My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 203KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  37. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  38. #ifdef MESH_BED_LEVELING
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #include "ultralcd.h"
  42. #include "planner.h"
  43. #include "stepper.h"
  44. #include "temperature.h"
  45. #include "cardreader.h"
  46. #include "watchdog.h"
  47. #include "configuration_store.h"
  48. #include "language.h"
  49. #include "pins_arduino.h"
  50. #include "math.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * M928 - Start SD logging (M928 filename.g) - ended by M29
  208. * M999 - Restart after being stopped by error
  209. *
  210. * "T" Codes
  211. *
  212. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  213. *
  214. */
  215. #ifdef SDSUPPORT
  216. CardReader card;
  217. #endif
  218. bool Running = true;
  219. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  220. static float feedrate = 1500.0, saved_feedrate;
  221. float current_position[NUM_AXIS] = { 0.0 };
  222. static float destination[NUM_AXIS] = { 0.0 };
  223. bool axis_known_position[3] = { false };
  224. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  225. static char *current_command, *current_command_args;
  226. static int cmd_queue_index_r = 0;
  227. static int cmd_queue_index_w = 0;
  228. static int commands_in_queue = 0;
  229. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  230. float homing_feedrate[] = HOMING_FEEDRATE;
  231. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  232. int feedrate_multiplier = 100; //100->1 200->2
  233. int saved_feedrate_multiplier;
  234. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  235. bool volumetric_enabled = false;
  236. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  237. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  238. float home_offset[3] = { 0 };
  239. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  240. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  241. uint8_t active_extruder = 0;
  242. int fanSpeed = 0;
  243. bool cancel_heatup = false;
  244. const char errormagic[] PROGMEM = "Error:";
  245. const char echomagic[] PROGMEM = "echo:";
  246. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  247. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  248. static char serial_char;
  249. static int serial_count = 0;
  250. static boolean comment_mode = false;
  251. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  252. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  253. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  254. // Inactivity shutdown
  255. millis_t previous_cmd_ms = 0;
  256. static millis_t max_inactive_time = 0;
  257. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  258. millis_t print_job_start_ms = 0; ///< Print job start time
  259. millis_t print_job_stop_ms = 0; ///< Print job stop time
  260. static uint8_t target_extruder;
  261. bool no_wait_for_cooling = true;
  262. bool target_direction;
  263. #ifdef ENABLE_AUTO_BED_LEVELING
  264. int xy_travel_speed = XY_TRAVEL_SPEED;
  265. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  266. #endif
  267. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  268. float z_endstop_adj = 0;
  269. #endif
  270. // Extruder offsets
  271. #if EXTRUDERS > 1
  272. #ifndef EXTRUDER_OFFSET_X
  273. #define EXTRUDER_OFFSET_X { 0 }
  274. #endif
  275. #ifndef EXTRUDER_OFFSET_Y
  276. #define EXTRUDER_OFFSET_Y { 0 }
  277. #endif
  278. float extruder_offset[][EXTRUDERS] = {
  279. EXTRUDER_OFFSET_X,
  280. EXTRUDER_OFFSET_Y
  281. #ifdef DUAL_X_CARRIAGE
  282. , { 0 } // supports offsets in XYZ plane
  283. #endif
  284. };
  285. #endif
  286. #ifdef SERVO_ENDSTOPS
  287. int servo_endstops[] = SERVO_ENDSTOPS;
  288. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  289. #endif
  290. #ifdef BARICUDA
  291. int ValvePressure = 0;
  292. int EtoPPressure = 0;
  293. #endif
  294. #ifdef FWRETRACT
  295. bool autoretract_enabled = false;
  296. bool retracted[EXTRUDERS] = { false };
  297. bool retracted_swap[EXTRUDERS] = { false };
  298. float retract_length = RETRACT_LENGTH;
  299. float retract_length_swap = RETRACT_LENGTH_SWAP;
  300. float retract_feedrate = RETRACT_FEEDRATE;
  301. float retract_zlift = RETRACT_ZLIFT;
  302. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  303. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  304. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  305. #endif // FWRETRACT
  306. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  307. bool powersupply =
  308. #ifdef PS_DEFAULT_OFF
  309. false
  310. #else
  311. true
  312. #endif
  313. ;
  314. #endif
  315. #ifdef DELTA
  316. float delta[3] = { 0 };
  317. #define SIN_60 0.8660254037844386
  318. #define COS_60 0.5
  319. float endstop_adj[3] = { 0 };
  320. // these are the default values, can be overriden with M665
  321. float delta_radius = DELTA_RADIUS;
  322. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  323. float delta_tower1_y = -COS_60 * delta_radius;
  324. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  325. float delta_tower2_y = -COS_60 * delta_radius;
  326. float delta_tower3_x = 0; // back middle tower
  327. float delta_tower3_y = delta_radius;
  328. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  329. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  330. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  331. #ifdef ENABLE_AUTO_BED_LEVELING
  332. int delta_grid_spacing[2] = { 0, 0 };
  333. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  334. #endif
  335. #else
  336. static bool home_all_axis = true;
  337. #endif
  338. #ifdef SCARA
  339. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  340. static float delta[3] = { 0 };
  341. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  342. #endif
  343. #ifdef FILAMENT_SENSOR
  344. //Variables for Filament Sensor input
  345. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  346. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  347. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  348. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  349. int delay_index1 = 0; //index into ring buffer
  350. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  351. float delay_dist = 0; //delay distance counter
  352. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  353. #endif
  354. #ifdef FILAMENT_RUNOUT_SENSOR
  355. static bool filrunoutEnqueued = false;
  356. #endif
  357. #ifdef SDSUPPORT
  358. static bool fromsd[BUFSIZE];
  359. #endif
  360. #if NUM_SERVOS > 0
  361. Servo servo[NUM_SERVOS];
  362. #endif
  363. #ifdef CHDK
  364. unsigned long chdkHigh = 0;
  365. boolean chdkActive = false;
  366. #endif
  367. //===========================================================================
  368. //================================ Functions ================================
  369. //===========================================================================
  370. void process_next_command();
  371. bool setTargetedHotend(int code);
  372. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. #ifdef PREVENT_DANGEROUS_EXTRUDE
  376. float extrude_min_temp = EXTRUDE_MINTEMP;
  377. #endif
  378. #ifdef SDSUPPORT
  379. #include "SdFatUtil.h"
  380. int freeMemory() { return SdFatUtil::FreeRam(); }
  381. #else
  382. extern "C" {
  383. extern unsigned int __bss_end;
  384. extern unsigned int __heap_start;
  385. extern void *__brkval;
  386. int freeMemory() {
  387. int free_memory;
  388. if ((int)__brkval == 0)
  389. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  390. else
  391. free_memory = ((int)&free_memory) - ((int)__brkval);
  392. return free_memory;
  393. }
  394. }
  395. #endif //!SDSUPPORT
  396. /**
  397. * Inject the next command from the command queue, when possible
  398. * Return false only if no command was pending
  399. */
  400. static bool drain_queued_commands_P() {
  401. if (!queued_commands_P) return false;
  402. // Get the next 30 chars from the sequence of gcodes to run
  403. char cmd[30];
  404. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  405. cmd[sizeof(cmd) - 1] = '\0';
  406. // Look for the end of line, or the end of sequence
  407. size_t i = 0;
  408. char c;
  409. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  410. cmd[i] = '\0';
  411. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  412. if (c)
  413. queued_commands_P += i + 1; // move to next command
  414. else
  415. queued_commands_P = NULL; // will have no more commands in the sequence
  416. }
  417. return true;
  418. }
  419. /**
  420. * Record one or many commands to run from program memory.
  421. * Aborts the current queue, if any.
  422. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  423. */
  424. void enqueuecommands_P(const char* pgcode) {
  425. queued_commands_P = pgcode;
  426. drain_queued_commands_P(); // first command executed asap (when possible)
  427. }
  428. /**
  429. * Copy a command directly into the main command buffer, from RAM.
  430. *
  431. * This is done in a non-safe way and needs a rework someday.
