My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 49KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. int16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  119. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  120. unsigned short Stepper::OCR1A_nominal;
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. /**
  255. * __________________________
  256. * /| |\ _________________ ^
  257. * / | | \ /| |\ |
  258. * / | | \ / | | \ s
  259. * / | | | | | \ p
  260. * / | | | | | \ e
  261. * +-----+------------------------+---+--+---------------+----+ e
  262. * | BLOCK 1 | BLOCK 2 | d
  263. *
  264. * time ----->
  265. *
  266. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  267. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  268. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  269. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  270. */
  271. void Stepper::wake_up() {
  272. // TCNT1 = 0;
  273. ENABLE_STEPPER_DRIVER_INTERRUPT();
  274. }
  275. /**
  276. * Set the stepper direction of each axis
  277. *
  278. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  279. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  280. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  281. */
  282. void Stepper::set_directions() {
  283. #define SET_STEP_DIR(AXIS) \
  284. if (motor_direction(AXIS ##_AXIS)) { \
  285. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  286. count_direction[AXIS ##_AXIS] = -1; \
  287. } \
  288. else { \
  289. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  290. count_direction[AXIS ##_AXIS] = 1; \
  291. }
  292. #if HAS_X_DIR
  293. SET_STEP_DIR(X); // A
  294. #endif
  295. #if HAS_Y_DIR
  296. SET_STEP_DIR(Y); // B
  297. #endif
  298. #if HAS_Z_DIR
  299. SET_STEP_DIR(Z); // C
  300. #endif
  301. #if DISABLED(LIN_ADVANCE)
  302. if (motor_direction(E_AXIS)) {
  303. REV_E_DIR();
  304. count_direction[E_AXIS] = -1;
  305. }
  306. else {
  307. NORM_E_DIR();
  308. count_direction[E_AXIS] = 1;
  309. }
  310. #endif // !LIN_ADVANCE
  311. }
  312. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  313. extern volatile uint8_t e_hit;
  314. #endif
  315. /**
  316. * Stepper Driver Interrupt
  317. *
  318. * Directly pulses the stepper motors at high frequency.
  319. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  320. *
  321. * OCR1A Frequency
  322. * 1 2 MHz
  323. * 50 40 KHz
  324. * 100 20 KHz - capped max rate
  325. * 200 10 KHz - nominal max rate
  326. * 2000 1 KHz - sleep rate
  327. * 4000 500 Hz - init rate
  328. */
  329. ISR(TIMER1_COMPA_vect) {
  330. #if ENABLED(LIN_ADVANCE)
  331. Stepper::advance_isr_scheduler();
  332. #else
  333. Stepper::isr();
  334. #endif
  335. }
  336. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  337. void Stepper::isr() {
  338. uint16_t ocr_val;
  339. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  340. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  341. #if DISABLED(LIN_ADVANCE)
  342. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  343. CBI(TIMSK0, OCIE0B); // Temperature ISR
  344. DISABLE_STEPPER_DRIVER_INTERRUPT();
  345. sei();
  346. #endif
  347. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  348. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  349. #define SPLIT(L) _SPLIT(L)
  350. #else // !ENDSTOP_INTERRUPTS_FEATURE : Sample endstops between stepping ISRs
  351. static uint32_t step_remaining = 0;
  352. #define SPLIT(L) do { \
  353. _SPLIT(L); \
  354. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  355. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  356. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  357. step_remaining = (uint16_t)L - ocr_val; \
  358. } \
  359. }while(0)
  360. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  361. endstops.update();
  362. // Next ISR either for endstops or stepping
  363. ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
  364. step_remaining -= ocr_val;
  365. _NEXT_ISR(ocr_val);
  366. NOLESS(OCR1A, TCNT1 + 16);
  367. _ENABLE_ISRs(); // re-enable ISRs
  368. return;
  369. }
  370. #endif // !ENDSTOP_INTERRUPTS_FEATURE
  371. //
  372. // When cleaning, discard the current block and run fast
  373. //
  374. if (cleaning_buffer_counter) {
  375. current_block = NULL;
  376. planner.discard_current_block();
  377. if (cleaning_buffer_counter < 0)
  378. ++cleaning_buffer_counter; // Count up for endstop hit
  379. else {
  380. --cleaning_buffer_counter; // Count down for abort print
  381. #ifdef SD_FINISHED_RELEASECOMMAND
  382. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  383. #endif
  384. }
  385. _NEXT_ISR(200); // Run at max speed - 10 KHz
  386. _ENABLE_ISRs();
  387. return;
  388. }
  389. // If there is no current block, attempt to pop one from the buffer
  390. if (!current_block) {
  391. // Anything in the buffer?
  392. if ((current_block = planner.get_current_block())) {
  393. trapezoid_generator_reset();
  394. // Initialize Bresenham counters to 1/2 the ceiling
  395. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  396. #if ENABLED(MIXING_EXTRUDER)
  397. MIXING_STEPPERS_LOOP(i)
  398. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  399. #endif
  400. step_events_completed = 0;
  401. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  402. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  403. // No 'change' can be detected.
