My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 389KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '4-point' auto calibration iteration
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  447. #if HAS_ABL
  448. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  449. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  450. #elif defined(XY_PROBE_SPEED)
  451. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  452. #else
  453. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  454. #endif
  455. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  456. #if ENABLED(DELTA)
  457. #define ADJUST_DELTA(V) \
  458. if (planner.abl_enabled) { \
  459. const float zadj = bilinear_z_offset(V); \
  460. delta[A_AXIS] += zadj; \
  461. delta[B_AXIS] += zadj; \
  462. delta[C_AXIS] += zadj; \
  463. }
  464. #else
  465. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  466. #endif
  467. #elif IS_KINEMATIC
  468. #define ADJUST_DELTA(V) NOOP
  469. #endif
  470. #if ENABLED(Z_DUAL_ENDSTOPS)
  471. float z_endstop_adj =
  472. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. Z_DUAL_ENDSTOPS_ADJUSTMENT
  474. #else
  475. 0
  476. #endif
  477. ;
  478. #endif
  479. // Extruder offsets
  480. #if HOTENDS > 1
  481. float hotend_offset[XYZ][HOTENDS];
  482. #endif
  483. #if HAS_Z_SERVO_ENDSTOP
  484. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  485. #endif
  486. #if ENABLED(BARICUDA)
  487. int baricuda_valve_pressure = 0;
  488. int baricuda_e_to_p_pressure = 0;
  489. #endif
  490. #if ENABLED(FWRETRACT)
  491. bool autoretract_enabled = false;
  492. bool retracted[EXTRUDERS] = { false };
  493. bool retracted_swap[EXTRUDERS] = { false };
  494. float retract_length = RETRACT_LENGTH;
  495. float retract_length_swap = RETRACT_LENGTH_SWAP;
  496. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  497. float retract_zlift = RETRACT_ZLIFT;
  498. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  499. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  500. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  501. #endif // FWRETRACT
  502. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  503. bool powersupply =
  504. #if ENABLED(PS_DEFAULT_OFF)
  505. false
  506. #else
  507. true
  508. #endif
  509. ;
  510. #endif
  511. #if HAS_CASE_LIGHT
  512. bool case_light_on =
  513. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  514. true
  515. #else
  516. false
  517. #endif
  518. ;
  519. #endif
  520. #if ENABLED(DELTA)
  521. float delta[ABC],
  522. endstop_adj[ABC] = { 0 };
  523. // These values are loaded or reset at boot time when setup() calls
  524. // settings.load(), which calls recalc_delta_settings().
  525. float delta_radius,
  526. delta_tower_angle_trim[ABC],
  527. delta_tower[ABC][2],
  528. delta_diagonal_rod,
  529. delta_diagonal_rod_trim[ABC],
  530. delta_diagonal_rod_2_tower[ABC],
  531. delta_segments_per_second,
  532. delta_clip_start_height = Z_MAX_POS;
  533. float delta_safe_distance_from_top();
  534. #endif
  535. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  536. int bilinear_grid_spacing[2], bilinear_start[2];
  537. float bilinear_grid_factor[2],
  538. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  539. #endif
  540. #if IS_SCARA
  541. // Float constants for SCARA calculations
  542. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  543. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  544. L2_2 = sq(float(L2));
  545. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  546. delta[ABC];
  547. #endif
  548. float cartes[XYZ] = { 0 };
  549. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  550. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  551. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  552. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  553. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  554. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  555. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  556. #endif
  557. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  558. static bool filament_ran_out = false;
  559. #endif
  560. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  561. FilamentChangeMenuResponse filament_change_menu_response;
  562. #endif
  563. #if ENABLED(MIXING_EXTRUDER)
  564. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  565. #if MIXING_VIRTUAL_TOOLS > 1
  566. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  567. #endif
  568. #endif
  569. static bool send_ok[BUFSIZE];
  570. #if HAS_SERVOS
  571. Servo servo[NUM_SERVOS];
  572. #define MOVE_SERVO(I, P) servo[I].move(P)
  573. #if HAS_Z_SERVO_ENDSTOP
  574. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  575. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  576. #endif
  577. #endif
  578. #ifdef CHDK
  579. millis_t chdkHigh = 0;
  580. bool chdkActive = false;
  581. #endif
  582. #ifdef AUTOMATIC_CURRENT_CONTROL
  583. bool auto_current_control = 0;
  584. #endif
  585. #if ENABLED(PID_EXTRUSION_SCALING)
  586. int lpq_len = 20;
  587. #endif
  588. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  589. MarlinBusyState busy_state = NOT_BUSY;
  590. static millis_t next_busy_signal_ms = 0;
  591. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  592. #else
  593. #define host_keepalive() NOOP
  594. #endif
  595. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  596. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  597. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  598. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  599. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  600. typedef void __void_##CONFIG##__
  601. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  604. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  605. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  606. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  607. /**
  608. * ***************************************************************************
  609. * ******************************** FUNCTIONS ********************************
  610. * ***************************************************************************
  611. */
  612. void stop();
  613. void get_available_commands();
  614. void process_next_command();
  615. void prepare_move_to_destination();
  616. void get_cartesian_from_steppers();
  617. void set_current_from_steppers_for_axis(const AxisEnum axis);
  618. #if ENABLED(ARC_SUPPORT)
  619. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  620. #endif
  621. #if ENABLED(BEZIER_CURVE_SUPPORT)
  622. void plan_cubic_move(const float offset[4]);
  623. #endif
  624. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  625. static void report_current_position();
  626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  627. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  628. serialprintPGM(prefix);
  629. SERIAL_CHAR('(');
  630. SERIAL_ECHO(x);
  631. SERIAL_ECHOPAIR(", ", y);
  632. SERIAL_ECHOPAIR(", ", z);
  633. SERIAL_CHAR(')');
  634. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  635. }
  636. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  637. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  638. }
  639. #if HAS_ABL
  640. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  641. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  642. }
  643. #endif
  644. #define DEBUG_POS(SUFFIX,VAR) do { \
  645. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  646. #endif
  647. /**
  648. * sync_plan_position
  649. *
  650. * Set the planner/stepper positions directly from current_position with
  651. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  652. */
  653. inline void sync_plan_position() {
  654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  655. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  656. #endif
  657. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  658. }
  659. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  660. #if IS_KINEMATIC
  661. inline void sync_plan_position_kinematic() {
  662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  663. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  664. #endif
  665. planner.set_position_mm_kinematic(current_position);
  666. }
  667. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  668. #else
  669. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  670. #endif
  671. #if ENABLED(SDSUPPORT)
  672. #include "SdFatUtil.h"
  673. int freeMemory() { return SdFatUtil::FreeRam(); }
  674. #else
  675. extern "C" {
  676. extern char __bss_end;
  677. extern char __heap_start;
  678. extern void* __brkval;
  679. int freeMemory() {
  680. int free_memory;
  681. if ((int)__brkval == 0)
  682. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  683. else
  684. free_memory = ((int)&free_memory) - ((int)__brkval);
  685. return free_memory;
  686. }
  687. }
  688. #endif //!SDSUPPORT
  689. #if ENABLED(DIGIPOT_I2C)
  690. extern void digipot_i2c_set_current(int channel, float current);
  691. extern void digipot_i2c_init();
  692. #endif
  693. /**
  694. * Inject the next "immediate" command, when possible, onto the front of the queue.
  695. * Return true if any immediate commands remain to inject.
  696. */
  697. static bool drain_injected_commands_P() {
  698. if (injected_commands_P != NULL) {
  699. size_t i = 0;
  700. char c, cmd[30];
  701. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  702. cmd[sizeof(cmd) - 1] = '\0';
  703. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  704. cmd[i] = '\0';
  705. if (enqueue_and_echo_command(cmd)) // success?
  706. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  707. }
  708. return (injected_commands_P != NULL); // return whether any more remain
  709. }
  710. /**
  711. * Record one or many commands to run from program memory.
  712. * Aborts the current queue, if any.
  713. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  714. */
  715. void enqueue_and_echo_commands_P(const char* pgcode) {
  716. injected_commands_P = pgcode;
  717. drain_injected_commands_P(); // first command executed asap (when possible)
  718. }
  719. /**
  720. * Clear the Marlin command queue
  721. */
  722. void clear_command_queue() {
  723. cmd_queue_index_r = cmd_queue_index_w;
  724. commands_in_queue = 0;
  725. }
  726. /**
  727. * Once a new command is in the ring buffer, call this to commit it
  728. */
  729. inline void _commit_command(bool say_ok) {
  730. send_ok[cmd_queue_index_w] = say_ok;
  731. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  732. commands_in_queue++;
  733. }
  734. /**
  735. * Copy a command from RAM into the main command buffer.
  736. * Return true if the command was successfully added.
  737. * Return false for a full buffer, or if the 'command' is a comment.
  738. */
  739. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  740. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  741. strcpy(command_queue[cmd_queue_index_w], cmd);
  742. _commit_command(say_ok);
  743. return true;
  744. }
  745. /**
  746. * Enqueue with Serial Echo
  747. */
  748. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  749. if (_enqueuecommand(cmd, say_ok)) {
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  752. SERIAL_CHAR('"');
  753. SERIAL_EOL;
  754. return true;
  755. }
  756. return false;
  757. }
  758. void setup_killpin() {
  759. #if HAS_KILL
  760. SET_INPUT_PULLUP(KILL_PIN);
  761. #endif
  762. }
  763. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  764. void setup_filrunoutpin() {
  765. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  766. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  767. #else
  768. SET_INPUT(FIL_RUNOUT_PIN);
  769. #endif
  770. }
  771. #endif
  772. void setup_homepin(void) {
  773. #if HAS_HOME
  774. SET_INPUT_PULLUP(HOME_PIN);
  775. #endif
  776. }
  777. void setup_powerhold() {
  778. #if HAS_SUICIDE
  779. OUT_WRITE(SUICIDE_PIN, HIGH);
  780. #endif
  781. #if HAS_POWER_SWITCH
  782. #if ENABLED(PS_DEFAULT_OFF)
  783. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  784. #else
  785. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  786. #endif
  787. #endif
  788. }
  789. void suicide() {
  790. #if HAS_SUICIDE
  791. OUT_WRITE(SUICIDE_PIN, LOW);
  792. #endif
  793. }
  794. void servo_init() {
  795. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  796. servo[0].attach(SERVO0_PIN);
  797. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  798. #endif
  799. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  800. servo[1].attach(SERVO1_PIN);
  801. servo[1].detach();
  802. #endif
  803. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  804. servo[2].attach(SERVO2_PIN);
  805. servo[2].detach();
  806. #endif
  807. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  808. servo[3].attach(SERVO3_PIN);
  809. servo[3].detach();
  810. #endif
  811. #if HAS_Z_SERVO_ENDSTOP
  812. /**
  813. * Set position of Z Servo Endstop
  814. *
  815. * The servo might be deployed and positioned too low to stow
  816. * when starting up the machine or rebooting the board.
  817. * There's no way to know where the nozzle is positioned until
  818. * homing has been done - no homing with z-probe without init!
  819. *
  820. */
  821. STOW_Z_SERVO();
  822. #endif
  823. }
  824. /**
  825. * Stepper Reset (RigidBoard, et.al.)
  826. */
  827. #if HAS_STEPPER_RESET
  828. void disableStepperDrivers() {
  829. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  830. }
  831. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  832. #endif
  833. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  834. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  835. i2c.receive(bytes);
  836. }
  837. void i2c_on_request() { // just send dummy data for now
  838. i2c.reply("Hello World!\n");
  839. }
  840. #endif
  841. #if HAS_COLOR_LEDS
  842. void set_led_color(
  843. const uint8_t r, const uint8_t g, const uint8_t b
  844. #if ENABLED(RGBW_LED)
  845. , const uint8_t w=0
  846. #endif
  847. ) {
  848. #if ENABLED(BLINKM)
  849. // This variant uses i2c to send the RGB components to the device.
  850. SendColors(r, g, b);
  851. #else
  852. // This variant uses 3 separate pins for the RGB components.
  853. // If the pins can do PWM then their intensity will be set.
  854. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  855. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  856. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  857. analogWrite(RGB_LED_R_PIN, r);
  858. analogWrite(RGB_LED_G_PIN, g);
  859. analogWrite(RGB_LED_B_PIN, b);
  860. #if ENABLED(RGBW_LED)
  861. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  862. analogWrite(RGB_LED_W_PIN, w);
  863. #endif
  864. #endif
  865. }
  866. #endif // HAS_COLOR_LEDS
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. /**
  876. * Get all commands waiting on the serial port and queue them.
  877. * Exit when the buffer is full or when no more characters are
  878. * left on the serial port.
  879. */
  880. inline void get_serial_commands() {
  881. static char serial_line_buffer[MAX_CMD_SIZE];
  882. static bool serial_comment_mode = false;
  883. // If the command buffer is empty for too long,
  884. // send "wait" to indicate Marlin is still waiting.
  885. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  886. static millis_t last_command_time = 0;
  887. const millis_t ms = millis();
  888. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  889. SERIAL_ECHOLNPGM(MSG_WAIT);
  890. last_command_time = ms;
  891. }
  892. #endif
  893. /**
  894. * Loop while serial characters are incoming and the queue is not full
  895. */
  896. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  897. char serial_char = MYSERIAL.read();
  898. /**
  899. * If the character ends the line
  900. */
  901. if (serial_char == '\n' || serial_char == '\r') {
  902. serial_comment_mode = false; // end of line == end of comment
  903. if (!serial_count) continue; // skip empty lines
  904. serial_line_buffer[serial_count] = 0; // terminate string
  905. serial_count = 0; //reset buffer
  906. char* command = serial_line_buffer;
  907. while (*command == ' ') command++; // skip any leading spaces
  908. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  909. char* apos = strchr(command, '*');
  910. if (npos) {
  911. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  912. if (M110) {
  913. char* n2pos = strchr(command + 4, 'N');
  914. if (n2pos) npos = n2pos;
  915. }
  916. gcode_N = strtol(npos + 1, NULL, 10);
  917. if (gcode_N != gcode_LastN + 1 && !M110) {
  918. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  919. return;
  920. }
  921. if (apos) {
  922. byte checksum = 0, count = 0;
  923. while (command[count] != '*') checksum ^= command[count++];
  924. if (strtol(apos + 1, NULL, 10) != checksum) {
  925. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  926. return;
  927. }
  928. // if no errors, continue parsing
  929. }
  930. else {
  931. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  932. return;
  933. }
  934. gcode_LastN = gcode_N;
  935. // if no errors, continue parsing
  936. }
  937. else if (apos) { // No '*' without 'N'
  938. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  939. return;
  940. }
  941. // Movement commands alert when stopped
  942. if (IsStopped()) {
  943. char* gpos = strchr(command, 'G');
  944. if (gpos) {
  945. const int codenum = strtol(gpos + 1, NULL, 10);
  946. switch (codenum) {
  947. case 0:
  948. case 1:
  949. case 2:
  950. case 3:
  951. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  952. LCD_MESSAGEPGM(MSG_STOPPED);
  953. break;
  954. }
  955. }
  956. }
  957. #if DISABLED(EMERGENCY_PARSER)
  958. // If command was e-stop process now
  959. if (strcmp(command, "M108") == 0) {
  960. wait_for_heatup = false;
  961. #if ENABLED(ULTIPANEL)
  962. wait_for_user = false;
  963. #endif
  964. }
  965. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  966. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  967. #endif
  968. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  969. last_command_time = ms;
  970. #endif
  971. // Add the command to the queue
  972. _enqueuecommand(serial_line_buffer, true);
  973. }
  974. else if (serial_count >= MAX_CMD_SIZE - 1) {
  975. // Keep fetching, but ignore normal characters beyond the max length
  976. // The command will be injected when EOL is reached
  977. }
  978. else if (serial_char == '\\') { // Handle escapes
  979. if (MYSERIAL.available() > 0) {
  980. // if we have one more character, copy it over
  981. serial_char = MYSERIAL.read();
  982. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  983. }
  984. // otherwise do nothing
  985. }
  986. else { // it's not a newline, carriage return or escape char
  987. if (serial_char == ';') serial_comment_mode = true;
  988. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  989. }
  990. } // queue has space, serial has data
  991. }
  992. #if ENABLED(SDSUPPORT)
  993. /**
  994. * Get commands from the SD Card until the command buffer is full
  995. * or until the end of the file is reached. The special character '#'
  996. * can also interrupt buffering.
  997. */
  998. inline void get_sdcard_commands() {
  999. static bool stop_buffering = false,
  1000. sd_comment_mode = false;
  1001. if (!card.sdprinting) return;
  1002. /**
  1003. * '#' stops reading from SD to the buffer prematurely, so procedural
  1004. * macro calls are possible. If it occurs, stop_buffering is triggered
  1005. * and the buffer is run dry; this character _can_ occur in serial com
  1006. * due to checksums, however, no checksums are used in SD printing.
  1007. */
  1008. if (commands_in_queue == 0) stop_buffering = false;
  1009. uint16_t sd_count = 0;
  1010. bool card_eof = card.eof();
  1011. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1012. const int16_t n = card.get();
  1013. char sd_char = (char)n;
  1014. card_eof = card.eof();
  1015. if (card_eof || n == -1
  1016. || sd_char == '\n' || sd_char == '\r'
  1017. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1018. ) {
  1019. if (card_eof) {
  1020. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1021. card.printingHasFinished();
  1022. #if ENABLED(PRINTER_EVENT_LEDS)
  1023. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1024. set_led_color(0, 255, 0); // Green
  1025. #if HAS_RESUME_CONTINUE
  1026. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1027. wait_for_user = true;
  1028. while (wait_for_user) idle();
  1029. KEEPALIVE_STATE(IN_HANDLER);
  1030. #else
  1031. safe_delay(1000);
  1032. #endif
  1033. set_led_color(0, 0, 0); // OFF
  1034. #endif
  1035. card.checkautostart(true);
  1036. }
  1037. else if (n == -1) {
  1038. SERIAL_ERROR_START;
  1039. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1040. }
  1041. if (sd_char == '#') stop_buffering = true;
  1042. sd_comment_mode = false; // for new command
  1043. if (!sd_count) continue; // skip empty lines (and comment lines)
  1044. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1045. sd_count = 0; // clear sd line buffer
  1046. _commit_command(false);
  1047. }
  1048. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1049. /**
  1050. * Keep fetching, but ignore normal characters beyond the max length
  1051. * The command will be injected when EOL is reached
  1052. */
  1053. }
  1054. else {
  1055. if (sd_char == ';') sd_comment_mode = true;
  1056. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1057. }
  1058. }
  1059. }
  1060. #endif // SDSUPPORT
  1061. /**
  1062. * Add to the circular command queue the next command from:
  1063. * - The command-injection queue (injected_commands_P)
  1064. * - The active serial input (usually USB)
  1065. * - The SD card file being actively printed
  1066. */
  1067. void get_available_commands() {
  1068. // if any immediate commands remain, don't get other commands yet
  1069. if (drain_injected_commands_P()) return;
  1070. get_serial_commands();
  1071. #if ENABLED(SDSUPPORT)
  1072. get_sdcard_commands();
  1073. #endif
  1074. }
  1075. inline bool code_has_value() {
  1076. int i = 1;
  1077. char c = seen_pointer[i];
  1078. while (c == ' ') c = seen_pointer[++i];
  1079. if (c == '-' || c == '+') c = seen_pointer[++i];
  1080. if (c == '.') c = seen_pointer[++i];
  1081. return NUMERIC(c);
  1082. }
  1083. inline float code_value_float() {
  1084. char* e = strchr(seen_pointer, 'E');
  1085. if (!e) return strtod(seen_pointer + 1, NULL);
  1086. *e = 0;
  1087. float ret = strtod(seen_pointer + 1, NULL);
  1088. *e = 'E';
  1089. return ret;
  1090. }
  1091. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1092. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1093. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1094. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1095. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1096. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1097. #if ENABLED(INCH_MODE_SUPPORT)
  1098. inline void set_input_linear_units(LinearUnit units) {
  1099. switch (units) {
  1100. case LINEARUNIT_INCH:
  1101. linear_unit_factor = 25.4;
  1102. break;
  1103. case LINEARUNIT_MM:
  1104. default:
  1105. linear_unit_factor = 1.0;
  1106. break;
  1107. }
  1108. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1109. }
  1110. inline float axis_unit_factor(const AxisEnum axis) {
  1111. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1112. }
  1113. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1114. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1115. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1116. #else
  1117. #define code_value_linear_units() code_value_float()
  1118. #define code_value_axis_units(A) code_value_float()
  1119. #define code_value_per_axis_unit(A) code_value_float()
  1120. #endif
  1121. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1122. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1123. float code_value_temp_abs() {
  1124. switch (input_temp_units) {
  1125. case TEMPUNIT_C:
  1126. return code_value_float();
  1127. case TEMPUNIT_F:
  1128. return (code_value_float() - 32) * 0.5555555556;
  1129. case TEMPUNIT_K:
  1130. return code_value_float() - 273.15;
  1131. default:
  1132. return code_value_float();
  1133. }
  1134. }
  1135. float code_value_temp_diff() {
  1136. switch (input_temp_units) {
  1137. case TEMPUNIT_C:
  1138. case TEMPUNIT_K:
  1139. return code_value_float();
  1140. case TEMPUNIT_F:
  1141. return code_value_float() * 0.5555555556;
  1142. default:
  1143. return code_value_float();
  1144. }
  1145. }
  1146. #else
  1147. float code_value_temp_abs() { return code_value_float(); }
  1148. float code_value_temp_diff() { return code_value_float(); }
  1149. #endif
  1150. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1151. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1152. bool code_seen(char code) {
  1153. seen_pointer = strchr(current_command_args, code);
  1154. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1155. }
  1156. /**
  1157. * Set target_extruder from the T parameter or the active_extruder
  1158. *
  1159. * Returns TRUE if the target is invalid
  1160. */
  1161. bool get_target_extruder_from_command(int code) {
  1162. if (code_seen('T')) {
  1163. if (code_value_byte() >= EXTRUDERS) {
  1164. SERIAL_ECHO_START;
  1165. SERIAL_CHAR('M');
  1166. SERIAL_ECHO(code);
  1167. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1168. return true;
  1169. }
  1170. target_extruder = code_value_byte();
  1171. }
  1172. else
  1173. target_extruder = active_extruder;
  1174. return false;
  1175. }
  1176. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1177. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1178. #endif
  1179. #if ENABLED(DUAL_X_CARRIAGE)
  1180. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1181. static float x_home_pos(const int extruder) {
  1182. if (extruder == 0)
  1183. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1184. else
  1185. /**
  1186. * In dual carriage mode the extruder offset provides an override of the
  1187. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1188. * This allows soft recalibration of the second extruder home position
  1189. * without firmware reflash (through the M218 command).
  1190. */
  1191. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1192. }
  1193. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1194. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1195. static bool active_extruder_parked = false; // used in mode 1 & 2
  1196. static float raised_parked_position[XYZE]; // used in mode 1
  1197. static millis_t delayed_move_time = 0; // used in mode 1
  1198. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1199. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1200. #endif // DUAL_X_CARRIAGE
  1201. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1202. /**
  1203. * Software endstops can be used to monitor the open end of
  1204. * an axis that has a hardware endstop on the other end. Or
  1205. * they can prevent axes from moving past endstops and grinding.
  1206. *
  1207. * To keep doing their job as the coordinate system changes,
  1208. * the software endstop positions must be refreshed to remain
  1209. * at the same positions relative to the machine.
  1210. */
  1211. void update_software_endstops(const AxisEnum axis) {
  1212. const float offs = 0.0
  1213. #if HAS_HOME_OFFSET
  1214. + home_offset[axis]
  1215. #endif
  1216. #if HAS_POSITION_SHIFT
  1217. + position_shift[axis]
  1218. #endif
  1219. ;
  1220. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1221. workspace_offset[axis] = offs;
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. if (axis == X_AXIS) {
  1225. // In Dual X mode hotend_offset[X] is T1's home position
  1226. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1227. if (active_extruder != 0) {
  1228. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1229. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1230. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1231. }
  1232. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1233. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1234. // but not so far to the right that T1 would move past the end
  1235. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1236. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1237. }
  1238. else {
  1239. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1240. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1241. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1242. }
  1243. }
  1244. #else
  1245. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1246. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1247. #endif
  1248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1249. if (DEBUGGING(LEVELING)) {
  1250. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1251. #if HAS_HOME_OFFSET
  1252. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1253. #endif
  1254. #if HAS_POSITION_SHIFT
  1255. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1256. #endif
  1257. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1258. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1259. }
  1260. #endif
  1261. #if ENABLED(DELTA)
  1262. if (axis == Z_AXIS)
  1263. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1264. #endif
  1265. }
  1266. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1267. #if HAS_M206_COMMAND
  1268. /**
  1269. * Change the home offset for an axis, update the current
  1270. * position and the software endstops to retain the same
  1271. * relative distance to the new home.
  1272. *
  1273. * Since this changes the current_position, code should
  1274. * call sync_plan_position soon after this.
  1275. */
  1276. static void set_home_offset(const AxisEnum axis, const float v) {
  1277. current_position[axis] += v - home_offset[axis];
  1278. home_offset[axis] = v;
  1279. update_software_endstops(axis);
  1280. }
  1281. #endif // HAS_M206_COMMAND
  1282. /**
  1283. * Set an axis' current position to its home position (after homing).
  1284. *
  1285. * For Core and Cartesian robots this applies one-to-one when an
  1286. * individual axis has been homed.
  1287. *
  1288. * DELTA should wait until all homing is done before setting the XYZ
  1289. * current_position to home, because homing is a single operation.
  1290. * In the case where the axis positions are already known and previously
  1291. * homed, DELTA could home to X or Y individually by moving either one
  1292. * to the center. However, homing Z always homes XY and Z.
  1293. *
  1294. * SCARA should wait until all XY homing is done before setting the XY
  1295. * current_position to home, because neither X nor Y is at home until
  1296. * both are at home. Z can however be homed individually.
  1297. *
  1298. * Callers must sync the planner position after calling this!
  1299. */
  1300. static void set_axis_is_at_home(AxisEnum axis) {
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (DEBUGGING(LEVELING)) {
  1303. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1304. SERIAL_CHAR(')');
  1305. SERIAL_EOL;
  1306. }
  1307. #endif
  1308. axis_known_position[axis] = axis_homed[axis] = true;
  1309. #if HAS_POSITION_SHIFT
  1310. position_shift[axis] = 0;
  1311. update_software_endstops(axis);
  1312. #endif
  1313. #if ENABLED(DUAL_X_CARRIAGE)
  1314. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1315. current_position[X_AXIS] = x_home_pos(active_extruder);
  1316. return;
  1317. }
  1318. #endif
  1319. #if ENABLED(MORGAN_SCARA)
  1320. /**
  1321. * Morgan SCARA homes XY at the same time
  1322. */
  1323. if (axis == X_AXIS || axis == Y_AXIS) {
  1324. float homeposition[XYZ];
  1325. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1326. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1327. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1328. /**
  1329. * Get Home position SCARA arm angles using inverse kinematics,
  1330. * and calculate homing offset using forward kinematics
  1331. */
  1332. inverse_kinematics(homeposition);
  1333. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1334. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1335. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1336. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1337. /**
  1338. * SCARA home positions are based on configuration since the actual
  1339. * limits are determined by the inverse kinematic transform.
  1340. */
  1341. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1343. }
  1344. else
  1345. #endif
  1346. {
  1347. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1348. }
  1349. /**
  1350. * Z Probe Z Homing? Account for the probe's Z offset.
  1351. */
  1352. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1353. if (axis == Z_AXIS) {
  1354. #if HOMING_Z_WITH_PROBE
  1355. current_position[Z_AXIS] -= zprobe_zoffset;
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) {
  1358. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1359. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1360. }
  1361. #endif
  1362. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1364. #endif
  1365. }
  1366. #endif
  1367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1368. if (DEBUGGING(LEVELING)) {
  1369. #if HAS_HOME_OFFSET
  1370. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1371. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1372. #endif
  1373. DEBUG_POS("", current_position);
  1374. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1375. SERIAL_CHAR(')');
  1376. SERIAL_EOL;
  1377. }
  1378. #endif
  1379. }
  1380. /**
  1381. * Some planner shorthand inline functions
  1382. */
  1383. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1384. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1385. int hbd = homing_bump_divisor[axis];
  1386. if (hbd < 1) {
  1387. hbd = 10;
  1388. SERIAL_ECHO_START;
  1389. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1390. }
  1391. return homing_feedrate_mm_s[axis] / hbd;
  1392. }
  1393. //
  1394. // line_to_current_position
  1395. // Move the planner to the current position from wherever it last moved
  1396. // (or from wherever it has been told it is located).
  1397. //
  1398. inline void line_to_current_position() {
  1399. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1400. }
  1401. //
  1402. // line_to_destination
  1403. // Move the planner, not necessarily synced with current_position
  1404. //
  1405. inline void line_to_destination(float fr_mm_s) {
  1406. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1407. }
  1408. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1409. inline void set_current_to_destination() { COPY(current_position, destination); }
  1410. inline void set_destination_to_current() { COPY(destination, current_position); }
  1411. #if IS_KINEMATIC
  1412. /**
  1413. * Calculate delta, start a line, and set current_position to destination
  1414. */
  1415. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1418. #endif
  1419. if ( current_position[X_AXIS] == destination[X_AXIS]
  1420. && current_position[Y_AXIS] == destination[Y_AXIS]
  1421. && current_position[Z_AXIS] == destination[Z_AXIS]
  1422. && current_position[E_AXIS] == destination[E_AXIS]
  1423. ) return;
  1424. refresh_cmd_timeout();
  1425. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1426. set_current_to_destination();
  1427. }
  1428. #endif // IS_KINEMATIC
  1429. /**
  1430. * Plan a move to (X, Y, Z) and set the current_position
  1431. * The final current_position may not be the one that was requested
  1432. */
  1433. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1434. const float old_feedrate_mm_s = feedrate_mm_s;
  1435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1436. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1437. #endif
  1438. #if ENABLED(DELTA)
  1439. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1440. set_destination_to_current(); // sync destination at the start
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1443. #endif
  1444. // when in the danger zone
  1445. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1446. if (z > delta_clip_start_height) { // staying in the danger zone
  1447. destination[X_AXIS] = x; // move directly (uninterpolated)
  1448. destination[Y_AXIS] = y;
  1449. destination[Z_AXIS] = z;
  1450. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1453. #endif
  1454. return;
  1455. }
  1456. else {
  1457. destination[Z_AXIS] = delta_clip_start_height;
  1458. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1460. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1461. #endif
  1462. }
  1463. }
  1464. if (z > current_position[Z_AXIS]) { // raising?
  1465. destination[Z_AXIS] = z;
  1466. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1469. #endif
  1470. }
  1471. destination[X_AXIS] = x;
  1472. destination[Y_AXIS] = y;
  1473. prepare_move_to_destination(); // set_current_to_destination
  1474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1475. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1476. #endif
  1477. if (z < current_position[Z_AXIS]) { // lowering?
  1478. destination[Z_AXIS] = z;
  1479. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1482. #endif
  1483. }
  1484. #elif IS_SCARA
  1485. set_destination_to_current();
  1486. // If Z needs to raise, do it before moving XY
  1487. if (destination[Z_AXIS] < z) {
  1488. destination[Z_AXIS] = z;
  1489. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1490. }
  1491. destination[X_AXIS] = x;
  1492. destination[Y_AXIS] = y;
  1493. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1494. // If Z needs to lower, do it after moving XY
  1495. if (destination[Z_AXIS] > z) {
  1496. destination[Z_AXIS] = z;
  1497. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1498. }
  1499. #else
  1500. // If Z needs to raise, do it before moving XY
  1501. if (current_position[Z_AXIS] < z) {
  1502. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1503. current_position[Z_AXIS] = z;
  1504. line_to_current_position();
  1505. }
  1506. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1507. current_position[X_AXIS] = x;
  1508. current_position[Y_AXIS] = y;
  1509. line_to_current_position();
  1510. // If Z needs to lower, do it after moving XY
  1511. if (current_position[Z_AXIS] > z) {
  1512. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1513. current_position[Z_AXIS] = z;
  1514. line_to_current_position();
  1515. }
  1516. #endif
  1517. stepper.synchronize();
  1518. feedrate_mm_s = old_feedrate_mm_s;
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1521. #endif
  1522. }
  1523. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1524. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1525. }
  1526. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1527. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1528. }
  1529. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1530. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1531. }
  1532. //
  1533. // Prepare to do endstop or probe moves
  1534. // with custom feedrates.
  1535. //
  1536. // - Save current feedrates
  1537. // - Reset the rate multiplier
  1538. // - Reset the command timeout
  1539. // - Enable the endstops (for endstop moves)
  1540. //
  1541. static void setup_for_endstop_or_probe_move() {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1544. #endif
  1545. saved_feedrate_mm_s = feedrate_mm_s;
  1546. saved_feedrate_percentage = feedrate_percentage;
  1547. feedrate_percentage = 100;
  1548. refresh_cmd_timeout();
  1549. }
  1550. static void clean_up_after_endstop_or_probe_move() {
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1553. #endif
  1554. feedrate_mm_s = saved_feedrate_mm_s;
  1555. feedrate_percentage = saved_feedrate_percentage;
  1556. refresh_cmd_timeout();
  1557. }
  1558. #if HAS_BED_PROBE
  1559. /**
  1560. * Raise Z to a minimum height to make room for a probe to move
  1561. */
  1562. inline void do_probe_raise(float z_raise) {
  1563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1564. if (DEBUGGING(LEVELING)) {
  1565. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1566. SERIAL_CHAR(')');
  1567. SERIAL_EOL;
  1568. }
  1569. #endif
  1570. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1571. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1572. if (z_dest > current_position[Z_AXIS])
  1573. do_blocking_move_to_z(z_dest);
  1574. }
  1575. #endif //HAS_BED_PROBE
  1576. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1577. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1578. const bool xx = x && !axis_homed[X_AXIS],
  1579. yy = y && !axis_homed[Y_AXIS],
  1580. zz = z && !axis_homed[Z_AXIS];
  1581. if (xx || yy || zz) {
  1582. SERIAL_ECHO_START;
  1583. SERIAL_ECHOPGM(MSG_HOME " ");
  1584. if (xx) SERIAL_ECHOPGM(MSG_X);
  1585. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1586. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1587. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1588. #if ENABLED(ULTRA_LCD)
  1589. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1590. #endif
  1591. return true;
  1592. }
  1593. return false;
  1594. }
  1595. #endif
  1596. #if ENABLED(Z_PROBE_SLED)
  1597. #ifndef SLED_DOCKING_OFFSET
  1598. #define SLED_DOCKING_OFFSET 0
  1599. #endif
  1600. /**
  1601. * Method to dock/undock a sled designed by Charles Bell.
  1602. *
  1603. * stow[in] If false, move to MAX_X and engage the solenoid
  1604. * If true, move to MAX_X and release the solenoid
  1605. */
  1606. static void dock_sled(bool stow) {
  1607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1608. if (DEBUGGING(LEVELING)) {
  1609. SERIAL_ECHOPAIR("dock_sled(", stow);
  1610. SERIAL_CHAR(')');
  1611. SERIAL_EOL;
  1612. }
  1613. #endif
  1614. // Dock sled a bit closer to ensure proper capturing
  1615. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1616. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1617. WRITE(SOL1_PIN, !stow); // switch solenoid
  1618. #endif
  1619. }
  1620. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1621. void run_deploy_moves_script() {
  1622. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1634. #endif
  1635. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1636. #endif
  1637. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1649. #endif
  1650. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1651. #endif
  1652. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1664. #endif
  1665. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1679. #endif
  1680. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1681. #endif
  1682. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1694. #endif
  1695. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1696. #endif
  1697. }
  1698. void run_stow_moves_script() {
  1699. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1701. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1711. #endif
  1712. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1713. #endif
  1714. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1716. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1719. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1722. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1725. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1726. #endif
  1727. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1728. #endif
  1729. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1731. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1741. #endif
  1742. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1743. #endif
  1744. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1746. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1756. #endif
  1757. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1758. #endif
  1759. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1761. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1762. #endif
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1764. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1765. #endif
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1767. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1770. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1771. #endif
  1772. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1773. #endif
  1774. }
  1775. #endif
  1776. #if HAS_BED_PROBE
  1777. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1778. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1779. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1780. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1781. #else
  1782. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1783. #endif
  1784. #endif
  1785. #if ENABLED(BLTOUCH)
  1786. void bltouch_command(int angle) {
  1787. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1788. safe_delay(BLTOUCH_DELAY);
  1789. }
  1790. //
  1791. // The BL-Touch probes have a HAL effect sensor. The high currents switching
  1792. // on and off cause big magnetic fields that can affect the reliability of the
  1793. // sensor. So, for BL-Touch probes, we turn off the heaters during the actual probe.
  1794. // And then we quickly turn them back on after we have sampled the point
  1795. //
  1796. void turn_heaters_on_or_off_for_bltouch(const bool deploy) {
  1797. static int8_t bltouch_recursion_cnt=0;
  1798. static millis_t last_emi_protection=0;
  1799. static float temps_at_entry[HOTENDS];
  1800. #if HAS_TEMP_BED
  1801. static float bed_temp_at_entry;
  1802. #endif
  1803. if (deploy && bltouch_recursion_cnt>0) // if already in the correct state, we don't need to do anything
  1804. return; // with the heaters.
  1805. if (!deploy && bltouch_recursion_cnt<1) // if already in the correct state, we don't need to do anything
  1806. return; // with the heaters.
  1807. if (deploy) {
  1808. bltouch_recursion_cnt++;
  1809. last_emi_protection = millis();
  1810. HOTEND_LOOP() temps_at_entry[e] = thermalManager.degTargetHotend(e); // save the current target temperatures
  1811. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // so we know what to restore them to.
