My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

planner.cpp 56KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "MarlinConfig.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "ultralcd.h"
  64. #include "language.h"
  65. #include "ubl.h"
  66. #include "gcode.h"
  67. #include "Marlin.h"
  68. #if ENABLED(MESH_BED_LEVELING)
  69. #include "mesh_bed_leveling.h"
  70. #endif
  71. Planner planner;
  72. // public:
  73. /**
  74. * A ring buffer of moves described in steps
  75. */
  76. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  77. volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed
  78. Planner::block_buffer_tail = 0;
  79. float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  80. Planner::axis_steps_per_mm[XYZE_N],
  81. Planner::steps_to_mm[XYZE_N];
  82. #if ENABLED(DISTINCT_E_FACTORS)
  83. uint8_t Planner::last_extruder = 0; // Respond to extruder change
  84. #endif
  85. int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  86. float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
  87. Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  88. Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
  89. Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  90. uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
  91. Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
  92. uint32_t Planner::min_segment_time_us;
  93. // Initialized by settings.load()
  94. float Planner::min_feedrate_mm_s,
  95. Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  96. Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  97. Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  98. Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
  99. Planner::min_travel_feedrate_mm_s;
  100. #if HAS_LEVELING
  101. bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
  102. #if ABL_PLANAR
  103. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  104. #endif
  105. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  106. float Planner::z_fade_height, // Initialized by settings.load()
  107. Planner::inverse_z_fade_height,
  108. Planner::last_fade_z;
  109. #endif
  110. #else
  111. constexpr bool Planner::leveling_active;
  112. #endif
  113. #if ENABLED(SKEW_CORRECTION)
  114. #if ENABLED(SKEW_CORRECTION_GCODE)
  115. float Planner::xy_skew_factor;
  116. #else
  117. constexpr float Planner::xy_skew_factor;
  118. #endif
  119. #if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE)
  120. float Planner::xz_skew_factor, Planner::yz_skew_factor;
  121. #else
  122. constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor;
  123. #endif
  124. #endif
  125. #if ENABLED(AUTOTEMP)
  126. float Planner::autotemp_max = 250,
  127. Planner::autotemp_min = 210,
  128. Planner::autotemp_factor = 0.1;
  129. bool Planner::autotemp_enabled = false;
  130. #endif
  131. // private:
  132. int32_t Planner::position[NUM_AXIS] = { 0 };
  133. uint32_t Planner::cutoff_long;
  134. float Planner::previous_speed[NUM_AXIS],
  135. Planner::previous_nominal_speed;
  136. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  137. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  138. #endif
  139. #ifdef XY_FREQUENCY_LIMIT
  140. // Old direction bits. Used for speed calculations
  141. unsigned char Planner::old_direction_bits = 0;
  142. // Segment times (in µs). Used for speed calculations
  143. uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
  144. #endif
  145. #if ENABLED(LIN_ADVANCE)
  146. float Planner::extruder_advance_k, // Initialized by settings.load()
  147. Planner::advance_ed_ratio; // Initialized by settings.load()
  148. #endif
  149. #if ENABLED(ULTRA_LCD)
  150. volatile uint32_t Planner::block_buffer_runtime_us = 0;
  151. #endif
  152. /**
  153. * Class and Instance Methods
  154. */
  155. Planner::Planner() { init(); }
  156. void Planner::init() {
  157. block_buffer_head = block_buffer_tail = 0;
  158. ZERO(position);
  159. ZERO(previous_speed);
  160. previous_nominal_speed = 0.0;
  161. #if ABL_PLANAR
  162. bed_level_matrix.set_to_identity();
  163. #endif
  164. }
  165. #define MINIMAL_STEP_RATE 120
  166. /**
  167. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  168. * by the provided factors.
  169. */
  170. void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
  171. uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
  172. final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
  173. // Limit minimal step rate (Otherwise the timer will overflow.)
  174. NOLESS(initial_rate, MINIMAL_STEP_RATE);
  175. NOLESS(final_rate, MINIMAL_STEP_RATE);
  176. const int32_t accel = block->acceleration_steps_per_s2;
  177. // Steps required for acceleration, deceleration to/from nominal rate
  178. int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
  179. decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
  180. // Steps between acceleration and deceleration, if any
  181. plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  182. // Does accelerate_steps + decelerate_steps exceed step_event_count?
  183. // Then we can't possibly reach the nominal rate, there will be no cruising.
  184. // Use intersection_distance() to calculate accel / braking time in order to
  185. // reach the final_rate exactly at the end of this block.
  186. if (plateau_steps < 0) {
  187. accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  188. NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
  189. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  190. plateau_steps = 0;
  191. }
  192. // block->accelerate_until = accelerate_steps;
  193. // block->decelerate_after = accelerate_steps+plateau_steps;
  194. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  195. if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
  196. block->accelerate_until = accelerate_steps;
  197. block->decelerate_after = accelerate_steps + plateau_steps;
  198. block->initial_rate = initial_rate;
  199. block->final_rate = final_rate;
  200. }
  201. CRITICAL_SECTION_END;
  202. }
  203. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  204. // This method will calculate the junction jerk as the euclidean distance between the nominal
  205. // velocities of the respective blocks.
  206. //inline float junction_jerk(block_t *before, block_t *after) {
  207. // return SQRT(
  208. // POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
  209. //}
  210. // The kernel called by recalculate() when scanning the plan from last to first entry.
  211. void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
  212. if (!current || !next) return;
  213. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  214. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  215. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  216. float max_entry_speed = current->max_entry_speed;
  217. if (current->entry_speed != max_entry_speed) {
  218. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  219. // for max allowable speed if block is decelerating and nominal length is false.