  404. #endif
  405. #if ENABLED(Z_LATE_ENABLE)
  406. if (current_block->steps[Z_AXIS] > 0) {
  407. enable_Z();
  408. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  409. _ENABLE_ISRs(); // re-enable ISRs
  410. return;
  411. }
  412. #endif
  413. }
  414. else {
  415. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  416. _ENABLE_ISRs(); // re-enable ISRs
  417. return;
  418. }
  419. }
  420. // Update endstops state, if enabled
  421. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  422. if (e_hit && ENDSTOPS_ENABLED) {
  423. endstops.update();
  424. e_hit--;
  425. }
  426. #else
  427. if (ENDSTOPS_ENABLED) endstops.update();
  428. #endif
  429. // Take multiple steps per interrupt (For high speed moves)
  430. bool all_steps_done = false;
  431. for (uint8_t i = step_loops; i--;) {
  432. #if ENABLED(LIN_ADVANCE)
  433. counter_E += current_block->steps[E_AXIS];
  434. if (counter_E > 0) {
  435. counter_E -= current_block->step_event_count;
  436. #if DISABLED(MIXING_EXTRUDER)
  437. // Don't step E here for mixing extruder
  438. count_position[E_AXIS] += count_direction[E_AXIS];
  439. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  440. #endif
  441. }
  442. #if ENABLED(MIXING_EXTRUDER)
  443. // Step mixing steppers proportionally
  444. const bool dir = motor_direction(E_AXIS);
  445. MIXING_STEPPERS_LOOP(j) {
  446. counter_m[j] += current_block->steps[E_AXIS];
  447. if (counter_m[j] > 0) {
  448. counter_m[j] -= current_block->mix_event_count[j];
  449. dir ? --e_steps[j] : ++e_steps[j];
  450. }
  451. }
  452. #endif
  453. #endif // LIN_ADVANCE
  454. #define _COUNTER(AXIS) counter_## AXIS
  455. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  456. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  457. // Advance the Bresenham counter; start a pulse if the axis needs a step
  458. #define PULSE_START(AXIS) \
  459. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  460. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  461. // Stop an active pulse, reset the Bresenham counter, update the position
  462. #define PULSE_STOP(AXIS) \
  463. if (_COUNTER(AXIS) > 0) { \
  464. _COUNTER(AXIS) -= current_block->step_event_count; \
  465. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  466. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  467. }
  468. /**
  469. * Estimate the number of cycles that the stepper logic already takes
  470. * up between the start and stop of the X stepper pulse.
  471. *
  472. * Currently this uses very modest estimates of around 5 cycles.
  473. * True values may be derived by careful testing.
  474. *
  475. * Once any delay is added, the cost of the delay code itself
  476. * may be subtracted from this value to get a more accurate delay.
  477. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  478. * Longer delays use a loop. The resolution is 8 cycles.
  479. */
  480. #if HAS_X_STEP
  481. #define _CYCLE_APPROX_1 5
  482. #else
  483. #define _CYCLE_APPROX_1 0
  484. #endif
  485. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  486. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  487. #else
  488. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  489. #endif
  490. #if HAS_Y_STEP
  491. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  492. #else
  493. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  494. #endif
  495. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  496. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  497. #else
  498. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  499. #endif
  500. #if HAS_Z_STEP
  501. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  502. #else
  503. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  504. #endif
  505. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  506. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  507. #else
  508. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  509. #endif
  510. #if DISABLED(LIN_ADVANCE)
  511. #if ENABLED(MIXING_EXTRUDER)
  512. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  513. #else
  514. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  515. #endif
  516. #else
  517. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  518. #endif
  519. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  520. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  521. /**
  522. * If a minimum pulse time was specified get the timer 0 value.
  523. *
  524. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  525. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  526. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  527. * 10µs = 160 or 200 cycles.
