My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

temperature.cpp 69KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "temperature.h"
  27. #include "thermistortables.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "language.h"
  31. #if ENABLED(HEATER_0_USES_MAX6675)
  32. #include "spi.h"
  33. #endif
  34. #if ENABLED(BABYSTEPPING)
  35. #include "stepper.h"
  36. #endif
  37. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  38. #include "endstops.h"
  39. #endif
  40. #if ENABLED(USE_WATCHDOG)
  41. #include "watchdog.h"
  42. #endif
  43. #ifdef K1 // Defined in Configuration.h in the PID settings
  44. #define K2 (1.0-K1)
  45. #endif
  46. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  47. static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  48. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  49. #else
  50. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
  51. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
  52. #endif
  53. Temperature thermalManager;
  54. // public:
  55. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  56. Temperature::current_temperature_bed = 0.0;
  57. int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
  58. Temperature::target_temperature[HOTENDS] = { 0 },
  59. Temperature::current_temperature_bed_raw = 0;
  60. #if HAS_HEATER_BED
  61. int16_t Temperature::target_temperature_bed = 0;
  62. #endif
  63. // Initialized by settings.load()
  64. #if ENABLED(PIDTEMP)
  65. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  66. float Temperature::Kp[HOTENDS], Temperature::Ki[HOTENDS], Temperature::Kd[HOTENDS];
  67. #if ENABLED(PID_EXTRUSION_SCALING)
  68. float Temperature::Kc[HOTENDS];
  69. #endif
  70. #else
  71. float Temperature::Kp, Temperature::Ki, Temperature::Kd;
  72. #if ENABLED(PID_EXTRUSION_SCALING)
  73. float Temperature::Kc;
  74. #endif
  75. #endif
  76. #endif
  77. // Initialized by settings.load()
  78. #if ENABLED(PIDTEMPBED)
  79. float Temperature::bedKp, Temperature::bedKi, Temperature::bedKd;
  80. #endif
  81. #if ENABLED(BABYSTEPPING)
  82. volatile int Temperature::babystepsTodo[XYZ] = { 0 };
  83. #endif
  84. #if WATCH_HOTENDS
  85. uint16_t Temperature::watch_target_temp[HOTENDS] = { 0 };
  86. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  87. #endif
  88. #if WATCH_THE_BED
  89. uint16_t Temperature::watch_target_bed_temp = 0;
  90. millis_t Temperature::watch_bed_next_ms = 0;
  91. #endif
  92. #if ENABLED(PREVENT_COLD_EXTRUSION)
  93. bool Temperature::allow_cold_extrude = false;
  94. int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  95. #endif
  96. // private:
  97. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  98. uint16_t Temperature::redundant_temperature_raw = 0;
  99. float Temperature::redundant_temperature = 0.0;
  100. #endif
  101. volatile bool Temperature::temp_meas_ready = false;
  102. #if ENABLED(PIDTEMP)
  103. float Temperature::temp_iState[HOTENDS] = { 0 },
  104. Temperature::temp_dState[HOTENDS] = { 0 },
  105. Temperature::pTerm[HOTENDS],
  106. Temperature::iTerm[HOTENDS],
  107. Temperature::dTerm[HOTENDS];
  108. #if ENABLED(PID_EXTRUSION_SCALING)
  109. float Temperature::cTerm[HOTENDS];
  110. long Temperature::last_e_position;
  111. long Temperature::lpq[LPQ_MAX_LEN];
  112. int Temperature::lpq_ptr = 0;
  113. #endif
  114. float Temperature::pid_error[HOTENDS];
  115. bool Temperature::pid_reset[HOTENDS];
  116. #endif
  117. #if ENABLED(PIDTEMPBED)
  118. float Temperature::temp_iState_bed = { 0 },
  119. Temperature::temp_dState_bed = { 0 },
  120. Temperature::pTerm_bed,
  121. Temperature::iTerm_bed,
  122. Temperature::dTerm_bed,
  123. Temperature::pid_error_bed;
  124. #else
  125. millis_t Temperature::next_bed_check_ms;
  126. #endif
  127. uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 },
  128. Temperature::raw_temp_bed_value = 0;
  129. // Init min and max temp with extreme values to prevent false errors during startup
  130. int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
  131. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
  132. Temperature::minttemp[HOTENDS] = { 0 },
  133. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  134. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  135. uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  136. #endif
  137. #ifdef MILLISECONDS_PREHEAT_TIME
  138. millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
  139. #endif
  140. #ifdef BED_MINTEMP
  141. int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  147. int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
  148. #endif
  149. #if HAS_AUTO_FAN
  150. millis_t Temperature::next_auto_fan_check_ms = 0;
  151. #endif
  152. uint8_t Temperature::soft_pwm_amount[HOTENDS],
  153. Temperature::soft_pwm_amount_bed;
  154. #if ENABLED(FAN_SOFT_PWM)
  155. uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
  156. Temperature::soft_pwm_count_fan[FAN_COUNT];
  157. #endif
  158. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  159. uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
  160. #endif
  161. #if ENABLED(PROBING_HEATERS_OFF)
  162. bool Temperature::paused;
  163. #endif
  164. #if HEATER_IDLE_HANDLER
  165. millis_t Temperature::heater_idle_timeout_ms[HOTENDS] = { 0 };
  166. bool Temperature::heater_idle_timeout_exceeded[HOTENDS] = { false };
  167. #if HAS_TEMP_BED
  168. millis_t Temperature::bed_idle_timeout_ms = 0;
  169. bool Temperature::bed_idle_timeout_exceeded = false;
  170. #endif
  171. #endif
  172. #if ENABLED(ADC_KEYPAD)
  173. uint32_t Temperature::current_ADCKey_raw = 0;
  174. uint8_t Temperature::ADCKey_count = 0;
  175. #endif
  176. #if HAS_PID_HEATING
  177. void Temperature::PID_autotune(const float temp, const int8_t hotend, const int8_t ncycles, const bool set_result/*=false*/) {
  178. float input = 0.0;
  179. int cycles = 0;
  180. bool heating = true;
  181. millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
  182. long t_high = 0, t_low = 0;
  183. long bias, d;
  184. float Ku, Tu,
  185. workKp = 0, workKi = 0, workKd = 0,
  186. max = 0, min = 10000;
  187. #if WATCH_THE_BED || WATCH_HOTENDS
  188. const float watch_temp_target = temp -
  189. #if ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
  190. (hotend < 0 ? (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1) : (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1))
  191. #elif ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED)
  192. (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)
  193. #else
  194. (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)
  195. #endif
  196. ;
  197. const int8_t watch_temp_period =
  198. #if ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
  199. hotend < 0 ? WATCH_BED_TEMP_PERIOD : WATCH_TEMP_PERIOD
  200. #elif ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED)
  201. WATCH_BED_TEMP_PERIOD
  202. #else
  203. WATCH_TEMP_PERIOD
  204. #endif
  205. ;
  206. const int8_t watch_temp_increase =
  207. #if ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
  208. hotend < 0 ? WATCH_BED_TEMP_INCREASE : WATCH_TEMP_INCREASE
  209. #elif ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED)
  210. WATCH_BED_TEMP_INCREASE
  211. #else
  212. WATCH_TEMP_INCREASE
  213. #endif
  214. ;
  215. millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
  216. float next_watch_temp = 0.0;
  217. bool heated = false;
  218. #endif
  219. #if HAS_AUTO_FAN
  220. next_auto_fan_check_ms = next_temp_ms + 2500UL;
  221. #endif
  222. #if ENABLED(PIDTEMP)
  223. #define _TOP_HOTEND HOTENDS - 1
  224. #else
  225. #define _TOP_HOTEND -1
  226. #endif
  227. #if ENABLED(PIDTEMPBED)
  228. #define _BOT_HOTEND -1
  229. #else
  230. #define _BOT_HOTEND 0
  231. #endif
  232. if (!WITHIN(hotend, _BOT_HOTEND, _TOP_HOTEND)) {
  233. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  234. return;
  235. }
  236. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  237. disable_all_heaters(); // switch off all heaters.