  220. current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
  221. ? max_entry_speed
  222. : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  223. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  224. }
  225. }
  226. /**
  227. * recalculate() needs to go over the current plan twice.
  228. * Once in reverse and once forward. This implements the reverse pass.
  229. */
  230. void Planner::reverse_pass() {
  231. if (movesplanned() > 3) {
  232. block_t* block[3] = { NULL, NULL, NULL };
  233. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  234. // Is a critical section REALLY needed for a single byte change?
  235. //CRITICAL_SECTION_START;
  236. uint8_t tail = block_buffer_tail;
  237. //CRITICAL_SECTION_END
  238. uint8_t b = BLOCK_MOD(block_buffer_head - 3);
  239. while (b != tail) {
  240. if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
  241. b = prev_block_index(b);
  242. block[2] = block[1];
  243. block[1] = block[0];
  244. block[0] = &block_buffer[b];
  245. reverse_pass_kernel(block[1], block[2]);
  246. }
  247. }
  248. }
  249. // The kernel called by recalculate() when scanning the plan from first to last entry.
  250. void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) {
  251. if (!previous) return;
  252. // If the previous block is an acceleration block, but it is not long enough to complete the
  253. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  254. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  255. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  256. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
  257. if (previous->entry_speed < current->entry_speed) {
  258. float entry_speed = min(current->entry_speed,
  259. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  260. // Check for junction speed change
  261. if (current->entry_speed != entry_speed) {
  262. current->entry_speed = entry_speed;
  263. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  264. }
  265. }
  266. }
  267. }
  268. /**
  269. * recalculate() needs to go over the current plan twice.
  270. * Once in reverse and once forward. This implements the forward pass.
  271. */
  272. void Planner::forward_pass() {
  273. block_t* block[3] = { NULL, NULL, NULL };
  274. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  275. block[0] = block[1];
  276. block[1] = block[2];
  277. block[2] = &block_buffer[b];
  278. forward_pass_kernel(block[0], block[1]);
  279. }
  280. forward_pass_kernel(block[1], block[2]);
  281. }
  282. /**
  283. * Recalculate the trapezoid speed profiles for all blocks in the plan
  284. * according to the entry_factor for each junction. Must be called by
  285. * recalculate() after updating the blocks.
  286. */
  287. void Planner::recalculate_trapezoids() {
  288. int8_t block_index = block_buffer_tail;
  289. block_t *current, *next = NULL;
  290. while (block_index != block_buffer_head) {
  291. current = next;
  292. next = &block_buffer[block_index];
  293. if (current) {
  294. // Recalculate if current block entry or exit junction speed has changed.
  295. if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
  296. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  297. float nom = current->nominal_speed;
  298. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  299. CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
  300. }
  301. }
  302. block_index = next_block_index(block_index);
  303. }
  304. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  305. if (next) {
  306. float nom = next->nominal_speed;
  307. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  308. CBI(next->flag, BLOCK_BIT_RECALCULATE);
  309. }
  310. }
  311. /*
  312. * Recalculate the motion plan according to the following algorithm:
  313. *
  314. * 1. Go over every block in reverse order...
  315. *
  316. * Calculate a junction speed reduction (block_t.entry_factor) so:
  317. *
  318. * a. The junction jerk is within the set limit, and
  319. *
  320. * b. No speed reduction within one block requires faster
  321. * deceleration than the one, true constant acceleration.
  322. *
  323. * 2. Go over every block in chronological order...
  324. *
  325. * Dial down junction speed reduction values if:
  326. * a. The speed increase within one block would require faster
  327. * acceleration than the one, true constant acceleration.
  328. *
  329. * After that, all blocks will have an entry_factor allowing all speed changes to
  330. * be performed using only the one, true constant acceleration, and where no junction
  331. * jerk is jerkier than the set limit, Jerky. Finally it will:
  332. *
  333. * 3. Recalculate "trapezoids" for all blocks.