  528. */
  529. #if EXTRA_CYCLES_XYZE > 20
  530. uint32_t pulse_start = TCNT0;
  531. #endif
  532. #if HAS_X_STEP
  533. PULSE_START(X);
  534. #endif
  535. #if HAS_Y_STEP
  536. PULSE_START(Y);
  537. #endif
  538. #if HAS_Z_STEP
  539. PULSE_START(Z);
  540. #endif
  541. // For non-advance use linear interpolation for E also
  542. #if DISABLED(LIN_ADVANCE)
  543. #if ENABLED(MIXING_EXTRUDER)
  544. // Keep updating the single E axis
  545. counter_E += current_block->steps[E_AXIS];
  546. // Tick the counters used for this mix
  547. MIXING_STEPPERS_LOOP(j) {
  548. // Step mixing steppers (proportionally)
  549. counter_m[j] += current_block->steps[E_AXIS];
  550. // Step when the counter goes over zero
  551. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  552. }
  553. #else // !MIXING_EXTRUDER
  554. PULSE_START(E);
  555. #endif
  556. #endif // !LIN_ADVANCE
  557. // For minimum pulse time wait before stopping pulses
  558. #if EXTRA_CYCLES_XYZE > 20
  559. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  560. pulse_start = TCNT0;
  561. #elif EXTRA_CYCLES_XYZE > 0
  562. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  563. #endif
  564. #if HAS_X_STEP
  565. PULSE_STOP(X);
  566. #endif
  567. #if HAS_Y_STEP
  568. PULSE_STOP(Y);
  569. #endif
  570. #if HAS_Z_STEP
  571. PULSE_STOP(Z);
  572. #endif
  573. #if DISABLED(LIN_ADVANCE)
  574. #if ENABLED(MIXING_EXTRUDER)
  575. // Always step the single E axis
  576. if (counter_E > 0) {
  577. counter_E -= current_block->step_event_count;
  578. count_position[E_AXIS] += count_direction[E_AXIS];
  579. }
  580. MIXING_STEPPERS_LOOP(j) {
  581. if (counter_m[j] > 0) {
  582. counter_m[j] -= current_block->mix_event_count[j];
  583. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  584. }
  585. }
  586. #else // !MIXING_EXTRUDER
  587. PULSE_STOP(E);
  588. #endif
  589. #endif // !LIN_ADVANCE
  590. if (++step_events_completed >= current_block->step_event_count) {
  591. all_steps_done = true;
  592. break;
  593. }
  594. // For minimum pulse time wait after stopping pulses also
  595. #if EXTRA_CYCLES_XYZE > 20
  596. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  597. #elif EXTRA_CYCLES_XYZE > 0
  598. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  599. #endif
  600. } // steps_loop
  601. #if ENABLED(LIN_ADVANCE)
  602. if (current_block->use_advance_lead) {
  603. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  604. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  605. #if ENABLED(MIXING_EXTRUDER)
  606. // Mixing extruders apply advance lead proportionally
  607. MIXING_STEPPERS_LOOP(j)
  608. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  609. #else
  610. // For most extruders, advance the single E stepper
  611. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  612. #endif
  613. }
  614. // If we have esteps to execute, fire the next advance_isr "now"
  615. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  616. #endif // LIN_ADVANCE
  617. // Calculate new timer value
  618. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  619. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  620. acc_step_rate += current_block->initial_rate;
  621. // upper limit
  622. NOMORE(acc_step_rate, current_block->nominal_rate);
  623. // step_rate to timer interval
  624. const uint16_t timer = calc_timer(acc_step_rate);
  625. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  626. _NEXT_ISR(ocr_val);
  627. acceleration_time += timer;
  628. #if ENABLED(LIN_ADVANCE)
  629. if (current_block->use_advance_lead) {
  630. #if ENABLED(MIXING_EXTRUDER)
  631. MIXING_STEPPERS_LOOP(j)
  632. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  633. #else
  634. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  635. #endif
  636. }
  637. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  638. #endif // LIN_ADVANCE
  639. }
  640. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  641. uint16_t step_rate;
  642. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  643. if (step_rate < acc_step_rate) { // Still decelerating?
  644. step_rate = acc_step_rate - step_rate;
  645. NOLESS(step_rate, current_block->final_rate);
  646. }
  647. else
  648. step_rate = current_block->final_rate;
  649. // step_rate to timer interval
  650. const uint16_t timer = calc_timer(step_rate);
  651. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  652. _NEXT_ISR(ocr_val);
  653. deceleration_time += timer;
  654. #if ENABLED(LIN_ADVANCE)
  655. if (current_block->use_advance_lead) {
  656. #if ENABLED(MIXING_EXTRUDER)
  657. MIXING_STEPPERS_LOOP(j)
  658. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  659. #else
  660. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  661. #endif
  662. }
  663. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  664. #endif // LIN_ADVANCE
  665. }
  666. else {
  667. #if ENABLED(LIN_ADVANCE)
  668. if (current_block->use_advance_lead)
  669. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  670. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  671. #endif
  672. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  673. _NEXT_ISR(ocr_val);
  674. // ensure we're running at the correct step rate, even if we just came off an acceleration
  675. step_loops = step_loops_nominal;
  676. }