  238. #if HAS_PID_FOR_BOTH
  239. if (hotend < 0)
  240. soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
  241. else
  242. soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
  243. #elif ENABLED(PIDTEMP)
  244. soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
  245. #else
  246. soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
  247. #endif
  248. wait_for_heatup = true;
  249. // PID Tuning loop
  250. while (wait_for_heatup) {
  251. const millis_t ms = millis();
  252. if (temp_meas_ready) { // temp sample ready
  253. updateTemperaturesFromRawValues();
  254. input =
  255. #if HAS_PID_FOR_BOTH
  256. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  257. #elif ENABLED(PIDTEMP)
  258. current_temperature[hotend]
  259. #else
  260. current_temperature_bed
  261. #endif
  262. ;
  263. NOLESS(max, input);
  264. NOMORE(min, input);
  265. #if HAS_AUTO_FAN
  266. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  267. checkExtruderAutoFans();
  268. next_auto_fan_check_ms = ms + 2500UL;
  269. }
  270. #endif
  271. if (heating && input > temp) {
  272. if (ELAPSED(ms, t2 + 5000UL)) {
  273. heating = false;
  274. #if HAS_PID_FOR_BOTH
  275. if (hotend < 0)
  276. soft_pwm_amount_bed = (bias - d) >> 1;
  277. else
  278. soft_pwm_amount[hotend] = (bias - d) >> 1;
  279. #elif ENABLED(PIDTEMP)
  280. soft_pwm_amount[hotend] = (bias - d) >> 1;
  281. #elif ENABLED(PIDTEMPBED)
  282. soft_pwm_amount_bed = (bias - d) >> 1;
  283. #endif
  284. t1 = ms;
  285. t_high = t1 - t2;
  286. max = temp;
  287. }
  288. }
  289. if (!heating && input < temp) {
  290. if (ELAPSED(ms, t1 + 5000UL)) {
  291. heating = true;
  292. t2 = ms;
  293. t_low = t2 - t1;
  294. if (cycles > 0) {
  295. long max_pow =
  296. #if HAS_PID_FOR_BOTH
  297. hotend < 0 ? MAX_BED_POWER : PID_MAX
  298. #elif ENABLED(PIDTEMP)
  299. PID_MAX
  300. #else
  301. MAX_BED_POWER
  302. #endif
  303. ;
  304. bias += (d * (t_high - t_low)) / (t_low + t_high);
  305. bias = constrain(bias, 20, max_pow - 20);
  306. d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
  307. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  308. SERIAL_PROTOCOLPAIR(MSG_D, d);
  309. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  310. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  311. if (cycles > 2) {
  312. Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
  313. Tu = ((float)(t_low + t_high) * 0.001);
  314. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  315. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  316. workKp = 0.6 * Ku;
  317. workKi = 2 * workKp / Tu;
  318. workKd = workKp * Tu * 0.125;
  319. SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
  320. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  321. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  322. SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
  323. /**
  324. workKp = 0.33*Ku;
  325. workKi = workKp/Tu;
  326. workKd = workKp*Tu/3;
  327. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  328. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  329. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  330. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  331. workKp = 0.2*Ku;
  332. workKi = 2*workKp/Tu;
  333. workKd = workKp*Tu/3;
  334. SERIAL_PROTOCOLLNPGM(" No overshoot");
  335. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  336. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  337. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  338. */
  339. }
  340. }
  341. #if HAS_PID_FOR_BOTH
  342. if (hotend < 0)
  343. soft_pwm_amount_bed = (bias + d) >> 1;
  344. else
  345. soft_pwm_amount[hotend] = (bias + d) >> 1;
  346. #elif ENABLED(PIDTEMP)
  347. soft_pwm_amount[hotend] = (bias + d) >> 1;
  348. #else
  349. soft_pwm_amount_bed = (bias + d) >> 1;
  350. #endif
  351. cycles++;
  352. min = temp;
  353. }
  354. }
  355. }
  356. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  357. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  358. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  359. break;
  360. }
  361. // Every 2 seconds...
  362. if (ELAPSED(ms, next_temp_ms)) {
  363. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  364. print_heaterstates();
  365. SERIAL_EOL();
  366. #endif
  367. next_temp_ms = ms + 2000UL;
  368. #if WATCH_THE_BED || WATCH_HOTENDS
  369. if (!heated && input > next_watch_temp) {
  370. if (input > watch_temp_target) heated = true;
  371. next_watch_temp = input + watch_temp_increase;
  372. temp_change_ms = ms + watch_temp_period * 1000UL;
  373. }
  374. else if (!heated && ELAPSED(ms, temp_change_ms))
  375. _temp_error(hotend, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  376. else if (heated && input < temp - MAX_OVERSHOOT_PID_AUTOTUNE)
  377. _temp_error(hotend, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  378. #endif
  379. } // every 2 seconds
  380. // Timeout after 20 minutes since the last undershoot/overshoot cycle
  381. if (((ms - t1) + (ms - t2)) > (20L * 60L * 1000L)) {
  382. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  383. break;
  384. }
  385. if (cycles > ncycles) {
  386. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  387. #if HAS_PID_FOR_BOTH
  388. const char* estring = hotend < 0 ? "bed" : "";
  389. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL();
  390. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL();
  391. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL();
  392. #elif ENABLED(PIDTEMP)
  393. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL();
  394. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL();
  395. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL();
  396. #else
  397. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL();
  398. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL();
  399. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL();
  400. #endif
  401. #define _SET_BED_PID() do { \
  402. bedKp = workKp; \
  403. bedKi = scalePID_i(workKi); \
  404. bedKd = scalePID_d(workKd); \
  405. updatePID(); }while(0)
  406. #define _SET_EXTRUDER_PID() do { \
  407. PID_PARAM(Kp, hotend) = workKp; \
  408. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  409. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  410. updatePID(); }while(0)
  411. // Use the result? (As with "M303 U1")
  412. if (set_result) {
  413. #if HAS_PID_FOR_BOTH
  414. if (hotend < 0)
  415. _SET_BED_PID();
  416. else
  417. _SET_EXTRUDER_PID();
  418. #elif ENABLED(PIDTEMP)
  419. _SET_EXTRUDER_PID();
  420. #else
  421. _SET_BED_PID();
  422. #endif
  423. }
  424. return;
  425. }
  426. lcd_update();
  427. }
  428. disable_all_heaters();
  429. }
  430. #endif // HAS_PID_HEATING
  431. /**
  432. * Class and Instance Methods
  433. */
  434. Temperature::Temperature() { }
  435. void Temperature::updatePID() {
  436. #if ENABLED(PIDTEMP)
  437. #if ENABLED(PID_EXTRUSION_SCALING)
  438. last_e_position = 0;
  439. #endif
  440. #endif
  441. }
  442. int Temperature::getHeaterPower(int heater) {
  443. return heater < 0 ? soft_pwm_amount_bed : soft_pwm_amount[heater];
  444. }
  445. #if HAS_AUTO_FAN
  446. void Temperature::checkExtruderAutoFans() {
  447. static const int8_t fanPin[] PROGMEM = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
  448. static const uint8_t fanBit[] PROGMEM = {
  449. 0,
  450. AUTO_1_IS_0 ? 0 : 1,
  451. AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
  452. AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
  453. AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
  454. };
  455. uint8_t fanState = 0;
  456. HOTEND_LOOP()
  457. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  458. SBI(fanState, pgm_read_byte(&fanBit[e]));
  459. uint8_t fanDone = 0;
  460. for (uint8_t f = 0; f < COUNT(fanPin); f++) {
  461. int8_t pin = pgm_read_byte(&fanPin[f]);
  462. const uint8_t bit = pgm_read_byte(&fanBit[f]);
  463. if (pin >= 0 && !TEST(fanDone, bit)) {
  464. uint8_t newFanSpeed = TEST(fanState, bit) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  465. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  466. digitalWrite(pin, newFanSpeed);
  467. analogWrite(pin, newFanSpeed);
  468. SBI(fanDone, bit);
  469. }
  470. }
  471. }
  472. #endif // HAS_AUTO_FAN
  473. //
  474. // Temperature Error Handlers
  475. //
  476. void Temperature::_temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg) {
  477. static bool killed = false;
  478. if (IsRunning()) {
  479. SERIAL_ERROR_START();
  480. serialprintPGM(serial_msg);
  481. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  482. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  483. }
  484. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  485. if (!killed) {
  486. Running = false;
  487. killed = true;
  488. kill(lcd_msg);
  489. }
  490. else
  491. disable_all_heaters(); // paranoia
  492. #endif
  493. }
  494. void Temperature::max_temp_error(const int8_t e) {
  495. #if HAS_TEMP_BED
  496. _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
  497. #else
  498. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  499. #if HOTENDS == 1
  500. UNUSED(e);
  501. #endif
  502. #endif
  503. }
  504. void Temperature::min_temp_error(const int8_t e) {
  505. #if HAS_TEMP_BED
  506. _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
  507. #else
  508. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  509. #if HOTENDS == 1
  510. UNUSED(e);
  511. #endif
  512. #endif
  513. }
  514. float Temperature::get_pid_output(const int8_t e) {
  515. #if HOTENDS == 1
  516. UNUSED(e);
  517. #define _HOTEND_TEST true
  518. #else
  519. #define _HOTEND_TEST e == active_extruder
  520. #endif
  521. float pid_output;
  522. #if ENABLED(PIDTEMP)