  432. * Returns false if it doesn't add any command
  433. */
  434. bool enqueuecommand(const char *cmd) {
  435. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  436. // This is dangerous if a mixing of serial and this happens
  437. char *command = command_queue[cmd_queue_index_w];
  438. strcpy(command, cmd);
  439. SERIAL_ECHO_START;
  440. SERIAL_ECHOPGM(MSG_Enqueueing);
  441. SERIAL_ECHO(command);
  442. SERIAL_ECHOLNPGM("\"");
  443. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  444. commands_in_queue++;
  445. return true;
  446. }
  447. void setup_killpin() {
  448. #if HAS_KILL
  449. SET_INPUT(KILL_PIN);
  450. WRITE(KILL_PIN, HIGH);
  451. #endif
  452. }
  453. void setup_filrunoutpin() {
  454. #if HAS_FILRUNOUT
  455. pinMode(FILRUNOUT_PIN, INPUT);
  456. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  457. WRITE(FILRUNOUT_PIN, HIGH);
  458. #endif
  459. #endif
  460. }
  461. // Set home pin
  462. void setup_homepin(void) {
  463. #if HAS_HOME
  464. SET_INPUT(HOME_PIN);
  465. WRITE(HOME_PIN, HIGH);
  466. #endif
  467. }
  468. void setup_photpin() {
  469. #if HAS_PHOTOGRAPH
  470. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  471. #endif
  472. }
  473. void setup_powerhold() {
  474. #if HAS_SUICIDE
  475. OUT_WRITE(SUICIDE_PIN, HIGH);
  476. #endif
  477. #if HAS_POWER_SWITCH
  478. #ifdef PS_DEFAULT_OFF
  479. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  480. #else
  481. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  482. #endif
  483. #endif
  484. }
  485. void suicide() {
  486. #if HAS_SUICIDE
  487. OUT_WRITE(SUICIDE_PIN, LOW);
  488. #endif
  489. }
  490. void servo_init() {
  491. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  492. servo[0].attach(SERVO0_PIN);
  493. #endif
  494. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  495. servo[1].attach(SERVO1_PIN);
  496. #endif
  497. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  498. servo[2].attach(SERVO2_PIN);
  499. #endif
  500. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  501. servo[3].attach(SERVO3_PIN);
  502. #endif
  503. // Set position of Servo Endstops that are defined
  504. #ifdef SERVO_ENDSTOPS
  505. for (int i = 0; i < 3; i++)
  506. if (servo_endstops[i] >= 0)
  507. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  508. #endif
  509. #if SERVO_LEVELING
  510. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  511. servo[servo_endstops[Z_AXIS]].detach();
  512. #endif
  513. }
  514. /**
  515. * Marlin entry-point: Set up before the program loop
  516. * - Set up the kill pin, filament runout, power hold
  517. * - Start the serial port
  518. * - Print startup messages and diagnostics
  519. * - Get EEPROM or default settings
  520. * - Initialize managers for:
  521. * • temperature
  522. * • planner
  523. * • watchdog
  524. * • stepper
  525. * • photo pin
  526. * • servos
  527. * • LCD controller
  528. * • Digipot I2C
  529. * • Z probe sled
  530. * • status LEDs
  531. */
  532. void setup() {
  533. setup_killpin();
  534. setup_filrunoutpin();
  535. setup_powerhold();
  536. MYSERIAL.begin(BAUDRATE);
  537. SERIAL_PROTOCOLLNPGM("start");
  538. SERIAL_ECHO_START;
  539. // Check startup - does nothing if bootloader sets MCUSR to 0
  540. byte mcu = MCUSR;
  541. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  542. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  543. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  544. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  545. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  546. MCUSR = 0;
  547. SERIAL_ECHOPGM(MSG_MARLIN);
  548. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  549. #ifdef STRING_VERSION_CONFIG_H
  550. #ifdef STRING_CONFIG_H_AUTHOR
  551. SERIAL_ECHO_START;
  552. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  553. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  554. SERIAL_ECHOPGM(MSG_AUTHOR);
  555. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  556. SERIAL_ECHOPGM("Compiled: ");
  557. SERIAL_ECHOLNPGM(__DATE__);
  558. #endif // STRING_CONFIG_H_AUTHOR
  559. #endif // STRING_VERSION_CONFIG_H
  560. SERIAL_ECHO_START;
  561. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  562. SERIAL_ECHO(freeMemory());
  563. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  564. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  565. #ifdef SDSUPPORT
  566. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  567. #endif
  568. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  569. Config_RetrieveSettings();
  570. tp_init(); // Initialize temperature loop
  571. plan_init(); // Initialize planner;
  572. watchdog_init();
  573. st_init(); // Initialize stepper, this enables interrupts!
  574. setup_photpin();
  575. servo_init();
  576. lcd_init();
  577. _delay_ms(1000); // wait 1sec to display the splash screen
  578. #if HAS_CONTROLLERFAN
  579. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  580. #endif
  581. #ifdef DIGIPOT_I2C
  582. digipot_i2c_init();
  583. #endif
  584. #ifdef Z_PROBE_SLED
  585. pinMode(SLED_PIN, OUTPUT);
  586. digitalWrite(SLED_PIN, LOW); // turn it off
  587. #endif // Z_PROBE_SLED
  588. setup_homepin();
  589. #ifdef STAT_LED_RED
  590. pinMode(STAT_LED_RED, OUTPUT);
  591. digitalWrite(STAT_LED_RED, LOW); // turn it off
  592. #endif
  593. #ifdef STAT_LED_BLUE
  594. pinMode(STAT_LED_BLUE, OUTPUT);
  595. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  596. #endif
  597. }
  598. /**
  599. * The main Marlin program loop
  600. *
  601. * - Save or log commands to SD
  602. * - Process available commands (if not saving)
  603. * - Call heater manager
  604. * - Call inactivity manager
  605. * - Call endstop manager
  606. * - Call LCD update
  607. */
  608. void loop() {
  609. if (commands_in_queue < BUFSIZE - 1) get_command();
  610. #ifdef SDSUPPORT
  611. card.checkautostart(false);
  612. #endif
  613. if (commands_in_queue) {
  614. #ifdef SDSUPPORT
  615. if (card.saving) {
  616. char *command = command_queue[cmd_queue_index_r];
  617. if (strstr_P(command, PSTR("M29"))) {
  618. // M29 closes the file
  619. card.closefile();
  620. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  621. }
  622. else {
  623. // Write the string from the read buffer to SD
  624. card.write_command(command);
  625. if (card.logging)
  626. process_next_command(); // The card is saving because it's logging
  627. else
  628. SERIAL_PROTOCOLLNPGM(MSG_OK);
  629. }
  630. }
  631. else
  632. process_next_command();
  633. #else
  634. process_next_command();
  635. #endif // SDSUPPORT
  636. commands_in_queue--;
  637. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  638. }
  639. // Check heater every n milliseconds
  640. manage_heater();
  641. manage_inactivity();
  642. checkHitEndstops();
  643. lcd_update();
  644. }
  645. void gcode_line_error(const char *err, bool doFlush=true) {
  646. SERIAL_ERROR_START;
  647. serialprintPGM(err);
  648. SERIAL_ERRORLN(gcode_LastN);
  649. //Serial.println(gcode_N);
  650. if (doFlush) FlushSerialRequestResend();
  651. serial_count = 0;
  652. }
  653. /**
  654. * Add to the circular command queue the next command from:
  655. * - The command-injection queue (queued_commands_P)
  656. * - The active serial input (usually USB)
  657. * - The SD card file being actively printed
  658. */
  659. void get_command() {
  660. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  661. #ifdef NO_TIMEOUTS
  662. static millis_t last_command_time = 0;
  663. millis_t ms = millis();
  664. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  665. SERIAL_ECHOLNPGM(MSG_WAIT);
  666. last_command_time = ms;
  667. }
  668. #endif
  669. //
  670. // Loop while serial characters are incoming and the queue is not full
  671. //
  672. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  673. #ifdef NO_TIMEOUTS
  674. last_command_time = ms;
  675. #endif
  676. serial_char = MYSERIAL.read();
  677. //
  678. // If the character ends the line, or the line is full...
  679. //
  680. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  681. // end of line == end of comment
  682. comment_mode = false;
  683. if (!serial_count) return; // empty lines just exit
  684. char *command = command_queue[cmd_queue_index_w];
  685. command[serial_count] = 0; // terminate string
  686. // this item in the queue is not from sd
  687. #ifdef SDSUPPORT
  688. fromsd[cmd_queue_index_w] = false;
  689. #endif
  690. char *npos = strchr(command, 'N');
  691. char *apos = strchr(command, '*');
  692. if (npos) {
  693. gcode_N = strtol(npos + 1, NULL, 10);
  694. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  695. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  696. return;
  697. }
  698. if (apos) {
  699. byte checksum = 0, count = 0;
  700. while (command[count] != '*') checksum ^= command[count++];
  701. if (strtol(apos + 1, NULL, 10) != checksum) {
  702. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  703. return;
  704. }
  705. // if no errors, continue parsing
  706. }
  707. else {
  708. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  709. return;
  710. }
  711. gcode_LastN = gcode_N;
  712. // if no errors, continue parsing
  713. }
  714. else if (apos) { // No '*' without 'N'
  715. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  716. return;
  717. }
  718. // Movement commands alert when stopped
  719. if (IsStopped()) {
  720. char *gpos = strchr(command, 'G');
  721. if (gpos) {
  722. int codenum = strtol(gpos + 1, NULL, 10);
  723. switch (codenum) {
  724. case 0:
  725. case 1:
  726. case 2:
  727. case 3:
  728. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  729. LCD_MESSAGEPGM(MSG_STOPPED);
  730. break;
  731. }
  732. }
  733. }
  734. // If command was e-stop process now
  735. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  736. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  737. commands_in_queue += 1;
  738. serial_count = 0; //clear buffer
  739. }
  740. else if (serial_char == '\\') { // Handle escapes
  741. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  742. // if we have one more character, copy it over
  743. serial_char = MYSERIAL.read();
  744. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  745. }
  746. // otherwise do nothing
  747. }
  748. else { // its not a newline, carriage return or escape char
  749. if (serial_char == ';') comment_mode = true;
  750. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  751. }
  752. }
  753. #ifdef SDSUPPORT
  754. if (!card.sdprinting || serial_count) return;
  755. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  756. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  757. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  758. static bool stop_buffering = false;
  759. if (commands_in_queue == 0) stop_buffering = false;
  760. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  761. int16_t n = card.get();
  762. serial_char = (char)n;
  763. if (serial_char == '\n' || serial_char == '\r' ||
  764. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  765. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  766. ) {
  767. if (card.eof()) {
  768. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  769. print_job_stop_ms = millis();
  770. char time[30];
  771. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  772. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  773. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  774. SERIAL_ECHO_START;
  775. SERIAL_ECHOLN(time);
  776. lcd_setstatus(time, true);
  777. card.printingHasFinished();
  778. card.checkautostart(true);
  779. }
  780. if (serial_char == '#') stop_buffering = true;
  781. if (!serial_count) {
  782. comment_mode = false; //for new command
  783. return; //if empty line
  784. }
  785. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  786. // if (!comment_mode) {
  787. fromsd[cmd_queue_index_w] = true;
  788. commands_in_queue += 1;
  789. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  790. // }
  791. comment_mode = false; //for new command
  792. serial_count = 0; //clear buffer
  793. }
  794. else {
  795. if (serial_char == ';') comment_mode = true;
  796. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  797. }
  798. }
  799. #endif // SDSUPPORT
  800. }
  801. bool code_has_value() {
  802. int i = 1;
  803. char c = seen_pointer[i];
  804. if (c == '-' || c == '+') c = seen_pointer[++i];
  805. if (c == '.') c = seen_pointer[++i];
  806. return (c >= '0' && c <= '9');
  807. }
  808. float code_value() {
  809. float ret;
  810. char *e = strchr(seen_pointer, 'E');
  811. if (e) {
  812. *e = 0;
  813. ret = strtod(seen_pointer+1, NULL);
  814. *e = 'E';
  815. }
  816. else
  817. ret = strtod(seen_pointer+1, NULL);
  818. return ret;
  819. }
  820. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  821. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  822. bool code_seen(char code) {
  823. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  824. return (seen_pointer != NULL); //Return True if a character was found
  825. }
  826. #define DEFINE_PGM_READ_ANY(type, reader) \
  827. static inline type pgm_read_any(const type *p) \
  828. { return pgm_read_##reader##_near(p); }
  829. DEFINE_PGM_READ_ANY(float, float);
  830. DEFINE_PGM_READ_ANY(signed char, byte);
  831. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  832. static const PROGMEM type array##_P[3] = \
  833. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  834. static inline type array(int axis) \
  835. { return pgm_read_any(&array##_P[axis]); }
  836. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  837. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  838. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  839. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  840. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  841. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  842. #ifdef DUAL_X_CARRIAGE
  843. #define DXC_FULL_CONTROL_MODE 0
  844. #define DXC_AUTO_PARK_MODE 1
  845. #define DXC_DUPLICATION_MODE 2
  846. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  847. static float x_home_pos(int extruder) {
  848. if (extruder == 0)
  849. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  850. else
  851. // In dual carriage mode the extruder offset provides an override of the
  852. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  853. // This allow soft recalibration of the second extruder offset position without firmware reflash
  854. // (through the M218 command).
