My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 277KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #include "timestamp_t.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  195. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  196. * M221 - Set Flow Percentage: S<percent>
  197. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  198. * M240 - Trigger a camera to take a photograph
  199. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  200. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  201. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  202. * M301 - Set PID parameters P I and D
  203. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  204. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  205. * M304 - Set bed PID parameters P I and D
  206. * M380 - Activate solenoid on active extruder
  207. * M381 - Disable all solenoids
  208. * M400 - Finish all moves
  209. * M401 - Lower Z probe if present
  210. * M402 - Raise Z probe if present
  211. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  212. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  213. * M406 - Disable Filament Sensor extrusion control
  214. * M407 - Display measured filament diameter in millimeters
  215. * M410 - Quickstop. Abort all the planned moves
  216. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  217. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  218. * M428 - Set the home_offset logically based on the current_position
  219. * M500 - Store parameters in EEPROM
  220. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  223. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  226. * M666 - Set delta endstop adjustment
  227. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  229. * M907 - Set digital trimpot motor current using axis codes.
  230. * M908 - Control digital trimpot directly.
  231. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  232. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  233. * M350 - Set microstepping mode.
  234. * M351 - Toggle MS1 MS2 pins directly.
  235. *
  236. * ************ SCARA Specific - This can change to suit future G-code regulations
  237. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  238. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  239. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  240. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  241. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  242. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[3] = { false };
  269. bool axis_homed[3] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_m[] = {
  288. #if ENABLED(DELTA)
  289. HOMING_FEEDRATE_Z, HOMING_FEEDRATE_Z,
  290. #else
  291. HOMING_FEEDRATE_XY, HOMING_FEEDRATE_XY,
  292. #endif
  293. HOMING_FEEDRATE_Z, 0
  294. };
  295. static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[3] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[3] = { 0 };
  307. #define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
  308. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  309. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  310. // Software Endstops. Default to configured limits.
  311. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  312. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. const char errormagic[] PROGMEM = "Error:";
  322. const char echomagic[] PROGMEM = "echo:";
  323. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  324. static int serial_count = 0;
  325. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  326. static char* seen_pointer;
  327. // Next Immediate GCode Command pointer. NULL if none.
  328. const char* queued_commands_P = NULL;
  329. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  330. // Inactivity shutdown
  331. millis_t previous_cmd_ms = 0;
  332. static millis_t max_inactive_time = 0;
  333. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  334. // Print Job Timer
  335. #if ENABLED(PRINTCOUNTER)
  336. PrintCounter print_job_timer = PrintCounter();
  337. #else
  338. Stopwatch print_job_timer = Stopwatch();
  339. #endif
  340. // Buzzer
  341. #if HAS_BUZZER
  342. #if ENABLED(SPEAKER)
  343. Speaker buzzer;
  344. #else
  345. Buzzer buzzer;
  346. #endif
  347. #endif
  348. static uint8_t target_extruder;
  349. #if HAS_BED_PROBE
  350. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  351. #endif
  352. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  353. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  354. int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
  355. bool bed_leveling_in_progress = false;
  356. #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
  357. #elif defined(XY_PROBE_SPEED)
  358. #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
  359. #else
  360. #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
  361. #endif
  362. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  363. float z_endstop_adj = 0;
  364. #endif
  365. // Extruder offsets
  366. #if HOTENDS > 1
  367. float hotend_offset[][HOTENDS] = {
  368. HOTEND_OFFSET_X,
  369. HOTEND_OFFSET_Y
  370. #ifdef HOTEND_OFFSET_Z
  371. , HOTEND_OFFSET_Z
  372. #endif
  373. };
  374. #endif
  375. #if HAS_Z_SERVO_ENDSTOP
  376. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  377. #endif
  378. #if ENABLED(BARICUDA)
  379. int baricuda_valve_pressure = 0;
  380. int baricuda_e_to_p_pressure = 0;
  381. #endif
  382. #if ENABLED(FWRETRACT)
  383. bool autoretract_enabled = false;
  384. bool retracted[EXTRUDERS] = { false };
  385. bool retracted_swap[EXTRUDERS] = { false };
  386. float retract_length = RETRACT_LENGTH;
  387. float retract_length_swap = RETRACT_LENGTH_SWAP;
  388. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  389. float retract_zlift = RETRACT_ZLIFT;
  390. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  391. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  392. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  393. #endif // FWRETRACT
  394. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  395. bool powersupply =
  396. #if ENABLED(PS_DEFAULT_OFF)
  397. false
  398. #else
  399. true
  400. #endif
  401. ;
  402. #endif
  403. #if ENABLED(DELTA)
  404. #define TOWER_1 X_AXIS
  405. #define TOWER_2 Y_AXIS
  406. #define TOWER_3 Z_AXIS
  407. float delta[3] = { 0 };
  408. float cartesian_position[3] = { 0 };
  409. #define SIN_60 0.8660254037844386
  410. #define COS_60 0.5
  411. float endstop_adj[3] = { 0 };
  412. // these are the default values, can be overriden with M665
  413. float delta_radius = DELTA_RADIUS;
  414. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  415. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  416. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  417. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  418. float delta_tower3_x = 0; // back middle tower
  419. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  420. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  421. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  422. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  423. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  424. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  425. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  426. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  427. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  428. float delta_clip_start_height = Z_MAX_POS;
  429. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  430. int delta_grid_spacing[2] = { 0, 0 };
  431. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  432. #endif
  433. float delta_safe_distance_from_top();
  434. #else
  435. static bool home_all_axis = true;
  436. #endif
  437. #if ENABLED(SCARA)
  438. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  439. static float delta[3] = { 0 };
  440. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  441. #endif
  442. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  443. //Variables for Filament Sensor input
  444. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  445. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  446. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  447. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  448. int filwidth_delay_index1 = 0; //index into ring buffer
  449. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  450. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  451. #endif
  452. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  453. static bool filament_ran_out = false;
  454. #endif
  455. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  456. FilamentChangeMenuResponse filament_change_menu_response;
  457. #endif
  458. #if ENABLED(MIXING_EXTRUDER)
  459. float mixing_factor[MIXING_STEPPERS];
  460. #if MIXING_VIRTUAL_TOOLS > 1
  461. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  462. #endif
  463. #endif
  464. static bool send_ok[BUFSIZE];
  465. #if HAS_SERVOS
  466. Servo servo[NUM_SERVOS];
  467. #define MOVE_SERVO(I, P) servo[I].move(P)
  468. #if HAS_Z_SERVO_ENDSTOP
  469. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  470. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  471. #endif
  472. #endif
  473. #ifdef CHDK
  474. millis_t chdkHigh = 0;
  475. boolean chdkActive = false;
  476. #endif
  477. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  478. int lpq_len = 20;
  479. #endif
  480. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  481. static MarlinBusyState busy_state = NOT_BUSY;
  482. static millis_t next_busy_signal_ms = 0;
  483. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  484. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  485. #else
  486. #define host_keepalive() ;
  487. #define KEEPALIVE_STATE(n) ;
  488. #endif // HOST_KEEPALIVE_FEATURE
  489. /**
  490. * ***************************************************************************
  491. * ******************************** FUNCTIONS ********************************
  492. * ***************************************************************************
  493. */
  494. void stop();
  495. void get_available_commands();
  496. void process_next_command();
  497. void prepare_move_to_destination();
  498. void set_current_from_steppers();
  499. #if ENABLED(ARC_SUPPORT)
  500. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  501. #endif
  502. #if ENABLED(BEZIER_CURVE_SUPPORT)
  503. void plan_cubic_move(const float offset[4]);
  504. #endif
  505. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  506. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  507. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  508. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  509. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  510. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  511. void tool_change(const uint8_t tmp_extruder, const float fr_mm_m=0.0, bool no_move=false);
  512. static void report_current_position();
  513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  514. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  515. serialprintPGM(prefix);
  516. SERIAL_ECHOPAIR("(", x);
  517. SERIAL_ECHOPAIR(", ", y);
  518. SERIAL_ECHOPAIR(", ", z);
  519. SERIAL_ECHOPGM(")");
  520. if (suffix) serialprintPGM(suffix);
  521. else SERIAL_EOL;
  522. }
  523. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  524. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  525. }
  526. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  527. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  528. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  529. }
  530. #endif
  531. #define DEBUG_POS(SUFFIX,VAR) do { \
  532. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  533. #endif
  534. #if ENABLED(DELTA) || ENABLED(SCARA)
  535. inline void sync_plan_position_delta() {
  536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  537. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  538. #endif
  539. inverse_kinematics(current_position);
  540. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  541. }
  542. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  543. #else
  544. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  545. #endif
  546. #if ENABLED(SDSUPPORT)
  547. #include "SdFatUtil.h"
  548. int freeMemory() { return SdFatUtil::FreeRam(); }
  549. #else
  550. extern "C" {
  551. extern unsigned int __bss_end;
  552. extern unsigned int __heap_start;
  553. extern void* __brkval;
  554. int freeMemory() {
  555. int free_memory;
  556. if ((int)__brkval == 0)
  557. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  558. else
  559. free_memory = ((int)&free_memory) - ((int)__brkval);
  560. return free_memory;
  561. }
  562. }
  563. #endif //!SDSUPPORT
  564. #if ENABLED(DIGIPOT_I2C)
  565. extern void digipot_i2c_set_current(int channel, float current);
  566. extern void digipot_i2c_init();
  567. #endif
  568. /**
  569. * Inject the next "immediate" command, when possible.
  570. * Return true if any immediate commands remain to inject.
  571. */
  572. static bool drain_queued_commands_P() {
  573. if (queued_commands_P != NULL) {
  574. size_t i = 0;
  575. char c, cmd[30];
  576. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  577. cmd[sizeof(cmd) - 1] = '\0';
  578. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  579. cmd[i] = '\0';
  580. if (enqueue_and_echo_command(cmd)) { // success?
  581. if (c) // newline char?
  582. queued_commands_P += i + 1; // advance to the next command
  583. else
  584. queued_commands_P = NULL; // nul char? no more commands
  585. }
  586. }
  587. return (queued_commands_P != NULL); // return whether any more remain
  588. }
  589. /**
  590. * Record one or many commands to run from program memory.
  591. * Aborts the current queue, if any.
  592. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  593. */
  594. void enqueue_and_echo_commands_P(const char* pgcode) {
  595. queued_commands_P = pgcode;
  596. drain_queued_commands_P(); // first command executed asap (when possible)
  597. }
  598. void clear_command_queue() {
  599. cmd_queue_index_r = cmd_queue_index_w;
  600. commands_in_queue = 0;
  601. }
  602. /**
  603. * Once a new command is in the ring buffer, call this to commit it
  604. */
  605. inline void _commit_command(bool say_ok) {
  606. send_ok[cmd_queue_index_w] = say_ok;
  607. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  608. commands_in_queue++;
  609. }
  610. /**
  611. * Copy a command directly into the main command buffer, from RAM.
  612. * Returns true if successfully adds the command
  613. */
  614. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  615. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  616. strcpy(command_queue[cmd_queue_index_w], cmd);
  617. _commit_command(say_ok);
  618. return true;
  619. }
  620. void enqueue_and_echo_command_now(const char* cmd) {
  621. while (!enqueue_and_echo_command(cmd)) idle();
  622. }
  623. /**
  624. * Enqueue with Serial Echo
  625. */
  626. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  627. if (_enqueuecommand(cmd, say_ok)) {
  628. SERIAL_ECHO_START;
  629. SERIAL_ECHOPGM(MSG_Enqueueing);
  630. SERIAL_ECHO(cmd);
  631. SERIAL_ECHOLNPGM("\"");
  632. return true;
  633. }
  634. return false;
  635. }
  636. void setup_killpin() {
  637. #if HAS_KILL
  638. SET_INPUT(KILL_PIN);
  639. WRITE(KILL_PIN, HIGH);
  640. #endif
  641. }
  642. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  643. void setup_filrunoutpin() {
  644. pinMode(FIL_RUNOUT_PIN, INPUT);
  645. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  646. WRITE(FIL_RUNOUT_PIN, HIGH);
  647. #endif
  648. }
  649. #endif
  650. // Set home pin
  651. void setup_homepin(void) {
  652. #if HAS_HOME
  653. SET_INPUT(HOME_PIN);
  654. WRITE(HOME_PIN, HIGH);
  655. #endif
  656. }
  657. void setup_photpin() {
  658. #if HAS_PHOTOGRAPH
  659. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  660. #endif
  661. }
  662. void setup_powerhold() {
  663. #if HAS_SUICIDE
  664. OUT_WRITE(SUICIDE_PIN, HIGH);
  665. #endif
  666. #if HAS_POWER_SWITCH
  667. #if ENABLED(PS_DEFAULT_OFF)
  668. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  669. #else
  670. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  671. #endif
  672. #endif
  673. }
  674. void suicide() {
  675. #if HAS_SUICIDE
  676. OUT_WRITE(SUICIDE_PIN, LOW);
  677. #endif
  678. }
  679. void servo_init() {
  680. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  681. servo[0].attach(SERVO0_PIN);
  682. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  683. #endif
  684. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  685. servo[1].attach(SERVO1_PIN);
  686. servo[1].detach();
  687. #endif
  688. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  689. servo[2].attach(SERVO2_PIN);
  690. servo[2].detach();
  691. #endif
  692. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  693. servo[3].attach(SERVO3_PIN);
  694. servo[3].detach();
  695. #endif
  696. #if HAS_Z_SERVO_ENDSTOP
  697. /**
  698. * Set position of Z Servo Endstop
  699. *
  700. * The servo might be deployed and positioned too low to stow
  701. * when starting up the machine or rebooting the board.
  702. * There's no way to know where the nozzle is positioned until
  703. * homing has been done - no homing with z-probe without init!
  704. *
  705. */
  706. STOW_Z_SERVO();
  707. #endif
  708. #if HAS_BED_PROBE
  709. endstops.enable_z_probe(false);
  710. #endif
  711. }
  712. /**
  713. * Stepper Reset (RigidBoard, et.al.)
  714. */
  715. #if HAS_STEPPER_RESET
  716. void disableStepperDrivers() {
  717. pinMode(STEPPER_RESET_PIN, OUTPUT);
  718. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  719. }
  720. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  721. #endif
  722. /**
  723. * Marlin entry-point: Set up before the program loop
  724. * - Set up the kill pin, filament runout, power hold
  725. * - Start the serial port
  726. * - Print startup messages and diagnostics
  727. * - Get EEPROM or default settings
  728. * - Initialize managers for:
  729. * • temperature
  730. * • planner
  731. * • watchdog
  732. * • stepper
  733. * • photo pin
  734. * • servos
  735. * • LCD controller
  736. * • Digipot I2C
  737. * • Z probe sled
  738. * • status LEDs
  739. */
  740. void setup() {
  741. #ifdef DISABLE_JTAG
  742. // Disable JTAG on AT90USB chips to free up pins for IO
  743. MCUCR = 0x80;
  744. MCUCR = 0x80;
  745. #endif
  746. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  747. setup_filrunoutpin();
  748. #endif
  749. setup_killpin();
  750. setup_powerhold();
  751. #if HAS_STEPPER_RESET
  752. disableStepperDrivers();
  753. #endif
  754. MYSERIAL.begin(BAUDRATE);
  755. SERIAL_PROTOCOLLNPGM("start");
  756. SERIAL_ECHO_START;
  757. // Check startup - does nothing if bootloader sets MCUSR to 0
  758. byte mcu = MCUSR;
  759. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  760. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  761. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  762. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  763. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  764. MCUSR = 0;
  765. SERIAL_ECHOPGM(MSG_MARLIN);
  766. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  767. #ifdef STRING_DISTRIBUTION_DATE
  768. #ifdef STRING_CONFIG_H_AUTHOR
  769. SERIAL_ECHO_START;
  770. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  771. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  772. SERIAL_ECHOPGM(MSG_AUTHOR);
  773. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  774. SERIAL_ECHOPGM("Compiled: ");
  775. SERIAL_ECHOLNPGM(__DATE__);
  776. #endif // STRING_CONFIG_H_AUTHOR
  777. #endif // STRING_DISTRIBUTION_DATE
  778. SERIAL_ECHO_START;
  779. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  780. SERIAL_ECHO(freeMemory());
  781. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  782. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  783. // Send "ok" after commands by default
  784. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  785. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  786. Config_RetrieveSettings();
  787. // Initialize current position based on home_offset
  788. memcpy(current_position, home_offset, sizeof(home_offset));
  789. #if ENABLED(DELTA) || ENABLED(SCARA)
  790. // Vital to init kinematic equivalent for X0 Y0 Z0
  791. SYNC_PLAN_POSITION_KINEMATIC();
  792. #endif
  793. thermalManager.init(); // Initialize temperature loop
  794. #if ENABLED(USE_WATCHDOG)
  795. watchdog_init();
  796. #endif
  797. stepper.init(); // Initialize stepper, this enables interrupts!
  798. setup_photpin();
  799. servo_init();
  800. #if HAS_CONTROLLERFAN
  801. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  802. #endif
  803. #if HAS_STEPPER_RESET
  804. enableStepperDrivers();
  805. #endif
  806. #if ENABLED(DIGIPOT_I2C)
  807. digipot_i2c_init();
  808. #endif
  809. #if ENABLED(DAC_STEPPER_CURRENT)
  810. dac_init();
  811. #endif
  812. #if ENABLED(Z_PROBE_SLED)
  813. pinMode(SLED_PIN, OUTPUT);
  814. digitalWrite(SLED_PIN, LOW); // turn it off
  815. #endif // Z_PROBE_SLED
  816. setup_homepin();
  817. #ifdef STAT_LED_RED
  818. pinMode(STAT_LED_RED, OUTPUT);
  819. digitalWrite(STAT_LED_RED, LOW); // turn it off
  820. #endif
  821. #ifdef STAT_LED_BLUE
  822. pinMode(STAT_LED_BLUE, OUTPUT);
  823. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  824. #endif
  825. lcd_init();
  826. #if ENABLED(SHOW_BOOTSCREEN)
  827. #if ENABLED(DOGLCD)
  828. safe_delay(BOOTSCREEN_TIMEOUT);
  829. #elif ENABLED(ULTRA_LCD)
  830. bootscreen();
  831. lcd_init();
  832. #endif
  833. #endif
  834. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  835. // Initialize mixing to 100% color 1
  836. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  837. mixing_factor[i] = (i == 0) ? 1 : 0;
  838. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  839. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  840. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  841. #endif
  842. }
  843. /**
  844. * The main Marlin program loop
  845. *
  846. * - Save or log commands to SD
  847. * - Process available commands (if not saving)
  848. * - Call heater manager
  849. * - Call inactivity manager
  850. * - Call endstop manager
  851. * - Call LCD update
  852. */
  853. void loop() {
  854. if (commands_in_queue < BUFSIZE) get_available_commands();
  855. #if ENABLED(SDSUPPORT)
  856. card.checkautostart(false);
  857. #endif
  858. if (commands_in_queue) {
  859. #if ENABLED(SDSUPPORT)
  860. if (card.saving) {
  861. char* command = command_queue[cmd_queue_index_r];
  862. if (strstr_P(command, PSTR("M29"))) {
  863. // M29 closes the file
  864. card.closefile();
  865. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  866. ok_to_send();
  867. }
  868. else {
  869. // Write the string from the read buffer to SD
  870. card.write_command(command);
  871. if (card.logging)
  872. process_next_command(); // The card is saving because it's logging
  873. else
  874. ok_to_send();
  875. }
  876. }
  877. else
  878. process_next_command();
  879. #else
  880. process_next_command();
  881. #endif // SDSUPPORT
  882. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  883. if (commands_in_queue) {
  884. --commands_in_queue;
  885. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  886. }
  887. }
  888. endstops.report_state();
  889. idle();
  890. }
  891. void gcode_line_error(const char* err, bool doFlush = true) {
  892. SERIAL_ERROR_START;
  893. serialprintPGM(err);
  894. SERIAL_ERRORLN(gcode_LastN);
  895. //Serial.println(gcode_N);
  896. if (doFlush) FlushSerialRequestResend();
  897. serial_count = 0;
  898. }
  899. inline void get_serial_commands() {
  900. static char serial_line_buffer[MAX_CMD_SIZE];
  901. static boolean serial_comment_mode = false;
  902. // If the command buffer is empty for too long,
  903. // send "wait" to indicate Marlin is still waiting.
  904. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  905. static millis_t last_command_time = 0;
  906. millis_t ms = millis();
  907. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  908. SERIAL_ECHOLNPGM(MSG_WAIT);
  909. last_command_time = ms;
  910. }
  911. #endif
  912. /**
  913. * Loop while serial characters are incoming and the queue is not full
  914. */
  915. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  916. char serial_char = MYSERIAL.read();
  917. /**
  918. * If the character ends the line
  919. */
  920. if (serial_char == '\n' || serial_char == '\r') {
  921. serial_comment_mode = false; // end of line == end of comment
  922. if (!serial_count) continue; // skip empty lines
  923. serial_line_buffer[serial_count] = 0; // terminate string
  924. serial_count = 0; //reset buffer
  925. char* command = serial_line_buffer;
  926. while (*command == ' ') command++; // skip any leading spaces
  927. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  928. char* apos = strchr(command, '*');
  929. if (npos) {
  930. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  931. if (M110) {
  932. char* n2pos = strchr(command + 4, 'N');
  933. if (n2pos) npos = n2pos;
  934. }
  935. gcode_N = strtol(npos + 1, NULL, 10);
  936. if (gcode_N != gcode_LastN + 1 && !M110) {
  937. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  938. return;
  939. }
  940. if (apos) {
  941. byte checksum = 0, count = 0;
  942. while (command[count] != '*') checksum ^= command[count++];
  943. if (strtol(apos + 1, NULL, 10) != checksum) {
  944. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  945. return;
  946. }
  947. // if no errors, continue parsing
  948. }
  949. else {
  950. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  951. return;
  952. }
  953. gcode_LastN = gcode_N;
  954. // if no errors, continue parsing
  955. }
  956. else if (apos) { // No '*' without 'N'
  957. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  958. return;
  959. }
  960. // Movement commands alert when stopped
  961. if (IsStopped()) {
  962. char* gpos = strchr(command, 'G');
  963. if (gpos) {
  964. int codenum = strtol(gpos + 1, NULL, 10);
  965. switch (codenum) {
  966. case 0:
  967. case 1:
  968. case 2:
  969. case 3:
  970. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  971. LCD_MESSAGEPGM(MSG_STOPPED);
  972. break;
  973. }
  974. }
  975. }
  976. #if DISABLED(EMERGENCY_PARSER)
  977. // If command was e-stop process now
  978. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  979. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  980. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  981. #endif
  982. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  983. last_command_time = ms;
  984. #endif
  985. // Add the command to the queue
  986. _enqueuecommand(serial_line_buffer, true);
  987. }
  988. else if (serial_count >= MAX_CMD_SIZE - 1) {
  989. // Keep fetching, but ignore normal characters beyond the max length
  990. // The command will be injected when EOL is reached
  991. }
  992. else if (serial_char == '\\') { // Handle escapes
  993. if (MYSERIAL.available() > 0) {
  994. // if we have one more character, copy it over
  995. serial_char = MYSERIAL.read();
  996. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  997. }
  998. // otherwise do nothing
  999. }
  1000. else { // it's not a newline, carriage return or escape char
  1001. if (serial_char == ';') serial_comment_mode = true;
  1002. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1003. }
  1004. } // queue has space, serial has data
  1005. }
  1006. #if ENABLED(SDSUPPORT)
  1007. inline void get_sdcard_commands() {
  1008. static bool stop_buffering = false,
  1009. sd_comment_mode = false;
  1010. if (!card.sdprinting) return;
  1011. /**
  1012. * '#' stops reading from SD to the buffer prematurely, so procedural
  1013. * macro calls are possible. If it occurs, stop_buffering is triggered
  1014. * and the buffer is run dry; this character _can_ occur in serial com
  1015. * due to checksums, however, no checksums are used in SD printing.
  1016. */
  1017. if (commands_in_queue == 0) stop_buffering = false;
  1018. uint16_t sd_count = 0;
  1019. bool card_eof = card.eof();
  1020. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1021. int16_t n = card.get();
  1022. char sd_char = (char)n;
  1023. card_eof = card.eof();
  1024. if (card_eof || n == -1
  1025. || sd_char == '\n' || sd_char == '\r'
  1026. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1027. ) {
  1028. if (card_eof) {
  1029. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1030. card.printingHasFinished();
  1031. card.checkautostart(true);
  1032. }
  1033. else if (n == -1) {
  1034. SERIAL_ERROR_START;
  1035. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1036. }
  1037. if (sd_char == '#') stop_buffering = true;
  1038. sd_comment_mode = false; //for new command
  1039. if (!sd_count) continue; //skip empty lines
  1040. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1041. sd_count = 0; //clear buffer
  1042. _commit_command(false);
  1043. }
  1044. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1045. /**
  1046. * Keep fetching, but ignore normal characters beyond the max length
  1047. * The command will be injected when EOL is reached
  1048. */
  1049. }
  1050. else {
  1051. if (sd_char == ';') sd_comment_mode = true;
  1052. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1053. }
  1054. }
  1055. }
  1056. #endif // SDSUPPORT
  1057. /**
  1058. * Add to the circular command queue the next command from:
  1059. * - The command-injection queue (queued_commands_P)
  1060. * - The active serial input (usually USB)
  1061. * - The SD card file being actively printed
  1062. */
  1063. void get_available_commands() {
  1064. // if any immediate commands remain, don't get other commands yet
  1065. if (drain_queued_commands_P()) return;
  1066. get_serial_commands();
  1067. #if ENABLED(SDSUPPORT)
  1068. get_sdcard_commands();
  1069. #endif
  1070. }
  1071. inline bool code_has_value() {
  1072. int i = 1;
  1073. char c = seen_pointer[i];
  1074. while (c == ' ') c = seen_pointer[++i];
  1075. if (c == '-' || c == '+') c = seen_pointer[++i];
  1076. if (c == '.') c = seen_pointer[++i];
  1077. return NUMERIC(c);
  1078. }
  1079. inline float code_value_float() {
  1080. float ret;
  1081. char* e = strchr(seen_pointer, 'E');
  1082. if (e) {
  1083. *e = 0;
  1084. ret = strtod(seen_pointer + 1, NULL);
  1085. *e = 'E';
  1086. }
  1087. else
  1088. ret = strtod(seen_pointer + 1, NULL);
  1089. return ret;
  1090. }
  1091. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1092. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1093. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1094. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1095. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1096. inline bool code_value_bool() { return code_value_byte() > 0; }
  1097. #if ENABLED(INCH_MODE_SUPPORT)
  1098. inline void set_input_linear_units(LinearUnit units) {
  1099. switch (units) {
  1100. case LINEARUNIT_INCH:
  1101. linear_unit_factor = 25.4;
  1102. break;
  1103. case LINEARUNIT_MM:
  1104. default:
  1105. linear_unit_factor = 1.0;
  1106. break;
  1107. }
  1108. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1109. }
  1110. inline float axis_unit_factor(int axis) {
  1111. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1112. }
  1113. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1114. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1115. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1116. #else
  1117. inline float code_value_linear_units() { return code_value_float(); }
  1118. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1119. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1120. #endif
  1121. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1122. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1123. float code_value_temp_abs() {
  1124. switch (input_temp_units) {
  1125. case TEMPUNIT_C:
  1126. return code_value_float();
  1127. case TEMPUNIT_F:
  1128. return (code_value_float() - 32) / 1.8;
  1129. case TEMPUNIT_K:
  1130. return code_value_float() - 272.15;
  1131. default:
  1132. return code_value_float();
  1133. }
  1134. }
  1135. float code_value_temp_diff() {
  1136. switch (input_temp_units) {
  1137. case TEMPUNIT_C:
  1138. case TEMPUNIT_K:
  1139. return code_value_float();
  1140. case TEMPUNIT_F:
  1141. return code_value_float() / 1.8;
  1142. default:
  1143. return code_value_float();
  1144. }
  1145. }
  1146. #else
  1147. float code_value_temp_abs() { return code_value_float(); }
  1148. float code_value_temp_diff() { return code_value_float(); }
  1149. #endif
  1150. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1151. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1152. bool code_seen(char code) {
  1153. seen_pointer = strchr(current_command_args, code);
  1154. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1155. }
  1156. /**
  1157. * Set target_extruder from the T parameter or the active_extruder
  1158. *
  1159. * Returns TRUE if the target is invalid
  1160. */
  1161. bool get_target_extruder_from_command(int code) {
  1162. if (code_seen('T')) {
  1163. if (code_value_byte() >= EXTRUDERS) {
  1164. SERIAL_ECHO_START;
  1165. SERIAL_CHAR('M');
  1166. SERIAL_ECHO(code);
  1167. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1168. SERIAL_EOL;
  1169. return true;
  1170. }
  1171. target_extruder = code_value_byte();
  1172. }
  1173. else
  1174. target_extruder = active_extruder;
  1175. return false;
  1176. }
  1177. #define DEFINE_PGM_READ_ANY(type, reader) \
  1178. static inline type pgm_read_any(const type *p) \
  1179. { return pgm_read_##reader##_near(p); }
  1180. DEFINE_PGM_READ_ANY(float, float);
  1181. DEFINE_PGM_READ_ANY(signed char, byte);
  1182. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1183. static const PROGMEM type array##_P[3] = \
  1184. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1185. static inline type array(int axis) \
  1186. { return pgm_read_any(&array##_P[axis]); }
  1187. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1188. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1189. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1190. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1191. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1192. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1193. #if ENABLED(DUAL_X_CARRIAGE)
  1194. #define DXC_FULL_CONTROL_MODE 0
  1195. #define DXC_AUTO_PARK_MODE 1
  1196. #define DXC_DUPLICATION_MODE 2
  1197. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1198. static float x_home_pos(int extruder) {
  1199. if (extruder == 0)
  1200. return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
  1201. else
  1202. /**
  1203. * In dual carriage mode the extruder offset provides an override of the
  1204. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1205. * This allow soft recalibration of the second extruder offset position
  1206. * without firmware reflash (through the M218 command).