  523. #if DISABLED(PID_OPENLOOP)
  524. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  525. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  526. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  527. #if HEATER_IDLE_HANDLER
  528. if (heater_idle_timeout_exceeded[HOTEND_INDEX]) {
  529. pid_output = 0;
  530. pid_reset[HOTEND_INDEX] = true;
  531. }
  532. else
  533. #endif
  534. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  535. pid_output = BANG_MAX;
  536. pid_reset[HOTEND_INDEX] = true;
  537. }
  538. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0
  539. #if HEATER_IDLE_HANDLER
  540. || heater_idle_timeout_exceeded[HOTEND_INDEX]
  541. #endif
  542. ) {
  543. pid_output = 0;
  544. pid_reset[HOTEND_INDEX] = true;
  545. }
  546. else {
  547. if (pid_reset[HOTEND_INDEX]) {
  548. temp_iState[HOTEND_INDEX] = 0.0;
  549. pid_reset[HOTEND_INDEX] = false;
  550. }
  551. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  552. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  553. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  554. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  555. #if ENABLED(PID_EXTRUSION_SCALING)
  556. cTerm[HOTEND_INDEX] = 0;
  557. if (_HOTEND_TEST) {
  558. long e_position = stepper.position(E_AXIS);
  559. if (e_position > last_e_position) {
  560. lpq[lpq_ptr] = e_position - last_e_position;
  561. last_e_position = e_position;
  562. }
  563. else {
  564. lpq[lpq_ptr] = 0;
  565. }
  566. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  567. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  568. pid_output += cTerm[HOTEND_INDEX];
  569. }
  570. #endif // PID_EXTRUSION_SCALING
  571. if (pid_output > PID_MAX) {
  572. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  573. pid_output = PID_MAX;
  574. }
  575. else if (pid_output < 0) {
  576. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  577. pid_output = 0;
  578. }
  579. }
  580. #else
  581. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  582. #endif // PID_OPENLOOP
  583. #if ENABLED(PID_DEBUG)
  584. SERIAL_ECHO_START();
  585. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  586. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  587. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  588. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  589. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  590. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  591. #if ENABLED(PID_EXTRUSION_SCALING)
  592. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  593. #endif
  594. SERIAL_EOL();
  595. #endif // PID_DEBUG
  596. #else /* PID off */
  597. #if HEATER_IDLE_HANDLER
  598. if (heater_idle_timeout_exceeded[HOTEND_INDEX])
  599. pid_output = 0;
  600. else
  601. #endif
  602. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  603. #endif
  604. return pid_output;
  605. }
  606. #if ENABLED(PIDTEMPBED)
  607. float Temperature::get_pid_output_bed() {
  608. float pid_output;
  609. #if DISABLED(PID_OPENLOOP)
  610. pid_error_bed = target_temperature_bed - current_temperature_bed;
  611. pTerm_bed = bedKp * pid_error_bed;
  612. temp_iState_bed += pid_error_bed;
  613. iTerm_bed = bedKi * temp_iState_bed;
  614. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  615. temp_dState_bed = current_temperature_bed;
  616. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  617. if (pid_output > MAX_BED_POWER) {
  618. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  619. pid_output = MAX_BED_POWER;
  620. }
  621. else if (pid_output < 0) {
  622. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  623. pid_output = 0;
  624. }
  625. #else
  626. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  627. #endif // PID_OPENLOOP
  628. #if ENABLED(PID_BED_DEBUG)
  629. SERIAL_ECHO_START();
  630. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  631. SERIAL_ECHOPGM(": Input ");
  632. SERIAL_ECHO(current_temperature_bed);
  633. SERIAL_ECHOPGM(" Output ");
  634. SERIAL_ECHO(pid_output);
  635. SERIAL_ECHOPGM(" pTerm ");
  636. SERIAL_ECHO(pTerm_bed);
  637. SERIAL_ECHOPGM(" iTerm ");
  638. SERIAL_ECHO(iTerm_bed);
  639. SERIAL_ECHOPGM(" dTerm ");
  640. SERIAL_ECHOLN(dTerm_bed);
  641. #endif // PID_BED_DEBUG
  642. return pid_output;
  643. }
  644. #endif // PIDTEMPBED
  645. /**
  646. * Manage heating activities for extruder hot-ends and a heated bed
  647. * - Acquire updated temperature readings
  648. * - Also resets the watchdog timer
  649. * - Invoke thermal runaway protection
  650. * - Manage extruder auto-fan
  651. * - Apply filament width to the extrusion rate (may move)
  652. * - Update the heated bed PID output value
  653. */
  654. /**
  655. * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
  656. * compile error.
  657. * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  658. *
  659. * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
  660. *
  661. * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
  662. */
  663. //void Temperature::manage_heater() __attribute__((__optimize__("O2")));
  664. void Temperature::manage_heater() {
  665. if (!temp_meas_ready) return;
  666. updateTemperaturesFromRawValues(); // also resets the watchdog
  667. #if ENABLED(HEATER_0_USES_MAX6675)
  668. if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1.0)) max_temp_error(0);
  669. if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + .01)) min_temp_error(0);
  670. #endif
  671. #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
  672. millis_t ms = millis();
  673. #endif
  674. HOTEND_LOOP() {
  675. #if HEATER_IDLE_HANDLER
  676. if (!heater_idle_timeout_exceeded[e] && heater_idle_timeout_ms[e] && ELAPSED(ms, heater_idle_timeout_ms[e]))
  677. heater_idle_timeout_exceeded[e] = true;
  678. #endif
  679. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  680. // Check for thermal runaway
  681. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  682. #endif
  683. soft_pwm_amount[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)get_pid_output(e) >> 1 : 0;
  684. #if WATCH_HOTENDS
  685. // Make sure temperature is increasing
  686. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) { // Time to check this extruder?
  687. if (degHotend(e) < watch_target_temp[e]) // Failed to increase enough?
  688. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  689. else // Start again if the target is still far off
  690. start_watching_heater(e);
  691. }
  692. #endif
  693. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  694. // Make sure measured temperatures are close together
  695. if (FABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
  696. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  697. #endif
  698. } // HOTEND_LOOP
  699. #if HAS_AUTO_FAN
  700. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  701. checkExtruderAutoFans();
  702. next_auto_fan_check_ms = ms + 2500UL;
  703. }
  704. #endif
  705. // Control the extruder rate based on the width sensor
  706. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  707. if (filament_sensor) {
  708. meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
  709. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  710. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  711. // Get the delayed info and add 100 to reconstitute to a percent of
  712. // the nominal filament diameter then square it to get an area
  713. const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
  714. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
  715. }
  716. #endif // FILAMENT_WIDTH_SENSOR
  717. #if WATCH_THE_BED
  718. // Make sure temperature is increasing
  719. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) { // Time to check the bed?
  720. if (degBed() < watch_target_bed_temp) // Failed to increase enough?
  721. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  722. else // Start again if the target is still far off
  723. start_watching_bed();
  724. }
  725. #endif // WATCH_THE_BED
  726. #if DISABLED(PIDTEMPBED)
  727. if (PENDING(ms, next_bed_check_ms)) return;
  728. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  729. #endif
  730. #if HAS_TEMP_BED
  731. #if HEATER_IDLE_HANDLER
  732. if (!bed_idle_timeout_exceeded && bed_idle_timeout_ms && ELAPSED(ms, bed_idle_timeout_ms))
  733. bed_idle_timeout_exceeded = true;
  734. #endif
  735. #if HAS_THERMALLY_PROTECTED_BED
  736. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  737. #endif
  738. #if HEATER_IDLE_HANDLER
  739. if (bed_idle_timeout_exceeded)
  740. {
  741. soft_pwm_amount_bed = 0;
  742. #if DISABLED(PIDTEMPBED)
  743. WRITE_HEATER_BED(LOW);
  744. #endif
  745. }
  746. else
  747. #endif
  748. {
  749. #if ENABLED(PIDTEMPBED)
  750. soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
  751. #elif ENABLED(BED_LIMIT_SWITCHING)
  752. // Check if temperature is within the correct band
  753. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  754. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  755. soft_pwm_amount_bed = 0;
  756. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  757. soft_pwm_amount_bed = MAX_BED_POWER >> 1;
  758. }
  759. else {
  760. soft_pwm_amount_bed = 0;
  761. WRITE_HEATER_BED(LOW);
  762. }
  763. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  764. // Check if temperature is within the correct range
  765. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  766. soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  767. }
  768. else {
  769. soft_pwm_amount_bed = 0;
  770. WRITE_HEATER_BED(LOW);
  771. }
  772. #endif
  773. }
  774. #endif // HAS_TEMP_BED
  775. }
  776. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  777. // Derived from RepRap FiveD extruder::getTemperature()
  778. // For hot end temperature measurement.