  855. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  856. }
  857. static int x_home_dir(int extruder) {
  858. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  859. }
  860. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  861. static bool active_extruder_parked = false; // used in mode 1 & 2
  862. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  863. static millis_t delayed_move_time = 0; // used in mode 1
  864. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  865. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  866. bool extruder_duplication_enabled = false; // used in mode 2
  867. #endif //DUAL_X_CARRIAGE
  868. static void axis_is_at_home(AxisEnum axis) {
  869. #ifdef DUAL_X_CARRIAGE
  870. if (axis == X_AXIS) {
  871. if (active_extruder != 0) {
  872. current_position[X_AXIS] = x_home_pos(active_extruder);
  873. min_pos[X_AXIS] = X2_MIN_POS;
  874. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  875. return;
  876. }
  877. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  878. float xoff = home_offset[X_AXIS];
  879. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  880. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  881. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  882. return;
  883. }
  884. }
  885. #endif
  886. #ifdef SCARA
  887. if (axis == X_AXIS || axis == Y_AXIS) {
  888. float homeposition[3];
  889. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  890. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  891. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  892. // Works out real Homeposition angles using inverse kinematics,
  893. // and calculates homing offset using forward kinematics
  894. calculate_delta(homeposition);
  895. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  896. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  897. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  898. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  900. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  901. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  902. calculate_SCARA_forward_Transform(delta);
  903. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  904. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  905. current_position[axis] = delta[axis];
  906. // SCARA home positions are based on configuration since the actual limits are determined by the
  907. // inverse kinematic transform.
  908. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  909. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  910. }
  911. else
  912. #endif
  913. {
  914. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  915. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  916. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  917. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  918. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  919. #endif
  920. }
  921. }
  922. /**
  923. * Some planner shorthand inline functions
  924. */
  925. inline void set_homing_bump_feedrate(AxisEnum axis) {
  926. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  927. if (homing_bump_divisor[axis] >= 1)
  928. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  929. else {
  930. feedrate = homing_feedrate[axis] / 10;
  931. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  932. }
  933. }
  934. inline void line_to_current_position() {
  935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  936. }
  937. inline void line_to_z(float zPosition) {
  938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  939. }
  940. inline void line_to_destination(float mm_m) {
  941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  942. }
  943. inline void line_to_destination() {
  944. line_to_destination(feedrate);
  945. }
  946. inline void sync_plan_position() {
  947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  948. }
  949. #if defined(DELTA) || defined(SCARA)
  950. inline void sync_plan_position_delta() {
  951. calculate_delta(current_position);
  952. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  953. }
  954. #endif
  955. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  956. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  957. static void setup_for_endstop_move() {
  958. saved_feedrate = feedrate;
  959. saved_feedrate_multiplier = feedrate_multiplier;
  960. feedrate_multiplier = 100;
  961. refresh_cmd_timeout();
  962. enable_endstops(true);
  963. }
  964. #ifdef ENABLE_AUTO_BED_LEVELING
  965. #ifdef DELTA
  966. /**
  967. * Calculate delta, start a line, and set current_position to destination
  968. */
  969. void prepare_move_raw() {
  970. refresh_cmd_timeout();
  971. calculate_delta(destination);
  972. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  973. set_current_to_destination();
  974. }
  975. #endif
  976. #ifdef AUTO_BED_LEVELING_GRID
  977. #ifndef DELTA
  978. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  979. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  980. planeNormal.debug("planeNormal");
  981. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  982. //bedLevel.debug("bedLevel");
  983. //plan_bed_level_matrix.debug("bed level before");
  984. //vector_3 uncorrected_position = plan_get_position_mm();
  985. //uncorrected_position.debug("position before");
  986. vector_3 corrected_position = plan_get_position();
  987. //corrected_position.debug("position after");
  988. current_position[X_AXIS] = corrected_position.x;
  989. current_position[Y_AXIS] = corrected_position.y;
  990. current_position[Z_AXIS] = corrected_position.z;
  991. sync_plan_position();
  992. }
  993. #endif // !DELTA
  994. #else // !AUTO_BED_LEVELING_GRID
  995. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  996. plan_bed_level_matrix.set_to_identity();
  997. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  998. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  999. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1000. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1001. if (planeNormal.z < 0) {
  1002. planeNormal.x = -planeNormal.x;
  1003. planeNormal.y = -planeNormal.y;
  1004. planeNormal.z = -planeNormal.z;
  1005. }
  1006. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1007. vector_3 corrected_position = plan_get_position();
  1008. current_position[X_AXIS] = corrected_position.x;
  1009. current_position[Y_AXIS] = corrected_position.y;
  1010. current_position[Z_AXIS] = corrected_position.z;
  1011. sync_plan_position();
  1012. }
  1013. #endif // !AUTO_BED_LEVELING_GRID
  1014. static void run_z_probe() {
  1015. #ifdef DELTA
  1016. float start_z = current_position[Z_AXIS];
  1017. long start_steps = st_get_position(Z_AXIS);
  1018. // move down slowly until you find the bed
  1019. feedrate = homing_feedrate[Z_AXIS] / 4;
  1020. destination[Z_AXIS] = -10;
  1021. prepare_move_raw(); // this will also set_current_to_destination
  1022. st_synchronize();
  1023. endstops_hit_on_purpose(); // clear endstop hit flags
  1024. // we have to let the planner know where we are right now as it is not where we said to go.