  1812. #if HAS_TEMP_BED
  1813. bed_temp_at_entry = thermalManager.degTargetBed();
  1814. thermalManager.setTargetBed(0.0);
  1815. #endif
  1816. }
  1817. else {
  1818. bltouch_recursion_cnt--; // the heaters are only turned back on
  1819. if (bltouch_recursion_cnt==0 && ((last_emi_protection+20000L)>millis())) { // if everything is perfect. It is expected
  1820. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e); // that the bltouch_recursion_cnt is zero and
  1821. #if HAS_TEMP_BED // that the heaters were shut off less than
  1822. thermalManager.setTargetBed(bed_temp_at_entry); // 20 seconds ago
  1823. #endif
  1824. }
  1825. }
  1826. }
  1827. void set_bltouch_deployed(const bool deploy) {
  1828. turn_heaters_on_or_off_for_bltouch(deploy);
  1829. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1830. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1831. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1832. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1833. safe_delay(1500); // wait for internal self test to complete
  1834. // measured completion time was 0.65 seconds
  1835. // after reset, deploy & stow sequence
  1836. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1837. SERIAL_ERROR_START;
  1838. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1839. stop(); // punt!
  1840. }
  1841. }
  1842. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1844. if (DEBUGGING(LEVELING)) {
  1845. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1846. SERIAL_CHAR(')');
  1847. SERIAL_EOL;
  1848. }
  1849. #endif
  1850. }
  1851. #endif
  1852. // returns false for ok and true for failure
  1853. bool set_probe_deployed(bool deploy) {
  1854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1855. if (DEBUGGING(LEVELING)) {
  1856. DEBUG_POS("set_probe_deployed", current_position);
  1857. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1858. }
  1859. #endif
  1860. #if ENABLED(BLTOUCH)
  1861. turn_heaters_on_or_off_for_bltouch(deploy);
  1862. #endif
  1863. if (endstops.z_probe_enabled == deploy) return false;
  1864. // Make room for probe
  1865. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1866. // When deploying make sure BLTOUCH is not already triggered
  1867. #if ENABLED(BLTOUCH)
  1868. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1869. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1870. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1871. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1872. safe_delay(1500); // wait for internal self test to complete
  1873. // measured completion time was 0.65 seconds
  1874. // after reset, deploy & stow sequence
  1875. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1876. SERIAL_ERROR_START;
  1877. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1878. stop(); // punt!
  1879. return true;
  1880. }
  1881. }
  1882. #elif ENABLED(Z_PROBE_SLED)
  1883. if (axis_unhomed_error(true, false, false)) {
  1884. SERIAL_ERROR_START;
  1885. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1886. stop();
  1887. return true;
  1888. }
  1889. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1890. if (axis_unhomed_error(true, true, true )) {
  1891. SERIAL_ERROR_START;
  1892. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1893. stop();
  1894. return true;
  1895. }
  1896. #endif
  1897. const float oldXpos = current_position[X_AXIS],
  1898. oldYpos = current_position[Y_AXIS];
  1899. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1900. // If endstop is already false, the Z probe is deployed
  1901. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1902. // Would a goto be less ugly?
  1903. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1904. // for a triggered when stowed manual probe.
  1905. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1906. // otherwise an Allen-Key probe can't be stowed.
  1907. #endif
  1908. #if ENABLED(SOLENOID_PROBE)
  1909. #if HAS_SOLENOID_1
  1910. WRITE(SOL1_PIN, deploy);
  1911. #endif
  1912. #elif ENABLED(Z_PROBE_SLED)
  1913. dock_sled(!deploy);
  1914. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1915. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1916. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1917. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1918. #endif
  1919. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1920. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1921. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1922. if (IsRunning()) {
  1923. SERIAL_ERROR_START;
  1924. SERIAL_ERRORLNPGM("Z-Probe failed");
  1925. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1926. }
  1927. stop();
  1928. return true;
  1929. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1930. #endif
  1931. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1932. endstops.enable_z_probe(deploy);
  1933. return false;
  1934. }
  1935. static void do_probe_move(float z, float fr_mm_m) {
  1936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1937. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1938. #endif
  1939. // Deploy BLTouch at the start of any probe
  1940. #if ENABLED(BLTOUCH)
  1941. set_bltouch_deployed(true);
  1942. #endif
  1943. // Move down until probe triggered
  1944. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1945. // Retract BLTouch immediately after a probe
  1946. #if ENABLED(BLTOUCH)
  1947. set_bltouch_deployed(false);
  1948. #endif
  1949. // Clear endstop flags
  1950. endstops.hit_on_purpose();
  1951. // Get Z where the steppers were interrupted
  1952. set_current_from_steppers_for_axis(Z_AXIS);
  1953. // Tell the planner where we actually are
  1954. SYNC_PLAN_POSITION_KINEMATIC();
  1955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1956. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1957. #endif
  1958. }
  1959. // Do a single Z probe and return with current_position[Z_AXIS]
  1960. // at the height where the probe triggered.
  1961. static float run_z_probe() {
  1962. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1963. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1964. #endif
  1965. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1966. refresh_cmd_timeout();
  1967. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1968. // Do a first probe at the fast speed
  1969. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1971. float first_probe_z = current_position[Z_AXIS];
  1972. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1973. #endif
  1974. // move up by the bump distance
  1975. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1976. #else
  1977. // If the nozzle is above the travel height then
  1978. // move down quickly before doing the slow probe
  1979. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1980. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1981. if (z < current_position[Z_AXIS])
  1982. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1983. #endif
  1984. // move down slowly to find bed
  1985. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1987. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1988. #endif
  1989. // Debug: compare probe heights
  1990. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1991. if (DEBUGGING(LEVELING)) {
  1992. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1993. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1994. }
  1995. #endif
  1996. return current_position[Z_AXIS] + zprobe_zoffset;
  1997. }
  1998. //
  1999. // - Move to the given XY
  2000. // - Deploy the probe, if not already deployed
  2001. // - Probe the bed, get the Z position
  2002. // - Depending on the 'stow' flag
  2003. // - Stow the probe, or
  2004. // - Raise to the BETWEEN height
  2005. // - Return the probed Z position
  2006. //
  2007. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2009. if (DEBUGGING(LEVELING)) {
  2010. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2011. SERIAL_ECHOPAIR(", ", y);
  2012. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2013. SERIAL_ECHOLNPGM("stow)");
  2014. DEBUG_POS("", current_position);
  2015. }
  2016. #endif
  2017. const float old_feedrate_mm_s = feedrate_mm_s;
  2018. #if ENABLED(DELTA)
  2019. if (current_position[Z_AXIS] > delta_clip_start_height)
  2020. do_blocking_move_to_z(delta_clip_start_height);
  2021. #endif
  2022. // Ensure a minimum height before moving the probe
  2023. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2024. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2025. // Move the probe to the given XY
  2026. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2027. if (DEPLOY_PROBE()) return NAN;
  2028. const float measured_z = run_z_probe();
  2029. if (!stow)
  2030. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2031. else
  2032. if (STOW_PROBE()) return NAN;
  2033. if (verbose_level > 2) {
  2034. SERIAL_PROTOCOLPGM("Bed X: ");
  2035. SERIAL_PROTOCOL_F(x, 3);
  2036. SERIAL_PROTOCOLPGM(" Y: ");
  2037. SERIAL_PROTOCOL_F(y, 3);
  2038. SERIAL_PROTOCOLPGM(" Z: ");
  2039. SERIAL_PROTOCOL_F(measured_z, 3);
  2040. SERIAL_EOL;
  2041. }
  2042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2043. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2044. #endif
  2045. feedrate_mm_s = old_feedrate_mm_s;
  2046. return measured_z;
  2047. }
  2048. #endif // HAS_BED_PROBE
  2049. #if PLANNER_LEVELING
  2050. /**
  2051. * Turn bed leveling on or off, fixing the current
  2052. * position as-needed.
  2053. *
  2054. * Disable: Current position = physical position
  2055. * Enable: Current position = "unleveled" physical position
  2056. */
  2057. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2058. #if ENABLED(MESH_BED_LEVELING)
  2059. if (enable != mbl.active()) {
  2060. if (!enable)
  2061. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2062. mbl.set_active(enable && mbl.has_mesh());
  2063. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2064. }
  2065. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2066. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2067. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2068. #else
  2069. constexpr bool can_change = true;
  2070. #endif
  2071. if (can_change && enable != planner.abl_enabled) {
  2072. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2073. // Force bilinear_z_offset to re-calculate next time
  2074. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2075. (void)bilinear_z_offset(reset);
  2076. #endif
  2077. planner.abl_enabled = enable;
  2078. if (!enable)
  2079. set_current_from_steppers_for_axis(
  2080. #if ABL_PLANAR
  2081. ALL_AXES
  2082. #else
  2083. Z_AXIS
  2084. #endif
  2085. );
  2086. else
  2087. planner.unapply_leveling(current_position);
  2088. }
  2089. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2090. ubl.state.active = enable;
  2091. //set_current_from_steppers_for_axis(Z_AXIS);
  2092. #endif
  2093. }
  2094. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2095. void set_z_fade_height(const float zfh) {
  2096. planner.z_fade_height = zfh;
  2097. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2098. if (
  2099. #if ENABLED(MESH_BED_LEVELING)
  2100. mbl.active()
  2101. #else
  2102. planner.abl_enabled
  2103. #endif
  2104. ) {
  2105. set_current_from_steppers_for_axis(
  2106. #if ABL_PLANAR
  2107. ALL_AXES
  2108. #else
  2109. Z_AXIS
  2110. #endif
  2111. );
  2112. }
  2113. }
  2114. #endif // LEVELING_FADE_HEIGHT
  2115. /**
  2116. * Reset calibration results to zero.
  2117. */
  2118. void reset_bed_level() {
  2119. set_bed_leveling_enabled(false);
  2120. #if ENABLED(MESH_BED_LEVELING)
  2121. if (mbl.has_mesh()) {
  2122. mbl.reset();
  2123. mbl.set_has_mesh(false);
  2124. }
  2125. #else
  2126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2127. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2128. #endif
  2129. #if ABL_PLANAR
  2130. planner.bed_level_matrix.set_to_identity();
  2131. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2132. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2133. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2134. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2135. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2136. z_values[x][y] = NAN;
  2137. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2138. ubl.reset();
  2139. #endif
  2140. #endif
  2141. }
  2142. #endif // PLANNER_LEVELING
  2143. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2144. //
  2145. // Enable if you prefer your output in JSON format
  2146. // suitable for SCAD or JavaScript mesh visualizers.
  2147. //
  2148. // Visualize meshes in OpenSCAD using the included script.
  2149. //
  2150. // buildroot/shared/scripts/MarlinMesh.scad
  2151. //
  2152. //#define SCAD_MESH_OUTPUT
  2153. /**
  2154. * Print calibration results for plotting or manual frame adjustment.
  2155. */
  2156. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2157. #ifndef SCAD_MESH_OUTPUT
  2158. for (uint8_t x = 0; x < sx; x++) {
  2159. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2160. SERIAL_PROTOCOLCHAR(' ');
  2161. SERIAL_PROTOCOL((int)x);
  2162. }
  2163. SERIAL_EOL;
  2164. #endif
  2165. #ifdef SCAD_MESH_OUTPUT
  2166. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2167. #endif
  2168. for (uint8_t y = 0; y < sy; y++) {
  2169. #ifdef SCAD_MESH_OUTPUT
  2170. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2171. #else
  2172. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2173. SERIAL_PROTOCOL((int)y);
  2174. #endif
  2175. for (uint8_t x = 0; x < sx; x++) {
  2176. SERIAL_PROTOCOLCHAR(' ');
  2177. const float offset = fn(x, y);
  2178. if (!isnan(offset)) {
  2179. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2180. SERIAL_PROTOCOL_F(offset, precision);
  2181. }
  2182. else {
  2183. #ifdef SCAD_MESH_OUTPUT
  2184. for (uint8_t i = 3; i < precision + 3; i++)
  2185. SERIAL_PROTOCOLCHAR(' ');
  2186. SERIAL_PROTOCOLPGM("NAN");
  2187. #else
  2188. for (uint8_t i = 0; i < precision + 3; i++)
  2189. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2190. #endif
  2191. }
  2192. #ifdef SCAD_MESH_OUTPUT
  2193. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2194. #endif
  2195. }
  2196. #ifdef SCAD_MESH_OUTPUT
  2197. SERIAL_PROTOCOLCHAR(' ');
  2198. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2199. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2200. #endif
  2201. SERIAL_EOL;
  2202. }
  2203. #ifdef SCAD_MESH_OUTPUT
  2204. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2205. #endif
  2206. SERIAL_EOL;
  2207. }
  2208. #endif
  2209. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2210. /**
  2211. * Extrapolate a single point from its neighbors
  2212. */
  2213. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2215. if (DEBUGGING(LEVELING)) {
  2216. SERIAL_ECHOPGM("Extrapolate [");
  2217. if (x < 10) SERIAL_CHAR(' ');
  2218. SERIAL_ECHO((int)x);
  2219. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2220. SERIAL_CHAR(' ');
  2221. if (y < 10) SERIAL_CHAR(' ');
  2222. SERIAL_ECHO((int)y);
  2223. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2224. SERIAL_CHAR(']');
  2225. }
  2226. #endif
  2227. if (!isnan(z_values[x][y])) {
  2228. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2229. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2230. #endif
  2231. return; // Don't overwrite good values.
  2232. }
  2233. SERIAL_EOL;
  2234. // Get X neighbors, Y neighbors, and XY neighbors
  2235. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2236. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2237. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2238. // Treat far unprobed points as zero, near as equal to far
  2239. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2240. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2241. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2242. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2243. // Take the average instead of the median
  2244. z_values[x][y] = (a + b + c) / 3.0;
  2245. // Median is robust (ignores outliers).
  2246. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2247. // : ((c < b) ? b : (a < c) ? a : c);
  2248. }
  2249. //Enable this if your SCARA uses 180° of total area
  2250. //#define EXTRAPOLATE_FROM_EDGE
  2251. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2252. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2253. #define HALF_IN_X
  2254. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2255. #define HALF_IN_Y
  2256. #endif
  2257. #endif
  2258. /**
  2259. * Fill in the unprobed points (corners of circular print surface)
  2260. * using linear extrapolation, away from the center.
  2261. */
  2262. static void extrapolate_unprobed_bed_level() {
  2263. #ifdef HALF_IN_X
  2264. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2265. #else
  2266. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2267. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2268. xlen = ctrx1;
  2269. #endif
  2270. #ifdef HALF_IN_Y
  2271. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2272. #else
  2273. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2274. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2275. ylen = ctry1;
  2276. #endif
  2277. for (uint8_t xo = 0; xo <= xlen; xo++)
  2278. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2279. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2280. #ifndef HALF_IN_X
  2281. const uint8_t x1 = ctrx1 - xo;
  2282. #endif
  2283. #ifndef HALF_IN_Y
  2284. const uint8_t y1 = ctry1 - yo;
  2285. #ifndef HALF_IN_X
  2286. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2287. #endif
  2288. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2289. #endif
  2290. #ifndef HALF_IN_X
  2291. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2292. #endif
  2293. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2294. }
  2295. }
  2296. static void print_bilinear_leveling_grid() {
  2297. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2298. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2299. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2300. );
  2301. }
  2302. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2303. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2304. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2305. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2306. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2307. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2308. int bilinear_grid_spacing_virt[2] = { 0 };
  2309. float bilinear_grid_factor_virt[2] = { 0 };
  2310. static void bed_level_virt_print() {
  2311. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2312. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2313. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2314. );
  2315. }
  2316. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2317. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2318. uint8_t ep = 0, ip = 1;
  2319. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2320. if (x) {
  2321. ep = GRID_MAX_POINTS_X - 1;
  2322. ip = GRID_MAX_POINTS_X - 2;
  2323. }
  2324. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2325. return LINEAR_EXTRAPOLATION(
  2326. z_values[ep][y - 1],
  2327. z_values[ip][y - 1]
  2328. );
  2329. else
  2330. return LINEAR_EXTRAPOLATION(
  2331. bed_level_virt_coord(ep + 1, y),
  2332. bed_level_virt_coord(ip + 1, y)
  2333. );
  2334. }
  2335. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2336. if (y) {
  2337. ep = GRID_MAX_POINTS_Y - 1;
  2338. ip = GRID_MAX_POINTS_Y - 2;
  2339. }
  2340. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2341. return LINEAR_EXTRAPOLATION(
  2342. z_values[x - 1][ep],
  2343. z_values[x - 1][ip]
  2344. );
  2345. else
  2346. return LINEAR_EXTRAPOLATION(
  2347. bed_level_virt_coord(x, ep + 1),
  2348. bed_level_virt_coord(x, ip + 1)
  2349. );
  2350. }
  2351. return z_values[x - 1][y - 1];
  2352. }
  2353. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2354. return (
  2355. p[i-1] * -t * sq(1 - t)
  2356. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2357. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2358. - p[i+2] * sq(t) * (1 - t)
  2359. ) * 0.5;
  2360. }
  2361. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2362. float row[4], column[4];
  2363. for (uint8_t i = 0; i < 4; i++) {
  2364. for (uint8_t j = 0; j < 4; j++) {
  2365. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2366. }
  2367. row[i] = bed_level_virt_cmr(column, 1, ty);
  2368. }
  2369. return bed_level_virt_cmr(row, 1, tx);
  2370. }
  2371. void bed_level_virt_interpolate() {
  2372. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2373. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2374. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2375. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2376. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2377. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2378. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2379. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2380. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2381. continue;
  2382. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2383. bed_level_virt_2cmr(
  2384. x + 1,
  2385. y + 1,
  2386. (float)tx / (BILINEAR_SUBDIVISIONS),
  2387. (float)ty / (BILINEAR_SUBDIVISIONS)
  2388. );
  2389. }
  2390. }
  2391. #endif // ABL_BILINEAR_SUBDIVISION
  2392. // Refresh after other values have been updated
  2393. void refresh_bed_level() {
  2394. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2395. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2396. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2397. bed_level_virt_interpolate();
  2398. #endif
  2399. }
  2400. #endif // AUTO_BED_LEVELING_BILINEAR
  2401. /**
  2402. * Home an individual linear axis
  2403. */
  2404. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2406. if (DEBUGGING(LEVELING)) {
  2407. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2408. SERIAL_ECHOPAIR(", ", distance);
  2409. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2410. SERIAL_CHAR(')');
  2411. SERIAL_EOL;
  2412. }
  2413. #endif
  2414. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2415. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2416. if (deploy_bltouch) set_bltouch_deployed(true);
  2417. #endif
  2418. // Tell the planner we're at Z=0
  2419. current_position[axis] = 0;
  2420. #if IS_SCARA
  2421. SYNC_PLAN_POSITION_KINEMATIC();
  2422. current_position[axis] = distance;
  2423. inverse_kinematics(current_position);
  2424. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2425. #else
  2426. sync_plan_position();
  2427. current_position[axis] = distance;
  2428. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2429. #endif
  2430. stepper.synchronize();
  2431. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2432. if (deploy_bltouch) set_bltouch_deployed(false);
  2433. #endif
  2434. endstops.hit_on_purpose();
  2435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2436. if (DEBUGGING(LEVELING)) {
  2437. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2438. SERIAL_CHAR(')');
  2439. SERIAL_EOL;
  2440. }
  2441. #endif
  2442. }
  2443. /**
  2444. * TMC2130 specific sensorless homing using stallGuard2.
  2445. * stallGuard2 only works when in spreadCycle mode.
  2446. * spreadCycle and stealthChop are mutually exclusive.
  2447. */
  2448. #if ENABLED(SENSORLESS_HOMING)
  2449. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2450. #if ENABLED(STEALTHCHOP)
  2451. if (enable) {
  2452. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2453. st.stealthChop(0);
  2454. }
  2455. else {
  2456. st.coolstep_min_speed(0);
  2457. st.stealthChop(1);
  2458. }
  2459. #endif
  2460. st.diag1_stall(enable ? 1 : 0);
  2461. }
  2462. #endif
  2463. /**
  2464. * Home an individual "raw axis" to its endstop.
  2465. * This applies to XYZ on Cartesian and Core robots, and
  2466. * to the individual ABC steppers on DELTA and SCARA.
  2467. *
  2468. * At the end of the procedure the axis is marked as
  2469. * homed and the current position of that axis is updated.
  2470. * Kinematic robots should wait till all axes are homed
  2471. * before updating the current position.
  2472. */
  2473. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2474. static void homeaxis(const AxisEnum axis) {
  2475. #if IS_SCARA
  2476. // Only Z homing (with probe) is permitted
  2477. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2478. #else
  2479. #define CAN_HOME(A) \
  2480. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2481. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2482. #endif
  2483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2484. if (DEBUGGING(LEVELING)) {
  2485. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2486. SERIAL_CHAR(')');
  2487. SERIAL_EOL;
  2488. }
  2489. #endif
  2490. const int axis_home_dir =
  2491. #if ENABLED(DUAL_X_CARRIAGE)
  2492. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2493. #endif
  2494. home_dir(axis);
  2495. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2496. #if HOMING_Z_WITH_PROBE
  2497. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2498. #endif
  2499. // Set a flag for Z motor locking
  2500. #if ENABLED(Z_DUAL_ENDSTOPS)
  2501. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2502. #endif
  2503. // Disable stealthChop if used. Enable diag1 pin on driver.
  2504. #if ENABLED(SENSORLESS_HOMING)
  2505. #if ENABLED(X_IS_TMC2130)
  2506. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2507. #endif
  2508. #if ENABLED(Y_IS_TMC2130)
  2509. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2510. #endif
  2511. #endif
  2512. // Fast move towards endstop until triggered
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2515. #endif
  2516. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2517. // When homing Z with probe respect probe clearance
  2518. const float bump = axis_home_dir * (
  2519. #if HOMING_Z_WITH_PROBE
  2520. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2521. #endif
  2522. home_bump_mm(axis)
  2523. );
  2524. // If a second homing move is configured...
  2525. if (bump) {
  2526. // Move away from the endstop by the axis HOME_BUMP_MM
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2529. #endif
  2530. do_homing_move(axis, -bump);
  2531. // Slow move towards endstop until triggered
  2532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2533. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2534. #endif
  2535. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2536. }
  2537. #if ENABLED(Z_DUAL_ENDSTOPS)
  2538. if (axis == Z_AXIS) {
  2539. float adj = fabs(z_endstop_adj);
  2540. bool lockZ1;
  2541. if (axis_home_dir > 0) {
  2542. adj = -adj;
  2543. lockZ1 = (z_endstop_adj > 0);
  2544. }
  2545. else
  2546. lockZ1 = (z_endstop_adj < 0);
  2547. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2548. // Move to the adjusted endstop height
  2549. do_homing_move(axis, adj);
  2550. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2551. stepper.set_homing_flag(false);
  2552. } // Z_AXIS
  2553. #endif
  2554. #if IS_SCARA
  2555. set_axis_is_at_home(axis);
  2556. SYNC_PLAN_POSITION_KINEMATIC();
  2557. #elif ENABLED(DELTA)
  2558. // Delta has already moved all three towers up in G28
  2559. // so here it re-homes each tower in turn.
  2560. // Delta homing treats the axes as normal linear axes.
  2561. // retrace by the amount specified in endstop_adj
  2562. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2564. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2565. #endif
  2566. do_homing_move(axis, endstop_adj[axis]);
  2567. }
  2568. #else
  2569. // For cartesian/core machines,
  2570. // set the axis to its home position
  2571. set_axis_is_at_home(axis);
  2572. sync_plan_position();
  2573. destination[axis] = current_position[axis];
  2574. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2575. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2576. #endif
  2577. #endif
  2578. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2579. #if ENABLED(SENSORLESS_HOMING)
  2580. #if ENABLED(X_IS_TMC2130)
  2581. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2582. #endif
  2583. #if ENABLED(Y_IS_TMC2130)
  2584. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2585. #endif
  2586. #endif
  2587. // Put away the Z probe
  2588. #if HOMING_Z_WITH_PROBE
  2589. if (axis == Z_AXIS && STOW_PROBE()) return;
  2590. #endif
  2591. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2592. if (DEBUGGING(LEVELING)) {
  2593. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2594. SERIAL_CHAR(')');
  2595. SERIAL_EOL;
  2596. }
  2597. #endif
  2598. } // homeaxis()
  2599. #if ENABLED(FWRETRACT)
  2600. void retract(const bool retracting, const bool swapping = false) {
  2601. static float hop_height;
  2602. if (retracting == retracted[active_extruder]) return;
  2603. const float old_feedrate_mm_s = feedrate_mm_s;
  2604. set_destination_to_current();
  2605. if (retracting) {
  2606. feedrate_mm_s = retract_feedrate_mm_s;
  2607. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2608. sync_plan_position_e();
  2609. prepare_move_to_destination();
  2610. if (retract_zlift > 0.01) {
  2611. hop_height = current_position[Z_AXIS];
  2612. // Pretend current position is lower
  2613. current_position[Z_AXIS] -= retract_zlift;
  2614. SYNC_PLAN_POSITION_KINEMATIC();
  2615. // Raise up to the old current_position
  2616. prepare_move_to_destination();
  2617. }
  2618. }
  2619. else {
  2620. // If the height hasn't been altered, undo the Z hop
  2621. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2622. // Pretend current position is higher. Z will lower on the next move
  2623. current_position[Z_AXIS] += retract_zlift;
  2624. SYNC_PLAN_POSITION_KINEMATIC();
  2625. }
  2626. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2627. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2628. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2629. sync_plan_position_e();
  2630. // Lower Z and recover E
  2631. prepare_move_to_destination();
  2632. }
  2633. feedrate_mm_s = old_feedrate_mm_s;
  2634. retracted[active_extruder] = retracting;
  2635. } // retract()
  2636. #endif // FWRETRACT
  2637. #if ENABLED(MIXING_EXTRUDER)
  2638. void normalize_mix() {
  2639. float mix_total = 0.0;
  2640. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2641. // Scale all values if they don't add up to ~1.0
  2642. if (!NEAR(mix_total, 1.0)) {
  2643. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2644. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2645. }
  2646. }
  2647. #if ENABLED(DIRECT_MIXING_IN_G1)
  2648. // Get mixing parameters from the GCode
  2649. // The total "must" be 1.0 (but it will be normalized)
  2650. // If no mix factors are given, the old mix is preserved
  2651. void gcode_get_mix() {
  2652. const char* mixing_codes = "ABCDHI";
  2653. byte mix_bits = 0;
  2654. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2655. if (code_seen(mixing_codes[i])) {
  2656. SBI(mix_bits, i);
  2657. float v = code_value_float();
  2658. NOLESS(v, 0.0);
  2659. mixing_factor[i] = RECIPROCAL(v);
  2660. }
  2661. }
  2662. // If any mixing factors were included, clear the rest
  2663. // If none were included, preserve the last mix
  2664. if (mix_bits) {
  2665. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2666. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2667. normalize_mix();
  2668. }
  2669. }
  2670. #endif
  2671. #endif
  2672. /**
  2673. * ***************************************************************************
  2674. * ***************************** G-CODE HANDLING *****************************
  2675. * ***************************************************************************
  2676. */
  2677. /**
  2678. * Set XYZE destination and feedrate from the current GCode command
  2679. *
  2680. * - Set destination from included axis codes
  2681. * - Set to current for missing axis codes
  2682. * - Set the feedrate, if included
  2683. */
  2684. void gcode_get_destination() {
  2685. LOOP_XYZE(i) {
  2686. if (code_seen(axis_codes[i]))
  2687. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2688. else
  2689. destination[i] = current_position[i];
  2690. }
  2691. if (code_seen('F') && code_value_linear_units() > 0.0)
  2692. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2693. #if ENABLED(PRINTCOUNTER)
  2694. if (!DEBUGGING(DRYRUN))
  2695. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2696. #endif
  2697. // Get ABCDHI mixing factors
  2698. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2699. gcode_get_mix();
  2700. #endif
  2701. }
  2702. void unknown_command_error() {
  2703. SERIAL_ECHO_START;
  2704. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2705. SERIAL_CHAR('"');
  2706. SERIAL_EOL;
  2707. }
  2708. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2709. /**
  2710. * Output a "busy" message at regular intervals
  2711. * while the machine is not accepting commands.
  2712. */
  2713. void host_keepalive() {
  2714. const millis_t ms = millis();
  2715. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2716. if (PENDING(ms, next_busy_signal_ms)) return;
  2717. switch (busy_state) {
  2718. case IN_HANDLER:
  2719. case IN_PROCESS:
  2720. SERIAL_ECHO_START;
  2721. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2722. break;
  2723. case PAUSED_FOR_USER:
  2724. SERIAL_ECHO_START;
  2725. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2726. break;
  2727. case PAUSED_FOR_INPUT:
  2728. SERIAL_ECHO_START;
  2729. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2730. break;
  2731. default:
  2732. break;
  2733. }
  2734. }
  2735. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2736. }
  2737. #endif //HOST_KEEPALIVE_FEATURE
  2738. bool position_is_reachable(const float target[XYZ]
  2739. #if HAS_BED_PROBE
  2740. , bool by_probe=false
  2741. #endif
  2742. ) {
  2743. float dx = RAW_X_POSITION(target[X_AXIS]),
  2744. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2745. #if HAS_BED_PROBE
  2746. if (by_probe) {
  2747. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2748. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2749. }
  2750. #endif
  2751. #if IS_SCARA
  2752. #if MIDDLE_DEAD_ZONE_R > 0
  2753. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2754. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2755. #else
  2756. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2757. #endif
  2758. #elif ENABLED(DELTA)
  2759. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2760. #else
  2761. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2762. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2763. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2764. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2765. #endif
  2766. }
  2767. /**************************************************
  2768. ***************** GCode Handlers *****************
  2769. **************************************************/
  2770. /**
  2771. * G0, G1: Coordinated movement of X Y Z E axes
  2772. */
  2773. inline void gcode_G0_G1(
  2774. #if IS_SCARA
  2775. bool fast_move=false
  2776. #endif
  2777. ) {
  2778. if (IsRunning()) {
  2779. gcode_get_destination(); // For X Y Z E F
  2780. #if ENABLED(FWRETRACT)
  2781. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2782. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2783. // Is this move an attempt to retract or recover?
  2784. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2785. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2786. sync_plan_position_e(); // AND from the planner
  2787. retract(!retracted[active_extruder]);
  2788. return;
  2789. }
  2790. }
  2791. #endif //FWRETRACT
  2792. #if IS_SCARA
  2793. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2794. #else
  2795. prepare_move_to_destination();
  2796. #endif
  2797. }
  2798. }
  2799. /**
  2800. * G2: Clockwise Arc
  2801. * G3: Counterclockwise Arc
  2802. *
  2803. * This command has two forms: IJ-form and R-form.
  2804. *
  2805. * - I specifies an X offset. J specifies a Y offset.
  2806. * At least one of the IJ parameters is required.
  2807. * X and Y can be omitted to do a complete circle.
  2808. * The given XY is not error-checked. The arc ends
  2809. * based on the angle of the destination.
  2810. * Mixing I or J with R will throw an error.
  2811. *
  2812. * - R specifies the radius. X or Y is required.
  2813. * Omitting both X and Y will throw an error.
  2814. * X or Y must differ from the current XY.
  2815. * Mixing R with I or J will throw an error.
  2816. *
  2817. * Examples:
  2818. *
  2819. * G2 I10 ; CW circle centered at X+10
  2820. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2821. */
  2822. #if ENABLED(ARC_SUPPORT)
  2823. inline void gcode_G2_G3(bool clockwise) {
  2824. if (IsRunning()) {
  2825. #if ENABLED(SF_ARC_FIX)
  2826. const bool relative_mode_backup = relative_mode;
  2827. relative_mode = true;
  2828. #endif
  2829. gcode_get_destination();
  2830. #if ENABLED(SF_ARC_FIX)
  2831. relative_mode = relative_mode_backup;
  2832. #endif
  2833. float arc_offset[2] = { 0.0, 0.0 };
  2834. if (code_seen('R')) {
  2835. const float r = code_value_linear_units(),
  2836. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2837. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2838. if (r && (x2 != x1 || y2 != y1)) {
  2839. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2840. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2841. d = HYPOT(dx, dy), // Linear distance between the points
  2842. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2843. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2844. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2845. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2846. arc_offset[X_AXIS] = cx - x1;
  2847. arc_offset[Y_AXIS] = cy - y1;
  2848. }
  2849. }
  2850. else {
  2851. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2852. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2853. }
  2854. if (arc_offset[0] || arc_offset[1]) {
  2855. // Send an arc to the planner
  2856. plan_arc(destination, arc_offset, clockwise);
  2857. refresh_cmd_timeout();
  2858. }
  2859. else {
  2860. // Bad arguments
  2861. SERIAL_ERROR_START;
  2862. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2863. }
  2864. }
  2865. }
  2866. #endif
  2867. /**
  2868. * G4: Dwell S<seconds> or P<milliseconds>
  2869. */
  2870. inline void gcode_G4() {
  2871. millis_t dwell_ms = 0;
  2872. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2873. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2874. stepper.synchronize();
  2875. refresh_cmd_timeout();
  2876. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2877. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2878. while (PENDING(millis(), dwell_ms)) idle();
  2879. }
  2880. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2881. /**
  2882. * Parameters interpreted according to:
  2883. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2884. * However I, J omission is not supported at this point; all
  2885. * parameters can be omitted and default to zero.
  2886. */
  2887. /**
  2888. * G5: Cubic B-spline
  2889. */
  2890. inline void gcode_G5() {
  2891. if (IsRunning()) {
  2892. gcode_get_destination();
  2893. const float offset[] = {
  2894. code_seen('I') ? code_value_linear_units() : 0.0,
  2895. code_seen('J') ? code_value_linear_units() : 0.0,
  2896. code_seen('P') ? code_value_linear_units() : 0.0,
  2897. code_seen('Q') ? code_value_linear_units() : 0.0
  2898. };
  2899. plan_cubic_move(offset);
  2900. }
  2901. }
  2902. #endif // BEZIER_CURVE_SUPPORT
  2903. #if ENABLED(FWRETRACT)
  2904. /**
  2905. * G10 - Retract filament according to settings of M207
  2906. * G11 - Recover filament according to settings of M208
  2907. */
  2908. inline void gcode_G10_G11(bool doRetract=false) {
  2909. #if EXTRUDERS > 1
  2910. if (doRetract) {
  2911. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2912. }
  2913. #endif
  2914. retract(doRetract
  2915. #if EXTRUDERS > 1
  2916. , retracted_swap[active_extruder]
  2917. #endif
  2918. );
  2919. }
  2920. #endif //FWRETRACT
  2921. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2922. /**
  2923. * G12: Clean the nozzle
  2924. */
  2925. inline void gcode_G12() {
  2926. // Don't allow nozzle cleaning without homing first
  2927. if (axis_unhomed_error(true, true, true)) return;
  2928. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2929. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2930. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2931. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2932. Nozzle::clean(pattern, strokes, radius, objects);
  2933. }
  2934. #endif
  2935. #if ENABLED(INCH_MODE_SUPPORT)
  2936. /**
  2937. * G20: Set input mode to inches
  2938. */
  2939. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2940. /**
  2941. * G21: Set input mode to millimeters
  2942. */
  2943. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2944. #endif
  2945. #if ENABLED(NOZZLE_PARK_FEATURE)
  2946. /**
  2947. * G27: Park the nozzle
  2948. */
  2949. inline void gcode_G27() {
  2950. // Don't allow nozzle parking without homing first
  2951. if (axis_unhomed_error(true, true, true)) return;
  2952. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2953. }
  2954. #endif // NOZZLE_PARK_FEATURE
  2955. #if ENABLED(QUICK_HOME)
  2956. static void quick_home_xy() {
  2957. // Pretend the current position is 0,0
  2958. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2959. sync_plan_position();
  2960. const int x_axis_home_dir =
  2961. #if ENABLED(DUAL_X_CARRIAGE)
  2962. x_home_dir(active_extruder)
  2963. #else
  2964. home_dir(X_AXIS)
  2965. #endif
  2966. ;
  2967. const float mlx = max_length(X_AXIS),
  2968. mly = max_length(Y_AXIS),
  2969. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2970. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2971. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2972. endstops.hit_on_purpose(); // clear endstop hit flags
  2973. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2974. }
  2975. #endif // QUICK_HOME
  2976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2977. void log_machine_info() {
  2978. SERIAL_ECHOPGM("Machine Type: ");
  2979. #if ENABLED(DELTA)
  2980. SERIAL_ECHOLNPGM("Delta");
  2981. #elif IS_SCARA
  2982. SERIAL_ECHOLNPGM("SCARA");
  2983. #elif IS_CORE
  2984. SERIAL_ECHOLNPGM("Core");
  2985. #else
  2986. SERIAL_ECHOLNPGM("Cartesian");
  2987. #endif
  2988. SERIAL_ECHOPGM("Probe: ");
  2989. #if ENABLED(PROBE_MANUALLY)
  2990. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2991. #elif ENABLED(FIX_MOUNTED_PROBE)
  2992. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2993. #elif ENABLED(BLTOUCH)
  2994. SERIAL_ECHOLNPGM("BLTOUCH");
  2995. #elif HAS_Z_SERVO_ENDSTOP
  2996. SERIAL_ECHOLNPGM("SERVO PROBE");
  2997. #elif ENABLED(Z_PROBE_SLED)
  2998. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2999. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3000. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3001. #else
  3002. SERIAL_ECHOLNPGM("NONE");
  3003. #endif
  3004. #if HAS_BED_PROBE
  3005. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3006. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3007. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3008. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3009. SERIAL_ECHOPGM(" (Right");
  3010. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3011. SERIAL_ECHOPGM(" (Left");
  3012. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3013. SERIAL_ECHOPGM(" (Middle");
  3014. #else
  3015. SERIAL_ECHOPGM(" (Aligned With");
  3016. #endif
  3017. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3018. SERIAL_ECHOPGM("-Back");
  3019. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3020. SERIAL_ECHOPGM("-Front");
  3021. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3022. SERIAL_ECHOPGM("-Center");
  3023. #endif
  3024. if (zprobe_zoffset < 0)
  3025. SERIAL_ECHOPGM(" & Below");
  3026. else if (zprobe_zoffset > 0)
  3027. SERIAL_ECHOPGM(" & Above");
  3028. else
  3029. SERIAL_ECHOPGM(" & Same Z as");
  3030. SERIAL_ECHOLNPGM(" Nozzle)");
  3031. #endif
  3032. #if HAS_ABL
  3033. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3034. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3035. SERIAL_ECHOPGM("LINEAR");
  3036. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3037. SERIAL_ECHOPGM("BILINEAR");
  3038. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3039. SERIAL_ECHOPGM("3POINT");
  3040. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3041. SERIAL_ECHOPGM("UBL");
  3042. #endif
  3043. if (planner.abl_enabled) {
  3044. SERIAL_ECHOLNPGM(" (enabled)");
  3045. #if ABL_PLANAR
  3046. float diff[XYZ] = {
  3047. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3048. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3049. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3050. };
  3051. SERIAL_ECHOPGM("ABL Adjustment X");
  3052. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3053. SERIAL_ECHO(diff[X_AXIS]);
  3054. SERIAL_ECHOPGM(" Y");
  3055. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3056. SERIAL_ECHO(diff[Y_AXIS]);
  3057. SERIAL_ECHOPGM(" Z");
  3058. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3059. SERIAL_ECHO(diff[Z_AXIS]);
  3060. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3061. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3062. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3063. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3064. #endif
  3065. }
  3066. else
  3067. SERIAL_ECHOLNPGM(" (disabled)");
  3068. SERIAL_EOL;
  3069. #elif ENABLED(MESH_BED_LEVELING)
  3070. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3071. if (mbl.active()) {
  3072. float lz = current_position[Z_AXIS];
  3073. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3074. SERIAL_ECHOLNPGM(" (enabled)");
  3075. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3076. }
  3077. else
  3078. SERIAL_ECHOPGM(" (disabled)");
  3079. SERIAL_EOL;
  3080. #endif // MESH_BED_LEVELING
  3081. }
  3082. #endif // DEBUG_LEVELING_FEATURE
  3083. #if ENABLED(DELTA)
  3084. /**
  3085. * A delta can only safely home all axes at the same time
  3086. * This is like quick_home_xy() but for 3 towers.