  779. float Temperature::analog2temp(int raw, uint8_t e) {
  780. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  781. if (e > HOTENDS)
  782. #else
  783. if (e >= HOTENDS)
  784. #endif
  785. {
  786. SERIAL_ERROR_START();
  787. SERIAL_ERROR((int)e);
  788. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  789. kill(PSTR(MSG_KILLED));
  790. return 0.0;
  791. }
  792. #if ENABLED(HEATER_0_USES_MAX6675)
  793. if (e == 0) return 0.25 * raw;
  794. #endif
  795. if (heater_ttbl_map[e] != NULL) {
  796. float celsius = 0;
  797. uint8_t i;
  798. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  799. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  800. if (PGM_RD_W((*tt)[i][0]) > raw) {
  801. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  802. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  803. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  804. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  805. break;
  806. }
  807. }
  808. // Overflow: Set to last value in the table
  809. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  810. return celsius;
  811. }
  812. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  813. }
  814. // Derived from RepRap FiveD extruder::getTemperature()
  815. // For bed temperature measurement.
  816. float Temperature::analog2tempBed(const int raw) {
  817. #if ENABLED(BED_USES_THERMISTOR)
  818. float celsius = 0;
  819. byte i;
  820. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  821. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  822. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  823. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  824. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  825. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  826. break;
  827. }
  828. }
  829. // Overflow: Set to last value in the table
  830. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  831. return celsius;
  832. #elif defined(BED_USES_AD595)
  833. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  834. #else
  835. UNUSED(raw);
  836. return 0;
  837. #endif
  838. }
  839. /**
  840. * Get the raw values into the actual temperatures.
  841. * The raw values are created in interrupt context,
  842. * and this function is called from normal context
  843. * as it would block the stepper routine.
  844. */
  845. void Temperature::updateTemperaturesFromRawValues() {
  846. #if ENABLED(HEATER_0_USES_MAX6675)
  847. current_temperature_raw[0] = read_max6675();
  848. #endif
  849. HOTEND_LOOP()
  850. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  851. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  852. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  853. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  854. #endif
  855. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  856. filament_width_meas = analog2widthFil();
  857. #endif
  858. #if ENABLED(USE_WATCHDOG)
  859. // Reset the watchdog after we know we have a temperature measurement.
  860. watchdog_reset();
  861. #endif
  862. CRITICAL_SECTION_START;
  863. temp_meas_ready = false;
  864. CRITICAL_SECTION_END;
  865. }
  866. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  867. // Convert raw Filament Width to millimeters
  868. float Temperature::analog2widthFil() {
  869. return current_raw_filwidth * 5.0 * (1.0 / 16383.0);
  870. //return current_raw_filwidth;
  871. }
  872. // Convert raw Filament Width to a ratio
  873. int Temperature::widthFil_to_size_ratio() {
  874. float temp = filament_width_meas;
  875. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  876. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  877. return filament_width_nominal / temp * 100;
  878. }
  879. #endif
  880. #if ENABLED(HEATER_0_USES_MAX6675)
  881. #ifndef MAX6675_SCK_PIN
  882. #define MAX6675_SCK_PIN SCK_PIN
  883. #endif
  884. #ifndef MAX6675_DO_PIN
  885. #define MAX6675_DO_PIN MISO_PIN
  886. #endif
  887. SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
  888. #endif
  889. /**
  890. * Initialize the temperature manager
  891. * The manager is implemented by periodic calls to manage_heater()
  892. */
  893. void Temperature::init() {
  894. #if MB(RUMBA) && (TEMP_SENSOR_0 == -1 || TEMP_SENSOR_1 == -1 || TEMP_SENSOR_2 == -1 || TEMP_SENSOR_BED == -1)
  895. // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  896. MCUCR = _BV(JTD);
  897. MCUCR = _BV(JTD);
  898. #endif
  899. // Finish init of mult hotend arrays
  900. HOTEND_LOOP() maxttemp[e] = maxttemp[0];
  901. #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
  902. last_e_position = 0;
  903. #endif
  904. #if HAS_HEATER_0
  905. SET_OUTPUT(HEATER_0_PIN);
  906. #endif
  907. #if HAS_HEATER_1
  908. SET_OUTPUT(HEATER_1_PIN);
  909. #endif
  910. #if HAS_HEATER_2
  911. SET_OUTPUT(HEATER_2_PIN);
  912. #endif
  913. #if HAS_HEATER_3
  914. SET_OUTPUT(HEATER_3_PIN);
  915. #endif
  916. #if HAS_HEATER_4
  917. SET_OUTPUT(HEATER_3_PIN);
  918. #endif
  919. #if HAS_HEATER_BED
  920. SET_OUTPUT(HEATER_BED_PIN);
  921. #endif
  922. #if HAS_FAN0
  923. SET_OUTPUT(FAN_PIN);
  924. #if ENABLED(FAST_PWM_FAN)
  925. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  926. #endif
  927. #endif
  928. #if HAS_FAN1
  929. SET_OUTPUT(FAN1_PIN);
  930. #if ENABLED(FAST_PWM_FAN)
  931. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  932. #endif
  933. #endif
  934. #if HAS_FAN2
  935. SET_OUTPUT(FAN2_PIN);
  936. #if ENABLED(FAST_PWM_FAN)
  937. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  938. #endif
  939. #endif
  940. #if ENABLED(HEATER_0_USES_MAX6675)
  941. OUT_WRITE(SCK_PIN, LOW);
  942. OUT_WRITE(MOSI_PIN, HIGH);
  943. SET_INPUT_PULLUP(MISO_PIN);
  944. max6675_spi.init();
  945. OUT_WRITE(SS_PIN, HIGH);
  946. OUT_WRITE(MAX6675_SS, HIGH);
  947. #endif // HEATER_0_USES_MAX6675
  948. #ifdef DIDR2
  949. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  950. #else
  951. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  952. #endif
  953. // Set analog inputs
  954. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  955. DIDR0 = 0;
  956. #ifdef DIDR2
  957. DIDR2 = 0;
  958. #endif
  959. #if HAS_TEMP_0
  960. ANALOG_SELECT(TEMP_0_PIN);
  961. #endif
  962. #if HAS_TEMP_1
  963. ANALOG_SELECT(TEMP_1_PIN);
  964. #endif
  965. #if HAS_TEMP_2
  966. ANALOG_SELECT(TEMP_2_PIN);
  967. #endif
  968. #if HAS_TEMP_3
  969. ANALOG_SELECT(TEMP_3_PIN);
  970. #endif
  971. #if HAS_TEMP_4
  972. ANALOG_SELECT(TEMP_4_PIN);
  973. #endif
  974. #if HAS_TEMP_BED
  975. ANALOG_SELECT(TEMP_BED_PIN);
  976. #endif
  977. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  978. ANALOG_SELECT(FILWIDTH_PIN);
  979. #endif
  980. #if HAS_AUTO_FAN_0
  981. #if E0_AUTO_FAN_PIN == FAN1_PIN
  982. SET_OUTPUT(E0_AUTO_FAN_PIN);
  983. #if ENABLED(FAST_PWM_FAN)
  984. setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  985. #endif
  986. #else
  987. SET_OUTPUT(E0_AUTO_FAN_PIN);
  988. #endif
  989. #endif
  990. #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
  991. #if E1_AUTO_FAN_PIN == FAN1_PIN
  992. SET_OUTPUT(E1_AUTO_FAN_PIN);
  993. #if ENABLED(FAST_PWM_FAN)
  994. setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  995. #endif
  996. #else
  997. SET_OUTPUT(E1_AUTO_FAN_PIN);
  998. #endif
  999. #endif
  1000. #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
  1001. #if E2_AUTO_FAN_PIN == FAN1_PIN
  1002. SET_OUTPUT(E2_AUTO_FAN_PIN);
  1003. #if ENABLED(FAST_PWM_FAN)
  1004. setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  1005. #endif
  1006. #else
  1007. SET_OUTPUT(E2_AUTO_FAN_PIN);
  1008. #endif
  1009. #endif
  1010. #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
  1011. #if E3_AUTO_FAN_PIN == FAN1_PIN
  1012. SET_OUTPUT(E3_AUTO_FAN_PIN);
  1013. #if ENABLED(FAST_PWM_FAN)
  1014. setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  1015. #endif
  1016. #else
  1017. SET_OUTPUT(E3_AUTO_FAN_PIN);