  1025. long stop_steps = st_get_position(Z_AXIS);
  1026. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1027. current_position[Z_AXIS] = mm;
  1028. sync_plan_position_delta();
  1029. #else // !DELTA
  1030. plan_bed_level_matrix.set_to_identity();
  1031. feedrate = homing_feedrate[Z_AXIS];
  1032. // Move down until the probe (or endstop?) is triggered
  1033. float zPosition = -10;
  1034. line_to_z(zPosition);
  1035. st_synchronize();
  1036. // Tell the planner where we ended up - Get this from the stepper handler
  1037. zPosition = st_get_position_mm(Z_AXIS);
  1038. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1039. // move up the retract distance
  1040. zPosition += home_bump_mm(Z_AXIS);
  1041. line_to_z(zPosition);
  1042. st_synchronize();
  1043. endstops_hit_on_purpose(); // clear endstop hit flags
  1044. // move back down slowly to find bed
  1045. set_homing_bump_feedrate(Z_AXIS);
  1046. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1047. line_to_z(zPosition);
  1048. st_synchronize();
  1049. endstops_hit_on_purpose(); // clear endstop hit flags
  1050. // Get the current stepper position after bumping an endstop
  1051. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1052. sync_plan_position();
  1053. #endif // !DELTA
  1054. }
  1055. /**
  1056. * Plan a move to (X, Y, Z) and set the current_position
  1057. * The final current_position may not be the one that was requested
  1058. */
  1059. static void do_blocking_move_to(float x, float y, float z) {
  1060. float oldFeedRate = feedrate;
  1061. #ifdef DELTA
  1062. feedrate = XY_TRAVEL_SPEED;
  1063. destination[X_AXIS] = x;
  1064. destination[Y_AXIS] = y;
  1065. destination[Z_AXIS] = z;
  1066. prepare_move_raw(); // this will also set_current_to_destination
  1067. st_synchronize();
  1068. #else
  1069. feedrate = homing_feedrate[Z_AXIS];
  1070. current_position[Z_AXIS] = z;
  1071. line_to_current_position();
  1072. st_synchronize();
  1073. feedrate = xy_travel_speed;
  1074. current_position[X_AXIS] = x;
  1075. current_position[Y_AXIS] = y;
  1076. line_to_current_position();
  1077. st_synchronize();
  1078. #endif
  1079. feedrate = oldFeedRate;
  1080. }
  1081. static void clean_up_after_endstop_move() {
  1082. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1083. enable_endstops(false);
  1084. #endif
  1085. feedrate = saved_feedrate;
  1086. feedrate_multiplier = saved_feedrate_multiplier;
  1087. refresh_cmd_timeout();
  1088. }
  1089. static void deploy_z_probe() {
  1090. #ifdef SERVO_ENDSTOPS
  1091. // Engage Z Servo endstop if enabled
  1092. if (servo_endstops[Z_AXIS] >= 0) {
  1093. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1094. #if SERVO_LEVELING
  1095. srv->attach(0);
  1096. #endif
  1097. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1098. #if SERVO_LEVELING
  1099. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1100. srv->detach();
  1101. #endif
  1102. }
  1103. #elif defined(Z_PROBE_ALLEN_KEY)
  1104. feedrate = homing_feedrate[X_AXIS];
  1105. // Move to the start position to initiate deployment
  1106. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1107. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1108. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1109. prepare_move_raw(); // this will also set_current_to_destination
  1110. // Home X to touch the belt
  1111. feedrate = homing_feedrate[X_AXIS]/10;
  1112. destination[X_AXIS] = 0;
  1113. prepare_move_raw(); // this will also set_current_to_destination
  1114. // Home Y for safety
  1115. feedrate = homing_feedrate[X_AXIS]/2;
  1116. destination[Y_AXIS] = 0;
  1117. prepare_move_raw(); // this will also set_current_to_destination
  1118. st_synchronize();
  1119. #ifdef Z_PROBE_ENDSTOP
  1120. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1121. if (z_probe_endstop)
  1122. #else
  1123. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1124. if (z_min_endstop)
  1125. #endif
  1126. {
  1127. if (IsRunning()) {
  1128. SERIAL_ERROR_START;
  1129. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1130. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1131. }
  1132. Stop();
  1133. }
  1134. #endif // Z_PROBE_ALLEN_KEY
  1135. }
  1136. static void stow_z_probe(bool doRaise=true) {
  1137. #ifdef SERVO_ENDSTOPS
  1138. // Retract Z Servo endstop if enabled
  1139. if (servo_endstops[Z_AXIS] >= 0) {
  1140. #if Z_RAISE_AFTER_PROBING > 0
  1141. if (doRaise) {
  1142. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1143. st_synchronize();
  1144. }
  1145. #endif
  1146. // Change the Z servo angle
  1147. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1148. #if SERVO_LEVELING
  1149. srv->attach(0);
  1150. #endif
  1151. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1152. #if SERVO_LEVELING
  1153. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1154. srv->detach();
  1155. #endif
  1156. }
  1157. #elif defined(Z_PROBE_ALLEN_KEY)
  1158. // Move up for safety
  1159. feedrate = homing_feedrate[X_AXIS];
  1160. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1161. prepare_move_raw(); // this will also set_current_to_destination
  1162. // Move to the start position to initiate retraction
  1163. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1164. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1165. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1166. prepare_move_raw(); // this will also set_current_to_destination
  1167. // Move the nozzle down to push the probe into retracted position
  1168. feedrate = homing_feedrate[Z_AXIS]/10;
  1169. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1170. prepare_move_raw(); // this will also set_current_to_destination
  1171. // Move up for safety
  1172. feedrate = homing_feedrate[Z_AXIS]/2;
  1173. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1174. prepare_move_raw(); // this will also set_current_to_destination
  1175. // Home XY for safety
  1176. feedrate = homing_feedrate[X_AXIS]/2;
  1177. destination[X_AXIS] = 0;
  1178. destination[Y_AXIS] = 0;
  1179. prepare_move_raw(); // this will also set_current_to_destination
  1180. st_synchronize();
  1181. #ifdef Z_PROBE_ENDSTOP
  1182. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1183. if (!z_probe_endstop)
  1184. #else
  1185. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1186. if (!z_min_endstop)
  1187. #endif
  1188. {
  1189. if (IsRunning()) {
  1190. SERIAL_ERROR_START;
  1191. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1192. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1193. }
  1194. Stop();
  1195. }
  1196. #endif // Z_PROBE_ALLEN_KEY
  1197. }
  1198. enum ProbeAction {
  1199. ProbeStay = 0,
  1200. ProbeDeploy = BIT(0),
  1201. ProbeStow = BIT(1),
  1202. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1203. };
  1204. // Probe bed height at position (x,y), returns the measured z value
  1205. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1206. // move to right place
  1207. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1208. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1209. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1210. if (probe_action & ProbeDeploy) deploy_z_probe();
  1211. #endif
  1212. run_z_probe();
  1213. float measured_z = current_position[Z_AXIS];
  1214. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1215. if (probe_action == ProbeStay) {
  1216. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1217. st_synchronize();
  1218. }
  1219. #endif
  1220. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1221. if (probe_action & ProbeStow) stow_z_probe();
  1222. #endif
  1223. if (verbose_level > 2) {
  1224. SERIAL_PROTOCOLPGM("Bed X: ");
  1225. SERIAL_PROTOCOL_F(x, 3);
  1226. SERIAL_PROTOCOLPGM(" Y: ");
  1227. SERIAL_PROTOCOL_F(y, 3);
  1228. SERIAL_PROTOCOLPGM(" Z: ");
  1229. SERIAL_PROTOCOL_F(measured_z, 3);
  1230. SERIAL_EOL;
  1231. }
  1232. return measured_z;
  1233. }
  1234. #ifdef DELTA
  1235. /**
  1236. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1237. */
  1238. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1239. if (bed_level[x][y] != 0.0) {
  1240. return; // Don't overwrite good values.
  1241. }
  1242. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1243. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1244. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1245. float median = c; // Median is robust (ignores outliers).
  1246. if (a < b) {
  1247. if (b < c) median = b;
  1248. if (c < a) median = a;
  1249. } else { // b <= a
  1250. if (c < b) median = b;
  1251. if (a < c) median = a;
  1252. }
  1253. bed_level[x][y] = median;
  1254. }
  1255. // Fill in the unprobed points (corners of circular print surface)
  1256. // using linear extrapolation, away from the center.
  1257. static void extrapolate_unprobed_bed_level() {
  1258. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1259. for (int y = 0; y <= half; y++) {
  1260. for (int x = 0; x <= half; x++) {
  1261. if (x + y < 3) continue;
  1262. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1263. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1264. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1265. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1266. }
  1267. }
  1268. }
  1269. // Print calibration results for plotting or manual frame adjustment.
  1270. static void print_bed_level() {
  1271. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1272. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1273. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1274. SERIAL_PROTOCOLCHAR(' ');
  1275. }
  1276. SERIAL_EOL;
  1277. }
  1278. }
  1279. // Reset calibration results to zero.
  1280. void reset_bed_level() {
  1281. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1282. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1283. bed_level[x][y] = 0.0;
  1284. }
  1285. }
  1286. }
  1287. #endif // DELTA
  1288. #endif // ENABLE_AUTO_BED_LEVELING
  1289. #ifdef Z_PROBE_SLED
  1290. #ifndef SLED_DOCKING_OFFSET
  1291. #define SLED_DOCKING_OFFSET 0
  1292. #endif
  1293. /**
  1294. * Method to dock/undock a sled designed by Charles Bell.