  677. #if DISABLED(LIN_ADVANCE)
  678. NOLESS(OCR1A, TCNT1 + 16);
  679. #endif
  680. // If current block is finished, reset pointer
  681. if (all_steps_done) {
  682. current_block = NULL;
  683. planner.discard_current_block();
  684. }
  685. #if DISABLED(LIN_ADVANCE)
  686. _ENABLE_ISRs(); // re-enable ISRs
  687. #endif
  688. }
  689. #if ENABLED(LIN_ADVANCE)
  690. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  691. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  692. // Timer interrupt for E. e_steps is set in the main routine;
  693. void Stepper::advance_isr() {
  694. nextAdvanceISR = eISR_Rate;
  695. #if ENABLED(MK2_MULTIPLEXER)
  696. // Even-numbered steppers are reversed
  697. #define SET_E_STEP_DIR(INDEX) \
  698. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  699. #else
  700. #define SET_E_STEP_DIR(INDEX) \
  701. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  702. #endif
  703. #define START_E_PULSE(INDEX) \
  704. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  705. #define STOP_E_PULSE(INDEX) \
  706. if (e_steps[INDEX]) { \
  707. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  708. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  709. }
  710. SET_E_STEP_DIR(0);
  711. #if E_STEPPERS > 1
  712. SET_E_STEP_DIR(1);
  713. #if E_STEPPERS > 2
  714. SET_E_STEP_DIR(2);
  715. #if E_STEPPERS > 3
  716. SET_E_STEP_DIR(3);
  717. #if E_STEPPERS > 4
  718. SET_E_STEP_DIR(4);
  719. #endif
  720. #endif
  721. #endif
  722. #endif
  723. // Step all E steppers that have steps
  724. for (uint8_t i = step_loops; i--;) {
  725. #if EXTRA_CYCLES_E > 20
  726. uint32_t pulse_start = TCNT0;
  727. #endif
  728. START_E_PULSE(0);
  729. #if E_STEPPERS > 1
  730. START_E_PULSE(1);
  731. #if E_STEPPERS > 2
  732. START_E_PULSE(2);
  733. #if E_STEPPERS > 3
  734. START_E_PULSE(3);
  735. #if E_STEPPERS > 4
  736. START_E_PULSE(4);
  737. #endif
  738. #endif
  739. #endif
  740. #endif
  741. // For minimum pulse time wait before stopping pulses
  742. #if EXTRA_CYCLES_E > 20
  743. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  744. pulse_start = TCNT0;
  745. #elif EXTRA_CYCLES_E > 0
  746. DELAY_NOPS(EXTRA_CYCLES_E);
  747. #endif
  748. STOP_E_PULSE(0);
  749. #if E_STEPPERS > 1
  750. STOP_E_PULSE(1);
  751. #if E_STEPPERS > 2
  752. STOP_E_PULSE(2);
  753. #if E_STEPPERS > 3
  754. STOP_E_PULSE(3);
  755. #if E_STEPPERS > 4
  756. STOP_E_PULSE(4);
  757. #endif
  758. #endif
  759. #endif
  760. #endif
  761. // For minimum pulse time wait before looping
  762. #if EXTRA_CYCLES_E > 20
  763. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  764. #elif EXTRA_CYCLES_E > 0
  765. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  766. #endif
  767. } // steps_loop
  768. }
  769. void Stepper::advance_isr_scheduler() {
  770. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  771. CBI(TIMSK0, OCIE0B); // Temperature ISR
  772. DISABLE_STEPPER_DRIVER_INTERRUPT();
  773. sei();
  774. // Run main stepping ISR if flagged
  775. if (!nextMainISR) isr();
  776. // Run Advance stepping ISR if flagged
  777. if (!nextAdvanceISR) advance_isr();
  778. // Is the next advance ISR scheduled before the next main ISR?
  779. if (nextAdvanceISR <= nextMainISR) {
  780. // Set up the next interrupt
  781. OCR1A = nextAdvanceISR;
  782. // New interval for the next main ISR
  783. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  784. // Will call Stepper::advance_isr on the next interrupt
  785. nextAdvanceISR = 0;
  786. }
  787. else {
  788. // The next main ISR comes first
  789. OCR1A = nextMainISR;
  790. // New interval for the next advance ISR, if any
  791. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  792. nextAdvanceISR -= nextMainISR;
  793. // Will call Stepper::isr on the next interrupt
  794. nextMainISR = 0;
  795. }
  796. // Don't run the ISR faster than possible
  797. NOLESS(OCR1A, TCNT1 + 16);
  798. // Restore original ISR settings
  799. _ENABLE_ISRs();
  800. }
  801. #endif // LIN_ADVANCE
  802. void Stepper::init() {
  803. // Init Digipot Motor Current
  804. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  805. digipot_init();
  806. #endif
  807. // Init Microstepping Pins
  808. #if HAS_MICROSTEPS
  809. microstep_init();
  810. #endif
  811. // Init TMC Steppers
  812. #if ENABLED(HAVE_TMCDRIVER)
  813. tmc_init();
  814. #endif
  815. // Init TMC2130 Steppers
  816. #if ENABLED(HAVE_TMC2130)
  817. tmc2130_init();
  818. #endif
  819. // Init L6470 Steppers
  820. #if ENABLED(HAVE_L6470DRIVER)
  821. L6470_init();
  822. #endif
  823. // Init Dir Pins
  824. #if HAS_X_DIR
  825. X_DIR_INIT;
  826. #endif
  827. #if HAS_X2_DIR
  828. X2_DIR_INIT;
  829. #endif
  830. #if HAS_Y_DIR
  831. Y_DIR_INIT;
  832. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  833. Y2_DIR_INIT;
  834. #endif
  835. #endif
  836. #if HAS_Z_DIR
  837. Z_DIR_INIT;
  838. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  839. Z2_DIR_INIT;
  840. #endif
  841. #endif
  842. #if HAS_E0_DIR
  843. E0_DIR_INIT;
  844. #endif
  845. #if HAS_E1_DIR
  846. E1_DIR_INIT;
  847. #endif
  848. #if HAS_E2_DIR
  849. E2_DIR_INIT;
  850. #endif
  851. #if HAS_E3_DIR
  852. E3_DIR_INIT;
  853. #endif
  854. #if HAS_E4_DIR
  855. E4_DIR_INIT;
  856. #endif
  857. // Init Enable Pins - steppers default to disabled.