  1018. #endif
  1019. #endif
  1020. #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
  1021. #if E4_AUTO_FAN_PIN == FAN1_PIN
  1022. SET_OUTPUT(E4_AUTO_FAN_PIN);
  1023. #if ENABLED(FAST_PWM_FAN)
  1024. setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  1025. #endif
  1026. #else
  1027. SET_OUTPUT(E4_AUTO_FAN_PIN);
  1028. #endif
  1029. #endif
  1030. // Use timer0 for temperature measurement
  1031. // Interleave temperature interrupt with millies interrupt
  1032. OCR0B = 128;
  1033. SBI(TIMSK0, OCIE0B);
  1034. // Wait for temperature measurement to settle
  1035. delay(250);
  1036. #define TEMP_MIN_ROUTINE(NR) \
  1037. minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
  1038. while (analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
  1039. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  1040. minttemp_raw[NR] += OVERSAMPLENR; \
  1041. else \
  1042. minttemp_raw[NR] -= OVERSAMPLENR; \
  1043. }
  1044. #define TEMP_MAX_ROUTINE(NR) \
  1045. maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
  1046. while (analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
  1047. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  1048. maxttemp_raw[NR] -= OVERSAMPLENR; \
  1049. else \
  1050. maxttemp_raw[NR] += OVERSAMPLENR; \
  1051. }
  1052. #ifdef HEATER_0_MINTEMP
  1053. TEMP_MIN_ROUTINE(0);
  1054. #endif
  1055. #ifdef HEATER_0_MAXTEMP
  1056. TEMP_MAX_ROUTINE(0);
  1057. #endif
  1058. #if HOTENDS > 1
  1059. #ifdef HEATER_1_MINTEMP
  1060. TEMP_MIN_ROUTINE(1);
  1061. #endif
  1062. #ifdef HEATER_1_MAXTEMP
  1063. TEMP_MAX_ROUTINE(1);
  1064. #endif
  1065. #if HOTENDS > 2
  1066. #ifdef HEATER_2_MINTEMP
  1067. TEMP_MIN_ROUTINE(2);
  1068. #endif
  1069. #ifdef HEATER_2_MAXTEMP
  1070. TEMP_MAX_ROUTINE(2);
  1071. #endif
  1072. #if HOTENDS > 3
  1073. #ifdef HEATER_3_MINTEMP
  1074. TEMP_MIN_ROUTINE(3);
  1075. #endif
  1076. #ifdef HEATER_3_MAXTEMP
  1077. TEMP_MAX_ROUTINE(3);
  1078. #endif
  1079. #if HOTENDS > 4
  1080. #ifdef HEATER_4_MINTEMP
  1081. TEMP_MIN_ROUTINE(4);
  1082. #endif
  1083. #ifdef HEATER_4_MAXTEMP
  1084. TEMP_MAX_ROUTINE(4);
  1085. #endif
  1086. #endif // HOTENDS > 4
  1087. #endif // HOTENDS > 3
  1088. #endif // HOTENDS > 2
  1089. #endif // HOTENDS > 1
  1090. #ifdef BED_MINTEMP
  1091. while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1092. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1093. bed_minttemp_raw += OVERSAMPLENR;
  1094. #else
  1095. bed_minttemp_raw -= OVERSAMPLENR;
  1096. #endif
  1097. }
  1098. #endif // BED_MINTEMP
  1099. #ifdef BED_MAXTEMP
  1100. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1101. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1102. bed_maxttemp_raw -= OVERSAMPLENR;
  1103. #else
  1104. bed_maxttemp_raw += OVERSAMPLENR;
  1105. #endif
  1106. }
  1107. #endif // BED_MAXTEMP
  1108. #if ENABLED(PROBING_HEATERS_OFF)
  1109. paused = false;
  1110. #endif
  1111. }
  1112. #if WATCH_HOTENDS
  1113. /**
  1114. * Start Heating Sanity Check for hotends that are below
  1115. * their target temperature by a configurable margin.
  1116. * This is called when the temperature is set. (M104, M109)
  1117. */
  1118. void Temperature::start_watching_heater(uint8_t e) {
  1119. #if HOTENDS == 1
  1120. UNUSED(e);
  1121. #endif
  1122. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1123. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1124. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1125. }
  1126. else
  1127. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1128. }
  1129. #endif
  1130. #if WATCH_THE_BED
  1131. /**
  1132. * Start Heating Sanity Check for hotends that are below
  1133. * their target temperature by a configurable margin.
  1134. * This is called when the temperature is set. (M140, M190)
  1135. */
  1136. void Temperature::start_watching_bed() {
  1137. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1138. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1139. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1140. }
  1141. else
  1142. watch_bed_next_ms = 0;
  1143. }
  1144. #endif
  1145. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1146. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1147. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1148. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1149. #endif
  1150. #if HAS_THERMALLY_PROTECTED_BED
  1151. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1152. millis_t Temperature::thermal_runaway_bed_timer;
  1153. #endif
  1154. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float current, float target, int heater_id, int period_seconds, int hysteresis_degc) {
  1155. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1156. /**
  1157. SERIAL_ECHO_START();
  1158. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1159. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1160. SERIAL_ECHOPAIR(" ; State:", *state);
  1161. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1162. SERIAL_ECHOPAIR(" ; Temperature:", current);
  1163. SERIAL_ECHOPAIR(" ; Target Temp:", target);
  1164. if (heater_id >= 0)
  1165. SERIAL_ECHOPAIR(" ; Idle Timeout:", heater_idle_timeout_exceeded[heater_id]);
  1166. else
  1167. SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle_timeout_exceeded);
  1168. SERIAL_EOL();
  1169. */
  1170. const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1171. #if HEATER_IDLE_HANDLER
  1172. // If the heater idle timeout expires, restart
  1173. if (heater_id >= 0 && heater_idle_timeout_exceeded[heater_id]) {
  1174. *state = TRInactive;
  1175. tr_target_temperature[heater_index] = 0;
  1176. }
  1177. #if HAS_TEMP_BED
  1178. else if (heater_id < 0 && bed_idle_timeout_exceeded) {
  1179. *state = TRInactive;
  1180. tr_target_temperature[heater_index] = 0;
  1181. }
  1182. #endif
  1183. else
  1184. #endif
  1185. // If the target temperature changes, restart
  1186. if (tr_target_temperature[heater_index] != target) {
  1187. tr_target_temperature[heater_index] = target;
  1188. *state = target > 0 ? TRFirstHeating : TRInactive;
  1189. }
  1190. switch (*state) {
  1191. // Inactive state waits for a target temperature to be set
  1192. case TRInactive: break;
  1193. // When first heating, wait for the temperature to be reached then go to Stable state
  1194. case TRFirstHeating:
  1195. if (current < tr_target_temperature[heater_index]) break;
  1196. *state = TRStable;
  1197. // While the temperature is stable watch for a bad temperature
  1198. case TRStable:
  1199. if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
  1200. *timer = millis() + period_seconds * 1000UL;
  1201. break;
  1202. }
  1203. else if (PENDING(millis(), *timer)) break;
  1204. *state = TRRunaway;
  1205. case TRRunaway:
  1206. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1207. }
  1208. }
  1209. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1210. void Temperature::disable_all_heaters() {
  1211. #if ENABLED(AUTOTEMP)
  1212. planner.autotemp_enabled = false;
  1213. #endif
  1214. HOTEND_LOOP() setTargetHotend(0, e);
  1215. setTargetBed(0);
  1216. // Unpause and reset everything
  1217. #if ENABLED(PROBING_HEATERS_OFF)
  1218. pause(false);
  1219. #endif
  1220. // If all heaters go down then for sure our print job has stopped
  1221. print_job_timer.stop();
  1222. #define DISABLE_HEATER(NR) { \
  1223. setTargetHotend(0, NR); \
  1224. soft_pwm_amount[NR] = 0; \
  1225. WRITE_HEATER_ ##NR (LOW); \
  1226. }
  1227. #if HAS_TEMP_HOTEND
  1228. DISABLE_HEATER(0);
  1229. #if HOTENDS > 1
  1230. DISABLE_HEATER(1);
  1231. #if HOTENDS > 2
  1232. DISABLE_HEATER(2);
  1233. #if HOTENDS > 3
  1234. DISABLE_HEATER(3);
  1235. #if HOTENDS > 4
  1236. DISABLE_HEATER(4);
  1237. #endif // HOTENDS > 4
  1238. #endif // HOTENDS > 3
  1239. #endif // HOTENDS > 2
  1240. #endif // HOTENDS > 1
  1241. #endif
  1242. #if HAS_TEMP_BED