  1295. *
  1296. * dock[in] If true, move to MAX_X and engage the electromagnet
  1297. * offset[in] The additional distance to move to adjust docking location
  1298. */
  1299. static void dock_sled(bool dock, int offset=0) {
  1300. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1301. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1302. SERIAL_ECHO_START;
  1303. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1304. return;
  1305. }
  1306. if (dock) {
  1307. float oldXpos = current_position[X_AXIS]; // save x position
  1308. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1309. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1310. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1311. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1312. } else {
  1313. float oldXpos = current_position[X_AXIS]; // save x position
  1314. float z_loc = current_position[Z_AXIS];
  1315. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1316. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1317. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1318. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1319. }
  1320. }
  1321. #endif // Z_PROBE_SLED
  1322. /**
  1323. * Home an individual axis
  1324. */
  1325. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1326. static void homeaxis(AxisEnum axis) {
  1327. #define HOMEAXIS_DO(LETTER) \
  1328. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1329. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1330. int axis_home_dir =
  1331. #ifdef DUAL_X_CARRIAGE
  1332. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1333. #endif
  1334. home_dir(axis);
  1335. // Set the axis position as setup for the move
  1336. current_position[axis] = 0;
  1337. sync_plan_position();
  1338. #ifdef Z_PROBE_SLED
  1339. // Get Probe
  1340. if (axis == Z_AXIS) {
  1341. if (axis_home_dir < 0) dock_sled(false);
  1342. }
  1343. #endif
  1344. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1345. // Deploy a probe if there is one, and homing towards the bed
  1346. if (axis == Z_AXIS) {
  1347. if (axis_home_dir < 0) deploy_z_probe();
  1348. }
  1349. #endif
  1350. #ifdef SERVO_ENDSTOPS
  1351. if (axis != Z_AXIS) {
  1352. // Engage Servo endstop if enabled
  1353. if (servo_endstops[axis] > -1)
  1354. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1355. }
  1356. #endif
  1357. // Set a flag for Z motor locking
  1358. #ifdef Z_DUAL_ENDSTOPS
  1359. if (axis == Z_AXIS) In_Homing_Process(true);
  1360. #endif
  1361. // Move towards the endstop until an endstop is triggered
  1362. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1363. feedrate = homing_feedrate[axis];
  1364. line_to_destination();
  1365. st_synchronize();
  1366. // Set the axis position as setup for the move
  1367. current_position[axis] = 0;
  1368. sync_plan_position();
  1369. enable_endstops(false); // Disable endstops while moving away
  1370. // Move away from the endstop by the axis HOME_BUMP_MM
  1371. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1372. line_to_destination();
  1373. st_synchronize();
  1374. enable_endstops(true); // Enable endstops for next homing move
  1375. // Slow down the feedrate for the next move
  1376. set_homing_bump_feedrate(axis);
  1377. // Move slowly towards the endstop until triggered
  1378. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1379. line_to_destination();
  1380. st_synchronize();
  1381. #ifdef Z_DUAL_ENDSTOPS
  1382. if (axis == Z_AXIS) {
  1383. float adj = fabs(z_endstop_adj);
  1384. bool lockZ1;
  1385. if (axis_home_dir > 0) {
  1386. adj = -adj;
  1387. lockZ1 = (z_endstop_adj > 0);
  1388. }
  1389. else
  1390. lockZ1 = (z_endstop_adj < 0);
  1391. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1392. sync_plan_position();
  1393. // Move to the adjusted endstop height
  1394. feedrate = homing_feedrate[axis];
  1395. destination[Z_AXIS] = adj;
  1396. line_to_destination();
  1397. st_synchronize();
  1398. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1399. In_Homing_Process(false);
  1400. } // Z_AXIS
  1401. #endif
  1402. #ifdef DELTA
  1403. // retrace by the amount specified in endstop_adj
  1404. if (endstop_adj[axis] * axis_home_dir < 0) {
  1405. enable_endstops(false); // Disable endstops while moving away
  1406. sync_plan_position();
  1407. destination[axis] = endstop_adj[axis];
  1408. line_to_destination();
  1409. st_synchronize();
  1410. enable_endstops(true); // Enable endstops for next homing move
  1411. }
  1412. #endif
  1413. // Set the axis position to its home position (plus home offsets)
  1414. axis_is_at_home(axis);
  1415. sync_plan_position();
  1416. destination[axis] = current_position[axis];
  1417. feedrate = 0.0;
  1418. endstops_hit_on_purpose(); // clear endstop hit flags
  1419. axis_known_position[axis] = true;
  1420. #ifdef Z_PROBE_SLED
  1421. // bring probe back
  1422. if (axis == Z_AXIS) {
  1423. if (axis_home_dir < 0) dock_sled(true);
  1424. }
  1425. #endif
  1426. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1427. // Deploy a probe if there is one, and homing towards the bed
  1428. if (axis == Z_AXIS) {
  1429. if (axis_home_dir < 0) stow_z_probe();
  1430. }
  1431. else
  1432. #endif
  1433. #ifdef SERVO_ENDSTOPS
  1434. {
  1435. // Retract Servo endstop if enabled
  1436. if (servo_endstops[axis] > -1)
  1437. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1438. }
  1439. #endif
  1440. }
  1441. }
  1442. #ifdef FWRETRACT
  1443. void retract(bool retracting, bool swapping=false) {
  1444. if (retracting == retracted[active_extruder]) return;
  1445. float oldFeedrate = feedrate;
  1446. set_destination_to_current();
  1447. if (retracting) {
  1448. feedrate = retract_feedrate * 60;
  1449. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1450. plan_set_e_position(current_position[E_AXIS]);
  1451. prepare_move();
  1452. if (retract_zlift > 0.01) {
  1453. current_position[Z_AXIS] -= retract_zlift;
  1454. #ifdef DELTA
  1455. sync_plan_position_delta();
  1456. #else
  1457. sync_plan_position();
  1458. #endif
  1459. prepare_move();
  1460. }
  1461. }
  1462. else {
  1463. if (retract_zlift > 0.01) {
  1464. current_position[Z_AXIS] += retract_zlift;
  1465. #ifdef DELTA
  1466. sync_plan_position_delta();
  1467. #else
  1468. sync_plan_position();
  1469. #endif
  1470. //prepare_move();
  1471. }
  1472. feedrate = retract_recover_feedrate * 60;
  1473. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1474. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1475. plan_set_e_position(current_position[E_AXIS]);
  1476. prepare_move();
  1477. }
  1478. feedrate = oldFeedrate;
  1479. retracted[active_extruder] = retracting;
  1480. } // retract()
  1481. #endif // FWRETRACT
  1482. /**
  1483. *
  1484. * G-Code Handler functions
  1485. *
  1486. */
  1487. /**
  1488. * Set XYZE destination and feedrate from the current GCode command
  1489. *
  1490. * - Set destination from included axis codes
  1491. * - Set to current for missing axis codes
  1492. * - Set the feedrate, if included
  1493. */
  1494. void gcode_get_destination() {
  1495. for (int i = 0; i < NUM_AXIS; i++) {
  1496. if (code_seen(axis_codes[i]))
  1497. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1498. else
  1499. destination[i] = current_position[i];
  1500. }
  1501. if (code_seen('F')) {
  1502. float next_feedrate = code_value();
  1503. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1504. }
  1505. }
  1506. void unknown_command_error() {
  1507. SERIAL_ECHO_START;
  1508. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1509. SERIAL_ECHO(current_command);
  1510. SERIAL_ECHOPGM("\"\n");
  1511. }
  1512. /**
  1513. * G0, G1: Coordinated movement of X Y Z E axes
  1514. */
  1515. inline void gcode_G0_G1() {
  1516. if (IsRunning()) {
  1517. gcode_get_destination(); // For X Y Z E F
  1518. #ifdef FWRETRACT
  1519. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1520. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1521. // Is this move an attempt to retract or recover?
  1522. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1523. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1524. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1525. retract(!retracted[active_extruder]);
  1526. return;
  1527. }
  1528. }
  1529. #endif //FWRETRACT
  1530. prepare_move();
  1531. }
  1532. }
  1533. /**
  1534. * Plan an arc in 2 dimensions
  1535. *
  1536. * The arc is approximated by generating many small linear segments.
  1537. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1538. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1539. * larger segments will tend to be more efficient. Your slicer should have
  1540. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1541. */
  1542. void plan_arc(
  1543. float *target, // Destination position
  1544. float *offset, // Center of rotation relative to current_position
  1545. uint8_t clockwise // Clockwise?
  1546. ) {
  1547. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1548. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1549. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1550. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1551. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1552. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1553. r_axis1 = -offset[Y_AXIS],
  1554. rt_axis0 = target[X_AXIS] - center_axis0,
  1555. rt_axis1 = target[Y_AXIS] - center_axis1;
  1556. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1557. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1558. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1559. if (clockwise) { angular_travel -= RADIANS(360); }
  1560. // Make a circle if the angular rotation is 0
  1561. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1562. angular_travel += RADIANS(360);
  1563. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1564. if (mm_of_travel < 0.001) { return; }
  1565. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1566. if (segments == 0) segments = 1;
  1567. float theta_per_segment = angular_travel/segments;
  1568. float linear_per_segment = linear_travel/segments;
  1569. float extruder_per_segment = extruder_travel/segments;
  1570. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1571. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1572. r_T = [cos(phi) -sin(phi);
  1573. sin(phi) cos(phi] * r ;
  1574. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1575. defined from the circle center to the initial position. Each line segment is formed by successive
  1576. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1577. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1578. all double numbers are single precision on the Arduino. (True double precision will not have
  1579. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1580. tool precision in some cases. Therefore, arc path correction is implemented.
  1581. Small angle approximation may be used to reduce computation overhead further. This approximation
  1582. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1583. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1584. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1585. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1586. issue for CNC machines with the single precision Arduino calculations.
  1587. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1588. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1589. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1590. This is important when there are successive arc motions.
  1591. */
  1592. // Vector rotation matrix values
  1593. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1594. float sin_T = theta_per_segment;
  1595. float arc_target[4];
  1596. float sin_Ti;
  1597. float cos_Ti;
  1598. float r_axisi;
  1599. uint16_t i;
  1600. int8_t count = 0;
  1601. // Initialize the linear axis
  1602. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1603. // Initialize the extruder axis
  1604. arc_target[E_AXIS] = current_position[E_AXIS];
  1605. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1606. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1607. if (count < N_ARC_CORRECTION) {
  1608. // Apply vector rotation matrix to previous r_axis0 / 1
  1609. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1610. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1611. r_axis1 = r_axisi;
  1612. count++;
  1613. }
  1614. else {
  1615. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1616. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1617. cos_Ti = cos(i*theta_per_segment);
  1618. sin_Ti = sin(i*theta_per_segment);
  1619. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1620. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1621. count = 0;
  1622. }
  1623. // Update arc_target location
  1624. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1625. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1626. arc_target[Z_AXIS] += linear_per_segment;
  1627. arc_target[E_AXIS] += extruder_per_segment;
  1628. clamp_to_software_endstops(arc_target);
  1629. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1630. }
  1631. // Ensure last segment arrives at target location.
  1632. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1633. // As far as the parser is concerned, the position is now == target. In reality the
  1634. // motion control system might still be processing the action and the real tool position
  1635. // in any intermediate location.