  1207. */
  1208. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1209. }
  1210. static int x_home_dir(int extruder) {
  1211. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1212. }
  1213. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1214. static bool active_extruder_parked = false; // used in mode 1 & 2
  1215. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1216. static millis_t delayed_move_time = 0; // used in mode 1
  1217. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1218. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1219. bool extruder_duplication_enabled = false; // used in mode 2
  1220. #endif //DUAL_X_CARRIAGE
  1221. /**
  1222. * Software endstops can be used to monitor the open end of
  1223. * an axis that has a hardware endstop on the other end. Or
  1224. * they can prevent axes from moving past endstops and grinding.
  1225. *
  1226. * To keep doing their job as the coordinate system changes,
  1227. * the software endstop positions must be refreshed to remain
  1228. * at the same positions relative to the machine.
  1229. */
  1230. static void update_software_endstops(AxisEnum axis) {
  1231. float offs = LOGICAL_POSITION(0, axis);
  1232. #if ENABLED(DUAL_X_CARRIAGE)
  1233. if (axis == X_AXIS) {
  1234. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1235. if (active_extruder != 0) {
  1236. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1237. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1238. return;
  1239. }
  1240. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1241. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1242. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1243. return;
  1244. }
  1245. }
  1246. else
  1247. #endif
  1248. {
  1249. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1250. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1251. }
  1252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1253. if (DEBUGGING(LEVELING)) {
  1254. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1255. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1256. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1257. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1258. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1259. SERIAL_EOL;
  1260. }
  1261. #endif
  1262. #if ENABLED(DELTA)
  1263. if (axis == Z_AXIS) {
  1264. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1265. }
  1266. #endif
  1267. }
  1268. /**
  1269. * Change the home offset for an axis, update the current
  1270. * position and the software endstops to retain the same
  1271. * relative distance to the new home.
  1272. *
  1273. * Since this changes the current_position, code should
  1274. * call sync_plan_position soon after this.
  1275. */
  1276. static void set_home_offset(AxisEnum axis, float v) {
  1277. current_position[axis] += v - home_offset[axis];
  1278. home_offset[axis] = v;
  1279. update_software_endstops(axis);
  1280. }
  1281. static void set_axis_is_at_home(AxisEnum axis) {
  1282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1283. if (DEBUGGING(LEVELING)) {
  1284. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1285. SERIAL_ECHOLNPGM(")");
  1286. }
  1287. #endif
  1288. position_shift[axis] = 0;
  1289. #if ENABLED(DUAL_X_CARRIAGE)
  1290. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1291. if (active_extruder != 0)
  1292. current_position[X_AXIS] = x_home_pos(active_extruder);
  1293. else
  1294. current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
  1295. update_software_endstops(X_AXIS);
  1296. return;
  1297. }
  1298. #endif
  1299. #if ENABLED(SCARA)
  1300. if (axis == X_AXIS || axis == Y_AXIS) {
  1301. float homeposition[3];
  1302. for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
  1303. homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1304. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1305. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1306. /**
  1307. * Works out real Homeposition angles using inverse kinematics,
  1308. * and calculates homing offset using forward kinematics
  1309. */
  1310. inverse_kinematics(homeposition);
  1311. forward_kinematics_SCARA(delta);
  1312. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1313. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1314. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1315. /**
  1316. * SCARA home positions are based on configuration since the actual
  1317. * limits are determined by the inverse kinematic transform.
  1318. */
  1319. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1320. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1321. }
  1322. else
  1323. #endif
  1324. {
  1325. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1326. update_software_endstops(axis);
  1327. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1328. if (axis == Z_AXIS) {
  1329. current_position[Z_AXIS] -= zprobe_zoffset;
  1330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1331. if (DEBUGGING(LEVELING)) {
  1332. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1333. SERIAL_EOL;
  1334. }
  1335. #endif
  1336. }
  1337. #endif
  1338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1339. if (DEBUGGING(LEVELING)) {
  1340. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1341. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1342. SERIAL_EOL;
  1343. DEBUG_POS("", current_position);
  1344. }
  1345. #endif
  1346. }
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (DEBUGGING(LEVELING)) {
  1349. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1350. SERIAL_ECHOLNPGM(")");
  1351. }
  1352. #endif
  1353. }
  1354. /**
  1355. * Some planner shorthand inline functions
  1356. */
  1357. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1358. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1359. int hbd = homing_bump_divisor[axis];
  1360. if (hbd < 1) {
  1361. hbd = 10;
  1362. SERIAL_ECHO_START;
  1363. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1364. }
  1365. return homing_feedrate_mm_m[axis] / hbd;
  1366. }
  1367. //
  1368. // line_to_current_position
  1369. // Move the planner to the current position from wherever it last moved
  1370. // (or from wherever it has been told it is located).
  1371. //
  1372. inline void line_to_current_position() {
  1373. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1374. }
  1375. inline void line_to_z(float zPosition) {
  1376. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1377. }
  1378. inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
  1379. float old_feedrate_mm_m = feedrate_mm_m;
  1380. current_position[axis] = where;
  1381. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis];
  1382. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1383. stepper.synchronize();
  1384. feedrate_mm_m = old_feedrate_mm_m;
  1385. }
  1386. //
  1387. // line_to_destination
  1388. // Move the planner, not necessarily synced with current_position
  1389. //
  1390. inline void line_to_destination(float fr_mm_m) {
  1391. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
  1392. }
  1393. inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
  1394. /**
  1395. * sync_plan_position
  1396. * Set planner / stepper positions to the cartesian current_position.
  1397. * The stepper code translates these coordinates into step units.
  1398. * Allows translation between steps and millimeters for cartesian & core robots
  1399. */
  1400. inline void sync_plan_position() {
  1401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1402. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1403. #endif
  1404. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1405. }
  1406. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1407. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1408. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1409. #if ENABLED(DELTA)
  1410. /**
  1411. * Calculate delta, start a line, and set current_position to destination
  1412. */
  1413. void prepare_move_to_destination_raw() {
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1416. #endif
  1417. refresh_cmd_timeout();
  1418. inverse_kinematics(destination);
  1419. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  1420. set_current_to_destination();
  1421. }
  1422. #endif
  1423. /**
  1424. * Plan a move to (X, Y, Z) and set the current_position
  1425. * The final current_position may not be the one that was requested
  1426. */
  1427. void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
  1428. float old_feedrate_mm_m = feedrate_mm_m;
  1429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1430. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
  1431. #endif
  1432. #if ENABLED(DELTA)
  1433. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1434. set_destination_to_current(); // sync destination at the start
  1435. // when in the danger zone
  1436. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1437. if (z > delta_clip_start_height) { // staying in the danger zone
  1438. destination[X_AXIS] = x; // move directly (uninterpolated)
  1439. destination[Y_AXIS] = y;
  1440. destination[Z_AXIS] = z;
  1441. prepare_move_to_destination_raw(); // set_current_to_destination
  1442. return;
  1443. }
  1444. else {
  1445. destination[Z_AXIS] = delta_clip_start_height;
  1446. prepare_move_to_destination_raw(); // set_current_to_destination
  1447. }
  1448. }
  1449. if (z > current_position[Z_AXIS]) { // raising?
  1450. destination[Z_AXIS] = z;
  1451. prepare_move_to_destination_raw(); // set_current_to_destination
  1452. }
  1453. destination[X_AXIS] = x;
  1454. destination[Y_AXIS] = y;
  1455. prepare_move_to_destination(); // set_current_to_destination
  1456. if (z < current_position[Z_AXIS]) { // lowering?
  1457. destination[Z_AXIS] = z;
  1458. prepare_move_to_destination_raw(); // set_current_to_destination
  1459. }
  1460. #else
  1461. // If Z needs to raise, do it before moving XY
  1462. if (current_position[Z_AXIS] < z) {
  1463. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1464. current_position[Z_AXIS] = z;
  1465. line_to_current_position();
  1466. }
  1467. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1468. current_position[X_AXIS] = x;
  1469. current_position[Y_AXIS] = y;
  1470. line_to_current_position();
  1471. // If Z needs to lower, do it after moving XY
  1472. if (current_position[Z_AXIS] > z) {
  1473. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1474. current_position[Z_AXIS] = z;
  1475. line_to_current_position();
  1476. }
  1477. #endif
  1478. stepper.synchronize();
  1479. feedrate_mm_m = old_feedrate_mm_m;
  1480. }
  1481. void do_blocking_move_to_axis_pos(AxisEnum axis, float where, float fr_mm_m/*=0.0*/) {
  1482. current_position[axis] = where;
  1483. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
  1484. }
  1485. void do_blocking_move_to_x(float x, float fr_mm_m/*=0.0*/) { do_blocking_move_to_axis_pos(X_AXIS, x, fr_mm_m); }
  1486. void do_blocking_move_to_y(float y) { do_blocking_move_to_axis_pos(Y_AXIS, y); }
  1487. void do_blocking_move_to_z(float z, float fr_mm_m/*=0.0*/) { do_blocking_move_to_axis_pos(Z_AXIS, z, fr_mm_m); }
  1488. void do_blocking_move_to_xy(float x, float y, float fr_mm_m/*=0.0*/) { do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m); }
  1489. //
  1490. // Prepare to do endstop or probe moves
  1491. // with custom feedrates.
  1492. //
  1493. // - Save current feedrates
  1494. // - Reset the rate multiplier
  1495. // - Reset the command timeout
  1496. // - Enable the endstops (for endstop moves)
  1497. //
  1498. static void setup_for_endstop_or_probe_move() {
  1499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1500. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1501. #endif
  1502. saved_feedrate_mm_m = feedrate_mm_m;
  1503. saved_feedrate_percentage = feedrate_percentage;
  1504. feedrate_percentage = 100;
  1505. refresh_cmd_timeout();
  1506. }
  1507. static void clean_up_after_endstop_or_probe_move() {
  1508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1509. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1510. #endif
  1511. feedrate_mm_m = saved_feedrate_mm_m;
  1512. feedrate_percentage = saved_feedrate_percentage;
  1513. refresh_cmd_timeout();
  1514. }
  1515. #if HAS_BED_PROBE
  1516. /**
  1517. * Raise Z to a minimum height to make room for a probe to move
  1518. */
  1519. inline void do_probe_raise(float z_raise) {
  1520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1521. if (DEBUGGING(LEVELING)) {
  1522. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1523. SERIAL_ECHOLNPGM(")");
  1524. }
  1525. #endif
  1526. float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS);
  1527. if (zprobe_zoffset < 0)
  1528. z_dest -= zprobe_zoffset;
  1529. if (z_dest > current_position[Z_AXIS])
  1530. do_blocking_move_to_z(z_dest);
  1531. }
  1532. #endif //HAS_BED_PROBE
  1533. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1534. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1535. const bool xx = x && !axis_homed[X_AXIS],
  1536. yy = y && !axis_homed[Y_AXIS],
  1537. zz = z && !axis_homed[Z_AXIS];
  1538. if (xx || yy || zz) {
  1539. SERIAL_ECHO_START;
  1540. SERIAL_ECHOPGM(MSG_HOME " ");
  1541. if (xx) SERIAL_ECHOPGM(MSG_X);
  1542. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1543. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1544. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1545. #if ENABLED(ULTRA_LCD)
  1546. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1547. strcat_P(message, PSTR(MSG_HOME " "));
  1548. if (xx) strcat_P(message, PSTR(MSG_X));
  1549. if (yy) strcat_P(message, PSTR(MSG_Y));
  1550. if (zz) strcat_P(message, PSTR(MSG_Z));
  1551. strcat_P(message, PSTR(" " MSG_FIRST));
  1552. lcd_setstatus(message);
  1553. #endif
  1554. return true;
  1555. }
  1556. return false;
  1557. }
  1558. #endif
  1559. #if ENABLED(Z_PROBE_SLED)
  1560. #ifndef SLED_DOCKING_OFFSET
  1561. #define SLED_DOCKING_OFFSET 0
  1562. #endif
  1563. /**
  1564. * Method to dock/undock a sled designed by Charles Bell.
  1565. *
  1566. * stow[in] If false, move to MAX_X and engage the solenoid
  1567. * If true, move to MAX_X and release the solenoid
  1568. */
  1569. static void dock_sled(bool stow) {
  1570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1571. if (DEBUGGING(LEVELING)) {
  1572. SERIAL_ECHOPAIR("dock_sled(", stow);
  1573. SERIAL_ECHOLNPGM(")");
  1574. }
  1575. #endif
  1576. // Dock sled a bit closer to ensure proper capturing
  1577. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1578. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1579. }
  1580. #endif // Z_PROBE_SLED
  1581. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1582. void run_deploy_moves_script() {
  1583. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1595. #endif
  1596. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1597. #endif
  1598. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1610. #endif
  1611. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1612. #endif
  1613. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1614. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1615. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1625. #endif
  1626. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1627. #endif
  1628. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1640. #endif
  1641. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1642. #endif
  1643. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1655. #endif
  1656. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1657. #endif
  1658. }
  1659. void run_stow_moves_script() {
  1660. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1662. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1665. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1668. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1677. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1680. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1683. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1689. #endif
  1690. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1692. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1695. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1698. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1701. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1702. #endif
  1703. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1704. #endif
  1705. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1707. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1710. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1713. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1716. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1717. #endif
  1718. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1719. #endif
  1720. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1722. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1725. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1728. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1731. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1732. #endif
  1733. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1734. #endif
  1735. }
  1736. #endif
  1737. #if HAS_BED_PROBE
  1738. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1739. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1740. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1741. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1742. #else
  1743. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1744. #endif
  1745. #endif
  1746. #define DEPLOY_PROBE() set_probe_deployed( true )
  1747. #define STOW_PROBE() set_probe_deployed( false )
  1748. // returns false for ok and true for failure
  1749. static bool set_probe_deployed(bool deploy) {
  1750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1751. if (DEBUGGING(LEVELING)) {
  1752. DEBUG_POS("set_probe_deployed", current_position);
  1753. SERIAL_ECHOPAIR("deploy: ", deploy);
  1754. SERIAL_EOL;
  1755. }
  1756. #endif
  1757. if (endstops.z_probe_enabled == deploy) return false;
  1758. // Make room for probe
  1759. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1760. #if ENABLED(Z_PROBE_SLED)
  1761. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1762. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1763. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1764. #endif
  1765. float oldXpos = current_position[X_AXIS]; // save x position
  1766. float oldYpos = current_position[Y_AXIS]; // save y position
  1767. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1768. // If endstop is already false, the Z probe is deployed
  1769. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1770. // Would a goto be less ugly?
  1771. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1772. // for a triggered when stowed manual probe.
  1773. #endif
  1774. #if ENABLED(Z_PROBE_SLED)
  1775. dock_sled(!deploy);
  1776. #elif HAS_Z_SERVO_ENDSTOP
  1777. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1778. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1779. if (!deploy) run_stow_moves_script();
  1780. else run_deploy_moves_script();
  1781. #else
  1782. // Nothing to be done. Just enable_z_probe below...
  1783. #endif
  1784. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1785. }; // opened before the probe specific actions
  1786. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1787. if (IsRunning()) {
  1788. SERIAL_ERROR_START;
  1789. SERIAL_ERRORLNPGM("Z-Probe failed");
  1790. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1791. }
  1792. stop();
  1793. return true;
  1794. }
  1795. #endif
  1796. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1797. endstops.enable_z_probe( deploy );
  1798. return false;
  1799. }
  1800. #if ENABLED(DELTA)
  1801. #define SET_Z_FROM_STEPPERS() set_current_from_steppers()
  1802. #else
  1803. #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS)
  1804. #endif
  1805. // Do a single Z probe and return with current_position[Z_AXIS]
  1806. // at the height where the probe triggered.
  1807. static float run_z_probe() {
  1808. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1809. refresh_cmd_timeout();
  1810. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1811. planner.bed_level_matrix.set_to_identity();
  1812. #endif
  1813. #if ENABLED(DELTA)
  1814. float z_before = current_position[Z_AXIS], // Current Z
  1815. z_mm = stepper.get_axis_position_mm(Z_AXIS); // Some tower's current position
  1816. #endif
  1817. do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST);
  1818. endstops.hit_on_purpose();
  1819. SET_Z_FROM_STEPPERS();
  1820. SYNC_PLAN_POSITION_KINEMATIC();
  1821. // move up the retract distance
  1822. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST);
  1823. #if ENABLED(DELTA)
  1824. z_before = current_position[Z_AXIS];
  1825. z_mm = stepper.get_axis_position_mm(Z_AXIS);
  1826. #endif
  1827. // move back down slowly to find bed
  1828. do_blocking_move_to_z(current_position[Z_AXIS] - home_bump_mm(Z_AXIS) * 2, Z_PROBE_SPEED_SLOW);
  1829. endstops.hit_on_purpose();
  1830. SET_Z_FROM_STEPPERS();
  1831. SYNC_PLAN_POSITION_KINEMATIC();
  1832. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1833. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1834. #endif
  1835. return current_position[Z_AXIS];
  1836. }
  1837. //
  1838. // - Move to the given XY
  1839. // - Deploy the probe, if not already deployed
  1840. // - Probe the bed, get the Z position
  1841. // - Depending on the 'stow' flag
  1842. // - Stow the probe, or
  1843. // - Raise to the BETWEEN height
  1844. // - Return the probed Z position
  1845. //
  1846. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) {
  1849. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1850. SERIAL_ECHOPAIR(", ", y);
  1851. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1852. SERIAL_ECHOLNPGM(")");
  1853. DEBUG_POS("", current_position);
  1854. }
  1855. #endif
  1856. float old_feedrate_mm_m = feedrate_mm_m;
  1857. // Ensure a minimum height before moving the probe
  1858. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1859. // Move to the XY where we shall probe
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. if (DEBUGGING(LEVELING)) {
  1862. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1863. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1864. SERIAL_ECHOLNPGM(")");
  1865. }
  1866. #endif
  1867. feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
  1868. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1869. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1870. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1871. #endif
  1872. if (DEPLOY_PROBE()) return NAN;
  1873. float measured_z = run_z_probe();
  1874. if (stow) {
  1875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1877. #endif
  1878. if (STOW_PROBE()) return NAN;
  1879. }
  1880. else {
  1881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1882. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1883. #endif
  1884. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1885. }
  1886. if (verbose_level > 2) {
  1887. SERIAL_PROTOCOLPGM("Bed X: ");
  1888. SERIAL_PROTOCOL_F(x, 3);
  1889. SERIAL_PROTOCOLPGM(" Y: ");
  1890. SERIAL_PROTOCOL_F(y, 3);
  1891. SERIAL_PROTOCOLPGM(" Z: ");
  1892. SERIAL_PROTOCOL_F(measured_z, 3);
  1893. SERIAL_EOL;
  1894. }
  1895. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1896. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1897. #endif
  1898. feedrate_mm_m = old_feedrate_mm_m;
  1899. return measured_z;
  1900. }
  1901. #endif // HAS_BED_PROBE
  1902. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1903. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1904. #if DISABLED(DELTA)
  1905. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1906. //planner.bed_level_matrix.debug("bed level before");
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. planner.bed_level_matrix.set_to_identity();
  1909. if (DEBUGGING(LEVELING)) {
  1910. vector_3 uncorrected_position = planner.adjusted_position();
  1911. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1912. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1913. }
  1914. #endif
  1915. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1916. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1917. vector_3 corrected_position = planner.adjusted_position();
  1918. current_position[X_AXIS] = corrected_position.x;
  1919. current_position[Y_AXIS] = corrected_position.y;
  1920. current_position[Z_AXIS] = corrected_position.z;
  1921. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1922. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1923. #endif
  1924. SYNC_PLAN_POSITION_KINEMATIC();
  1925. }
  1926. #endif // !DELTA
  1927. #else // !AUTO_BED_LEVELING_GRID
  1928. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1929. planner.bed_level_matrix.set_to_identity();
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) {
  1932. vector_3 uncorrected_position = planner.adjusted_position();
  1933. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1934. }
  1935. #endif
  1936. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1937. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1938. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1939. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1940. if (planeNormal.z < 0) {
  1941. planeNormal.x = -planeNormal.x;
  1942. planeNormal.y = -planeNormal.y;
  1943. planeNormal.z = -planeNormal.z;
  1944. }
  1945. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1946. vector_3 corrected_position = planner.adjusted_position();
  1947. current_position[X_AXIS] = corrected_position.x;
  1948. current_position[Y_AXIS] = corrected_position.y;
  1949. current_position[Z_AXIS] = corrected_position.z;
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1952. #endif
  1953. SYNC_PLAN_POSITION_KINEMATIC();
  1954. }
  1955. #endif // !AUTO_BED_LEVELING_GRID
  1956. #if ENABLED(DELTA)
  1957. /**
  1958. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1959. */
  1960. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1961. if (bed_level[x][y] != 0.0) {
  1962. return; // Don't overwrite good values.
  1963. }
  1964. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1965. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1966. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1967. float median = c; // Median is robust (ignores outliers).
  1968. if (a < b) {
  1969. if (b < c) median = b;
  1970. if (c < a) median = a;
  1971. }
  1972. else { // b <= a
  1973. if (c < b) median = b;
  1974. if (a < c) median = a;
  1975. }
  1976. bed_level[x][y] = median;
  1977. }
  1978. /**
  1979. * Fill in the unprobed points (corners of circular print surface)
  1980. * using linear extrapolation, away from the center.
  1981. */
  1982. static void extrapolate_unprobed_bed_level() {
  1983. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1984. for (int y = 0; y <= half; y++) {
  1985. for (int x = 0; x <= half; x++) {
  1986. if (x + y < 3) continue;
  1987. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1988. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1989. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1990. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1991. }
  1992. }
  1993. }
  1994. /**
  1995. * Print calibration results for plotting or manual frame adjustment.
  1996. */
  1997. static void print_bed_level() {
  1998. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1999. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2000. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2001. SERIAL_PROTOCOLCHAR(' ');
  2002. }
  2003. SERIAL_EOL;
  2004. }
  2005. }
  2006. /**
  2007. * Reset calibration results to zero.