  1243. target_temperature_bed = 0;
  1244. soft_pwm_amount_bed = 0;
  1245. #if HAS_HEATER_BED
  1246. WRITE_HEATER_BED(LOW);
  1247. #endif
  1248. #endif
  1249. }
  1250. #if ENABLED(PROBING_HEATERS_OFF)
  1251. void Temperature::pause(const bool p) {
  1252. if (p != paused) {
  1253. paused = p;
  1254. if (p) {
  1255. HOTEND_LOOP() start_heater_idle_timer(e, 0); // timeout immediately
  1256. #if HAS_TEMP_BED
  1257. start_bed_idle_timer(0); // timeout immediately
  1258. #endif
  1259. }
  1260. else {
  1261. HOTEND_LOOP() reset_heater_idle_timer(e);
  1262. #if HAS_TEMP_BED
  1263. reset_bed_idle_timer();
  1264. #endif
  1265. }
  1266. }
  1267. }
  1268. #endif // PROBING_HEATERS_OFF
  1269. #if ENABLED(HEATER_0_USES_MAX6675)
  1270. #define MAX6675_HEAT_INTERVAL 250u
  1271. #if ENABLED(MAX6675_IS_MAX31855)
  1272. uint32_t max6675_temp = 2000;
  1273. #define MAX6675_ERROR_MASK 7
  1274. #define MAX6675_DISCARD_BITS 18
  1275. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1276. #else
  1277. uint16_t max6675_temp = 2000;
  1278. #define MAX6675_ERROR_MASK 4
  1279. #define MAX6675_DISCARD_BITS 3
  1280. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1281. #endif
  1282. int Temperature::read_max6675() {
  1283. static millis_t next_max6675_ms = 0;
  1284. millis_t ms = millis();
  1285. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1286. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1287. CBI(
  1288. #ifdef PRR
  1289. PRR
  1290. #elif defined(PRR0)
  1291. PRR0
  1292. #endif
  1293. , PRSPI);
  1294. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1295. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1296. // ensure 100ns delay - a bit extra is fine
  1297. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1298. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1299. // Read a big-endian temperature value
  1300. max6675_temp = 0;
  1301. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1302. max6675_temp |= max6675_spi.receive();
  1303. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1304. }
  1305. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1306. if (max6675_temp & MAX6675_ERROR_MASK) {
  1307. SERIAL_ERROR_START();
  1308. SERIAL_ERRORPGM("Temp measurement error! ");
  1309. #if MAX6675_ERROR_MASK == 7
  1310. SERIAL_ERRORPGM("MAX31855 ");
  1311. if (max6675_temp & 1)
  1312. SERIAL_ERRORLNPGM("Open Circuit");
  1313. else if (max6675_temp & 2)
  1314. SERIAL_ERRORLNPGM("Short to GND");
  1315. else if (max6675_temp & 4)
  1316. SERIAL_ERRORLNPGM("Short to VCC");
  1317. #else
  1318. SERIAL_ERRORLNPGM("MAX6675");
  1319. #endif
  1320. max6675_temp = MAX6675_TMAX * 4; // thermocouple open
  1321. }
  1322. else
  1323. max6675_temp >>= MAX6675_DISCARD_BITS;
  1324. #if ENABLED(MAX6675_IS_MAX31855)
  1325. // Support negative temperature
  1326. if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
  1327. #endif
  1328. return (int)max6675_temp;
  1329. }
  1330. #endif // HEATER_0_USES_MAX6675
  1331. /**
  1332. * Get raw temperatures
  1333. */
  1334. void Temperature::set_current_temp_raw() {
  1335. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1336. current_temperature_raw[0] = raw_temp_value[0];
  1337. #endif
  1338. #if HAS_TEMP_1
  1339. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1340. redundant_temperature_raw = raw_temp_value[1];
  1341. #else
  1342. current_temperature_raw[1] = raw_temp_value[1];
  1343. #endif
  1344. #if HAS_TEMP_2
  1345. current_temperature_raw[2] = raw_temp_value[2];
  1346. #if HAS_TEMP_3
  1347. current_temperature_raw[3] = raw_temp_value[3];
  1348. #if HAS_TEMP_4
  1349. current_temperature_raw[4] = raw_temp_value[4];
  1350. #endif
  1351. #endif
  1352. #endif
  1353. #endif
  1354. current_temperature_bed_raw = raw_temp_bed_value;
  1355. temp_meas_ready = true;
  1356. }
  1357. #if ENABLED(PINS_DEBUGGING)
  1358. /**
  1359. * monitors endstops & Z probe for changes
  1360. *
  1361. * If a change is detected then the LED is toggled and
  1362. * a message is sent out the serial port
  1363. *
  1364. * Yes, we could miss a rapid back & forth change but
  1365. * that won't matter because this is all manual.
  1366. *
  1367. */
  1368. void endstop_monitor() {
  1369. static uint16_t old_endstop_bits_local = 0;
  1370. static uint8_t local_LED_status = 0;
  1371. uint16_t current_endstop_bits_local = 0;
  1372. #if HAS_X_MIN
  1373. if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
  1374. #endif
  1375. #if HAS_X_MAX
  1376. if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
  1377. #endif
  1378. #if HAS_Y_MIN
  1379. if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
  1380. #endif
  1381. #if HAS_Y_MAX
  1382. if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
  1383. #endif
  1384. #if HAS_Z_MIN
  1385. if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
  1386. #endif
  1387. #if HAS_Z_MAX
  1388. if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
  1389. #endif
  1390. #if HAS_Z_MIN_PROBE_PIN
  1391. if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
  1392. #endif
  1393. #if HAS_Z2_MIN
  1394. if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
  1395. #endif
  1396. #if HAS_Z2_MAX
  1397. if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
  1398. #endif
  1399. uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
  1400. if (endstop_change) {
  1401. #if HAS_X_MIN
  1402. if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
  1403. #endif
  1404. #if HAS_X_MAX
  1405. if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
  1406. #endif
  1407. #if HAS_Y_MIN
  1408. if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
  1409. #endif
  1410. #if HAS_Y_MAX
  1411. if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
  1412. #endif
  1413. #if HAS_Z_MIN
  1414. if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
  1415. #endif
  1416. #if HAS_Z_MAX
  1417. if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
  1418. #endif
  1419. #if HAS_Z_MIN_PROBE_PIN
  1420. if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
  1421. #endif
  1422. #if HAS_Z2_MIN
  1423. if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
  1424. #endif
  1425. #if HAS_Z2_MAX
  1426. if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
  1427. #endif
  1428. SERIAL_PROTOCOLPGM("\n\n");
  1429. analogWrite(LED_PIN, local_LED_status);
  1430. local_LED_status ^= 255;
  1431. old_endstop_bits_local = current_endstop_bits_local;
  1432. }
  1433. }
  1434. #endif // PINS_DEBUGGING
  1435. /**
  1436. * Timer 0 is shared with millies so don't change the prescaler.
  1437. *
  1438. * This ISR uses the compare method so it runs at the base
  1439. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  1440. * in OCR0B above (128 or halfway between OVFs).
  1441. *
  1442. * - Manage PWM to all the heaters and fan
  1443. * - Prepare or Measure one of the raw ADC sensor values
  1444. * - Check new temperature values for MIN/MAX errors (kill on error)
  1445. * - Step the babysteps value for each axis towards 0
  1446. * - For PINS_DEBUGGING, monitor and report endstop pins
  1447. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  1448. */
  1449. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1450. volatile bool Temperature::in_temp_isr = false;
  1451. void Temperature::isr() {
  1452. // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
  1453. // at the end of its run, potentially causing re-entry. This flag prevents it.
  1454. if (in_temp_isr) return;
  1455. in_temp_isr = true;
  1456. // Allow UART and stepper ISRs
  1457. CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
  1458. sei();
  1459. static int8_t temp_count = -1;
  1460. static ADCSensorState adc_sensor_state = StartupDelay;
  1461. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  1462. // avoid multiple loads of pwm_count
  1463. uint8_t pwm_count_tmp = pwm_count;