  858. #if HAS_X_ENABLE
  859. X_ENABLE_INIT;
  860. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  861. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  862. X2_ENABLE_INIT;
  863. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  864. #endif
  865. #endif
  866. #if HAS_Y_ENABLE
  867. Y_ENABLE_INIT;
  868. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  869. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  870. Y2_ENABLE_INIT;
  871. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  872. #endif
  873. #endif
  874. #if HAS_Z_ENABLE
  875. Z_ENABLE_INIT;
  876. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  877. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  878. Z2_ENABLE_INIT;
  879. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  880. #endif
  881. #endif
  882. #if HAS_E0_ENABLE
  883. E0_ENABLE_INIT;
  884. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  885. #endif
  886. #if HAS_E1_ENABLE
  887. E1_ENABLE_INIT;
  888. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  889. #endif
  890. #if HAS_E2_ENABLE
  891. E2_ENABLE_INIT;
  892. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  893. #endif
  894. #if HAS_E3_ENABLE
  895. E3_ENABLE_INIT;
  896. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  897. #endif
  898. #if HAS_E4_ENABLE
  899. E4_ENABLE_INIT;
  900. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  901. #endif
  902. // Init endstops and pullups
  903. endstops.init();
  904. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  905. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  906. #define _DISABLE(AXIS) disable_## AXIS()
  907. #define AXIS_INIT(AXIS, PIN) \
  908. _STEP_INIT(AXIS); \
  909. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  910. _DISABLE(AXIS)
  911. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  912. // Init Step Pins
  913. #if HAS_X_STEP
  914. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  915. X2_STEP_INIT;
  916. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  917. #endif
  918. AXIS_INIT(X, X);
  919. #endif
  920. #if HAS_Y_STEP
  921. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  922. Y2_STEP_INIT;
  923. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  924. #endif
  925. AXIS_INIT(Y, Y);
  926. #endif
  927. #if HAS_Z_STEP
  928. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  929. Z2_STEP_INIT;
  930. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  931. #endif
  932. AXIS_INIT(Z, Z);
  933. #endif
  934. #if HAS_E0_STEP
  935. E_AXIS_INIT(0);
  936. #endif
  937. #if HAS_E1_STEP
  938. E_AXIS_INIT(1);
  939. #endif
  940. #if HAS_E2_STEP
  941. E_AXIS_INIT(2);
  942. #endif
  943. #if HAS_E3_STEP
  944. E_AXIS_INIT(3);
  945. #endif
  946. #if HAS_E4_STEP
  947. E_AXIS_INIT(4);
  948. #endif
  949. // waveform generation = 0100 = CTC
  950. SET_WGM(1, CTC_OCRnA);
  951. // output mode = 00 (disconnected)
  952. SET_COMA(1, NORMAL);
  953. // Set the timer pre-scaler
  954. // Generally we use a divider of 8, resulting in a 2MHz timer
  955. // frequency on a 16MHz MCU. If you are going to change this, be
  956. // sure to regenerate speed_lookuptable.h with
  957. // create_speed_lookuptable.py
  958. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  959. // Init Stepper ISR to 122 Hz for quick starting
  960. OCR1A = 0x4000;
  961. TCNT1 = 0;
  962. ENABLE_STEPPER_DRIVER_INTERRUPT();
  963. #if ENABLED(LIN_ADVANCE)
  964. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  965. ZERO(current_adv_steps);
  966. #endif
  967. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  968. sei();
  969. set_directions(); // Init directions to last_direction_bits = 0
  970. }
  971. /**
  972. * Block until all buffered steps are executed
  973. */
  974. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  975. /**
  976. * Set the stepper positions directly in steps
  977. *
  978. * The input is based on the typical per-axis XYZ steps.
  979. * For CORE machines XYZ needs to be translated to ABC.
  980. *
  981. * This allows get_axis_position_mm to correctly
  982. * derive the current XYZ position later on.