  2008. */
  2009. void reset_bed_level() {
  2010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2011. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2012. #endif
  2013. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2014. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2015. bed_level[x][y] = 0.0;
  2016. }
  2017. }
  2018. }
  2019. #endif // DELTA
  2020. #endif // AUTO_BED_LEVELING_FEATURE
  2021. /**
  2022. * Home an individual axis
  2023. */
  2024. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2025. static void homeaxis(AxisEnum axis) {
  2026. #define HOMEAXIS_DO(LETTER) \
  2027. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2028. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2030. if (DEBUGGING(LEVELING)) {
  2031. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2032. SERIAL_ECHOLNPGM(")");
  2033. }
  2034. #endif
  2035. int axis_home_dir =
  2036. #if ENABLED(DUAL_X_CARRIAGE)
  2037. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2038. #endif
  2039. home_dir(axis);
  2040. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2041. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2042. if (axis == Z_AXIS && axis_home_dir < 0) {
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2045. #endif
  2046. if (DEPLOY_PROBE()) return;
  2047. }
  2048. #endif
  2049. // Set the axis position as setup for the move
  2050. current_position[axis] = 0;
  2051. sync_plan_position();
  2052. // Set a flag for Z motor locking
  2053. #if ENABLED(Z_DUAL_ENDSTOPS)
  2054. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2055. #endif
  2056. // Move towards the endstop until an endstop is triggered
  2057. line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
  2058. // Set the axis position as setup for the move
  2059. current_position[axis] = 0;
  2060. sync_plan_position();
  2061. // Move away from the endstop by the axis HOME_BUMP_MM
  2062. line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
  2063. // Move slowly towards the endstop until triggered
  2064. line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2066. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2067. #endif
  2068. #if ENABLED(Z_DUAL_ENDSTOPS)
  2069. if (axis == Z_AXIS) {
  2070. float adj = fabs(z_endstop_adj);
  2071. bool lockZ1;
  2072. if (axis_home_dir > 0) {
  2073. adj = -adj;
  2074. lockZ1 = (z_endstop_adj > 0);
  2075. }
  2076. else
  2077. lockZ1 = (z_endstop_adj < 0);
  2078. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2079. sync_plan_position();
  2080. // Move to the adjusted endstop height
  2081. line_to_axis_pos(axis, adj);
  2082. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2083. stepper.set_homing_flag(false);
  2084. } // Z_AXIS
  2085. #endif
  2086. #if ENABLED(DELTA)
  2087. // retrace by the amount specified in endstop_adj
  2088. if (endstop_adj[axis] * axis_home_dir < 0) {
  2089. sync_plan_position();
  2090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2091. if (DEBUGGING(LEVELING)) {
  2092. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2093. DEBUG_POS("", current_position);
  2094. }
  2095. #endif
  2096. line_to_axis_pos(axis, endstop_adj[axis]);
  2097. }
  2098. #endif
  2099. // Set the axis position to its home position (plus home offsets)
  2100. set_axis_is_at_home(axis);
  2101. SYNC_PLAN_POSITION_KINEMATIC();
  2102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2103. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2104. #endif
  2105. destination[axis] = current_position[axis];
  2106. endstops.hit_on_purpose(); // clear endstop hit flags
  2107. axis_known_position[axis] = true;
  2108. axis_homed[axis] = true;
  2109. // Put away the Z probe
  2110. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2111. if (axis == Z_AXIS && axis_home_dir < 0) {
  2112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2113. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2114. #endif
  2115. if (STOW_PROBE()) return;
  2116. }
  2117. #endif
  2118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2119. if (DEBUGGING(LEVELING)) {
  2120. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2121. SERIAL_ECHOLNPGM(")");
  2122. }
  2123. #endif
  2124. }
  2125. #if ENABLED(FWRETRACT)
  2126. void retract(bool retracting, bool swapping = false) {
  2127. if (retracting == retracted[active_extruder]) return;
  2128. float old_feedrate_mm_m = feedrate_mm_m;
  2129. set_destination_to_current();
  2130. if (retracting) {
  2131. feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
  2132. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2133. sync_plan_position_e();
  2134. prepare_move_to_destination();
  2135. if (retract_zlift > 0.01) {
  2136. current_position[Z_AXIS] -= retract_zlift;
  2137. SYNC_PLAN_POSITION_KINEMATIC();
  2138. prepare_move_to_destination();
  2139. }
  2140. }
  2141. else {
  2142. if (retract_zlift > 0.01) {
  2143. current_position[Z_AXIS] += retract_zlift;
  2144. SYNC_PLAN_POSITION_KINEMATIC();
  2145. }
  2146. feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
  2147. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2148. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2149. sync_plan_position_e();
  2150. prepare_move_to_destination();
  2151. }
  2152. feedrate_mm_m = old_feedrate_mm_m;
  2153. retracted[active_extruder] = retracting;
  2154. } // retract()
  2155. #endif // FWRETRACT
  2156. #if ENABLED(MIXING_EXTRUDER)
  2157. void normalize_mix() {
  2158. float mix_total = 0.0;
  2159. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2160. float v = mixing_factor[i];
  2161. if (v < 0) v = mixing_factor[i] = 0;
  2162. mix_total += v;
  2163. }
  2164. // Scale all values if they don't add up to ~1.0
  2165. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2166. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2167. float mix_scale = 1.0 / mix_total;
  2168. for (int i = 0; i < MIXING_STEPPERS; i++)
  2169. mixing_factor[i] *= mix_scale;
  2170. }
  2171. }
  2172. #if ENABLED(DIRECT_MIXING_IN_G1)
  2173. // Get mixing parameters from the GCode
  2174. // Factors that are left out are set to 0
  2175. // The total "must" be 1.0 (but it will be normalized)
  2176. void gcode_get_mix() {
  2177. const char* mixing_codes = "ABCDHI";
  2178. for (int i = 0; i < MIXING_STEPPERS; i++)
  2179. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2180. normalize_mix();
  2181. }
  2182. #endif
  2183. #endif
  2184. /**
  2185. * ***************************************************************************
  2186. * ***************************** G-CODE HANDLING *****************************
  2187. * ***************************************************************************
  2188. */
  2189. /**
  2190. * Set XYZE destination and feedrate from the current GCode command
  2191. *
  2192. * - Set destination from included axis codes
  2193. * - Set to current for missing axis codes
  2194. * - Set the feedrate, if included
  2195. */
  2196. void gcode_get_destination() {
  2197. for (int i = 0; i < NUM_AXIS; i++) {
  2198. if (code_seen(axis_codes[i]))
  2199. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2200. else
  2201. destination[i] = current_position[i];
  2202. }
  2203. if (code_seen('F') && code_value_linear_units() > 0.0)
  2204. feedrate_mm_m = code_value_linear_units();
  2205. #if ENABLED(PRINTCOUNTER)
  2206. if (!DEBUGGING(DRYRUN))
  2207. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2208. #endif
  2209. // Get ABCDHI mixing factors
  2210. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2211. gcode_get_mix();
  2212. #endif
  2213. }
  2214. void unknown_command_error() {
  2215. SERIAL_ECHO_START;
  2216. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2217. SERIAL_ECHO(current_command);
  2218. SERIAL_ECHOLNPGM("\"");
  2219. }
  2220. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2221. /**
  2222. * Output a "busy" message at regular intervals
  2223. * while the machine is not accepting commands.
  2224. */
  2225. void host_keepalive() {
  2226. millis_t ms = millis();
  2227. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2228. if (PENDING(ms, next_busy_signal_ms)) return;
  2229. switch (busy_state) {
  2230. case IN_HANDLER:
  2231. case IN_PROCESS:
  2232. SERIAL_ECHO_START;
  2233. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2234. break;
  2235. case PAUSED_FOR_USER:
  2236. SERIAL_ECHO_START;
  2237. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2238. break;
  2239. case PAUSED_FOR_INPUT:
  2240. SERIAL_ECHO_START;
  2241. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2242. break;
  2243. default:
  2244. break;
  2245. }
  2246. }
  2247. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2248. }
  2249. #endif //HOST_KEEPALIVE_FEATURE
  2250. /**
  2251. * G0, G1: Coordinated movement of X Y Z E axes
  2252. */
  2253. inline void gcode_G0_G1() {
  2254. if (IsRunning()) {
  2255. gcode_get_destination(); // For X Y Z E F
  2256. #if ENABLED(FWRETRACT)
  2257. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2258. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2259. // Is this move an attempt to retract or recover?
  2260. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2261. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2262. sync_plan_position_e(); // AND from the planner
  2263. retract(!retracted[active_extruder]);
  2264. return;
  2265. }
  2266. }
  2267. #endif //FWRETRACT
  2268. prepare_move_to_destination();
  2269. }
  2270. }
  2271. /**
  2272. * G2: Clockwise Arc
  2273. * G3: Counterclockwise Arc
  2274. */
  2275. #if ENABLED(ARC_SUPPORT)
  2276. inline void gcode_G2_G3(bool clockwise) {
  2277. if (IsRunning()) {
  2278. #if ENABLED(SF_ARC_FIX)
  2279. bool relative_mode_backup = relative_mode;
  2280. relative_mode = true;
  2281. #endif
  2282. gcode_get_destination();
  2283. #if ENABLED(SF_ARC_FIX)
  2284. relative_mode = relative_mode_backup;
  2285. #endif
  2286. // Center of arc as offset from current_position
  2287. float arc_offset[2] = {
  2288. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2289. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2290. };
  2291. // Send an arc to the planner
  2292. plan_arc(destination, arc_offset, clockwise);
  2293. refresh_cmd_timeout();
  2294. }
  2295. }
  2296. #endif
  2297. /**
  2298. * G4: Dwell S<seconds> or P<milliseconds>
  2299. */
  2300. inline void gcode_G4() {
  2301. millis_t dwell_ms = 0;
  2302. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2303. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2304. stepper.synchronize();
  2305. refresh_cmd_timeout();
  2306. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2307. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2308. while (PENDING(millis(), dwell_ms)) idle();
  2309. }
  2310. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2311. /**
  2312. * Parameters interpreted according to:
  2313. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2314. * However I, J omission is not supported at this point; all
  2315. * parameters can be omitted and default to zero.
  2316. */
  2317. /**
  2318. * G5: Cubic B-spline
  2319. */
  2320. inline void gcode_G5() {
  2321. if (IsRunning()) {
  2322. gcode_get_destination();
  2323. float offset[] = {
  2324. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2325. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2326. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2327. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2328. };
  2329. plan_cubic_move(offset);
  2330. }
  2331. }
  2332. #endif // BEZIER_CURVE_SUPPORT
  2333. #if ENABLED(FWRETRACT)
  2334. /**
  2335. * G10 - Retract filament according to settings of M207
  2336. * G11 - Recover filament according to settings of M208
  2337. */
  2338. inline void gcode_G10_G11(bool doRetract=false) {
  2339. #if EXTRUDERS > 1
  2340. if (doRetract) {
  2341. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2342. }
  2343. #endif
  2344. retract(doRetract
  2345. #if EXTRUDERS > 1
  2346. , retracted_swap[active_extruder]
  2347. #endif
  2348. );
  2349. }
  2350. #endif //FWRETRACT
  2351. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2352. /**
  2353. * G12: Clean the nozzle
  2354. */
  2355. inline void gcode_G12() {
  2356. // Don't allow nozzle cleaning without homing first
  2357. if (axis_unhomed_error(true, true, true)) { return; }
  2358. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2359. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2360. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2361. Nozzle::clean(pattern, strokes, objects);
  2362. }
  2363. #endif
  2364. #if ENABLED(INCH_MODE_SUPPORT)
  2365. /**
  2366. * G20: Set input mode to inches
  2367. */
  2368. inline void gcode_G20() {
  2369. set_input_linear_units(LINEARUNIT_INCH);
  2370. }
  2371. /**
  2372. * G21: Set input mode to millimeters
  2373. */
  2374. inline void gcode_G21() {
  2375. set_input_linear_units(LINEARUNIT_MM);
  2376. }
  2377. #endif
  2378. #if ENABLED(NOZZLE_PARK_FEATURE)
  2379. /**
  2380. * G27: Park the nozzle
  2381. */
  2382. inline void gcode_G27() {
  2383. // Don't allow nozzle parking without homing first
  2384. if (axis_unhomed_error(true, true, true)) { return; }
  2385. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2386. Nozzle::park(z_action);
  2387. }
  2388. #endif // NOZZLE_PARK_FEATURE
  2389. #if ENABLED(QUICK_HOME)
  2390. static void quick_home_xy() {
  2391. // Pretend the current position is 0,0
  2392. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2393. sync_plan_position();
  2394. #if ENABLED(DUAL_X_CARRIAGE)
  2395. int x_axis_home_dir = x_home_dir(active_extruder);
  2396. extruder_duplication_enabled = false;
  2397. #else
  2398. int x_axis_home_dir = home_dir(X_AXIS);
  2399. #endif
  2400. float mlx = max_length(X_AXIS),
  2401. mly = max_length(Y_AXIS),
  2402. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2403. fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2404. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
  2405. endstops.hit_on_purpose(); // clear endstop hit flags
  2406. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2407. }
  2408. #endif // QUICK_HOME
  2409. /**
  2410. * G28: Home all axes according to settings
  2411. *
  2412. * Parameters
  2413. *
  2414. * None Home to all axes with no parameters.
  2415. * With QUICK_HOME enabled XY will home together, then Z.
  2416. *
  2417. * Cartesian parameters
  2418. *
  2419. * X Home to the X endstop
  2420. * Y Home to the Y endstop
  2421. * Z Home to the Z endstop
  2422. *
  2423. */
  2424. inline void gcode_G28() {
  2425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2426. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2427. #endif
  2428. // Wait for planner moves to finish!
  2429. stepper.synchronize();
  2430. // For auto bed leveling, clear the level matrix
  2431. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2432. planner.bed_level_matrix.set_to_identity();
  2433. #if ENABLED(DELTA)
  2434. reset_bed_level();
  2435. #endif
  2436. #endif
  2437. // Always home with tool 0 active
  2438. #if HOTENDS > 1
  2439. uint8_t old_tool_index = active_extruder;
  2440. tool_change(0, 0, true);
  2441. #endif
  2442. /**
  2443. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2444. * on again when homing all axis
  2445. */
  2446. #if ENABLED(MESH_BED_LEVELING)
  2447. float pre_home_z = MESH_HOME_SEARCH_Z;
  2448. if (mbl.active()) {
  2449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2450. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2451. #endif
  2452. // Save known Z position if already homed
  2453. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2454. pre_home_z = current_position[Z_AXIS];
  2455. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2456. }
  2457. mbl.set_active(false);
  2458. current_position[Z_AXIS] = pre_home_z;
  2459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2460. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2461. #endif
  2462. }
  2463. #endif
  2464. setup_for_endstop_or_probe_move();
  2465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2466. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2467. #endif
  2468. endstops.enable(true); // Enable endstops for next homing move
  2469. #if ENABLED(DELTA)
  2470. /**
  2471. * A delta can only safely home all axes at the same time
  2472. */
  2473. // Pretend the current position is 0,0,0
  2474. // This is like quick_home_xy() but for 3 towers.
  2475. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2476. sync_plan_position();
  2477. // Move all carriages up together until the first endstop is hit.
  2478. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2479. feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
  2480. line_to_current_position();
  2481. stepper.synchronize();
  2482. endstops.hit_on_purpose(); // clear endstop hit flags
  2483. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2484. // take care of back off and rehome. Now one carriage is at the top.
  2485. HOMEAXIS(X);
  2486. HOMEAXIS(Y);
  2487. HOMEAXIS(Z);
  2488. SYNC_PLAN_POSITION_KINEMATIC();
  2489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2490. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2491. #endif
  2492. #else // NOT DELTA
  2493. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2494. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2495. set_destination_to_current();
  2496. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2497. if (home_all_axis || homeZ) {
  2498. HOMEAXIS(Z);
  2499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2500. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2501. #endif
  2502. }
  2503. #else
  2504. if (home_all_axis || homeX || homeY) {
  2505. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2506. destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS);
  2507. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2509. if (DEBUGGING(LEVELING)) {
  2510. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2511. SERIAL_EOL;
  2512. }
  2513. #endif
  2514. do_blocking_move_to_z(destination[Z_AXIS]);
  2515. }
  2516. }
  2517. #endif
  2518. #if ENABLED(QUICK_HOME)
  2519. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2520. #endif
  2521. #if ENABLED(HOME_Y_BEFORE_X)
  2522. // Home Y
  2523. if (home_all_axis || homeY) {
  2524. HOMEAXIS(Y);
  2525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2526. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2527. #endif
  2528. }
  2529. #endif
  2530. // Home X
  2531. if (home_all_axis || homeX) {
  2532. #if ENABLED(DUAL_X_CARRIAGE)
  2533. int tmp_extruder = active_extruder;
  2534. extruder_duplication_enabled = false;
  2535. active_extruder = !active_extruder;
  2536. HOMEAXIS(X);
  2537. inactive_extruder_x_pos = current_position[X_AXIS];
  2538. active_extruder = tmp_extruder;
  2539. HOMEAXIS(X);
  2540. // reset state used by the different modes
  2541. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2542. delayed_move_time = 0;
  2543. active_extruder_parked = true;
  2544. #else
  2545. HOMEAXIS(X);
  2546. #endif
  2547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2548. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2549. #endif
  2550. }
  2551. #if DISABLED(HOME_Y_BEFORE_X)
  2552. // Home Y
  2553. if (home_all_axis || homeY) {
  2554. HOMEAXIS(Y);
  2555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2556. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2557. #endif
  2558. }
  2559. #endif
  2560. // Home Z last if homing towards the bed
  2561. #if Z_HOME_DIR < 0
  2562. if (home_all_axis || homeZ) {
  2563. #if ENABLED(Z_SAFE_HOMING)
  2564. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2565. if (DEBUGGING(LEVELING)) {
  2566. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2567. }
  2568. #endif
  2569. if (home_all_axis) {
  2570. /**
  2571. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2572. * No need to move Z any more as this height should already be safe
  2573. * enough to reach Z_SAFE_HOMING XY positions.
  2574. * Just make sure the planner is in sync.
  2575. */
  2576. SYNC_PLAN_POSITION_KINEMATIC();
  2577. /**
  2578. * Set the Z probe (or just the nozzle) destination to the safe
  2579. * homing point
  2580. */
  2581. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2582. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2583. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (DEBUGGING(LEVELING)) {
  2586. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2587. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2588. }
  2589. #endif
  2590. // Move in the XY plane
  2591. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2592. }
  2593. // Let's see if X and Y are homed
  2594. if (axis_unhomed_error(true, true, false)) return;
  2595. /**
  2596. * Make sure the Z probe is within the physical limits
  2597. * NOTE: This doesn't necessarily ensure the Z probe is also
  2598. * within the bed!
  2599. */
  2600. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2601. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2602. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2603. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2604. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2605. // Home the Z axis
  2606. HOMEAXIS(Z);
  2607. }
  2608. else {
  2609. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2610. SERIAL_ECHO_START;
  2611. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2612. }
  2613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2614. if (DEBUGGING(LEVELING)) {
  2615. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2616. }
  2617. #endif
  2618. #else // !Z_SAFE_HOMING
  2619. HOMEAXIS(Z);
  2620. #endif // !Z_SAFE_HOMING
  2621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2622. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2623. #endif
  2624. } // home_all_axis || homeZ
  2625. #endif // Z_HOME_DIR < 0
  2626. SYNC_PLAN_POSITION_KINEMATIC();
  2627. #endif // !DELTA (gcode_G28)
  2628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2629. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2630. #endif
  2631. endstops.not_homing();
  2632. endstops.hit_on_purpose(); // clear endstop hit flags
  2633. // Enable mesh leveling again
  2634. #if ENABLED(MESH_BED_LEVELING)
  2635. if (mbl.has_mesh()) {
  2636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2637. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2638. #endif
  2639. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2641. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2642. #endif
  2643. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2644. #if Z_HOME_DIR > 0
  2645. + Z_MAX_POS
  2646. #endif
  2647. ;
  2648. SYNC_PLAN_POSITION_KINEMATIC();
  2649. mbl.set_active(true);
  2650. #if ENABLED(MESH_G28_REST_ORIGIN)
  2651. current_position[Z_AXIS] = 0.0;
  2652. set_destination_to_current();
  2653. feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
  2654. line_to_destination();
  2655. stepper.synchronize();
  2656. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2657. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2658. #endif
  2659. #else
  2660. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2661. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2662. #if Z_HOME_DIR > 0
  2663. + Z_MAX_POS
  2664. #endif
  2665. ;
  2666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2667. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2668. #endif
  2669. #endif
  2670. }
  2671. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2672. current_position[Z_AXIS] = pre_home_z;
  2673. SYNC_PLAN_POSITION_KINEMATIC();
  2674. mbl.set_active(true);
  2675. current_position[Z_AXIS] = pre_home_z -
  2676. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2677. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2678. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2679. #endif
  2680. }
  2681. }
  2682. #endif
  2683. #if ENABLED(DELTA)
  2684. // move to a height where we can use the full xy-area
  2685. do_blocking_move_to_z(delta_clip_start_height);
  2686. #endif
  2687. clean_up_after_endstop_or_probe_move();
  2688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2689. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2690. #endif
  2691. // Restore the active tool after homing
  2692. #if HOTENDS > 1
  2693. tool_change(old_tool_index, 0, true);
  2694. #endif
  2695. report_current_position();
  2696. }
  2697. #if HAS_PROBING_PROCEDURE
  2698. void out_of_range_error(const char* p_edge) {
  2699. SERIAL_PROTOCOLPGM("?Probe ");
  2700. serialprintPGM(p_edge);
  2701. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2702. }
  2703. #endif
  2704. #if ENABLED(MESH_BED_LEVELING)
  2705. inline void _mbl_goto_xy(float x, float y) {
  2706. float old_feedrate_mm_m = feedrate_mm_m;
  2707. feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
  2708. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2709. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2710. + Z_RAISE_BETWEEN_PROBINGS
  2711. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2712. + MIN_Z_HEIGHT_FOR_HOMING
  2713. #endif
  2714. ;
  2715. line_to_current_position();
  2716. current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS);
  2717. current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS);
  2718. line_to_current_position();
  2719. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2720. current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS);
  2721. line_to_current_position();
  2722. #endif
  2723. feedrate_mm_m = old_feedrate_mm_m;
  2724. stepper.synchronize();
  2725. }
  2726. /**
  2727. * G29: Mesh-based Z probe, probes a grid and produces a
  2728. * mesh to compensate for variable bed height
  2729. *
  2730. * Parameters With MESH_BED_LEVELING:
  2731. *
  2732. * S0 Produce a mesh report
  2733. * S1 Start probing mesh points
  2734. * S2 Probe the next mesh point
  2735. * S3 Xn Yn Zn.nn Manually modify a single point
  2736. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2737. * S5 Reset and disable mesh
  2738. *
  2739. * The S0 report the points as below
  2740. *
  2741. * +----> X-axis 1-n
  2742. * |
  2743. * |
  2744. * v Y-axis 1-n
  2745. *
  2746. */
  2747. inline void gcode_G29() {
  2748. static int probe_point = -1;
  2749. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2750. if (state < 0 || state > 5) {
  2751. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2752. return;
  2753. }
  2754. int8_t px, py;
  2755. switch (state) {
  2756. case MeshReport:
  2757. if (mbl.has_mesh()) {
  2758. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2759. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2760. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2761. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2762. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2763. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2764. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2765. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2766. SERIAL_PROTOCOLPGM(" ");
  2767. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2768. }
  2769. SERIAL_EOL;
  2770. }
  2771. }
  2772. else
  2773. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2774. break;
  2775. case MeshStart:
  2776. mbl.reset();
  2777. probe_point = 0;
  2778. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2779. break;
  2780. case MeshNext:
  2781. if (probe_point < 0) {
  2782. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2783. return;
  2784. }
  2785. // For each G29 S2...
  2786. if (probe_point == 0) {
  2787. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2788. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2789. #if Z_HOME_DIR > 0
  2790. + Z_MAX_POS
  2791. #endif
  2792. ;
  2793. SYNC_PLAN_POSITION_KINEMATIC();
  2794. }
  2795. else {
  2796. // For G29 S2 after adjusting Z.
  2797. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2798. }
  2799. // If there's another point to sample, move there with optional lift.
  2800. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2801. mbl.zigzag(probe_point, px, py);
  2802. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2803. probe_point++;
  2804. }
  2805. else {
  2806. // One last "return to the bed" (as originally coded) at completion
  2807. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2808. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2809. + Z_RAISE_BETWEEN_PROBINGS
  2810. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2811. + MIN_Z_HEIGHT_FOR_HOMING
  2812. #endif
  2813. ;
  2814. line_to_current_position();
  2815. stepper.synchronize();
  2816. // After recording the last point, activate the mbl and home
  2817. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2818. probe_point = -1;
  2819. mbl.set_has_mesh(true);
  2820. enqueue_and_echo_commands_P(PSTR("G28"));
  2821. }
  2822. break;
  2823. case MeshSet:
  2824. if (code_seen('X')) {
  2825. px = code_value_int() - 1;
  2826. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2827. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2828. return;
  2829. }
  2830. }
  2831. else {
  2832. SERIAL_PROTOCOLLNPGM("X not entered.");
  2833. return;
  2834. }
  2835. if (code_seen('Y')) {
  2836. py = code_value_int() - 1;
  2837. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2838. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2839. return;
  2840. }
  2841. }
  2842. else {
  2843. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2844. return;
  2845. }
  2846. if (code_seen('Z')) {
  2847. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2848. }
  2849. else {
  2850. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2851. return;
  2852. }
  2853. break;
  2854. case MeshSetZOffset:
  2855. if (code_seen('Z')) {
  2856. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2857. }
  2858. else {
  2859. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2860. return;
  2861. }
  2862. break;
  2863. case MeshReset:
  2864. if (mbl.active()) {
  2865. current_position[Z_AXIS] +=
  2866. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2867. mbl.reset();
  2868. SYNC_PLAN_POSITION_KINEMATIC();
  2869. }
  2870. else
  2871. mbl.reset();
  2872. } // switch(state)
  2873. report_current_position();
  2874. }
  2875. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2876. /**
  2877. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2878. * Will fail if the printer has not been homed with G28.
  2879. *
  2880. * Enhanced G29 Auto Bed Leveling Probe Routine
  2881. *
  2882. * Parameters With AUTO_BED_LEVELING_GRID:
  2883. *
  2884. * P Set the size of the grid that will be probed (P x P points).
  2885. * Not supported by non-linear delta printer bed leveling.
  2886. * Example: "G29 P4"
  2887. *
  2888. * S Set the XY travel speed between probe points (in units/min)
  2889. *
  2890. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2891. * or clean the rotation Matrix. Useful to check the topology
  2892. * after a first run of G29.
  2893. *
  2894. * V Set the verbose level (0-4). Example: "G29 V3"
  2895. *
  2896. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2897. * This is useful for manual bed leveling and finding flaws in the bed (to
  2898. * assist with part placement).
  2899. * Not supported by non-linear delta printer bed leveling.
  2900. *
  2901. * F Set the Front limit of the probing grid
  2902. * B Set the Back limit of the probing grid
  2903. * L Set the Left limit of the probing grid
  2904. * R Set the Right limit of the probing grid
  2905. *
  2906. * Global Parameters:
  2907. *
  2908. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2909. * Include "E" to engage/disengage the Z probe for each sample.
  2910. * There's no extra effect if you have a fixed Z probe.
  2911. * Usage: "G29 E" or "G29 e"
  2912. *
  2913. */
  2914. inline void gcode_G29() {
  2915. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2916. if (DEBUGGING(LEVELING)) {
  2917. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2918. DEBUG_POS("", current_position);
  2919. }
  2920. #endif
  2921. // Don't allow auto-leveling without homing first
  2922. if (axis_unhomed_error(true, true, true)) return;
  2923. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2924. if (verbose_level < 0 || verbose_level > 4) {
  2925. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2926. return;
  2927. }
  2928. bool dryrun = code_seen('D');
  2929. bool stow_probe_after_each = code_seen('E');
  2930. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2931. #if DISABLED(DELTA)
  2932. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2933. #endif
  2934. if (verbose_level > 0) {
  2935. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2936. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2937. }
  2938. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2939. #if DISABLED(DELTA)
  2940. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2941. if (auto_bed_leveling_grid_points < 2) {
  2942. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2943. return;
  2944. }
  2945. #endif
  2946. xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2947. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2948. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2949. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2950. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2951. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2952. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2953. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2954. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2955. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2956. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2957. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2958. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2959. if (left_out || right_out || front_out || back_out) {
  2960. if (left_out) {
  2961. out_of_range_error(PSTR("(L)eft"));
  2962. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2963. }
  2964. if (right_out) {
  2965. out_of_range_error(PSTR("(R)ight"));
  2966. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2967. }
  2968. if (front_out) {
  2969. out_of_range_error(PSTR("(F)ront"));
  2970. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2971. }
  2972. if (back_out) {
  2973. out_of_range_error(PSTR("(B)ack"));
  2974. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2975. }
  2976. return;
  2977. }
  2978. #endif // AUTO_BED_LEVELING_GRID
  2979. if (!dryrun) {
  2980. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2981. if (DEBUGGING(LEVELING)) {
  2982. vector_3 corrected_position = planner.adjusted_position();
  2983. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2984. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2985. }
  2986. #endif
  2987. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2988. planner.bed_level_matrix.set_to_identity();
  2989. #if ENABLED(DELTA)
  2990. reset_bed_level();
  2991. #else //!DELTA
  2992. //vector_3 corrected_position = planner.adjusted_position();
  2993. //corrected_position.debug("position before G29");
  2994. vector_3 uncorrected_position = planner.adjusted_position();
  2995. //uncorrected_position.debug("position during G29");
  2996. current_position[X_AXIS] = uncorrected_position.x;
  2997. current_position[Y_AXIS] = uncorrected_position.y;
  2998. current_position[Z_AXIS] = uncorrected_position.z;
  2999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3000. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3001. #endif
  3002. SYNC_PLAN_POSITION_KINEMATIC();
  3003. #endif // !DELTA
  3004. }
  3005. stepper.synchronize();
  3006. setup_for_endstop_or_probe_move();
  3007. // Deploy the probe. Probe will raise if needed.