  3087. */
  3088. inline void home_delta() {
  3089. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3090. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3091. #endif
  3092. // Init the current position of all carriages to 0,0,0
  3093. ZERO(current_position);
  3094. sync_plan_position();
  3095. // Move all carriages together linearly until an endstop is hit.
  3096. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3097. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3098. line_to_current_position();
  3099. stepper.synchronize();
  3100. endstops.hit_on_purpose(); // clear endstop hit flags
  3101. // At least one carriage has reached the top.
  3102. // Now re-home each carriage separately.
  3103. HOMEAXIS(A);
  3104. HOMEAXIS(B);
  3105. HOMEAXIS(C);
  3106. // Set all carriages to their home positions
  3107. // Do this here all at once for Delta, because
  3108. // XYZ isn't ABC. Applying this per-tower would
  3109. // give the impression that they are the same.
  3110. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3111. SYNC_PLAN_POSITION_KINEMATIC();
  3112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3113. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3114. #endif
  3115. }
  3116. #endif // DELTA
  3117. #if ENABLED(Z_SAFE_HOMING)
  3118. inline void home_z_safely() {
  3119. // Disallow Z homing if X or Y are unknown
  3120. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3121. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3122. SERIAL_ECHO_START;
  3123. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3124. return;
  3125. }
  3126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3127. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3128. #endif
  3129. SYNC_PLAN_POSITION_KINEMATIC();
  3130. /**
  3131. * Move the Z probe (or just the nozzle) to the safe homing point
  3132. */
  3133. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3134. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3135. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3136. if (position_is_reachable(
  3137. destination
  3138. #if HOMING_Z_WITH_PROBE
  3139. , true
  3140. #endif
  3141. )
  3142. ) {
  3143. #if HOMING_Z_WITH_PROBE
  3144. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3145. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3146. #endif
  3147. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3148. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3149. #endif
  3150. // This causes the carriage on Dual X to unpark
  3151. #if ENABLED(DUAL_X_CARRIAGE)
  3152. active_extruder_parked = false;
  3153. #endif
  3154. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3155. HOMEAXIS(Z);
  3156. }
  3157. else {
  3158. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3159. SERIAL_ECHO_START;
  3160. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3161. }
  3162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3163. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3164. #endif
  3165. }
  3166. #endif // Z_SAFE_HOMING
  3167. #if ENABLED(PROBE_MANUALLY)
  3168. bool g29_in_progress = false;
  3169. #else
  3170. constexpr bool g29_in_progress = false;
  3171. #endif
  3172. /**
  3173. * G28: Home all axes according to settings
  3174. *
  3175. * Parameters
  3176. *
  3177. * None Home to all axes with no parameters.
  3178. * With QUICK_HOME enabled XY will home together, then Z.
  3179. *
  3180. * Cartesian parameters
  3181. *
  3182. * X Home to the X endstop
  3183. * Y Home to the Y endstop
  3184. * Z Home to the Z endstop
  3185. *
  3186. */
  3187. inline void gcode_G28() {
  3188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3189. if (DEBUGGING(LEVELING)) {
  3190. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3191. log_machine_info();
  3192. }
  3193. #endif
  3194. // Wait for planner moves to finish!
  3195. stepper.synchronize();
  3196. // Cancel the active G29 session
  3197. #if ENABLED(PROBE_MANUALLY)
  3198. g29_in_progress = false;
  3199. #endif
  3200. // Disable the leveling matrix before homing
  3201. #if PLANNER_LEVELING
  3202. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3203. const bool bed_leveling_state_at_entry = ubl.state.active;
  3204. #endif
  3205. set_bed_leveling_enabled(false);
  3206. #endif
  3207. // Always home with tool 0 active
  3208. #if HOTENDS > 1
  3209. const uint8_t old_tool_index = active_extruder;
  3210. tool_change(0, 0, true);
  3211. #endif
  3212. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3213. extruder_duplication_enabled = false;
  3214. #endif
  3215. setup_for_endstop_or_probe_move();
  3216. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3217. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3218. #endif
  3219. endstops.enable(true); // Enable endstops for next homing move
  3220. #if ENABLED(DELTA)
  3221. home_delta();
  3222. #else // NOT DELTA
  3223. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3224. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3225. set_destination_to_current();
  3226. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3227. if (home_all_axis || homeZ) {
  3228. HOMEAXIS(Z);
  3229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3230. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3231. #endif
  3232. }
  3233. #else
  3234. if (home_all_axis || homeX || homeY) {
  3235. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3236. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3237. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3239. if (DEBUGGING(LEVELING))
  3240. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3241. #endif
  3242. do_blocking_move_to_z(destination[Z_AXIS]);
  3243. }
  3244. }
  3245. #endif
  3246. #if ENABLED(QUICK_HOME)
  3247. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3248. #endif
  3249. #if ENABLED(HOME_Y_BEFORE_X)
  3250. // Home Y
  3251. if (home_all_axis || homeY) {
  3252. HOMEAXIS(Y);
  3253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3254. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3255. #endif
  3256. }
  3257. #endif
  3258. // Home X
  3259. if (home_all_axis || homeX) {
  3260. #if ENABLED(DUAL_X_CARRIAGE)
  3261. // Always home the 2nd (right) extruder first
  3262. active_extruder = 1;
  3263. HOMEAXIS(X);
  3264. // Remember this extruder's position for later tool change
  3265. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3266. // Home the 1st (left) extruder
  3267. active_extruder = 0;
  3268. HOMEAXIS(X);
  3269. // Consider the active extruder to be parked
  3270. COPY(raised_parked_position, current_position);
  3271. delayed_move_time = 0;
  3272. active_extruder_parked = true;
  3273. #else
  3274. HOMEAXIS(X);
  3275. #endif
  3276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3277. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3278. #endif
  3279. }
  3280. #if DISABLED(HOME_Y_BEFORE_X)
  3281. // Home Y
  3282. if (home_all_axis || homeY) {
  3283. HOMEAXIS(Y);
  3284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3285. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3286. #endif
  3287. }
  3288. #endif
  3289. // Home Z last if homing towards the bed
  3290. #if Z_HOME_DIR < 0
  3291. if (home_all_axis || homeZ) {
  3292. #if ENABLED(Z_SAFE_HOMING)
  3293. home_z_safely();
  3294. #else
  3295. HOMEAXIS(Z);
  3296. #endif
  3297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3298. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3299. #endif
  3300. } // home_all_axis || homeZ
  3301. #endif // Z_HOME_DIR < 0
  3302. SYNC_PLAN_POSITION_KINEMATIC();
  3303. #endif // !DELTA (gcode_G28)
  3304. endstops.not_homing();
  3305. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3306. // move to a height where we can use the full xy-area
  3307. do_blocking_move_to_z(delta_clip_start_height);
  3308. #endif
  3309. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3310. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3311. #endif
  3312. // Enable mesh leveling again
  3313. #if ENABLED(MESH_BED_LEVELING)
  3314. if (mbl.reactivate()) {
  3315. set_bed_leveling_enabled(true);
  3316. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3317. #if ENABLED(MESH_G28_REST_ORIGIN)
  3318. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3319. set_destination_to_current();
  3320. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3321. stepper.synchronize();
  3322. #endif
  3323. }
  3324. }
  3325. #endif
  3326. clean_up_after_endstop_or_probe_move();
  3327. // Restore the active tool after homing
  3328. #if HOTENDS > 1
  3329. tool_change(old_tool_index, 0, true);
  3330. #endif
  3331. report_current_position();
  3332. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3333. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3334. #endif
  3335. }
  3336. #if HAS_PROBING_PROCEDURE
  3337. void out_of_range_error(const char* p_edge) {
  3338. SERIAL_PROTOCOLPGM("?Probe ");
  3339. serialprintPGM(p_edge);
  3340. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3341. }
  3342. #endif
  3343. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3344. inline void _manual_goto_xy(const float &x, const float &y) {
  3345. const float old_feedrate_mm_s = feedrate_mm_s;
  3346. #if MANUAL_PROBE_HEIGHT > 0
  3347. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3348. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3349. line_to_current_position();
  3350. #endif
  3351. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3352. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3353. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3354. line_to_current_position();
  3355. #if MANUAL_PROBE_HEIGHT > 0
  3356. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3357. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3358. line_to_current_position();
  3359. #endif
  3360. feedrate_mm_s = old_feedrate_mm_s;
  3361. stepper.synchronize();
  3362. }
  3363. #endif
  3364. #if ENABLED(MESH_BED_LEVELING)
  3365. // Save 130 bytes with non-duplication of PSTR
  3366. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3367. void mbl_mesh_report() {
  3368. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3369. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3370. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3371. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3372. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3373. );
  3374. }
  3375. /**
  3376. * G29: Mesh-based Z probe, probes a grid and produces a
  3377. * mesh to compensate for variable bed height
  3378. *
  3379. * Parameters With MESH_BED_LEVELING:
  3380. *
  3381. * S0 Produce a mesh report
  3382. * S1 Start probing mesh points
  3383. * S2 Probe the next mesh point
  3384. * S3 Xn Yn Zn.nn Manually modify a single point
  3385. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3386. * S5 Reset and disable mesh
  3387. *
  3388. * The S0 report the points as below
  3389. *
  3390. * +----> X-axis 1-n
  3391. * |
  3392. * |
  3393. * v Y-axis 1-n
  3394. *
  3395. */
  3396. inline void gcode_G29() {
  3397. static int mbl_probe_index = -1;
  3398. #if HAS_SOFTWARE_ENDSTOPS
  3399. static bool enable_soft_endstops;
  3400. #endif
  3401. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3402. if (!WITHIN(state, 0, 5)) {
  3403. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3404. return;
  3405. }
  3406. int8_t px, py;
  3407. switch (state) {
  3408. case MeshReport:
  3409. if (mbl.has_mesh()) {
  3410. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3411. mbl_mesh_report();
  3412. }
  3413. else
  3414. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3415. break;
  3416. case MeshStart:
  3417. mbl.reset();
  3418. mbl_probe_index = 0;
  3419. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3420. break;
  3421. case MeshNext:
  3422. if (mbl_probe_index < 0) {
  3423. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3424. return;
  3425. }
  3426. // For each G29 S2...
  3427. if (mbl_probe_index == 0) {
  3428. #if HAS_SOFTWARE_ENDSTOPS
  3429. // For the initial G29 S2 save software endstop state
  3430. enable_soft_endstops = soft_endstops_enabled;
  3431. #endif
  3432. }
  3433. else {
  3434. // For G29 S2 after adjusting Z.
  3435. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3436. #if HAS_SOFTWARE_ENDSTOPS
  3437. soft_endstops_enabled = enable_soft_endstops;
  3438. #endif
  3439. }
  3440. // If there's another point to sample, move there with optional lift.
  3441. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3442. mbl.zigzag(mbl_probe_index, px, py);
  3443. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3444. #if HAS_SOFTWARE_ENDSTOPS
  3445. // Disable software endstops to allow manual adjustment
  3446. // If G29 is not completed, they will not be re-enabled
  3447. soft_endstops_enabled = false;
  3448. #endif
  3449. mbl_probe_index++;
  3450. }
  3451. else {
  3452. // One last "return to the bed" (as originally coded) at completion
  3453. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3454. line_to_current_position();
  3455. stepper.synchronize();
  3456. // After recording the last point, activate the mbl and home
  3457. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3458. mbl_probe_index = -1;
  3459. mbl.set_has_mesh(true);
  3460. mbl.set_reactivate(true);
  3461. enqueue_and_echo_commands_P(PSTR("G28"));
  3462. BUZZ(100, 659);
  3463. BUZZ(100, 698);
  3464. }
  3465. break;
  3466. case MeshSet:
  3467. if (code_seen('X')) {
  3468. px = code_value_int() - 1;
  3469. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3470. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3471. return;
  3472. }
  3473. }
  3474. else {
  3475. SERIAL_CHAR('X'); say_not_entered();
  3476. return;
  3477. }
  3478. if (code_seen('Y')) {
  3479. py = code_value_int() - 1;
  3480. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3481. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3482. return;
  3483. }
  3484. }
  3485. else {
  3486. SERIAL_CHAR('Y'); say_not_entered();
  3487. return;
  3488. }
  3489. if (code_seen('Z')) {
  3490. mbl.z_values[px][py] = code_value_linear_units();
  3491. }
  3492. else {
  3493. SERIAL_CHAR('Z'); say_not_entered();
  3494. return;
  3495. }
  3496. break;
  3497. case MeshSetZOffset:
  3498. if (code_seen('Z')) {
  3499. mbl.z_offset = code_value_linear_units();
  3500. }
  3501. else {
  3502. SERIAL_CHAR('Z'); say_not_entered();
  3503. return;
  3504. }
  3505. break;
  3506. case MeshReset:
  3507. reset_bed_level();
  3508. break;
  3509. } // switch(state)
  3510. report_current_position();
  3511. }
  3512. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3513. #if ABL_GRID
  3514. #if ENABLED(PROBE_Y_FIRST)
  3515. #define PR_OUTER_VAR xCount
  3516. #define PR_OUTER_END abl_grid_points_x
  3517. #define PR_INNER_VAR yCount
  3518. #define PR_INNER_END abl_grid_points_y
  3519. #else
  3520. #define PR_OUTER_VAR yCount
  3521. #define PR_OUTER_END abl_grid_points_y
  3522. #define PR_INNER_VAR xCount
  3523. #define PR_INNER_END abl_grid_points_x
  3524. #endif
  3525. #endif
  3526. /**
  3527. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3528. * Will fail if the printer has not been homed with G28.
  3529. *
  3530. * Enhanced G29 Auto Bed Leveling Probe Routine
  3531. *
  3532. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3533. * or alter the bed level data. Useful to check the topology
  3534. * after a first run of G29.
  3535. *
  3536. * J Jettison current bed leveling data
  3537. *
  3538. * V Set the verbose level (0-4). Example: "G29 V3"
  3539. *
  3540. * Parameters With LINEAR leveling only:
  3541. *
  3542. * P Set the size of the grid that will be probed (P x P points).
  3543. * Example: "G29 P4"
  3544. *
  3545. * X Set the X size of the grid that will be probed (X x Y points).
  3546. * Example: "G29 X7 Y5"
  3547. *
  3548. * Y Set the Y size of the grid that will be probed (X x Y points).
  3549. *
  3550. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3551. * This is useful for manual bed leveling and finding flaws in the bed (to
  3552. * assist with part placement).
  3553. * Not supported by non-linear delta printer bed leveling.
  3554. *
  3555. * Parameters With LINEAR and BILINEAR leveling only:
  3556. *
  3557. * S Set the XY travel speed between probe points (in units/min)
  3558. *
  3559. * F Set the Front limit of the probing grid
  3560. * B Set the Back limit of the probing grid
  3561. * L Set the Left limit of the probing grid
  3562. * R Set the Right limit of the probing grid
  3563. *
  3564. * Parameters with DEBUG_LEVELING_FEATURE only:
  3565. *
  3566. * C Make a totally fake grid with no actual probing.
  3567. * For use in testing when no probing is possible.
  3568. *
  3569. * Parameters with BILINEAR leveling only:
  3570. *
  3571. * Z Supply an additional Z probe offset
  3572. *
  3573. * Extra parameters with PROBE_MANUALLY:
  3574. *
  3575. * To do manual probing simply repeat G29 until the procedure is complete.
  3576. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3577. *
  3578. * Q Query leveling and G29 state
  3579. *
  3580. * A Abort current leveling procedure
  3581. *
  3582. * W Write a mesh point. (Ignored during leveling.)
  3583. * X Required X for mesh point
  3584. * Y Required Y for mesh point
  3585. * Z Required Z for mesh point
  3586. *
  3587. * Without PROBE_MANUALLY:
  3588. *
  3589. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3590. * Include "E" to engage/disengage the Z probe for each sample.
  3591. * There's no extra effect if you have a fixed Z probe.
  3592. *
  3593. */
  3594. inline void gcode_G29() {
  3595. // G29 Q is also available if debugging
  3596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3597. const bool query = code_seen('Q');
  3598. const uint8_t old_debug_flags = marlin_debug_flags;
  3599. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3600. if (DEBUGGING(LEVELING)) {
  3601. DEBUG_POS(">>> gcode_G29", current_position);
  3602. log_machine_info();
  3603. }
  3604. marlin_debug_flags = old_debug_flags;
  3605. #if DISABLED(PROBE_MANUALLY)
  3606. if (query) return;
  3607. #endif
  3608. #endif
  3609. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3610. const bool faux = code_seen('C') && code_value_bool();
  3611. #else
  3612. bool constexpr faux = false;
  3613. #endif
  3614. // Don't allow auto-leveling without homing first
  3615. if (axis_unhomed_error(true, true, true)) return;
  3616. // Define local vars 'static' for manual probing, 'auto' otherwise
  3617. #if ENABLED(PROBE_MANUALLY)
  3618. #define ABL_VAR static
  3619. #else
  3620. #define ABL_VAR
  3621. #endif
  3622. ABL_VAR int verbose_level;
  3623. ABL_VAR float xProbe, yProbe, measured_z;
  3624. ABL_VAR bool dryrun, abl_should_enable;
  3625. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3626. ABL_VAR int abl_probe_index;
  3627. #endif
  3628. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3629. ABL_VAR bool enable_soft_endstops = true;
  3630. #endif
  3631. #if ABL_GRID
  3632. #if ENABLED(PROBE_MANUALLY)
  3633. ABL_VAR uint8_t PR_OUTER_VAR;
  3634. ABL_VAR int8_t PR_INNER_VAR;
  3635. #endif
  3636. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3637. ABL_VAR float xGridSpacing, yGridSpacing;
  3638. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3639. #if ABL_PLANAR
  3640. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3641. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3642. ABL_VAR bool do_topography_map;
  3643. #else // 3-point
  3644. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3645. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3646. #endif
  3647. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3648. #if ABL_PLANAR
  3649. ABL_VAR int abl2;
  3650. #else // 3-point
  3651. int constexpr abl2 = ABL_GRID_MAX;
  3652. #endif
  3653. #endif
  3654. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3655. ABL_VAR float zoffset;
  3656. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3657. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3658. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3659. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3660. mean;
  3661. #endif
  3662. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3663. // Probe at 3 arbitrary points
  3664. ABL_VAR vector_3 points[3] = {
  3665. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3666. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3667. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3668. };
  3669. #endif // AUTO_BED_LEVELING_3POINT
  3670. /**
  3671. * On the initial G29 fetch command parameters.
  3672. */
  3673. if (!g29_in_progress) {
  3674. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3675. abl_probe_index = 0;
  3676. #endif
  3677. abl_should_enable = planner.abl_enabled;
  3678. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3679. if (code_seen('W')) {
  3680. if (!bilinear_grid_spacing[X_AXIS]) {
  3681. SERIAL_ERROR_START;
  3682. SERIAL_ERRORLNPGM("No bilinear grid");
  3683. return;
  3684. }
  3685. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3686. if (!WITHIN(z, -10, 10)) {
  3687. SERIAL_ERROR_START;
  3688. SERIAL_ERRORLNPGM("Bad Z value");
  3689. return;
  3690. }
  3691. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3692. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3693. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3694. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3695. if (x < 99998 && y < 99998) {
  3696. // Get nearest i / j from x / y
  3697. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3698. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3699. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3700. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3701. }
  3702. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3703. set_bed_leveling_enabled(false);
  3704. z_values[i][j] = z;
  3705. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3706. bed_level_virt_interpolate();
  3707. #endif
  3708. set_bed_leveling_enabled(abl_should_enable);
  3709. }
  3710. return;
  3711. } // code_seen('W')
  3712. #endif
  3713. #if PLANNER_LEVELING
  3714. // Jettison bed leveling data
  3715. if (code_seen('J')) {
  3716. reset_bed_level();
  3717. return;
  3718. }
  3719. #endif
  3720. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3721. if (!WITHIN(verbose_level, 0, 4)) {
  3722. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3723. return;
  3724. }
  3725. dryrun = code_seen('D') && code_value_bool();
  3726. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3727. do_topography_map = verbose_level > 2 || code_seen('T');
  3728. // X and Y specify points in each direction, overriding the default
  3729. // These values may be saved with the completed mesh
  3730. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3731. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3732. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3733. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3734. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3735. return;
  3736. }
  3737. abl2 = abl_grid_points_x * abl_grid_points_y;
  3738. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3739. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3740. #endif
  3741. #if ABL_GRID
  3742. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3743. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3744. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3745. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3746. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3747. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3748. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3749. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3750. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3751. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3752. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3753. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3754. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3755. if (left_out || right_out || front_out || back_out) {
  3756. if (left_out) {
  3757. out_of_range_error(PSTR("(L)eft"));
  3758. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3759. }
  3760. if (right_out) {
  3761. out_of_range_error(PSTR("(R)ight"));
  3762. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3763. }
  3764. if (front_out) {
  3765. out_of_range_error(PSTR("(F)ront"));
  3766. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3767. }
  3768. if (back_out) {
  3769. out_of_range_error(PSTR("(B)ack"));
  3770. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3771. }
  3772. return;
  3773. }
  3774. // probe at the points of a lattice grid
  3775. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3776. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3777. #endif // ABL_GRID
  3778. if (verbose_level > 0) {
  3779. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3780. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3781. }
  3782. stepper.synchronize();
  3783. // Disable auto bed leveling during G29
  3784. planner.abl_enabled = false;
  3785. if (!dryrun) {
  3786. // Re-orient the current position without leveling
  3787. // based on where the steppers are positioned.
  3788. set_current_from_steppers_for_axis(ALL_AXES);
  3789. // Sync the planner to where the steppers stopped
  3790. SYNC_PLAN_POSITION_KINEMATIC();
  3791. }
  3792. if (!faux) setup_for_endstop_or_probe_move();
  3793. //xProbe = yProbe = measured_z = 0;
  3794. #if HAS_BED_PROBE
  3795. // Deploy the probe. Probe will raise if needed.
  3796. if (DEPLOY_PROBE()) {
  3797. planner.abl_enabled = abl_should_enable;
  3798. return;
  3799. }
  3800. #endif
  3801. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3802. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3803. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3804. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3805. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3806. ) {
  3807. if (dryrun) {
  3808. // Before reset bed level, re-enable to correct the position
  3809. planner.abl_enabled = abl_should_enable;
  3810. }
  3811. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3812. reset_bed_level();
  3813. // Initialize a grid with the given dimensions
  3814. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3815. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3816. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3817. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3818. // Can't re-enable (on error) until the new grid is written
  3819. abl_should_enable = false;
  3820. }
  3821. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3822. mean = 0.0;
  3823. #endif // AUTO_BED_LEVELING_LINEAR
  3824. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3825. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3826. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3827. #endif
  3828. // Probe at 3 arbitrary points
  3829. points[0].z = points[1].z = points[2].z = 0;
  3830. #endif // AUTO_BED_LEVELING_3POINT
  3831. } // !g29_in_progress
  3832. #if ENABLED(PROBE_MANUALLY)
  3833. // Abort current G29 procedure, go back to ABLStart
  3834. if (code_seen('A') && g29_in_progress) {
  3835. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3836. #if HAS_SOFTWARE_ENDSTOPS
  3837. soft_endstops_enabled = enable_soft_endstops;
  3838. #endif
  3839. planner.abl_enabled = abl_should_enable;
  3840. g29_in_progress = false;
  3841. }
  3842. // Query G29 status
  3843. if (code_seen('Q')) {
  3844. if (!g29_in_progress)
  3845. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3846. else {
  3847. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3848. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3849. }
  3850. }
  3851. if (code_seen('A') || code_seen('Q')) return;
  3852. // Fall through to probe the first point
  3853. g29_in_progress = true;
  3854. if (abl_probe_index == 0) {
  3855. // For the initial G29 save software endstop state
  3856. #if HAS_SOFTWARE_ENDSTOPS
  3857. enable_soft_endstops = soft_endstops_enabled;
  3858. #endif
  3859. }
  3860. else {
  3861. // For G29 after adjusting Z.
  3862. // Save the previous Z before going to the next point
  3863. measured_z = current_position[Z_AXIS];
  3864. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3865. mean += measured_z;
  3866. eqnBVector[abl_probe_index] = measured_z;
  3867. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3868. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3869. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3870. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3871. z_values[xCount][yCount] = measured_z + zoffset;
  3872. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3873. points[i].z = measured_z;
  3874. #endif
  3875. }
  3876. //
  3877. // If there's another point to sample, move there with optional lift.
  3878. //
  3879. #if ABL_GRID
  3880. // Find a next point to probe
  3881. // On the first G29 this will be the first probe point
  3882. while (abl_probe_index < abl2) {
  3883. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3884. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3885. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3886. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3887. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3888. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3889. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3890. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3891. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3892. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3893. indexIntoAB[xCount][yCount] = abl_probe_index;
  3894. #endif
  3895. float pos[XYZ] = { xProbe, yProbe, 0 };
  3896. if (position_is_reachable(pos)) break;
  3897. ++abl_probe_index;
  3898. }
  3899. // Is there a next point to move to?
  3900. if (abl_probe_index < abl2) {
  3901. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3902. ++abl_probe_index;
  3903. #if HAS_SOFTWARE_ENDSTOPS
  3904. // Disable software endstops to allow manual adjustment
  3905. // If G29 is not completed, they will not be re-enabled
  3906. soft_endstops_enabled = false;
  3907. #endif
  3908. return;
  3909. }
  3910. else {
  3911. // Then leveling is done!
  3912. // G29 finishing code goes here
  3913. // After recording the last point, activate abl
  3914. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3915. g29_in_progress = false;
  3916. // Re-enable software endstops, if needed
  3917. #if HAS_SOFTWARE_ENDSTOPS
  3918. soft_endstops_enabled = enable_soft_endstops;
  3919. #endif
  3920. }
  3921. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3922. // Probe at 3 arbitrary points
  3923. if (abl_probe_index < 3) {
  3924. xProbe = LOGICAL_X_POSITION(points[i].x);
  3925. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3926. ++abl_probe_index;
  3927. #if HAS_SOFTWARE_ENDSTOPS
  3928. // Disable software endstops to allow manual adjustment
  3929. // If G29 is not completed, they will not be re-enabled
  3930. soft_endstops_enabled = false;
  3931. #endif
  3932. return;
  3933. }
  3934. else {
  3935. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3936. g29_in_progress = false;
  3937. // Re-enable software endstops, if needed
  3938. #if HAS_SOFTWARE_ENDSTOPS
  3939. soft_endstops_enabled = enable_soft_endstops;
  3940. #endif
  3941. if (!dryrun) {
  3942. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3943. if (planeNormal.z < 0) {
  3944. planeNormal.x *= -1;
  3945. planeNormal.y *= -1;
  3946. planeNormal.z *= -1;
  3947. }
  3948. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3949. // Can't re-enable (on error) until the new grid is written
  3950. abl_should_enable = false;
  3951. }
  3952. }
  3953. #endif // AUTO_BED_LEVELING_3POINT
  3954. #else // !PROBE_MANUALLY
  3955. bool stow_probe_after_each = code_seen('E');
  3956. #if ABL_GRID
  3957. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3958. // Outer loop is Y with PROBE_Y_FIRST disabled
  3959. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3960. int8_t inStart, inStop, inInc;
  3961. if (zig) { // away from origin
  3962. inStart = 0;
  3963. inStop = PR_INNER_END;
  3964. inInc = 1;
  3965. }
  3966. else { // towards origin
  3967. inStart = PR_INNER_END - 1;
  3968. inStop = -1;
  3969. inInc = -1;
  3970. }
  3971. zig ^= true; // zag
  3972. // Inner loop is Y with PROBE_Y_FIRST enabled
  3973. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3974. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3975. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3976. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3977. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3978. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3979. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3980. #endif
  3981. #if IS_KINEMATIC
  3982. // Avoid probing outside the round or hexagonal area
  3983. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3984. if (!position_is_reachable(pos, true)) continue;
  3985. #endif
  3986. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3987. if (isnan(measured_z)) {
  3988. planner.abl_enabled = abl_should_enable;
  3989. return;
  3990. }
  3991. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3992. mean += measured_z;
  3993. eqnBVector[abl_probe_index] = measured_z;
  3994. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3995. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3996. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3997. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3998. z_values[xCount][yCount] = measured_z + zoffset;
  3999. #endif
  4000. abl_should_enable = false;
  4001. idle();
  4002. } // inner
  4003. } // outer
  4004. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4005. // Probe at 3 arbitrary points
  4006. for (uint8_t i = 0; i < 3; ++i) {
  4007. // Retain the last probe position
  4008. xProbe = LOGICAL_X_POSITION(points[i].x);
  4009. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4010. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4011. }
  4012. if (isnan(measured_z)) {
  4013. planner.abl_enabled = abl_should_enable;
  4014. return;
  4015. }
  4016. if (!dryrun) {
  4017. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4018. if (planeNormal.z < 0) {
  4019. planeNormal.x *= -1;
  4020. planeNormal.y *= -1;
  4021. planeNormal.z *= -1;
  4022. }
  4023. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4024. // Can't re-enable (on error) until the new grid is written
  4025. abl_should_enable = false;
  4026. }
  4027. #endif // AUTO_BED_LEVELING_3POINT
  4028. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4029. if (STOW_PROBE()) {
  4030. planner.abl_enabled = abl_should_enable;
  4031. return;
  4032. }
  4033. #endif // !PROBE_MANUALLY
  4034. //
  4035. // G29 Finishing Code
  4036. //
  4037. // Unless this is a dry run, auto bed leveling will
  4038. // definitely be enabled after this point
  4039. //
  4040. // Restore state after probing
  4041. if (!faux) clean_up_after_endstop_or_probe_move();
  4042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4043. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4044. #endif
  4045. // Calculate leveling, print reports, correct the position
  4046. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4047. if (!dryrun) extrapolate_unprobed_bed_level();
  4048. print_bilinear_leveling_grid();
  4049. refresh_bed_level();
  4050. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4051. bed_level_virt_print();
  4052. #endif
  4053. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4054. // For LINEAR leveling calculate matrix, print reports, correct the position
  4055. /**
  4056. * solve the plane equation ax + by + d = z
  4057. * A is the matrix with rows [x y 1] for all the probed points
  4058. * B is the vector of the Z positions
  4059. * the normal vector to the plane is formed by the coefficients of the
  4060. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4061. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4062. */
  4063. float plane_equation_coefficients[3];
  4064. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4065. mean /= abl2;
  4066. if (verbose_level) {
  4067. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4068. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4069. SERIAL_PROTOCOLPGM(" b: ");
  4070. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4071. SERIAL_PROTOCOLPGM(" d: ");
  4072. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4073. SERIAL_EOL;
  4074. if (verbose_level > 2) {
  4075. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4076. SERIAL_PROTOCOL_F(mean, 8);
  4077. SERIAL_EOL;
  4078. }
  4079. }
  4080. // Create the matrix but don't correct the position yet
  4081. if (!dryrun) {
  4082. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4083. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4084. );
  4085. }
  4086. // Show the Topography map if enabled
  4087. if (do_topography_map) {
  4088. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4089. " +--- BACK --+\n"
  4090. " | |\n"
  4091. " L | (+) | R\n"
  4092. " E | | I\n"
  4093. " F | (-) N (+) | G\n"
  4094. " T | | H\n"
  4095. " | (-) | T\n"
  4096. " | |\n"
  4097. " O-- FRONT --+\n"
  4098. " (0,0)");
  4099. float min_diff = 999;
  4100. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4101. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4102. int ind = indexIntoAB[xx][yy];
  4103. float diff = eqnBVector[ind] - mean,
  4104. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4105. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4106. z_tmp = 0;
  4107. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4108. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4109. if (diff >= 0.0)
  4110. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4111. else
  4112. SERIAL_PROTOCOLCHAR(' ');
  4113. SERIAL_PROTOCOL_F(diff, 5);
  4114. } // xx
  4115. SERIAL_EOL;
  4116. } // yy
  4117. SERIAL_EOL;
  4118. if (verbose_level > 3) {
  4119. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4120. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4121. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4122. int ind = indexIntoAB[xx][yy];
  4123. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4124. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4125. z_tmp = 0;
  4126. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4127. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4128. if (diff >= 0.0)
  4129. SERIAL_PROTOCOLPGM(" +");
  4130. // Include + for column alignment
  4131. else
  4132. SERIAL_PROTOCOLCHAR(' ');
  4133. SERIAL_PROTOCOL_F(diff, 5);
  4134. } // xx
  4135. SERIAL_EOL;
  4136. } // yy
  4137. SERIAL_EOL;
  4138. }
  4139. } //do_topography_map
  4140. #endif // AUTO_BED_LEVELING_LINEAR
  4141. #if ABL_PLANAR
  4142. // For LINEAR and 3POINT leveling correct the current position
  4143. if (verbose_level > 0)
  4144. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4145. if (!dryrun) {
  4146. //
  4147. // Correct the current XYZ position based on the tilted plane.
  4148. //
  4149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4150. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4151. #endif
  4152. float converted[XYZ];
  4153. COPY(converted, current_position);
  4154. planner.abl_enabled = true;
  4155. planner.unapply_leveling(converted); // use conversion machinery
  4156. planner.abl_enabled = false;
  4157. // Use the last measured distance to the bed, if possible
  4158. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4159. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4160. ) {
  4161. float simple_z = current_position[Z_AXIS] - measured_z;
  4162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4163. if (DEBUGGING(LEVELING)) {
  4164. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4165. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4166. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4167. }
  4168. #endif
  4169. converted[Z_AXIS] = simple_z;
  4170. }
  4171. // The rotated XY and corrected Z are now current_position
  4172. COPY(current_position, converted);
  4173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4174. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4175. #endif
  4176. }
  4177. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4178. if (!dryrun) {
  4179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4180. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4181. #endif
  4182. // Unapply the offset because it is going to be immediately applied
  4183. // and cause compensation movement in Z
  4184. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4186. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4187. #endif
  4188. }
  4189. #endif // ABL_PLANAR
  4190. #ifdef Z_PROBE_END_SCRIPT
  4191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4192. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4193. #endif
  4194. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4195. stepper.synchronize();
  4196. #endif
  4197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4198. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4199. #endif
  4200. report_current_position();
  4201. KEEPALIVE_STATE(IN_HANDLER);
  4202. // Auto Bed Leveling is complete! Enable if possible.