  334. */
  335. void Planner::recalculate() {
  336. reverse_pass();
  337. forward_pass();
  338. recalculate_trapezoids();
  339. }
  340. #if ENABLED(AUTOTEMP)
  341. void Planner::getHighESpeed() {
  342. static float oldt = 0;
  343. if (!autotemp_enabled) return;
  344. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  345. float high = 0.0;
  346. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  347. block_t* block = &block_buffer[b];
  348. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  349. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  350. NOLESS(high, se);
  351. }
  352. }
  353. float t = autotemp_min + high * autotemp_factor;
  354. t = constrain(t, autotemp_min, autotemp_max);
  355. if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
  356. oldt = t;
  357. thermalManager.setTargetHotend(t, 0);
  358. }
  359. #endif // AUTOTEMP
  360. /**
  361. * Maintain fans, paste extruder pressure,
  362. */
  363. void Planner::check_axes_activity() {
  364. unsigned char axis_active[NUM_AXIS] = { 0 },
  365. tail_fan_speed[FAN_COUNT];
  366. #if ENABLED(BARICUDA)
  367. #if HAS_HEATER_1
  368. uint8_t tail_valve_pressure;
  369. #endif
  370. #if HAS_HEATER_2
  371. uint8_t tail_e_to_p_pressure;
  372. #endif
  373. #endif
  374. if (blocks_queued()) {
  375. #if FAN_COUNT > 0
  376. for (uint8_t i = 0; i < FAN_COUNT; i++)
  377. tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  378. #endif
  379. block_t* block;
  380. #if ENABLED(BARICUDA)
  381. block = &block_buffer[block_buffer_tail];
  382. #if HAS_HEATER_1
  383. tail_valve_pressure = block->valve_pressure;
  384. #endif
  385. #if HAS_HEATER_2
  386. tail_e_to_p_pressure = block->e_to_p_pressure;
  387. #endif
  388. #endif
  389. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  390. block = &block_buffer[b];
  391. LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
  392. }
  393. }
  394. else {
  395. #if FAN_COUNT > 0
  396. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  397. #endif
  398. #if ENABLED(BARICUDA)
  399. #if HAS_HEATER_1
  400. tail_valve_pressure = baricuda_valve_pressure;
  401. #endif
  402. #if HAS_HEATER_2
  403. tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  404. #endif
  405. #endif
  406. }
  407. #if ENABLED(DISABLE_X)
  408. if (!axis_active[X_AXIS]) disable_X();
  409. #endif
  410. #if ENABLED(DISABLE_Y)
  411. if (!axis_active[Y_AXIS]) disable_Y();
  412. #endif
  413. #if ENABLED(DISABLE_Z)
  414. if (!axis_active[Z_AXIS]) disable_Z();
  415. #endif
  416. #if ENABLED(DISABLE_E)
  417. if (!axis_active[E_AXIS]) disable_e_steppers();
  418. #endif
  419. #if FAN_COUNT > 0
  420. #if FAN_KICKSTART_TIME > 0
  421. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  422. #define KICKSTART_FAN(f) \
  423. if (tail_fan_speed[f]) { \
  424. millis_t ms = millis(); \
  425. if (fan_kick_end[f] == 0) { \
  426. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  427. tail_fan_speed[f] = 255; \
  428. } else if (PENDING(ms, fan_kick_end[f])) \
  429. tail_fan_speed[f] = 255; \
  430. } else fan_kick_end[f] = 0
  431. #if HAS_FAN0
  432. KICKSTART_FAN(0);
  433. #endif
  434. #if HAS_FAN1
  435. KICKSTART_FAN(1);
  436. #endif
  437. #if HAS_FAN2
  438. KICKSTART_FAN(2);
  439. #endif
  440. #endif // FAN_KICKSTART_TIME > 0
  441. #ifdef FAN_MIN_PWM
  442. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  443. #else
  444. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  445. #endif
  446. #if ENABLED(FAN_SOFT_PWM)
  447. #if HAS_FAN0
  448. thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
  449. #endif
  450. #if HAS_FAN1
  451. thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
  452. #endif
  453. #if HAS_FAN2
  454. thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
  455. #endif
  456. #else
  457. #if HAS_FAN0
  458. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  459. #endif
  460. #if HAS_FAN1
  461. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  462. #endif
  463. #if HAS_FAN2
  464. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  465. #endif
  466. #endif
  467. #endif // FAN_COUNT > 0
  468. #if ENABLED(AUTOTEMP)
  469. getHighESpeed();
  470. #endif
  471. #if ENABLED(BARICUDA)
  472. #if HAS_HEATER_1
  473. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  474. #endif
  475. #if HAS_HEATER_2
  476. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  477. #endif
  478. #endif
  479. }
  480. inline float calculate_volumetric_multiplier(const float &diameter) {
  481. return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
  482. }
  483. void Planner::calculate_volumetric_multipliers() {
  484. for (uint8_t i = 0; i < COUNT(filament_size); i++) {
  485. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  486. refresh_e_factor(i);
  487. }
  488. }
  489. #if PLANNER_LEVELING
  490. /**
  491. * rx, ry, rz - Cartesian positions in mm
  492. * Leveled XYZ on completion
  493. */
  494. void Planner::apply_leveling(float &rx, float &ry, float &rz) {
  495. #if ENABLED(SKEW_CORRECTION)
  496. if (WITHIN(rx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(ry, Y_MIN_POS + 1, Y_MAX_POS)) {
  497. const float tempry = ry - (rz * planner.yz_skew_factor),
  498. temprx = rx - (ry * planner.xy_skew_factor) - (rz * (planner.xz_skew_factor - (planner.xy_skew_factor * planner.yz_skew_factor)));
  499. if (WITHIN(temprx, X_MIN_POS, X_MAX_POS) && WITHIN(tempry, Y_MIN_POS, Y_MAX_POS)) {
  500. rx = temprx;
  501. ry = tempry;
  502. }
  503. }
  504. #endif
  505. if (!leveling_active) return;
  506. #if ABL_PLANAR
  507. float dx = rx - (X_TILT_FULCRUM),
  508. dy = ry - (Y_TILT_FULCRUM);
  509. apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
  510. rx = dx + X_TILT_FULCRUM;
  511. ry = dy + Y_TILT_FULCRUM;
  512. #else
  513. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  514. const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