  3008. if (DEPLOY_PROBE()) return;
  3009. bed_leveling_in_progress = true;
  3010. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3011. // probe at the points of a lattice grid
  3012. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3013. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3014. #if ENABLED(DELTA)
  3015. delta_grid_spacing[0] = xGridSpacing;
  3016. delta_grid_spacing[1] = yGridSpacing;
  3017. float zoffset = zprobe_zoffset;
  3018. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3019. #else // !DELTA
  3020. /**
  3021. * solve the plane equation ax + by + d = z
  3022. * A is the matrix with rows [x y 1] for all the probed points
  3023. * B is the vector of the Z positions
  3024. * the normal vector to the plane is formed by the coefficients of the
  3025. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3026. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3027. */
  3028. int abl2 = sq(auto_bed_leveling_grid_points);
  3029. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3030. eqnBVector[abl2], // "B" vector of Z points
  3031. mean = 0.0;
  3032. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3033. #endif // !DELTA
  3034. int probePointCounter = 0;
  3035. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3036. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3037. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3038. int xStart, xStop, xInc;
  3039. if (zig) {
  3040. xStart = 0;
  3041. xStop = auto_bed_leveling_grid_points;
  3042. xInc = 1;
  3043. }
  3044. else {
  3045. xStart = auto_bed_leveling_grid_points - 1;
  3046. xStop = -1;
  3047. xInc = -1;
  3048. }
  3049. zig = !zig;
  3050. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3051. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3052. #if ENABLED(DELTA)
  3053. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3054. float distance_from_center = HYPOT(xProbe, yProbe);
  3055. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3056. #endif //DELTA
  3057. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3058. #if DISABLED(DELTA)
  3059. mean += measured_z;
  3060. eqnBVector[probePointCounter] = measured_z;
  3061. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3062. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3063. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3064. indexIntoAB[xCount][yCount] = probePointCounter;
  3065. #else
  3066. bed_level[xCount][yCount] = measured_z + zoffset;
  3067. #endif
  3068. probePointCounter++;
  3069. idle();
  3070. } //xProbe
  3071. } //yProbe
  3072. #else // !AUTO_BED_LEVELING_GRID
  3073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3074. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3075. #endif
  3076. // Probe at 3 arbitrary points
  3077. float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
  3078. LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
  3079. stow_probe_after_each, verbose_level),
  3080. z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
  3081. LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
  3082. stow_probe_after_each, verbose_level),
  3083. z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
  3084. LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
  3085. stow_probe_after_each, verbose_level);
  3086. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3087. #endif // !AUTO_BED_LEVELING_GRID
  3088. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3089. if (STOW_PROBE()) return;
  3090. // Restore state after probing
  3091. clean_up_after_endstop_or_probe_move();
  3092. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3093. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3094. #endif
  3095. // Calculate leveling, print reports, correct the position
  3096. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3097. #if ENABLED(DELTA)
  3098. if (!dryrun) extrapolate_unprobed_bed_level();
  3099. print_bed_level();
  3100. #else // !DELTA
  3101. // solve lsq problem
  3102. double plane_equation_coefficients[3];
  3103. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3104. mean /= abl2;
  3105. if (verbose_level) {
  3106. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3107. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3108. SERIAL_PROTOCOLPGM(" b: ");
  3109. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3110. SERIAL_PROTOCOLPGM(" d: ");
  3111. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3112. SERIAL_EOL;
  3113. if (verbose_level > 2) {
  3114. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3115. SERIAL_PROTOCOL_F(mean, 8);
  3116. SERIAL_EOL;
  3117. }
  3118. }
  3119. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3120. // Show the Topography map if enabled
  3121. if (do_topography_map) {
  3122. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3123. " +--- BACK --+\n"
  3124. " | |\n"
  3125. " L | (+) | R\n"
  3126. " E | | I\n"
  3127. " F | (-) N (+) | G\n"
  3128. " T | | H\n"
  3129. " | (-) | T\n"
  3130. " | |\n"
  3131. " O-- FRONT --+\n"
  3132. " (0,0)");
  3133. float min_diff = 999;
  3134. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3135. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3136. int ind = indexIntoAB[xx][yy];
  3137. float diff = eqnBVector[ind] - mean;
  3138. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3139. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3140. z_tmp = 0;
  3141. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3142. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3143. if (diff >= 0.0)
  3144. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3145. else
  3146. SERIAL_PROTOCOLCHAR(' ');
  3147. SERIAL_PROTOCOL_F(diff, 5);
  3148. } // xx
  3149. SERIAL_EOL;
  3150. } // yy
  3151. SERIAL_EOL;
  3152. if (verbose_level > 3) {
  3153. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3154. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3155. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3156. int ind = indexIntoAB[xx][yy];
  3157. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3158. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3159. z_tmp = 0;
  3160. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3161. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3162. if (diff >= 0.0)
  3163. SERIAL_PROTOCOLPGM(" +");
  3164. // Include + for column alignment
  3165. else
  3166. SERIAL_PROTOCOLCHAR(' ');
  3167. SERIAL_PROTOCOL_F(diff, 5);
  3168. } // xx
  3169. SERIAL_EOL;
  3170. } // yy
  3171. SERIAL_EOL;
  3172. }
  3173. } //do_topography_map
  3174. #endif //!DELTA
  3175. #endif // AUTO_BED_LEVELING_GRID
  3176. #if DISABLED(DELTA)
  3177. if (verbose_level > 0)
  3178. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3179. if (!dryrun) {
  3180. /**
  3181. * Correct the Z height difference from Z probe position and nozzle tip position.
  3182. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3183. * from the nozzle. When the bed is uneven, this height must be corrected.
  3184. */
  3185. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3186. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3187. z_tmp = current_position[Z_AXIS],
  3188. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3190. if (DEBUGGING(LEVELING)) {
  3191. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3192. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3193. SERIAL_EOL;
  3194. }
  3195. #endif
  3196. // Apply the correction sending the Z probe offset
  3197. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3199. if (DEBUGGING(LEVELING)) {
  3200. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3201. SERIAL_EOL;
  3202. }
  3203. #endif
  3204. // Adjust the current Z and send it to the planner.
  3205. current_position[Z_AXIS] += z_tmp - stepper_z;
  3206. SYNC_PLAN_POSITION_KINEMATIC();
  3207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3208. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3209. #endif
  3210. }
  3211. #endif // !DELTA
  3212. #ifdef Z_PROBE_END_SCRIPT
  3213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3214. if (DEBUGGING(LEVELING)) {
  3215. SERIAL_ECHOPGM("Z Probe End Script: ");
  3216. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3217. }
  3218. #endif
  3219. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3220. stepper.synchronize();
  3221. #endif
  3222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3223. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3224. #endif
  3225. bed_leveling_in_progress = false;
  3226. report_current_position();
  3227. KEEPALIVE_STATE(IN_HANDLER);
  3228. }
  3229. #endif //AUTO_BED_LEVELING_FEATURE
  3230. #if HAS_BED_PROBE
  3231. /**
  3232. * G30: Do a single Z probe at the current XY
  3233. */
  3234. inline void gcode_G30() {
  3235. setup_for_endstop_or_probe_move();
  3236. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3237. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3238. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3239. true, 1);
  3240. SERIAL_PROTOCOLPGM("Bed X: ");
  3241. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3242. SERIAL_PROTOCOLPGM(" Y: ");
  3243. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3244. SERIAL_PROTOCOLPGM(" Z: ");
  3245. SERIAL_PROTOCOL(measured_z + 0.0001);
  3246. SERIAL_EOL;
  3247. clean_up_after_endstop_or_probe_move();
  3248. report_current_position();
  3249. }
  3250. #if ENABLED(Z_PROBE_SLED)
  3251. /**
  3252. * G31: Deploy the Z probe
  3253. */
  3254. inline void gcode_G31() { DEPLOY_PROBE(); }
  3255. /**
  3256. * G32: Stow the Z probe
  3257. */
  3258. inline void gcode_G32() { STOW_PROBE(); }
  3259. #endif // Z_PROBE_SLED
  3260. #endif // HAS_BED_PROBE
  3261. /**
  3262. * G92: Set current position to given X Y Z E
  3263. */
  3264. inline void gcode_G92() {
  3265. bool didE = code_seen('E');
  3266. if (!didE) stepper.synchronize();
  3267. bool didXYZ = false;
  3268. for (int i = 0; i < NUM_AXIS; i++) {
  3269. if (code_seen(axis_codes[i])) {
  3270. float p = current_position[i],
  3271. v = code_value_axis_units(i);
  3272. current_position[i] = v;
  3273. if (i != E_AXIS) {
  3274. position_shift[i] += v - p; // Offset the coordinate space
  3275. update_software_endstops((AxisEnum)i);
  3276. didXYZ = true;
  3277. }
  3278. }
  3279. }
  3280. if (didXYZ)
  3281. SYNC_PLAN_POSITION_KINEMATIC();
  3282. else if (didE)
  3283. sync_plan_position_e();
  3284. }
  3285. #if ENABLED(ULTIPANEL)
  3286. /**
  3287. * M0: Unconditional stop - Wait for user button press on LCD
  3288. * M1: Conditional stop - Wait for user button press on LCD
  3289. */
  3290. inline void gcode_M0_M1() {
  3291. char* args = current_command_args;
  3292. millis_t codenum = 0;
  3293. bool hasP = false, hasS = false;
  3294. if (code_seen('P')) {
  3295. codenum = code_value_millis(); // milliseconds to wait
  3296. hasP = codenum > 0;
  3297. }
  3298. if (code_seen('S')) {
  3299. codenum = code_value_millis_from_seconds(); // seconds to wait
  3300. hasS = codenum > 0;
  3301. }
  3302. if (!hasP && !hasS && *args != '\0')
  3303. lcd_setstatus(args, true);
  3304. else {
  3305. LCD_MESSAGEPGM(MSG_USERWAIT);
  3306. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3307. dontExpireStatus();
  3308. #endif
  3309. }
  3310. lcd_ignore_click();
  3311. stepper.synchronize();
  3312. refresh_cmd_timeout();
  3313. if (codenum > 0) {
  3314. codenum += previous_cmd_ms; // wait until this time for a click
  3315. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3316. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3317. KEEPALIVE_STATE(IN_HANDLER);
  3318. lcd_ignore_click(false);
  3319. }
  3320. else {
  3321. if (!lcd_detected()) return;
  3322. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3323. while (!lcd_clicked()) idle();
  3324. KEEPALIVE_STATE(IN_HANDLER);
  3325. }
  3326. if (IS_SD_PRINTING)
  3327. LCD_MESSAGEPGM(MSG_RESUMING);
  3328. else
  3329. LCD_MESSAGEPGM(WELCOME_MSG);
  3330. }
  3331. #endif // ULTIPANEL
  3332. /**
  3333. * M17: Enable power on all stepper motors
  3334. */
  3335. inline void gcode_M17() {
  3336. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3337. enable_all_steppers();
  3338. }
  3339. #if ENABLED(SDSUPPORT)
  3340. /**
  3341. * M20: List SD card to serial output
  3342. */
  3343. inline void gcode_M20() {
  3344. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3345. card.ls();
  3346. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3347. }
  3348. /**
  3349. * M21: Init SD Card
  3350. */
  3351. inline void gcode_M21() {
  3352. card.initsd();
  3353. }
  3354. /**
  3355. * M22: Release SD Card
  3356. */
  3357. inline void gcode_M22() {
  3358. card.release();
  3359. }
  3360. /**
  3361. * M23: Open a file
  3362. */
  3363. inline void gcode_M23() {
  3364. card.openFile(current_command_args, true);
  3365. }
  3366. /**
  3367. * M24: Start SD Print
  3368. */
  3369. inline void gcode_M24() {
  3370. card.startFileprint();
  3371. print_job_timer.start();
  3372. }
  3373. /**
  3374. * M25: Pause SD Print
  3375. */
  3376. inline void gcode_M25() {
  3377. card.pauseSDPrint();
  3378. }
  3379. /**
  3380. * M26: Set SD Card file index
  3381. */
  3382. inline void gcode_M26() {
  3383. if (card.cardOK && code_seen('S'))
  3384. card.setIndex(code_value_long());
  3385. }
  3386. /**
  3387. * M27: Get SD Card status
  3388. */
  3389. inline void gcode_M27() {
  3390. card.getStatus();
  3391. }
  3392. /**
  3393. * M28: Start SD Write
  3394. */
  3395. inline void gcode_M28() {
  3396. card.openFile(current_command_args, false);
  3397. }
  3398. /**
  3399. * M29: Stop SD Write
  3400. * Processed in write to file routine above
  3401. */
  3402. inline void gcode_M29() {
  3403. // card.saving = false;
  3404. }
  3405. /**
  3406. * M30 <filename>: Delete SD Card file
  3407. */
  3408. inline void gcode_M30() {
  3409. if (card.cardOK) {
  3410. card.closefile();
  3411. card.removeFile(current_command_args);
  3412. }
  3413. }
  3414. #endif //SDSUPPORT
  3415. /**
  3416. * M31: Get the time since the start of SD Print (or last M109)
  3417. */
  3418. inline void gcode_M31() {
  3419. char buffer[21];
  3420. timestamp_t time(print_job_timer.duration());
  3421. time.toString(buffer);
  3422. lcd_setstatus(buffer);
  3423. SERIAL_ECHO_START;
  3424. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3425. SERIAL_ECHOLN(buffer);
  3426. thermalManager.autotempShutdown();
  3427. }
  3428. #if ENABLED(SDSUPPORT)
  3429. /**
  3430. * M32: Select file and start SD Print
  3431. */
  3432. inline void gcode_M32() {
  3433. if (card.sdprinting)
  3434. stepper.synchronize();
  3435. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3436. if (!namestartpos)
  3437. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3438. else
  3439. namestartpos++; //to skip the '!'
  3440. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3441. if (card.cardOK) {
  3442. card.openFile(namestartpos, true, call_procedure);
  3443. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3444. card.setIndex(code_value_long());
  3445. card.startFileprint();
  3446. // Procedure calls count as normal print time.
  3447. if (!call_procedure) print_job_timer.start();
  3448. }
  3449. }
  3450. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3451. /**
  3452. * M33: Get the long full path of a file or folder
  3453. *
  3454. * Parameters:
  3455. * <dospath> Case-insensitive DOS-style path to a file or folder
  3456. *
  3457. * Example:
  3458. * M33 miscel~1/armchair/armcha~1.gco
  3459. *
  3460. * Output:
  3461. * /Miscellaneous/Armchair/Armchair.gcode
  3462. */
  3463. inline void gcode_M33() {
  3464. card.printLongPath(current_command_args);
  3465. }
  3466. #endif
  3467. /**
  3468. * M928: Start SD Write
  3469. */
  3470. inline void gcode_M928() {
  3471. card.openLogFile(current_command_args);
  3472. }
  3473. #endif // SDSUPPORT
  3474. /**
  3475. * M42: Change pin status via GCode
  3476. *
  3477. * P<pin> Pin number (LED if omitted)
  3478. * S<byte> Pin status from 0 - 255
  3479. */
  3480. inline void gcode_M42() {
  3481. if (!code_seen('S')) return;
  3482. int pin_status = code_value_int();
  3483. if (pin_status < 0 || pin_status > 255) return;
  3484. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3485. if (pin_number < 0) return;
  3486. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3487. if (pin_number == sensitive_pins[i]) return;
  3488. pinMode(pin_number, OUTPUT);
  3489. digitalWrite(pin_number, pin_status);
  3490. analogWrite(pin_number, pin_status);
  3491. #if FAN_COUNT > 0
  3492. switch (pin_number) {
  3493. #if HAS_FAN0
  3494. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3495. #endif
  3496. #if HAS_FAN1
  3497. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3498. #endif
  3499. #if HAS_FAN2
  3500. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3501. #endif
  3502. }
  3503. #endif
  3504. }
  3505. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3506. /**
  3507. * M48: Z probe repeatability measurement function.
  3508. *
  3509. * Usage:
  3510. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3511. * P = Number of sampled points (4-50, default 10)
  3512. * X = Sample X position
  3513. * Y = Sample Y position
  3514. * V = Verbose level (0-4, default=1)
  3515. * E = Engage Z probe for each reading
  3516. * L = Number of legs of movement before probe
  3517. * S = Schizoid (Or Star if you prefer)
  3518. *
  3519. * This function assumes the bed has been homed. Specifically, that a G28 command
  3520. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3521. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3522. * regenerated.
  3523. */
  3524. inline void gcode_M48() {
  3525. if (axis_unhomed_error(true, true, true)) return;
  3526. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3527. if (verbose_level < 0 || verbose_level > 4) {
  3528. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3529. return;
  3530. }
  3531. if (verbose_level > 0)
  3532. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3533. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3534. if (n_samples < 4 || n_samples > 50) {
  3535. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3536. return;
  3537. }
  3538. float X_current = current_position[X_AXIS],
  3539. Y_current = current_position[Y_AXIS];
  3540. bool stow_probe_after_each = code_seen('E');
  3541. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3542. #if DISABLED(DELTA)
  3543. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3544. out_of_range_error(PSTR("X"));
  3545. return;
  3546. }
  3547. #endif
  3548. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3549. #if DISABLED(DELTA)
  3550. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3551. out_of_range_error(PSTR("Y"));
  3552. return;
  3553. }
  3554. #else
  3555. if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3556. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3557. return;
  3558. }
  3559. #endif
  3560. bool seen_L = code_seen('L');
  3561. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3562. if (n_legs > 15) {
  3563. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3564. return;
  3565. }
  3566. if (n_legs == 1) n_legs = 2;
  3567. bool schizoid_flag = code_seen('S');
  3568. if (schizoid_flag && !seen_L) n_legs = 7;
  3569. /**
  3570. * Now get everything to the specified probe point So we can safely do a
  3571. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3572. * we don't want to use that as a starting point for each probe.
  3573. */
  3574. if (verbose_level > 2)
  3575. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3576. #if ENABLED(DELTA)
  3577. // we don't do bed level correction in M48 because we want the raw data when we probe
  3578. reset_bed_level();
  3579. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3580. // we don't do bed level correction in M48 because we want the raw data when we probe
  3581. planner.bed_level_matrix.set_to_identity();
  3582. #endif
  3583. setup_for_endstop_or_probe_move();
  3584. // Move to the first point, deploy, and probe
  3585. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3586. randomSeed(millis());
  3587. double mean = 0, sigma = 0, sample_set[n_samples];
  3588. for (uint8_t n = 0; n < n_samples; n++) {
  3589. if (n_legs) {
  3590. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3591. float angle = random(0.0, 360.0),
  3592. radius = random(
  3593. #if ENABLED(DELTA)
  3594. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3595. #else
  3596. 5, X_MAX_LENGTH / 8
  3597. #endif
  3598. );
  3599. if (verbose_level > 3) {
  3600. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3601. SERIAL_ECHOPAIR(" angle: ", angle);
  3602. SERIAL_ECHOPGM(" Direction: ");
  3603. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3604. SERIAL_ECHOLNPGM("Clockwise");
  3605. }
  3606. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3607. double delta_angle;
  3608. if (schizoid_flag)
  3609. // The points of a 5 point star are 72 degrees apart. We need to
  3610. // skip a point and go to the next one on the star.
  3611. delta_angle = dir * 2.0 * 72.0;
  3612. else
  3613. // If we do this line, we are just trying to move further
  3614. // around the circle.
  3615. delta_angle = dir * (float) random(25, 45);
  3616. angle += delta_angle;
  3617. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3618. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3619. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3620. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3621. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3622. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3623. #if DISABLED(DELTA)
  3624. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3625. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3626. #else
  3627. // If we have gone out too far, we can do a simple fix and scale the numbers
  3628. // back in closer to the origin.
  3629. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3630. X_current /= 1.25;
  3631. Y_current /= 1.25;
  3632. if (verbose_level > 3) {
  3633. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3634. SERIAL_ECHOPAIR(", ", Y_current);
  3635. SERIAL_EOL;
  3636. }
  3637. }
  3638. #endif
  3639. if (verbose_level > 3) {
  3640. SERIAL_PROTOCOLPGM("Going to:");
  3641. SERIAL_ECHOPAIR(" X", X_current);
  3642. SERIAL_ECHOPAIR(" Y", Y_current);
  3643. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3644. SERIAL_EOL;
  3645. }
  3646. do_blocking_move_to_xy(X_current, Y_current);
  3647. } // n_legs loop
  3648. } // n_legs
  3649. // Probe a single point
  3650. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3651. /**
  3652. * Get the current mean for the data points we have so far
  3653. */
  3654. double sum = 0.0;
  3655. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3656. mean = sum / (n + 1);
  3657. /**
  3658. * Now, use that mean to calculate the standard deviation for the
  3659. * data points we have so far
  3660. */
  3661. sum = 0.0;
  3662. for (uint8_t j = 0; j <= n; j++)
  3663. sum += sq(sample_set[j] - mean);
  3664. sigma = sqrt(sum / (n + 1));
  3665. if (verbose_level > 0) {
  3666. if (verbose_level > 1) {
  3667. SERIAL_PROTOCOL(n + 1);
  3668. SERIAL_PROTOCOLPGM(" of ");
  3669. SERIAL_PROTOCOL((int)n_samples);
  3670. SERIAL_PROTOCOLPGM(" z: ");
  3671. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3672. if (verbose_level > 2) {
  3673. SERIAL_PROTOCOLPGM(" mean: ");
  3674. SERIAL_PROTOCOL_F(mean, 6);
  3675. SERIAL_PROTOCOLPGM(" sigma: ");
  3676. SERIAL_PROTOCOL_F(sigma, 6);
  3677. }
  3678. }
  3679. SERIAL_EOL;
  3680. }
  3681. } // End of probe loop
  3682. if (STOW_PROBE()) return;
  3683. if (verbose_level > 0) {
  3684. SERIAL_PROTOCOLPGM("Mean: ");
  3685. SERIAL_PROTOCOL_F(mean, 6);
  3686. SERIAL_EOL;
  3687. }
  3688. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3689. SERIAL_PROTOCOL_F(sigma, 6);
  3690. SERIAL_EOL; SERIAL_EOL;
  3691. clean_up_after_endstop_or_probe_move();
  3692. report_current_position();
  3693. }
  3694. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3695. /**
  3696. * M75: Start print timer
  3697. */
  3698. inline void gcode_M75() { print_job_timer.start(); }
  3699. /**
  3700. * M76: Pause print timer
  3701. */
  3702. inline void gcode_M76() { print_job_timer.pause(); }
  3703. /**
  3704. * M77: Stop print timer
  3705. */
  3706. inline void gcode_M77() { print_job_timer.stop(); }
  3707. #if ENABLED(PRINTCOUNTER)
  3708. /**
  3709. * M78: Show print statistics
  3710. */
  3711. inline void gcode_M78() {
  3712. // "M78 S78" will reset the statistics
  3713. if (code_seen('S') && code_value_int() == 78)
  3714. print_job_timer.initStats();
  3715. else print_job_timer.showStats();
  3716. }
  3717. #endif
  3718. /**
  3719. * M104: Set hot end temperature
  3720. */
  3721. inline void gcode_M104() {
  3722. if (get_target_extruder_from_command(104)) return;
  3723. if (DEBUGGING(DRYRUN)) return;
  3724. #if ENABLED(SINGLENOZZLE)
  3725. if (target_extruder != active_extruder) return;
  3726. #endif
  3727. if (code_seen('S')) {
  3728. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3729. #if ENABLED(DUAL_X_CARRIAGE)
  3730. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3731. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3732. #endif
  3733. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3734. /**
  3735. * Stop the timer at the end of print, starting is managed by
  3736. * 'heat and wait' M109.
  3737. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3738. * stand by mode, for instance in a dual extruder setup, without affecting
  3739. * the running print timer.
  3740. */
  3741. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3742. print_job_timer.stop();
  3743. LCD_MESSAGEPGM(WELCOME_MSG);
  3744. }
  3745. #endif
  3746. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3747. }
  3748. }
  3749. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3750. void print_heaterstates() {
  3751. #if HAS_TEMP_HOTEND
  3752. SERIAL_PROTOCOLPGM(" T:");
  3753. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3754. SERIAL_PROTOCOLPGM(" /");
  3755. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3756. #endif
  3757. #if HAS_TEMP_BED
  3758. SERIAL_PROTOCOLPGM(" B:");
  3759. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3760. SERIAL_PROTOCOLPGM(" /");
  3761. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3762. #endif
  3763. #if HOTENDS > 1
  3764. HOTEND_LOOP() {
  3765. SERIAL_PROTOCOLPGM(" T");
  3766. SERIAL_PROTOCOL(e);
  3767. SERIAL_PROTOCOLCHAR(':');
  3768. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3769. SERIAL_PROTOCOLPGM(" /");
  3770. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3771. }
  3772. #endif
  3773. #if HAS_TEMP_BED
  3774. SERIAL_PROTOCOLPGM(" B@:");
  3775. #ifdef BED_WATTS
  3776. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3777. SERIAL_PROTOCOLCHAR('W');
  3778. #else
  3779. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3780. #endif
  3781. #endif
  3782. SERIAL_PROTOCOLPGM(" @:");
  3783. #ifdef EXTRUDER_WATTS
  3784. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3785. SERIAL_PROTOCOLCHAR('W');
  3786. #else
  3787. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3788. #endif
  3789. #if HOTENDS > 1
  3790. HOTEND_LOOP() {
  3791. SERIAL_PROTOCOLPGM(" @");
  3792. SERIAL_PROTOCOL(e);
  3793. SERIAL_PROTOCOLCHAR(':');
  3794. #ifdef EXTRUDER_WATTS
  3795. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3796. SERIAL_PROTOCOLCHAR('W');
  3797. #else
  3798. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3799. #endif
  3800. }
  3801. #endif
  3802. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3803. #if HAS_TEMP_BED
  3804. SERIAL_PROTOCOLPGM(" ADC B:");
  3805. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3806. SERIAL_PROTOCOLPGM("C->");
  3807. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3808. #endif
  3809. HOTEND_LOOP() {
  3810. SERIAL_PROTOCOLPGM(" T");
  3811. SERIAL_PROTOCOL(e);
  3812. SERIAL_PROTOCOLCHAR(':');
  3813. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3814. SERIAL_PROTOCOLPGM("C->");
  3815. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3816. }
  3817. #endif
  3818. }
  3819. #endif
  3820. /**
  3821. * M105: Read hot end and bed temperature
  3822. */
  3823. inline void gcode_M105() {
  3824. if (get_target_extruder_from_command(105)) return;
  3825. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3826. SERIAL_PROTOCOLPGM(MSG_OK);
  3827. print_heaterstates();
  3828. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3829. SERIAL_ERROR_START;
  3830. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3831. #endif
  3832. SERIAL_EOL;
  3833. }
  3834. #if FAN_COUNT > 0
  3835. /**
  3836. * M106: Set Fan Speed
  3837. *
  3838. * S<int> Speed between 0-255
  3839. * P<index> Fan index, if more than one fan
  3840. */
  3841. inline void gcode_M106() {
  3842. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3843. p = code_seen('P') ? code_value_ushort() : 0;
  3844. NOMORE(s, 255);
  3845. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3846. }
  3847. /**
  3848. * M107: Fan Off
  3849. */
  3850. inline void gcode_M107() {
  3851. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3852. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3853. }
  3854. #endif // FAN_COUNT > 0
  3855. #if DISABLED(EMERGENCY_PARSER)
  3856. /**
  3857. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3858. */
  3859. inline void gcode_M108() { wait_for_heatup = false; }
  3860. /**
  3861. * M112: Emergency Stop
  3862. */
  3863. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3864. /**
  3865. * M410: Quickstop - Abort all planned moves
  3866. *
  3867. * This will stop the carriages mid-move, so most likely they
  3868. * will be out of sync with the stepper position after this.