  983. */
  984. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  985. synchronize(); // Bad to set stepper counts in the middle of a move
  986. CRITICAL_SECTION_START;
  987. #if CORE_IS_XY
  988. // corexy positioning
  989. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  990. count_position[A_AXIS] = a + b;
  991. count_position[B_AXIS] = CORESIGN(a - b);
  992. count_position[Z_AXIS] = c;
  993. #elif CORE_IS_XZ
  994. // corexz planning
  995. count_position[A_AXIS] = a + c;
  996. count_position[Y_AXIS] = b;
  997. count_position[C_AXIS] = CORESIGN(a - c);
  998. #elif CORE_IS_YZ
  999. // coreyz planning
  1000. count_position[X_AXIS] = a;
  1001. count_position[B_AXIS] = b + c;
  1002. count_position[C_AXIS] = CORESIGN(b - c);
  1003. #else
  1004. // default non-h-bot planning
  1005. count_position[X_AXIS] = a;
  1006. count_position[Y_AXIS] = b;
  1007. count_position[Z_AXIS] = c;
  1008. #endif
  1009. count_position[E_AXIS] = e;
  1010. CRITICAL_SECTION_END;
  1011. }
  1012. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1013. CRITICAL_SECTION_START;
  1014. count_position[axis] = v;
  1015. CRITICAL_SECTION_END;
  1016. }
  1017. void Stepper::set_e_position(const long &e) {
  1018. CRITICAL_SECTION_START;
  1019. count_position[E_AXIS] = e;
  1020. CRITICAL_SECTION_END;
  1021. }
  1022. /**
  1023. * Get a stepper's position in steps.
  1024. */
  1025. long Stepper::position(AxisEnum axis) {
  1026. CRITICAL_SECTION_START;
  1027. const long count_pos = count_position[axis];
  1028. CRITICAL_SECTION_END;
  1029. return count_pos;
  1030. }
  1031. /**
  1032. * Get an axis position according to stepper position(s)
  1033. * For CORE machines apply translation from ABC to XYZ.
  1034. */
  1035. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1036. float axis_steps;
  1037. #if IS_CORE
  1038. // Requesting one of the "core" axes?
  1039. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1040. CRITICAL_SECTION_START;
  1041. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1042. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1043. axis_steps = 0.5f * (
  1044. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1045. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1046. );
  1047. CRITICAL_SECTION_END;
  1048. }
  1049. else
  1050. axis_steps = position(axis);
  1051. #else
  1052. axis_steps = position(axis);
  1053. #endif
  1054. return axis_steps * planner.steps_to_mm[axis];
  1055. }
  1056. void Stepper::finish_and_disable() {
  1057. synchronize();
  1058. disable_all_steppers();
  1059. }
  1060. void Stepper::quick_stop() {
  1061. cleaning_buffer_counter = 5000;
  1062. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1063. while (planner.blocks_queued()) planner.discard_current_block();
  1064. current_block = NULL;
  1065. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1066. #if ENABLED(ULTRA_LCD)
  1067. planner.clear_block_buffer_runtime();
  1068. #endif
  1069. }
  1070. void Stepper::endstop_triggered(AxisEnum axis) {
  1071. #if IS_CORE
  1072. endstops_trigsteps[axis] = 0.5f * (
  1073. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1074. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1075. );
  1076. #else // !COREXY && !COREXZ && !COREYZ
  1077. endstops_trigsteps[axis] = count_position[axis];
  1078. #endif // !COREXY && !COREXZ && !COREYZ
  1079. kill_current_block();
  1080. cleaning_buffer_counter = -(BLOCK_BUFFER_SIZE - 1); // Ignore remaining blocks
  1081. }
  1082. void Stepper::report_positions() {
  1083. CRITICAL_SECTION_START;
  1084. const long xpos = count_position[X_AXIS],
  1085. ypos = count_position[Y_AXIS],
  1086. zpos = count_position[Z_AXIS];
  1087. CRITICAL_SECTION_END;
  1088. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1089. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1090. #else
  1091. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1092. #endif
  1093. SERIAL_PROTOCOL(xpos);
  1094. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1095. SERIAL_PROTOCOLPGM(" B:");
  1096. #else
  1097. SERIAL_PROTOCOLPGM(" Y:");
  1098. #endif
  1099. SERIAL_PROTOCOL(ypos);
  1100. #if CORE_IS_XZ || CORE_IS_YZ
  1101. SERIAL_PROTOCOLPGM(" C:");
  1102. #else
  1103. SERIAL_PROTOCOLPGM(" Z:");
  1104. #endif
  1105. SERIAL_PROTOCOL(zpos);
  1106. SERIAL_EOL();
  1107. }
  1108. #if ENABLED(BABYSTEPPING)
  1109. #if ENABLED(DELTA)
  1110. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1111. #else
  1112. #define CYCLES_EATEN_BABYSTEP 0
  1113. #endif
  1114. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1115. #define _ENABLE(AXIS) enable_## AXIS()
  1116. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1117. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1118. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1119. #if EXTRA_CYCLES_BABYSTEP > 20
  1120. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1121. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1122. #else
  1123. #define _SAVE_START NOOP
  1124. #if EXTRA_CYCLES_BABYSTEP > 0
  1125. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1126. #elif STEP_PULSE_CYCLES > 0
  1127. #define _PULSE_WAIT NOOP
  1128. #elif ENABLED(DELTA)
  1129. #define _PULSE_WAIT delayMicroseconds(2);
  1130. #else
  1131. #define _PULSE_WAIT delayMicroseconds(4);
  1132. #endif
  1133. #endif
  1134. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1135. const uint8_t old_dir = _READ_DIR(AXIS); \
  1136. _ENABLE(AXIS); \
  1137. _SAVE_START; \
  1138. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1139. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1140. _PULSE_WAIT; \
  1141. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1142. _APPLY_DIR(AXIS, old_dir); \
  1143. }
  1144. // MUST ONLY BE CALLED BY AN ISR,
  1145. // No other ISR should ever interrupt this!