  515. if (!fade_scaling_factor) return;
  516. #elif HAS_MESH
  517. constexpr float fade_scaling_factor = 1.0;
  518. #endif
  519. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  520. const float raw[XYZ] = { rx, ry, 0 };
  521. #endif
  522. rz += (
  523. #if ENABLED(AUTO_BED_LEVELING_UBL) // UBL_DELTA
  524. ubl.get_z_correction(rx, ry) * fade_scaling_factor
  525. #elif ENABLED(MESH_BED_LEVELING)
  526. mbl.get_z(rx, ry
  527. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  528. , fade_scaling_factor
  529. #endif
  530. )
  531. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  532. bilinear_z_offset(raw) * fade_scaling_factor
  533. #else
  534. 0
  535. #endif
  536. );
  537. #endif
  538. }
  539. void Planner::unapply_leveling(float raw[XYZ]) {
  540. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  541. const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
  542. #else
  543. constexpr float fade_scaling_factor = 1.0;
  544. #endif
  545. if (leveling_active && fade_scaling_factor) {
  546. #if ABL_PLANAR
  547. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  548. float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
  549. dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
  550. apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
  551. raw[X_AXIS] = dx + X_TILT_FULCRUM;
  552. raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
  553. #else // !ABL_PLANAR
  554. raw[Z_AXIS] -= (
  555. #if ENABLED(AUTO_BED_LEVELING_UBL)
  556. ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
  557. #elif ENABLED(MESH_BED_LEVELING)
  558. mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
  559. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  560. , fade_scaling_factor
  561. #endif
  562. )
  563. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  564. bilinear_z_offset(raw) * fade_scaling_factor
  565. #else
  566. 0
  567. #endif
  568. );
  569. #endif // !ABL_PLANAR
  570. }
  571. #if ENABLED(SKEW_CORRECTION)
  572. if (WITHIN(raw[X_AXIS], X_MIN_POS, X_MAX_POS) && WITHIN(raw[Y_AXIS], Y_MIN_POS, Y_MAX_POS)) {
  573. const float temprx = raw[X_AXIS] + raw[Y_AXIS] * planner.xy_skew_factor + raw[Z_AXIS] * planner.xz_skew_factor,
  574. tempry = raw[Y_AXIS] + raw[Z_AXIS] * planner.yz_skew_factor;
  575. if (WITHIN(temprx, X_MIN_POS, X_MAX_POS) && WITHIN(tempry, Y_MIN_POS, Y_MAX_POS)) {
  576. raw[X_AXIS] = temprx;
  577. raw[Y_AXIS] = tempry;
  578. }
  579. }
  580. #endif
  581. }
  582. #endif // PLANNER_LEVELING
  583. /**
  584. * Planner::_buffer_steps
  585. *
  586. * Add a new linear movement to the buffer (in terms of steps).
  587. *
  588. * target - target position in steps units
  589. * fr_mm_s - (target) speed of the move
  590. * extruder - target extruder
  591. */
  592. void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder) {
  593. const int32_t da = target[X_AXIS] - position[X_AXIS],
  594. db = target[Y_AXIS] - position[Y_AXIS],
  595. dc = target[Z_AXIS] - position[Z_AXIS];
  596. int32_t de = target[E_AXIS] - position[E_AXIS];
  597. /* <-- add a slash to enable
  598. SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s);
  599. SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
  600. SERIAL_ECHOPAIR(" (", da);
  601. SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
  602. SERIAL_ECHOPAIR(" (", db);
  603. SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
  604. SERIAL_ECHOPAIR(" (", dc);
  605. SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
  606. SERIAL_ECHOPAIR(" (", de);
  607. SERIAL_ECHOLNPGM(" steps)");
  608. //*/
  609. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  610. if (de) {
  611. #if ENABLED(PREVENT_COLD_EXTRUSION)
  612. if (thermalManager.tooColdToExtrude(extruder)) {
  613. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  614. de = 0; // no difference
  615. SERIAL_ECHO_START();
  616. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  617. }
  618. #endif // PREVENT_COLD_EXTRUSION
  619. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  620. if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
  621. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  622. de = 0; // no difference
  623. SERIAL_ECHO_START();
  624. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  625. }
  626. #endif // PREVENT_LENGTHY_EXTRUDE
  627. }
  628. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  629. // Compute direction bit-mask for this block
  630. uint8_t dm = 0;
  631. #if CORE_IS_XY
  632. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  633. if (db < 0) SBI(dm, Y_HEAD); // ...and Y
  634. if (dc < 0) SBI(dm, Z_AXIS);
  635. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  636. if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  637. #elif CORE_IS_XZ
  638. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  639. if (db < 0) SBI(dm, Y_AXIS);
  640. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  641. if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
  642. if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  643. #elif CORE_IS_YZ
  644. if (da < 0) SBI(dm, X_AXIS);
  645. if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  646. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  647. if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
  648. if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  649. #else
  650. if (da < 0) SBI(dm, X_AXIS);
  651. if (db < 0) SBI(dm, Y_AXIS);
  652. if (dc < 0) SBI(dm, Z_AXIS);
  653. #endif
  654. if (de < 0) SBI(dm, E_AXIS);
  655. const float esteps_float = de * e_factor[extruder];
  656. const int32_t esteps = abs(esteps_float) + 0.5;
  657. // Calculate the buffer head after we push this byte
  658. const uint8_t next_buffer_head = next_block_index(block_buffer_head);
  659. // If the buffer is full: good! That means we are well ahead of the robot.
  660. // Rest here until there is room in the buffer.