  4203. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4204. if (planner.abl_enabled)
  4205. SYNC_PLAN_POSITION_KINEMATIC();
  4206. }
  4207. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4208. #if HAS_BED_PROBE
  4209. /**
  4210. * G30: Do a single Z probe at the current XY
  4211. * Usage:
  4212. * G30 <X#> <Y#> <S#>
  4213. * X = Probe X position (default=current probe position)
  4214. * Y = Probe Y position (default=current probe position)
  4215. * S = Stows the probe if 1 (default=1)
  4216. */
  4217. inline void gcode_G30() {
  4218. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4219. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4220. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4221. if (!position_is_reachable(pos, true)) return;
  4222. // Disable leveling so the planner won't mess with us
  4223. #if PLANNER_LEVELING
  4224. set_bed_leveling_enabled(false);
  4225. #endif
  4226. setup_for_endstop_or_probe_move();
  4227. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4228. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4229. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4230. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4231. clean_up_after_endstop_or_probe_move();
  4232. report_current_position();
  4233. }
  4234. #if ENABLED(Z_PROBE_SLED)
  4235. /**
  4236. * G31: Deploy the Z probe
  4237. */
  4238. inline void gcode_G31() { DEPLOY_PROBE(); }
  4239. /**
  4240. * G32: Stow the Z probe
  4241. */
  4242. inline void gcode_G32() { STOW_PROBE(); }
  4243. #endif // Z_PROBE_SLED
  4244. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4245. /**
  4246. * G33: Delta '4-point' auto calibration iteration
  4247. *
  4248. * Usage: G33 <Cn> <Vn>
  4249. *
  4250. * C (default) = Calibrate endstops, height and delta radius
  4251. *
  4252. * -2, 1-4: n x n probe points, default 3 x 3
  4253. *
  4254. * 1: probe center
  4255. * set height only - useful when z_offset is changed
  4256. * 2: probe center and towers
  4257. * solve one '4 point' calibration
  4258. * -2: probe center and opposite the towers
  4259. * solve one '4 point' calibration
  4260. * 3: probe 3 center points, towers and opposite-towers
  4261. * averages between 2 '4 point' calibrations
  4262. * 4: probe 4 center points, towers, opposite-towers and itermediate points
  4263. * averages between 4 '4 point' calibrations
  4264. *
  4265. * V Verbose level (0-3, default 1)
  4266. *
  4267. * 0: Dry-run mode: no calibration
  4268. * 1: Settings
  4269. * 2: Setting + probe results
  4270. * 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
  4271. * This prematurely stops the iteration process when factors are found
  4272. */
  4273. inline void gcode_G33() {
  4274. stepper.synchronize();
  4275. #if PLANNER_LEVELING
  4276. set_bed_leveling_enabled(false);
  4277. #endif
  4278. const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
  4279. probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
  4280. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4281. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4282. #define _MAX_M33_V 3
  4283. if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
  4284. #else
  4285. #define _MAX_M33_V 2
  4286. if (verbose_level > 2)
  4287. SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
  4288. #endif
  4289. if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
  4290. float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
  4291. gcode_G28();
  4292. float e_old[XYZ],
  4293. dr_old = delta_radius,
  4294. zh_old = home_offset[Z_AXIS];
  4295. COPY(e_old,endstop_adj);
  4296. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4297. // expert variables
  4298. float h_f_old = 1.00, r_f_old = 0.00,
  4299. h_diff_min = 1.00, r_diff_max = 0.10;
  4300. #endif
  4301. // print settings
  4302. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4303. SERIAL_PROTOCOLPGM("Checking... AC");
  4304. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4305. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4306. if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
  4307. #endif
  4308. SERIAL_EOL;
  4309. LCD_MESSAGEPGM("Checking... AC");
  4310. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4311. if (abs(probe_points) > 1) {
  4312. SERIAL_PROTOCOLPGM(" Ex:");
  4313. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4314. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4315. SERIAL_PROTOCOLPGM(" Ey:");
  4316. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4317. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4318. SERIAL_PROTOCOLPGM(" Ez:");
  4319. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4320. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4321. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4322. }
  4323. SERIAL_EOL;
  4324. #if ENABLED(Z_PROBE_SLED)
  4325. DEPLOY_PROBE();
  4326. #endif
  4327. float test_precision;
  4328. int8_t iterations = 0;
  4329. do { // start iterations
  4330. setup_for_endstop_or_probe_move();
  4331. test_precision =
  4332. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4333. // Expert mode : forced end at std_dev < 0.1
  4334. (verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
  4335. #endif
  4336. zero_std_dev
  4337. ;
  4338. float z_at_pt[13] = { 0 };
  4339. iterations++;
  4340. // probe the points
  4341. int16_t center_points = 0;
  4342. if (probe_points != 3) {
  4343. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4344. center_points = 1;
  4345. }
  4346. int16_t step_axis = 4;
  4347. if (probe_points >= 3) {
  4348. for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
  4349. z_at_pt[0] += probe_pt(
  4350. 0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4351. 0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
  4352. }
  4353. center_points += 3;
  4354. z_at_pt[0] /= center_points;
  4355. }
  4356. float S1 = z_at_pt[0], S2 = sq(S1);
  4357. int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
  4358. step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
  4359. if (probe_points != 1) {
  4360. for (uint8_t axis = start; axis < 13; axis += step_axis)
  4361. z_at_pt[axis] += probe_pt(
  4362. cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4363. sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
  4364. );
  4365. if (probe_points == 4) step_axis = 2;
  4366. }
  4367. for (uint8_t axis = start; axis < 13; axis += step_axis) {
  4368. if (probe_points == 4)
  4369. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4370. S1 += z_at_pt[axis];
  4371. S2 += sq(z_at_pt[axis]);
  4372. N++;
  4373. }
  4374. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
  4375. // Solve matrices
  4376. if (zero_std_dev < test_precision) {
  4377. COPY(e_old, endstop_adj);
  4378. dr_old = delta_radius;
  4379. zh_old = home_offset[Z_AXIS];
  4380. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
  4381. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4382. float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
  4383. h_diff = 0.00, r_diff = 0.00;
  4384. #endif
  4385. #define ZP(N,I) ((N) * z_at_pt[I])
  4386. #define Z1000(I) ZP(1.00, I)
  4387. #define Z1050(I) ZP(H_FACTOR, I)
  4388. #define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
  4389. #define Z0350(I) ZP((H_FACTOR) / 3.00, I)
  4390. #define Z0175(I) ZP((H_FACTOR) / 6.00, I)
  4391. #define Z2250(I) ZP(R_FACTOR, I)
  4392. #define Z0750(I) ZP((R_FACTOR) / 3.00, I)
  4393. #define Z0375(I) ZP((R_FACTOR) / 6.00, I)
  4394. switch (probe_points) {
  4395. case 1:
  4396. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4397. r_delta = 0.00;
  4398. break;
  4399. case 2:
  4400. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4401. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4402. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4403. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4404. break;
  4405. case -2:
  4406. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4407. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4408. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4409. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4410. break;
  4411. default:
  4412. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4413. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4414. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4415. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4416. break;
  4417. }
  4418. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4419. // Calculate h & r factors
  4420. if (verbose_level == 3) {
  4421. LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
  4422. r_f_new = r_delta;
  4423. h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
  4424. if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
  4425. if (r_f_old != 0)
  4426. r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
  4427. + 0.311 * sq(R_FACTOR)
  4428. + 1.1493 * R_FACTOR
  4429. + 1.7952
  4430. ) * (r_f_old - r_f_new) / r_f_old;
  4431. if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
  4432. SERIAL_EOL;
  4433. h_f_old = h_f_new;
  4434. r_f_old = r_f_new;
  4435. }
  4436. #endif // DELTA_CALIBRATE_EXPERT_MODE
  4437. // Adjust delta_height and endstops by the max amount
  4438. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4439. delta_radius += r_delta;
  4440. const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
  4441. home_offset[Z_AXIS] -= z_temp;
  4442. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4443. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4444. }
  4445. else { // !iterate
  4446. // step one back
  4447. COPY(endstop_adj, e_old);
  4448. delta_radius = dr_old;
  4449. home_offset[Z_AXIS] = zh_old;
  4450. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4451. }
  4452. // print report
  4453. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4454. if (verbose_level == 3) {
  4455. const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
  4456. - 44.988 * sq(r_diff_max)
  4457. + 31.697 * r_diff_max
  4458. - 9.4439;
  4459. SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
  4460. SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
  4461. SERIAL_EOL;
  4462. }
  4463. #endif
  4464. if (verbose_level == 2) {
  4465. SERIAL_PROTOCOLPGM(". c:");
  4466. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4467. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4468. if (probe_points > 1) {
  4469. SERIAL_PROTOCOLPGM(" x:");
  4470. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4471. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4472. SERIAL_PROTOCOLPGM(" y:");
  4473. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4474. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4475. SERIAL_PROTOCOLPGM(" z:");
  4476. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4477. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4478. }
  4479. if (probe_points > 0) SERIAL_EOL;
  4480. if (probe_points > 2 || probe_points == -2) {
  4481. if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
  4482. SERIAL_PROTOCOLPGM(" yz:");
  4483. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4484. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4485. SERIAL_PROTOCOLPGM(" zx:");
  4486. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4487. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4488. SERIAL_PROTOCOLPGM(" xy:");
  4489. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4490. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4491. SERIAL_EOL;
  4492. }
  4493. }
  4494. if (test_precision != 0.0) { // !forced end
  4495. if (zero_std_dev >= test_precision) {
  4496. SERIAL_PROTOCOLPGM("Calibration OK");
  4497. SERIAL_PROTOCOLLNPGM(" rolling back 1");
  4498. LCD_MESSAGEPGM("Calibration OK");
  4499. SERIAL_EOL;
  4500. }
  4501. else { // !end iterations
  4502. char mess[15] = "No convergence";
  4503. if (iterations < 31)
  4504. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4505. SERIAL_PROTOCOL(mess);
  4506. SERIAL_PROTOCOLPGM(" std dev:");
  4507. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4508. SERIAL_EOL;
  4509. lcd_setstatus(mess);
  4510. }
  4511. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4512. if (abs(probe_points) > 1) {
  4513. SERIAL_PROTOCOLPGM(" Ex:");
  4514. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4515. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4516. SERIAL_PROTOCOLPGM(" Ey:");
  4517. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4518. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4519. SERIAL_PROTOCOLPGM(" Ez:");
  4520. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4521. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4522. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4523. }
  4524. SERIAL_EOL;
  4525. if (zero_std_dev >= test_precision)
  4526. SERIAL_PROTOCOLLNPGM("Save with M500");
  4527. }
  4528. else { // forced end
  4529. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4530. if (verbose_level == 3)
  4531. SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
  4532. else
  4533. #endif
  4534. {
  4535. SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
  4536. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4537. SERIAL_EOL;
  4538. }
  4539. }
  4540. clean_up_after_endstop_or_probe_move();
  4541. stepper.synchronize();
  4542. gcode_G28();
  4543. } while (zero_std_dev < test_precision && iterations < 31);
  4544. #if ENABLED(Z_PROBE_SLED)
  4545. RETRACT_PROBE();
  4546. #endif
  4547. }
  4548. #endif // DELTA_AUTO_CALIBRATION
  4549. #endif // HAS_BED_PROBE
  4550. #if ENABLED(G38_PROBE_TARGET)
  4551. static bool G38_run_probe() {
  4552. bool G38_pass_fail = false;
  4553. // Get direction of move and retract
  4554. float retract_mm[XYZ];
  4555. LOOP_XYZ(i) {
  4556. float dist = destination[i] - current_position[i];
  4557. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4558. }
  4559. stepper.synchronize(); // wait until the machine is idle
  4560. // Move until destination reached or target hit
  4561. endstops.enable(true);
  4562. G38_move = true;
  4563. G38_endstop_hit = false;
  4564. prepare_move_to_destination();
  4565. stepper.synchronize();
  4566. G38_move = false;
  4567. endstops.hit_on_purpose();
  4568. set_current_from_steppers_for_axis(ALL_AXES);
  4569. SYNC_PLAN_POSITION_KINEMATIC();
  4570. if (G38_endstop_hit) {
  4571. G38_pass_fail = true;
  4572. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4573. // Move away by the retract distance
  4574. set_destination_to_current();
  4575. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4576. endstops.enable(false);
  4577. prepare_move_to_destination();
  4578. stepper.synchronize();
  4579. feedrate_mm_s /= 4;
  4580. // Bump the target more slowly
  4581. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4582. endstops.enable(true);
  4583. G38_move = true;
  4584. prepare_move_to_destination();
  4585. stepper.synchronize();
  4586. G38_move = false;
  4587. set_current_from_steppers_for_axis(ALL_AXES);
  4588. SYNC_PLAN_POSITION_KINEMATIC();
  4589. #endif
  4590. }
  4591. endstops.hit_on_purpose();
  4592. endstops.not_homing();
  4593. return G38_pass_fail;
  4594. }
  4595. /**
  4596. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4597. * G38.3 - probe toward workpiece, stop on contact
  4598. *
  4599. * Like G28 except uses Z min probe for all axes
  4600. */
  4601. inline void gcode_G38(bool is_38_2) {
  4602. // Get X Y Z E F
  4603. gcode_get_destination();
  4604. setup_for_endstop_or_probe_move();
  4605. // If any axis has enough movement, do the move
  4606. LOOP_XYZ(i)
  4607. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4608. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4609. // If G38.2 fails throw an error
  4610. if (!G38_run_probe() && is_38_2) {
  4611. SERIAL_ERROR_START;
  4612. SERIAL_ERRORLNPGM("Failed to reach target");
  4613. }
  4614. break;
  4615. }
  4616. clean_up_after_endstop_or_probe_move();
  4617. }
  4618. #endif // G38_PROBE_TARGET
  4619. /**
  4620. * G92: Set current position to given X Y Z E
  4621. */
  4622. inline void gcode_G92() {
  4623. bool didXYZ = false,
  4624. didE = code_seen('E');
  4625. if (!didE) stepper.synchronize();
  4626. LOOP_XYZE(i) {
  4627. if (code_seen(axis_codes[i])) {
  4628. #if IS_SCARA
  4629. current_position[i] = code_value_axis_units((AxisEnum)i);
  4630. if (i != E_AXIS) didXYZ = true;
  4631. #else
  4632. #if HAS_POSITION_SHIFT
  4633. const float p = current_position[i];
  4634. #endif
  4635. float v = code_value_axis_units((AxisEnum)i);
  4636. current_position[i] = v;
  4637. if (i != E_AXIS) {
  4638. didXYZ = true;
  4639. #if HAS_POSITION_SHIFT
  4640. position_shift[i] += v - p; // Offset the coordinate space
  4641. update_software_endstops((AxisEnum)i);
  4642. #endif
  4643. }
  4644. #endif
  4645. }
  4646. }
  4647. if (didXYZ)
  4648. SYNC_PLAN_POSITION_KINEMATIC();
  4649. else if (didE)
  4650. sync_plan_position_e();
  4651. report_current_position();
  4652. }
  4653. #if HAS_RESUME_CONTINUE
  4654. /**
  4655. * M0: Unconditional stop - Wait for user button press on LCD
  4656. * M1: Conditional stop - Wait for user button press on LCD
  4657. */
  4658. inline void gcode_M0_M1() {
  4659. const char * const args = current_command_args;
  4660. millis_t codenum = 0;
  4661. bool hasP = false, hasS = false;
  4662. if (code_seen('P')) {
  4663. codenum = code_value_millis(); // milliseconds to wait
  4664. hasP = codenum > 0;
  4665. }
  4666. if (code_seen('S')) {
  4667. codenum = code_value_millis_from_seconds(); // seconds to wait
  4668. hasS = codenum > 0;
  4669. }
  4670. #if ENABLED(ULTIPANEL)
  4671. if (!hasP && !hasS && *args != '\0')
  4672. lcd_setstatus(args, true);
  4673. else {
  4674. LCD_MESSAGEPGM(MSG_USERWAIT);
  4675. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4676. dontExpireStatus();
  4677. #endif
  4678. }
  4679. #else
  4680. if (!hasP && !hasS && *args != '\0') {
  4681. SERIAL_ECHO_START;
  4682. SERIAL_ECHOLN(args);
  4683. }
  4684. #endif
  4685. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4686. wait_for_user = true;
  4687. stepper.synchronize();
  4688. refresh_cmd_timeout();
  4689. if (codenum > 0) {
  4690. codenum += previous_cmd_ms; // wait until this time for a click
  4691. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4692. }
  4693. else {
  4694. #if ENABLED(ULTIPANEL)
  4695. if (lcd_detected()) {
  4696. while (wait_for_user) idle();
  4697. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4698. }
  4699. #else
  4700. while (wait_for_user) idle();
  4701. #endif
  4702. }
  4703. wait_for_user = false;
  4704. KEEPALIVE_STATE(IN_HANDLER);
  4705. }
  4706. #endif // HAS_RESUME_CONTINUE
  4707. /**
  4708. * M17: Enable power on all stepper motors
  4709. */
  4710. inline void gcode_M17() {
  4711. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4712. enable_all_steppers();
  4713. }
  4714. #if IS_KINEMATIC
  4715. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4716. #else
  4717. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4718. #endif
  4719. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4720. float resume_position[XYZE];
  4721. bool move_away_flag = false;
  4722. inline void move_back_on_resume() {
  4723. if (!move_away_flag) return;
  4724. move_away_flag = false;
  4725. // Set extruder to saved position
  4726. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4727. planner.set_e_position_mm(current_position[E_AXIS]);
  4728. #if IS_KINEMATIC
  4729. // Move XYZ to starting position
  4730. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4731. #else
  4732. // Move XY to starting position, then Z
  4733. destination[X_AXIS] = resume_position[X_AXIS];
  4734. destination[Y_AXIS] = resume_position[Y_AXIS];
  4735. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4736. destination[Z_AXIS] = resume_position[Z_AXIS];
  4737. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4738. #endif
  4739. stepper.synchronize();
  4740. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4741. filament_ran_out = false;
  4742. #endif
  4743. set_current_to_destination();
  4744. }
  4745. #endif // PARK_HEAD_ON_PAUSE
  4746. #if ENABLED(SDSUPPORT)
  4747. /**
  4748. * M20: List SD card to serial output
  4749. */
  4750. inline void gcode_M20() {
  4751. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4752. card.ls();
  4753. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4754. }
  4755. /**
  4756. * M21: Init SD Card
  4757. */
  4758. inline void gcode_M21() { card.initsd(); }
  4759. /**
  4760. * M22: Release SD Card
  4761. */
  4762. inline void gcode_M22() { card.release(); }
  4763. /**
  4764. * M23: Open a file
  4765. */
  4766. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4767. /**
  4768. * M24: Start or Resume SD Print
  4769. */
  4770. inline void gcode_M24() {
  4771. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4772. move_back_on_resume();
  4773. #endif
  4774. card.startFileprint();
  4775. print_job_timer.start();
  4776. }
  4777. /**
  4778. * M25: Pause SD Print
  4779. */
  4780. inline void gcode_M25() {
  4781. card.pauseSDPrint();
  4782. print_job_timer.pause();
  4783. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4784. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4785. #endif
  4786. }
  4787. /**
  4788. * M26: Set SD Card file index
  4789. */
  4790. inline void gcode_M26() {
  4791. if (card.cardOK && code_seen('S'))
  4792. card.setIndex(code_value_long());
  4793. }
  4794. /**
  4795. * M27: Get SD Card status
  4796. */
  4797. inline void gcode_M27() { card.getStatus(); }
  4798. /**
  4799. * M28: Start SD Write
  4800. */
  4801. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4802. /**
  4803. * M29: Stop SD Write
  4804. * Processed in write to file routine above
  4805. */
  4806. inline void gcode_M29() {
  4807. // card.saving = false;
  4808. }
  4809. /**
  4810. * M30 <filename>: Delete SD Card file
  4811. */
  4812. inline void gcode_M30() {
  4813. if (card.cardOK) {
  4814. card.closefile();
  4815. card.removeFile(current_command_args);
  4816. }
  4817. }
  4818. #endif // SDSUPPORT
  4819. /**
  4820. * M31: Get the time since the start of SD Print (or last M109)
  4821. */
  4822. inline void gcode_M31() {
  4823. char buffer[21];
  4824. duration_t elapsed = print_job_timer.duration();
  4825. elapsed.toString(buffer);
  4826. lcd_setstatus(buffer);
  4827. SERIAL_ECHO_START;
  4828. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4829. #if ENABLED(AUTOTEMP)
  4830. thermalManager.autotempShutdown();
  4831. #endif
  4832. }
  4833. #if ENABLED(SDSUPPORT)
  4834. /**
  4835. * M32: Select file and start SD Print
  4836. */
  4837. inline void gcode_M32() {
  4838. if (card.sdprinting)
  4839. stepper.synchronize();
  4840. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4841. if (!namestartpos)
  4842. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4843. else
  4844. namestartpos++; //to skip the '!'
  4845. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4846. if (card.cardOK) {
  4847. card.openFile(namestartpos, true, call_procedure);
  4848. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4849. card.setIndex(code_value_long());
  4850. card.startFileprint();
  4851. // Procedure calls count as normal print time.
  4852. if (!call_procedure) print_job_timer.start();
  4853. }
  4854. }
  4855. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4856. /**
  4857. * M33: Get the long full path of a file or folder
  4858. *
  4859. * Parameters:
  4860. * <dospath> Case-insensitive DOS-style path to a file or folder
  4861. *
  4862. * Example:
  4863. * M33 miscel~1/armchair/armcha~1.gco
  4864. *
  4865. * Output:
  4866. * /Miscellaneous/Armchair/Armchair.gcode
  4867. */
  4868. inline void gcode_M33() {
  4869. card.printLongPath(current_command_args);
  4870. }
  4871. #endif
  4872. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4873. /**
  4874. * M34: Set SD Card Sorting Options
  4875. */
  4876. inline void gcode_M34() {
  4877. if (code_seen('S')) card.setSortOn(code_value_bool());
  4878. if (code_seen('F')) {
  4879. int v = code_value_long();
  4880. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4881. }
  4882. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4883. }
  4884. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4885. /**
  4886. * M928: Start SD Write
  4887. */
  4888. inline void gcode_M928() {
  4889. card.openLogFile(current_command_args);
  4890. }
  4891. #endif // SDSUPPORT
  4892. /**
  4893. * Sensitive pin test for M42, M226
  4894. */
  4895. static bool pin_is_protected(uint8_t pin) {
  4896. static const int sensitive_pins[] = SENSITIVE_PINS;
  4897. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4898. if (sensitive_pins[i] == pin) return true;
  4899. return false;
  4900. }
  4901. /**
  4902. * M42: Change pin status via GCode
  4903. *
  4904. * P<pin> Pin number (LED if omitted)
  4905. * S<byte> Pin status from 0 - 255
  4906. */
  4907. inline void gcode_M42() {
  4908. if (!code_seen('S')) return;
  4909. int pin_status = code_value_int();
  4910. if (!WITHIN(pin_status, 0, 255)) return;
  4911. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4912. if (pin_number < 0) return;
  4913. if (pin_is_protected(pin_number)) {
  4914. SERIAL_ERROR_START;
  4915. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4916. return;
  4917. }
  4918. pinMode(pin_number, OUTPUT);
  4919. digitalWrite(pin_number, pin_status);
  4920. analogWrite(pin_number, pin_status);
  4921. #if FAN_COUNT > 0
  4922. switch (pin_number) {
  4923. #if HAS_FAN0
  4924. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4925. #endif
  4926. #if HAS_FAN1
  4927. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4928. #endif
  4929. #if HAS_FAN2
  4930. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4931. #endif
  4932. }
  4933. #endif
  4934. }
  4935. #if ENABLED(PINS_DEBUGGING)
  4936. #include "pinsDebug.h"
  4937. inline void toggle_pins() {
  4938. const bool I_flag = code_seen('I') && code_value_bool();
  4939. const int repeat = code_seen('R') ? code_value_int() : 1,
  4940. start = code_seen('S') ? code_value_int() : 0,
  4941. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4942. wait = code_seen('W') ? code_value_int() : 500;
  4943. for (uint8_t pin = start; pin <= end; pin++) {
  4944. if (!I_flag && pin_is_protected(pin)) {
  4945. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4946. SERIAL_ECHOLNPGM(" untouched.");
  4947. }
  4948. else {
  4949. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4950. pinMode(pin, OUTPUT);
  4951. for (int16_t j = 0; j < repeat; j++) {
  4952. digitalWrite(pin, 0);
  4953. safe_delay(wait);
  4954. digitalWrite(pin, 1);
  4955. safe_delay(wait);
  4956. digitalWrite(pin, 0);
  4957. safe_delay(wait);
  4958. }
  4959. }
  4960. SERIAL_CHAR('\n');
  4961. }
  4962. SERIAL_ECHOLNPGM("Done.");
  4963. } // toggle_pins
  4964. inline void servo_probe_test() {
  4965. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4966. SERIAL_ERROR_START;
  4967. SERIAL_ERRORLNPGM("SERVO not setup");
  4968. #elif !HAS_Z_SERVO_ENDSTOP
  4969. SERIAL_ERROR_START;
  4970. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  4971. #else
  4972. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  4973. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4974. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4975. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4976. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4977. bool probe_inverting;
  4978. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4979. #define PROBE_TEST_PIN Z_MIN_PIN
  4980. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4981. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4982. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4983. #if Z_MIN_ENDSTOP_INVERTING
  4984. SERIAL_PROTOCOLLNPGM("true");
  4985. #else
  4986. SERIAL_PROTOCOLLNPGM("false");
  4987. #endif
  4988. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4989. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4990. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4991. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4992. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4993. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4994. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  4995. SERIAL_PROTOCOLLNPGM("true");
  4996. #else
  4997. SERIAL_PROTOCOLLNPGM("false");
  4998. #endif
  4999. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5000. #endif
  5001. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5002. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5003. bool deploy_state;
  5004. bool stow_state;
  5005. for (uint8_t i = 0; i < 4; i++) {
  5006. servo[probe_index].move(z_servo_angle[0]); //deploy
  5007. safe_delay(500);
  5008. deploy_state = digitalRead(PROBE_TEST_PIN);
  5009. servo[probe_index].move(z_servo_angle[1]); //stow
  5010. safe_delay(500);
  5011. stow_state = digitalRead(PROBE_TEST_PIN);
  5012. }
  5013. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5014. refresh_cmd_timeout();
  5015. if (deploy_state != stow_state) {
  5016. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5017. if (deploy_state) {
  5018. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5019. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5020. }
  5021. else {
  5022. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5023. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5024. }
  5025. #if ENABLED(BLTOUCH)
  5026. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5027. #endif
  5028. }
  5029. else { // measure active signal length
  5030. servo[probe_index].move(z_servo_angle[0]); // deploy
  5031. safe_delay(500);
  5032. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5033. uint16_t probe_counter = 0;
  5034. // Allow 30 seconds max for operator to trigger probe
  5035. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5036. safe_delay(2);
  5037. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5038. refresh_cmd_timeout();
  5039. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5040. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5041. safe_delay(2);
  5042. if (probe_counter == 50)
  5043. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5044. else if (probe_counter >= 2)
  5045. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5046. else
  5047. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5048. servo[probe_index].move(z_servo_angle[1]); //stow
  5049. } // pulse detected
  5050. } // for loop waiting for trigger
  5051. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5052. } // measure active signal length
  5053. #endif
  5054. } // servo_probe_test
  5055. /**
  5056. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5057. *
  5058. * M43 - report name and state of pin(s)
  5059. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5060. * I Flag to ignore Marlin's pin protection.
  5061. *
  5062. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5063. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5064. * I Flag to ignore Marlin's pin protection.
  5065. *
  5066. * M43 E<bool> - Enable / disable background endstop monitoring
  5067. * - Machine continues to operate
  5068. * - Reports changes to endstops
  5069. * - Toggles LED when an endstop changes
  5070. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5071. *
  5072. * M43 T - Toggle pin(s) and report which pin is being toggled
  5073. * S<pin> - Start Pin number. If not given, will default to 0
  5074. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5075. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5076. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5077. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5078. *
  5079. * M43 S - Servo probe test
  5080. * P<index> - Probe index (optional - defaults to 0
  5081. */
  5082. inline void gcode_M43() {
  5083. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5084. toggle_pins();
  5085. return;
  5086. }
  5087. // Enable or disable endstop monitoring
  5088. if (code_seen('E')) {
  5089. endstop_monitor_flag = code_value_bool();
  5090. SERIAL_PROTOCOLPGM("endstop monitor ");
  5091. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5092. SERIAL_PROTOCOLLNPGM("abled");
  5093. return;
  5094. }
  5095. if (code_seen('S')) {
  5096. servo_probe_test();
  5097. return;
  5098. }
  5099. // Get the range of pins to test or watch
  5100. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5101. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5102. if (first_pin > last_pin) return;
  5103. const bool ignore_protection = code_seen('I') && code_value_bool();
  5104. // Watch until click, M108, or reset
  5105. if (code_seen('W') && code_value_bool()) {
  5106. SERIAL_PROTOCOLLNPGM("Watching pins");
  5107. byte pin_state[last_pin - first_pin + 1];
  5108. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5109. if (pin_is_protected(pin) && !ignore_protection) continue;
  5110. pinMode(pin, INPUT_PULLUP);
  5111. /*
  5112. if (IS_ANALOG(pin))
  5113. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5114. else
  5115. //*/
  5116. pin_state[pin - first_pin] = digitalRead(pin);
  5117. }
  5118. #if HAS_RESUME_CONTINUE
  5119. wait_for_user = true;
  5120. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5121. #endif
  5122. for (;;) {
  5123. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5124. if (pin_is_protected(pin)) continue;
  5125. const byte val =
  5126. /*
  5127. IS_ANALOG(pin)
  5128. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5129. :
  5130. //*/
  5131. digitalRead(pin);
  5132. if (val != pin_state[pin - first_pin]) {
  5133. report_pin_state(pin);
  5134. pin_state[pin - first_pin] = val;
  5135. }
  5136. }
  5137. #if HAS_RESUME_CONTINUE
  5138. if (!wait_for_user) {
  5139. KEEPALIVE_STATE(IN_HANDLER);
  5140. break;
  5141. }
  5142. #endif
  5143. safe_delay(500);
  5144. }
  5145. return;
  5146. }
  5147. // Report current state of selected pin(s)
  5148. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5149. report_pin_state_extended(pin, ignore_protection);
  5150. }
  5151. #endif // PINS_DEBUGGING
  5152. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5153. /**
  5154. * M48: Z probe repeatability measurement function.
  5155. *
  5156. * Usage:
  5157. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5158. * P = Number of sampled points (4-50, default 10)
  5159. * X = Sample X position
  5160. * Y = Sample Y position
  5161. * V = Verbose level (0-4, default=1)
  5162. * E = Engage Z probe for each reading
  5163. * L = Number of legs of movement before probe
  5164. * S = Schizoid (Or Star if you prefer)
  5165. *
  5166. * This function assumes the bed has been homed. Specifically, that a G28 command
  5167. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5168. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5169. * regenerated.
  5170. */
  5171. inline void gcode_M48() {
  5172. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5173. bool bed_leveling_state_at_entry=0;
  5174. bed_leveling_state_at_entry = ubl.state.active;
  5175. #endif
  5176. if (axis_unhomed_error(true, true, true)) return;
  5177. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5178. if (!WITHIN(verbose_level, 0, 4)) {
  5179. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5180. return;
  5181. }
  5182. if (verbose_level > 0)
  5183. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5184. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5185. if (!WITHIN(n_samples, 4, 50)) {
  5186. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5187. return;
  5188. }
  5189. float X_current = current_position[X_AXIS],
  5190. Y_current = current_position[Y_AXIS];
  5191. bool stow_probe_after_each = code_seen('E');
  5192. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5193. #if DISABLED(DELTA)
  5194. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5195. out_of_range_error(PSTR("X"));
  5196. return;
  5197. }
  5198. #endif
  5199. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5200. #if DISABLED(DELTA)
  5201. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5202. out_of_range_error(PSTR("Y"));
  5203. return;
  5204. }
  5205. #else
  5206. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5207. if (!position_is_reachable(pos, true)) {
  5208. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5209. return;
  5210. }
  5211. #endif
  5212. bool seen_L = code_seen('L');
  5213. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5214. if (n_legs > 15) {
  5215. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5216. return;
  5217. }
  5218. if (n_legs == 1) n_legs = 2;
  5219. bool schizoid_flag = code_seen('S');
  5220. if (schizoid_flag && !seen_L) n_legs = 7;
  5221. /**
  5222. * Now get everything to the specified probe point So we can safely do a
  5223. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5224. * we don't want to use that as a starting point for each probe.
  5225. */
  5226. if (verbose_level > 2)
  5227. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5228. // Disable bed level correction in M48 because we want the raw data when we probe
  5229. #if HAS_ABL
  5230. const bool abl_was_enabled = planner.abl_enabled;
  5231. set_bed_leveling_enabled(false);
  5232. #endif
  5233. setup_for_endstop_or_probe_move();
  5234. // Move to the first point, deploy, and probe
  5235. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5236. randomSeed(millis());
  5237. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5238. for (uint8_t n = 0; n < n_samples; n++) {
  5239. if (n_legs) {
  5240. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5241. float angle = random(0.0, 360.0),
  5242. radius = random(
  5243. #if ENABLED(DELTA)
  5244. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5245. #else
  5246. 5, X_MAX_LENGTH / 8
  5247. #endif
  5248. );
  5249. if (verbose_level > 3) {
  5250. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5251. SERIAL_ECHOPAIR(" angle: ", angle);
  5252. SERIAL_ECHOPGM(" Direction: ");
  5253. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5254. SERIAL_ECHOLNPGM("Clockwise");
  5255. }
  5256. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5257. double delta_angle;
  5258. if (schizoid_flag)
  5259. // The points of a 5 point star are 72 degrees apart. We need to
  5260. // skip a point and go to the next one on the star.
  5261. delta_angle = dir * 2.0 * 72.0;
  5262. else
  5263. // If we do this line, we are just trying to move further
  5264. // around the circle.
  5265. delta_angle = dir * (float) random(25, 45);
  5266. angle += delta_angle;
  5267. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5268. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5269. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5270. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5271. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5272. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5273. #if DISABLED(DELTA)
  5274. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5275. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5276. #else
  5277. // If we have gone out too far, we can do a simple fix and scale the numbers
  5278. // back in closer to the origin.
  5279. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5280. X_current *= 0.8;
  5281. Y_current *= 0.8;
  5282. if (verbose_level > 3) {
  5283. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5284. SERIAL_ECHOLNPAIR(", ", Y_current);
  5285. }
  5286. }
  5287. #endif
  5288. if (verbose_level > 3) {
  5289. SERIAL_PROTOCOLPGM("Going to:");
  5290. SERIAL_ECHOPAIR(" X", X_current);
  5291. SERIAL_ECHOPAIR(" Y", Y_current);
  5292. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5293. }
  5294. do_blocking_move_to_xy(X_current, Y_current);
  5295. } // n_legs loop
  5296. } // n_legs
  5297. // Probe a single point
  5298. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5299. /**
  5300. * Get the current mean for the data points we have so far
  5301. */
  5302. double sum = 0.0;
  5303. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5304. mean = sum / (n + 1);
  5305. NOMORE(min, sample_set[n]);
  5306. NOLESS(max, sample_set[n]);
  5307. /**
  5308. * Now, use that mean to calculate the standard deviation for the
  5309. * data points we have so far
  5310. */
  5311. sum = 0.0;
  5312. for (uint8_t j = 0; j <= n; j++)
  5313. sum += sq(sample_set[j] - mean);
  5314. sigma = sqrt(sum / (n + 1));
  5315. if (verbose_level > 0) {
  5316. if (verbose_level > 1) {
  5317. SERIAL_PROTOCOL(n + 1);
  5318. SERIAL_PROTOCOLPGM(" of ");
  5319. SERIAL_PROTOCOL((int)n_samples);
  5320. SERIAL_PROTOCOLPGM(": z: ");
  5321. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5322. if (verbose_level > 2) {
  5323. SERIAL_PROTOCOLPGM(" mean: ");
  5324. SERIAL_PROTOCOL_F(mean, 4);
  5325. SERIAL_PROTOCOLPGM(" sigma: ");
  5326. SERIAL_PROTOCOL_F(sigma, 6);
  5327. SERIAL_PROTOCOLPGM(" min: ");
  5328. SERIAL_PROTOCOL_F(min, 3);
  5329. SERIAL_PROTOCOLPGM(" max: ");
  5330. SERIAL_PROTOCOL_F(max, 3);
  5331. SERIAL_PROTOCOLPGM(" range: ");
  5332. SERIAL_PROTOCOL_F(max-min, 3);
  5333. }
  5334. SERIAL_EOL;
  5335. }
  5336. }
  5337. } // End of probe loop
  5338. if (STOW_PROBE()) return;
  5339. SERIAL_PROTOCOLPGM("Finished!");
  5340. SERIAL_EOL;
  5341. if (verbose_level > 0) {
  5342. SERIAL_PROTOCOLPGM("Mean: ");
  5343. SERIAL_PROTOCOL_F(mean, 6);
  5344. SERIAL_PROTOCOLPGM(" Min: ");
  5345. SERIAL_PROTOCOL_F(min, 3);
  5346. SERIAL_PROTOCOLPGM(" Max: ");
  5347. SERIAL_PROTOCOL_F(max, 3);
  5348. SERIAL_PROTOCOLPGM(" Range: ");
  5349. SERIAL_PROTOCOL_F(max-min, 3);
  5350. SERIAL_EOL;
  5351. }
  5352. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5353. SERIAL_PROTOCOL_F(sigma, 6);
  5354. SERIAL_EOL;
  5355. SERIAL_EOL;
  5356. clean_up_after_endstop_or_probe_move();
  5357. // Re-enable bed level correction if it has been on
  5358. #if HAS_ABL
  5359. set_bed_leveling_enabled(abl_was_enabled);
  5360. #endif
  5361. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5362. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5363. ubl.state.active = bed_leveling_state_at_entry;
  5364. #endif
  5365. report_current_position();
  5366. }
  5367. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5368. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5369. inline void gcode_M49() {
  5370. ubl.g26_debug_flag ^= true;
  5371. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5372. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5373. }
  5374. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5375. /**
  5376. * M75: Start print timer
  5377. */
  5378. inline void gcode_M75() { print_job_timer.start(); }
  5379. /**
  5380. * M76: Pause print timer
  5381. */
  5382. inline void gcode_M76() { print_job_timer.pause(); }
  5383. /**
  5384. * M77: Stop print timer
  5385. */
  5386. inline void gcode_M77() { print_job_timer.stop(); }
  5387. #if ENABLED(PRINTCOUNTER)
  5388. /**
  5389. * M78: Show print statistics
  5390. */
  5391. inline void gcode_M78() {
  5392. // "M78 S78" will reset the statistics
  5393. if (code_seen('S') && code_value_int() == 78)
  5394. print_job_timer.initStats();
  5395. else
  5396. print_job_timer.showStats();
  5397. }
  5398. #endif
  5399. /**
  5400. * M104: Set hot end temperature
  5401. */
  5402. inline void gcode_M104() {
  5403. if (get_target_extruder_from_command(104)) return;
  5404. if (DEBUGGING(DRYRUN)) return;
  5405. #if ENABLED(SINGLENOZZLE)
  5406. if (target_extruder != active_extruder) return;
  5407. #endif
  5408. if (code_seen('S')) {
  5409. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5410. #if ENABLED(DUAL_X_CARRIAGE)
  5411. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5412. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5413. #endif
  5414. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5415. /**
  5416. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5417. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5418. * standby mode, for instance in a dual extruder setup, without affecting
  5419. * the running print timer.