  1636. set_current_to_destination();
  1637. }
  1638. /**
  1639. * G2: Clockwise Arc
  1640. * G3: Counterclockwise Arc
  1641. */
  1642. inline void gcode_G2_G3(bool clockwise) {
  1643. if (IsRunning()) {
  1644. #ifdef SF_ARC_FIX
  1645. bool relative_mode_backup = relative_mode;
  1646. relative_mode = true;
  1647. #endif
  1648. gcode_get_destination();
  1649. #ifdef SF_ARC_FIX
  1650. relative_mode = relative_mode_backup;
  1651. #endif
  1652. // Center of arc as offset from current_position
  1653. float arc_offset[2] = {
  1654. code_seen('I') ? code_value() : 0,
  1655. code_seen('J') ? code_value() : 0
  1656. };
  1657. // Send an arc to the planner
  1658. plan_arc(destination, arc_offset, clockwise);
  1659. refresh_cmd_timeout();
  1660. }
  1661. }
  1662. /**
  1663. * G4: Dwell S<seconds> or P<milliseconds>
  1664. */
  1665. inline void gcode_G4() {
  1666. millis_t codenum = 0;
  1667. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1668. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1669. st_synchronize();
  1670. refresh_cmd_timeout();
  1671. codenum += previous_cmd_ms; // keep track of when we started waiting
  1672. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1673. while (millis() < codenum) {
  1674. manage_heater();
  1675. manage_inactivity();
  1676. lcd_update();
  1677. }
  1678. }
  1679. #ifdef FWRETRACT
  1680. /**
  1681. * G10 - Retract filament according to settings of M207
  1682. * G11 - Recover filament according to settings of M208
  1683. */
  1684. inline void gcode_G10_G11(bool doRetract=false) {
  1685. #if EXTRUDERS > 1
  1686. if (doRetract) {
  1687. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1688. }
  1689. #endif
  1690. retract(doRetract
  1691. #if EXTRUDERS > 1
  1692. , retracted_swap[active_extruder]
  1693. #endif
  1694. );
  1695. }
  1696. #endif //FWRETRACT
  1697. /**
  1698. * G28: Home all axes according to settings
  1699. *
  1700. * Parameters
  1701. *
  1702. * None Home to all axes with no parameters.
  1703. * With QUICK_HOME enabled XY will home together, then Z.
  1704. *
  1705. * Cartesian parameters
  1706. *
  1707. * X Home to the X endstop
  1708. * Y Home to the Y endstop
  1709. * Z Home to the Z endstop
  1710. *
  1711. */
  1712. inline void gcode_G28() {
  1713. // Wait for planner moves to finish!
  1714. st_synchronize();
  1715. // For auto bed leveling, clear the level matrix
  1716. #ifdef ENABLE_AUTO_BED_LEVELING
  1717. plan_bed_level_matrix.set_to_identity();
  1718. #ifdef DELTA
  1719. reset_bed_level();
  1720. #endif
  1721. #endif
  1722. // For manual bed leveling deactivate the matrix temporarily
  1723. #ifdef MESH_BED_LEVELING
  1724. uint8_t mbl_was_active = mbl.active;
  1725. mbl.active = 0;
  1726. #endif
  1727. setup_for_endstop_move();
  1728. set_destination_to_current();
  1729. feedrate = 0.0;
  1730. #ifdef DELTA
  1731. // A delta can only safely home all axis at the same time
  1732. // all axis have to home at the same time
  1733. // Pretend the current position is 0,0,0
  1734. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1735. sync_plan_position();
  1736. // Move all carriages up together until the first endstop is hit.
  1737. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1738. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1739. line_to_destination();
  1740. st_synchronize();
  1741. endstops_hit_on_purpose(); // clear endstop hit flags
  1742. // Destination reached
  1743. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1744. // take care of back off and rehome now we are all at the top
  1745. HOMEAXIS(X);
  1746. HOMEAXIS(Y);
  1747. HOMEAXIS(Z);
  1748. sync_plan_position_delta();
  1749. #else // NOT DELTA
  1750. bool homeX = code_seen(axis_codes[X_AXIS]),
  1751. homeY = code_seen(axis_codes[Y_AXIS]),
  1752. homeZ = code_seen(axis_codes[Z_AXIS]);
  1753. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1754. if (home_all_axis || homeZ) {
  1755. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1756. HOMEAXIS(Z);
  1757. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1758. // Raise Z before homing any other axes
  1759. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1760. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1761. feedrate = max_feedrate[Z_AXIS] * 60;
  1762. line_to_destination();
  1763. st_synchronize();
  1764. #endif
  1765. } // home_all_axis || homeZ
  1766. #ifdef QUICK_HOME
  1767. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1768. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1769. #ifdef DUAL_X_CARRIAGE
  1770. int x_axis_home_dir = x_home_dir(active_extruder);
  1771. extruder_duplication_enabled = false;
  1772. #else
  1773. int x_axis_home_dir = home_dir(X_AXIS);
  1774. #endif
  1775. sync_plan_position();
  1776. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1777. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1778. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1779. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1780. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1781. line_to_destination();
  1782. st_synchronize();
  1783. axis_is_at_home(X_AXIS);
  1784. axis_is_at_home(Y_AXIS);
  1785. sync_plan_position();
  1786. destination[X_AXIS] = current_position[X_AXIS];
  1787. destination[Y_AXIS] = current_position[Y_AXIS];
  1788. line_to_destination();
  1789. feedrate = 0.0;
  1790. st_synchronize();
  1791. endstops_hit_on_purpose(); // clear endstop hit flags
  1792. current_position[X_AXIS] = destination[X_AXIS];
  1793. current_position[Y_AXIS] = destination[Y_AXIS];
  1794. #ifndef SCARA
  1795. current_position[Z_AXIS] = destination[Z_AXIS];
  1796. #endif
  1797. }
  1798. #endif // QUICK_HOME
  1799. #ifdef HOME_Y_BEFORE_X
  1800. // Home Y
  1801. if (home_all_axis || homeY) HOMEAXIS(Y);
  1802. #endif
  1803. // Home X
  1804. if (home_all_axis || homeX) {
  1805. #ifdef DUAL_X_CARRIAGE
  1806. int tmp_extruder = active_extruder;
  1807. extruder_duplication_enabled = false;
  1808. active_extruder = !active_extruder;
  1809. HOMEAXIS(X);
  1810. inactive_extruder_x_pos = current_position[X_AXIS];
  1811. active_extruder = tmp_extruder;
  1812. HOMEAXIS(X);
  1813. // reset state used by the different modes
  1814. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1815. delayed_move_time = 0;
  1816. active_extruder_parked = true;
  1817. #else
  1818. HOMEAXIS(X);
  1819. #endif
  1820. }
  1821. #ifndef HOME_Y_BEFORE_X
  1822. // Home Y
  1823. if (home_all_axis || homeY) HOMEAXIS(Y);
  1824. #endif
  1825. // Home Z last if homing towards the bed
  1826. #if Z_HOME_DIR < 0
  1827. if (home_all_axis || homeZ) {
  1828. #ifdef Z_SAFE_HOMING
  1829. if (home_all_axis) {
  1830. current_position[Z_AXIS] = 0;
  1831. sync_plan_position();
  1832. //
  1833. // Set the probe (or just the nozzle) destination to the safe homing point
  1834. //
  1835. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1836. // then this may not work as expected.
  1837. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1838. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1839. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1840. feedrate = XY_TRAVEL_SPEED;
  1841. // This could potentially move X, Y, Z all together
  1842. line_to_destination();
  1843. st_synchronize();
  1844. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1845. current_position[X_AXIS] = destination[X_AXIS];
  1846. current_position[Y_AXIS] = destination[Y_AXIS];
  1847. // Home the Z axis
  1848. HOMEAXIS(Z);
  1849. }
  1850. else if (homeZ) { // Don't need to Home Z twice
  1851. // Let's see if X and Y are homed
  1852. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1853. // Make sure the probe is within the physical limits
  1854. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1855. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1856. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1857. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1858. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1859. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1860. // Set the plan current position to X, Y, 0
  1861. current_position[Z_AXIS] = 0;
  1862. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1863. // Set Z destination away from bed and raise the axis
  1864. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1865. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1866. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1867. line_to_destination();
  1868. st_synchronize();
  1869. // Home the Z axis
  1870. HOMEAXIS(Z);
  1871. }
  1872. else {
  1873. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1874. SERIAL_ECHO_START;
  1875. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1876. }
  1877. }
  1878. else {
  1879. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1880. SERIAL_ECHO_START;
  1881. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1882. }
  1883. } // !home_all_axes && homeZ
  1884. #else // !Z_SAFE_HOMING
  1885. HOMEAXIS(Z);
  1886. #endif // !Z_SAFE_HOMING
  1887. } // home_all_axis || homeZ
  1888. #endif // Z_HOME_DIR < 0
  1889. sync_plan_position();
  1890. #endif // else DELTA
  1891. #ifdef SCARA
  1892. sync_plan_position_delta();
  1893. #endif
  1894. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1895. enable_endstops(false);
  1896. #endif
  1897. // For manual leveling move back to 0,0
  1898. #ifdef MESH_BED_LEVELING
  1899. if (mbl_was_active) {
  1900. current_position[X_AXIS] = mbl.get_x(0);
  1901. current_position[Y_AXIS] = mbl.get_y(0);
  1902. set_destination_to_current();
  1903. feedrate = homing_feedrate[X_AXIS];
  1904. line_to_destination();
  1905. st_synchronize();
  1906. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1907. sync_plan_position();
  1908. mbl.active = 1;
  1909. }
  1910. #endif
  1911. feedrate = saved_feedrate;
  1912. feedrate_multiplier = saved_feedrate_multiplier;
  1913. refresh_cmd_timeout();
  1914. endstops_hit_on_purpose(); // clear endstop hit flags
  1915. }
  1916. #ifdef MESH_BED_LEVELING
  1917. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1918. /**
  1919. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1920. * mesh to compensate for variable bed height
  1921. *
  1922. * Parameters With MESH_BED_LEVELING:
  1923. *
  1924. * S0 Produce a mesh report
  1925. * S1 Start probing mesh points
  1926. * S2 Probe the next mesh point
  1927. * S3 Xn Yn Zn.nn Manually modify a single point
  1928. *
  1929. * The S0 report the points as below
  1930. *
  1931. * +----> X-axis
  1932. * |
  1933. * |
  1934. * v Y-axis
  1935. *
  1936. */
  1937. inline void gcode_G29() {
  1938. static int probe_point = -1;
  1939. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1940. if (state < 0 || state > 3) {
  1941. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1942. return;
  1943. }
  1944. int ix, iy;
  1945. float z;
  1946. switch(state) {
  1947. case MeshReport:
  1948. if (mbl.active) {
  1949. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1950. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1951. SERIAL_PROTOCOLCHAR(',');
  1952. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1953. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1954. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1955. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1956. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1957. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1958. SERIAL_PROTOCOLPGM(" ");
  1959. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1960. }
  1961. SERIAL_EOL;
  1962. }
  1963. }
  1964. else
  1965. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1966. break;
  1967. case MeshStart:
  1968. mbl.reset();
  1969. probe_point = 0;
  1970. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1971. break;
  1972. case MeshNext:
  1973. if (probe_point < 0) {
  1974. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1975. return;
  1976. }
  1977. if (probe_point == 0) {
  1978. // Set Z to a positive value before recording the first Z.