  661. while (block_buffer_tail == next_buffer_head) idle();
  662. // Prepare to set up new block
  663. block_t* block = &block_buffer[block_buffer_head];
  664. // Clear all flags, including the "busy" bit
  665. block->flag = 0x00;
  666. // Set direction bits
  667. block->direction_bits = dm;
  668. // Number of steps for each axis
  669. // See http://www.corexy.com/theory.html
  670. #if CORE_IS_XY
  671. block->steps[A_AXIS] = labs(da + db);
  672. block->steps[B_AXIS] = labs(da - db);
  673. block->steps[Z_AXIS] = labs(dc);
  674. #elif CORE_IS_XZ
  675. block->steps[A_AXIS] = labs(da + dc);
  676. block->steps[Y_AXIS] = labs(db);
  677. block->steps[C_AXIS] = labs(da - dc);
  678. #elif CORE_IS_YZ
  679. block->steps[X_AXIS] = labs(da);
  680. block->steps[B_AXIS] = labs(db + dc);
  681. block->steps[C_AXIS] = labs(db - dc);
  682. #else
  683. // default non-h-bot planning
  684. block->steps[X_AXIS] = labs(da);
  685. block->steps[Y_AXIS] = labs(db);
  686. block->steps[Z_AXIS] = labs(dc);
  687. #endif
  688. block->steps[E_AXIS] = esteps;
  689. block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
  690. // Bail if this is a zero-length block
  691. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
  692. // For a mixing extruder, get a magnified step_event_count for each
  693. #if ENABLED(MIXING_EXTRUDER)
  694. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  695. block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
  696. #endif
  697. #if FAN_COUNT > 0
  698. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  699. #endif
  700. #if ENABLED(BARICUDA)
  701. block->valve_pressure = baricuda_valve_pressure;
  702. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  703. #endif
  704. block->active_extruder = extruder;
  705. //enable active axes
  706. #if CORE_IS_XY
  707. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  708. enable_X();
  709. enable_Y();
  710. }
  711. #if DISABLED(Z_LATE_ENABLE)
  712. if (block->steps[Z_AXIS]) enable_Z();
  713. #endif
  714. #elif CORE_IS_XZ
  715. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  716. enable_X();
  717. enable_Z();
  718. }
  719. if (block->steps[Y_AXIS]) enable_Y();
  720. #elif CORE_IS_YZ
  721. if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
  722. enable_Y();
  723. enable_Z();
  724. }
  725. if (block->steps[X_AXIS]) enable_X();
  726. #else
  727. if (block->steps[X_AXIS]) enable_X();
  728. if (block->steps[Y_AXIS]) enable_Y();
  729. #if DISABLED(Z_LATE_ENABLE)
  730. if (block->steps[Z_AXIS]) enable_Z();
  731. #endif
  732. #endif
  733. // Enable extruder(s)
  734. if (esteps) {
  735. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  736. #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
  737. for (uint8_t i = 0; i < EXTRUDERS; i++)
  738. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  739. switch(extruder) {
  740. case 0:
  741. enable_E0();
  742. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  743. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  744. if (extruder_duplication_enabled) {
  745. enable_E1();
  746. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  747. }
  748. #endif
  749. #if EXTRUDERS > 1
  750. DISABLE_IDLE_E(1);
  751. #if EXTRUDERS > 2
  752. DISABLE_IDLE_E(2);
  753. #if EXTRUDERS > 3
  754. DISABLE_IDLE_E(3);
  755. #if EXTRUDERS > 4
  756. DISABLE_IDLE_E(4);
  757. #endif // EXTRUDERS > 4
  758. #endif // EXTRUDERS > 3
  759. #endif // EXTRUDERS > 2
  760. #endif // EXTRUDERS > 1
  761. break;
  762. #if EXTRUDERS > 1
  763. case 1:
  764. enable_E1();
  765. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  766. DISABLE_IDLE_E(0);
  767. #if EXTRUDERS > 2
  768. DISABLE_IDLE_E(2);
  769. #if EXTRUDERS > 3
  770. DISABLE_IDLE_E(3);
  771. #if EXTRUDERS > 4
  772. DISABLE_IDLE_E(4);
  773. #endif // EXTRUDERS > 4
  774. #endif // EXTRUDERS > 3
  775. #endif // EXTRUDERS > 2
  776. break;
  777. #if EXTRUDERS > 2
  778. case 2:
  779. enable_E2();
  780. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  781. DISABLE_IDLE_E(0);
  782. DISABLE_IDLE_E(1);
  783. #if EXTRUDERS > 3
  784. DISABLE_IDLE_E(3);
  785. #if EXTRUDERS > 4
  786. DISABLE_IDLE_E(4);
  787. #endif
  788. #endif
  789. break;
  790. #if EXTRUDERS > 3
  791. case 3:
  792. enable_E3();
  793. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  794. DISABLE_IDLE_E(0);
  795. DISABLE_IDLE_E(1);
  796. DISABLE_IDLE_E(2);
  797. #if EXTRUDERS > 4
  798. DISABLE_IDLE_E(4);
  799. #endif
  800. break;
  801. #if EXTRUDERS > 4
  802. case 4:
  803. enable_E4();
  804. g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
  805. DISABLE_IDLE_E(0);
  806. DISABLE_IDLE_E(1);
  807. DISABLE_IDLE_E(2);
  808. DISABLE_IDLE_E(3);
  809. break;
  810. #endif // EXTRUDERS > 4
  811. #endif // EXTRUDERS > 3
  812. #endif // EXTRUDERS > 2
  813. #endif // EXTRUDERS > 1
  814. }
  815. #else
  816. enable_E0();
  817. enable_E1();
  818. enable_E2();
  819. enable_E3();
  820. enable_E4();
  821. #endif
  822. }
  823. if (esteps)
  824. NOLESS(fr_mm_s, min_feedrate_mm_s);
  825. else
  826. NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
  827. /**
  828. * This part of the code calculates the total length of the movement.
  829. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  830. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  831. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  832. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  833. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  834. */
  835. #if IS_CORE
  836. float delta_mm[Z_HEAD + 1];
  837. #if CORE_IS_XY
  838. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  839. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  840. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  841. delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
  842. delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
  843. #elif CORE_IS_XZ
  844. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  845. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  846. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  847. delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
  848. delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
  849. #elif CORE_IS_YZ
  850. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  851. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  852. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  853. delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
  854. delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
  855. #endif
  856. #else
  857. float delta_mm[XYZE];
  858. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  859. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  860. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  861. #endif
  862. delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
  863. if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
  864. block->millimeters = FABS(delta_mm[E_AXIS]);
  865. }
  866. else {
  867. block->millimeters = SQRT(
  868. #if CORE_IS_XY
  869. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
  870. #elif CORE_IS_XZ
  871. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
  872. #elif CORE_IS_YZ
  873. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
  874. #else
  875. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
  876. #endif
  877. );
  878. }
  879. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  880. // Calculate inverse time for this move. No divide by zero due to previous checks.