  3869. */
  3870. inline void gcode_M410() { quickstop_stepper(); }
  3871. #endif
  3872. #ifndef MIN_COOLING_SLOPE_DEG
  3873. #define MIN_COOLING_SLOPE_DEG 1.50
  3874. #endif
  3875. #ifndef MIN_COOLING_SLOPE_TIME
  3876. #define MIN_COOLING_SLOPE_TIME 60
  3877. #endif
  3878. /**
  3879. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3880. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3881. */
  3882. inline void gcode_M109() {
  3883. if (get_target_extruder_from_command(109)) return;
  3884. if (DEBUGGING(DRYRUN)) return;
  3885. #if ENABLED(SINGLENOZZLE)
  3886. if (target_extruder != active_extruder) return;
  3887. #endif
  3888. bool no_wait_for_cooling = code_seen('S');
  3889. if (no_wait_for_cooling || code_seen('R')) {
  3890. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3891. #if ENABLED(DUAL_X_CARRIAGE)
  3892. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3893. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3894. #endif
  3895. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3896. /**
  3897. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3898. * stand by mode, for instance in a dual extruder setup, without affecting
  3899. * the running print timer.
  3900. */
  3901. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3902. print_job_timer.stop();
  3903. LCD_MESSAGEPGM(WELCOME_MSG);
  3904. }
  3905. /**
  3906. * We do not check if the timer is already running because this check will
  3907. * be done for us inside the Stopwatch::start() method thus a running timer
  3908. * will not restart.
  3909. */
  3910. else print_job_timer.start();
  3911. #endif
  3912. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3913. }
  3914. #if ENABLED(AUTOTEMP)
  3915. planner.autotemp_M109();
  3916. #endif
  3917. #if TEMP_RESIDENCY_TIME > 0
  3918. millis_t residency_start_ms = 0;
  3919. // Loop until the temperature has stabilized
  3920. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3921. #else
  3922. // Loop until the temperature is very close target
  3923. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3924. #endif //TEMP_RESIDENCY_TIME > 0
  3925. float theTarget = -1.0, old_temp = 9999.0;
  3926. bool wants_to_cool = false;
  3927. wait_for_heatup = true;
  3928. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3929. KEEPALIVE_STATE(NOT_BUSY);
  3930. do {
  3931. // Target temperature might be changed during the loop
  3932. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3933. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3934. theTarget = thermalManager.degTargetHotend(target_extruder);
  3935. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3936. if (no_wait_for_cooling && wants_to_cool) break;
  3937. }
  3938. now = millis();
  3939. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3940. next_temp_ms = now + 1000UL;
  3941. print_heaterstates();
  3942. #if TEMP_RESIDENCY_TIME > 0
  3943. SERIAL_PROTOCOLPGM(" W:");
  3944. if (residency_start_ms) {
  3945. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3946. SERIAL_PROTOCOLLN(rem);
  3947. }
  3948. else {
  3949. SERIAL_PROTOCOLLNPGM("?");
  3950. }
  3951. #else
  3952. SERIAL_EOL;
  3953. #endif
  3954. }
  3955. idle();
  3956. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3957. float temp = thermalManager.degHotend(target_extruder);
  3958. #if TEMP_RESIDENCY_TIME > 0
  3959. float temp_diff = fabs(theTarget - temp);
  3960. if (!residency_start_ms) {
  3961. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3962. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3963. }
  3964. else if (temp_diff > TEMP_HYSTERESIS) {
  3965. // Restart the timer whenever the temperature falls outside the hysteresis.
  3966. residency_start_ms = now;
  3967. }
  3968. #endif //TEMP_RESIDENCY_TIME > 0
  3969. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3970. if (wants_to_cool) {
  3971. // break after MIN_COOLING_SLOPE_TIME seconds
  3972. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3973. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3974. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3975. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3976. old_temp = temp;
  3977. }
  3978. }
  3979. } while (wait_for_heatup && TEMP_CONDITIONS);
  3980. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3981. KEEPALIVE_STATE(IN_HANDLER);
  3982. }
  3983. #if HAS_TEMP_BED
  3984. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3985. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3986. #endif
  3987. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3988. #define MIN_COOLING_SLOPE_TIME_BED 60
  3989. #endif
  3990. /**
  3991. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3992. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3993. */
  3994. inline void gcode_M190() {
  3995. if (DEBUGGING(DRYRUN)) return;
  3996. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3997. bool no_wait_for_cooling = code_seen('S');
  3998. if (no_wait_for_cooling || code_seen('R')) {
  3999. thermalManager.setTargetBed(code_value_temp_abs());
  4000. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4001. if (code_value_temp_abs() > BED_MINTEMP) {
  4002. /**
  4003. * We start the timer when 'heating and waiting' command arrives, LCD
  4004. * functions never wait. Cooling down managed by extruders.
  4005. *
  4006. * We do not check if the timer is already running because this check will
  4007. * be done for us inside the Stopwatch::start() method thus a running timer
  4008. * will not restart.
  4009. */
  4010. print_job_timer.start();
  4011. }
  4012. #endif
  4013. }
  4014. #if TEMP_BED_RESIDENCY_TIME > 0
  4015. millis_t residency_start_ms = 0;
  4016. // Loop until the temperature has stabilized
  4017. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4018. #else
  4019. // Loop until the temperature is very close target
  4020. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4021. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4022. float theTarget = -1.0, old_temp = 9999.0;
  4023. bool wants_to_cool = false;
  4024. wait_for_heatup = true;
  4025. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4026. KEEPALIVE_STATE(NOT_BUSY);
  4027. target_extruder = active_extruder; // for print_heaterstates
  4028. do {
  4029. // Target temperature might be changed during the loop
  4030. if (theTarget != thermalManager.degTargetBed()) {
  4031. wants_to_cool = thermalManager.isCoolingBed();
  4032. theTarget = thermalManager.degTargetBed();
  4033. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4034. if (no_wait_for_cooling && wants_to_cool) break;
  4035. }
  4036. now = millis();
  4037. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4038. next_temp_ms = now + 1000UL;
  4039. print_heaterstates();
  4040. #if TEMP_BED_RESIDENCY_TIME > 0
  4041. SERIAL_PROTOCOLPGM(" W:");
  4042. if (residency_start_ms) {
  4043. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4044. SERIAL_PROTOCOLLN(rem);
  4045. }
  4046. else {
  4047. SERIAL_PROTOCOLLNPGM("?");
  4048. }
  4049. #else
  4050. SERIAL_EOL;
  4051. #endif
  4052. }
  4053. idle();
  4054. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4055. float temp = thermalManager.degBed();
  4056. #if TEMP_BED_RESIDENCY_TIME > 0
  4057. float temp_diff = fabs(theTarget - temp);
  4058. if (!residency_start_ms) {
  4059. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4060. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4061. }
  4062. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4063. // Restart the timer whenever the temperature falls outside the hysteresis.
  4064. residency_start_ms = now;
  4065. }
  4066. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4067. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4068. if (wants_to_cool) {
  4069. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4070. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4071. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4072. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4073. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4074. old_temp = temp;
  4075. }
  4076. }
  4077. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4078. LCD_MESSAGEPGM(MSG_BED_DONE);
  4079. KEEPALIVE_STATE(IN_HANDLER);
  4080. }
  4081. #endif // HAS_TEMP_BED
  4082. /**
  4083. * M110: Set Current Line Number
  4084. */
  4085. inline void gcode_M110() {
  4086. if (code_seen('N')) gcode_N = code_value_long();
  4087. }
  4088. /**
  4089. * M111: Set the debug level
  4090. */
  4091. inline void gcode_M111() {
  4092. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4093. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4094. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4095. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4096. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4097. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4099. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4100. #endif
  4101. const static char* const debug_strings[] PROGMEM = {
  4102. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4104. str_debug_32
  4105. #endif
  4106. };
  4107. SERIAL_ECHO_START;
  4108. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4109. if (marlin_debug_flags) {
  4110. uint8_t comma = 0;
  4111. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4112. if (TEST(marlin_debug_flags, i)) {
  4113. if (comma++) SERIAL_CHAR(',');
  4114. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4115. }
  4116. }
  4117. }
  4118. else {
  4119. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4120. }
  4121. SERIAL_EOL;
  4122. }
  4123. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4124. /**
  4125. * M113: Get or set Host Keepalive interval (0 to disable)
  4126. *
  4127. * S<seconds> Optional. Set the keepalive interval.
  4128. */
  4129. inline void gcode_M113() {
  4130. if (code_seen('S')) {
  4131. host_keepalive_interval = code_value_byte();
  4132. NOMORE(host_keepalive_interval, 60);
  4133. }
  4134. else {
  4135. SERIAL_ECHO_START;
  4136. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4137. SERIAL_EOL;
  4138. }
  4139. }
  4140. #endif
  4141. #if ENABLED(BARICUDA)
  4142. #if HAS_HEATER_1
  4143. /**
  4144. * M126: Heater 1 valve open
  4145. */
  4146. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4147. /**
  4148. * M127: Heater 1 valve close
  4149. */
  4150. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4151. #endif
  4152. #if HAS_HEATER_2
  4153. /**
  4154. * M128: Heater 2 valve open
  4155. */
  4156. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4157. /**
  4158. * M129: Heater 2 valve close
  4159. */
  4160. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4161. #endif
  4162. #endif //BARICUDA
  4163. /**
  4164. * M140: Set bed temperature
  4165. */
  4166. inline void gcode_M140() {
  4167. if (DEBUGGING(DRYRUN)) return;
  4168. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4169. }
  4170. #if ENABLED(ULTIPANEL)
  4171. /**
  4172. * M145: Set the heatup state for a material in the LCD menu
  4173. * S<material> (0=PLA, 1=ABS)
  4174. * H<hotend temp>
  4175. * B<bed temp>
  4176. * F<fan speed>
  4177. */
  4178. inline void gcode_M145() {
  4179. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4180. if (material < 0 || material > 1) {
  4181. SERIAL_ERROR_START;
  4182. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4183. }
  4184. else {
  4185. int v;
  4186. switch (material) {
  4187. case 0:
  4188. if (code_seen('H')) {
  4189. v = code_value_int();
  4190. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4191. }
  4192. if (code_seen('F')) {
  4193. v = code_value_int();
  4194. preheatFanSpeed1 = constrain(v, 0, 255);
  4195. }
  4196. #if TEMP_SENSOR_BED != 0
  4197. if (code_seen('B')) {
  4198. v = code_value_int();
  4199. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4200. }
  4201. #endif
  4202. break;
  4203. case 1:
  4204. if (code_seen('H')) {
  4205. v = code_value_int();
  4206. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4207. }
  4208. if (code_seen('F')) {
  4209. v = code_value_int();
  4210. preheatFanSpeed2 = constrain(v, 0, 255);
  4211. }
  4212. #if TEMP_SENSOR_BED != 0
  4213. if (code_seen('B')) {
  4214. v = code_value_int();
  4215. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4216. }
  4217. #endif
  4218. break;
  4219. }
  4220. }
  4221. }
  4222. #endif
  4223. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4224. /**
  4225. * M149: Set temperature units
  4226. */
  4227. inline void gcode_M149() {
  4228. if (code_seen('C')) {
  4229. set_input_temp_units(TEMPUNIT_C);
  4230. } else if (code_seen('K')) {
  4231. set_input_temp_units(TEMPUNIT_K);
  4232. } else if (code_seen('F')) {
  4233. set_input_temp_units(TEMPUNIT_F);
  4234. }
  4235. }
  4236. #endif
  4237. #if HAS_POWER_SWITCH
  4238. /**
  4239. * M80: Turn on Power Supply
  4240. */
  4241. inline void gcode_M80() {
  4242. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4243. /**
  4244. * If you have a switch on suicide pin, this is useful
  4245. * if you want to start another print with suicide feature after
  4246. * a print without suicide...
  4247. */
  4248. #if HAS_SUICIDE
  4249. OUT_WRITE(SUICIDE_PIN, HIGH);
  4250. #endif
  4251. #if ENABLED(ULTIPANEL)
  4252. powersupply = true;
  4253. LCD_MESSAGEPGM(WELCOME_MSG);
  4254. lcd_update();
  4255. #endif
  4256. }
  4257. #endif // HAS_POWER_SWITCH
  4258. /**
  4259. * M81: Turn off Power, including Power Supply, if there is one.
  4260. *
  4261. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4262. */
  4263. inline void gcode_M81() {
  4264. thermalManager.disable_all_heaters();
  4265. stepper.finish_and_disable();
  4266. #if FAN_COUNT > 0
  4267. #if FAN_COUNT > 1
  4268. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4269. #else
  4270. fanSpeeds[0] = 0;
  4271. #endif
  4272. #endif
  4273. delay(1000); // Wait 1 second before switching off
  4274. #if HAS_SUICIDE
  4275. stepper.synchronize();
  4276. suicide();
  4277. #elif HAS_POWER_SWITCH
  4278. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4279. #endif
  4280. #if ENABLED(ULTIPANEL)
  4281. #if HAS_POWER_SWITCH
  4282. powersupply = false;
  4283. #endif
  4284. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4285. lcd_update();
  4286. #endif
  4287. }
  4288. /**
  4289. * M82: Set E codes absolute (default)
  4290. */
  4291. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4292. /**
  4293. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4294. */
  4295. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4296. /**
  4297. * M18, M84: Disable all stepper motors
  4298. */
  4299. inline void gcode_M18_M84() {
  4300. if (code_seen('S')) {
  4301. stepper_inactive_time = code_value_millis_from_seconds();
  4302. }
  4303. else {
  4304. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4305. if (all_axis) {
  4306. stepper.finish_and_disable();
  4307. }
  4308. else {
  4309. stepper.synchronize();
  4310. if (code_seen('X')) disable_x();
  4311. if (code_seen('Y')) disable_y();
  4312. if (code_seen('Z')) disable_z();
  4313. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4314. if (code_seen('E')) {
  4315. disable_e0();
  4316. disable_e1();
  4317. disable_e2();
  4318. disable_e3();
  4319. }
  4320. #endif
  4321. }
  4322. }
  4323. }
  4324. /**
  4325. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4326. */
  4327. inline void gcode_M85() {
  4328. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4329. }
  4330. /**
  4331. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4332. * (Follows the same syntax as G92)
  4333. */
  4334. inline void gcode_M92() {
  4335. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4336. if (code_seen(axis_codes[i])) {
  4337. if (i == E_AXIS) {
  4338. float value = code_value_per_axis_unit(i);
  4339. if (value < 20.0) {
  4340. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4341. planner.max_e_jerk *= factor;
  4342. planner.max_feedrate_mm_s[i] *= factor;
  4343. planner.max_acceleration_steps_per_s2[i] *= factor;
  4344. }
  4345. planner.axis_steps_per_mm[i] = value;
  4346. }
  4347. else {
  4348. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4349. }
  4350. }
  4351. }
  4352. }
  4353. /**
  4354. * Output the current position to serial
  4355. */
  4356. static void report_current_position() {
  4357. SERIAL_PROTOCOLPGM("X:");
  4358. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4359. SERIAL_PROTOCOLPGM(" Y:");
  4360. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4361. SERIAL_PROTOCOLPGM(" Z:");
  4362. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4363. SERIAL_PROTOCOLPGM(" E:");
  4364. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4365. stepper.report_positions();
  4366. #if ENABLED(SCARA)
  4367. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4368. SERIAL_PROTOCOL(delta[X_AXIS]);
  4369. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4370. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4371. SERIAL_EOL;
  4372. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4373. SERIAL_PROTOCOL(delta[X_AXIS]);
  4374. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4375. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4376. SERIAL_EOL;
  4377. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4378. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4379. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4380. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4381. SERIAL_EOL; SERIAL_EOL;
  4382. #endif
  4383. }
  4384. /**
  4385. * M114: Output current position to serial port
  4386. */
  4387. inline void gcode_M114() { report_current_position(); }
  4388. /**
  4389. * M115: Capabilities string
  4390. */
  4391. inline void gcode_M115() {
  4392. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4393. }
  4394. /**
  4395. * M117: Set LCD Status Message
  4396. */
  4397. inline void gcode_M117() {
  4398. lcd_setstatus(current_command_args);
  4399. }
  4400. /**
  4401. * M119: Output endstop states to serial output
  4402. */
  4403. inline void gcode_M119() { endstops.M119(); }
  4404. /**
  4405. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4406. */
  4407. inline void gcode_M120() { endstops.enable_globally(true); }
  4408. /**
  4409. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4410. */
  4411. inline void gcode_M121() { endstops.enable_globally(false); }
  4412. #if ENABLED(BLINKM)
  4413. /**
  4414. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4415. */
  4416. inline void gcode_M150() {
  4417. SendColors(
  4418. code_seen('R') ? code_value_byte() : 0,
  4419. code_seen('U') ? code_value_byte() : 0,
  4420. code_seen('B') ? code_value_byte() : 0
  4421. );
  4422. }
  4423. #endif // BLINKM
  4424. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4425. /**
  4426. * M155: Send data to a I2C slave device
  4427. *
  4428. * This is a PoC, the formating and arguments for the GCODE will
  4429. * change to be more compatible, the current proposal is:
  4430. *
  4431. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4432. *
  4433. * M155 B<byte-1 value in base 10>
  4434. * M155 B<byte-2 value in base 10>
  4435. * M155 B<byte-3 value in base 10>
  4436. *
  4437. * M155 S1 ; Send the buffered data and reset the buffer
  4438. * M155 R1 ; Reset the buffer without sending data
  4439. *
  4440. */
  4441. inline void gcode_M155() {
  4442. // Set the target address
  4443. if (code_seen('A'))
  4444. i2c.address(code_value_byte());
  4445. // Add a new byte to the buffer
  4446. else if (code_seen('B'))
  4447. i2c.addbyte(code_value_int());
  4448. // Flush the buffer to the bus
  4449. else if (code_seen('S')) i2c.send();
  4450. // Reset and rewind the buffer
  4451. else if (code_seen('R')) i2c.reset();
  4452. }
  4453. /**
  4454. * M156: Request X bytes from I2C slave device
  4455. *
  4456. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4457. */
  4458. inline void gcode_M156() {
  4459. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4460. int bytes = code_seen('B') ? code_value_int() : 1;
  4461. if (addr && bytes > 0 && bytes <= 32) {
  4462. i2c.address(addr);
  4463. i2c.reqbytes(bytes);
  4464. }
  4465. else {
  4466. SERIAL_ERROR_START;
  4467. SERIAL_ERRORLN("Bad i2c request");
  4468. }
  4469. }
  4470. #endif //EXPERIMENTAL_I2CBUS
  4471. /**
  4472. * M200: Set filament diameter and set E axis units to cubic units
  4473. *
  4474. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4475. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4476. */
  4477. inline void gcode_M200() {
  4478. if (get_target_extruder_from_command(200)) return;
  4479. if (code_seen('D')) {
  4480. // setting any extruder filament size disables volumetric on the assumption that
  4481. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4482. // for all extruders
  4483. volumetric_enabled = (code_value_linear_units() != 0.0);
  4484. if (volumetric_enabled) {
  4485. filament_size[target_extruder] = code_value_linear_units();
  4486. // make sure all extruders have some sane value for the filament size
  4487. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4488. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4489. }
  4490. }
  4491. else {
  4492. //reserved for setting filament diameter via UFID or filament measuring device
  4493. return;
  4494. }
  4495. calculate_volumetric_multipliers();
  4496. }
  4497. /**
  4498. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4499. */
  4500. inline void gcode_M201() {
  4501. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4502. if (code_seen(axis_codes[i])) {
  4503. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4504. }
  4505. }
  4506. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4507. planner.reset_acceleration_rates();
  4508. }
  4509. #if 0 // Not used for Sprinter/grbl gen6
  4510. inline void gcode_M202() {
  4511. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4512. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4513. }
  4514. }
  4515. #endif
  4516. /**
  4517. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4518. */
  4519. inline void gcode_M203() {
  4520. for (int8_t i = 0; i < NUM_AXIS; i++)
  4521. if (code_seen(axis_codes[i]))
  4522. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4523. }
  4524. /**
  4525. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4526. *
  4527. * P = Printing moves
  4528. * R = Retract only (no X, Y, Z) moves
  4529. * T = Travel (non printing) moves
  4530. *
  4531. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4532. */
  4533. inline void gcode_M204() {
  4534. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4535. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4536. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4537. SERIAL_EOL;
  4538. }
  4539. if (code_seen('P')) {
  4540. planner.acceleration = code_value_linear_units();
  4541. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4542. SERIAL_EOL;
  4543. }
  4544. if (code_seen('R')) {
  4545. planner.retract_acceleration = code_value_linear_units();
  4546. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4547. SERIAL_EOL;
  4548. }
  4549. if (code_seen('T')) {
  4550. planner.travel_acceleration = code_value_linear_units();
  4551. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4552. SERIAL_EOL;
  4553. }
  4554. }
  4555. /**
  4556. * M205: Set Advanced Settings
  4557. *
  4558. * S = Min Feed Rate (units/s)
  4559. * T = Min Travel Feed Rate (units/s)
  4560. * B = Min Segment Time (µs)
  4561. * X = Max XY Jerk (units/sec^2)
  4562. * Z = Max Z Jerk (units/sec^2)
  4563. * E = Max E Jerk (units/sec^2)
  4564. */
  4565. inline void gcode_M205() {
  4566. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4567. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4568. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4569. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4570. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4571. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4572. }
  4573. /**
  4574. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4575. */
  4576. inline void gcode_M206() {
  4577. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4578. if (code_seen(axis_codes[i]))
  4579. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4580. #if ENABLED(SCARA)
  4581. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4582. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4583. #endif
  4584. SYNC_PLAN_POSITION_KINEMATIC();
  4585. report_current_position();
  4586. }
  4587. #if ENABLED(DELTA)
  4588. /**
  4589. * M665: Set delta configurations
  4590. *
  4591. * L = diagonal rod
  4592. * R = delta radius
  4593. * S = segments per second
  4594. * A = Alpha (Tower 1) diagonal rod trim
  4595. * B = Beta (Tower 2) diagonal rod trim
  4596. * C = Gamma (Tower 3) diagonal rod trim
  4597. */
  4598. inline void gcode_M665() {
  4599. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4600. if (code_seen('R')) delta_radius = code_value_linear_units();
  4601. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4602. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4603. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4604. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4605. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4606. }
  4607. /**
  4608. * M666: Set delta endstop adjustment
  4609. */
  4610. inline void gcode_M666() {
  4611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4612. if (DEBUGGING(LEVELING)) {
  4613. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4614. }
  4615. #endif
  4616. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4617. if (code_seen(axis_codes[i])) {
  4618. endstop_adj[i] = code_value_axis_units(i);
  4619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4620. if (DEBUGGING(LEVELING)) {
  4621. SERIAL_ECHOPGM("endstop_adj[");
  4622. SERIAL_ECHO(axis_codes[i]);
  4623. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4624. SERIAL_EOL;
  4625. }
  4626. #endif
  4627. }
  4628. }
  4629. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4630. if (DEBUGGING(LEVELING)) {
  4631. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4632. }
  4633. #endif
  4634. }
  4635. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4636. /**
  4637. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4638. */
  4639. inline void gcode_M666() {
  4640. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4641. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4642. SERIAL_EOL;
  4643. }
  4644. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4645. #if ENABLED(FWRETRACT)
  4646. /**
  4647. * M207: Set firmware retraction values
  4648. *
  4649. * S[+units] retract_length
  4650. * W[+units] retract_length_swap (multi-extruder)
  4651. * F[units/min] retract_feedrate_mm_s
  4652. * Z[units] retract_zlift
  4653. */
  4654. inline void gcode_M207() {
  4655. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4656. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4657. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4658. #if EXTRUDERS > 1
  4659. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4660. #endif
  4661. }
  4662. /**
  4663. * M208: Set firmware un-retraction values
  4664. *
  4665. * S[+units] retract_recover_length (in addition to M207 S*)
  4666. * W[+units] retract_recover_length_swap (multi-extruder)
  4667. * F[units/min] retract_recover_feedrate_mm_s
  4668. */
  4669. inline void gcode_M208() {
  4670. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4671. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4672. #if EXTRUDERS > 1
  4673. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4674. #endif
  4675. }
  4676. /**
  4677. * M209: Enable automatic retract (M209 S1)
  4678. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4679. */
  4680. inline void gcode_M209() {
  4681. if (code_seen('S')) {
  4682. int t = code_value_int();
  4683. switch (t) {
  4684. case 0:
  4685. autoretract_enabled = false;
  4686. break;
  4687. case 1:
  4688. autoretract_enabled = true;
  4689. break;
  4690. default:
  4691. unknown_command_error();
  4692. return;
  4693. }
  4694. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4695. }
  4696. }
  4697. #endif // FWRETRACT
  4698. #if HOTENDS > 1
  4699. /**
  4700. * M218 - set hotend offset (in linear units)
  4701. *
  4702. * T<tool>
  4703. * X<xoffset>
  4704. * Y<yoffset>
  4705. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4706. */
  4707. inline void gcode_M218() {
  4708. if (get_target_extruder_from_command(218)) return;
  4709. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4710. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4711. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4712. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4713. #endif
  4714. SERIAL_ECHO_START;
  4715. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4716. HOTEND_LOOP() {
  4717. SERIAL_CHAR(' ');
  4718. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4719. SERIAL_CHAR(',');
  4720. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4721. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4722. SERIAL_CHAR(',');
  4723. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4724. #endif
  4725. }
  4726. SERIAL_EOL;
  4727. }
  4728. #endif // HOTENDS > 1
  4729. /**
  4730. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4731. */
  4732. inline void gcode_M220() {
  4733. if (code_seen('S')) feedrate_percentage = code_value_int();
  4734. }
  4735. /**
  4736. * M221: Set extrusion percentage (M221 T0 S95)
  4737. */
  4738. inline void gcode_M221() {
  4739. if (get_target_extruder_from_command(221)) return;
  4740. if (code_seen('S'))
  4741. extruder_multiplier[target_extruder] = code_value_int();
  4742. }
  4743. /**
  4744. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4745. */
  4746. inline void gcode_M226() {
  4747. if (code_seen('P')) {
  4748. int pin_number = code_value_int();
  4749. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4750. if (pin_state >= -1 && pin_state <= 1) {
  4751. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4752. if (sensitive_pins[i] == pin_number) {
  4753. pin_number = -1;
  4754. break;
  4755. }
  4756. }
  4757. if (pin_number > -1) {
  4758. int target = LOW;
  4759. stepper.synchronize();
  4760. pinMode(pin_number, INPUT);
  4761. switch (pin_state) {
  4762. case 1:
  4763. target = HIGH;
  4764. break;
  4765. case 0:
  4766. target = LOW;
  4767. break;
  4768. case -1:
  4769. target = !digitalRead(pin_number);
  4770. break;
  4771. }
  4772. while (digitalRead(pin_number) != target) idle();
  4773. } // pin_number > -1
  4774. } // pin_state -1 0 1
  4775. } // code_seen('P')
  4776. }
  4777. #if HAS_SERVOS
  4778. /**
  4779. * M280: Get or set servo position. P<index> [S<angle>]
  4780. */
  4781. inline void gcode_M280() {
  4782. if (!code_seen('P')) return;
  4783. int servo_index = code_value_int();
  4784. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4785. if (code_seen('S'))
  4786. MOVE_SERVO(servo_index, code_value_int());
  4787. else {
  4788. SERIAL_ECHO_START;
  4789. SERIAL_ECHOPGM(" Servo ");
  4790. SERIAL_ECHO(servo_index);
  4791. SERIAL_ECHOPGM(": ");
  4792. SERIAL_ECHOLN(servo[servo_index].read());
  4793. }
  4794. }
  4795. else {
  4796. SERIAL_ERROR_START;
  4797. SERIAL_ERROR("Servo ");
  4798. SERIAL_ERROR(servo_index);
  4799. SERIAL_ERRORLN(" out of range");
  4800. }
  4801. }
  4802. #endif // HAS_SERVOS
  4803. #if HAS_BUZZER
  4804. /**
  4805. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4806. */
  4807. inline void gcode_M300() {
  4808. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4809. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4810. // Limits the tone duration to 0-5 seconds.