  1979. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1980. sync_plan_position();
  1981. }
  1982. else {
  1983. // For others, save the Z of the previous point, then raise Z again.
  1984. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1985. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1986. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1987. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1988. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1990. st_synchronize();
  1991. }
  1992. // Is there another point to sample? Move there.
  1993. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1994. ix = probe_point % MESH_NUM_X_POINTS;
  1995. iy = probe_point / MESH_NUM_X_POINTS;
  1996. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1997. current_position[X_AXIS] = mbl.get_x(ix);
  1998. current_position[Y_AXIS] = mbl.get_y(iy);
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2000. st_synchronize();
  2001. probe_point++;
  2002. }
  2003. else {
  2004. // After recording the last point, activate the mbl and home
  2005. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2006. probe_point = -1;
  2007. mbl.active = 1;
  2008. enqueuecommands_P(PSTR("G28"));
  2009. }
  2010. break;
  2011. case MeshSet:
  2012. if (code_seen('X') || code_seen('x')) {
  2013. ix = code_value_long()-1;
  2014. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2015. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2016. return;
  2017. }
  2018. } else {
  2019. SERIAL_PROTOCOLPGM("X not entered.\n");
  2020. return;
  2021. }
  2022. if (code_seen('Y') || code_seen('y')) {
  2023. iy = code_value_long()-1;
  2024. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2025. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2026. return;
  2027. }
  2028. } else {
  2029. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2030. return;
  2031. }
  2032. if (code_seen('Z') || code_seen('z')) {
  2033. z = code_value();
  2034. } else {
  2035. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2036. return;
  2037. }
  2038. mbl.z_values[iy][ix] = z;
  2039. } // switch(state)
  2040. }
  2041. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2042. /**
  2043. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2044. * Will fail if the printer has not been homed with G28.
  2045. *
  2046. * Enhanced G29 Auto Bed Leveling Probe Routine
  2047. *
  2048. * Parameters With AUTO_BED_LEVELING_GRID:
  2049. *
  2050. * P Set the size of the grid that will be probed (P x P points).
  2051. * Not supported by non-linear delta printer bed leveling.
  2052. * Example: "G29 P4"
  2053. *
  2054. * S Set the XY travel speed between probe points (in mm/min)
  2055. *
  2056. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2057. * or clean the rotation Matrix. Useful to check the topology
  2058. * after a first run of G29.
  2059. *
  2060. * V Set the verbose level (0-4). Example: "G29 V3"
  2061. *
  2062. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2063. * This is useful for manual bed leveling and finding flaws in the bed (to
  2064. * assist with part placement).
  2065. * Not supported by non-linear delta printer bed leveling.
  2066. *
  2067. * F Set the Front limit of the probing grid
  2068. * B Set the Back limit of the probing grid
  2069. * L Set the Left limit of the probing grid
  2070. * R Set the Right limit of the probing grid
  2071. *
  2072. * Global Parameters:
  2073. *
  2074. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2075. * Include "E" to engage/disengage the probe for each sample.
  2076. * There's no extra effect if you have a fixed probe.
  2077. * Usage: "G29 E" or "G29 e"
  2078. *
  2079. */
  2080. inline void gcode_G29() {
  2081. // Don't allow auto-leveling without homing first
  2082. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2083. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2084. SERIAL_ECHO_START;
  2085. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2086. return;
  2087. }
  2088. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2089. if (verbose_level < 0 || verbose_level > 4) {
  2090. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2091. return;
  2092. }
  2093. bool dryrun = code_seen('D') || code_seen('d'),
  2094. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2095. #ifdef AUTO_BED_LEVELING_GRID
  2096. #ifndef DELTA
  2097. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2098. #endif
  2099. if (verbose_level > 0) {
  2100. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2101. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2102. }
  2103. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2104. #ifndef DELTA
  2105. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2106. if (auto_bed_leveling_grid_points < 2) {
  2107. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2108. return;
  2109. }
  2110. #endif
  2111. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2112. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2113. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2114. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2115. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2116. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2117. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2118. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2119. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2120. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2121. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2122. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2123. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2124. if (left_out || right_out || front_out || back_out) {
  2125. if (left_out) {
  2126. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2127. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2128. }
  2129. if (right_out) {
  2130. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2131. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2132. }
  2133. if (front_out) {
  2134. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2135. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2136. }
  2137. if (back_out) {
  2138. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2139. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2140. }
  2141. return;
  2142. }
  2143. #endif // AUTO_BED_LEVELING_GRID
  2144. #ifdef Z_PROBE_SLED
  2145. dock_sled(false); // engage (un-dock) the probe
  2146. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2147. deploy_z_probe();
  2148. #endif
  2149. st_synchronize();
  2150. if (!dryrun) {
  2151. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2152. plan_bed_level_matrix.set_to_identity();
  2153. #ifdef DELTA
  2154. reset_bed_level();
  2155. #else //!DELTA
  2156. //vector_3 corrected_position = plan_get_position_mm();
  2157. //corrected_position.debug("position before G29");
  2158. vector_3 uncorrected_position = plan_get_position();
  2159. //uncorrected_position.debug("position during G29");
  2160. current_position[X_AXIS] = uncorrected_position.x;
  2161. current_position[Y_AXIS] = uncorrected_position.y;
  2162. current_position[Z_AXIS] = uncorrected_position.z;
  2163. sync_plan_position();
  2164. #endif // !DELTA
  2165. }
  2166. setup_for_endstop_move();
  2167. feedrate = homing_feedrate[Z_AXIS];
  2168. #ifdef AUTO_BED_LEVELING_GRID
  2169. // probe at the points of a lattice grid
  2170. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2171. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2172. #ifdef DELTA
  2173. delta_grid_spacing[0] = xGridSpacing;
  2174. delta_grid_spacing[1] = yGridSpacing;
  2175. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2176. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2177. #else // !DELTA
  2178. // solve the plane equation ax + by + d = z
  2179. // A is the matrix with rows [x y 1] for all the probed points
  2180. // B is the vector of the Z positions
  2181. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2182. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2183. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2184. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2185. eqnBVector[abl2], // "B" vector of Z points
  2186. mean = 0.0;
  2187. #endif // !DELTA
  2188. int probePointCounter = 0;
  2189. bool zig = true;
  2190. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2191. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2192. int xStart, xStop, xInc;
  2193. if (zig) {
  2194. xStart = 0;
  2195. xStop = auto_bed_leveling_grid_points;
  2196. xInc = 1;
  2197. }
  2198. else {
  2199. xStart = auto_bed_leveling_grid_points - 1;
  2200. xStop = -1;
  2201. xInc = -1;
  2202. }
  2203. #ifndef DELTA
  2204. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2205. // This gets the probe points in more readable order.