  881. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
  882. float inverse_secs = fr_mm_s * inverse_millimeters;
  883. const uint8_t moves_queued = movesplanned();
  884. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  885. #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
  886. // Segment time im micro seconds
  887. uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
  888. #endif
  889. #if ENABLED(SLOWDOWN)
  890. if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
  891. if (segment_time_us < min_segment_time_us) {
  892. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  893. const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued);
  894. inverse_secs = 1000000.0 / nst;
  895. #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
  896. segment_time_us = nst;
  897. #endif
  898. }
  899. }
  900. #endif
  901. #if ENABLED(ULTRA_LCD)
  902. CRITICAL_SECTION_START
  903. block_buffer_runtime_us += segment_time_us;
  904. CRITICAL_SECTION_END
  905. #endif
  906. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  907. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  908. //FMM update ring buffer used for delay with filament measurements
  909. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  910. const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  911. // increment counters with next move in e axis
  912. filwidth_e_count += delta_mm[E_AXIS];
  913. filwidth_delay_dist += delta_mm[E_AXIS];
  914. // Only get new measurements on forward E movement
  915. if (!UNEAR_ZERO(filwidth_e_count)) {
  916. // Loop the delay distance counter (modulus by the mm length)
  917. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  918. // Convert into an index into the measurement array
  919. filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1);
  920. // If the index has changed (must have gone forward)...
  921. if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
  922. filwidth_e_count = 0; // Reset the E movement counter
  923. const uint8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  924. do {
  925. filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
  926. measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
  927. } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
  928. }
  929. }
  930. }
  931. #endif
  932. // Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
  933. float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
  934. float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
  935. LOOP_XYZE(i) {
  936. const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
  937. if (cs > max_jerk[i])
  938. NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
  939. NOLESS(max_stepper_speed, cs);
  940. #if ENABLED(DISTINCT_E_FACTORS)
  941. if (i == E_AXIS) i += extruder;
  942. #endif
  943. if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
  944. }
  945. // Max segment time in µs.
  946. #ifdef XY_FREQUENCY_LIMIT
  947. // Check and limit the xy direction change frequency
  948. const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  949. old_direction_bits = block->direction_bits;
  950. segment_time_us = LROUND((float)segment_time_us / speed_factor);
  951. uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
  952. xs1 = axis_segment_time_us[X_AXIS][1],
  953. xs2 = axis_segment_time_us[X_AXIS][2],
  954. ys0 = axis_segment_time_us[Y_AXIS][0],
  955. ys1 = axis_segment_time_us[Y_AXIS][1],
  956. ys2 = axis_segment_time_us[Y_AXIS][2];
  957. if (TEST(direction_change, X_AXIS)) {
  958. xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
  959. xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
  960. xs0 = 0;
  961. }
  962. xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
  963. if (TEST(direction_change, Y_AXIS)) {
  964. ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
  965. ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
  966. ys0 = 0;
  967. }
  968. ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
  969. const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2),
  970. max_y_segment_time = MAX3(ys0, ys1, ys2),
  971. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  972. if (min_xy_segment_time < MAX_FREQ_TIME_US) {
  973. const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
  974. NOMORE(speed_factor, low_sf);
  975. }
  976. #endif // XY_FREQUENCY_LIMIT
  977. block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
  978. block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
  979. // Correct the speed
  980. if (speed_factor < 1.0) {
  981. LOOP_XYZE(i) current_speed[i] *= speed_factor;
  982. block->nominal_speed *= speed_factor;
  983. block->nominal_rate *= speed_factor;
  984. }
  985. float safe_speed = block->nominal_speed * min_axis_accel_ratio;
  986. static float previous_safe_speed;
  987. // Compute and limit the acceleration rate for the trapezoid generator.
  988. const float steps_per_mm = block->step_event_count * inverse_millimeters;
  989. uint32_t accel;
  990. if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
  991. // convert to: acceleration steps/sec^2
  992. accel = CEIL(retract_acceleration * steps_per_mm);
  993. }
  994. else {
  995. #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
  996. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  997. const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
  998. if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
  999. } \
  1000. }while(0)
  1001. #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
  1002. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1003. const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
  1004. if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
  1005. } \
  1006. }while(0)
  1007. // Start with print or travel acceleration
  1008. accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
  1009. #if ENABLED(DISTINCT_E_FACTORS)
  1010. #define ACCEL_IDX extruder
  1011. #else
  1012. #define ACCEL_IDX 0
  1013. #endif
  1014. // Limit acceleration per axis
  1015. if (block->step_event_count <= cutoff_long) {
  1016. LIMIT_ACCEL_LONG(X_AXIS, 0);
  1017. LIMIT_ACCEL_LONG(Y_AXIS, 0);
  1018. LIMIT_ACCEL_LONG(Z_AXIS, 0);
  1019. LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
  1020. }
  1021. else {
  1022. LIMIT_ACCEL_FLOAT(X_AXIS, 0);
  1023. LIMIT_ACCEL_FLOAT(Y_AXIS, 0);
  1024. LIMIT_ACCEL_FLOAT(Z_AXIS, 0);
  1025. LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
  1026. }
  1027. }
  1028. block->acceleration_steps_per_s2 = accel;
  1029. block->acceleration = accel / steps_per_mm;
  1030. block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
  1031. // Initial limit on the segment entry velocity
  1032. float vmax_junction;
  1033. #if 0 // Use old jerk for now
  1034. float junction_deviation = 0.1;
  1035. // Compute path unit vector
  1036. double unit_vec[XYZ] = {
  1037. delta_mm[X_AXIS] * inverse_millimeters,
  1038. delta_mm[Y_AXIS] * inverse_millimeters,
  1039. delta_mm[Z_AXIS] * inverse_millimeters
  1040. };
  1041. /*
  1042. Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  1043. Let a circle be tangent to both previous and current path line segments, where the junction
  1044. deviation is defined as the distance from the junction to the closest edge of the circle,
  1045. collinear with the circle center.