  4811. NOMORE(duration, 5000);
  4812. buzzer.tone(duration, frequency);
  4813. }
  4814. #endif // HAS_BUZZER
  4815. #if ENABLED(PIDTEMP)
  4816. /**
  4817. * M301: Set PID parameters P I D (and optionally C, L)
  4818. *
  4819. * P[float] Kp term
  4820. * I[float] Ki term (unscaled)
  4821. * D[float] Kd term (unscaled)
  4822. *
  4823. * With PID_ADD_EXTRUSION_RATE:
  4824. *
  4825. * C[float] Kc term
  4826. * L[float] LPQ length
  4827. */
  4828. inline void gcode_M301() {
  4829. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4830. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4831. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4832. if (e < HOTENDS) { // catch bad input value
  4833. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4834. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4835. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4836. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4837. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4838. if (code_seen('L')) lpq_len = code_value_float();
  4839. NOMORE(lpq_len, LPQ_MAX_LEN);
  4840. #endif
  4841. thermalManager.updatePID();
  4842. SERIAL_ECHO_START;
  4843. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4844. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4845. SERIAL_ECHO(e);
  4846. #endif // PID_PARAMS_PER_HOTEND
  4847. SERIAL_ECHOPGM(" p:");
  4848. SERIAL_ECHO(PID_PARAM(Kp, e));
  4849. SERIAL_ECHOPGM(" i:");
  4850. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4851. SERIAL_ECHOPGM(" d:");
  4852. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4853. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4854. SERIAL_ECHOPGM(" c:");
  4855. //Kc does not have scaling applied above, or in resetting defaults
  4856. SERIAL_ECHO(PID_PARAM(Kc, e));
  4857. #endif
  4858. SERIAL_EOL;
  4859. }
  4860. else {
  4861. SERIAL_ERROR_START;
  4862. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4863. }
  4864. }
  4865. #endif // PIDTEMP
  4866. #if ENABLED(PIDTEMPBED)
  4867. inline void gcode_M304() {
  4868. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4869. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4870. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4871. thermalManager.updatePID();
  4872. SERIAL_ECHO_START;
  4873. SERIAL_ECHOPGM(" p:");
  4874. SERIAL_ECHO(thermalManager.bedKp);
  4875. SERIAL_ECHOPGM(" i:");
  4876. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4877. SERIAL_ECHOPGM(" d:");
  4878. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4879. }
  4880. #endif // PIDTEMPBED
  4881. #if defined(CHDK) || HAS_PHOTOGRAPH
  4882. /**
  4883. * M240: Trigger a camera by emulating a Canon RC-1
  4884. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4885. */
  4886. inline void gcode_M240() {
  4887. #ifdef CHDK
  4888. OUT_WRITE(CHDK, HIGH);
  4889. chdkHigh = millis();
  4890. chdkActive = true;
  4891. #elif HAS_PHOTOGRAPH
  4892. const uint8_t NUM_PULSES = 16;
  4893. const float PULSE_LENGTH = 0.01524;
  4894. for (int i = 0; i < NUM_PULSES; i++) {
  4895. WRITE(PHOTOGRAPH_PIN, HIGH);
  4896. _delay_ms(PULSE_LENGTH);
  4897. WRITE(PHOTOGRAPH_PIN, LOW);
  4898. _delay_ms(PULSE_LENGTH);
  4899. }
  4900. delay(7.33);
  4901. for (int i = 0; i < NUM_PULSES; i++) {
  4902. WRITE(PHOTOGRAPH_PIN, HIGH);
  4903. _delay_ms(PULSE_LENGTH);
  4904. WRITE(PHOTOGRAPH_PIN, LOW);
  4905. _delay_ms(PULSE_LENGTH);
  4906. }
  4907. #endif // !CHDK && HAS_PHOTOGRAPH
  4908. }
  4909. #endif // CHDK || PHOTOGRAPH_PIN
  4910. #if HAS_LCD_CONTRAST
  4911. /**
  4912. * M250: Read and optionally set the LCD contrast
  4913. */
  4914. inline void gcode_M250() {
  4915. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4916. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4917. SERIAL_PROTOCOL(lcd_contrast);
  4918. SERIAL_EOL;
  4919. }
  4920. #endif // HAS_LCD_CONTRAST
  4921. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4922. /**
  4923. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4924. *
  4925. * S<temperature> sets the minimum extrude temperature
  4926. * P<bool> enables (1) or disables (0) cold extrusion
  4927. *
  4928. * Examples:
  4929. *
  4930. * M302 ; report current cold extrusion state
  4931. * M302 P0 ; enable cold extrusion checking
  4932. * M302 P1 ; disables cold extrusion checking
  4933. * M302 S0 ; always allow extrusion (disables checking)
  4934. * M302 S170 ; only allow extrusion above 170
  4935. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4936. */
  4937. inline void gcode_M302() {
  4938. bool seen_S = code_seen('S');
  4939. if (seen_S) {
  4940. thermalManager.extrude_min_temp = code_value_temp_abs();
  4941. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4942. }
  4943. if (code_seen('P'))
  4944. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4945. else if (!seen_S) {
  4946. // Report current state
  4947. SERIAL_ECHO_START;
  4948. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4949. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4950. SERIAL_ECHOLNPGM("C)");
  4951. }
  4952. }
  4953. #endif // PREVENT_DANGEROUS_EXTRUDE
  4954. /**
  4955. * M303: PID relay autotune
  4956. *
  4957. * S<temperature> sets the target temperature. (default 150C)
  4958. * E<extruder> (-1 for the bed) (default 0)
  4959. * C<cycles>
  4960. * U<bool> with a non-zero value will apply the result to current settings
  4961. */
  4962. inline void gcode_M303() {
  4963. #if HAS_PID_HEATING
  4964. int e = code_seen('E') ? code_value_int() : 0;
  4965. int c = code_seen('C') ? code_value_int() : 5;
  4966. bool u = code_seen('U') && code_value_bool();
  4967. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4968. if (e >= 0 && e < HOTENDS)
  4969. target_extruder = e;
  4970. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4971. thermalManager.PID_autotune(temp, e, c, u);
  4972. KEEPALIVE_STATE(IN_HANDLER);
  4973. #else
  4974. SERIAL_ERROR_START;
  4975. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4976. #endif
  4977. }
  4978. #if ENABLED(SCARA)
  4979. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4980. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4981. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4982. if (IsRunning()) {
  4983. //gcode_get_destination(); // For X Y Z E F
  4984. delta[X_AXIS] = delta_x;
  4985. delta[Y_AXIS] = delta_y;
  4986. forward_kinematics_SCARA(delta);
  4987. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4988. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4989. prepare_move_to_destination();
  4990. //ok_to_send();
  4991. return true;
  4992. }
  4993. return false;
  4994. }
  4995. /**
  4996. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4997. */
  4998. inline bool gcode_M360() {
  4999. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5000. return SCARA_move_to_cal(0, 120);
  5001. }
  5002. /**
  5003. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5004. */
  5005. inline bool gcode_M361() {
  5006. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5007. return SCARA_move_to_cal(90, 130);
  5008. }
  5009. /**
  5010. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5011. */
  5012. inline bool gcode_M362() {
  5013. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5014. return SCARA_move_to_cal(60, 180);
  5015. }
  5016. /**
  5017. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5018. */
  5019. inline bool gcode_M363() {
  5020. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5021. return SCARA_move_to_cal(50, 90);
  5022. }
  5023. /**
  5024. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5025. */
  5026. inline bool gcode_M364() {
  5027. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5028. return SCARA_move_to_cal(45, 135);
  5029. }
  5030. /**
  5031. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5032. */
  5033. inline void gcode_M365() {
  5034. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  5035. if (code_seen(axis_codes[i]))
  5036. axis_scaling[i] = code_value_float();
  5037. }
  5038. #endif // SCARA
  5039. #if ENABLED(EXT_SOLENOID)
  5040. void enable_solenoid(uint8_t num) {
  5041. switch (num) {
  5042. case 0:
  5043. OUT_WRITE(SOL0_PIN, HIGH);
  5044. break;
  5045. #if HAS_SOLENOID_1
  5046. case 1:
  5047. OUT_WRITE(SOL1_PIN, HIGH);
  5048. break;
  5049. #endif
  5050. #if HAS_SOLENOID_2
  5051. case 2:
  5052. OUT_WRITE(SOL2_PIN, HIGH);
  5053. break;
  5054. #endif
  5055. #if HAS_SOLENOID_3
  5056. case 3:
  5057. OUT_WRITE(SOL3_PIN, HIGH);
  5058. break;
  5059. #endif
  5060. default:
  5061. SERIAL_ECHO_START;
  5062. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5063. break;
  5064. }
  5065. }
  5066. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5067. void disable_all_solenoids() {
  5068. OUT_WRITE(SOL0_PIN, LOW);
  5069. OUT_WRITE(SOL1_PIN, LOW);
  5070. OUT_WRITE(SOL2_PIN, LOW);
  5071. OUT_WRITE(SOL3_PIN, LOW);
  5072. }
  5073. /**
  5074. * M380: Enable solenoid on the active extruder
  5075. */
  5076. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5077. /**
  5078. * M381: Disable all solenoids
  5079. */
  5080. inline void gcode_M381() { disable_all_solenoids(); }
  5081. #endif // EXT_SOLENOID
  5082. /**
  5083. * M400: Finish all moves
  5084. */
  5085. inline void gcode_M400() { stepper.synchronize(); }
  5086. #if HAS_BED_PROBE
  5087. /**
  5088. * M401: Engage Z Servo endstop if available
  5089. */
  5090. inline void gcode_M401() { DEPLOY_PROBE(); }
  5091. /**
  5092. * M402: Retract Z Servo endstop if enabled
  5093. */
  5094. inline void gcode_M402() { STOW_PROBE(); }
  5095. #endif // HAS_BED_PROBE
  5096. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5097. /**
  5098. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5099. */
  5100. inline void gcode_M404() {
  5101. if (code_seen('W')) {
  5102. filament_width_nominal = code_value_linear_units();
  5103. }
  5104. else {
  5105. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5106. SERIAL_PROTOCOLLN(filament_width_nominal);
  5107. }
  5108. }
  5109. /**
  5110. * M405: Turn on filament sensor for control
  5111. */
  5112. inline void gcode_M405() {
  5113. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5114. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5115. if (code_seen('D')) meas_delay_cm = code_value_int();
  5116. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5117. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5118. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5119. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5120. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5121. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5122. }
  5123. filament_sensor = true;
  5124. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5125. //SERIAL_PROTOCOL(filament_width_meas);
  5126. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5127. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5128. }
  5129. /**
  5130. * M406: Turn off filament sensor for control
  5131. */
  5132. inline void gcode_M406() { filament_sensor = false; }
  5133. /**
  5134. * M407: Get measured filament diameter on serial output
  5135. */
  5136. inline void gcode_M407() {
  5137. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5138. SERIAL_PROTOCOLLN(filament_width_meas);
  5139. }
  5140. #endif // FILAMENT_WIDTH_SENSOR
  5141. void quickstop_stepper() {
  5142. stepper.quick_stop();
  5143. #if DISABLED(SCARA)
  5144. stepper.synchronize();
  5145. set_current_from_steppers();
  5146. sync_plan_position(); // ...re-apply to planner position
  5147. #endif
  5148. }
  5149. #if ENABLED(MESH_BED_LEVELING)
  5150. /**
  5151. * M420: Enable/Disable Mesh Bed Leveling
  5152. */
  5153. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5154. /**
  5155. * M421: Set a single Mesh Bed Leveling Z coordinate
  5156. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5157. */
  5158. inline void gcode_M421() {
  5159. int8_t px = 0, py = 0;
  5160. float z = 0;
  5161. bool hasX, hasY, hasZ, hasI, hasJ;
  5162. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5163. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5164. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5165. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5166. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5167. if (hasX && hasY && hasZ) {
  5168. if (px >= 0 && py >= 0)
  5169. mbl.set_z(px, py, z);
  5170. else {
  5171. SERIAL_ERROR_START;
  5172. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5173. }
  5174. }
  5175. else if (hasI && hasJ && hasZ) {
  5176. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5177. mbl.set_z(px, py, z);
  5178. else {
  5179. SERIAL_ERROR_START;
  5180. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5181. }
  5182. }
  5183. else {
  5184. SERIAL_ERROR_START;
  5185. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5186. }
  5187. }
  5188. #endif
  5189. /**
  5190. * M428: Set home_offset based on the distance between the
  5191. * current_position and the nearest "reference point."
  5192. * If an axis is past center its endstop position
  5193. * is the reference-point. Otherwise it uses 0. This allows
  5194. * the Z offset to be set near the bed when using a max endstop.
  5195. *
  5196. * M428 can't be used more than 2cm away from 0 or an endstop.
  5197. *
  5198. * Use M206 to set these values directly.
  5199. */
  5200. inline void gcode_M428() {
  5201. bool err = false;
  5202. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5203. if (axis_homed[i]) {
  5204. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5205. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5206. if (diff > -20 && diff < 20) {
  5207. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5208. }
  5209. else {
  5210. SERIAL_ERROR_START;
  5211. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5212. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5213. #if HAS_BUZZER
  5214. buzzer.tone(200, 40);
  5215. #endif
  5216. err = true;
  5217. break;
  5218. }
  5219. }
  5220. }
  5221. if (!err) {
  5222. SYNC_PLAN_POSITION_KINEMATIC();
  5223. report_current_position();
  5224. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5225. #if HAS_BUZZER
  5226. buzzer.tone(200, 659);
  5227. buzzer.tone(200, 698);
  5228. #endif
  5229. }
  5230. }
  5231. /**
  5232. * M500: Store settings in EEPROM
  5233. */
  5234. inline void gcode_M500() {
  5235. Config_StoreSettings();
  5236. }
  5237. /**
  5238. * M501: Read settings from EEPROM
  5239. */
  5240. inline void gcode_M501() {
  5241. Config_RetrieveSettings();
  5242. }
  5243. /**
  5244. * M502: Revert to default settings
  5245. */
  5246. inline void gcode_M502() {
  5247. Config_ResetDefault();
  5248. }
  5249. /**
  5250. * M503: print settings currently in memory
  5251. */
  5252. inline void gcode_M503() {
  5253. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5254. }
  5255. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5256. /**
  5257. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5258. */
  5259. inline void gcode_M540() {
  5260. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5261. }
  5262. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5263. #if HAS_BED_PROBE
  5264. inline void gcode_M851() {
  5265. SERIAL_ECHO_START;
  5266. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5267. SERIAL_CHAR(' ');
  5268. if (code_seen('Z')) {
  5269. float value = code_value_axis_units(Z_AXIS);
  5270. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5271. zprobe_zoffset = value;
  5272. SERIAL_ECHO(zprobe_zoffset);
  5273. }
  5274. else {
  5275. SERIAL_ECHOPGM(MSG_Z_MIN);
  5276. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5277. SERIAL_CHAR(' ');
  5278. SERIAL_ECHOPGM(MSG_Z_MAX);
  5279. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5280. }
  5281. }
  5282. else {
  5283. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5284. }
  5285. SERIAL_EOL;
  5286. }
  5287. #endif // HAS_BED_PROBE
  5288. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5289. /**
  5290. * M600: Pause for filament change
  5291. *
  5292. * E[distance] - Retract the filament this far (negative value)
  5293. * Z[distance] - Move the Z axis by this distance
  5294. * X[position] - Move to this X position, with Y
  5295. * Y[position] - Move to this Y position, with X
  5296. * L[distance] - Retract distance for removal (manual reload)
  5297. *
  5298. * Default values are used for omitted arguments.
  5299. *
  5300. */
  5301. inline void gcode_M600() {
  5302. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5303. SERIAL_ERROR_START;
  5304. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5305. return;
  5306. }
  5307. // Show initial message and wait for synchronize steppers
  5308. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5309. stepper.synchronize();
  5310. float lastpos[NUM_AXIS];
  5311. // Save current position of all axes
  5312. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5313. lastpos[i] = destination[i] = current_position[i];
  5314. // Define runplan for move axes
  5315. #if ENABLED(DELTA)
  5316. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5317. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5318. #else
  5319. #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
  5320. #endif
  5321. KEEPALIVE_STATE(IN_HANDLER);
  5322. // Initial retract before move to filament change position
  5323. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5324. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5325. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5326. #endif
  5327. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5328. // Lift Z axis
  5329. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5330. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5331. FILAMENT_CHANGE_Z_ADD
  5332. #else
  5333. 0
  5334. #endif
  5335. ;
  5336. if (z_lift > 0) {
  5337. destination[Z_AXIS] += z_lift;
  5338. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5339. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5340. }
  5341. // Move XY axes to filament exchange position
  5342. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5343. #ifdef FILAMENT_CHANGE_X_POS
  5344. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5345. #endif
  5346. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5347. #ifdef FILAMENT_CHANGE_Y_POS
  5348. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5349. #endif
  5350. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5351. stepper.synchronize();
  5352. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5353. // Unload filament
  5354. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5355. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5356. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5357. #endif
  5358. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5359. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5360. stepper.synchronize();
  5361. disable_e0();
  5362. disable_e1();
  5363. disable_e2();
  5364. disable_e3();
  5365. delay(100);
  5366. #if HAS_BUZZER
  5367. millis_t next_tick = 0;
  5368. #endif
  5369. // Wait for filament insert by user and press button
  5370. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5371. while (!lcd_clicked()) {
  5372. #if HAS_BUZZER
  5373. millis_t ms = millis();
  5374. if (ms >= next_tick) {
  5375. buzzer.tone(300, 2000);
  5376. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5377. }
  5378. #endif
  5379. idle(true);
  5380. }
  5381. delay(100);
  5382. while (lcd_clicked()) idle(true);
  5383. delay(100);
  5384. // Show load message
  5385. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5386. // Load filament
  5387. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5388. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5389. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5390. #endif
  5391. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5392. stepper.synchronize();
  5393. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5394. do {
  5395. // Extrude filament to get into hotend
  5396. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5397. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5398. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5399. stepper.synchronize();
  5400. // Ask user if more filament should be extruded
  5401. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5402. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5403. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5404. KEEPALIVE_STATE(IN_HANDLER);
  5405. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5406. #endif
  5407. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5408. KEEPALIVE_STATE(IN_HANDLER);
  5409. // Set extruder to saved position
  5410. current_position[E_AXIS] = lastpos[E_AXIS];
  5411. destination[E_AXIS] = lastpos[E_AXIS];
  5412. planner.set_e_position_mm(current_position[E_AXIS]);
  5413. #if ENABLED(DELTA)
  5414. // Move XYZ to starting position, then E
  5415. inverse_kinematics(lastpos);
  5416. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5417. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5418. #else
  5419. // Move XY to starting position, then Z, then E
  5420. destination[X_AXIS] = lastpos[X_AXIS];
  5421. destination[Y_AXIS] = lastpos[Y_AXIS];
  5422. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5423. destination[Z_AXIS] = lastpos[Z_AXIS];
  5424. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5425. #endif
  5426. stepper.synchronize();
  5427. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5428. filament_ran_out = false;
  5429. #endif
  5430. // Show status screen
  5431. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5432. }
  5433. #endif // FILAMENT_CHANGE_FEATURE
  5434. #if ENABLED(DUAL_X_CARRIAGE)
  5435. /**
  5436. * M605: Set dual x-carriage movement mode
  5437. *
  5438. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5439. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5440. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5441. * units x-offset and an optional differential hotend temperature of
  5442. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5443. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5444. *
  5445. * Note: the X axis should be homed after changing dual x-carriage mode.
  5446. */
  5447. inline void gcode_M605() {
  5448. stepper.synchronize();
  5449. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5450. switch (dual_x_carriage_mode) {
  5451. case DXC_DUPLICATION_MODE:
  5452. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5453. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5454. SERIAL_ECHO_START;
  5455. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5456. SERIAL_CHAR(' ');
  5457. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5458. SERIAL_CHAR(',');
  5459. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5460. SERIAL_CHAR(' ');
  5461. SERIAL_ECHO(duplicate_extruder_x_offset);
  5462. SERIAL_CHAR(',');
  5463. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5464. break;
  5465. case DXC_FULL_CONTROL_MODE:
  5466. case DXC_AUTO_PARK_MODE:
  5467. break;
  5468. default:
  5469. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5470. break;
  5471. }
  5472. active_extruder_parked = false;
  5473. extruder_duplication_enabled = false;
  5474. delayed_move_time = 0;
  5475. }
  5476. #endif // DUAL_X_CARRIAGE
  5477. #if ENABLED(LIN_ADVANCE)
  5478. /**
  5479. * M905: Set advance factor
  5480. */
  5481. inline void gcode_M905() {
  5482. stepper.synchronize();
  5483. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5484. }
  5485. #endif
  5486. /**
  5487. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5488. */
  5489. inline void gcode_M907() {
  5490. #if HAS_DIGIPOTSS
  5491. for (int i = 0; i < NUM_AXIS; i++)
  5492. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5493. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5494. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5495. #endif
  5496. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5497. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5498. #endif
  5499. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5500. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5501. #endif
  5502. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5503. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5504. #endif
  5505. #if ENABLED(DIGIPOT_I2C)
  5506. // this one uses actual amps in floating point
  5507. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5508. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5509. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5510. #endif
  5511. #if ENABLED(DAC_STEPPER_CURRENT)
  5512. if (code_seen('S')) {
  5513. float dac_percent = code_value_float();
  5514. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5515. }
  5516. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5517. #endif
  5518. }
  5519. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5520. /**
  5521. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5522. */
  5523. inline void gcode_M908() {
  5524. #if HAS_DIGIPOTSS
  5525. stepper.digitalPotWrite(
  5526. code_seen('P') ? code_value_int() : 0,
  5527. code_seen('S') ? code_value_int() : 0
  5528. );
  5529. #endif
  5530. #ifdef DAC_STEPPER_CURRENT
  5531. dac_current_raw(
  5532. code_seen('P') ? code_value_byte() : -1,
  5533. code_seen('S') ? code_value_ushort() : 0
  5534. );
  5535. #endif
  5536. }
  5537. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5538. inline void gcode_M909() { dac_print_values(); }
  5539. inline void gcode_M910() { dac_commit_eeprom(); }
  5540. #endif
  5541. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5542. #if HAS_MICROSTEPS
  5543. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5544. inline void gcode_M350() {
  5545. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5546. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5547. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5548. stepper.microstep_readings();
  5549. }
  5550. /**
  5551. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5552. * S# determines MS1 or MS2, X# sets the pin high/low.
  5553. */
  5554. inline void gcode_M351() {
  5555. if (code_seen('S')) switch (code_value_byte()) {
  5556. case 1:
  5557. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5558. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5559. break;
  5560. case 2:
  5561. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5562. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5563. break;
  5564. }
  5565. stepper.microstep_readings();
  5566. }
  5567. #endif // HAS_MICROSTEPS
  5568. #if ENABLED(MIXING_EXTRUDER)
  5569. /**
  5570. * M163: Set a single mix factor for a mixing extruder
  5571. * This is called "weight" by some systems.
  5572. *
  5573. * S[index] The channel index to set
  5574. * P[float] The mix value
  5575. *
  5576. */
  5577. inline void gcode_M163() {
  5578. int mix_index = code_seen('S') ? code_value_int() : 0;
  5579. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5580. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5581. }
  5582. #if MIXING_VIRTUAL_TOOLS > 1
  5583. /**
  5584. * M164: Store the current mix factors as a virtual tool.
  5585. *
  5586. * S[index] The virtual tool to store
  5587. *
  5588. */
  5589. inline void gcode_M164() {
  5590. int tool_index = code_seen('S') ? code_value_int() : 0;
  5591. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5592. normalize_mix();
  5593. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5594. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5595. }
  5596. }
  5597. #endif
  5598. #if ENABLED(DIRECT_MIXING_IN_G1)
  5599. /**
  5600. * M165: Set multiple mix factors for a mixing extruder.
  5601. * Factors that are left out will be set to 0.
  5602. * All factors together must add up to 1.0.
  5603. *
  5604. * A[factor] Mix factor for extruder stepper 1
  5605. * B[factor] Mix factor for extruder stepper 2
  5606. * C[factor] Mix factor for extruder stepper 3
  5607. * D[factor] Mix factor for extruder stepper 4
  5608. * H[factor] Mix factor for extruder stepper 5
  5609. * I[factor] Mix factor for extruder stepper 6
  5610. *
  5611. */
  5612. inline void gcode_M165() { gcode_get_mix(); }
  5613. #endif
  5614. #endif // MIXING_EXTRUDER
  5615. /**
  5616. * M999: Restart after being stopped
  5617. *
  5618. * Default behaviour is to flush the serial buffer and request
  5619. * a resend to the host starting on the last N line received.
  5620. *
  5621. * Sending "M999 S1" will resume printing without flushing the
  5622. * existing command buffer.
  5623. *
  5624. */
  5625. inline void gcode_M999() {
  5626. Running = true;
  5627. lcd_reset_alert_level();
  5628. if (code_seen('S') && code_value_bool()) return;
  5629. // gcode_LastN = Stopped_gcode_LastN;
  5630. FlushSerialRequestResend();
  5631. }
  5632. #if ENABLED(SWITCHING_EXTRUDER)
  5633. inline void move_extruder_servo(uint8_t e) {
  5634. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5635. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5636. }
  5637. #endif
  5638. inline void invalid_extruder_error(const uint8_t &e) {
  5639. SERIAL_ECHO_START;
  5640. SERIAL_CHAR('T');
  5641. SERIAL_PROTOCOL_F(e, DEC);
  5642. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5643. }
  5644. void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool no_move/*=false*/) {
  5645. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5646. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5647. invalid_extruder_error(tmp_extruder);
  5648. return;
  5649. }
  5650. // T0-Tnnn: Switch virtual tool by changing the mix
  5651. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5652. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5653. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5654. #if HOTENDS > 1
  5655. if (tmp_extruder >= EXTRUDERS) {
  5656. invalid_extruder_error(tmp_extruder);
  5657. return;
  5658. }
  5659. float old_feedrate_mm_m = feedrate_mm_m;
  5660. feedrate_mm_m = fr_mm_m > 0.0 ? (old_feedrate_mm_m = fr_mm_m) : XY_PROBE_FEEDRATE_MM_M;
  5661. if (tmp_extruder != active_extruder) {
  5662. if (!no_move && axis_unhomed_error(true, true, true)) {
  5663. SERIAL_ECHOLNPGM("No move on toolchange");
  5664. no_move = true;
  5665. }
  5666. // Save current position to destination, for use later
  5667. set_destination_to_current();
  5668. #if ENABLED(DUAL_X_CARRIAGE)
  5669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5670. if (DEBUGGING(LEVELING)) {
  5671. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5672. switch (dual_x_carriage_mode) {
  5673. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5674. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5675. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5676. }
  5677. }
  5678. #endif
  5679. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5680. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5681. ) {
  5682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5683. if (DEBUGGING(LEVELING)) {
  5684. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5685. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5686. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5687. }
  5688. #endif
  5689. // Park old head: 1) raise 2) move to park position 3) lower
  5690. for (uint8_t i = 0; i < 3; i++)
  5691. planner.buffer_line(
  5692. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5693. current_position[Y_AXIS],
  5694. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5695. current_position[E_AXIS],
  5696. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5697. active_extruder
  5698. );
  5699. stepper.synchronize();
  5700. }
  5701. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5702. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5703. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5704. active_extruder = tmp_extruder;
  5705. // This function resets the max/min values - the current position may be overwritten below.