  1464. #if ENABLED(ADC_KEYPAD)
  1465. static unsigned int raw_ADCKey_value = 0;
  1466. #endif
  1467. // Static members for each heater
  1468. #if ENABLED(SLOW_PWM_HEATERS)
  1469. static uint8_t slow_pwm_count = 0;
  1470. #define ISR_STATICS(n) \
  1471. static uint8_t soft_pwm_count_ ## n, \
  1472. state_heater_ ## n = 0, \
  1473. state_timer_heater_ ## n = 0
  1474. #else
  1475. #define ISR_STATICS(n) static uint8_t soft_pwm_count_ ## n = 0
  1476. #endif
  1477. // Statics per heater
  1478. ISR_STATICS(0);
  1479. #if HOTENDS > 1
  1480. ISR_STATICS(1);
  1481. #if HOTENDS > 2
  1482. ISR_STATICS(2);
  1483. #if HOTENDS > 3
  1484. ISR_STATICS(3);
  1485. #if HOTENDS > 4
  1486. ISR_STATICS(4);
  1487. #endif // HOTENDS > 4
  1488. #endif // HOTENDS > 3
  1489. #endif // HOTENDS > 2
  1490. #endif // HOTENDS > 1
  1491. #if HAS_HEATER_BED
  1492. ISR_STATICS(BED);
  1493. #endif
  1494. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1495. static unsigned long raw_filwidth_value = 0;
  1496. #endif
  1497. #if DISABLED(SLOW_PWM_HEATERS)
  1498. constexpr uint8_t pwm_mask =
  1499. #if ENABLED(SOFT_PWM_DITHER)
  1500. _BV(SOFT_PWM_SCALE) - 1
  1501. #else
  1502. 0
  1503. #endif
  1504. ;
  1505. /**
  1506. * Standard PWM modulation
  1507. */
  1508. if (pwm_count_tmp >= 127) {
  1509. pwm_count_tmp -= 127;
  1510. soft_pwm_count_0 = (soft_pwm_count_0 & pwm_mask) + soft_pwm_amount[0];
  1511. WRITE_HEATER_0(soft_pwm_count_0 > pwm_mask ? HIGH : LOW);
  1512. #if HOTENDS > 1
  1513. soft_pwm_count_1 = (soft_pwm_count_1 & pwm_mask) + soft_pwm_amount[1];
  1514. WRITE_HEATER_1(soft_pwm_count_1 > pwm_mask ? HIGH : LOW);
  1515. #if HOTENDS > 2
  1516. soft_pwm_count_2 = (soft_pwm_count_2 & pwm_mask) + soft_pwm_amount[2];
  1517. WRITE_HEATER_2(soft_pwm_count_2 > pwm_mask ? HIGH : LOW);
  1518. #if HOTENDS > 3
  1519. soft_pwm_count_3 = (soft_pwm_count_3 & pwm_mask) + soft_pwm_amount[3];
  1520. WRITE_HEATER_3(soft_pwm_count_3 > pwm_mask ? HIGH : LOW);
  1521. #if HOTENDS > 4
  1522. soft_pwm_count_4 = (soft_pwm_count_4 & pwm_mask) + soft_pwm_amount[4];
  1523. WRITE_HEATER_4(soft_pwm_count_4 > pwm_mask ? HIGH : LOW);
  1524. #endif // HOTENDS > 4
  1525. #endif // HOTENDS > 3
  1526. #endif // HOTENDS > 2
  1527. #endif // HOTENDS > 1
  1528. #if HAS_HEATER_BED
  1529. soft_pwm_count_BED = (soft_pwm_count_BED & pwm_mask) + soft_pwm_amount_bed;
  1530. WRITE_HEATER_BED(soft_pwm_count_BED > pwm_mask ? HIGH : LOW);
  1531. #endif
  1532. #if ENABLED(FAN_SOFT_PWM)
  1533. #if HAS_FAN0
  1534. soft_pwm_count_fan[0] = (soft_pwm_count_fan[0] & pwm_mask) + soft_pwm_amount_fan[0] >> 1;
  1535. WRITE_FAN(soft_pwm_count_fan[0] > pwm_mask ? HIGH : LOW);
  1536. #endif
  1537. #if HAS_FAN1
  1538. soft_pwm_count_fan[1] = (soft_pwm_count_fan[1] & pwm_mask) + soft_pwm_amount_fan[1] >> 1;
  1539. WRITE_FAN1(soft_pwm_count_fan[1] > pwm_mask ? HIGH : LOW);
  1540. #endif
  1541. #if HAS_FAN2
  1542. soft_pwm_count_fan[2] = (soft_pwm_count_fan[2] & pwm_mask) + soft_pwm_amount_fan[2] >> 1;
  1543. WRITE_FAN2(soft_pwm_count_fan[2] > pwm_mask ? HIGH : LOW);
  1544. #endif
  1545. #endif
  1546. }
  1547. else {
  1548. if (soft_pwm_count_0 <= pwm_count_tmp) WRITE_HEATER_0(LOW);
  1549. #if HOTENDS > 1
  1550. if (soft_pwm_count_1 <= pwm_count_tmp) WRITE_HEATER_1(LOW);
  1551. #if HOTENDS > 2
  1552. if (soft_pwm_count_2 <= pwm_count_tmp) WRITE_HEATER_2(LOW);
  1553. #if HOTENDS > 3
  1554. if (soft_pwm_count_3 <= pwm_count_tmp) WRITE_HEATER_3(LOW);
  1555. #if HOTENDS > 4
  1556. if (soft_pwm_count_4 <= pwm_count_tmp) WRITE_HEATER_4(LOW);
  1557. #endif // HOTENDS > 4
  1558. #endif // HOTENDS > 3
  1559. #endif // HOTENDS > 2
  1560. #endif // HOTENDS > 1
  1561. #if HAS_HEATER_BED
  1562. if (soft_pwm_count_BED <= pwm_count_tmp) WRITE_HEATER_BED(LOW);
  1563. #endif
  1564. #if ENABLED(FAN_SOFT_PWM)
  1565. #if HAS_FAN0
  1566. if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
  1567. #endif
  1568. #if HAS_FAN1
  1569. if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
  1570. #endif
  1571. #if HAS_FAN2
  1572. if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
  1573. #endif
  1574. #endif
  1575. }
  1576. // SOFT_PWM_SCALE to frequency:
  1577. //
  1578. // 0: 16000000/64/256/128 = 7.6294 Hz
  1579. // 1: / 64 = 15.2588 Hz
  1580. // 2: / 32 = 30.5176 Hz
  1581. // 3: / 16 = 61.0352 Hz
  1582. // 4: / 8 = 122.0703 Hz
  1583. // 5: / 4 = 244.1406 Hz
  1584. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1585. #else // SLOW_PWM_HEATERS
  1586. /**
  1587. * SLOW PWM HEATERS
  1588. *
  1589. * For relay-driven heaters
  1590. */
  1591. #ifndef MIN_STATE_TIME
  1592. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1593. #endif
  1594. // Macros for Slow PWM timer logic
  1595. #define _SLOW_PWM_ROUTINE(NR, src) \
  1596. soft_pwm_count_ ##NR = src; \
  1597. if (soft_pwm_count_ ##NR > 0) { \
  1598. if (state_timer_heater_ ##NR == 0) { \
  1599. if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1600. state_heater_ ##NR = 1; \
  1601. WRITE_HEATER_ ##NR(1); \
  1602. } \
  1603. } \
  1604. else { \
  1605. if (state_timer_heater_ ##NR == 0) { \
  1606. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1607. state_heater_ ##NR = 0; \
  1608. WRITE_HEATER_ ##NR(0); \
  1609. } \
  1610. }
  1611. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
  1612. #define PWM_OFF_ROUTINE(NR) \
  1613. if (soft_pwm_count_ ##NR < slow_pwm_count) { \
  1614. if (state_timer_heater_ ##NR == 0) { \
  1615. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1616. state_heater_ ##NR = 0; \
  1617. WRITE_HEATER_ ##NR (0); \
  1618. } \
  1619. }
  1620. if (slow_pwm_count == 0) {
  1621. SLOW_PWM_ROUTINE(0);
  1622. #if HOTENDS > 1
  1623. SLOW_PWM_ROUTINE(1);
  1624. #if HOTENDS > 2
  1625. SLOW_PWM_ROUTINE(2);
  1626. #if HOTENDS > 3
  1627. SLOW_PWM_ROUTINE(3);
  1628. #if HOTENDS > 4
  1629. SLOW_PWM_ROUTINE(4);
  1630. #endif // HOTENDS > 4
  1631. #endif // HOTENDS > 3
  1632. #endif // HOTENDS > 2
  1633. #endif // HOTENDS > 1
  1634. #if HAS_HEATER_BED
  1635. _SLOW_PWM_ROUTINE(BED, soft_pwm_amount_bed); // BED
  1636. #endif
  1637. } // slow_pwm_count == 0
  1638. PWM_OFF_ROUTINE(0);
  1639. #if HOTENDS > 1
  1640. PWM_OFF_ROUTINE(1);
  1641. #if HOTENDS > 2
  1642. PWM_OFF_ROUTINE(2);
  1643. #if HOTENDS > 3
  1644. PWM_OFF_ROUTINE(3);
  1645. #if HOTENDS > 4
  1646. PWM_OFF_ROUTINE(4);
  1647. #endif // HOTENDS > 4
  1648. #endif // HOTENDS > 3
  1649. #endif // HOTENDS > 2
  1650. #endif // HOTENDS > 1
  1651. #if HAS_HEATER_BED
  1652. PWM_OFF_ROUTINE(BED); // BED
  1653. #endif
  1654. #if ENABLED(FAN_SOFT_PWM)
  1655. if (pwm_count_tmp >= 127) {
  1656. pwm_count_tmp = 0;
  1657. #if HAS_FAN0
  1658. soft_pwm_count_fan[0] = soft_pwm_amount_fan[0] >> 1;
  1659. WRITE_FAN(soft_pwm_count_fan[0] > 0 ? HIGH : LOW);
  1660. #endif
  1661. #if HAS_FAN1
  1662. soft_pwm_count_fan[1] = soft_pwm_amount_fan[1] >> 1;
  1663. WRITE_FAN1(soft_pwm_count_fan[1] > 0 ? HIGH : LOW);
  1664. #endif
  1665. #if HAS_FAN2
  1666. soft_pwm_count_fan[2] = soft_pwm_amount_fan[2] >> 1;
  1667. WRITE_FAN2(soft_pwm_count_fan[2] > 0 ? HIGH : LOW);
  1668. #endif
  1669. }
  1670. #if HAS_FAN0
  1671. if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
  1672. #endif
  1673. #if HAS_FAN1
  1674. if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
  1675. #endif
  1676. #if HAS_FAN2
  1677. if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
  1678. #endif
  1679. #endif // FAN_SOFT_PWM
  1680. // SOFT_PWM_SCALE to frequency:
  1681. //
  1682. // 0: 16000000/64/256/128 = 7.6294 Hz
  1683. // 1: / 64 = 15.2588 Hz
  1684. // 2: / 32 = 30.5176 Hz
  1685. // 3: / 16 = 61.0352 Hz
  1686. // 4: / 8 = 122.0703 Hz
  1687. // 5: / 4 = 244.1406 Hz
  1688. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1689. // increment slow_pwm_count only every 64th pwm_count,
  1690. // i.e. yielding a PWM frequency of 16/128 Hz (8s).