  1046. The circular segment joining the two paths represents the path of centripetal acceleration.
  1047. Solve for max velocity based on max acceleration about the radius of the circle, defined
  1048. indirectly by junction deviation.
  1049. This may be also viewed as path width or max_jerk in the previous grbl version. This approach
  1050. does not actually deviate from path, but used as a robust way to compute cornering speeds, as
  1051. it takes into account the nonlinearities of both the junction angle and junction velocity.
  1052. */
  1053. vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  1054. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  1055. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  1056. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  1057. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  1058. const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  1059. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  1060. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
  1061. // Skip and use default max junction speed for 0 degree acute junction.
  1062. if (cos_theta < 0.95) {
  1063. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  1064. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  1065. if (cos_theta > -0.95) {
  1066. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  1067. float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  1068. NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  1069. }
  1070. }
  1071. }
  1072. #endif
  1073. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  1074. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1075. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1076. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1077. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1078. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1079. vmax_junction = min(block->nominal_speed, previous_nominal_speed);
  1080. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1081. float v_factor = 1;
  1082. uint8_t limited = 0;
  1083. // Now limit the jerk in all axes.
  1084. const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
  1085. LOOP_XYZE(axis) {
  1086. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
  1087. float v_exit = previous_speed[axis] * smaller_speed_factor,
  1088. v_entry = current_speed[axis];
  1089. if (limited) {
  1090. v_exit *= v_factor;
  1091. v_entry *= v_factor;
  1092. }
  1093. // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
  1094. const float jerk = (v_exit > v_entry)
  1095. ? // coasting axis reversal
  1096. ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : max(v_exit, -v_entry) )
  1097. : // v_exit <= v_entry coasting axis reversal
  1098. ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : max(-v_exit, v_entry) );
  1099. if (jerk > max_jerk[axis]) {
  1100. v_factor *= max_jerk[axis] / jerk;
  1101. ++limited;
  1102. }
  1103. }
  1104. if (limited) vmax_junction *= v_factor;
  1105. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1106. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1107. const float vmax_junction_threshold = vmax_junction * 0.99f;
  1108. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1109. // Not coasting. The machine will stop and start the movements anyway,
  1110. // better to start the segment from start.
  1111. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1112. vmax_junction = safe_speed;
  1113. }
  1114. }
  1115. else {
  1116. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1117. vmax_junction = safe_speed;
  1118. }
  1119. // Max entry speed of this block equals the max exit speed of the previous block.
  1120. block->max_entry_speed = vmax_junction;
  1121. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  1122. const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  1123. block->entry_speed = min(vmax_junction, v_allowable);
  1124. // Initialize planner efficiency flags
  1125. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1126. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1127. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1128. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1129. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1130. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1131. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1132. block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
  1133. // Update previous path unit_vector and nominal speed
  1134. COPY(previous_speed, current_speed);
  1135. previous_nominal_speed = block->nominal_speed;
  1136. previous_safe_speed = safe_speed;
  1137. #if ENABLED(LIN_ADVANCE)
  1138. /**
  1139. *
  1140. * Use LIN_ADVANCE for blocks if all these are true:
  1141. *
  1142. * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
  1143. *
  1144. * extruder_advance_k : There is an advance factor set.
  1145. *
  1146. * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
  1147. * In that case, the retract and move will be executed together.
  1148. * This leads to too many advance steps due to a huge e_acceleration.
  1149. * The math is good, but we must avoid retract moves with advance!
  1150. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1151. */
  1152. block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
  1153. && extruder_advance_k
  1154. && (uint32_t)esteps != block->step_event_count
  1155. && de > 0;
  1156. if (block->use_advance_lead)
  1157. block->abs_adv_steps_multiplier8 = LROUND(
  1158. extruder_advance_k
  1159. * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
  1160. * (block->nominal_speed / (float)block->nominal_rate)
  1161. * axis_steps_per_mm[E_AXIS_N] * 256.0
  1162. );
  1163. #endif // LIN_ADVANCE
  1164. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  1165. // Move buffer head
  1166. block_buffer_head = next_buffer_head;
  1167. // Update the position (only when a move was queued)
  1168. static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
  1169. COPY(position, target);
  1170. recalculate();
  1171. } // _buffer_steps()
  1172. /**
  1173. * Planner::_buffer_line
  1174. *
  1175. * Add a new linear movement to the buffer in axis units.
  1176. *
  1177. * Leveling and kinematics should be applied ahead of calling this.