  5706. set_axis_is_at_home(X_AXIS);
  5707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5708. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5709. #endif
  5710. switch (dual_x_carriage_mode) {
  5711. case DXC_FULL_CONTROL_MODE:
  5712. current_position[X_AXIS] = inactive_extruder_x_pos;
  5713. inactive_extruder_x_pos = destination[X_AXIS];
  5714. break;
  5715. case DXC_DUPLICATION_MODE:
  5716. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5717. if (active_extruder_parked)
  5718. current_position[X_AXIS] = inactive_extruder_x_pos;
  5719. else
  5720. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5721. inactive_extruder_x_pos = destination[X_AXIS];
  5722. extruder_duplication_enabled = false;
  5723. break;
  5724. default:
  5725. // record raised toolhead position for use by unpark
  5726. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5727. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5728. active_extruder_parked = true;
  5729. delayed_move_time = 0;
  5730. break;
  5731. }
  5732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5733. if (DEBUGGING(LEVELING)) {
  5734. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5735. SERIAL_EOL;
  5736. DEBUG_POS("New extruder (parked)", current_position);
  5737. }
  5738. #endif
  5739. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5740. #else // !DUAL_X_CARRIAGE
  5741. #if ENABLED(SWITCHING_EXTRUDER)
  5742. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5743. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5744. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5745. // Always raise by some amount
  5746. planner.buffer_line(
  5747. current_position[X_AXIS],
  5748. current_position[Y_AXIS],
  5749. current_position[Z_AXIS] + z_raise,
  5750. current_position[E_AXIS],
  5751. planner.max_feedrate_mm_s[Z_AXIS],
  5752. active_extruder
  5753. );
  5754. stepper.synchronize();
  5755. move_extruder_servo(active_extruder);
  5756. delay(500);
  5757. // Move back down, if needed
  5758. if (z_raise != z_diff) {
  5759. planner.buffer_line(
  5760. current_position[X_AXIS],
  5761. current_position[Y_AXIS],
  5762. current_position[Z_AXIS] + z_diff,
  5763. current_position[E_AXIS],
  5764. planner.max_feedrate_mm_s[Z_AXIS],
  5765. active_extruder
  5766. );
  5767. stepper.synchronize();
  5768. }
  5769. #endif
  5770. /**
  5771. * Set current_position to the position of the new nozzle.
  5772. * Offsets are based on linear distance, so we need to get
  5773. * the resulting position in coordinate space.
  5774. *
  5775. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5776. * - With mesh leveling, update Z for the new position
  5777. * - Otherwise, just use the raw linear distance
  5778. *
  5779. * Software endstops are altered here too. Consider a case where:
  5780. * E0 at X=0 ... E1 at X=10
  5781. * When we switch to E1 now X=10, but E1 can't move left.
  5782. * To express this we apply the change in XY to the software endstops.
  5783. * E1 can move farther right than E0, so the right limit is extended.
  5784. *
  5785. * Note that we don't adjust the Z software endstops. Why not?
  5786. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5787. * because the bed is 1mm lower at the new position. As long as
  5788. * the first nozzle is out of the way, the carriage should be
  5789. * allowed to move 1mm lower. This technically "breaks" the
  5790. * Z software endstop. But this is technically correct (and
  5791. * there is no viable alternative).
  5792. */
  5793. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5794. // Offset extruder, make sure to apply the bed level rotation matrix
  5795. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5796. hotend_offset[Y_AXIS][tmp_extruder],
  5797. 0),
  5798. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5799. hotend_offset[Y_AXIS][active_extruder],
  5800. 0),
  5801. offset_vec = tmp_offset_vec - act_offset_vec;
  5802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5803. if (DEBUGGING(LEVELING)) {
  5804. tmp_offset_vec.debug("tmp_offset_vec");
  5805. act_offset_vec.debug("act_offset_vec");
  5806. offset_vec.debug("offset_vec (BEFORE)");
  5807. }
  5808. #endif
  5809. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5811. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5812. #endif
  5813. // Adjustments to the current position
  5814. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5815. current_position[Z_AXIS] += offset_vec.z;
  5816. #else // !AUTO_BED_LEVELING_FEATURE
  5817. float xydiff[2] = {
  5818. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5819. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5820. };
  5821. #if ENABLED(MESH_BED_LEVELING)
  5822. if (mbl.active()) {
  5823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5824. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5825. #endif
  5826. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5827. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5828. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5830. if (DEBUGGING(LEVELING)) {
  5831. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5832. SERIAL_EOL;
  5833. }
  5834. #endif
  5835. }
  5836. #endif // MESH_BED_LEVELING
  5837. #endif // !AUTO_BED_LEVELING_FEATURE
  5838. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5839. if (DEBUGGING(LEVELING)) {
  5840. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5841. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5842. SERIAL_ECHOLNPGM(" }");
  5843. }
  5844. #endif
  5845. // The newly-selected extruder XY is actually at...
  5846. current_position[X_AXIS] += xydiff[X_AXIS];
  5847. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5848. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5849. position_shift[i] += xydiff[i];
  5850. update_software_endstops((AxisEnum)i);
  5851. }
  5852. // Set the new active extruder
  5853. active_extruder = tmp_extruder;
  5854. #endif // !DUAL_X_CARRIAGE
  5855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5856. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5857. #endif
  5858. // Tell the planner the new "current position"
  5859. SYNC_PLAN_POSITION_KINEMATIC();
  5860. // Move to the "old position" (move the extruder into place)
  5861. if (!no_move && IsRunning()) {
  5862. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5863. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5864. #endif
  5865. prepare_move_to_destination();
  5866. }
  5867. } // (tmp_extruder != active_extruder)
  5868. stepper.synchronize();
  5869. #if ENABLED(EXT_SOLENOID)
  5870. disable_all_solenoids();
  5871. enable_solenoid_on_active_extruder();
  5872. #endif // EXT_SOLENOID
  5873. feedrate_mm_m = old_feedrate_mm_m;
  5874. #else // HOTENDS <= 1
  5875. // Set the new active extruder
  5876. active_extruder = tmp_extruder;
  5877. UNUSED(fr_mm_m);
  5878. UNUSED(no_move);
  5879. #endif // HOTENDS <= 1
  5880. SERIAL_ECHO_START;
  5881. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5882. SERIAL_PROTOCOLLN((int)active_extruder);
  5883. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5884. }
  5885. /**
  5886. * T0-T3: Switch tool, usually switching extruders
  5887. *
  5888. * F[units/min] Set the movement feedrate
  5889. * S1 Don't move the tool in XY after change
  5890. */
  5891. inline void gcode_T(uint8_t tmp_extruder) {
  5892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5893. if (DEBUGGING(LEVELING)) {
  5894. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5895. SERIAL_ECHOLNPGM(")");
  5896. DEBUG_POS("BEFORE", current_position);
  5897. }
  5898. #endif
  5899. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5900. tool_change(tmp_extruder);
  5901. #elif HOTENDS > 1
  5902. tool_change(
  5903. tmp_extruder,
  5904. code_seen('F') ? code_value_axis_units(X_AXIS) : 0.0,
  5905. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5906. );
  5907. #endif
  5908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5909. if (DEBUGGING(LEVELING)) {
  5910. DEBUG_POS("AFTER", current_position);
  5911. SERIAL_ECHOLNPGM("<<< gcode_T");
  5912. }
  5913. #endif
  5914. }
  5915. /**
  5916. * Process a single command and dispatch it to its handler
  5917. * This is called from the main loop()
  5918. */
  5919. void process_next_command() {
  5920. current_command = command_queue[cmd_queue_index_r];
  5921. if (DEBUGGING(ECHO)) {
  5922. SERIAL_ECHO_START;
  5923. SERIAL_ECHOLN(current_command);
  5924. }
  5925. // Sanitize the current command:
  5926. // - Skip leading spaces
  5927. // - Bypass N[-0-9][0-9]*[ ]*
  5928. // - Overwrite * with nul to mark the end
  5929. while (*current_command == ' ') ++current_command;
  5930. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5931. current_command += 2; // skip N[-0-9]
  5932. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5933. while (*current_command == ' ') ++current_command; // skip [ ]*
  5934. }
  5935. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5936. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5937. char *cmd_ptr = current_command;
  5938. // Get the command code, which must be G, M, or T
  5939. char command_code = *cmd_ptr++;
  5940. // Skip spaces to get the numeric part
  5941. while (*cmd_ptr == ' ') cmd_ptr++;
  5942. uint16_t codenum = 0; // define ahead of goto
  5943. // Bail early if there's no code
  5944. bool code_is_good = NUMERIC(*cmd_ptr);
  5945. if (!code_is_good) goto ExitUnknownCommand;
  5946. // Get and skip the code number
  5947. do {
  5948. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5949. cmd_ptr++;
  5950. } while (NUMERIC(*cmd_ptr));
  5951. // Skip all spaces to get to the first argument, or nul
  5952. while (*cmd_ptr == ' ') cmd_ptr++;
  5953. // The command's arguments (if any) start here, for sure!
  5954. current_command_args = cmd_ptr;
  5955. KEEPALIVE_STATE(IN_HANDLER);
  5956. // Handle a known G, M, or T
  5957. switch (command_code) {
  5958. case 'G': switch (codenum) {
  5959. // G0, G1
  5960. case 0:
  5961. case 1:
  5962. gcode_G0_G1();
  5963. break;
  5964. // G2, G3
  5965. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5966. case 2: // G2 - CW ARC
  5967. case 3: // G3 - CCW ARC
  5968. gcode_G2_G3(codenum == 2);
  5969. break;
  5970. #endif
  5971. // G4 Dwell
  5972. case 4:
  5973. gcode_G4();
  5974. break;
  5975. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5976. // G5
  5977. case 5: // G5 - Cubic B_spline
  5978. gcode_G5();
  5979. break;
  5980. #endif // BEZIER_CURVE_SUPPORT
  5981. #if ENABLED(FWRETRACT)
  5982. case 10: // G10: retract
  5983. case 11: // G11: retract_recover
  5984. gcode_G10_G11(codenum == 10);
  5985. break;
  5986. #endif // FWRETRACT
  5987. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5988. case 12:
  5989. gcode_G12(); // G12: Nozzle Clean
  5990. break;
  5991. #endif // NOZZLE_CLEAN_FEATURE
  5992. #if ENABLED(INCH_MODE_SUPPORT)
  5993. case 20: //G20: Inch Mode
  5994. gcode_G20();
  5995. break;
  5996. case 21: //G21: MM Mode
  5997. gcode_G21();
  5998. break;
  5999. #endif // INCH_MODE_SUPPORT
  6000. #if ENABLED(NOZZLE_PARK_FEATURE)
  6001. case 27: // G27: Nozzle Park
  6002. gcode_G27();
  6003. break;
  6004. #endif // NOZZLE_PARK_FEATURE
  6005. case 28: // G28: Home all axes, one at a time
  6006. gcode_G28();
  6007. break;
  6008. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6009. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6010. gcode_G29();
  6011. break;
  6012. #endif // AUTO_BED_LEVELING_FEATURE
  6013. #if HAS_BED_PROBE
  6014. case 30: // G30 Single Z probe
  6015. gcode_G30();
  6016. break;
  6017. #if ENABLED(Z_PROBE_SLED)
  6018. case 31: // G31: dock the sled
  6019. gcode_G31();
  6020. break;
  6021. case 32: // G32: undock the sled
  6022. gcode_G32();
  6023. break;
  6024. #endif // Z_PROBE_SLED
  6025. #endif // HAS_BED_PROBE
  6026. case 90: // G90
  6027. relative_mode = false;
  6028. break;
  6029. case 91: // G91
  6030. relative_mode = true;
  6031. break;
  6032. case 92: // G92
  6033. gcode_G92();
  6034. break;
  6035. }
  6036. break;
  6037. case 'M': switch (codenum) {
  6038. #if ENABLED(ULTIPANEL)
  6039. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6040. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6041. gcode_M0_M1();
  6042. break;
  6043. #endif // ULTIPANEL
  6044. case 17:
  6045. gcode_M17();
  6046. break;
  6047. #if ENABLED(SDSUPPORT)
  6048. case 20: // M20 - list SD card
  6049. gcode_M20(); break;
  6050. case 21: // M21 - init SD card
  6051. gcode_M21(); break;
  6052. case 22: //M22 - release SD card
  6053. gcode_M22(); break;
  6054. case 23: //M23 - Select file
  6055. gcode_M23(); break;
  6056. case 24: //M24 - Start SD print
  6057. gcode_M24(); break;
  6058. case 25: //M25 - Pause SD print
  6059. gcode_M25(); break;
  6060. case 26: //M26 - Set SD index
  6061. gcode_M26(); break;
  6062. case 27: //M27 - Get SD status
  6063. gcode_M27(); break;
  6064. case 28: //M28 - Start SD write
  6065. gcode_M28(); break;
  6066. case 29: //M29 - Stop SD write
  6067. gcode_M29(); break;
  6068. case 30: //M30 <filename> Delete File
  6069. gcode_M30(); break;
  6070. case 32: //M32 - Select file and start SD print
  6071. gcode_M32(); break;
  6072. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6073. case 33: //M33 - Get the long full path to a file or folder
  6074. gcode_M33(); break;
  6075. #endif // LONG_FILENAME_HOST_SUPPORT
  6076. case 928: //M928 - Start SD write
  6077. gcode_M928(); break;
  6078. #endif //SDSUPPORT
  6079. case 31: //M31 take time since the start of the SD print or an M109 command
  6080. gcode_M31();
  6081. break;
  6082. case 42: //M42 -Change pin status via gcode
  6083. gcode_M42();
  6084. break;
  6085. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6086. case 48: // M48 Z probe repeatability
  6087. gcode_M48();
  6088. break;
  6089. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6090. case 75: // Start print timer
  6091. gcode_M75();
  6092. break;
  6093. case 76: // Pause print timer
  6094. gcode_M76();
  6095. break;
  6096. case 77: // Stop print timer
  6097. gcode_M77();
  6098. break;
  6099. #if ENABLED(PRINTCOUNTER)
  6100. case 78: // Show print statistics
  6101. gcode_M78();
  6102. break;
  6103. #endif
  6104. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6105. case 100:
  6106. gcode_M100();
  6107. break;
  6108. #endif
  6109. case 104: // M104
  6110. gcode_M104();
  6111. break;
  6112. case 110: // M110: Set Current Line Number
  6113. gcode_M110();
  6114. break;
  6115. case 111: // M111: Set debug level
  6116. gcode_M111();
  6117. break;
  6118. #if DISABLED(EMERGENCY_PARSER)
  6119. case 108: // M108: Cancel Waiting
  6120. gcode_M108();
  6121. break;
  6122. case 112: // M112: Emergency Stop
  6123. gcode_M112();
  6124. break;
  6125. case 410: // M410 quickstop - Abort all the planned moves.
  6126. gcode_M410();
  6127. break;
  6128. #endif
  6129. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6130. case 113: // M113: Set Host Keepalive interval
  6131. gcode_M113();
  6132. break;
  6133. #endif
  6134. case 140: // M140: Set bed temp
  6135. gcode_M140();
  6136. break;
  6137. case 105: // M105: Read current temperature
  6138. gcode_M105();
  6139. KEEPALIVE_STATE(NOT_BUSY);
  6140. return; // "ok" already printed
  6141. case 109: // M109: Wait for temperature
  6142. gcode_M109();
  6143. break;
  6144. #if HAS_TEMP_BED
  6145. case 190: // M190: Wait for bed heater to reach target
  6146. gcode_M190();
  6147. break;
  6148. #endif // HAS_TEMP_BED
  6149. #if FAN_COUNT > 0
  6150. case 106: // M106: Fan On
  6151. gcode_M106();
  6152. break;
  6153. case 107: // M107: Fan Off
  6154. gcode_M107();
  6155. break;
  6156. #endif // FAN_COUNT > 0
  6157. #if ENABLED(BARICUDA)
  6158. // PWM for HEATER_1_PIN
  6159. #if HAS_HEATER_1
  6160. case 126: // M126: valve open
  6161. gcode_M126();
  6162. break;
  6163. case 127: // M127: valve closed
  6164. gcode_M127();
  6165. break;
  6166. #endif // HAS_HEATER_1
  6167. // PWM for HEATER_2_PIN
  6168. #if HAS_HEATER_2
  6169. case 128: // M128: valve open
  6170. gcode_M128();
  6171. break;
  6172. case 129: // M129: valve closed
  6173. gcode_M129();
  6174. break;
  6175. #endif // HAS_HEATER_2
  6176. #endif // BARICUDA
  6177. #if HAS_POWER_SWITCH
  6178. case 80: // M80: Turn on Power Supply
  6179. gcode_M80();
  6180. break;
  6181. #endif // HAS_POWER_SWITCH
  6182. case 81: // M81: Turn off Power, including Power Supply, if possible
  6183. gcode_M81();
  6184. break;
  6185. case 82:
  6186. gcode_M82();
  6187. break;
  6188. case 83:
  6189. gcode_M83();
  6190. break;
  6191. case 18: // (for compatibility)
  6192. case 84: // M84
  6193. gcode_M18_M84();
  6194. break;
  6195. case 85: // M85
  6196. gcode_M85();
  6197. break;
  6198. case 92: // M92: Set the steps-per-unit for one or more axes
  6199. gcode_M92();
  6200. break;
  6201. case 115: // M115: Report capabilities
  6202. gcode_M115();
  6203. break;
  6204. case 117: // M117: Set LCD message text, if possible
  6205. gcode_M117();
  6206. break;
  6207. case 114: // M114: Report current position
  6208. gcode_M114();
  6209. break;
  6210. case 120: // M120: Enable endstops
  6211. gcode_M120();
  6212. break;
  6213. case 121: // M121: Disable endstops
  6214. gcode_M121();
  6215. break;
  6216. case 119: // M119: Report endstop states
  6217. gcode_M119();
  6218. break;
  6219. #if ENABLED(ULTIPANEL)
  6220. case 145: // M145: Set material heatup parameters
  6221. gcode_M145();
  6222. break;
  6223. #endif
  6224. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6225. case 149:
  6226. gcode_M149();
  6227. break;
  6228. #endif
  6229. #if ENABLED(BLINKM)
  6230. case 150: // M150
  6231. gcode_M150();
  6232. break;
  6233. #endif //BLINKM
  6234. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6235. case 155:
  6236. gcode_M155();
  6237. break;
  6238. case 156:
  6239. gcode_M156();
  6240. break;
  6241. #endif //EXPERIMENTAL_I2CBUS
  6242. #if ENABLED(MIXING_EXTRUDER)
  6243. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6244. gcode_M163();
  6245. break;
  6246. #if MIXING_VIRTUAL_TOOLS > 1
  6247. case 164: // M164 S<int> save current mix as a virtual extruder
  6248. gcode_M164();
  6249. break;
  6250. #endif
  6251. #if ENABLED(DIRECT_MIXING_IN_G1)
  6252. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6253. gcode_M165();
  6254. break;
  6255. #endif
  6256. #endif
  6257. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6258. gcode_M200();
  6259. break;
  6260. case 201: // M201
  6261. gcode_M201();
  6262. break;
  6263. #if 0 // Not used for Sprinter/grbl gen6
  6264. case 202: // M202
  6265. gcode_M202();
  6266. break;
  6267. #endif
  6268. case 203: // M203 max feedrate units/sec
  6269. gcode_M203();
  6270. break;
  6271. case 204: // M204 acclereration S normal moves T filmanent only moves
  6272. gcode_M204();
  6273. break;
  6274. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6275. gcode_M205();
  6276. break;
  6277. case 206: // M206 additional homing offset
  6278. gcode_M206();
  6279. break;
  6280. #if ENABLED(DELTA)
  6281. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6282. gcode_M665();
  6283. break;
  6284. #endif
  6285. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6286. case 666: // M666 set delta / dual endstop adjustment
  6287. gcode_M666();
  6288. break;
  6289. #endif
  6290. #if ENABLED(FWRETRACT)
  6291. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6292. gcode_M207();
  6293. break;
  6294. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6295. gcode_M208();
  6296. break;
  6297. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6298. gcode_M209();
  6299. break;
  6300. #endif // FWRETRACT
  6301. #if HOTENDS > 1
  6302. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6303. gcode_M218();
  6304. break;
  6305. #endif
  6306. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6307. gcode_M220();
  6308. break;
  6309. case 221: // M221 - Set Flow Percentage: S<percent>
  6310. gcode_M221();
  6311. break;
  6312. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6313. gcode_M226();
  6314. break;
  6315. #if HAS_SERVOS
  6316. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6317. gcode_M280();
  6318. break;
  6319. #endif // HAS_SERVOS
  6320. #if HAS_BUZZER
  6321. case 300: // M300 - Play beep tone
  6322. gcode_M300();
  6323. break;
  6324. #endif // HAS_BUZZER
  6325. #if ENABLED(PIDTEMP)
  6326. case 301: // M301
  6327. gcode_M301();
  6328. break;
  6329. #endif // PIDTEMP
  6330. #if ENABLED(PIDTEMPBED)
  6331. case 304: // M304
  6332. gcode_M304();
  6333. break;
  6334. #endif // PIDTEMPBED
  6335. #if defined(CHDK) || HAS_PHOTOGRAPH
  6336. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6337. gcode_M240();
  6338. break;
  6339. #endif // CHDK || PHOTOGRAPH_PIN
  6340. #if HAS_LCD_CONTRAST
  6341. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6342. gcode_M250();
  6343. break;
  6344. #endif // HAS_LCD_CONTRAST
  6345. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6346. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6347. gcode_M302();
  6348. break;
  6349. #endif // PREVENT_DANGEROUS_EXTRUDE
  6350. case 303: // M303 PID autotune
  6351. gcode_M303();
  6352. break;
  6353. #if ENABLED(SCARA)
  6354. case 360: // M360 SCARA Theta pos1
  6355. if (gcode_M360()) return;
  6356. break;
  6357. case 361: // M361 SCARA Theta pos2
  6358. if (gcode_M361()) return;
  6359. break;
  6360. case 362: // M362 SCARA Psi pos1
  6361. if (gcode_M362()) return;
  6362. break;
  6363. case 363: // M363 SCARA Psi pos2
  6364. if (gcode_M363()) return;
  6365. break;
  6366. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6367. if (gcode_M364()) return;
  6368. break;
  6369. case 365: // M365 Set SCARA scaling for X Y Z
  6370. gcode_M365();
  6371. break;
  6372. #endif // SCARA
  6373. case 400: // M400 finish all moves
  6374. gcode_M400();
  6375. break;
  6376. #if HAS_BED_PROBE
  6377. case 401:
  6378. gcode_M401();
  6379. break;
  6380. case 402:
  6381. gcode_M402();
  6382. break;
  6383. #endif // HAS_BED_PROBE
  6384. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6385. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6386. gcode_M404();
  6387. break;
  6388. case 405: //M405 Turn on filament sensor for control
  6389. gcode_M405();
  6390. break;
  6391. case 406: //M406 Turn off filament sensor for control
  6392. gcode_M406();
  6393. break;
  6394. case 407: //M407 Display measured filament diameter
  6395. gcode_M407();
  6396. break;
  6397. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6398. #if ENABLED(MESH_BED_LEVELING)
  6399. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6400. gcode_M420();
  6401. break;
  6402. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6403. gcode_M421();
  6404. break;
  6405. #endif
  6406. case 428: // M428 Apply current_position to home_offset
  6407. gcode_M428();
  6408. break;
  6409. case 500: // M500 Store settings in EEPROM
  6410. gcode_M500();
  6411. break;
  6412. case 501: // M501 Read settings from EEPROM
  6413. gcode_M501();
  6414. break;
  6415. case 502: // M502 Revert to default settings
  6416. gcode_M502();
  6417. break;
  6418. case 503: // M503 print settings currently in memory
  6419. gcode_M503();
  6420. break;
  6421. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6422. case 540:
  6423. gcode_M540();
  6424. break;
  6425. #endif
  6426. #if HAS_BED_PROBE
  6427. case 851:
  6428. gcode_M851();
  6429. break;
  6430. #endif // HAS_BED_PROBE
  6431. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6432. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6433. gcode_M600();
  6434. break;
  6435. #endif // FILAMENT_CHANGE_FEATURE
  6436. #if ENABLED(DUAL_X_CARRIAGE)
  6437. case 605:
  6438. gcode_M605();
  6439. break;
  6440. #endif // DUAL_X_CARRIAGE
  6441. #if ENABLED(LIN_ADVANCE)
  6442. case 905: // M905 Set advance factor.
  6443. gcode_M905();
  6444. break;
  6445. #endif
  6446. case 907: // M907 Set digital trimpot motor current using axis codes.
  6447. gcode_M907();
  6448. break;
  6449. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6450. case 908: // M908 Control digital trimpot directly.
  6451. gcode_M908();
  6452. break;
  6453. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6454. case 909: // M909 Print digipot/DAC current value
  6455. gcode_M909();
  6456. break;
  6457. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6458. gcode_M910();
  6459. break;
  6460. #endif
  6461. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6462. #if HAS_MICROSTEPS
  6463. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6464. gcode_M350();
  6465. break;
  6466. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6467. gcode_M351();
  6468. break;
  6469. #endif // HAS_MICROSTEPS
  6470. case 999: // M999: Restart after being Stopped
  6471. gcode_M999();
  6472. break;
  6473. }
  6474. break;
  6475. case 'T':
  6476. gcode_T(codenum);
  6477. break;
  6478. default: code_is_good = false;
  6479. }
  6480. KEEPALIVE_STATE(NOT_BUSY);
  6481. ExitUnknownCommand:
  6482. // Still unknown command? Throw an error
  6483. if (!code_is_good) unknown_command_error();
  6484. ok_to_send();
  6485. }
  6486. void FlushSerialRequestResend() {
  6487. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6488. MYSERIAL.flush();
  6489. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6490. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6491. ok_to_send();
  6492. }
  6493. void ok_to_send() {
  6494. refresh_cmd_timeout();
  6495. if (!send_ok[cmd_queue_index_r]) return;
  6496. SERIAL_PROTOCOLPGM(MSG_OK);
  6497. #if ENABLED(ADVANCED_OK)
  6498. char* p = command_queue[cmd_queue_index_r];
  6499. if (*p == 'N') {
  6500. SERIAL_PROTOCOL(' ');
  6501. SERIAL_ECHO(*p++);
  6502. while (NUMERIC_SIGNED(*p))
  6503. SERIAL_ECHO(*p++);
  6504. }
  6505. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6506. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6507. #endif
  6508. SERIAL_EOL;
  6509. }
  6510. void clamp_to_software_endstops(float target[3]) {
  6511. if (min_software_endstops) {
  6512. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6513. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6514. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6515. }
  6516. if (max_software_endstops) {
  6517. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6518. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6519. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6520. }
  6521. }
  6522. #if ENABLED(DELTA)
  6523. void recalc_delta_settings(float radius, float diagonal_rod) {
  6524. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6525. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6526. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6527. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6528. delta_tower3_x = 0.0; // back middle tower
  6529. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6530. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6531. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6532. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6533. }
  6534. void inverse_kinematics(const float in_cartesian[3]) {
  6535. const float cartesian[3] = {
  6536. RAW_POSITION(in_cartesian[X_AXIS], X_AXIS),
  6537. RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS),
  6538. RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS)
  6539. };
  6540. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6541. - sq(delta_tower1_x - cartesian[X_AXIS])
  6542. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6543. ) + cartesian[Z_AXIS];
  6544. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6545. - sq(delta_tower2_x - cartesian[X_AXIS])
  6546. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6547. ) + cartesian[Z_AXIS];
  6548. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6549. - sq(delta_tower3_x - cartesian[X_AXIS])
  6550. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6551. ) + cartesian[Z_AXIS];
  6552. /**
  6553. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6554. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6555. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6556. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6557. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6558. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6559. */
  6560. }
  6561. float delta_safe_distance_from_top() {
  6562. float cartesian[3] = {
  6563. LOGICAL_POSITION(0, X_AXIS),
  6564. LOGICAL_POSITION(0, Y_AXIS),
  6565. LOGICAL_POSITION(0, Z_AXIS)
  6566. };
  6567. inverse_kinematics(cartesian);
  6568. float distance = delta[TOWER_3];
  6569. cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS);
  6570. inverse_kinematics(cartesian);
  6571. return abs(distance - delta[TOWER_3]);
  6572. }
  6573. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6574. //As discussed in Wikipedia "Trilateration"
  6575. //we are establishing a new coordinate
  6576. //system in the plane of the three carriage points.