  1691. if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
  1692. slow_pwm_count++;
  1693. slow_pwm_count &= 0x7F;
  1694. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1695. #if HOTENDS > 1
  1696. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1697. #if HOTENDS > 2
  1698. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1699. #if HOTENDS > 3
  1700. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1701. #if HOTENDS > 4
  1702. if (state_timer_heater_4 > 0) state_timer_heater_4--;
  1703. #endif // HOTENDS > 4
  1704. #endif // HOTENDS > 3
  1705. #endif // HOTENDS > 2
  1706. #endif // HOTENDS > 1
  1707. #if HAS_HEATER_BED
  1708. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1709. #endif
  1710. } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
  1711. #endif // SLOW_PWM_HEATERS
  1712. //
  1713. // Update lcd buttons 488 times per second
  1714. //
  1715. static bool do_buttons;
  1716. if ((do_buttons ^= true)) lcd_buttons_update();
  1717. /**
  1718. * One sensor is sampled on every other call of the ISR.
  1719. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
  1720. *
  1721. * On each Prepare pass, ADC is started for a sensor pin.
  1722. * On the next pass, the ADC value is read and accumulated.
  1723. *
  1724. * This gives each ADC 0.9765ms to charge up.
  1725. */
  1726. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1727. #ifdef MUX5
  1728. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1729. #else
  1730. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1731. #endif
  1732. switch (adc_sensor_state) {
  1733. case SensorsReady: {
  1734. // All sensors have been read. Stay in this state for a few
  1735. // ISRs to save on calls to temp update/checking code below.
  1736. constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
  1737. static uint8_t delay_count = 0;
  1738. if (extra_loops > 0) {
  1739. if (delay_count == 0) delay_count = extra_loops; // Init this delay
  1740. if (--delay_count) // While delaying...
  1741. adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
  1742. break;
  1743. }
  1744. else
  1745. adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
  1746. }
  1747. #if HAS_TEMP_0
  1748. case PrepareTemp_0:
  1749. START_ADC(TEMP_0_PIN);
  1750. break;
  1751. case MeasureTemp_0:
  1752. raw_temp_value[0] += ADC;
  1753. break;
  1754. #endif
  1755. #if HAS_TEMP_BED
  1756. case PrepareTemp_BED:
  1757. START_ADC(TEMP_BED_PIN);
  1758. break;
  1759. case MeasureTemp_BED:
  1760. raw_temp_bed_value += ADC;
  1761. break;
  1762. #endif
  1763. #if HAS_TEMP_1
  1764. case PrepareTemp_1:
  1765. START_ADC(TEMP_1_PIN);
  1766. break;
  1767. case MeasureTemp_1:
  1768. raw_temp_value[1] += ADC;
  1769. break;
  1770. #endif
  1771. #if HAS_TEMP_2
  1772. case PrepareTemp_2:
  1773. START_ADC(TEMP_2_PIN);
  1774. break;
  1775. case MeasureTemp_2:
  1776. raw_temp_value[2] += ADC;
  1777. break;
  1778. #endif
  1779. #if HAS_TEMP_3
  1780. case PrepareTemp_3:
  1781. START_ADC(TEMP_3_PIN);
  1782. break;
  1783. case MeasureTemp_3:
  1784. raw_temp_value[3] += ADC;
  1785. break;
  1786. #endif
  1787. #if HAS_TEMP_4
  1788. case PrepareTemp_4:
  1789. START_ADC(TEMP_4_PIN);
  1790. break;
  1791. case MeasureTemp_4:
  1792. raw_temp_value[4] += ADC;
  1793. break;
  1794. #endif
  1795. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1796. case Prepare_FILWIDTH:
  1797. START_ADC(FILWIDTH_PIN);
  1798. break;
  1799. case Measure_FILWIDTH:
  1800. if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
  1801. raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
  1802. raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128
  1803. }
  1804. break;
  1805. #endif
  1806. #if ENABLED(ADC_KEYPAD)
  1807. case Prepare_ADC_KEY:
  1808. START_ADC(ADC_KEYPAD_PIN);
  1809. break;
  1810. case Measure_ADC_KEY:
  1811. if (ADCKey_count < 16) {
  1812. raw_ADCKey_value = ADC;
  1813. if (raw_ADCKey_value > 900) {
  1814. //ADC Key release
  1815. ADCKey_count = 0;
  1816. current_ADCKey_raw = 0;
  1817. }
  1818. else {
  1819. current_ADCKey_raw += raw_ADCKey_value;
  1820. ADCKey_count++;
  1821. }
  1822. }
  1823. break;
  1824. #endif // ADC_KEYPAD
  1825. case StartupDelay: break;
  1826. } // switch(adc_sensor_state)
  1827. if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1828. temp_count = 0;
  1829. // Update the raw values if they've been read. Else we could be updating them during reading.
  1830. if (!temp_meas_ready) set_current_temp_raw();
  1831. // Filament Sensor - can be read any time since IIR filtering is used
  1832. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1833. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1834. #endif
  1835. ZERO(raw_temp_value);
  1836. raw_temp_bed_value = 0;
  1837. #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
  1838. int constexpr temp_dir[] = {
  1839. #if ENABLED(HEATER_0_USES_MAX6675)
  1840. 0
  1841. #else
  1842. TEMPDIR(0)
  1843. #endif
  1844. #if HOTENDS > 1
  1845. , TEMPDIR(1)
  1846. #if HOTENDS > 2
  1847. , TEMPDIR(2)
  1848. #if HOTENDS > 3
  1849. , TEMPDIR(3)
  1850. #if HOTENDS > 4
  1851. , TEMPDIR(4)
  1852. #endif // HOTENDS > 4
  1853. #endif // HOTENDS > 3
  1854. #endif // HOTENDS > 2
  1855. #endif // HOTENDS > 1
  1856. };
  1857. for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
  1858. const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
  1859. const bool heater_on = 0 <
  1860. #if ENABLED(PIDTEMP)
  1861. soft_pwm_amount[e]
  1862. #else
  1863. target_temperature[e]
  1864. #endif
  1865. ;
  1866. if (rawtemp > maxttemp_raw[e] * tdir && heater_on) max_temp_error(e);
  1867. if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && heater_on) {
  1868. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1869. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1870. #endif
  1871. min_temp_error(e);
  1872. }
  1873. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1874. else
  1875. consecutive_low_temperature_error[e] = 0;
  1876. #endif
  1877. }
  1878. #if HAS_TEMP_BED
  1879. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1880. #define GEBED <=
  1881. #else
  1882. #define GEBED >=
  1883. #endif
  1884. const bool bed_on = 0 <
  1885. #if ENABLED(PIDTEMPBED)
  1886. soft_pwm_amount_bed
  1887. #else
  1888. target_temperature_bed
  1889. #endif
  1890. ;
  1891. if (current_temperature_bed_raw GEBED bed_maxttemp_raw && bed_on) max_temp_error(-1);
  1892. if (bed_minttemp_raw GEBED current_temperature_bed_raw && bed_on) min_temp_error(-1);
  1893. #endif
  1894. } // temp_count >= OVERSAMPLENR
  1895. // Go to the next state, up to SensorsReady
  1896. adc_sensor_state = (ADCSensorState)(int(adc_sensor_state) + 1);
  1897. if (adc_sensor_state > SensorsReady) adc_sensor_state = (ADCSensorState)0;
  1898. #if ENABLED(BABYSTEPPING)
  1899. LOOP_XYZ(axis) {
  1900. const int curTodo = babystepsTodo[axis]; // get rid of volatile for performance
  1901. if (curTodo) {
  1902. stepper.babystep((AxisEnum)axis, curTodo > 0);
  1903. if (curTodo > 0) babystepsTodo[axis]--;
  1904. else babystepsTodo[axis]++;
  1905. }
  1906. }
  1907. #endif // BABYSTEPPING
  1908. #if ENABLED(PINS_DEBUGGING)
  1909. extern bool endstop_monitor_flag;
  1910. // run the endstop monitor at 15Hz
  1911. static uint8_t endstop_monitor_count = 16; // offset this check from the others
  1912. if (endstop_monitor_flag) {
  1913. endstop_monitor_count += _BV(1); // 15 Hz
  1914. endstop_monitor_count &= 0x7F;
  1915. if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
  1916. }
  1917. #endif
  1918. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  1919. extern volatile uint8_t e_hit;
  1920. if (e_hit && ENDSTOPS_ENABLED) {
  1921. endstops.update(); // call endstop update routine
  1922. e_hit--;
  1923. }
  1924. #endif
  1925. cli();
  1926. in_temp_isr = false;
  1927. SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
  1928. }