  1178. *
  1179. * a,b,c,e - target positions in mm and/or degrees
  1180. * fr_mm_s - (target) speed of the move
  1181. * extruder - target extruder
  1182. */
  1183. void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  1184. // When changing extruders recalculate steps corresponding to the E position
  1185. #if ENABLED(DISTINCT_E_FACTORS)
  1186. if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
  1187. position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
  1188. last_extruder = extruder;
  1189. }
  1190. #endif
  1191. // The target position of the tool in absolute steps
  1192. // Calculate target position in absolute steps
  1193. const int32_t target[XYZE] = {
  1194. LROUND(a * axis_steps_per_mm[X_AXIS]),
  1195. LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1196. LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1197. LROUND(e * axis_steps_per_mm[E_AXIS_N])
  1198. };
  1199. /* <-- add a slash to enable
  1200. SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s);
  1201. #if IS_KINEMATIC
  1202. SERIAL_ECHOPAIR(" A:", a);
  1203. SERIAL_ECHOPAIR(" (", position[A_AXIS]);
  1204. SERIAL_ECHOPAIR("->", target[A_AXIS]);
  1205. SERIAL_ECHOPAIR(") B:", b);
  1206. #else
  1207. SERIAL_ECHOPAIR(" X:", a);
  1208. SERIAL_ECHOPAIR(" (", position[X_AXIS]);
  1209. SERIAL_ECHOPAIR("->", target[X_AXIS]);
  1210. SERIAL_ECHOPAIR(") Y:", b);
  1211. #endif
  1212. SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
  1213. SERIAL_ECHOPAIR("->", target[Y_AXIS]);
  1214. #if ENABLED(DELTA)
  1215. SERIAL_ECHOPAIR(") C:", c);
  1216. #else
  1217. SERIAL_ECHOPAIR(") Z:", c);
  1218. #endif
  1219. SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
  1220. SERIAL_ECHOPAIR("->", target[Z_AXIS]);
  1221. SERIAL_ECHOPAIR(") E:", e);
  1222. SERIAL_ECHOPAIR(" (", position[E_AXIS]);
  1223. SERIAL_ECHOPAIR("->", target[E_AXIS]);
  1224. SERIAL_ECHOLNPGM(")");
  1225. //*/
  1226. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  1227. if (DEBUGGING(DRYRUN))
  1228. position[E_AXIS] = target[E_AXIS];
  1229. // Always split the first move into two (if not homing or probing)
  1230. if (!blocks_queued()) {
  1231. #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
  1232. const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
  1233. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1234. _buffer_steps(between, fr_mm_s, extruder);
  1235. const uint8_t next = block_buffer_head;
  1236. _buffer_steps(target, fr_mm_s, extruder);
  1237. SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED);
  1238. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1239. }
  1240. else
  1241. _buffer_steps(target, fr_mm_s, extruder);
  1242. stepper.wake_up();
  1243. } // _buffer_line()
  1244. /**
  1245. * Directly set the planner XYZ position (and stepper positions)
  1246. * converting mm (or angles for SCARA) into steps.
  1247. *
  1248. * On CORE machines stepper ABC will be translated from the given XYZ.
  1249. */
  1250. void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
  1251. #if ENABLED(DISTINCT_E_FACTORS)
  1252. #define _EINDEX (E_AXIS + active_extruder)
  1253. last_extruder = active_extruder;
  1254. #else
  1255. #define _EINDEX E_AXIS
  1256. #endif
  1257. const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
  1258. nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1259. nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1260. ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
  1261. stepper.set_position(na, nb, nc, ne);
  1262. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1263. ZERO(previous_speed);
  1264. }
  1265. void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
  1266. #if PLANNER_LEVELING
  1267. float lpos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
  1268. apply_leveling(lpos);
  1269. #else
  1270. const float * const lpos = position;
  1271. #endif
  1272. #if IS_KINEMATIC
  1273. inverse_kinematics(lpos);
  1274. _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
  1275. #else
  1276. _set_position_mm(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], position[E_AXIS]);
  1277. #endif
  1278. }
  1279. /**
  1280. * Sync from the stepper positions. (e.g., after an interrupted move)
  1281. */
  1282. void Planner::sync_from_steppers() {
  1283. LOOP_XYZE(i)
  1284. position[i] = stepper.position((AxisEnum)i);
  1285. }
  1286. /**
  1287. * Setters for planner position (also setting stepper position).
  1288. */
  1289. void Planner::set_position_mm(const AxisEnum axis, const float &v) {
  1290. #if ENABLED(DISTINCT_E_FACTORS)
  1291. const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
  1292. last_extruder = active_extruder;
  1293. #else
  1294. const uint8_t axis_index = axis;
  1295. #endif
  1296. position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
  1297. stepper.set_position(axis, v);
  1298. previous_speed[axis] = 0.0;
  1299. }
  1300. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1301. void Planner::reset_acceleration_rates() {
  1302. #if ENABLED(DISTINCT_E_FACTORS)
  1303. #define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
  1304. #else
  1305. #define HIGHEST_CONDITION true
  1306. #endif
  1307. uint32_t highest_rate = 1;
  1308. LOOP_XYZE_N(i) {
  1309. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1310. if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  1311. }
  1312. cutoff_long = 4294967295UL / highest_rate;
  1313. }
  1314. // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
  1315. void Planner::refresh_positioning() {
  1316. LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
  1317. set_position_mm_kinematic(current_position);
  1318. reset_acceleration_rates();
  1319. }
  1320. #if ENABLED(AUTOTEMP)
  1321. void Planner::autotemp_M104_M109() {
  1322. autotemp_enabled = parser.seen('F');
  1323. if (autotemp_enabled) autotemp_factor = parser.value_celsius_diff();
  1324. if (parser.seen('S')) autotemp_min = parser.value_celsius();
  1325. if (parser.seen('B')) autotemp_max = parser.value_celsius();
  1326. }
  1327. #endif