  6577. //This system will have the origin at tower1 and
  6578. //tower2 is on the x axis. tower3 is in the X-Y
  6579. //plane with a Z component of zero. We will define unit
  6580. //vectors in this coordinate system in our original
  6581. //coordinate system. Then when we calculate the
  6582. //Xnew, Ynew and Znew values, we can translate back into
  6583. //the original system by moving along those unit vectors
  6584. //by the corresponding values.
  6585. // https://en.wikipedia.org/wiki/Trilateration
  6586. // Variable names matched to Marlin, c-version
  6587. // and avoiding a vector library
  6588. // by Andreas Hardtung 2016-06-7
  6589. // based on a Java function from
  6590. // "Delta Robot Kinematics by Steve Graves" V3
  6591. // Result is in cartesian_position[].
  6592. //Create a vector in old coordinates along x axis of new coordinate
  6593. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6594. //Get the Magnitude of vector.
  6595. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6596. //Create unit vector by dividing by magnitude.
  6597. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6598. //Now find vector from the origin of the new system to the third point.
  6599. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6600. //Now use dot product to find the component of this vector on the X axis.
  6601. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6602. //Now create a vector along the x axis that represents the x component of p13.
  6603. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6604. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6605. //variable that will be the unit vector after we scale it.
  6606. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6607. //The magnitude of Y component
  6608. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6609. //Now make vector a unit vector
  6610. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6611. //The cross product of the unit x and y is the unit z
  6612. //float[] ez = vectorCrossProd(ex, ey);
  6613. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6614. //Now we have the d, i and j values defined in Wikipedia.
  6615. //We can plug them into the equations defined in
  6616. //Wikipedia for Xnew, Ynew and Znew
  6617. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6618. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6619. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6620. //Now we can start from the origin in the old coords and
  6621. //add vectors in the old coords that represent the
  6622. //Xnew, Ynew and Znew to find the point in the old system
  6623. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6624. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6625. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6626. };
  6627. void forward_kinematics_DELTA(float point[3]) {
  6628. forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
  6629. }
  6630. void set_cartesian_from_steppers() {
  6631. forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
  6632. stepper.get_axis_position_mm(Y_AXIS),
  6633. stepper.get_axis_position_mm(Z_AXIS));
  6634. }
  6635. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6636. // Adjust print surface height by linear interpolation over the bed_level array.
  6637. void adjust_delta(float cartesian[3]) {
  6638. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6639. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6640. float h1 = 0.001 - half, h2 = half - 0.001,
  6641. grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])),
  6642. grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1]));
  6643. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6644. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6645. z1 = bed_level[floor_x + half][floor_y + half],
  6646. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6647. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6648. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6649. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6650. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6651. offset = (1 - ratio_x) * left + ratio_x * right;
  6652. delta[X_AXIS] += offset;
  6653. delta[Y_AXIS] += offset;
  6654. delta[Z_AXIS] += offset;
  6655. /**
  6656. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6657. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6658. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6659. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6660. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6661. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6662. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6663. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6664. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6665. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6666. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6667. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6668. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6669. */
  6670. }
  6671. #endif // AUTO_BED_LEVELING_FEATURE
  6672. #endif // DELTA
  6673. void set_current_from_steppers() {
  6674. #if ENABLED(DELTA)
  6675. set_cartesian_from_steppers();
  6676. current_position[X_AXIS] = cartesian_position[X_AXIS];
  6677. current_position[Y_AXIS] = cartesian_position[Y_AXIS];
  6678. current_position[Z_AXIS] = cartesian_position[Z_AXIS];
  6679. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6680. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  6681. current_position[X_AXIS] = pos.x;
  6682. current_position[Y_AXIS] = pos.y;
  6683. current_position[Z_AXIS] = pos.z;
  6684. #else
  6685. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); // CORE handled transparently
  6686. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6687. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6688. #endif
  6689. for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
  6690. current_position[i] += LOGICAL_POSITION(0, i);
  6691. }
  6692. #if ENABLED(MESH_BED_LEVELING)
  6693. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6694. void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6695. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6696. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6697. cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)),
  6698. cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS));
  6699. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6700. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6701. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6702. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6703. if (cx1 == cx2 && cy1 == cy2) {
  6704. // Start and end on same mesh square
  6705. line_to_destination(fr_mm_m);
  6706. set_current_to_destination();
  6707. return;
  6708. }
  6709. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6710. float normalized_dist, end[NUM_AXIS];
  6711. // Split at the left/front border of the right/top square
  6712. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6713. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6714. memcpy(end, destination, sizeof(end));
  6715. destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS);
  6716. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6717. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6718. CBI(x_splits, gcx);
  6719. }
  6720. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6721. memcpy(end, destination, sizeof(end));
  6722. destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS);
  6723. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6724. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6725. CBI(y_splits, gcy);
  6726. }
  6727. else {
  6728. // Already split on a border
  6729. line_to_destination(fr_mm_m);
  6730. set_current_to_destination();
  6731. return;
  6732. }
  6733. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6734. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6735. // Do the split and look for more borders
  6736. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6737. // Restore destination from stack
  6738. memcpy(destination, end, sizeof(end));
  6739. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6740. }
  6741. #endif // MESH_BED_LEVELING
  6742. #if ENABLED(DELTA) || ENABLED(SCARA)
  6743. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6744. float difference[NUM_AXIS];
  6745. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6746. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6747. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6748. if (cartesian_mm < 0.000001) return false;
  6749. float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6750. float seconds = cartesian_mm / _feedrate_mm_s;
  6751. int steps = max(1, int(delta_segments_per_second * seconds));
  6752. float inv_steps = 1.0/steps;
  6753. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6754. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6755. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6756. for (int s = 1; s <= steps; s++) {
  6757. float fraction = float(s) * inv_steps;
  6758. for (int8_t i = 0; i < NUM_AXIS; i++)
  6759. target[i] = current_position[i] + difference[i] * fraction;
  6760. inverse_kinematics(target);
  6761. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6762. if (!bed_leveling_in_progress) adjust_delta(target);
  6763. #endif
  6764. //DEBUG_POS("prepare_kinematic_move_to", target);
  6765. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6766. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6767. }
  6768. return true;
  6769. }
  6770. #endif // DELTA || SCARA
  6771. #if ENABLED(DUAL_X_CARRIAGE)
  6772. inline bool prepare_move_to_destination_dualx() {
  6773. if (active_extruder_parked) {
  6774. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6775. // move duplicate extruder into correct duplication position.
  6776. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6777. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6778. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6779. SYNC_PLAN_POSITION_KINEMATIC();
  6780. stepper.synchronize();
  6781. extruder_duplication_enabled = true;
  6782. active_extruder_parked = false;
  6783. }
  6784. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6785. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6786. // This is a travel move (with no extrusion)
  6787. // Skip it, but keep track of the current position
  6788. // (so it can be used as the start of the next non-travel move)
  6789. if (delayed_move_time != 0xFFFFFFFFUL) {
  6790. set_current_to_destination();
  6791. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6792. delayed_move_time = millis();
  6793. return false;
  6794. }
  6795. }
  6796. delayed_move_time = 0;
  6797. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6798. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6799. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6800. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6801. active_extruder_parked = false;
  6802. }
  6803. }
  6804. return true;
  6805. }
  6806. #endif // DUAL_X_CARRIAGE
  6807. #if DISABLED(DELTA) && DISABLED(SCARA)
  6808. inline bool prepare_move_to_destination_cartesian() {
  6809. // Do not use feedrate_percentage for E or Z only moves
  6810. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6811. line_to_destination();
  6812. }
  6813. else {
  6814. #if ENABLED(MESH_BED_LEVELING)
  6815. if (mbl.active()) {
  6816. mesh_line_to_destination(MMM_SCALED(feedrate_mm_m));
  6817. return false;
  6818. }
  6819. else
  6820. #endif
  6821. line_to_destination(MMM_SCALED(feedrate_mm_m));
  6822. }
  6823. return true;
  6824. }
  6825. #endif // !DELTA && !SCARA
  6826. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6827. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6828. if (DEBUGGING(DRYRUN)) return;
  6829. float de = dest_e - curr_e;
  6830. if (de) {
  6831. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6832. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6833. SERIAL_ECHO_START;
  6834. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6835. }
  6836. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6837. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6838. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6839. SERIAL_ECHO_START;
  6840. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6841. }
  6842. #endif
  6843. }
  6844. }
  6845. #endif // PREVENT_DANGEROUS_EXTRUDE
  6846. /**
  6847. * Prepare a single move and get ready for the next one
  6848. *
  6849. * (This may call planner.buffer_line several times to put
  6850. * smaller moves into the planner for DELTA or SCARA.)
  6851. */
  6852. void prepare_move_to_destination() {
  6853. clamp_to_software_endstops(destination);
  6854. refresh_cmd_timeout();
  6855. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6856. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6857. #endif
  6858. #if ENABLED(DELTA) || ENABLED(SCARA)
  6859. if (!prepare_kinematic_move_to(destination)) return;
  6860. #else
  6861. #if ENABLED(DUAL_X_CARRIAGE)
  6862. if (!prepare_move_to_destination_dualx()) return;
  6863. #endif
  6864. if (!prepare_move_to_destination_cartesian()) return;
  6865. #endif
  6866. set_current_to_destination();
  6867. }
  6868. #if ENABLED(ARC_SUPPORT)
  6869. /**
  6870. * Plan an arc in 2 dimensions
  6871. *
  6872. * The arc is approximated by generating many small linear segments.
  6873. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6874. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6875. * larger segments will tend to be more efficient. Your slicer should have
  6876. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6877. */
  6878. void plan_arc(
  6879. float target[NUM_AXIS], // Destination position
  6880. float* offset, // Center of rotation relative to current_position
  6881. uint8_t clockwise // Clockwise?
  6882. ) {
  6883. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6884. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6885. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6886. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6887. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6888. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6889. r_Y = -offset[Y_AXIS],
  6890. rt_X = target[X_AXIS] - center_X,
  6891. rt_Y = target[Y_AXIS] - center_Y;
  6892. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6893. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6894. if (angular_travel < 0) angular_travel += RADIANS(360);
  6895. if (clockwise) angular_travel -= RADIANS(360);
  6896. // Make a circle if the angular rotation is 0
  6897. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6898. angular_travel += RADIANS(360);
  6899. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6900. if (mm_of_travel < 0.001) return;
  6901. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6902. if (segments == 0) segments = 1;
  6903. float theta_per_segment = angular_travel / segments;
  6904. float linear_per_segment = linear_travel / segments;
  6905. float extruder_per_segment = extruder_travel / segments;
  6906. /**
  6907. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6908. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6909. * r_T = [cos(phi) -sin(phi);
  6910. * sin(phi) cos(phi] * r ;
  6911. *
  6912. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6913. * defined from the circle center to the initial position. Each line segment is formed by successive
  6914. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6915. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6916. * all double numbers are single precision on the Arduino. (True double precision will not have
  6917. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6918. * tool precision in some cases. Therefore, arc path correction is implemented.
  6919. *
  6920. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6921. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6922. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6923. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6924. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6925. * issue for CNC machines with the single precision Arduino calculations.
  6926. *
  6927. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6928. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6929. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6930. * This is important when there are successive arc motions.
  6931. */
  6932. // Vector rotation matrix values
  6933. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6934. float sin_T = theta_per_segment;
  6935. float arc_target[NUM_AXIS];
  6936. float sin_Ti, cos_Ti, r_new_Y;
  6937. uint16_t i;
  6938. int8_t count = 0;
  6939. // Initialize the linear axis
  6940. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6941. // Initialize the extruder axis
  6942. arc_target[E_AXIS] = current_position[E_AXIS];
  6943. float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6944. millis_t next_idle_ms = millis() + 200UL;
  6945. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6946. thermalManager.manage_heater();
  6947. millis_t now = millis();
  6948. if (ELAPSED(now, next_idle_ms)) {
  6949. next_idle_ms = now + 200UL;
  6950. idle();
  6951. }
  6952. if (++count < N_ARC_CORRECTION) {
  6953. // Apply vector rotation matrix to previous r_X / 1
  6954. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6955. r_X = r_X * cos_T - r_Y * sin_T;
  6956. r_Y = r_new_Y;
  6957. }
  6958. else {
  6959. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6960. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6961. // To reduce stuttering, the sin and cos could be computed at different times.
  6962. // For now, compute both at the same time.
  6963. cos_Ti = cos(i * theta_per_segment);
  6964. sin_Ti = sin(i * theta_per_segment);
  6965. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6966. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6967. count = 0;
  6968. }
  6969. // Update arc_target location
  6970. arc_target[X_AXIS] = center_X + r_X;
  6971. arc_target[Y_AXIS] = center_Y + r_Y;
  6972. arc_target[Z_AXIS] += linear_per_segment;
  6973. arc_target[E_AXIS] += extruder_per_segment;
  6974. clamp_to_software_endstops(arc_target);
  6975. #if ENABLED(DELTA) || ENABLED(SCARA)
  6976. inverse_kinematics(arc_target);
  6977. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6978. adjust_delta(arc_target);
  6979. #endif
  6980. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6981. #else
  6982. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6983. #endif
  6984. }
  6985. // Ensure last segment arrives at target location.
  6986. #if ENABLED(DELTA) || ENABLED(SCARA)
  6987. inverse_kinematics(target);
  6988. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6989. adjust_delta(target);
  6990. #endif
  6991. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6992. #else
  6993. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6994. #endif
  6995. // As far as the parser is concerned, the position is now == target. In reality the
  6996. // motion control system might still be processing the action and the real tool position
  6997. // in any intermediate location.
  6998. set_current_to_destination();
  6999. }
  7000. #endif
  7001. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7002. void plan_cubic_move(const float offset[4]) {
  7003. cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  7004. // As far as the parser is concerned, the position is now == target. In reality the
  7005. // motion control system might still be processing the action and the real tool position
  7006. // in any intermediate location.
  7007. set_current_to_destination();
  7008. }
  7009. #endif // BEZIER_CURVE_SUPPORT
  7010. #if HAS_CONTROLLERFAN
  7011. void controllerFan() {
  7012. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7013. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7014. millis_t ms = millis();
  7015. if (ELAPSED(ms, nextMotorCheck)) {
  7016. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7017. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7018. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7019. #if E_STEPPERS > 1
  7020. || E1_ENABLE_READ == E_ENABLE_ON
  7021. #if HAS_X2_ENABLE
  7022. || X2_ENABLE_READ == X_ENABLE_ON
  7023. #endif
  7024. #if E_STEPPERS > 2
  7025. || E2_ENABLE_READ == E_ENABLE_ON
  7026. #if E_STEPPERS > 3
  7027. || E3_ENABLE_READ == E_ENABLE_ON
  7028. #endif
  7029. #endif
  7030. #endif
  7031. ) {
  7032. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7033. }
  7034. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7035. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7036. // allows digital or PWM fan output to be used (see M42 handling)
  7037. digitalWrite(CONTROLLERFAN_PIN, speed);
  7038. analogWrite(CONTROLLERFAN_PIN, speed);
  7039. }
  7040. }
  7041. #endif // HAS_CONTROLLERFAN
  7042. #if ENABLED(SCARA)
  7043. void forward_kinematics_SCARA(float f_scara[3]) {
  7044. // Perform forward kinematics, and place results in delta[3]
  7045. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7046. float x_sin, x_cos, y_sin, y_cos;
  7047. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7048. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7049. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7050. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7051. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7052. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7053. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7054. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7055. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7056. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7057. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7058. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7059. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7060. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7061. }
  7062. void inverse_kinematics(const float cartesian[3]) {
  7063. // Inverse kinematics.
  7064. // Perform SCARA IK and place results in delta[3].
  7065. // The maths and first version were done by QHARLEY.
  7066. // Integrated, tweaked by Joachim Cerny in June 2014.
  7067. float SCARA_pos[2];
  7068. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7069. SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7070. SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7071. #if (Linkage_1 == Linkage_2)
  7072. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7073. #else
  7074. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7075. #endif
  7076. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7077. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7078. SCARA_K2 = Linkage_2 * SCARA_S2;
  7079. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7080. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7081. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7082. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7083. delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS);
  7084. /**
  7085. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7086. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7087. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7088. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7089. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7090. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7091. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7092. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7093. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7094. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7095. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7096. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7097. SERIAL_EOL;
  7098. */
  7099. }
  7100. #endif // SCARA
  7101. #if ENABLED(TEMP_STAT_LEDS)
  7102. static bool red_led = false;
  7103. static millis_t next_status_led_update_ms = 0;
  7104. void handle_status_leds(void) {
  7105. float max_temp = 0.0;
  7106. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7107. next_status_led_update_ms += 500; // Update every 0.5s
  7108. HOTEND_LOOP() {
  7109. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  7110. }
  7111. #if HAS_TEMP_BED
  7112. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  7113. #endif
  7114. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7115. if (new_led != red_led) {
  7116. red_led = new_led;
  7117. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7118. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7119. }
  7120. }
  7121. }
  7122. #endif
  7123. void enable_all_steppers() {
  7124. enable_x();
  7125. enable_y();
  7126. enable_z();
  7127. enable_e0();
  7128. enable_e1();
  7129. enable_e2();
  7130. enable_e3();
  7131. }
  7132. void disable_all_steppers() {
  7133. disable_x();
  7134. disable_y();
  7135. disable_z();
  7136. disable_e0();
  7137. disable_e1();
  7138. disable_e2();
  7139. disable_e3();
  7140. }
  7141. /**
  7142. * Standard idle routine keeps the machine alive
  7143. */
  7144. void idle(
  7145. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7146. bool no_stepper_sleep/*=false*/
  7147. #endif
  7148. ) {
  7149. lcd_update();
  7150. host_keepalive();
  7151. manage_inactivity(
  7152. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7153. no_stepper_sleep
  7154. #endif
  7155. );
  7156. thermalManager.manage_heater();
  7157. #if ENABLED(PRINTCOUNTER)
  7158. print_job_timer.tick();
  7159. #endif
  7160. #if HAS_BUZZER
  7161. buzzer.tick();
  7162. #endif
  7163. }
  7164. /**
  7165. * Manage several activities:
  7166. * - Check for Filament Runout
  7167. * - Keep the command buffer full
  7168. * - Check for maximum inactive time between commands
  7169. * - Check for maximum inactive time between stepper commands
  7170. * - Check if pin CHDK needs to go LOW
  7171. * - Check for KILL button held down
  7172. * - Check for HOME button held down
  7173. * - Check if cooling fan needs to be switched on
  7174. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7175. */
  7176. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7177. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7178. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7179. handle_filament_runout();
  7180. #endif
  7181. if (commands_in_queue < BUFSIZE) get_available_commands();
  7182. millis_t ms = millis();
  7183. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7184. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7185. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7186. #if ENABLED(DISABLE_INACTIVE_X)
  7187. disable_x();
  7188. #endif
  7189. #if ENABLED(DISABLE_INACTIVE_Y)
  7190. disable_y();
  7191. #endif
  7192. #if ENABLED(DISABLE_INACTIVE_Z)
  7193. disable_z();
  7194. #endif
  7195. #if ENABLED(DISABLE_INACTIVE_E)
  7196. disable_e0();
  7197. disable_e1();
  7198. disable_e2();
  7199. disable_e3();
  7200. #endif
  7201. }
  7202. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7203. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7204. chdkActive = false;
  7205. WRITE(CHDK, LOW);
  7206. }
  7207. #endif
  7208. #if HAS_KILL
  7209. // Check if the kill button was pressed and wait just in case it was an accidental
  7210. // key kill key press
  7211. // -------------------------------------------------------------------------------
  7212. static int killCount = 0; // make the inactivity button a bit less responsive
  7213. const int KILL_DELAY = 750;
  7214. if (!READ(KILL_PIN))
  7215. killCount++;
  7216. else if (killCount > 0)
  7217. killCount--;
  7218. // Exceeded threshold and we can confirm that it was not accidental
  7219. // KILL the machine
  7220. // ----------------------------------------------------------------
  7221. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7222. #endif
  7223. #if HAS_HOME
  7224. // Check to see if we have to home, use poor man's debouncer
  7225. // ---------------------------------------------------------
  7226. static int homeDebounceCount = 0; // poor man's debouncing count
  7227. const int HOME_DEBOUNCE_DELAY = 2500;
  7228. if (!READ(HOME_PIN)) {
  7229. if (!homeDebounceCount) {
  7230. enqueue_and_echo_commands_P(PSTR("G28"));
  7231. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7232. }
  7233. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7234. homeDebounceCount++;
  7235. else
  7236. homeDebounceCount = 0;
  7237. }
  7238. #endif
  7239. #if HAS_CONTROLLERFAN
  7240. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7241. #endif
  7242. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7243. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7244. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7245. #if ENABLED(SWITCHING_EXTRUDER)
  7246. bool oldstatus = E0_ENABLE_READ;
  7247. enable_e0();
  7248. #else // !SWITCHING_EXTRUDER
  7249. bool oldstatus;
  7250. switch (active_extruder) {
  7251. case 0:
  7252. oldstatus = E0_ENABLE_READ;
  7253. enable_e0();
  7254. break;
  7255. #if E_STEPPERS > 1
  7256. case 1:
  7257. oldstatus = E1_ENABLE_READ;
  7258. enable_e1();
  7259. break;
  7260. #if E_STEPPERS > 2
  7261. case 2:
  7262. oldstatus = E2_ENABLE_READ;
  7263. enable_e2();
  7264. break;
  7265. #if E_STEPPERS > 3
  7266. case 3:
  7267. oldstatus = E3_ENABLE_READ;
  7268. enable_e3();
  7269. break;
  7270. #endif
  7271. #endif
  7272. #endif
  7273. }
  7274. #endif // !SWITCHING_EXTRUDER
  7275. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7276. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7277. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7278. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7279. current_position[E_AXIS] = oldepos;
  7280. destination[E_AXIS] = oldedes;
  7281. planner.set_e_position_mm(oldepos);
  7282. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7283. stepper.synchronize();
  7284. #if ENABLED(SWITCHING_EXTRUDER)
  7285. E0_ENABLE_WRITE(oldstatus);
  7286. #else
  7287. switch (active_extruder) {
  7288. case 0:
  7289. E0_ENABLE_WRITE(oldstatus);
  7290. break;
  7291. #if E_STEPPERS > 1
  7292. case 1:
  7293. E1_ENABLE_WRITE(oldstatus);
  7294. break;
  7295. #if E_STEPPERS > 2
  7296. case 2:
  7297. E2_ENABLE_WRITE(oldstatus);
  7298. break;
  7299. #if E_STEPPERS > 3
  7300. case 3:
  7301. E3_ENABLE_WRITE(oldstatus);
  7302. break;
  7303. #endif
  7304. #endif
  7305. #endif
  7306. }
  7307. #endif // !SWITCHING_EXTRUDER
  7308. }
  7309. #endif // EXTRUDER_RUNOUT_PREVENT
  7310. #if ENABLED(DUAL_X_CARRIAGE)
  7311. // handle delayed move timeout
  7312. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7313. // travel moves have been received so enact them
  7314. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7315. set_destination_to_current();
  7316. prepare_move_to_destination();
  7317. }
  7318. #endif
  7319. #if ENABLED(TEMP_STAT_LEDS)
  7320. handle_status_leds();
  7321. #endif
  7322. planner.check_axes_activity();
  7323. }
  7324. void kill(const char* lcd_msg) {
  7325. SERIAL_ERROR_START;
  7326. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7327. #if ENABLED(ULTRA_LCD)
  7328. kill_screen(lcd_msg);
  7329. #else
  7330. UNUSED(lcd_msg);
  7331. #endif
  7332. for (int i = 5; i--;) delay(100); // Wait a short time
  7333. cli(); // Stop interrupts
  7334. thermalManager.disable_all_heaters();
  7335. disable_all_steppers();
  7336. #if HAS_POWER_SWITCH
  7337. pinMode(PS_ON_PIN, INPUT);
  7338. #endif
  7339. suicide();
  7340. while (1) {
  7341. #if ENABLED(USE_WATCHDOG)
  7342. watchdog_reset();
  7343. #endif
  7344. } // Wait for reset
  7345. }
  7346. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7347. void handle_filament_runout() {
  7348. if (!filament_ran_out) {
  7349. filament_ran_out = true;
  7350. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7351. stepper.synchronize();
  7352. }
  7353. }
  7354. #endif // FILAMENT_RUNOUT_SENSOR
  7355. #if ENABLED(FAST_PWM_FAN)
  7356. void setPwmFrequency(uint8_t pin, int val) {
  7357. val &= 0x07;
  7358. switch (digitalPinToTimer(pin)) {
  7359. #if defined(TCCR0A)
  7360. case TIMER0A:
  7361. case TIMER0B:
  7362. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7363. // TCCR0B |= val;
  7364. break;
  7365. #endif
  7366. #if defined(TCCR1A)
  7367. case TIMER1A:
  7368. case TIMER1B:
  7369. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7370. // TCCR1B |= val;
  7371. break;
  7372. #endif
  7373. #if defined(TCCR2)
  7374. case TIMER2:
  7375. case TIMER2:
  7376. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7377. TCCR2 |= val;
  7378. break;
  7379. #endif
  7380. #if defined(TCCR2A)
  7381. case TIMER2A:
  7382. case TIMER2B:
  7383. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7384. TCCR2B |= val;
  7385. break;
  7386. #endif
  7387. #if defined(TCCR3A)
  7388. case TIMER3A:
  7389. case TIMER3B:
  7390. case TIMER3C:
  7391. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7392. TCCR3B |= val;
  7393. break;
  7394. #endif
  7395. #if defined(TCCR4A)
  7396. case TIMER4A:
  7397. case TIMER4B:
  7398. case TIMER4C:
  7399. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7400. TCCR4B |= val;
  7401. break;
  7402. #endif
  7403. #if defined(TCCR5A)
  7404. case TIMER5A:
  7405. case TIMER5B:
  7406. case TIMER5C:
  7407. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7408. TCCR5B |= val;
  7409. break;
  7410. #endif
  7411. }
  7412. }
  7413. #endif // FAST_PWM_FAN
  7414. void stop() {
  7415. thermalManager.disable_all_heaters();
  7416. if (IsRunning()) {
  7417. Running = false;
  7418. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7419. SERIAL_ERROR_START;
  7420. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7421. LCD_MESSAGEPGM(MSG_STOPPED);
  7422. }
  7423. }
  7424. float calculate_volumetric_multiplier(float diameter) {
  7425. if (!volumetric_enabled || diameter == 0) return 1.0;
  7426. float d2 = diameter * 0.5;
  7427. return 1.0 / (M_PI * d2 * d2);
  7428. }
  7429. void calculate_volumetric_multipliers() {
  7430. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7431. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7432. }