  5420. */
  5421. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5422. print_job_timer.stop();
  5423. LCD_MESSAGEPGM(WELCOME_MSG);
  5424. }
  5425. #endif
  5426. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5427. }
  5428. #if ENABLED(AUTOTEMP)
  5429. planner.autotemp_M104_M109();
  5430. #endif
  5431. }
  5432. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5433. void print_heaterstates() {
  5434. #if HAS_TEMP_HOTEND
  5435. SERIAL_PROTOCOLPGM(" T:");
  5436. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5437. SERIAL_PROTOCOLPGM(" /");
  5438. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5439. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5440. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5441. SERIAL_PROTOCOLCHAR(')');
  5442. #endif
  5443. #endif
  5444. #if HAS_TEMP_BED
  5445. SERIAL_PROTOCOLPGM(" B:");
  5446. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5447. SERIAL_PROTOCOLPGM(" /");
  5448. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5449. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5450. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5451. SERIAL_PROTOCOLCHAR(')');
  5452. #endif
  5453. #endif
  5454. #if HOTENDS > 1
  5455. HOTEND_LOOP() {
  5456. SERIAL_PROTOCOLPAIR(" T", e);
  5457. SERIAL_PROTOCOLCHAR(':');
  5458. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5459. SERIAL_PROTOCOLPGM(" /");
  5460. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5461. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5462. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5463. SERIAL_PROTOCOLCHAR(')');
  5464. #endif
  5465. }
  5466. #endif
  5467. SERIAL_PROTOCOLPGM(" @:");
  5468. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5469. #if HAS_TEMP_BED
  5470. SERIAL_PROTOCOLPGM(" B@:");
  5471. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5472. #endif
  5473. #if HOTENDS > 1
  5474. HOTEND_LOOP() {
  5475. SERIAL_PROTOCOLPAIR(" @", e);
  5476. SERIAL_PROTOCOLCHAR(':');
  5477. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5478. }
  5479. #endif
  5480. }
  5481. #endif
  5482. /**
  5483. * M105: Read hot end and bed temperature
  5484. */
  5485. inline void gcode_M105() {
  5486. if (get_target_extruder_from_command(105)) return;
  5487. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5488. SERIAL_PROTOCOLPGM(MSG_OK);
  5489. print_heaterstates();
  5490. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5491. SERIAL_ERROR_START;
  5492. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5493. #endif
  5494. SERIAL_EOL;
  5495. }
  5496. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5497. static uint8_t auto_report_temp_interval;
  5498. static millis_t next_temp_report_ms;
  5499. /**
  5500. * M155: Set temperature auto-report interval. M155 S<seconds>
  5501. */
  5502. inline void gcode_M155() {
  5503. if (code_seen('S')) {
  5504. auto_report_temp_interval = code_value_byte();
  5505. NOMORE(auto_report_temp_interval, 60);
  5506. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5507. }
  5508. }
  5509. inline void auto_report_temperatures() {
  5510. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5511. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5512. print_heaterstates();
  5513. SERIAL_EOL;
  5514. }
  5515. }
  5516. #endif // AUTO_REPORT_TEMPERATURES
  5517. #if FAN_COUNT > 0
  5518. /**
  5519. * M106: Set Fan Speed
  5520. *
  5521. * S<int> Speed between 0-255
  5522. * P<index> Fan index, if more than one fan
  5523. */
  5524. inline void gcode_M106() {
  5525. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5526. p = code_seen('P') ? code_value_ushort() : 0;
  5527. NOMORE(s, 255);
  5528. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5529. }
  5530. /**
  5531. * M107: Fan Off
  5532. */
  5533. inline void gcode_M107() {
  5534. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5535. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5536. }
  5537. #endif // FAN_COUNT > 0
  5538. #if DISABLED(EMERGENCY_PARSER)
  5539. /**
  5540. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5541. */
  5542. inline void gcode_M108() { wait_for_heatup = false; }
  5543. /**
  5544. * M112: Emergency Stop
  5545. */
  5546. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5547. /**
  5548. * M410: Quickstop - Abort all planned moves
  5549. *
  5550. * This will stop the carriages mid-move, so most likely they
  5551. * will be out of sync with the stepper position after this.
  5552. */
  5553. inline void gcode_M410() { quickstop_stepper(); }
  5554. #endif
  5555. /**
  5556. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5557. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5558. */
  5559. #ifndef MIN_COOLING_SLOPE_DEG
  5560. #define MIN_COOLING_SLOPE_DEG 1.50
  5561. #endif
  5562. #ifndef MIN_COOLING_SLOPE_TIME
  5563. #define MIN_COOLING_SLOPE_TIME 60
  5564. #endif
  5565. inline void gcode_M109() {
  5566. if (get_target_extruder_from_command(109)) return;
  5567. if (DEBUGGING(DRYRUN)) return;
  5568. #if ENABLED(SINGLENOZZLE)
  5569. if (target_extruder != active_extruder) return;
  5570. #endif
  5571. const bool no_wait_for_cooling = code_seen('S');
  5572. if (no_wait_for_cooling || code_seen('R')) {
  5573. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5574. #if ENABLED(DUAL_X_CARRIAGE)
  5575. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5576. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5577. #endif
  5578. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5579. /**
  5580. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5581. * standby mode, (e.g., in a dual extruder setup) without affecting
  5582. * the running print timer.
  5583. */
  5584. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5585. print_job_timer.stop();
  5586. LCD_MESSAGEPGM(WELCOME_MSG);
  5587. }
  5588. else
  5589. print_job_timer.start();
  5590. #endif
  5591. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5592. }
  5593. else return;
  5594. #if ENABLED(AUTOTEMP)
  5595. planner.autotemp_M104_M109();
  5596. #endif
  5597. #if TEMP_RESIDENCY_TIME > 0
  5598. millis_t residency_start_ms = 0;
  5599. // Loop until the temperature has stabilized
  5600. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5601. #else
  5602. // Loop until the temperature is very close target
  5603. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5604. #endif
  5605. float target_temp = -1.0, old_temp = 9999.0;
  5606. bool wants_to_cool = false;
  5607. wait_for_heatup = true;
  5608. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5609. KEEPALIVE_STATE(NOT_BUSY);
  5610. #if ENABLED(PRINTER_EVENT_LEDS)
  5611. const float start_temp = thermalManager.degHotend(target_extruder);
  5612. uint8_t old_blue = 0;
  5613. #endif
  5614. do {
  5615. // Target temperature might be changed during the loop
  5616. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5617. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5618. target_temp = thermalManager.degTargetHotend(target_extruder);
  5619. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5620. if (no_wait_for_cooling && wants_to_cool) break;
  5621. }
  5622. now = millis();
  5623. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5624. next_temp_ms = now + 1000UL;
  5625. print_heaterstates();
  5626. #if TEMP_RESIDENCY_TIME > 0
  5627. SERIAL_PROTOCOLPGM(" W:");
  5628. if (residency_start_ms) {
  5629. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5630. SERIAL_PROTOCOLLN(rem);
  5631. }
  5632. else {
  5633. SERIAL_PROTOCOLLNPGM("?");
  5634. }
  5635. #else
  5636. SERIAL_EOL;
  5637. #endif
  5638. }
  5639. idle();
  5640. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5641. const float temp = thermalManager.degHotend(target_extruder);
  5642. #if ENABLED(PRINTER_EVENT_LEDS)
  5643. // Gradually change LED strip from violet to red as nozzle heats up
  5644. if (!wants_to_cool) {
  5645. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5646. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5647. }
  5648. #endif
  5649. #if TEMP_RESIDENCY_TIME > 0
  5650. const float temp_diff = fabs(target_temp - temp);
  5651. if (!residency_start_ms) {
  5652. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5653. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5654. }
  5655. else if (temp_diff > TEMP_HYSTERESIS) {
  5656. // Restart the timer whenever the temperature falls outside the hysteresis.
  5657. residency_start_ms = now;
  5658. }
  5659. #endif
  5660. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5661. if (wants_to_cool) {
  5662. // break after MIN_COOLING_SLOPE_TIME seconds
  5663. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5664. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5665. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5666. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5667. old_temp = temp;
  5668. }
  5669. }
  5670. } while (wait_for_heatup && TEMP_CONDITIONS);
  5671. if (wait_for_heatup) {
  5672. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5673. #if ENABLED(PRINTER_EVENT_LEDS)
  5674. #if ENABLED(RGBW_LED)
  5675. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5676. #else
  5677. set_led_color(255, 255, 255); // Set LEDs All On
  5678. #endif
  5679. #endif
  5680. }
  5681. KEEPALIVE_STATE(IN_HANDLER);
  5682. }
  5683. #if HAS_TEMP_BED
  5684. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5685. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5686. #endif
  5687. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5688. #define MIN_COOLING_SLOPE_TIME_BED 60
  5689. #endif
  5690. /**
  5691. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5692. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5693. */
  5694. inline void gcode_M190() {
  5695. if (DEBUGGING(DRYRUN)) return;
  5696. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5697. const bool no_wait_for_cooling = code_seen('S');
  5698. if (no_wait_for_cooling || code_seen('R')) {
  5699. thermalManager.setTargetBed(code_value_temp_abs());
  5700. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5701. if (code_value_temp_abs() > BED_MINTEMP)
  5702. print_job_timer.start();
  5703. #endif
  5704. }
  5705. else return;
  5706. #if TEMP_BED_RESIDENCY_TIME > 0
  5707. millis_t residency_start_ms = 0;
  5708. // Loop until the temperature has stabilized
  5709. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5710. #else
  5711. // Loop until the temperature is very close target
  5712. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5713. #endif
  5714. float target_temp = -1.0, old_temp = 9999.0;
  5715. bool wants_to_cool = false;
  5716. wait_for_heatup = true;
  5717. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5718. KEEPALIVE_STATE(NOT_BUSY);
  5719. target_extruder = active_extruder; // for print_heaterstates
  5720. #if ENABLED(PRINTER_EVENT_LEDS)
  5721. const float start_temp = thermalManager.degBed();
  5722. uint8_t old_red = 255;
  5723. #endif
  5724. do {
  5725. // Target temperature might be changed during the loop
  5726. if (target_temp != thermalManager.degTargetBed()) {
  5727. wants_to_cool = thermalManager.isCoolingBed();
  5728. target_temp = thermalManager.degTargetBed();
  5729. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5730. if (no_wait_for_cooling && wants_to_cool) break;
  5731. }
  5732. now = millis();
  5733. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5734. next_temp_ms = now + 1000UL;
  5735. print_heaterstates();
  5736. #if TEMP_BED_RESIDENCY_TIME > 0
  5737. SERIAL_PROTOCOLPGM(" W:");
  5738. if (residency_start_ms) {
  5739. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5740. SERIAL_PROTOCOLLN(rem);
  5741. }
  5742. else {
  5743. SERIAL_PROTOCOLLNPGM("?");
  5744. }
  5745. #else
  5746. SERIAL_EOL;
  5747. #endif
  5748. }
  5749. idle();
  5750. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5751. const float temp = thermalManager.degBed();
  5752. #if ENABLED(PRINTER_EVENT_LEDS)
  5753. // Gradually change LED strip from blue to violet as bed heats up
  5754. if (!wants_to_cool) {
  5755. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5756. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5757. }
  5758. }
  5759. #endif
  5760. #if TEMP_BED_RESIDENCY_TIME > 0
  5761. const float temp_diff = fabs(target_temp - temp);
  5762. if (!residency_start_ms) {
  5763. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5764. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5765. }
  5766. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5767. // Restart the timer whenever the temperature falls outside the hysteresis.
  5768. residency_start_ms = now;
  5769. }
  5770. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5771. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5772. if (wants_to_cool) {
  5773. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5774. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5775. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5776. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5777. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5778. old_temp = temp;
  5779. }
  5780. }
  5781. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5782. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5783. KEEPALIVE_STATE(IN_HANDLER);
  5784. }
  5785. #endif // HAS_TEMP_BED
  5786. /**
  5787. * M110: Set Current Line Number
  5788. */
  5789. inline void gcode_M110() {
  5790. if (code_seen('N')) gcode_LastN = code_value_long();
  5791. }
  5792. /**
  5793. * M111: Set the debug level
  5794. */
  5795. inline void gcode_M111() {
  5796. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5797. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5798. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5799. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5800. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5801. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5803. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5804. #endif
  5805. const static char* const debug_strings[] PROGMEM = {
  5806. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5808. str_debug_32
  5809. #endif
  5810. };
  5811. SERIAL_ECHO_START;
  5812. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5813. if (marlin_debug_flags) {
  5814. uint8_t comma = 0;
  5815. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5816. if (TEST(marlin_debug_flags, i)) {
  5817. if (comma++) SERIAL_CHAR(',');
  5818. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5819. }
  5820. }
  5821. }
  5822. else {
  5823. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5824. }
  5825. SERIAL_EOL;
  5826. }
  5827. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5828. /**
  5829. * M113: Get or set Host Keepalive interval (0 to disable)
  5830. *
  5831. * S<seconds> Optional. Set the keepalive interval.
  5832. */
  5833. inline void gcode_M113() {
  5834. if (code_seen('S')) {
  5835. host_keepalive_interval = code_value_byte();
  5836. NOMORE(host_keepalive_interval, 60);
  5837. }
  5838. else {
  5839. SERIAL_ECHO_START;
  5840. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5841. }
  5842. }
  5843. #endif
  5844. #if ENABLED(BARICUDA)
  5845. #if HAS_HEATER_1
  5846. /**
  5847. * M126: Heater 1 valve open
  5848. */
  5849. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5850. /**
  5851. * M127: Heater 1 valve close
  5852. */
  5853. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5854. #endif
  5855. #if HAS_HEATER_2
  5856. /**
  5857. * M128: Heater 2 valve open
  5858. */
  5859. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5860. /**
  5861. * M129: Heater 2 valve close
  5862. */
  5863. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5864. #endif
  5865. #endif //BARICUDA
  5866. /**
  5867. * M140: Set bed temperature
  5868. */
  5869. inline void gcode_M140() {
  5870. if (DEBUGGING(DRYRUN)) return;
  5871. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5872. }
  5873. #if ENABLED(ULTIPANEL)
  5874. /**
  5875. * M145: Set the heatup state for a material in the LCD menu
  5876. *
  5877. * S<material> (0=PLA, 1=ABS)
  5878. * H<hotend temp>
  5879. * B<bed temp>
  5880. * F<fan speed>
  5881. */
  5882. inline void gcode_M145() {
  5883. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5884. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5885. SERIAL_ERROR_START;
  5886. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5887. }
  5888. else {
  5889. int v;
  5890. if (code_seen('H')) {
  5891. v = code_value_int();
  5892. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5893. }
  5894. if (code_seen('F')) {
  5895. v = code_value_int();
  5896. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5897. }
  5898. #if TEMP_SENSOR_BED != 0
  5899. if (code_seen('B')) {
  5900. v = code_value_int();
  5901. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5902. }
  5903. #endif
  5904. }
  5905. }
  5906. #endif // ULTIPANEL
  5907. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5908. /**
  5909. * M149: Set temperature units
  5910. */
  5911. inline void gcode_M149() {
  5912. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5913. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5914. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5915. }
  5916. #endif
  5917. #if HAS_POWER_SWITCH
  5918. /**
  5919. * M80: Turn on Power Supply
  5920. */
  5921. inline void gcode_M80() {
  5922. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5923. /**
  5924. * If you have a switch on suicide pin, this is useful
  5925. * if you want to start another print with suicide feature after
  5926. * a print without suicide...
  5927. */
  5928. #if HAS_SUICIDE
  5929. OUT_WRITE(SUICIDE_PIN, HIGH);
  5930. #endif
  5931. #if ENABLED(HAVE_TMC2130)
  5932. delay(100);
  5933. tmc2130_init(); // Settings only stick when the driver has power
  5934. #endif
  5935. #if ENABLED(ULTIPANEL)
  5936. powersupply = true;
  5937. LCD_MESSAGEPGM(WELCOME_MSG);
  5938. #endif
  5939. }
  5940. #endif // HAS_POWER_SWITCH
  5941. /**
  5942. * M81: Turn off Power, including Power Supply, if there is one.
  5943. *
  5944. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5945. */
  5946. inline void gcode_M81() {
  5947. thermalManager.disable_all_heaters();
  5948. stepper.finish_and_disable();
  5949. #if FAN_COUNT > 0
  5950. #if FAN_COUNT > 1
  5951. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5952. #else
  5953. fanSpeeds[0] = 0;
  5954. #endif
  5955. #endif
  5956. safe_delay(1000); // Wait 1 second before switching off
  5957. #if HAS_SUICIDE
  5958. stepper.synchronize();
  5959. suicide();
  5960. #elif HAS_POWER_SWITCH
  5961. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5962. #endif
  5963. #if ENABLED(ULTIPANEL)
  5964. #if HAS_POWER_SWITCH
  5965. powersupply = false;
  5966. #endif
  5967. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5968. #endif
  5969. }
  5970. /**
  5971. * M82: Set E codes absolute (default)
  5972. */
  5973. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5974. /**
  5975. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5976. */
  5977. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5978. /**
  5979. * M18, M84: Disable all stepper motors
  5980. */
  5981. inline void gcode_M18_M84() {
  5982. if (code_seen('S')) {
  5983. stepper_inactive_time = code_value_millis_from_seconds();
  5984. }
  5985. else {
  5986. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5987. if (all_axis) {
  5988. stepper.finish_and_disable();
  5989. }
  5990. else {
  5991. stepper.synchronize();
  5992. if (code_seen('X')) disable_X();
  5993. if (code_seen('Y')) disable_Y();
  5994. if (code_seen('Z')) disable_Z();
  5995. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5996. if (code_seen('E')) disable_e_steppers();
  5997. #endif
  5998. }
  5999. }
  6000. }
  6001. /**
  6002. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6003. */
  6004. inline void gcode_M85() {
  6005. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6006. }
  6007. /**
  6008. * Multi-stepper support for M92, M201, M203
  6009. */
  6010. #if ENABLED(DISTINCT_E_FACTORS)
  6011. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6012. #define TARGET_EXTRUDER target_extruder
  6013. #else
  6014. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6015. #define TARGET_EXTRUDER 0
  6016. #endif
  6017. /**
  6018. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6019. * (Follows the same syntax as G92)
  6020. *
  6021. * With multiple extruders use T to specify which one.
  6022. */
  6023. inline void gcode_M92() {
  6024. GET_TARGET_EXTRUDER(92);
  6025. LOOP_XYZE(i) {
  6026. if (code_seen(axis_codes[i])) {
  6027. if (i == E_AXIS) {
  6028. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  6029. if (value < 20.0) {
  6030. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6031. planner.max_jerk[E_AXIS] *= factor;
  6032. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6033. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6034. }
  6035. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6036. }
  6037. else {
  6038. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  6039. }
  6040. }
  6041. }
  6042. planner.refresh_positioning();
  6043. }
  6044. /**
  6045. * Output the current position to serial
  6046. */
  6047. static void report_current_position() {
  6048. SERIAL_PROTOCOLPGM("X:");
  6049. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6050. SERIAL_PROTOCOLPGM(" Y:");
  6051. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6052. SERIAL_PROTOCOLPGM(" Z:");
  6053. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6054. SERIAL_PROTOCOLPGM(" E:");
  6055. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6056. stepper.report_positions();
  6057. #if IS_SCARA
  6058. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6059. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6060. SERIAL_EOL;
  6061. #endif
  6062. }
  6063. /**
  6064. * M114: Output current position to serial port
  6065. */
  6066. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6067. /**
  6068. * M115: Capabilities string
  6069. */
  6070. inline void gcode_M115() {
  6071. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6072. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6073. // EEPROM (M500, M501)
  6074. #if ENABLED(EEPROM_SETTINGS)
  6075. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6076. #else
  6077. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6078. #endif
  6079. // AUTOREPORT_TEMP (M155)
  6080. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6081. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6082. #else
  6083. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6084. #endif
  6085. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6086. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6087. // AUTOLEVEL (G29)
  6088. #if HAS_ABL
  6089. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6090. #else
  6091. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6092. #endif
  6093. // Z_PROBE (G30)
  6094. #if HAS_BED_PROBE
  6095. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6096. #else
  6097. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6098. #endif
  6099. // MESH_REPORT (M420 V)
  6100. #if PLANNER_LEVELING
  6101. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6102. #else
  6103. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6104. #endif
  6105. // SOFTWARE_POWER (G30)
  6106. #if HAS_POWER_SWITCH
  6107. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6108. #else
  6109. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6110. #endif
  6111. // TOGGLE_LIGHTS (M355)
  6112. #if HAS_CASE_LIGHT
  6113. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6114. #else
  6115. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6116. #endif
  6117. // EMERGENCY_PARSER (M108, M112, M410)
  6118. #if ENABLED(EMERGENCY_PARSER)
  6119. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6120. #else
  6121. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6122. #endif
  6123. #endif // EXTENDED_CAPABILITIES_REPORT
  6124. }
  6125. /**
  6126. * M117: Set LCD Status Message
  6127. */
  6128. inline void gcode_M117() {
  6129. lcd_setstatus(current_command_args);
  6130. }
  6131. /**
  6132. * M119: Output endstop states to serial output
  6133. */
  6134. inline void gcode_M119() { endstops.M119(); }
  6135. /**
  6136. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6137. */
  6138. inline void gcode_M120() { endstops.enable_globally(true); }
  6139. /**
  6140. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6141. */
  6142. inline void gcode_M121() { endstops.enable_globally(false); }
  6143. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6144. /**
  6145. * M125: Store current position and move to filament change position.
  6146. * Called on pause (by M25) to prevent material leaking onto the
  6147. * object. On resume (M24) the head will be moved back and the
  6148. * print will resume.
  6149. *
  6150. * If Marlin is compiled without SD Card support, M125 can be
  6151. * used directly to pause the print and move to park position,
  6152. * resuming with a button click or M108.
  6153. *
  6154. * L = override retract length
  6155. * X = override X
  6156. * Y = override Y
  6157. * Z = override Z raise
  6158. */
  6159. inline void gcode_M125() {
  6160. if (move_away_flag) return; // already paused
  6161. const bool job_running = print_job_timer.isRunning();
  6162. // there are blocks after this one, or sd printing
  6163. move_away_flag = job_running || planner.blocks_queued()
  6164. #if ENABLED(SDSUPPORT)
  6165. || card.sdprinting
  6166. #endif
  6167. ;
  6168. if (!move_away_flag) return; // nothing to pause
  6169. // M125 can be used to pause a print too
  6170. #if ENABLED(SDSUPPORT)
  6171. card.pauseSDPrint();
  6172. #endif
  6173. print_job_timer.pause();
  6174. // Save current position
  6175. COPY(resume_position, current_position);
  6176. set_destination_to_current();
  6177. // Initial retract before move to filament change position
  6178. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6179. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6180. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6181. #endif
  6182. ;
  6183. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6184. // Lift Z axis
  6185. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6186. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6187. FILAMENT_CHANGE_Z_ADD
  6188. #else
  6189. 0
  6190. #endif
  6191. ;
  6192. if (z_lift > 0) {
  6193. destination[Z_AXIS] += z_lift;
  6194. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6195. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6196. }
  6197. // Move XY axes to filament change position or given position
  6198. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6199. #ifdef FILAMENT_CHANGE_X_POS
  6200. + FILAMENT_CHANGE_X_POS
  6201. #endif
  6202. ;
  6203. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6204. #ifdef FILAMENT_CHANGE_Y_POS
  6205. + FILAMENT_CHANGE_Y_POS
  6206. #endif
  6207. ;
  6208. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6209. if (active_extruder > 0) {
  6210. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6211. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6212. }
  6213. #endif
  6214. clamp_to_software_endstops(destination);
  6215. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6216. set_current_to_destination();
  6217. stepper.synchronize();
  6218. disable_e_steppers();
  6219. #if DISABLED(SDSUPPORT)
  6220. // Wait for lcd click or M108
  6221. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6222. wait_for_user = true;
  6223. while (wait_for_user) idle();
  6224. KEEPALIVE_STATE(IN_HANDLER);
  6225. // Return to print position and continue
  6226. move_back_on_resume();
  6227. if (job_running) print_job_timer.start();
  6228. move_away_flag = false;
  6229. #endif
  6230. }
  6231. #endif // PARK_HEAD_ON_PAUSE
  6232. #if HAS_COLOR_LEDS
  6233. /**
  6234. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6235. *
  6236. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6237. *
  6238. * Examples:
  6239. *
  6240. * M150 R255 ; Turn LED red
  6241. * M150 R255 U127 ; Turn LED orange (PWM only)
  6242. * M150 ; Turn LED off
  6243. * M150 R U B ; Turn LED white
  6244. * M150 W ; Turn LED white using a white LED
  6245. *
  6246. */
  6247. inline void gcode_M150() {
  6248. set_led_color(
  6249. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6250. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6251. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6252. #if ENABLED(RGBW_LED)
  6253. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6254. #endif
  6255. );
  6256. }
  6257. #endif // BLINKM || RGB_LED
  6258. /**
  6259. * M200: Set filament diameter and set E axis units to cubic units
  6260. *
  6261. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6262. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6263. */
  6264. inline void gcode_M200() {
  6265. if (get_target_extruder_from_command(200)) return;
  6266. if (code_seen('D')) {
  6267. // setting any extruder filament size disables volumetric on the assumption that
  6268. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6269. // for all extruders
  6270. volumetric_enabled = (code_value_linear_units() != 0.0);
  6271. if (volumetric_enabled) {
  6272. filament_size[target_extruder] = code_value_linear_units();
  6273. // make sure all extruders have some sane value for the filament size
  6274. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6275. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6276. }
  6277. }
  6278. calculate_volumetric_multipliers();
  6279. }
  6280. /**
  6281. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6282. *
  6283. * With multiple extruders use T to specify which one.
  6284. */
  6285. inline void gcode_M201() {
  6286. GET_TARGET_EXTRUDER(201);
  6287. LOOP_XYZE(i) {
  6288. if (code_seen(axis_codes[i])) {
  6289. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6290. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6291. }
  6292. }
  6293. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6294. planner.reset_acceleration_rates();
  6295. }
  6296. #if 0 // Not used for Sprinter/grbl gen6
  6297. inline void gcode_M202() {
  6298. LOOP_XYZE(i) {
  6299. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6300. }
  6301. }
  6302. #endif
  6303. /**
  6304. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6305. *
  6306. * With multiple extruders use T to specify which one.
  6307. */
  6308. inline void gcode_M203() {
  6309. GET_TARGET_EXTRUDER(203);
  6310. LOOP_XYZE(i)
  6311. if (code_seen(axis_codes[i])) {
  6312. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6313. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6314. }
  6315. }
  6316. /**
  6317. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6318. *
  6319. * P = Printing moves
  6320. * R = Retract only (no X, Y, Z) moves
  6321. * T = Travel (non printing) moves
  6322. *
  6323. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6324. */
  6325. inline void gcode_M204() {
  6326. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6327. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6328. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6329. }
  6330. if (code_seen('P')) {
  6331. planner.acceleration = code_value_linear_units();
  6332. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6333. }
  6334. if (code_seen('R')) {
  6335. planner.retract_acceleration = code_value_linear_units();
  6336. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6337. }
  6338. if (code_seen('T')) {
  6339. planner.travel_acceleration = code_value_linear_units();
  6340. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6341. }
  6342. }
  6343. /**
  6344. * M205: Set Advanced Settings
  6345. *
  6346. * S = Min Feed Rate (units/s)
  6347. * T = Min Travel Feed Rate (units/s)
  6348. * B = Min Segment Time (µs)
  6349. * X = Max X Jerk (units/sec^2)
  6350. * Y = Max Y Jerk (units/sec^2)
  6351. * Z = Max Z Jerk (units/sec^2)
  6352. * E = Max E Jerk (units/sec^2)
  6353. */
  6354. inline void gcode_M205() {
  6355. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6356. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6357. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6358. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6359. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6360. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6361. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6362. }
  6363. #if HAS_M206_COMMAND
  6364. /**
  6365. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6366. */
  6367. inline void gcode_M206() {
  6368. LOOP_XYZ(i)
  6369. if (code_seen(axis_codes[i]))
  6370. set_home_offset((AxisEnum)i, code_value_linear_units());
  6371. #if ENABLED(MORGAN_SCARA)
  6372. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6373. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6374. #endif
  6375. SYNC_PLAN_POSITION_KINEMATIC();
  6376. report_current_position();
  6377. }
  6378. #endif // HAS_M206_COMMAND
  6379. #if ENABLED(DELTA)
  6380. /**
  6381. * M665: Set delta configurations
  6382. *
  6383. * H = diagonal rod // AC-version
  6384. * L = diagonal rod
  6385. * R = delta radius
  6386. * S = segments per second
  6387. * A = Alpha (Tower 1) diagonal rod trim
  6388. * B = Beta (Tower 2) diagonal rod trim
  6389. * C = Gamma (Tower 3) diagonal rod trim
  6390. */
  6391. inline void gcode_M665() {
  6392. if (code_seen('H')) {
  6393. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6394. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6395. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6396. update_software_endstops(Z_AXIS);
  6397. }
  6398. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6399. if (code_seen('R')) delta_radius = code_value_linear_units();
  6400. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6401. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  6402. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  6403. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  6404. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6405. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6406. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  6407. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6408. }
  6409. /**
  6410. * M666: Set delta endstop adjustment
  6411. */
  6412. inline void gcode_M666() {
  6413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6414. if (DEBUGGING(LEVELING)) {
  6415. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6416. }
  6417. #endif
  6418. LOOP_XYZ(i) {
  6419. if (code_seen(axis_codes[i])) {
  6420. endstop_adj[i] = code_value_linear_units();
  6421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6422. if (DEBUGGING(LEVELING)) {
  6423. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6424. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6425. }
  6426. #endif
  6427. }
  6428. }
  6429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6430. if (DEBUGGING(LEVELING)) {
  6431. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6432. }
  6433. #endif
  6434. }
  6435. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6436. /**
  6437. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6438. */
  6439. inline void gcode_M666() {
  6440. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6441. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6442. }
  6443. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6444. #if ENABLED(FWRETRACT)
  6445. /**
  6446. * M207: Set firmware retraction values
  6447. *
  6448. * S[+units] retract_length
  6449. * W[+units] retract_length_swap (multi-extruder)
  6450. * F[units/min] retract_feedrate_mm_s
  6451. * Z[units] retract_zlift
  6452. */
  6453. inline void gcode_M207() {
  6454. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6455. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6456. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6457. #if EXTRUDERS > 1
  6458. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6459. #endif
  6460. }
  6461. /**
  6462. * M208: Set firmware un-retraction values
  6463. *
  6464. * S[+units] retract_recover_length (in addition to M207 S*)
  6465. * W[+units] retract_recover_length_swap (multi-extruder)
  6466. * F[units/min] retract_recover_feedrate_mm_s
  6467. */
  6468. inline void gcode_M208() {
  6469. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6470. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6471. #if EXTRUDERS > 1
  6472. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6473. #endif
  6474. }
  6475. /**
  6476. * M209: Enable automatic retract (M209 S1)
  6477. * For slicers that don't support G10/11, reversed extrude-only
  6478. * moves will be classified as retraction.
  6479. */
  6480. inline void gcode_M209() {
  6481. if (code_seen('S')) {
  6482. autoretract_enabled = code_value_bool();
  6483. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6484. }
  6485. }
  6486. #endif // FWRETRACT
  6487. /**
  6488. * M211: Enable, Disable, and/or Report software endstops
  6489. *
  6490. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6491. */
  6492. inline void gcode_M211() {
  6493. SERIAL_ECHO_START;
  6494. #if HAS_SOFTWARE_ENDSTOPS
  6495. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6496. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6497. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6498. #else
  6499. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6500. SERIAL_ECHOPGM(MSG_OFF);
  6501. #endif
  6502. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6503. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6504. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6505. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6506. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6507. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6508. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6509. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6510. }
  6511. #if HOTENDS > 1
  6512. /**
  6513. * M218 - set hotend offset (in linear units)
  6514. *
  6515. * T<tool>
  6516. * X<xoffset>
  6517. * Y<yoffset>
  6518. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6519. */
  6520. inline void gcode_M218() {
  6521. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6522. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6523. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6524. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6525. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6526. #endif
  6527. SERIAL_ECHO_START;
  6528. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6529. HOTEND_LOOP() {
  6530. SERIAL_CHAR(' ');
  6531. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6532. SERIAL_CHAR(',');
  6533. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6534. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6535. SERIAL_CHAR(',');
  6536. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6537. #endif
  6538. }
  6539. SERIAL_EOL;
  6540. }
  6541. #endif // HOTENDS > 1
  6542. /**
  6543. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6544. */
  6545. inline void gcode_M220() {
  6546. if (code_seen('S')) feedrate_percentage = code_value_int();
  6547. }
  6548. /**
  6549. * M221: Set extrusion percentage (M221 T0 S95)
  6550. */
  6551. inline void gcode_M221() {
  6552. if (get_target_extruder_from_command(221)) return;
  6553. if (code_seen('S'))
  6554. flow_percentage[target_extruder] = code_value_int();
  6555. }
  6556. /**
  6557. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6558. */
  6559. inline void gcode_M226() {
  6560. if (code_seen('P')) {
  6561. int pin_number = code_value_int(),
  6562. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6563. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6564. int target = LOW;
  6565. stepper.synchronize();
  6566. pinMode(pin_number, INPUT);
  6567. switch (pin_state) {
  6568. case 1:
  6569. target = HIGH;
  6570. break;
  6571. case 0:
  6572. target = LOW;
  6573. break;
  6574. case -1:
  6575. target = !digitalRead(pin_number);
  6576. break;
  6577. }
  6578. while (digitalRead(pin_number) != target) idle();
  6579. } // pin_state -1 0 1 && pin_number > -1
  6580. } // code_seen('P')
  6581. }
  6582. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6583. /**
  6584. * M260: Send data to a I2C slave device
  6585. *
  6586. * This is a PoC, the formating and arguments for the GCODE will
  6587. * change to be more compatible, the current proposal is:
  6588. *
  6589. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6590. *
  6591. * M260 B<byte-1 value in base 10>
  6592. * M260 B<byte-2 value in base 10>
  6593. * M260 B<byte-3 value in base 10>
  6594. *
  6595. * M260 S1 ; Send the buffered data and reset the buffer
  6596. * M260 R1 ; Reset the buffer without sending data
  6597. *
  6598. */
  6599. inline void gcode_M260() {
  6600. // Set the target address
  6601. if (code_seen('A')) i2c.address(code_value_byte());
  6602. // Add a new byte to the buffer
  6603. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6604. // Flush the buffer to the bus
  6605. if (code_seen('S')) i2c.send();
  6606. // Reset and rewind the buffer
  6607. else if (code_seen('R')) i2c.reset();
  6608. }
  6609. /**
  6610. * M261: Request X bytes from I2C slave device
  6611. *
  6612. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6613. */
  6614. inline void gcode_M261() {
  6615. if (code_seen('A')) i2c.address(code_value_byte());
  6616. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6617. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6618. i2c.relay(bytes);
  6619. }
  6620. else {
  6621. SERIAL_ERROR_START;
  6622. SERIAL_ERRORLN("Bad i2c request");
  6623. }
  6624. }
  6625. #endif // EXPERIMENTAL_I2CBUS
  6626. #if HAS_SERVOS
  6627. /**
  6628. * M280: Get or set servo position. P<index> [S<angle>]
  6629. */
  6630. inline void gcode_M280() {
  6631. if (!code_seen('P')) return;
  6632. int servo_index = code_value_int();
  6633. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6634. if (code_seen('S'))
  6635. MOVE_SERVO(servo_index, code_value_int());
  6636. else {
  6637. SERIAL_ECHO_START;
  6638. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6639. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6640. }
  6641. }
  6642. else {
  6643. SERIAL_ERROR_START;
  6644. SERIAL_ECHOPAIR("Servo ", servo_index);
  6645. SERIAL_ECHOLNPGM(" out of range");
  6646. }
  6647. }
  6648. #endif // HAS_SERVOS
  6649. #if HAS_BUZZER
  6650. /**
  6651. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6652. */
  6653. inline void gcode_M300() {
  6654. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6655. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6656. // Limits the tone duration to 0-5 seconds.