  1146. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1147. cli();
  1148. switch (axis) {
  1149. #if ENABLED(BABYSTEP_XY)
  1150. case X_AXIS:
  1151. BABYSTEP_AXIS(X, false);
  1152. break;
  1153. case Y_AXIS:
  1154. BABYSTEP_AXIS(Y, false);
  1155. break;
  1156. #endif
  1157. case Z_AXIS: {
  1158. #if DISABLED(DELTA)
  1159. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1160. #else // DELTA
  1161. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1162. enable_X();
  1163. enable_Y();
  1164. enable_Z();
  1165. const uint8_t old_x_dir_pin = X_DIR_READ,
  1166. old_y_dir_pin = Y_DIR_READ,
  1167. old_z_dir_pin = Z_DIR_READ;
  1168. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1169. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1170. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1171. _SAVE_START;
  1172. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1173. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1174. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1175. _PULSE_WAIT;
  1176. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1177. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1178. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1179. // Restore direction bits
  1180. X_DIR_WRITE(old_x_dir_pin);
  1181. Y_DIR_WRITE(old_y_dir_pin);
  1182. Z_DIR_WRITE(old_z_dir_pin);
  1183. #endif
  1184. } break;
  1185. default: break;
  1186. }
  1187. sei();
  1188. }
  1189. #endif // BABYSTEPPING
  1190. /**
  1191. * Software-controlled Stepper Motor Current
  1192. */
  1193. #if HAS_DIGIPOTSS
  1194. // From Arduino DigitalPotControl example
  1195. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1196. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1197. SPI.transfer(address); // Send the address and value via SPI
  1198. SPI.transfer(value);
  1199. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1200. //delay(10);
  1201. }
  1202. #endif // HAS_DIGIPOTSS
  1203. #if HAS_MOTOR_CURRENT_PWM
  1204. void Stepper::refresh_motor_power() {
  1205. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1206. switch (i) {
  1207. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1208. case 0:
  1209. #endif
  1210. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1211. case 1:
  1212. #endif
  1213. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1214. case 2:
  1215. #endif
  1216. digipot_current(i, motor_current_setting[i]);
  1217. default: break;
  1218. }
  1219. }
  1220. }
  1221. #endif // HAS_MOTOR_CURRENT_PWM
  1222. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1223. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1224. #if HAS_DIGIPOTSS
  1225. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1226. digitalPotWrite(digipot_ch[driver], current);
  1227. #elif HAS_MOTOR_CURRENT_PWM
  1228. if (WITHIN(driver, 0, 2))
  1229. motor_current_setting[driver] = current; // update motor_current_setting
  1230. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1231. switch (driver) {
  1232. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1233. case 0: _WRITE_CURRENT_PWM(XY); break;
  1234. #endif
  1235. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1236. case 1: _WRITE_CURRENT_PWM(Z); break;
  1237. #endif
  1238. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1239. case 2: _WRITE_CURRENT_PWM(E); break;
  1240. #endif
  1241. }
  1242. #endif
  1243. }
  1244. void Stepper::digipot_init() {
  1245. #if HAS_DIGIPOTSS
  1246. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1247. SPI.begin();
  1248. SET_OUTPUT(DIGIPOTSS_PIN);
  1249. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1250. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1251. digipot_current(i, digipot_motor_current[i]);
  1252. }
  1253. #elif HAS_MOTOR_CURRENT_PWM
  1254. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1255. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1256. #endif
  1257. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1258. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1259. #endif
  1260. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1261. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1262. #endif
  1263. refresh_motor_power();
  1264. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1265. SET_CS5(PRESCALER_1);
  1266. #endif
  1267. }
  1268. #endif
  1269. #if HAS_MICROSTEPS
  1270. /**
  1271. * Software-controlled Microstepping
  1272. */
  1273. void Stepper::microstep_init() {
  1274. SET_OUTPUT(X_MS1_PIN);
  1275. SET_OUTPUT(X_MS2_PIN);
  1276. #if HAS_Y_MICROSTEPS
  1277. SET_OUTPUT(Y_MS1_PIN);
