. {
  5038. kill();
  5039. }
  5040. #endif
  5041. #if defined(HOME_PIN) && HOME_PIN > -1
  5042. // Check to see if we have to home, use poor man's debouncer
  5043. // ---------------------------------------------------------
  5044. if ( 0 == READ(HOME_PIN) )
  5045. {
  5046. if (homeDebounceCount == 0)
  5047. {
  5048. enquecommands_P((PSTR("G28")));
  5049. homeDebounceCount++;
  5050. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5051. }
  5052. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5053. {
  5054. homeDebounceCount++;
  5055. }
  5056. else
  5057. {
  5058. homeDebounceCount = 0;
  5059. }
  5060. }
  5061. #endif
  5062. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5063. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5064. #endif
  5065. #ifdef EXTRUDER_RUNOUT_PREVENT
  5066. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5067. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5068. {
  5069. bool oldstatus=E0_ENABLE_READ;
  5070. enable_e0();
  5071. float oldepos=current_position[E_AXIS];
  5072. float oldedes=destination[E_AXIS];
  5073. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5074. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5075. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5076. current_position[E_AXIS]=oldepos;
  5077. destination[E_AXIS]=oldedes;
  5078. plan_set_e_position(oldepos);
  5079. previous_millis_cmd=millis();
  5080. st_synchronize();
  5081. E0_ENABLE_WRITE(oldstatus);
  5082. }
  5083. #endif
  5084. #if defined(DUAL_X_CARRIAGE)
  5085. // handle delayed move timeout
  5086. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5087. {
  5088. // travel moves have been received so enact them
  5089. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5090. memcpy(destination,current_position,sizeof(destination));
  5091. prepare_move();
  5092. }
  5093. #endif
  5094. #ifdef TEMP_STAT_LEDS
  5095. handle_status_leds();
  5096. #endif
  5097. check_axes_activity();
  5098. }
  5099. void kill()
  5100. {
  5101. cli(); // Stop interrupts
  5102. disable_heater();
  5103. disable_x();
  5104. disable_y();
  5105. disable_z();
  5106. disable_e0();
  5107. disable_e1();
  5108. disable_e2();
  5109. disable_e3();
  5110. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5111. pinMode(PS_ON_PIN,INPUT);
  5112. #endif
  5113. SERIAL_ERROR_START;
  5114. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5115. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5116. // FMC small patch to update the LCD before ending
  5117. sei(); // enable interrupts
  5118. for ( int i=5; i--; lcd_update())
  5119. {
  5120. delay(200);
  5121. }
  5122. cli(); // disable interrupts
  5123. suicide();
  5124. while(1) { /* Intentionally left empty */ } // Wait for reset
  5125. }
  5126. #ifdef FILAMENT_RUNOUT_SENSOR
  5127. void filrunout()
  5128. {
  5129. if filrunoutEnqued == false {
  5130. filrunoutEnqued = true;
  5131. enquecommand("M600");
  5132. }
  5133. }
  5134. #endif
  5135. void Stop()
  5136. {
  5137. disable_heater();
  5138. if(Stopped == false) {
  5139. Stopped = true;
  5140. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5141. SERIAL_ERROR_START;
  5142. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5143. LCD_MESSAGEPGM(MSG_STOPPED);
  5144. }
  5145. }
  5146. bool IsStopped() { return Stopped; };
  5147. #ifdef FAST_PWM_FAN
  5148. void setPwmFrequency(uint8_t pin, int val)
  5149. {
  5150. val &= 0x07;
  5151. switch(digitalPinToTimer(pin))
  5152. {
  5153. #if defined(TCCR0A)
  5154. case TIMER0A:
  5155. case TIMER0B:
  5156. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5157. // TCCR0B |= val;
  5158. break;
  5159. #endif
  5160. #if defined(TCCR1A)
  5161. case TIMER1A:
  5162. case TIMER1B:
  5163. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5164. // TCCR1B |= val;
  5165. break;
  5166. #endif
  5167. #if defined(TCCR2)
  5168. case TIMER2:
  5169. case TIMER2:
  5170. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5171. TCCR2 |= val;
  5172. break;
  5173. #endif
  5174. #if defined(TCCR2A)
  5175. case TIMER2A:
  5176. case TIMER2B:
  5177. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5178. TCCR2B |= val;
  5179. break;
  5180. #endif
  5181. #if defined(TCCR3A)
  5182. case TIMER3A:
  5183. case TIMER3B:
  5184. case TIMER3C:
  5185. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5186. TCCR3B |= val;
  5187. break;
  5188. #endif
  5189. #if defined(TCCR4A)
  5190. case TIMER4A:
  5191. case TIMER4B:
  5192. case TIMER4C:
  5193. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5194. TCCR4B |= val;
  5195. break;
  5196. #endif
  5197. #if defined(TCCR5A)
  5198. case TIMER5A:
  5199. case TIMER5B:
  5200. case TIMER5C:
  5201. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5202. TCCR5B |= val;
  5203. break;
  5204. #endif
  5205. }
  5206. }
  5207. #endif //FAST_PWM_FAN
  5208. bool setTargetedHotend(int code){
  5209. tmp_extruder = active_extruder;
  5210. if(code_seen('T')) {
  5211. tmp_extruder = code_value();
  5212. if(tmp_extruder >= EXTRUDERS) {
  5213. SERIAL_ECHO_START;
  5214. switch(code){
  5215. case 104:
  5216. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5217. break;
  5218. case 105:
  5219. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5220. break;
  5221. case 109:
  5222. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5223. break;
  5224. case 218:
  5225. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5226. break;
  5227. case 221:
  5228. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5229. break;
  5230. }
  5231. SERIAL_ECHOLN(tmp_extruder);
  5232. return true;
  5233. }
  5234. }
  5235. return false;
  5236. }
  5237. float calculate_volumetric_multiplier(float diameter) {
  5238. if (!volumetric_enabled || diameter == 0) return 1.0;
  5239. float d2 = diameter * 0.5;
  5240. return 1.0 / (M_PI * d2 * d2);
  5241. }
  5242. void calculate_volumetric_multipliers() {
  5243. for (int i=0; i<EXTRUDERS; i++)
  5244. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5245. }