  6657. NOMORE(duration, 5000);
  6658. BUZZ(duration, frequency);
  6659. }
  6660. #endif // HAS_BUZZER
  6661. #if ENABLED(PIDTEMP)
  6662. /**
  6663. * M301: Set PID parameters P I D (and optionally C, L)
  6664. *
  6665. * P[float] Kp term
  6666. * I[float] Ki term (unscaled)
  6667. * D[float] Kd term (unscaled)
  6668. *
  6669. * With PID_EXTRUSION_SCALING:
  6670. *
  6671. * C[float] Kc term
  6672. * L[float] LPQ length
  6673. */
  6674. inline void gcode_M301() {
  6675. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6676. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6677. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6678. if (e < HOTENDS) { // catch bad input value
  6679. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6680. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6681. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6682. #if ENABLED(PID_EXTRUSION_SCALING)
  6683. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6684. if (code_seen('L')) lpq_len = code_value_float();
  6685. NOMORE(lpq_len, LPQ_MAX_LEN);
  6686. #endif
  6687. thermalManager.updatePID();
  6688. SERIAL_ECHO_START;
  6689. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6690. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6691. #endif // PID_PARAMS_PER_HOTEND
  6692. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6693. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6694. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6695. #if ENABLED(PID_EXTRUSION_SCALING)
  6696. //Kc does not have scaling applied above, or in resetting defaults
  6697. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6698. #endif
  6699. SERIAL_EOL;
  6700. }
  6701. else {
  6702. SERIAL_ERROR_START;
  6703. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6704. }
  6705. }
  6706. #endif // PIDTEMP
  6707. #if ENABLED(PIDTEMPBED)
  6708. inline void gcode_M304() {
  6709. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6710. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6711. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6712. thermalManager.updatePID();
  6713. SERIAL_ECHO_START;
  6714. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6715. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6716. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6717. }
  6718. #endif // PIDTEMPBED
  6719. #if defined(CHDK) || HAS_PHOTOGRAPH
  6720. /**
  6721. * M240: Trigger a camera by emulating a Canon RC-1
  6722. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6723. */
  6724. inline void gcode_M240() {
  6725. #ifdef CHDK
  6726. OUT_WRITE(CHDK, HIGH);
  6727. chdkHigh = millis();
  6728. chdkActive = true;
  6729. #elif HAS_PHOTOGRAPH
  6730. const uint8_t NUM_PULSES = 16;
  6731. const float PULSE_LENGTH = 0.01524;
  6732. for (int i = 0; i < NUM_PULSES; i++) {
  6733. WRITE(PHOTOGRAPH_PIN, HIGH);
  6734. _delay_ms(PULSE_LENGTH);
  6735. WRITE(PHOTOGRAPH_PIN, LOW);
  6736. _delay_ms(PULSE_LENGTH);
  6737. }
  6738. delay(7.33);
  6739. for (int i = 0; i < NUM_PULSES; i++) {
  6740. WRITE(PHOTOGRAPH_PIN, HIGH);
  6741. _delay_ms(PULSE_LENGTH);
  6742. WRITE(PHOTOGRAPH_PIN, LOW);
  6743. _delay_ms(PULSE_LENGTH);
  6744. }
  6745. #endif // !CHDK && HAS_PHOTOGRAPH
  6746. }
  6747. #endif // CHDK || PHOTOGRAPH_PIN
  6748. #if HAS_LCD_CONTRAST
  6749. /**
  6750. * M250: Read and optionally set the LCD contrast
  6751. */
  6752. inline void gcode_M250() {
  6753. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6754. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6755. SERIAL_PROTOCOL(lcd_contrast);
  6756. SERIAL_EOL;
  6757. }
  6758. #endif // HAS_LCD_CONTRAST
  6759. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6760. /**
  6761. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6762. *
  6763. * S<temperature> sets the minimum extrude temperature
  6764. * P<bool> enables (1) or disables (0) cold extrusion
  6765. *
  6766. * Examples:
  6767. *
  6768. * M302 ; report current cold extrusion state
  6769. * M302 P0 ; enable cold extrusion checking
  6770. * M302 P1 ; disables cold extrusion checking
  6771. * M302 S0 ; always allow extrusion (disables checking)
  6772. * M302 S170 ; only allow extrusion above 170
  6773. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6774. */
  6775. inline void gcode_M302() {
  6776. bool seen_S = code_seen('S');
  6777. if (seen_S) {
  6778. thermalManager.extrude_min_temp = code_value_temp_abs();
  6779. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6780. }
  6781. if (code_seen('P'))
  6782. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6783. else if (!seen_S) {
  6784. // Report current state
  6785. SERIAL_ECHO_START;
  6786. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6787. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6788. SERIAL_ECHOLNPGM("C)");
  6789. }
  6790. }
  6791. #endif // PREVENT_COLD_EXTRUSION
  6792. /**
  6793. * M303: PID relay autotune
  6794. *
  6795. * S<temperature> sets the target temperature. (default 150C)
  6796. * E<extruder> (-1 for the bed) (default 0)
  6797. * C<cycles>
  6798. * U<bool> with a non-zero value will apply the result to current settings
  6799. */
  6800. inline void gcode_M303() {
  6801. #if HAS_PID_HEATING
  6802. int e = code_seen('E') ? code_value_int() : 0;
  6803. int c = code_seen('C') ? code_value_int() : 5;
  6804. bool u = code_seen('U') && code_value_bool();
  6805. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6806. if (WITHIN(e, 0, HOTENDS - 1))
  6807. target_extruder = e;
  6808. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6809. thermalManager.PID_autotune(temp, e, c, u);
  6810. KEEPALIVE_STATE(IN_HANDLER);
  6811. #else
  6812. SERIAL_ERROR_START;
  6813. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6814. #endif
  6815. }
  6816. #if ENABLED(MORGAN_SCARA)
  6817. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6818. if (IsRunning()) {
  6819. forward_kinematics_SCARA(delta_a, delta_b);
  6820. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6821. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6822. destination[Z_AXIS] = current_position[Z_AXIS];
  6823. prepare_move_to_destination();
  6824. return true;
  6825. }
  6826. return false;
  6827. }
  6828. /**
  6829. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6830. */
  6831. inline bool gcode_M360() {
  6832. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6833. return SCARA_move_to_cal(0, 120);
  6834. }
  6835. /**
  6836. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6837. */
  6838. inline bool gcode_M361() {
  6839. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6840. return SCARA_move_to_cal(90, 130);
  6841. }
  6842. /**
  6843. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6844. */
  6845. inline bool gcode_M362() {
  6846. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6847. return SCARA_move_to_cal(60, 180);
  6848. }
  6849. /**
  6850. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6851. */
  6852. inline bool gcode_M363() {
  6853. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6854. return SCARA_move_to_cal(50, 90);
  6855. }
  6856. /**
  6857. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6858. */
  6859. inline bool gcode_M364() {
  6860. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6861. return SCARA_move_to_cal(45, 135);
  6862. }
  6863. #endif // SCARA
  6864. #if ENABLED(EXT_SOLENOID)
  6865. void enable_solenoid(const uint8_t num) {
  6866. switch (num) {
  6867. case 0:
  6868. OUT_WRITE(SOL0_PIN, HIGH);
  6869. break;
  6870. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6871. case 1:
  6872. OUT_WRITE(SOL1_PIN, HIGH);
  6873. break;
  6874. #endif
  6875. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6876. case 2:
  6877. OUT_WRITE(SOL2_PIN, HIGH);
  6878. break;
  6879. #endif
  6880. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6881. case 3:
  6882. OUT_WRITE(SOL3_PIN, HIGH);
  6883. break;
  6884. #endif
  6885. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6886. case 4:
  6887. OUT_WRITE(SOL4_PIN, HIGH);
  6888. break;
  6889. #endif
  6890. default:
  6891. SERIAL_ECHO_START;
  6892. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6893. break;
  6894. }
  6895. }
  6896. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6897. void disable_all_solenoids() {
  6898. OUT_WRITE(SOL0_PIN, LOW);
  6899. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6900. OUT_WRITE(SOL1_PIN, LOW);
  6901. #endif
  6902. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6903. OUT_WRITE(SOL2_PIN, LOW);
  6904. #endif
  6905. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6906. OUT_WRITE(SOL3_PIN, LOW);
  6907. #endif
  6908. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6909. OUT_WRITE(SOL4_PIN, LOW);
  6910. #endif
  6911. }
  6912. /**
  6913. * M380: Enable solenoid on the active extruder
  6914. */
  6915. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6916. /**
  6917. * M381: Disable all solenoids
  6918. */
  6919. inline void gcode_M381() { disable_all_solenoids(); }
  6920. #endif // EXT_SOLENOID
  6921. /**
  6922. * M400: Finish all moves
  6923. */
  6924. inline void gcode_M400() { stepper.synchronize(); }
  6925. #if HAS_BED_PROBE
  6926. /**
  6927. * M401: Engage Z Servo endstop if available
  6928. */
  6929. inline void gcode_M401() { DEPLOY_PROBE(); }
  6930. /**
  6931. * M402: Retract Z Servo endstop if enabled
  6932. */
  6933. inline void gcode_M402() { STOW_PROBE(); }
  6934. #endif // HAS_BED_PROBE
  6935. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6936. /**
  6937. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6938. */
  6939. inline void gcode_M404() {
  6940. if (code_seen('W')) {
  6941. filament_width_nominal = code_value_linear_units();
  6942. }
  6943. else {
  6944. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6945. SERIAL_PROTOCOLLN(filament_width_nominal);
  6946. }
  6947. }
  6948. /**
  6949. * M405: Turn on filament sensor for control
  6950. */
  6951. inline void gcode_M405() {
  6952. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6953. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6954. if (code_seen('D')) meas_delay_cm = code_value_int();
  6955. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6956. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6957. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6958. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6959. measurement_delay[i] = temp_ratio;
  6960. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6961. }
  6962. filament_sensor = true;
  6963. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6964. //SERIAL_PROTOCOL(filament_width_meas);
  6965. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6966. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6967. }
  6968. /**
  6969. * M406: Turn off filament sensor for control
  6970. */
  6971. inline void gcode_M406() { filament_sensor = false; }
  6972. /**
  6973. * M407: Get measured filament diameter on serial output
  6974. */
  6975. inline void gcode_M407() {
  6976. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6977. SERIAL_PROTOCOLLN(filament_width_meas);
  6978. }
  6979. #endif // FILAMENT_WIDTH_SENSOR
  6980. void quickstop_stepper() {
  6981. stepper.quick_stop();
  6982. stepper.synchronize();
  6983. set_current_from_steppers_for_axis(ALL_AXES);
  6984. SYNC_PLAN_POSITION_KINEMATIC();
  6985. }
  6986. #if PLANNER_LEVELING
  6987. /**
  6988. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6989. *
  6990. * S[bool] Turns leveling on or off
  6991. * Z[height] Sets the Z fade height (0 or none to disable)
  6992. * V[bool] Verbose - Print the leveling grid
  6993. *
  6994. * With AUTO_BED_LEVELING_UBL only:
  6995. *
  6996. * L[index] Load UBL mesh from index (0 is default)
  6997. */
  6998. inline void gcode_M420() {
  6999. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7000. // L to load a mesh from the EEPROM
  7001. if (code_seen('L')) {
  7002. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7003. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7004. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7005. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7006. return;
  7007. }
  7008. ubl.load_mesh(storage_slot);
  7009. ubl.state.eeprom_storage_slot = storage_slot;
  7010. }
  7011. #endif // AUTO_BED_LEVELING_UBL
  7012. // V to print the matrix or mesh
  7013. if (code_seen('V')) {
  7014. #if ABL_PLANAR
  7015. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  7016. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7017. if (bilinear_grid_spacing[X_AXIS]) {
  7018. print_bilinear_leveling_grid();
  7019. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7020. bed_level_virt_print();
  7021. #endif
  7022. }
  7023. #elif ENABLED(MESH_BED_LEVELING)
  7024. if (mbl.has_mesh()) {
  7025. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7026. mbl_mesh_report();
  7027. }
  7028. #endif
  7029. }
  7030. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7031. // L to load a mesh from the EEPROM
  7032. if (code_seen('L') || code_seen('V')) {
  7033. ubl.display_map(0); // Currently only supports one map type
  7034. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7035. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7036. }
  7037. #endif
  7038. bool to_enable = false;
  7039. if (code_seen('S')) {
  7040. to_enable = code_value_bool();
  7041. set_bed_leveling_enabled(to_enable);
  7042. }
  7043. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7044. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7045. #endif
  7046. const bool new_status =
  7047. #if ENABLED(MESH_BED_LEVELING)
  7048. mbl.active()
  7049. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7050. ubl.state.active
  7051. #else
  7052. planner.abl_enabled
  7053. #endif
  7054. ;
  7055. if (to_enable && !new_status) {
  7056. SERIAL_ERROR_START;
  7057. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7058. }
  7059. SERIAL_ECHO_START;
  7060. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7061. }
  7062. #endif
  7063. #if ENABLED(MESH_BED_LEVELING)
  7064. /**
  7065. * M421: Set a single Mesh Bed Leveling Z coordinate
  7066. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7067. */
  7068. inline void gcode_M421() {
  7069. int8_t px = 0, py = 0;
  7070. float z = 0;
  7071. bool hasX, hasY, hasZ, hasI, hasJ;
  7072. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7073. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7074. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7075. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7076. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7077. if (hasX && hasY && hasZ) {
  7078. if (px >= 0 && py >= 0)
  7079. mbl.set_z(px, py, z);
  7080. else {
  7081. SERIAL_ERROR_START;
  7082. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7083. }
  7084. }
  7085. else if (hasI && hasJ && hasZ) {
  7086. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7087. mbl.set_z(px, py, z);
  7088. else {
  7089. SERIAL_ERROR_START;
  7090. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7091. }
  7092. }
  7093. else {
  7094. SERIAL_ERROR_START;
  7095. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7096. }
  7097. }
  7098. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7099. /**
  7100. * M421: Set a single Mesh Bed Leveling Z coordinate
  7101. *
  7102. * M421 I<xindex> J<yindex> Z<linear>
  7103. */
  7104. inline void gcode_M421() {
  7105. int8_t px = 0, py = 0;
  7106. float z = 0;
  7107. bool hasI, hasJ, hasZ;
  7108. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7109. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7110. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7111. if (hasI && hasJ && hasZ) {
  7112. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7113. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7114. ubl.z_values[px][py] = z;
  7115. #else
  7116. z_values[px][py] = z;
  7117. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7118. bed_level_virt_interpolate();
  7119. #endif
  7120. #endif
  7121. }
  7122. else {
  7123. SERIAL_ERROR_START;
  7124. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7125. }
  7126. }
  7127. else {
  7128. SERIAL_ERROR_START;
  7129. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7130. }
  7131. }
  7132. #endif
  7133. #if HAS_M206_COMMAND
  7134. /**
  7135. * M428: Set home_offset based on the distance between the
  7136. * current_position and the nearest "reference point."
  7137. * If an axis is past center its endstop position
  7138. * is the reference-point. Otherwise it uses 0. This allows
  7139. * the Z offset to be set near the bed when using a max endstop.
  7140. *
  7141. * M428 can't be used more than 2cm away from 0 or an endstop.
  7142. *
  7143. * Use M206 to set these values directly.
  7144. */
  7145. inline void gcode_M428() {
  7146. bool err = false;
  7147. LOOP_XYZ(i) {
  7148. if (axis_homed[i]) {
  7149. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7150. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7151. if (WITHIN(diff, -20, 20)) {
  7152. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7153. }
  7154. else {
  7155. SERIAL_ERROR_START;
  7156. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7157. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7158. BUZZ(200, 40);
  7159. err = true;
  7160. break;
  7161. }
  7162. }
  7163. }
  7164. if (!err) {
  7165. SYNC_PLAN_POSITION_KINEMATIC();
  7166. report_current_position();
  7167. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7168. BUZZ(100, 659);
  7169. BUZZ(100, 698);
  7170. }
  7171. }
  7172. #endif // HAS_M206_COMMAND
  7173. /**
  7174. * M500: Store settings in EEPROM
  7175. */
  7176. inline void gcode_M500() {
  7177. (void)settings.save();
  7178. }
  7179. /**
  7180. * M501: Read settings from EEPROM
  7181. */
  7182. inline void gcode_M501() {
  7183. (void)settings.load();
  7184. }
  7185. /**
  7186. * M502: Revert to default settings
  7187. */
  7188. inline void gcode_M502() {
  7189. (void)settings.reset();
  7190. }
  7191. /**
  7192. * M503: print settings currently in memory
  7193. */
  7194. inline void gcode_M503() {
  7195. (void)settings.report(code_seen('S') && !code_value_bool());
  7196. }
  7197. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7198. /**
  7199. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7200. */
  7201. inline void gcode_M540() {
  7202. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7203. }
  7204. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7205. #if HAS_BED_PROBE
  7206. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7207. static float last_zoffset = NAN;
  7208. if (!isnan(last_zoffset)) {
  7209. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7210. const float diff = zprobe_zoffset - last_zoffset;
  7211. #endif
  7212. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7213. // Correct bilinear grid for new probe offset
  7214. if (diff) {
  7215. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7216. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7217. z_values[x][y] -= diff;
  7218. }
  7219. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7220. bed_level_virt_interpolate();
  7221. #endif
  7222. #endif
  7223. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7224. if (!no_babystep && planner.abl_enabled)
  7225. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7226. #else
  7227. UNUSED(no_babystep);
  7228. #endif
  7229. }
  7230. last_zoffset = zprobe_zoffset;
  7231. }
  7232. inline void gcode_M851() {
  7233. SERIAL_ECHO_START;
  7234. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7235. if (code_seen('Z')) {
  7236. const float value = code_value_linear_units();
  7237. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7238. zprobe_zoffset = value;
  7239. refresh_zprobe_zoffset();
  7240. SERIAL_ECHO(zprobe_zoffset);
  7241. }
  7242. else
  7243. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7244. }
  7245. else
  7246. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7247. SERIAL_EOL;
  7248. }
  7249. #endif // HAS_BED_PROBE
  7250. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7251. void filament_change_beep(const bool init=false) {
  7252. static millis_t next_buzz = 0;
  7253. static uint16_t runout_beep = 0;
  7254. if (init) next_buzz = runout_beep = 0;
  7255. const millis_t ms = millis();
  7256. if (ELAPSED(ms, next_buzz)) {
  7257. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7258. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7259. BUZZ(300, 2000);
  7260. runout_beep++;
  7261. }
  7262. }
  7263. }
  7264. static bool busy_doing_M600 = false;
  7265. /**
  7266. * M600: Pause for filament change
  7267. *
  7268. * E[distance] - Retract the filament this far (negative value)
  7269. * Z[distance] - Move the Z axis by this distance
  7270. * X[position] - Move to this X position, with Y
  7271. * Y[position] - Move to this Y position, with X
  7272. * L[distance] - Retract distance for removal (manual reload)
  7273. *
  7274. * Default values are used for omitted arguments.
  7275. *
  7276. */
  7277. inline void gcode_M600() {
  7278. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7279. SERIAL_ERROR_START;
  7280. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7281. return;
  7282. }
  7283. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7284. // Pause the print job timer
  7285. const bool job_running = print_job_timer.isRunning();
  7286. print_job_timer.pause();
  7287. // Show initial message and wait for synchronize steppers
  7288. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7289. stepper.synchronize();
  7290. // Save current position of all axes
  7291. float lastpos[XYZE];
  7292. COPY(lastpos, current_position);
  7293. set_destination_to_current();
  7294. // Initial retract before move to filament change position
  7295. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7296. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7297. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7298. #endif
  7299. ;
  7300. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7301. // Lift Z axis
  7302. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7303. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7304. FILAMENT_CHANGE_Z_ADD
  7305. #else
  7306. 0
  7307. #endif
  7308. ;
  7309. if (z_lift > 0) {
  7310. destination[Z_AXIS] += z_lift;
  7311. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7312. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7313. }
  7314. // Move XY axes to filament exchange position
  7315. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7316. #ifdef FILAMENT_CHANGE_X_POS
  7317. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7318. #endif
  7319. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7320. #ifdef FILAMENT_CHANGE_Y_POS
  7321. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7322. #endif
  7323. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7324. stepper.synchronize();
  7325. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7326. idle();
  7327. // Unload filament
  7328. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7329. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7330. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7331. #endif
  7332. ;
  7333. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7334. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7335. stepper.synchronize();
  7336. disable_e_steppers();
  7337. safe_delay(100);
  7338. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7339. bool nozzle_timed_out = false;
  7340. float temps[4];
  7341. // Wait for filament insert by user and press button
  7342. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7343. #if HAS_BUZZER
  7344. filament_change_beep(true);
  7345. #endif
  7346. idle();
  7347. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7348. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7349. wait_for_user = true; // LCD click or M108 will clear this
  7350. while (wait_for_user) {
  7351. if (nozzle_timed_out)
  7352. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7353. #if HAS_BUZZER
  7354. filament_change_beep();
  7355. #endif
  7356. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7357. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7358. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7359. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7360. }
  7361. idle(true);
  7362. }
  7363. KEEPALIVE_STATE(IN_HANDLER);
  7364. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7365. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7366. // Show "wait for heating"
  7367. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7368. wait_for_heatup = true;
  7369. while (wait_for_heatup) {
  7370. idle();
  7371. wait_for_heatup = false;
  7372. HOTEND_LOOP() {
  7373. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7374. wait_for_heatup = true;
  7375. break;
  7376. }
  7377. }
  7378. }
  7379. // Show "insert filament"
  7380. if (nozzle_timed_out)
  7381. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7382. #if HAS_BUZZER
  7383. filament_change_beep(true);
  7384. #endif
  7385. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7386. wait_for_user = true; // LCD click or M108 will clear this
  7387. while (wait_for_user && nozzle_timed_out) {
  7388. #if HAS_BUZZER
  7389. filament_change_beep();
  7390. #endif
  7391. idle(true);
  7392. }
  7393. KEEPALIVE_STATE(IN_HANDLER);
  7394. // Show "load" message
  7395. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7396. // Load filament
  7397. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7398. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7399. + FILAMENT_CHANGE_LOAD_LENGTH
  7400. #endif
  7401. ;
  7402. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7403. stepper.synchronize();
  7404. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7405. do {
  7406. // "Wait for filament extrude"
  7407. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7408. // Extrude filament to get into hotend
  7409. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7410. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7411. stepper.synchronize();
  7412. // Show "Extrude More" / "Resume" menu and wait for reply
  7413. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7414. wait_for_user = false;
  7415. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7416. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7417. KEEPALIVE_STATE(IN_HANDLER);
  7418. // Keep looping if "Extrude More" was selected
  7419. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7420. #endif
  7421. // "Wait for print to resume"
  7422. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7423. // Set extruder to saved position
  7424. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7425. planner.set_e_position_mm(current_position[E_AXIS]);
  7426. #if IS_KINEMATIC
  7427. // Move XYZ to starting position
  7428. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7429. #else
  7430. // Move XY to starting position, then Z
  7431. destination[X_AXIS] = lastpos[X_AXIS];
  7432. destination[Y_AXIS] = lastpos[Y_AXIS];
  7433. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7434. destination[Z_AXIS] = lastpos[Z_AXIS];
  7435. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7436. #endif
  7437. stepper.synchronize();
  7438. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7439. filament_ran_out = false;
  7440. #endif
  7441. // Show status screen
  7442. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7443. // Resume the print job timer if it was running
  7444. if (job_running) print_job_timer.start();
  7445. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7446. }
  7447. #endif // FILAMENT_CHANGE_FEATURE
  7448. #if ENABLED(DUAL_X_CARRIAGE)
  7449. /**
  7450. * M605: Set dual x-carriage movement mode
  7451. *
  7452. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7453. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7454. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7455. * units x-offset and an optional differential hotend temperature of
  7456. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7457. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7458. *
  7459. * Note: the X axis should be homed after changing dual x-carriage mode.
  7460. */
  7461. inline void gcode_M605() {
  7462. stepper.synchronize();
  7463. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7464. switch (dual_x_carriage_mode) {
  7465. case DXC_FULL_CONTROL_MODE:
  7466. case DXC_AUTO_PARK_MODE:
  7467. break;
  7468. case DXC_DUPLICATION_MODE:
  7469. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7470. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7471. SERIAL_ECHO_START;
  7472. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7473. SERIAL_CHAR(' ');
  7474. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7475. SERIAL_CHAR(',');
  7476. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7477. SERIAL_CHAR(' ');
  7478. SERIAL_ECHO(duplicate_extruder_x_offset);
  7479. SERIAL_CHAR(',');
  7480. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7481. break;
  7482. default:
  7483. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7484. break;
  7485. }
  7486. active_extruder_parked = false;
  7487. extruder_duplication_enabled = false;
  7488. delayed_move_time = 0;
  7489. }
  7490. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7491. inline void gcode_M605() {
  7492. stepper.synchronize();
  7493. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7494. SERIAL_ECHO_START;
  7495. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7496. }
  7497. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7498. #if ENABLED(LIN_ADVANCE)
  7499. /**
  7500. * M900: Set and/or Get advance K factor and WH/D ratio
  7501. *
  7502. * K<factor> Set advance K factor
  7503. * R<ratio> Set ratio directly (overrides WH/D)
  7504. * W<width> H<height> D<diam> Set ratio from WH/D
  7505. */
  7506. inline void gcode_M900() {
  7507. stepper.synchronize();
  7508. const float newK = code_seen('K') ? code_value_float() : -1;
  7509. if (newK >= 0) planner.extruder_advance_k = newK;
  7510. float newR = code_seen('R') ? code_value_float() : -1;
  7511. if (newR < 0) {
  7512. const float newD = code_seen('D') ? code_value_float() : -1,
  7513. newW = code_seen('W') ? code_value_float() : -1,
  7514. newH = code_seen('H') ? code_value_float() : -1;
  7515. if (newD >= 0 && newW >= 0 && newH >= 0)
  7516. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7517. }
  7518. if (newR >= 0) planner.advance_ed_ratio = newR;
  7519. SERIAL_ECHO_START;
  7520. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7521. SERIAL_ECHOPGM(" E/D=");
  7522. const float ratio = planner.advance_ed_ratio;
  7523. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7524. SERIAL_EOL;
  7525. }
  7526. #endif // LIN_ADVANCE
  7527. #if ENABLED(HAVE_TMC2130)
  7528. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7529. SERIAL_CHAR(name);
  7530. SERIAL_ECHOPGM(" axis driver current: ");
  7531. SERIAL_ECHOLN(st.getCurrent());
  7532. }
  7533. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7534. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7535. tmc2130_get_current(st, name);
  7536. }
  7537. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7538. SERIAL_CHAR(name);
  7539. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7540. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7541. SERIAL_EOL;
  7542. }
  7543. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7544. st.clear_otpw();
  7545. SERIAL_CHAR(name);
  7546. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7547. }
  7548. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7549. SERIAL_CHAR(name);
  7550. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7551. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7552. }
  7553. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7554. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7555. tmc2130_get_pwmthrs(st, name, spmm);
  7556. }
  7557. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7558. SERIAL_CHAR(name);
  7559. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7560. SERIAL_ECHOLN(st.sgt());
  7561. }
  7562. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7563. st.sgt(sgt_val);
  7564. tmc2130_get_sgt(st, name);
  7565. }
  7566. /**
  7567. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7568. * Report driver currents when no axis specified
  7569. *
  7570. * S1: Enable automatic current control
  7571. * S0: Disable
  7572. */
  7573. inline void gcode_M906() {
  7574. uint16_t values[XYZE];
  7575. LOOP_XYZE(i)
  7576. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7577. #if ENABLED(X_IS_TMC2130)
  7578. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7579. else tmc2130_get_current(stepperX, 'X');
  7580. #endif
  7581. #if ENABLED(Y_IS_TMC2130)
  7582. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7583. else tmc2130_get_current(stepperY, 'Y');
  7584. #endif
  7585. #if ENABLED(Z_IS_TMC2130)
  7586. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7587. else tmc2130_get_current(stepperZ, 'Z');
  7588. #endif
  7589. #if ENABLED(E0_IS_TMC2130)
  7590. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7591. else tmc2130_get_current(stepperE0, 'E');
  7592. #endif
  7593. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7594. if (code_seen('S')) auto_current_control = code_value_bool();
  7595. #endif
  7596. }
  7597. /**
  7598. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7599. * The flag is held by the library and persist until manually cleared by M912
  7600. */
  7601. inline void gcode_M911() {
  7602. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7603. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7604. #if ENABLED(X_IS_TMC2130)
  7605. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7606. #endif
  7607. #if ENABLED(Y_IS_TMC2130)
  7608. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7609. #endif
  7610. #if ENABLED(Z_IS_TMC2130)
  7611. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7612. #endif
  7613. #if ENABLED(E0_IS_TMC2130)
  7614. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7615. #endif
  7616. }
  7617. /**
  7618. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7619. */
  7620. inline void gcode_M912() {
  7621. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7622. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7623. #if ENABLED(X_IS_TMC2130)
  7624. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7625. #endif
  7626. #if ENABLED(Y_IS_TMC2130)
  7627. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7628. #endif
  7629. #if ENABLED(Z_IS_TMC2130)
  7630. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7631. #endif
  7632. #if ENABLED(E0_IS_TMC2130)
  7633. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7634. #endif
  7635. }
  7636. /**
  7637. * M913: Set HYBRID_THRESHOLD speed.
  7638. */
  7639. #if ENABLED(HYBRID_THRESHOLD)
  7640. inline void gcode_M913() {
  7641. uint16_t values[XYZE];
  7642. LOOP_XYZE(i)
  7643. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7644. #if ENABLED(X_IS_TMC2130)
  7645. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7646. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7647. #endif
  7648. #if ENABLED(Y_IS_TMC2130)
  7649. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7650. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7651. #endif
  7652. #if ENABLED(Z_IS_TMC2130)
  7653. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7654. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7655. #endif
  7656. #if ENABLED(E0_IS_TMC2130)
  7657. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7658. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7659. #endif
  7660. }
  7661. #endif // HYBRID_THRESHOLD
  7662. /**
  7663. * M914: Set SENSORLESS_HOMING sensitivity.
  7664. */
  7665. #if ENABLED(SENSORLESS_HOMING)
  7666. inline void gcode_M914() {
  7667. #if ENABLED(X_IS_TMC2130)
  7668. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7669. else tmc2130_get_sgt(stepperX, 'X');
  7670. #endif
  7671. #if ENABLED(Y_IS_TMC2130)
  7672. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7673. else tmc2130_get_sgt(stepperY, 'Y');
  7674. #endif
  7675. }
  7676. #endif // SENSORLESS_HOMING
  7677. #endif // HAVE_TMC2130
  7678. /**
  7679. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7680. */
  7681. inline void gcode_M907() {
  7682. #if HAS_DIGIPOTSS
  7683. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7684. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7685. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7686. #elif HAS_MOTOR_CURRENT_PWM
  7687. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7688. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7689. #endif
  7690. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7691. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7692. #endif
  7693. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7694. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7695. #endif
  7696. #endif
  7697. #if ENABLED(DIGIPOT_I2C)
  7698. // this one uses actual amps in floating point
  7699. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7700. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7701. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7702. #endif
  7703. #if ENABLED(DAC_STEPPER_CURRENT)
  7704. if (code_seen('S')) {
  7705. const float dac_percent = code_value_float();
  7706. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7707. }
  7708. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7709. #endif
  7710. }
  7711. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7712. /**
  7713. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7714. */
  7715. inline void gcode_M908() {
  7716. #if HAS_DIGIPOTSS
  7717. stepper.digitalPotWrite(
  7718. code_seen('P') ? code_value_int() : 0,
  7719. code_seen('S') ? code_value_int() : 0
  7720. );
  7721. #endif
  7722. #ifdef DAC_STEPPER_CURRENT
  7723. dac_current_raw(
  7724. code_seen('P') ? code_value_byte() : -1,
  7725. code_seen('S') ? code_value_ushort() : 0
  7726. );
  7727. #endif
  7728. }
  7729. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7730. inline void gcode_M909() { dac_print_values(); }
  7731. inline void gcode_M910() { dac_commit_eeprom(); }
  7732. #endif
  7733. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7734. #if HAS_MICROSTEPS
  7735. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7736. inline void gcode_M350() {
  7737. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7738. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7739. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7740. stepper.microstep_readings();
  7741. }
  7742. /**
  7743. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7744. * S# determines MS1 or MS2, X# sets the pin high/low.
  7745. */
  7746. inline void gcode_M351() {
  7747. if (code_seen('S')) switch (code_value_byte()) {
  7748. case 1:
  7749. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7750. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7751. break;
  7752. case 2:
  7753. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7754. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7755. break;
  7756. }
  7757. stepper.microstep_readings();
  7758. }
  7759. #endif // HAS_MICROSTEPS
  7760. #if HAS_CASE_LIGHT
  7761. uint8_t case_light_brightness = 255;
  7762. void update_case_light() {
  7763. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7764. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7765. }
  7766. #endif // HAS_CASE_LIGHT
  7767. /**
  7768. * M355: Turn case lights on/off and set brightness
  7769. *
  7770. * S<bool> Turn case light on or off
  7771. * P<byte> Set case light brightness (PWM pin required)
  7772. */
  7773. inline void gcode_M355() {
  7774. #if HAS_CASE_LIGHT
  7775. if (code_seen('P')) case_light_brightness = code_value_byte();
  7776. if (code_seen('S')) case_light_on = code_value_bool();
  7777. update_case_light();
  7778. SERIAL_ECHO_START;
  7779. SERIAL_ECHOPGM("Case lights ");
  7780. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7781. #else
  7782. SERIAL_ERROR_START;
  7783. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7784. #endif // HAS_CASE_LIGHT
  7785. }
  7786. #if ENABLED(MIXING_EXTRUDER)
  7787. /**
  7788. * M163: Set a single mix factor for a mixing extruder
  7789. * This is called "weight" by some systems.
  7790. *
  7791. * S[index] The channel index to set
  7792. * P[float] The mix value
  7793. *
  7794. */
  7795. inline void gcode_M163() {
  7796. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7797. if (mix_index < MIXING_STEPPERS) {
  7798. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7799. NOLESS(mix_value, 0.0);
  7800. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7801. }
  7802. }
  7803. #if MIXING_VIRTUAL_TOOLS > 1
  7804. /**
  7805. * M164: Store the current mix factors as a virtual tool.
  7806. *
  7807. * S[index] The virtual tool to store
  7808. *
  7809. */
  7810. inline void gcode_M164() {
  7811. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7812. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7813. normalize_mix();
  7814. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7815. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7816. }
  7817. }
  7818. #endif
  7819. #if ENABLED(DIRECT_MIXING_IN_G1)
  7820. /**
  7821. * M165: Set multiple mix factors for a mixing extruder.
  7822. * Factors that are left out will be set to 0.
  7823. * All factors together must add up to 1.0.
  7824. *
  7825. * A[factor] Mix factor for extruder stepper 1
  7826. * B[factor] Mix factor for extruder stepper 2
  7827. * C[factor] Mix factor for extruder stepper 3
  7828. * D[factor] Mix factor for extruder stepper 4
  7829. * H[factor] Mix factor for extruder stepper 5
  7830. * I[factor] Mix factor for extruder stepper 6
  7831. *
  7832. */
  7833. inline void gcode_M165() { gcode_get_mix(); }
  7834. #endif
  7835. #endif // MIXING_EXTRUDER
  7836. /**
  7837. * M999: Restart after being stopped
  7838. *
  7839. * Default behaviour is to flush the serial buffer and request
  7840. * a resend to the host starting on the last N line received.
  7841. *
  7842. * Sending "M999 S1" will resume printing without flushing the
  7843. * existing command buffer.
  7844. *
  7845. */
  7846. inline void gcode_M999() {
  7847. Running = true;
  7848. lcd_reset_alert_level();
  7849. if (code_seen('S') && code_value_bool()) return;
  7850. // gcode_LastN = Stopped_gcode_LastN;
  7851. FlushSerialRequestResend();
  7852. }
  7853. #if ENABLED(SWITCHING_EXTRUDER)
  7854. inline void move_extruder_servo(uint8_t e) {
  7855. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7856. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7857. safe_delay(500);
  7858. }
  7859. #endif
  7860. inline void invalid_extruder_error(const uint8_t &e) {
  7861. SERIAL_ECHO_START;
  7862. SERIAL_CHAR('T');
  7863. SERIAL_ECHO_F(e, DEC);
  7864. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7865. }
  7866. /**
  7867. * Perform a tool-change, which may result in moving the
  7868. * previous tool out of the way and the new tool into place.
  7869. */
  7870. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7871. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7872. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7873. return invalid_extruder_error(tmp_extruder);
  7874. // T0-Tnnn: Switch virtual tool by changing the mix
  7875. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7876. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7877. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7878. #if HOTENDS > 1
  7879. if (tmp_extruder >= EXTRUDERS)
  7880. return invalid_extruder_error(tmp_extruder);
  7881. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7882. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7883. if (tmp_extruder != active_extruder) {
  7884. if (!no_move && axis_unhomed_error(true, true, true)) {
  7885. SERIAL_ECHOLNPGM("No move on toolchange");
  7886. no_move = true;
  7887. }
  7888. // Save current position to destination, for use later
  7889. set_destination_to_current();
  7890. #if ENABLED(DUAL_X_CARRIAGE)
  7891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7892. if (DEBUGGING(LEVELING)) {
  7893. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7894. switch (dual_x_carriage_mode) {
  7895. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7896. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7897. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7898. }
  7899. }
  7900. #endif
  7901. const float xhome = x_home_pos(active_extruder);
  7902. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7903. && IsRunning()
  7904. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7905. ) {
  7906. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7907. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7908. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7909. #endif
  7910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7911. if (DEBUGGING(LEVELING)) {
  7912. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7913. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7914. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7915. }
  7916. #endif
  7917. // Park old head: 1) raise 2) move to park position 3) lower
  7918. for (uint8_t i = 0; i < 3; i++)
  7919. planner.buffer_line(
  7920. i == 0 ? current_position[X_AXIS] : xhome,
  7921. current_position[Y_AXIS],
  7922. i == 2 ? current_position[Z_AXIS] : raised_z,
  7923. current_position[E_AXIS],
  7924. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7925. active_extruder
  7926. );
  7927. stepper.synchronize();
  7928. }
  7929. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7930. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7931. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7932. // Activate the new extruder
  7933. active_extruder = tmp_extruder;
  7934. // This function resets the max/min values - the current position may be overwritten below.
  7935. set_axis_is_at_home(X_AXIS);
  7936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7937. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7938. #endif
  7939. // Only when auto-parking are carriages safe to move
  7940. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7941. switch (dual_x_carriage_mode) {
  7942. case DXC_FULL_CONTROL_MODE:
  7943. // New current position is the position of the activated extruder
  7944. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7945. // Save the inactive extruder's position (from the old current_position)
  7946. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7947. break;
  7948. case DXC_AUTO_PARK_MODE:
  7949. // record raised toolhead position for use by unpark
  7950. COPY(raised_parked_position, current_position);
  7951. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7952. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7953. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7954. #endif
  7955. active_extruder_parked = true;
  7956. delayed_move_time = 0;
  7957. break;
  7958. case DXC_DUPLICATION_MODE:
  7959. // If the new extruder is the left one, set it "parked"
  7960. // This triggers the second extruder to move into the duplication position
  7961. active_extruder_parked = (active_extruder == 0);
  7962. if (active_extruder_parked)
  7963. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7964. else
  7965. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7966. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7967. extruder_duplication_enabled = false;
  7968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7969. if (DEBUGGING(LEVELING)) {
  7970. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  7971. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  7972. }
  7973. #endif
  7974. break;
  7975. }
  7976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7977. if (DEBUGGING(LEVELING)) {
  7978. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7979. DEBUG_POS("New extruder (parked)", current_position);
  7980. }
  7981. #endif
  7982. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7983. #else // !DUAL_X_CARRIAGE
  7984. #if ENABLED(SWITCHING_EXTRUDER)
  7985. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7986. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7987. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7988. // Always raise by some amount (destination copied from current_position earlier)
  7989. current_position[Z_AXIS] += z_raise;
  7990. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7991. stepper.synchronize();
  7992. move_extruder_servo(active_extruder);
  7993. #endif
  7994. /**
  7995. * Set current_position to the position of the new nozzle.
  7996. * Offsets are based on linear distance, so we need to get
  7997. * the resulting position in coordinate space.
  7998. *
  7999. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8000. * - With mesh leveling, update Z for the new position
  8001. * - Otherwise, just use the raw linear distance
  8002. *
  8003. * Software endstops are altered here too. Consider a case where:
  8004. * E0 at X=0 ... E1 at X=10
  8005. * When we switch to E1 now X=10, but E1 can't move left.
  8006. * To express this we apply the change in XY to the software endstops.
  8007. * E1 can move farther right than E0, so the right limit is extended.
  8008. *
  8009. * Note that we don't adjust the Z software endstops. Why not?
  8010. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8011. * because the bed is 1mm lower at the new position. As long as
  8012. * the first nozzle is out of the way, the carriage should be
  8013. * allowed to move 1mm lower. This technically "breaks" the
  8014. * Z software endstop. But this is technically correct (and
  8015. * there is no viable alternative).