  1278. SET_OUTPUT(Y_MS2_PIN);
  1279. #endif
  1280. #if HAS_Z_MICROSTEPS
  1281. SET_OUTPUT(Z_MS1_PIN);
  1282. SET_OUTPUT(Z_MS2_PIN);
  1283. #endif
  1284. #if HAS_E0_MICROSTEPS
  1285. SET_OUTPUT(E0_MS1_PIN);
  1286. SET_OUTPUT(E0_MS2_PIN);
  1287. #endif
  1288. #if HAS_E1_MICROSTEPS
  1289. SET_OUTPUT(E1_MS1_PIN);
  1290. SET_OUTPUT(E1_MS2_PIN);
  1291. #endif
  1292. #if HAS_E2_MICROSTEPS
  1293. SET_OUTPUT(E2_MS1_PIN);
  1294. SET_OUTPUT(E2_MS2_PIN);
  1295. #endif
  1296. #if HAS_E3_MICROSTEPS
  1297. SET_OUTPUT(E3_MS1_PIN);
  1298. SET_OUTPUT(E3_MS2_PIN);
  1299. #endif
  1300. #if HAS_E4_MICROSTEPS
  1301. SET_OUTPUT(E4_MS1_PIN);
  1302. SET_OUTPUT(E4_MS2_PIN);
  1303. #endif
  1304. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1305. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1306. microstep_mode(i, microstep_modes[i]);
  1307. }
  1308. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1309. if (ms1 >= 0) switch (driver) {
  1310. case 0: WRITE(X_MS1_PIN, ms1); break;
  1311. #if HAS_Y_MICROSTEPS
  1312. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1313. #endif
  1314. #if HAS_Z_MICROSTEPS
  1315. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1316. #endif
  1317. #if HAS_E0_MICROSTEPS
  1318. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1319. #endif
  1320. #if HAS_E1_MICROSTEPS
  1321. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1322. #endif
  1323. #if HAS_E2_MICROSTEPS
  1324. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1325. #endif
  1326. #if HAS_E3_MICROSTEPS
  1327. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1328. #endif
  1329. #if HAS_E4_MICROSTEPS
  1330. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1331. #endif
  1332. }
  1333. if (ms2 >= 0) switch (driver) {
  1334. case 0: WRITE(X_MS2_PIN, ms2); break;
  1335. #if HAS_Y_MICROSTEPS
  1336. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1337. #endif
  1338. #if HAS_Z_MICROSTEPS
  1339. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1340. #endif
  1341. #if HAS_E0_MICROSTEPS
  1342. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1343. #endif
  1344. #if HAS_E1_MICROSTEPS
  1345. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1346. #endif
  1347. #if HAS_E2_MICROSTEPS
  1348. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1349. #endif
  1350. #if HAS_E3_MICROSTEPS
  1351. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1352. #endif
  1353. #if HAS_E4_MICROSTEPS
  1354. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1355. #endif
  1356. }
  1357. }
  1358. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1359. switch (stepping_mode) {
  1360. case 1: microstep_ms(driver, MICROSTEP1); break;
  1361. case 2: microstep_ms(driver, MICROSTEP2); break;
  1362. case 4: microstep_ms(driver, MICROSTEP4); break;
  1363. case 8: microstep_ms(driver, MICROSTEP8); break;
  1364. case 16: microstep_ms(driver, MICROSTEP16); break;
  1365. }
  1366. }
  1367. void Stepper::microstep_readings() {
  1368. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1369. SERIAL_PROTOCOLPGM("X: ");
  1370. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1371. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1372. #if HAS_Y_MICROSTEPS
  1373. SERIAL_PROTOCOLPGM("Y: ");
  1374. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1375. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1376. #endif
  1377. #if HAS_Z_MICROSTEPS
  1378. SERIAL_PROTOCOLPGM("Z: ");
  1379. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1380. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1381. #endif
  1382. #if HAS_E0_MICROSTEPS
  1383. SERIAL_PROTOCOLPGM("E0: ");
  1384. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1385. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1386. #endif
  1387. #if HAS_E1_MICROSTEPS
  1388. SERIAL_PROTOCOLPGM("E1: ");
  1389. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1390. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1391. #endif
  1392. #if HAS_E2_MICROSTEPS
  1393. SERIAL_PROTOCOLPGM("E2: ");
  1394. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1395. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1396. #endif
  1397. #if HAS_E3_MICROSTEPS
  1398. SERIAL_PROTOCOLPGM("E3: ");
  1399. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1400. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1401. #endif
  1402. #if HAS_E4_MICROSTEPS
  1403. SERIAL_PROTOCOLPGM("E4: ");
  1404. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1405. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1406. #endif
  1407. }
  1408. #endif // HAS_MICROSTEPS