  8016. */
  8017. #if ABL_PLANAR
  8018. // Offset extruder, make sure to apply the bed level rotation matrix
  8019. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8020. hotend_offset[Y_AXIS][tmp_extruder],
  8021. 0),
  8022. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8023. hotend_offset[Y_AXIS][active_extruder],
  8024. 0),
  8025. offset_vec = tmp_offset_vec - act_offset_vec;
  8026. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8027. if (DEBUGGING(LEVELING)) {
  8028. tmp_offset_vec.debug("tmp_offset_vec");
  8029. act_offset_vec.debug("act_offset_vec");
  8030. offset_vec.debug("offset_vec (BEFORE)");
  8031. }
  8032. #endif
  8033. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8035. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  8036. #endif
  8037. // Adjustments to the current position
  8038. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8039. current_position[Z_AXIS] += offset_vec.z;
  8040. #else // !ABL_PLANAR
  8041. const float xydiff[2] = {
  8042. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8043. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8044. };
  8045. #if ENABLED(MESH_BED_LEVELING)
  8046. if (mbl.active()) {
  8047. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8048. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8049. #endif
  8050. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8051. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8052. z1 = current_position[Z_AXIS], z2 = z1;
  8053. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8054. planner.apply_leveling(x2, y2, z2);
  8055. current_position[Z_AXIS] += z2 - z1;
  8056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8057. if (DEBUGGING(LEVELING))
  8058. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8059. #endif
  8060. }
  8061. #endif // MESH_BED_LEVELING
  8062. #endif // !HAS_ABL
  8063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8064. if (DEBUGGING(LEVELING)) {
  8065. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8066. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8067. SERIAL_ECHOLNPGM(" }");
  8068. }
  8069. #endif
  8070. // The newly-selected extruder XY is actually at...
  8071. current_position[X_AXIS] += xydiff[X_AXIS];
  8072. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8073. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8074. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8075. #if HAS_POSITION_SHIFT
  8076. position_shift[i] += xydiff[i];
  8077. #endif
  8078. update_software_endstops((AxisEnum)i);
  8079. }
  8080. #endif
  8081. // Set the new active extruder
  8082. active_extruder = tmp_extruder;
  8083. #endif // !DUAL_X_CARRIAGE
  8084. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8085. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8086. #endif
  8087. // Tell the planner the new "current position"
  8088. SYNC_PLAN_POSITION_KINEMATIC();
  8089. // Move to the "old position" (move the extruder into place)
  8090. if (!no_move && IsRunning()) {
  8091. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8092. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8093. #endif
  8094. prepare_move_to_destination();
  8095. }
  8096. #if ENABLED(SWITCHING_EXTRUDER)
  8097. // Move back down, if needed. (Including when the new tool is higher.)
  8098. if (z_raise != z_diff) {
  8099. destination[Z_AXIS] += z_diff;
  8100. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8101. prepare_move_to_destination();
  8102. }
  8103. #endif
  8104. } // (tmp_extruder != active_extruder)
  8105. stepper.synchronize();
  8106. #if ENABLED(EXT_SOLENOID)
  8107. disable_all_solenoids();
  8108. enable_solenoid_on_active_extruder();
  8109. #endif // EXT_SOLENOID
  8110. feedrate_mm_s = old_feedrate_mm_s;
  8111. #else // HOTENDS <= 1
  8112. // Set the new active extruder
  8113. active_extruder = tmp_extruder;
  8114. UNUSED(fr_mm_s);
  8115. UNUSED(no_move);
  8116. #endif // HOTENDS <= 1
  8117. SERIAL_ECHO_START;
  8118. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8119. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8120. }
  8121. /**
  8122. * T0-T3: Switch tool, usually switching extruders
  8123. *
  8124. * F[units/min] Set the movement feedrate
  8125. * S1 Don't move the tool in XY after change
  8126. */
  8127. inline void gcode_T(uint8_t tmp_extruder) {
  8128. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8129. if (DEBUGGING(LEVELING)) {
  8130. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8131. SERIAL_CHAR(')');
  8132. SERIAL_EOL;
  8133. DEBUG_POS("BEFORE", current_position);
  8134. }
  8135. #endif
  8136. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8137. tool_change(tmp_extruder);
  8138. #elif HOTENDS > 1
  8139. tool_change(
  8140. tmp_extruder,
  8141. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8142. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8143. );
  8144. #endif
  8145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8146. if (DEBUGGING(LEVELING)) {
  8147. DEBUG_POS("AFTER", current_position);
  8148. SERIAL_ECHOLNPGM("<<< gcode_T");
  8149. }
  8150. #endif
  8151. }
  8152. /**
  8153. * Process a single command and dispatch it to its handler
  8154. * This is called from the main loop()
  8155. */
  8156. void process_next_command() {
  8157. current_command = command_queue[cmd_queue_index_r];
  8158. if (DEBUGGING(ECHO)) {
  8159. SERIAL_ECHO_START;
  8160. SERIAL_ECHOLN(current_command);
  8161. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8162. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8163. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8164. #endif
  8165. }
  8166. // Sanitize the current command:
  8167. // - Skip leading spaces
  8168. // - Bypass N[-0-9][0-9]*[ ]*
  8169. // - Overwrite * with nul to mark the end
  8170. while (*current_command == ' ') ++current_command;
  8171. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8172. current_command += 2; // skip N[-0-9]
  8173. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8174. while (*current_command == ' ') ++current_command; // skip [ ]*
  8175. }
  8176. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8177. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8178. char *cmd_ptr = current_command;
  8179. // Get the command code, which must be G, M, or T
  8180. char command_code = *cmd_ptr++;
  8181. // Skip spaces to get the numeric part
  8182. while (*cmd_ptr == ' ') cmd_ptr++;
  8183. // Allow for decimal point in command
  8184. #if ENABLED(G38_PROBE_TARGET)
  8185. uint8_t subcode = 0;
  8186. #endif
  8187. uint16_t codenum = 0; // define ahead of goto
  8188. // Bail early if there's no code
  8189. bool code_is_good = NUMERIC(*cmd_ptr);
  8190. if (!code_is_good) goto ExitUnknownCommand;
  8191. // Get and skip the code number
  8192. do {
  8193. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8194. cmd_ptr++;
  8195. } while (NUMERIC(*cmd_ptr));
  8196. // Allow for decimal point in command
  8197. #if ENABLED(G38_PROBE_TARGET)
  8198. if (*cmd_ptr == '.') {
  8199. cmd_ptr++;
  8200. while (NUMERIC(*cmd_ptr))
  8201. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8202. }
  8203. #endif
  8204. // Skip all spaces to get to the first argument, or nul
  8205. while (*cmd_ptr == ' ') cmd_ptr++;
  8206. // The command's arguments (if any) start here, for sure!
  8207. current_command_args = cmd_ptr;
  8208. KEEPALIVE_STATE(IN_HANDLER);
  8209. // Handle a known G, M, or T
  8210. switch (command_code) {
  8211. case 'G': switch (codenum) {
  8212. // G0, G1
  8213. case 0:
  8214. case 1:
  8215. #if IS_SCARA
  8216. gcode_G0_G1(codenum == 0);
  8217. #else
  8218. gcode_G0_G1();
  8219. #endif
  8220. break;
  8221. // G2, G3
  8222. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8223. case 2: // G2 - CW ARC
  8224. case 3: // G3 - CCW ARC
  8225. gcode_G2_G3(codenum == 2);
  8226. break;
  8227. #endif
  8228. // G4 Dwell
  8229. case 4:
  8230. gcode_G4();
  8231. break;
  8232. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8233. // G5
  8234. case 5: // G5 - Cubic B_spline
  8235. gcode_G5();
  8236. break;
  8237. #endif // BEZIER_CURVE_SUPPORT
  8238. #if ENABLED(FWRETRACT)
  8239. case 10: // G10: retract
  8240. case 11: // G11: retract_recover
  8241. gcode_G10_G11(codenum == 10);
  8242. break;
  8243. #endif // FWRETRACT
  8244. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8245. case 12:
  8246. gcode_G12(); // G12: Nozzle Clean
  8247. break;
  8248. #endif // NOZZLE_CLEAN_FEATURE
  8249. #if ENABLED(INCH_MODE_SUPPORT)
  8250. case 20: //G20: Inch Mode
  8251. gcode_G20();
  8252. break;
  8253. case 21: //G21: MM Mode
  8254. gcode_G21();
  8255. break;
  8256. #endif // INCH_MODE_SUPPORT
  8257. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8258. case 26: // G26: Mesh Validation Pattern generation
  8259. gcode_G26();
  8260. break;
  8261. #endif // AUTO_BED_LEVELING_UBL
  8262. #if ENABLED(NOZZLE_PARK_FEATURE)
  8263. case 27: // G27: Nozzle Park
  8264. gcode_G27();
  8265. break;
  8266. #endif // NOZZLE_PARK_FEATURE
  8267. case 28: // G28: Home all axes, one at a time
  8268. gcode_G28();
  8269. break;
  8270. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8271. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8272. // or provides access to the UBL System if enabled.
  8273. gcode_G29();
  8274. break;
  8275. #endif // PLANNER_LEVELING
  8276. #if HAS_BED_PROBE
  8277. case 30: // G30 Single Z probe
  8278. gcode_G30();
  8279. break;
  8280. #if ENABLED(Z_PROBE_SLED)
  8281. case 31: // G31: dock the sled
  8282. gcode_G31();
  8283. break;
  8284. case 32: // G32: undock the sled
  8285. gcode_G32();
  8286. break;
  8287. #endif // Z_PROBE_SLED
  8288. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8289. case 33: // G33: Delta Auto Calibrate
  8290. gcode_G33();
  8291. break;
  8292. #endif // DELTA_AUTO_CALIBRATION
  8293. #endif // HAS_BED_PROBE
  8294. #if ENABLED(G38_PROBE_TARGET)
  8295. case 38: // G38.2 & G38.3
  8296. if (subcode == 2 || subcode == 3)
  8297. gcode_G38(subcode == 2);
  8298. break;
  8299. #endif
  8300. case 90: // G90
  8301. relative_mode = false;
  8302. break;
  8303. case 91: // G91
  8304. relative_mode = true;
  8305. break;
  8306. case 92: // G92
  8307. gcode_G92();
  8308. break;
  8309. }
  8310. break;
  8311. case 'M': switch (codenum) {
  8312. #if HAS_RESUME_CONTINUE
  8313. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8314. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8315. gcode_M0_M1();
  8316. break;
  8317. #endif // ULTIPANEL
  8318. case 17: // M17: Enable all stepper motors
  8319. gcode_M17();
  8320. break;
  8321. #if ENABLED(SDSUPPORT)
  8322. case 20: // M20: list SD card
  8323. gcode_M20(); break;
  8324. case 21: // M21: init SD card
  8325. gcode_M21(); break;
  8326. case 22: // M22: release SD card
  8327. gcode_M22(); break;
  8328. case 23: // M23: Select file
  8329. gcode_M23(); break;
  8330. case 24: // M24: Start SD print
  8331. gcode_M24(); break;
  8332. case 25: // M25: Pause SD print
  8333. gcode_M25(); break;
  8334. case 26: // M26: Set SD index
  8335. gcode_M26(); break;
  8336. case 27: // M27: Get SD status
  8337. gcode_M27(); break;
  8338. case 28: // M28: Start SD write
  8339. gcode_M28(); break;
  8340. case 29: // M29: Stop SD write
  8341. gcode_M29(); break;
  8342. case 30: // M30 <filename> Delete File
  8343. gcode_M30(); break;
  8344. case 32: // M32: Select file and start SD print
  8345. gcode_M32(); break;
  8346. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8347. case 33: // M33: Get the long full path to a file or folder
  8348. gcode_M33(); break;
  8349. #endif
  8350. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8351. case 34: //M34 - Set SD card sorting options
  8352. gcode_M34(); break;
  8353. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8354. case 928: // M928: Start SD write
  8355. gcode_M928(); break;
  8356. #endif //SDSUPPORT
  8357. case 31: // M31: Report time since the start of SD print or last M109
  8358. gcode_M31(); break;
  8359. case 42: // M42: Change pin state
  8360. gcode_M42(); break;
  8361. #if ENABLED(PINS_DEBUGGING)
  8362. case 43: // M43: Read pin state
  8363. gcode_M43(); break;
  8364. #endif
  8365. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8366. case 48: // M48: Z probe repeatability test
  8367. gcode_M48();
  8368. break;
  8369. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8370. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8371. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8372. gcode_M49();
  8373. break;
  8374. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8375. case 75: // M75: Start print timer
  8376. gcode_M75(); break;
  8377. case 76: // M76: Pause print timer
  8378. gcode_M76(); break;
  8379. case 77: // M77: Stop print timer
  8380. gcode_M77(); break;
  8381. #if ENABLED(PRINTCOUNTER)
  8382. case 78: // M78: Show print statistics
  8383. gcode_M78(); break;
  8384. #endif
  8385. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8386. case 100: // M100: Free Memory Report
  8387. gcode_M100();
  8388. break;
  8389. #endif
  8390. case 104: // M104: Set hot end temperature
  8391. gcode_M104();
  8392. break;
  8393. case 110: // M110: Set Current Line Number
  8394. gcode_M110();
  8395. break;
  8396. case 111: // M111: Set debug level
  8397. gcode_M111();
  8398. break;
  8399. #if DISABLED(EMERGENCY_PARSER)
  8400. case 108: // M108: Cancel Waiting
  8401. gcode_M108();
  8402. break;
  8403. case 112: // M112: Emergency Stop
  8404. gcode_M112();
  8405. break;
  8406. case 410: // M410 quickstop - Abort all the planned moves.
  8407. gcode_M410();
  8408. break;
  8409. #endif
  8410. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8411. case 113: // M113: Set Host Keepalive interval
  8412. gcode_M113();
  8413. break;
  8414. #endif
  8415. case 140: // M140: Set bed temperature
  8416. gcode_M140();
  8417. break;
  8418. case 105: // M105: Report current temperature
  8419. gcode_M105();
  8420. KEEPALIVE_STATE(NOT_BUSY);
  8421. return; // "ok" already printed
  8422. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8423. case 155: // M155: Set temperature auto-report interval
  8424. gcode_M155();
  8425. break;
  8426. #endif
  8427. case 109: // M109: Wait for hotend temperature to reach target
  8428. gcode_M109();
  8429. break;
  8430. #if HAS_TEMP_BED
  8431. case 190: // M190: Wait for bed temperature to reach target
  8432. gcode_M190();
  8433. break;
  8434. #endif // HAS_TEMP_BED
  8435. #if FAN_COUNT > 0
  8436. case 106: // M106: Fan On
  8437. gcode_M106();
  8438. break;
  8439. case 107: // M107: Fan Off
  8440. gcode_M107();
  8441. break;
  8442. #endif // FAN_COUNT > 0
  8443. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8444. case 125: // M125: Store current position and move to filament change position
  8445. gcode_M125(); break;
  8446. #endif
  8447. #if ENABLED(BARICUDA)
  8448. // PWM for HEATER_1_PIN
  8449. #if HAS_HEATER_1
  8450. case 126: // M126: valve open
  8451. gcode_M126();
  8452. break;
  8453. case 127: // M127: valve closed
  8454. gcode_M127();
  8455. break;
  8456. #endif // HAS_HEATER_1
  8457. // PWM for HEATER_2_PIN
  8458. #if HAS_HEATER_2
  8459. case 128: // M128: valve open
  8460. gcode_M128();
  8461. break;
  8462. case 129: // M129: valve closed
  8463. gcode_M129();
  8464. break;
  8465. #endif // HAS_HEATER_2
  8466. #endif // BARICUDA
  8467. #if HAS_POWER_SWITCH
  8468. case 80: // M80: Turn on Power Supply
  8469. gcode_M80();
  8470. break;
  8471. #endif // HAS_POWER_SWITCH
  8472. case 81: // M81: Turn off Power, including Power Supply, if possible
  8473. gcode_M81();
  8474. break;
  8475. case 82: // M83: Set E axis normal mode (same as other axes)
  8476. gcode_M82();
  8477. break;
  8478. case 83: // M83: Set E axis relative mode
  8479. gcode_M83();
  8480. break;
  8481. case 18: // M18 => M84
  8482. case 84: // M84: Disable all steppers or set timeout
  8483. gcode_M18_M84();
  8484. break;
  8485. case 85: // M85: Set inactivity stepper shutdown timeout
  8486. gcode_M85();
  8487. break;
  8488. case 92: // M92: Set the steps-per-unit for one or more axes
  8489. gcode_M92();
  8490. break;
  8491. case 114: // M114: Report current position
  8492. gcode_M114();
  8493. break;
  8494. case 115: // M115: Report capabilities
  8495. gcode_M115();
  8496. break;
  8497. case 117: // M117: Set LCD message text, if possible
  8498. gcode_M117();
  8499. break;
  8500. case 119: // M119: Report endstop states
  8501. gcode_M119();
  8502. break;
  8503. case 120: // M120: Enable endstops
  8504. gcode_M120();
  8505. break;
  8506. case 121: // M121: Disable endstops
  8507. gcode_M121();
  8508. break;
  8509. #if ENABLED(ULTIPANEL)
  8510. case 145: // M145: Set material heatup parameters
  8511. gcode_M145();
  8512. break;
  8513. #endif
  8514. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8515. case 149: // M149: Set temperature units
  8516. gcode_M149();
  8517. break;
  8518. #endif
  8519. #if HAS_COLOR_LEDS
  8520. case 150: // M150: Set Status LED Color
  8521. gcode_M150();
  8522. break;
  8523. #endif // BLINKM
  8524. #if ENABLED(MIXING_EXTRUDER)
  8525. case 163: // M163: Set a component weight for mixing extruder
  8526. gcode_M163();
  8527. break;
  8528. #if MIXING_VIRTUAL_TOOLS > 1
  8529. case 164: // M164: Save current mix as a virtual extruder
  8530. gcode_M164();
  8531. break;
  8532. #endif
  8533. #if ENABLED(DIRECT_MIXING_IN_G1)
  8534. case 165: // M165: Set multiple mix weights
  8535. gcode_M165();
  8536. break;
  8537. #endif
  8538. #endif
  8539. case 200: // M200: Set filament diameter, E to cubic units
  8540. gcode_M200();
  8541. break;
  8542. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8543. gcode_M201();
  8544. break;
  8545. #if 0 // Not used for Sprinter/grbl gen6
  8546. case 202: // M202
  8547. gcode_M202();
  8548. break;
  8549. #endif
  8550. case 203: // M203: Set max feedrate (units/sec)
  8551. gcode_M203();
  8552. break;
  8553. case 204: // M204: Set acceleration
  8554. gcode_M204();
  8555. break;
  8556. case 205: //M205: Set advanced settings
  8557. gcode_M205();
  8558. break;
  8559. #if HAS_M206_COMMAND
  8560. case 206: // M206: Set home offsets
  8561. gcode_M206();
  8562. break;
  8563. #endif
  8564. #if ENABLED(DELTA)
  8565. case 665: // M665: Set delta configurations
  8566. gcode_M665();
  8567. break;
  8568. #endif
  8569. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8570. case 666: // M666: Set delta or dual endstop adjustment
  8571. gcode_M666();
  8572. break;
  8573. #endif
  8574. #if ENABLED(FWRETRACT)
  8575. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8576. gcode_M207();
  8577. break;
  8578. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8579. gcode_M208();
  8580. break;
  8581. case 209: // M209: Turn Automatic Retract Detection on/off
  8582. gcode_M209();
  8583. break;
  8584. #endif // FWRETRACT
  8585. case 211: // M211: Enable, Disable, and/or Report software endstops
  8586. gcode_M211();
  8587. break;
  8588. #if HOTENDS > 1
  8589. case 218: // M218: Set a tool offset
  8590. gcode_M218();
  8591. break;
  8592. #endif
  8593. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8594. gcode_M220();
  8595. break;
  8596. case 221: // M221: Set Flow Percentage
  8597. gcode_M221();
  8598. break;
  8599. case 226: // M226: Wait until a pin reaches a state
  8600. gcode_M226();
  8601. break;
  8602. #if HAS_SERVOS
  8603. case 280: // M280: Set servo position absolute
  8604. gcode_M280();
  8605. break;
  8606. #endif // HAS_SERVOS
  8607. #if HAS_BUZZER
  8608. case 300: // M300: Play beep tone
  8609. gcode_M300();
  8610. break;
  8611. #endif // HAS_BUZZER
  8612. #if ENABLED(PIDTEMP)
  8613. case 301: // M301: Set hotend PID parameters
  8614. gcode_M301();
  8615. break;
  8616. #endif // PIDTEMP
  8617. #if ENABLED(PIDTEMPBED)
  8618. case 304: // M304: Set bed PID parameters
  8619. gcode_M304();
  8620. break;
  8621. #endif // PIDTEMPBED
  8622. #if defined(CHDK) || HAS_PHOTOGRAPH
  8623. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8624. gcode_M240();
  8625. break;
  8626. #endif // CHDK || PHOTOGRAPH_PIN
  8627. #if HAS_LCD_CONTRAST
  8628. case 250: // M250: Set LCD contrast
  8629. gcode_M250();
  8630. break;
  8631. #endif // HAS_LCD_CONTRAST
  8632. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8633. case 260: // M260: Send data to an i2c slave
  8634. gcode_M260();
  8635. break;
  8636. case 261: // M261: Request data from an i2c slave
  8637. gcode_M261();
  8638. break;
  8639. #endif // EXPERIMENTAL_I2CBUS
  8640. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8641. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8642. gcode_M302();
  8643. break;
  8644. #endif // PREVENT_COLD_EXTRUSION
  8645. case 303: // M303: PID autotune
  8646. gcode_M303();
  8647. break;
  8648. #if ENABLED(MORGAN_SCARA)
  8649. case 360: // M360: SCARA Theta pos1
  8650. if (gcode_M360()) return;
  8651. break;
  8652. case 361: // M361: SCARA Theta pos2
  8653. if (gcode_M361()) return;
  8654. break;
  8655. case 362: // M362: SCARA Psi pos1
  8656. if (gcode_M362()) return;
  8657. break;
  8658. case 363: // M363: SCARA Psi pos2
  8659. if (gcode_M363()) return;
  8660. break;
  8661. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8662. if (gcode_M364()) return;
  8663. break;
  8664. #endif // SCARA
  8665. case 400: // M400: Finish all moves
  8666. gcode_M400();
  8667. break;
  8668. #if HAS_BED_PROBE
  8669. case 401: // M401: Deploy probe
  8670. gcode_M401();
  8671. break;
  8672. case 402: // M402: Stow probe
  8673. gcode_M402();
  8674. break;
  8675. #endif // HAS_BED_PROBE
  8676. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8677. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8678. gcode_M404();
  8679. break;
  8680. case 405: // M405: Turn on filament sensor for control
  8681. gcode_M405();
  8682. break;
  8683. case 406: // M406: Turn off filament sensor for control
  8684. gcode_M406();
  8685. break;
  8686. case 407: // M407: Display measured filament diameter
  8687. gcode_M407();
  8688. break;
  8689. #endif // FILAMENT_WIDTH_SENSOR
  8690. #if PLANNER_LEVELING
  8691. case 420: // M420: Enable/Disable Bed Leveling
  8692. gcode_M420();
  8693. break;
  8694. #endif
  8695. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8696. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8697. gcode_M421();
  8698. break;
  8699. #endif
  8700. #if HAS_M206_COMMAND
  8701. case 428: // M428: Apply current_position to home_offset
  8702. gcode_M428();
  8703. break;
  8704. #endif
  8705. case 500: // M500: Store settings in EEPROM
  8706. gcode_M500();
  8707. break;
  8708. case 501: // M501: Read settings from EEPROM
  8709. gcode_M501();
  8710. break;
  8711. case 502: // M502: Revert to default settings
  8712. gcode_M502();
  8713. break;
  8714. case 503: // M503: print settings currently in memory
  8715. gcode_M503();
  8716. break;
  8717. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8718. case 540: // M540: Set abort on endstop hit for SD printing
  8719. gcode_M540();
  8720. break;
  8721. #endif
  8722. #if HAS_BED_PROBE
  8723. case 851: // M851: Set Z Probe Z Offset
  8724. gcode_M851();
  8725. break;
  8726. #endif // HAS_BED_PROBE
  8727. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8728. case 600: // M600: Pause for filament change
  8729. gcode_M600();
  8730. break;
  8731. #endif // FILAMENT_CHANGE_FEATURE
  8732. #if ENABLED(DUAL_X_CARRIAGE)
  8733. case 605: // M605: Set Dual X Carriage movement mode
  8734. gcode_M605();
  8735. break;
  8736. #endif // DUAL_X_CARRIAGE
  8737. #if ENABLED(LIN_ADVANCE)
  8738. case 900: // M900: Set advance K factor.
  8739. gcode_M900();
  8740. break;
  8741. #endif
  8742. #if ENABLED(HAVE_TMC2130)
  8743. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8744. gcode_M906();
  8745. break;
  8746. #endif
  8747. case 907: // M907: Set digital trimpot motor current using axis codes.
  8748. gcode_M907();
  8749. break;
  8750. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8751. case 908: // M908: Control digital trimpot directly.
  8752. gcode_M908();
  8753. break;
  8754. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8755. case 909: // M909: Print digipot/DAC current value
  8756. gcode_M909();
  8757. break;
  8758. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8759. gcode_M910();
  8760. break;
  8761. #endif
  8762. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8763. #if ENABLED(HAVE_TMC2130)
  8764. case 911: // M911: Report TMC2130 prewarn triggered flags
  8765. gcode_M911();
  8766. break;
  8767. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8768. gcode_M912();
  8769. break;
  8770. #if ENABLED(HYBRID_THRESHOLD)
  8771. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8772. gcode_M913();
  8773. break;
  8774. #endif
  8775. #if ENABLED(SENSORLESS_HOMING)
  8776. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8777. gcode_M914();
  8778. break;
  8779. #endif
  8780. #endif
  8781. #if HAS_MICROSTEPS
  8782. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8783. gcode_M350();
  8784. break;
  8785. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8786. gcode_M351();
  8787. break;
  8788. #endif // HAS_MICROSTEPS
  8789. case 355: // M355 Turn case lights on/off
  8790. gcode_M355();
  8791. break;
  8792. case 999: // M999: Restart after being Stopped
  8793. gcode_M999();
  8794. break;
  8795. }
  8796. break;
  8797. case 'T':
  8798. gcode_T(codenum);
  8799. break;
  8800. default: code_is_good = false;
  8801. }
  8802. KEEPALIVE_STATE(NOT_BUSY);
  8803. ExitUnknownCommand:
  8804. // Still unknown command? Throw an error
  8805. if (!code_is_good) unknown_command_error();
  8806. ok_to_send();
  8807. }
  8808. /**
  8809. * Send a "Resend: nnn" message to the host to
  8810. * indicate that a command needs to be re-sent.
  8811. */
  8812. void FlushSerialRequestResend() {
  8813. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8814. MYSERIAL.flush();
  8815. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8816. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8817. ok_to_send();
  8818. }
  8819. /**
  8820. * Send an "ok" message to the host, indicating
  8821. * that a command was successfully processed.
  8822. *
  8823. * If ADVANCED_OK is enabled also include:
  8824. * N<int> Line number of the command, if any
  8825. * P<int> Planner space remaining
  8826. * B<int> Block queue space remaining
  8827. */
  8828. void ok_to_send() {
  8829. refresh_cmd_timeout();
  8830. if (!send_ok[cmd_queue_index_r]) return;
  8831. SERIAL_PROTOCOLPGM(MSG_OK);
  8832. #if ENABLED(ADVANCED_OK)
  8833. char* p = command_queue[cmd_queue_index_r];
  8834. if (*p == 'N') {
  8835. SERIAL_PROTOCOL(' ');
  8836. SERIAL_ECHO(*p++);
  8837. while (NUMERIC_SIGNED(*p))
  8838. SERIAL_ECHO(*p++);
  8839. }
  8840. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8841. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8842. #endif
  8843. SERIAL_EOL;
  8844. }
  8845. #if HAS_SOFTWARE_ENDSTOPS
  8846. /**
  8847. * Constrain the given coordinates to the software endstops.
  8848. */
  8849. void clamp_to_software_endstops(float target[XYZ]) {
  8850. if (!soft_endstops_enabled) return;
  8851. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8852. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8853. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8854. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8855. #endif
  8856. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8857. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8858. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8859. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8860. #endif
  8861. }
  8862. #endif
  8863. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8864. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8865. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8866. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8867. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8868. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8869. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8870. #else
  8871. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8872. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8873. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8874. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8875. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8876. #endif
  8877. // Get the Z adjustment for non-linear bed leveling
  8878. float bilinear_z_offset(const float logical[XYZ]) {
  8879. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8880. last_x = -999.999, last_y = -999.999;
  8881. // Whole units for the grid line indices. Constrained within bounds.
  8882. static int8_t gridx, gridy, nextx, nexty,
  8883. last_gridx = -99, last_gridy = -99;
  8884. // XY relative to the probed area
  8885. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8886. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8887. if (last_x != x) {
  8888. last_x = x;
  8889. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8890. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
  8891. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8892. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8893. gridx = gx;
  8894. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8895. }
  8896. if (last_y != y || last_gridx != gridx) {
  8897. if (last_y != y) {
  8898. last_y = y;
  8899. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8900. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
  8901. ratio_y -= gy;
  8902. NOLESS(ratio_y, 0);
  8903. gridy = gy;
  8904. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8905. }
  8906. if (last_gridx != gridx || last_gridy != gridy) {
  8907. last_gridx = gridx;
  8908. last_gridy = gridy;
  8909. // Z at the box corners
  8910. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8911. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8912. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8913. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8914. }
  8915. // Bilinear interpolate. Needed since y or gridx has changed.
  8916. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8917. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8918. D = R - L;
  8919. }
  8920. const float offset = L + ratio_x * D; // the offset almost always changes
  8921. /*
  8922. static float last_offset = 0;
  8923. if (fabs(last_offset - offset) > 0.2) {
  8924. SERIAL_ECHOPGM("Sudden Shift at ");
  8925. SERIAL_ECHOPAIR("x=", x);
  8926. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8927. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8928. SERIAL_ECHOPAIR(" y=", y);
  8929. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8930. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8931. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8932. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8933. SERIAL_ECHOPAIR(" z1=", z1);
  8934. SERIAL_ECHOPAIR(" z2=", z2);
  8935. SERIAL_ECHOPAIR(" z3=", z3);
  8936. SERIAL_ECHOLNPAIR(" z4=", z4);
  8937. SERIAL_ECHOPAIR(" L=", L);
  8938. SERIAL_ECHOPAIR(" R=", R);
  8939. SERIAL_ECHOLNPAIR(" offset=", offset);
  8940. }
  8941. last_offset = offset;
  8942. //*/
  8943. return offset;
  8944. }
  8945. #endif // AUTO_BED_LEVELING_BILINEAR
  8946. #if ENABLED(DELTA)
  8947. /**
  8948. * Recalculate factors used for delta kinematics whenever
  8949. * settings have been changed (e.g., by M665).
  8950. */
  8951. void recalc_delta_settings(float radius, float diagonal_rod) {
  8952. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8953. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8954. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8955. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8956. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8957. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8958. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8959. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8960. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8961. }
  8962. #if ENABLED(DELTA_FAST_SQRT)
  8963. /**
  8964. * Fast inverse sqrt from Quake III Arena
  8965. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8966. */
  8967. float Q_rsqrt(float number) {
  8968. long i;
  8969. float x2, y;
  8970. const float threehalfs = 1.5f;
  8971. x2 = number * 0.5f;
  8972. y = number;
  8973. i = * ( long * ) &y; // evil floating point bit level hacking
  8974. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  8975. y = * ( float * ) &i;
  8976. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8977. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8978. return y;
  8979. }
  8980. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8981. #else
  8982. #define _SQRT(n) sqrt(n)
  8983. #endif
  8984. /**
  8985. * Delta Inverse Kinematics
  8986. *
  8987. * Calculate the tower positions for a given logical
  8988. * position, storing the result in the delta[] array.
  8989. *
  8990. * This is an expensive calculation, requiring 3 square
  8991. * roots per segmented linear move, and strains the limits
  8992. * of a Mega2560 with a Graphical Display.
  8993. *
  8994. * Suggested optimizations include:
  8995. *
  8996. * - Disable the home_offset (M206) and/or position_shift (G92)
  8997. * features to remove up to 12 float additions.
  8998. *
  8999. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9000. * (see above)
  9001. */
  9002. // Macro to obtain the Z position of an individual tower
  9003. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9004. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9005. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9006. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9007. ) \
  9008. )
  9009. #define DELTA_RAW_IK() do { \
  9010. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9011. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9012. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9013. } while(0)
  9014. #define DELTA_LOGICAL_IK() do { \
  9015. const float raw[XYZ] = { \
  9016. RAW_X_POSITION(logical[X_AXIS]), \
  9017. RAW_Y_POSITION(logical[Y_AXIS]), \
  9018. RAW_Z_POSITION(logical[Z_AXIS]) \
  9019. }; \
  9020. DELTA_RAW_IK(); \
  9021. } while(0)
  9022. #define DELTA_DEBUG() do { \
  9023. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9024. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9025. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9026. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9027. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9028. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9029. } while(0)
  9030. void inverse_kinematics(const float logical[XYZ]) {
  9031. DELTA_LOGICAL_IK();
  9032. // DELTA_DEBUG();
  9033. }
  9034. /**
  9035. * Calculate the highest Z position where the
  9036. * effector has the full range of XY motion.
  9037. */
  9038. float delta_safe_distance_from_top() {
  9039. float cartesian[XYZ] = {
  9040. LOGICAL_X_POSITION(0),
  9041. LOGICAL_Y_POSITION(0),
  9042. LOGICAL_Z_POSITION(0)
  9043. };
  9044. inverse_kinematics(cartesian);
  9045. float distance = delta[A_AXIS];
  9046. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9047. inverse_kinematics(cartesian);
  9048. return abs(distance - delta[A_AXIS]);
  9049. }
  9050. /**
  9051. * Delta Forward Kinematics
  9052. *
  9053. * See the Wikipedia article "Trilateration"
  9054. * https://en.wikipedia.org/wiki/Trilateration
  9055. *
  9056. * Establish a new coordinate system in the plane of the
  9057. * three carriage points. This system has its origin at
  9058. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9059. * plane with a Z component of zero.
  9060. * We will define unit vectors in this coordinate system
  9061. * in our original coordinate system. Then when we calculate
  9062. * the Xnew, Ynew and Znew values, we can translate back into
  9063. * the original system by moving along those unit vectors
  9064. * by the corresponding values.
  9065. *
  9066. * Variable names matched to Marlin, c-version, and avoid the
  9067. * use of any vector library.
  9068. *
  9069. * by Andreas Hardtung 2016-06-07
  9070. * based on a Java function from "Delta Robot Kinematics V3"
  9071. * by Steve Graves
  9072. *
  9073. * The result is stored in the cartes[] array.
  9074. */
  9075. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9076. // Create a vector in old coordinates along x axis of new coordinate
  9077. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9078. // Get the Magnitude of vector.
  9079. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9080. // Create unit vector by dividing by magnitude.
  9081. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9082. // Get the vector from the origin of the new system to the third point.
  9083. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9084. // Use the dot product to find the component of this vector on the X axis.
  9085. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9086. // Create a vector along the x axis that represents the x component of p13.
  9087. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9088. // Subtract the X component from the original vector leaving only Y. We use the
  9089. // variable that will be the unit vector after we scale it.
  9090. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9091. // The magnitude of Y component
  9092. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9093. // Convert to a unit vector
  9094. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9095. // The cross product of the unit x and y is the unit z
  9096. // float[] ez = vectorCrossProd(ex, ey);
  9097. float ez[3] = {
  9098. ex[1] * ey[2] - ex[2] * ey[1],
  9099. ex[2] * ey[0] - ex[0] * ey[2],
  9100. ex[0] * ey[1] - ex[1] * ey[0]
  9101. };
  9102. // We now have the d, i and j values defined in Wikipedia.
  9103. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9104. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9105. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9106. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9107. // Start from the origin of the old coordinates and add vectors in the
  9108. // old coords that represent the Xnew, Ynew and Znew to find the point
  9109. // in the old system.
  9110. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9111. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9112. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9113. }
  9114. void forward_kinematics_DELTA(float point[ABC]) {
  9115. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9116. }
  9117. #endif // DELTA
  9118. /**
  9119. * Get the stepper positions in the cartes[] array.
  9120. * Forward kinematics are applied for DELTA and SCARA.
  9121. *
  9122. * The result is in the current coordinate space with
  9123. * leveling applied. The coordinates need to be run through
  9124. * unapply_leveling to obtain the "ideal" coordinates
  9125. * suitable for current_position, etc.
  9126. */
  9127. void get_cartesian_from_steppers() {
  9128. #if ENABLED(DELTA)
  9129. forward_kinematics_DELTA(
  9130. stepper.get_axis_position_mm(A_AXIS),
  9131. stepper.get_axis_position_mm(B_AXIS),
  9132. stepper.get_axis_position_mm(C_AXIS)
  9133. );
  9134. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9135. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9136. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9137. #elif IS_SCARA
  9138. forward_kinematics_SCARA(
  9139. stepper.get_axis_position_degrees(A_AXIS),
  9140. stepper.get_axis_position_degrees(B_AXIS)
  9141. );
  9142. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9143. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9144. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9145. #else
  9146. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9147. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9148. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9149. #endif
  9150. }
  9151. /**
  9152. * Set the current_position for an axis based on
  9153. * the stepper positions, removing any leveling that
  9154. * may have been applied.
  9155. */
  9156. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9157. get_cartesian_from_steppers();
  9158. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9159. planner.unapply_leveling(cartes);
  9160. #endif
  9161. if (axis == ALL_AXES)
  9162. COPY(current_position, cartes);
  9163. else
  9164. current_position[axis] = cartes[axis];
  9165. }
  9166. #if ENABLED(MESH_BED_LEVELING)
  9167. /**
  9168. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9169. * splitting the move where it crosses mesh borders.
  9170. */
  9171. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9172. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9173. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9174. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9175. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9176. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9177. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9178. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9179. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9180. if (cx1 == cx2 && cy1 == cy2) {
  9181. // Start and end on same mesh square
  9182. line_to_destination(fr_mm_s);
  9183. set_current_to_destination();
  9184. return;
  9185. }
  9186. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9187. float normalized_dist, end[XYZE];
  9188. // Split at the left/front border of the right/top square
  9189. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9190. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9191. COPY(end, destination);
  9192. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9193. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9194. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9195. CBI(x_splits, gcx);
  9196. }
  9197. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9198. COPY(end, destination);
  9199. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9200. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9201. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9202. CBI(y_splits, gcy);
  9203. }
  9204. else {
  9205. // Already split on a border
  9206. line_to_destination(fr_mm_s);
  9207. set_current_to_destination();
  9208. return;
  9209. }
  9210. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9211. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9212. // Do the split and look for more borders
  9213. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9214. // Restore destination from stack
  9215. COPY(destination, end);
  9216. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9217. }
  9218. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9219. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9220. /**
  9221. * Prepare a bilinear-leveled linear move on Cartesian,
  9222. * splitting the move where it crosses grid borders.
  9223. */
  9224. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9225. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9226. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9227. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9228. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9229. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9230. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9231. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9232. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9233. if (cx1 == cx2 && cy1 == cy2) {
  9234. // Start and end on same mesh square
  9235. line_to_destination(fr_mm_s);
  9236. set_current_to_destination();
  9237. return;
  9238. }
  9239. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9240. float normalized_dist, end[XYZE];
  9241. // Split at the left/front border of the right/top square
  9242. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9243. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9244. COPY(end, destination);
  9245. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9246. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9247. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9248. CBI(x_splits, gcx);
  9249. }
  9250. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9251. COPY(end, destination);
  9252. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9253. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9254. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9255. CBI(y_splits, gcy);
  9256. }
  9257. else {
  9258. // Already split on a border
  9259. line_to_destination(fr_mm_s);
  9260. set_current_to_destination();
  9261. return;
  9262. }
  9263. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9264. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9265. // Do the split and look for more borders
  9266. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9267. // Restore destination from stack
  9268. COPY(destination, end);
  9269. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9270. }
  9271. #endif // AUTO_BED_LEVELING_BILINEAR
  9272. #if IS_KINEMATIC
  9273. /**
  9274. * Prepare a linear move in a DELTA or SCARA setup.
  9275. *
  9276. * This calls planner.buffer_line several times, adding
  9277. * small incremental moves for DELTA or SCARA.
  9278. */
  9279. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9280. // Get the top feedrate of the move in the XY plane
  9281. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9282. // If the move is only in Z/E don't split up the move
  9283. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9284. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9285. return false;
  9286. }
  9287. // Get the cartesian distances moved in XYZE
  9288. float difference[XYZE];
  9289. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9290. // Get the linear distance in XYZ
  9291. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9292. // If the move is very short, check the E move distance
  9293. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9294. // No E move either? Game over.
  9295. if (UNEAR_ZERO(cartesian_mm)) return true;
  9296. // Minimum number of seconds to move the given distance
  9297. float seconds = cartesian_mm / _feedrate_mm_s;
  9298. // The number of segments-per-second times the duration
  9299. // gives the number of segments
  9300. uint16_t segments = delta_segments_per_second * seconds;
  9301. // For SCARA minimum segment size is 0.25mm
  9302. #if IS_SCARA
  9303. NOMORE(segments, cartesian_mm * 4);
  9304. #endif
  9305. // At least one segment is required
  9306. NOLESS(segments, 1);
  9307. // The approximate length of each segment
  9308. const float inv_segments = 1.0 / float(segments),
  9309. segment_distance[XYZE] = {
  9310. difference[X_AXIS] * inv_segments,
  9311. difference[Y_AXIS] * inv_segments,
  9312. difference[Z_AXIS] * inv_segments,
  9313. difference[E_AXIS] * inv_segments
  9314. };
  9315. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9316. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9317. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9318. #if IS_SCARA
  9319. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9320. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9321. feed_factor = inv_segment_length * _feedrate_mm_s;
  9322. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9323. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9324. #endif
  9325. // Get the logical current position as starting point
  9326. float logical[XYZE];
  9327. COPY(logical, current_position);
  9328. // Drop one segment so the last move is to the exact target.
  9329. // If there's only 1 segment, loops will be skipped entirely.
  9330. --segments;
  9331. // Calculate and execute the segments
  9332. for (uint16_t s = segments + 1; --s;) {
  9333. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9334. #if ENABLED(DELTA)
  9335. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9336. #else
  9337. inverse_kinematics(logical);
  9338. #endif
  9339. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9340. #if IS_SCARA
  9341. // For SCARA scale the feed rate from mm/s to degrees/s
  9342. // Use ratio between the length of the move and the larger angle change
  9343. const float adiff = abs(delta[A_AXIS] - oldA),
  9344. bdiff = abs(delta[B_AXIS] - oldB);
  9345. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9346. oldA = delta[A_AXIS];
  9347. oldB = delta[B_AXIS];
  9348. #else
  9349. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9350. #endif
  9351. }
  9352. // Since segment_distance is only approximate,
  9353. // the final move must be to the exact destination.
  9354. #if IS_SCARA
  9355. // For SCARA scale the feed rate from mm/s to degrees/s
  9356. // With segments > 1 length is 1 segment, otherwise total length
  9357. inverse_kinematics(ltarget);
  9358. ADJUST_DELTA(logical);
  9359. const float adiff = abs(delta[A_AXIS] - oldA),
  9360. bdiff = abs(delta[B_AXIS] - oldB);
  9361. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9362. #else
  9363. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9364. #endif
  9365. return false;
  9366. }
  9367. #else // !IS_KINEMATIC
  9368. /**
  9369. * Prepare a linear move in a Cartesian setup.
  9370. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9371. *
  9372. * Returns true if the caller didn't update current_position.
  9373. */
  9374. inline bool prepare_move_to_destination_cartesian() {
  9375. // Do not use feedrate_percentage for E or Z only moves
  9376. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9377. line_to_destination();
  9378. }
  9379. else {
  9380. #if ENABLED(MESH_BED_LEVELING)
  9381. if (mbl.active()) {
  9382. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9383. return true;
  9384. }
  9385. else
  9386. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9387. if (ubl.state.active) {
  9388. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9389. return true;
  9390. }
  9391. else
  9392. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9393. if (planner.abl_enabled) {
  9394. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9395. return true;
  9396. }
  9397. else
  9398. #endif
  9399. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9400. }
  9401. return false;
  9402. }
  9403. #endif // !IS_KINEMATIC
  9404. #if ENABLED(DUAL_X_CARRIAGE)
  9405. /**
  9406. * Prepare a linear move in a dual X axis setup
  9407. */
  9408. inline bool prepare_move_to_destination_dualx() {
  9409. if (active_extruder_parked) {
  9410. switch (dual_x_carriage_mode) {
  9411. case DXC_FULL_CONTROL_MODE:
  9412. break;
  9413. case DXC_AUTO_PARK_MODE:
  9414. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9415. // This is a travel move (with no extrusion)
  9416. // Skip it, but keep track of the current position
  9417. // (so it can be used as the start of the next non-travel move)
  9418. if (delayed_move_time != 0xFFFFFFFFUL) {
  9419. set_current_to_destination();
  9420. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9421. delayed_move_time = millis();
  9422. return true;
  9423. }
  9424. }
  9425. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9426. for (uint8_t i = 0; i < 3; i++)
  9427. planner.buffer_line(
  9428. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9429. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9430. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9431. current_position[E_AXIS],
  9432. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9433. active_extruder
  9434. );
  9435. delayed_move_time = 0;
  9436. active_extruder_parked = false;
  9437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9438. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9439. #endif
  9440. break;
  9441. case DXC_DUPLICATION_MODE:
  9442. if (active_extruder == 0) {
  9443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9444. if (DEBUGGING(LEVELING)) {
  9445. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9446. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9447. }
  9448. #endif
  9449. // move duplicate extruder into correct duplication position.
  9450. planner.set_position_mm(
  9451. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9452. current_position[Y_AXIS],
  9453. current_position[Z_AXIS],
  9454. current_position[E_AXIS]
  9455. );
  9456. planner.buffer_line(
  9457. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9458. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9459. planner.max_feedrate_mm_s[X_AXIS], 1
  9460. );
  9461. SYNC_PLAN_POSITION_KINEMATIC();
  9462. stepper.synchronize();
  9463. extruder_duplication_enabled = true;
  9464. active_extruder_parked = false;
  9465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9466. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9467. #endif
  9468. }
  9469. else {
  9470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9471. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9472. #endif
  9473. }
  9474. break;
  9475. }
  9476. }
  9477. return false;
  9478. }
  9479. #endif // DUAL_X_CARRIAGE
  9480. /**
  9481. * Prepare a single move and get ready for the next one
  9482. *
  9483. * This may result in several calls to planner.buffer_line to
  9484. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9485. */
  9486. void prepare_move_to_destination() {
  9487. clamp_to_software_endstops(destination);
  9488. refresh_cmd_timeout();
  9489. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9490. if (!DEBUGGING(DRYRUN)) {
  9491. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9492. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9493. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9494. SERIAL_ECHO_START;
  9495. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9496. }
  9497. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9498. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9499. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9500. SERIAL_ECHO_START;
  9501. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9502. }
  9503. #endif
  9504. }
  9505. }
  9506. #endif
  9507. #if IS_KINEMATIC
  9508. if (prepare_kinematic_move_to(destination)) return;
  9509. #else
  9510. #if ENABLED(DUAL_X_CARRIAGE)
  9511. if (prepare_move_to_destination_dualx()) return;
  9512. #endif
  9513. if (prepare_move_to_destination_cartesian()) return;
  9514. #endif
  9515. set_current_to_destination();
  9516. }
  9517. #if ENABLED(ARC_SUPPORT)
  9518. /**
  9519. * Plan an arc in 2 dimensions
  9520. *
  9521. * The arc is approximated by generating many small linear segments.
  9522. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9523. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9524. * larger segments will tend to be more efficient. Your slicer should have
  9525. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9526. */
  9527. void plan_arc(
  9528. float logical[XYZE], // Destination position
  9529. float *offset, // Center of rotation relative to current_position
  9530. uint8_t clockwise // Clockwise?
  9531. ) {
  9532. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9533. r_Y = -offset[Y_AXIS];
  9534. const float radius = HYPOT(r_X, r_Y),
  9535. center_X = current_position[X_AXIS] - r_X,
  9536. center_Y = current_position[Y_AXIS] - r_Y,
  9537. rt_X = logical[X_AXIS] - center_X,
  9538. rt_Y = logical[Y_AXIS] - center_Y,
  9539. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9540. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9541. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9542. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9543. if (angular_travel < 0) angular_travel += RADIANS(360);
  9544. if (clockwise) angular_travel -= RADIANS(360);
  9545. // Make a circle if the angular rotation is 0
  9546. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9547. angular_travel += RADIANS(360);
  9548. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9549. if (mm_of_travel < 0.001) return;
  9550. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9551. if (segments == 0) segments = 1;
  9552. /**
  9553. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9554. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9555. * r_T = [cos(phi) -sin(phi);
  9556. * sin(phi) cos(phi)] * r ;
  9557. *
  9558. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9559. * defined from the circle center to the initial position. Each line segment is formed by successive
  9560. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9561. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9562. * all double numbers are single precision on the Arduino. (True double precision will not have
  9563. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9564. * tool precision in some cases. Therefore, arc path correction is implemented.
  9565. *
  9566. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9567. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9568. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9569. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9570. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9571. * issue for CNC machines with the single precision Arduino calculations.
  9572. *
  9573. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9574. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9575. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9576. * This is important when there are successive arc motions.
  9577. */
  9578. // Vector rotation matrix values
  9579. float arc_target[XYZE];
  9580. const float theta_per_segment = angular_travel / segments,
  9581. linear_per_segment = linear_travel / segments,
  9582. extruder_per_segment = extruder_travel / segments,
  9583. sin_T = theta_per_segment,
  9584. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9585. // Initialize the linear axis
  9586. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9587. // Initialize the extruder axis
  9588. arc_target[E_AXIS] = current_position[E_AXIS];
  9589. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9590. millis_t next_idle_ms = millis() + 200UL;
  9591. int8_t count = 0;
  9592. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9593. thermalManager.manage_heater();
  9594. if (ELAPSED(millis(), next_idle_ms)) {
  9595. next_idle_ms = millis() + 200UL;
  9596. idle();
  9597. }
  9598. if (++count < N_ARC_CORRECTION) {
  9599. // Apply vector rotation matrix to previous r_X / 1
  9600. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9601. r_X = r_X * cos_T - r_Y * sin_T;
  9602. r_Y = r_new_Y;
  9603. }
  9604. else {
  9605. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9606. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9607. // To reduce stuttering, the sin and cos could be computed at different times.
  9608. // For now, compute both at the same time.
  9609. const float cos_Ti = cos(i * theta_per_segment),
  9610. sin_Ti = sin(i * theta_per_segment);
  9611. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9612. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9613. count = 0;
  9614. }
  9615. // Update arc_target location
  9616. arc_target[X_AXIS] = center_X + r_X;
  9617. arc_target[Y_AXIS] = center_Y + r_Y;
  9618. arc_target[Z_AXIS] += linear_per_segment;
  9619. arc_target[E_AXIS] += extruder_per_segment;
  9620. clamp_to_software_endstops(arc_target);
  9621. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9622. }
  9623. // Ensure last segment arrives at target location.
  9624. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9625. // As far as the parser is concerned, the position is now == target. In reality the
  9626. // motion control system might still be processing the action and the real tool position
  9627. // in any intermediate location.
  9628. set_current_to_destination();
  9629. }
  9630. #endif
  9631. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9632. void plan_cubic_move(const float offset[4]) {
  9633. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9634. // As far as the parser is concerned, the position is now == destination. In reality the
  9635. // motion control system might still be processing the action and the real tool position
  9636. // in any intermediate location.
  9637. set_current_to_destination();
  9638. }
  9639. #endif // BEZIER_CURVE_SUPPORT
  9640. #if HAS_CONTROLLERFAN
  9641. void controllerFan() {
  9642. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9643. nextMotorCheck = 0; // Last time the state was checked
  9644. const millis_t ms = millis();
  9645. if (ELAPSED(ms, nextMotorCheck)) {
  9646. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9647. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9648. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9649. #if E_STEPPERS > 1
  9650. || E1_ENABLE_READ == E_ENABLE_ON
  9651. #if HAS_X2_ENABLE
  9652. || X2_ENABLE_READ == X_ENABLE_ON
  9653. #endif
  9654. #if E_STEPPERS > 2
  9655. || E2_ENABLE_READ == E_ENABLE_ON
  9656. #if E_STEPPERS > 3
  9657. || E3_ENABLE_READ == E_ENABLE_ON
  9658. #if E_STEPPERS > 4
  9659. || E4_ENABLE_READ == E_ENABLE_ON
  9660. #endif // E_STEPPERS > 4
  9661. #endif // E_STEPPERS > 3
  9662. #endif // E_STEPPERS > 2
  9663. #endif // E_STEPPERS > 1
  9664. ) {
  9665. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9666. }
  9667. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9668. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9669. // allows digital or PWM fan output to be used (see M42 handling)
  9670. WRITE(CONTROLLERFAN_PIN, speed);
  9671. analogWrite(CONTROLLERFAN_PIN, speed);
  9672. }
  9673. }
  9674. #endif // HAS_CONTROLLERFAN
  9675. #if ENABLED(MORGAN_SCARA)
  9676. /**
  9677. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9678. * Maths and first version by QHARLEY.
  9679. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9680. */
  9681. void forward_kinematics_SCARA(const float &a, const float &b) {
  9682. float a_sin = sin(RADIANS(a)) * L1,
  9683. a_cos = cos(RADIANS(a)) * L1,
  9684. b_sin = sin(RADIANS(b)) * L2,
  9685. b_cos = cos(RADIANS(b)) * L2;
  9686. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9687. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9688. /*
  9689. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9690. SERIAL_ECHOPAIR(" b=", b);
  9691. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9692. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9693. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9694. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9695. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9696. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9697. //*/
  9698. }
  9699. /**
  9700. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9701. *
  9702. * See http://forums.reprap.org/read.php?185,283327
  9703. *
  9704. * Maths and first version by QHARLEY.
  9705. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9706. */
  9707. void inverse_kinematics(const float logical[XYZ]) {
  9708. static float C2, S2, SK1, SK2, THETA, PSI;
  9709. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9710. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9711. if (L1 == L2)
  9712. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9713. else
  9714. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9715. S2 = sqrt(sq(C2) - 1);
  9716. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9717. SK1 = L1 + L2 * C2;
  9718. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9719. SK2 = L2 * S2;
  9720. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9721. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9722. // Angle of Arm2
  9723. PSI = atan2(S2, C2);
  9724. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9725. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9726. delta[C_AXIS] = logical[Z_AXIS];
  9727. /*
  9728. DEBUG_POS("SCARA IK", logical);
  9729. DEBUG_POS("SCARA IK", delta);
  9730. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9731. SERIAL_ECHOPAIR(",", sy);
  9732. SERIAL_ECHOPAIR(" C2=", C2);
  9733. SERIAL_ECHOPAIR(" S2=", S2);
  9734. SERIAL_ECHOPAIR(" Theta=", THETA);
  9735. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9736. //*/
  9737. }
  9738. #endif // MORGAN_SCARA
  9739. #if ENABLED(TEMP_STAT_LEDS)
  9740. static bool red_led = false;
  9741. static millis_t next_status_led_update_ms = 0;
  9742. void handle_status_leds(void) {
  9743. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9744. next_status_led_update_ms += 500; // Update every 0.5s
  9745. float max_temp = 0.0;
  9746. #if HAS_TEMP_BED
  9747. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9748. #endif
  9749. HOTEND_LOOP() {
  9750. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9751. }
  9752. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9753. if (new_led != red_led) {
  9754. red_led = new_led;
  9755. #if PIN_EXISTS(STAT_LED_RED)
  9756. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9757. #if PIN_EXISTS(STAT_LED_BLUE)
  9758. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9759. #endif
  9760. #else
  9761. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9762. #endif
  9763. }
  9764. }
  9765. }
  9766. #endif
  9767. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9768. void handle_filament_runout() {
  9769. if (!filament_ran_out) {
  9770. filament_ran_out = true;
  9771. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9772. stepper.synchronize();
  9773. }
  9774. }
  9775. #endif // FILAMENT_RUNOUT_SENSOR
  9776. #if ENABLED(FAST_PWM_FAN)
  9777. void setPwmFrequency(uint8_t pin, int val) {
  9778. val &= 0x07;
  9779. switch (digitalPinToTimer(pin)) {
  9780. #ifdef TCCR0A
  9781. case TIMER0A:
  9782. case TIMER0B:
  9783. //_SET_CS(0, val);
  9784. break;
  9785. #endif
  9786. #ifdef TCCR1A
  9787. case TIMER1A:
  9788. case TIMER1B:
  9789. //_SET_CS(1, val);
  9790. break;
  9791. #endif
  9792. #ifdef TCCR2
  9793. case TIMER2:
  9794. case TIMER2:
  9795. _SET_CS(2, val);
  9796. break;
  9797. #endif
  9798. #ifdef TCCR2A
  9799. case TIMER2A:
  9800. case TIMER2B:
  9801. _SET_CS(2, val);
  9802. break;
  9803. #endif
  9804. #ifdef TCCR3A
  9805. case TIMER3A:
  9806. case TIMER3B:
  9807. case TIMER3C:
  9808. _SET_CS(3, val);
  9809. break;
  9810. #endif
  9811. #ifdef TCCR4A
  9812. case TIMER4A:
  9813. case TIMER4B:
  9814. case TIMER4C:
  9815. _SET_CS(4, val);
  9816. break;
  9817. #endif
  9818. #ifdef TCCR5A
  9819. case TIMER5A:
  9820. case TIMER5B:
  9821. case TIMER5C:
  9822. _SET_CS(5, val);
  9823. break;
  9824. #endif
  9825. }
  9826. }
  9827. #endif // FAST_PWM_FAN
  9828. float calculate_volumetric_multiplier(float diameter) {
  9829. if (!volumetric_enabled || diameter == 0) return 1.0;
  9830. return 1.0 / (M_PI * sq(diameter * 0.5));
  9831. }
  9832. void calculate_volumetric_multipliers() {
  9833. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9834. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9835. }
  9836. void enable_all_steppers() {
  9837. enable_X();
  9838. enable_Y();
  9839. enable_Z();
  9840. enable_E0();
  9841. enable_E1();
  9842. enable_E2();
  9843. enable_E3();
  9844. enable_E4();
  9845. }
  9846. void disable_e_steppers() {
  9847. disable_E0();
  9848. disable_E1();
  9849. disable_E2();
  9850. disable_E3();
  9851. disable_E4();
  9852. }
  9853. void disable_all_steppers() {
  9854. disable_X();
  9855. disable_Y();
  9856. disable_Z();
  9857. disable_e_steppers();
  9858. }
  9859. #if ENABLED(HAVE_TMC2130)
  9860. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9861. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9862. const bool is_otpw = st.checkOT();
  9863. // Report if a warning was triggered
  9864. static bool previous_otpw = false;
  9865. if (is_otpw && !previous_otpw) {
  9866. char timestamp[10];
  9867. duration_t elapsed = print_job_timer.duration();
  9868. const bool has_days = (elapsed.value > 60*60*24L);
  9869. (void)elapsed.toDigital(timestamp, has_days);
  9870. SERIAL_ECHO(timestamp);
  9871. SERIAL_ECHO(": ");
  9872. SERIAL_ECHO(axisID);
  9873. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9874. }
  9875. previous_otpw = is_otpw;
  9876. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9877. // Return if user has not enabled current control start with M906 S1.
  9878. if (!auto_current_control) return;
  9879. /**
  9880. * Decrease current if is_otpw is true.
  9881. * Bail out if driver is disabled.
  9882. * Increase current if OTPW has not been triggered yet.
  9883. */
  9884. uint16_t current = st.getCurrent();
  9885. if (is_otpw) {
  9886. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9887. #if ENABLED(REPORT_CURRENT_CHANGE)
  9888. SERIAL_ECHO(axisID);
  9889. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9890. #endif
  9891. }
  9892. else if (!st.isEnabled())
  9893. return;
  9894. else if (!is_otpw && !st.getOTPW()) {
  9895. current += CURRENT_STEP;
  9896. if (current <= AUTO_ADJUST_MAX) {
  9897. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9898. #if ENABLED(REPORT_CURRENT_CHANGE)
  9899. SERIAL_ECHO(axisID);
  9900. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9901. #endif
  9902. }
  9903. }
  9904. SERIAL_EOL;
  9905. #endif
  9906. }
  9907. void checkOverTemp() {
  9908. static millis_t next_cOT = 0;
  9909. if (ELAPSED(millis(), next_cOT)) {
  9910. next_cOT = millis() + 5000;
  9911. #if ENABLED(X_IS_TMC2130)
  9912. automatic_current_control(stepperX, "X");
  9913. #endif
  9914. #if ENABLED(Y_IS_TMC2130)
  9915. automatic_current_control(stepperY, "Y");
  9916. #endif
  9917. #if ENABLED(Z_IS_TMC2130)
  9918. automatic_current_control(stepperZ, "Z");
  9919. #endif
  9920. #if ENABLED(X2_IS_TMC2130)
  9921. automatic_current_control(stepperX2, "X2");
  9922. #endif
  9923. #if ENABLED(Y2_IS_TMC2130)
  9924. automatic_current_control(stepperY2, "Y2");
  9925. #endif
  9926. #if ENABLED(Z2_IS_TMC2130)
  9927. automatic_current_control(stepperZ2, "Z2");
  9928. #endif
  9929. #if ENABLED(E0_IS_TMC2130)
  9930. automatic_current_control(stepperE0, "E0");
  9931. #endif
  9932. #if ENABLED(E1_IS_TMC2130)
  9933. automatic_current_control(stepperE1, "E1");
  9934. #endif
  9935. #if ENABLED(E2_IS_TMC2130)
  9936. automatic_current_control(stepperE2, "E2");
  9937. #endif
  9938. #if ENABLED(E3_IS_TMC2130)
  9939. automatic_current_control(stepperE3, "E3");
  9940. #endif
  9941. #if ENABLED(E4_IS_TMC2130)
  9942. automatic_current_control(stepperE4, "E4");
  9943. #endif
  9944. #if ENABLED(E4_IS_TMC2130)
  9945. automatic_current_control(stepperE4);
  9946. #endif
  9947. }
  9948. }
  9949. #endif // HAVE_TMC2130
  9950. /**
  9951. * Manage several activities:
  9952. * - Check for Filament Runout
  9953. * - Keep the command buffer full
  9954. * - Check for maximum inactive time between commands
  9955. * - Check for maximum inactive time between stepper commands
  9956. * - Check if pin CHDK needs to go LOW
  9957. * - Check for KILL button held down
  9958. * - Check for HOME button held down
  9959. * - Check if cooling fan needs to be switched on
  9960. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9961. */
  9962. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9963. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9964. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9965. handle_filament_runout();
  9966. #endif
  9967. if (commands_in_queue < BUFSIZE) get_available_commands();
  9968. const millis_t ms = millis();
  9969. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9970. SERIAL_ERROR_START;
  9971. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9972. kill(PSTR(MSG_KILLED));
  9973. }
  9974. // Prevent steppers timing-out in the middle of M600
  9975. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9976. #define M600_TEST !busy_doing_M600
  9977. #else
  9978. #define M600_TEST true
  9979. #endif
  9980. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9981. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9982. #if ENABLED(DISABLE_INACTIVE_X)
  9983. disable_X();
  9984. #endif
  9985. #if ENABLED(DISABLE_INACTIVE_Y)
  9986. disable_Y();
  9987. #endif
  9988. #if ENABLED(DISABLE_INACTIVE_Z)
  9989. disable_Z();
  9990. #endif
  9991. #if ENABLED(DISABLE_INACTIVE_E)
  9992. disable_e_steppers();
  9993. #endif
  9994. }
  9995. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9996. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9997. chdkActive = false;
  9998. WRITE(CHDK, LOW);
  9999. }
  10000. #endif
  10001. #if HAS_KILL
  10002. // Check if the kill button was pressed and wait just in case it was an accidental
  10003. // key kill key press
  10004. // -------------------------------------------------------------------------------
  10005. static int killCount = 0; // make the inactivity button a bit less responsive
  10006. const int KILL_DELAY = 750;
  10007. if (!READ(KILL_PIN))
  10008. killCount++;
  10009. else if (killCount > 0)
  10010. killCount--;
  10011. // Exceeded threshold and we can confirm that it was not accidental
  10012. // KILL the machine
  10013. // ----------------------------------------------------------------
  10014. if (killCount >= KILL_DELAY) {
  10015. SERIAL_ERROR_START;
  10016. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10017. kill(PSTR(MSG_KILLED));
  10018. }
  10019. #endif
  10020. #if HAS_HOME
  10021. // Check to see if we have to home, use poor man's debouncer
  10022. // ---------------------------------------------------------
  10023. static int homeDebounceCount = 0; // poor man's debouncing count
  10024. const int HOME_DEBOUNCE_DELAY = 2500;
  10025. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10026. if (!homeDebounceCount) {
  10027. enqueue_and_echo_commands_P(PSTR("G28"));
  10028. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10029. }
  10030. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10031. homeDebounceCount++;
  10032. else
  10033. homeDebounceCount = 0;
  10034. }
  10035. #endif
  10036. #if HAS_CONTROLLERFAN
  10037. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10038. #endif
  10039. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10040. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10041. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10042. bool oldstatus;
  10043. #if ENABLED(SWITCHING_EXTRUDER)
  10044. oldstatus = E0_ENABLE_READ;
  10045. enable_E0();
  10046. #else // !SWITCHING_EXTRUDER
  10047. switch (active_extruder) {
  10048. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10049. #if E_STEPPERS > 1
  10050. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10051. #if E_STEPPERS > 2
  10052. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10053. #if E_STEPPERS > 3
  10054. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10055. #if E_STEPPERS > 4
  10056. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10057. #endif // E_STEPPERS > 4
  10058. #endif // E_STEPPERS > 3
  10059. #endif // E_STEPPERS > 2
  10060. #endif // E_STEPPERS > 1
  10061. }
  10062. #endif // !SWITCHING_EXTRUDER
  10063. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10064. const float olde = current_position[E_AXIS];
  10065. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10066. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10067. current_position[E_AXIS] = olde;
  10068. planner.set_e_position_mm(olde);
  10069. stepper.synchronize();
  10070. #if ENABLED(SWITCHING_EXTRUDER)
  10071. E0_ENABLE_WRITE(oldstatus);
  10072. #else
  10073. switch (active_extruder) {
  10074. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10075. #if E_STEPPERS > 1
  10076. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10077. #if E_STEPPERS > 2
  10078. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10079. #if E_STEPPERS > 3
  10080. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10081. #if E_STEPPERS > 4
  10082. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10083. #endif // E_STEPPERS > 4
  10084. #endif // E_STEPPERS > 3
  10085. #endif // E_STEPPERS > 2
  10086. #endif // E_STEPPERS > 1
  10087. }
  10088. #endif // !SWITCHING_EXTRUDER
  10089. }
  10090. #endif // EXTRUDER_RUNOUT_PREVENT
  10091. #if ENABLED(DUAL_X_CARRIAGE)
  10092. // handle delayed move timeout
  10093. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10094. // travel moves have been received so enact them
  10095. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10096. set_destination_to_current();
  10097. prepare_move_to_destination();
  10098. }
  10099. #endif
  10100. #if ENABLED(TEMP_STAT_LEDS)
  10101. handle_status_leds();
  10102. #endif
  10103. #if ENABLED(HAVE_TMC2130)
  10104. checkOverTemp();
  10105. #endif
  10106. planner.check_axes_activity();
  10107. }
  10108. /**
  10109. * Standard idle routine keeps the machine alive
  10110. */
  10111. void idle(
  10112. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10113. bool no_stepper_sleep/*=false*/
  10114. #endif
  10115. ) {
  10116. lcd_update();
  10117. host_keepalive();
  10118. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10119. auto_report_temperatures();
  10120. #endif
  10121. manage_inactivity(
  10122. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10123. no_stepper_sleep
  10124. #endif
  10125. );
  10126. thermalManager.manage_heater();
  10127. #if ENABLED(PRINTCOUNTER)
  10128. print_job_timer.tick();
  10129. #endif
  10130. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10131. buzzer.tick();
  10132. #endif
  10133. }
  10134. /**
  10135. * Kill all activity and lock the machine.
  10136. * After this the machine will need to be reset.
  10137. */
  10138. void kill(const char* lcd_msg) {
  10139. SERIAL_ERROR_START;
  10140. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10141. thermalManager.disable_all_heaters();
  10142. disable_all_steppers();
  10143. #if ENABLED(ULTRA_LCD)
  10144. kill_screen(lcd_msg);
  10145. #else
  10146. UNUSED(lcd_msg);
  10147. #endif
  10148. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10149. cli(); // Stop interrupts
  10150. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10151. thermalManager.disable_all_heaters(); //turn off heaters again
  10152. #if HAS_POWER_SWITCH
  10153. SET_INPUT(PS_ON_PIN);
  10154. #endif
  10155. suicide();
  10156. while (1) {
  10157. #if ENABLED(USE_WATCHDOG)
  10158. watchdog_reset();
  10159. #endif
  10160. } // Wait for reset
  10161. }
  10162. /**
  10163. * Turn off heaters and stop the print in progress
  10164. * After a stop the machine may be resumed with M999
  10165. */
  10166. void stop() {
  10167. thermalManager.disable_all_heaters();
  10168. if (IsRunning()) {
  10169. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10170. SERIAL_ERROR_START;
  10171. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10172. LCD_MESSAGEPGM(MSG_STOPPED);
  10173. safe_delay(350); // allow enough time for messages to get out before stopping
  10174. Running = false;
  10175. }
  10176. }
  10177. /**
  10178. * Marlin entry-point: Set up before the program loop
  10179. * - Set up the kill pin, filament runout, power hold
  10180. * - Start the serial port
  10181. * - Print startup messages and diagnostics
  10182. * - Get EEPROM or default settings
  10183. * - Initialize managers for:
  10184. * • temperature
  10185. * • planner
  10186. * • watchdog
  10187. * • stepper
  10188. * • photo pin
  10189. * • servos
  10190. * • LCD controller
  10191. * • Digipot I2C
  10192. * • Z probe sled
  10193. * • status LEDs
  10194. */
  10195. void setup() {
  10196. #ifdef DISABLE_JTAG
  10197. // Disable JTAG on AT90USB chips to free up pins for IO
  10198. MCUCR = 0x80;
  10199. MCUCR = 0x80;
  10200. #endif
  10201. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10202. setup_filrunoutpin();
  10203. #endif
  10204. setup_killpin();
  10205. setup_powerhold();
  10206. #if HAS_STEPPER_RESET
  10207. disableStepperDrivers();
  10208. #endif
  10209. MYSERIAL.begin(BAUDRATE);
  10210. SERIAL_PROTOCOLLNPGM("start");
  10211. SERIAL_ECHO_START;
  10212. // Check startup - does nothing if bootloader sets MCUSR to 0
  10213. byte mcu = MCUSR;
  10214. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10215. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10216. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10217. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10218. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10219. MCUSR = 0;
  10220. SERIAL_ECHOPGM(MSG_MARLIN);
  10221. SERIAL_CHAR(' ');
  10222. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10223. SERIAL_EOL;
  10224. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10225. SERIAL_ECHO_START;
  10226. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10227. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10228. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10229. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10230. #endif
  10231. SERIAL_ECHO_START;
  10232. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10233. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10234. // Send "ok" after commands by default
  10235. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10236. // Load data from EEPROM if available (or use defaults)
  10237. // This also updates variables in the planner, elsewhere
  10238. (void)settings.load();
  10239. #if HAS_M206_COMMAND
  10240. // Initialize current position based on home_offset
  10241. COPY(current_position, home_offset);
  10242. #else
  10243. ZERO(current_position);
  10244. #endif
  10245. // Vital to init stepper/planner equivalent for current_position
  10246. SYNC_PLAN_POSITION_KINEMATIC();
  10247. thermalManager.init(); // Initialize temperature loop
  10248. #if ENABLED(USE_WATCHDOG)
  10249. watchdog_init();
  10250. #endif
  10251. stepper.init(); // Initialize stepper, this enables interrupts!
  10252. servo_init();
  10253. #if HAS_PHOTOGRAPH
  10254. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10255. #endif
  10256. #if HAS_CASE_LIGHT
  10257. update_case_light();
  10258. #endif
  10259. #if HAS_BED_PROBE
  10260. endstops.enable_z_probe(false);
  10261. #endif
  10262. #if HAS_CONTROLLERFAN
  10263. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10264. #endif
  10265. #if HAS_STEPPER_RESET
  10266. enableStepperDrivers();
  10267. #endif
  10268. #if ENABLED(DIGIPOT_I2C)
  10269. digipot_i2c_init();
  10270. #endif
  10271. #if ENABLED(DAC_STEPPER_CURRENT)
  10272. dac_init();
  10273. #endif
  10274. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10275. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10276. #endif
  10277. setup_homepin();
  10278. #if PIN_EXISTS(STAT_LED_RED)
  10279. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10280. #endif
  10281. #if PIN_EXISTS(STAT_LED_BLUE)
  10282. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10283. #endif
  10284. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10285. SET_OUTPUT(RGB_LED_R_PIN);
  10286. SET_OUTPUT(RGB_LED_G_PIN);
  10287. SET_OUTPUT(RGB_LED_B_PIN);
  10288. #if ENABLED(RGBW_LED)
  10289. SET_OUTPUT(RGB_LED_W_PIN);
  10290. #endif
  10291. #endif
  10292. lcd_init();
  10293. #if ENABLED(SHOW_BOOTSCREEN)
  10294. #if ENABLED(DOGLCD)
  10295. safe_delay(BOOTSCREEN_TIMEOUT);
  10296. #elif ENABLED(ULTRA_LCD)
  10297. bootscreen();
  10298. #if DISABLED(SDSUPPORT)
  10299. lcd_init();
  10300. #endif
  10301. #endif
  10302. #endif
  10303. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10304. // Initialize mixing to 100% color 1
  10305. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10306. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10307. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10308. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10309. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10310. #endif
  10311. #if ENABLED(BLTOUCH)
  10312. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10313. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10314. set_bltouch_deployed(false); // error condition.
  10315. #endif
  10316. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10317. i2c.onReceive(i2c_on_receive);
  10318. i2c.onRequest(i2c_on_request);
  10319. #endif
  10320. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10321. setup_endstop_interrupts();
  10322. #endif
  10323. }
  10324. /**
  10325. * The main Marlin program loop
  10326. *
  10327. * - Save or log commands to SD
  10328. * - Process available commands (if not saving)
  10329. * - Call heater manager
  10330. * - Call inactivity manager
  10331. * - Call endstop manager
  10332. * - Call LCD update
  10333. */
  10334. void loop() {
  10335. if (commands_in_queue < BUFSIZE) get_available_commands();
  10336. #if ENABLED(SDSUPPORT)
  10337. card.checkautostart(false);
  10338. #endif
  10339. if (commands_in_queue) {
  10340. #if ENABLED(SDSUPPORT)
  10341. if (card.saving) {
  10342. char* command = command_queue[cmd_queue_index_r];
  10343. if (strstr_P(command, PSTR("M29"))) {
  10344. // M29 closes the file
  10345. card.closefile();
  10346. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10347. ok_to_send();
  10348. }
  10349. else {
  10350. // Write the string from the read buffer to SD
  10351. card.write_command(command);
  10352. if (card.logging)
  10353. process_next_command(); // The card is saving because it's logging
  10354. else
  10355. ok_to_send();
  10356. }
  10357. }
  10358. else
  10359. process_next_command();
  10360. #else
  10361. process_next_command();
  10362. #endif // SDSUPPORT
  10363. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10364. if (commands_in_queue) {
  10365. --commands_in_queue;
  10366. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10367. }
  10368. }
  10369. endstops.report_state();
  10370. idle();
  10371. }