  2206. if (!do_topography_map) zig = !zig;
  2207. #endif
  2208. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2209. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2210. // raise extruder
  2211. float measured_z,
  2212. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2213. #ifdef DELTA
  2214. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2215. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2216. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2217. #endif //DELTA
  2218. ProbeAction act;
  2219. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2220. act = ProbeDeployAndStow;
  2221. else if (yCount == 0 && xCount == xStart)
  2222. act = ProbeDeploy;
  2223. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2224. act = ProbeStow;
  2225. else
  2226. act = ProbeStay;
  2227. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2228. #ifndef DELTA
  2229. mean += measured_z;
  2230. eqnBVector[probePointCounter] = measured_z;
  2231. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2232. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2233. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2234. #else
  2235. bed_level[xCount][yCount] = measured_z + z_offset;
  2236. #endif
  2237. probePointCounter++;
  2238. manage_heater();
  2239. manage_inactivity();
  2240. lcd_update();
  2241. } //xProbe
  2242. } //yProbe
  2243. clean_up_after_endstop_move();
  2244. #ifdef DELTA
  2245. if (!dryrun) extrapolate_unprobed_bed_level();
  2246. print_bed_level();
  2247. #else // !DELTA
  2248. // solve lsq problem
  2249. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2250. mean /= abl2;
  2251. if (verbose_level) {
  2252. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2253. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2254. SERIAL_PROTOCOLPGM(" b: ");
  2255. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2256. SERIAL_PROTOCOLPGM(" d: ");
  2257. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2258. SERIAL_EOL;
  2259. if (verbose_level > 2) {
  2260. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2261. SERIAL_PROTOCOL_F(mean, 8);
  2262. SERIAL_EOL;
  2263. }
  2264. }
  2265. // Show the Topography map if enabled
  2266. if (do_topography_map) {
  2267. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2268. SERIAL_PROTOCOLPGM("+-----------+\n");
  2269. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2270. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2271. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2272. SERIAL_PROTOCOLPGM("+-----------+\n");
  2273. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2274. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2275. int ind = yy * auto_bed_leveling_grid_points + xx;
  2276. float diff = eqnBVector[ind] - mean;
  2277. if (diff >= 0.0)
  2278. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2279. else
  2280. SERIAL_PROTOCOLCHAR(' ');
  2281. SERIAL_PROTOCOL_F(diff, 5);
  2282. } // xx
  2283. SERIAL_EOL;
  2284. } // yy
  2285. SERIAL_EOL;
  2286. } //do_topography_map
  2287. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2288. free(plane_equation_coefficients);
  2289. #endif //!DELTA
  2290. #else // !AUTO_BED_LEVELING_GRID
  2291. // Actions for each probe
  2292. ProbeAction p1, p2, p3;
  2293. if (deploy_probe_for_each_reading)
  2294. p1 = p2 = p3 = ProbeDeployAndStow;
  2295. else
  2296. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2297. // Probe at 3 arbitrary points
  2298. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2299. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2300. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2301. clean_up_after_endstop_move();
  2302. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2303. #endif // !AUTO_BED_LEVELING_GRID
  2304. #ifndef DELTA
  2305. if (verbose_level > 0)
  2306. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2307. if (!dryrun) {
  2308. // Correct the Z height difference from z-probe position and hotend tip position.
  2309. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2310. // When the bed is uneven, this height must be corrected.
  2311. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2312. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2313. z_tmp = current_position[Z_AXIS],
  2314. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2315. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2316. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2317. sync_plan_position();
  2318. }
  2319. #endif // !DELTA
  2320. #ifdef Z_PROBE_SLED
  2321. dock_sled(true); // dock the probe
  2322. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2323. stow_z_probe();
  2324. #endif
  2325. #ifdef Z_PROBE_END_SCRIPT
  2326. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2327. st_synchronize();
  2328. #endif
  2329. }
  2330. #ifndef Z_PROBE_SLED
  2331. inline void gcode_G30() {
  2332. deploy_z_probe(); // Engage Z Servo endstop if available
  2333. st_synchronize();
  2334. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2335. setup_for_endstop_move();
  2336. feedrate = homing_feedrate[Z_AXIS];
  2337. run_z_probe();
  2338. SERIAL_PROTOCOLPGM("Bed X: ");
  2339. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2340. SERIAL_PROTOCOLPGM(" Y: ");
  2341. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2342. SERIAL_PROTOCOLPGM(" Z: ");
  2343. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2344. SERIAL_EOL;
  2345. clean_up_after_endstop_move();
  2346. stow_z_probe(); // Retract Z Servo endstop if available
  2347. }
  2348. #endif //!Z_PROBE_SLED
  2349. #endif //ENABLE_AUTO_BED_LEVELING
  2350. /**
  2351. * G92: Set current position to given X Y Z E
  2352. */
  2353. inline void gcode_G92() {
  2354. if (!code_seen(axis_codes[E_AXIS]))
  2355. st_synchronize();
  2356. bool didXYZ = false;
  2357. for (int i = 0; i < NUM_AXIS; i++) {
  2358. if (code_seen(axis_codes[i])) {
  2359. float v = current_position[i] = code_value();
  2360. if (i == E_AXIS)
  2361. plan_set_e_position(v);
  2362. else
  2363. didXYZ = true;
  2364. }
  2365. }
  2366. if (didXYZ) {
  2367. #if defined(DELTA) || defined(SCARA)
  2368. sync_plan_position_delta();
  2369. #else
  2370. sync_plan_position();
  2371. #endif
  2372. }
  2373. }
  2374. #ifdef ULTIPANEL
  2375. /**
  2376. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2377. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2378. */
  2379. inline void gcode_M0_M1() {
  2380. char *args = current_command_args;
  2381. millis_t codenum = 0;
  2382. bool hasP = false, hasS = false;
  2383. if (code_seen('P')) {
  2384. codenum = code_value_short(); // milliseconds to wait
  2385. hasP = codenum > 0;
  2386. }
  2387. if (code_seen('S')) {
  2388. codenum = code_value() * 1000; // seconds to wait
  2389. hasS = codenum > 0;
  2390. }
  2391. if (!hasP && !hasS && *args != '\0')
  2392. lcd_setstatus(args, true);
  2393. else {
  2394. LCD_MESSAGEPGM(MSG_USERWAIT);
  2395. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2396. dontExpireStatus();
  2397. #endif
  2398. }
  2399. lcd_ignore_click();
  2400. st_synchronize();
  2401. refresh_cmd_timeout();
  2402. if (codenum > 0) {
  2403. codenum += previous_cmd_ms; // keep track of when we started waiting
  2404. while(millis() < codenum && !lcd_clicked()) {
  2405. manage_heater();
  2406. manage_inactivity();
  2407. lcd_update();
  2408. }
  2409. lcd_ignore_click(false);
  2410. }
  2411. else {
  2412. if (!lcd_detected()) return;
  2413. while (!lcd_clicked()) {
  2414. manage_heater();
  2415. manage_inactivity();
  2416. lcd_update();
  2417. }
  2418. }
  2419. if (IS_SD_PRINTING)
  2420. LCD_MESSAGEPGM(MSG_RESUMING);
  2421. else
  2422. LCD_MESSAGEPGM(WELCOME_MSG);
  2423. }
  2424. #endif // ULTIPANEL
  2425. /**
  2426. * M17: Enable power on all stepper motors
  2427. */
  2428. inline void gcode_M17() {
  2429. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2430. enable_all_steppers();
  2431. }
  2432. #ifdef SDSUPPORT
  2433. /**
  2434. * M20: List SD card to serial output
  2435. */
  2436. inline void gcode_M20() {
  2437. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2438. card.ls();
  2439. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2440. }
  2441. /**
  2442. * M21: Init SD Card
  2443. */
  2444. inline void gcode_M21() {
  2445. card.initsd();
  2446. }
  2447. /**
  2448. * M22: Release SD Card
  2449. */
  2450. inline void gcode_M22() {
  2451. card.release();
  2452. }
  2453. /**
  2454. * M23: Select a file
  2455. */
  2456. inline void gcode_M23() {
  2457. card.openFile(current_command_args, true);
  2458. }
  2459. /**
  2460. * M24: Start SD Print
  2461. */
  2462. inline void gcode_M24() {
  2463. card.startFileprint();
  2464. print_job_start_ms = millis();
  2465. }
  2466. /**
  2467. * M25: Pause SD Print
  2468. */
  2469. inline void gcode_M25() {
  2470. card.pauseSDPrint();
  2471. }
  2472. /**
  2473. * M26: Set SD Card file index
  2474. */
  2475. inline void gcode_M26() {
  2476. if (card.cardOK && code_seen('S'))
  2477. card.setIndex(code_value_short());
  2478. }
  2479. /**
  2480. * M27: Get SD Card status
  2481. */
  2482. inline void gcode_M27() {
  2483. card.getStatus();
  2484. }
  2485. /**
  2486. * M28: Start SD Write
  2487. */
  2488. inline void gcode_M28() {
  2489. card.openFile(current_command_args, false);
  2490. }
  2491. /**
  2492. * M29: Stop SD Write
  2493. * Processed in write to file routine above
  2494. */
  2495. inline void gcode_M29() {
  2496. // card.saving = false;
  2497. }
  2498. /**
  2499. * M30 <filename>: Delete SD Card file
  2500. */
  2501. inline void gcode_M30() {
  2502. if (card.cardOK) {
  2503. card.closefile();
  2504. card.removeFile(current_command_args);
  2505. }
  2506. }
  2507. #endif
  2508. /**
  2509. * M31: Get the time since the start of SD Print (or last M109)
  2510. */
  2511. inline void gcode_M31() {
  2512. print_job_stop_ms = millis();
  2513. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2514. int min = t / 60, sec = t % 60;
  2515. char time[30];
  2516. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2517. SERIAL_ECHO_START;
  2518. SERIAL_ECHOLN(time);
  2519. lcd_setstatus(time);
  2520. autotempShutdown();
  2521. }
  2522. #ifdef SDSUPPORT
  2523. /**
  2524. * M32: Select file and start SD Print
  2525. */
  2526. inline void gcode_M32() {
  2527. if (card.sdprinting)
  2528. st_synchronize();
  2529. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2530. if (!namestartpos)
  2531. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2532. else
  2533. namestartpos++; //to skip the '!'
  2534. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2535. if (card.cardOK) {
  2536. card.openFile(namestartpos, true, !call_procedure);
  2537. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2538. card.setIndex(code_value_short());
  2539. card.startFileprint();
  2540. if (!call_procedure)
  2541. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2542. }
  2543. }
  2544. #ifdef LONG_FILENAME_HOST_SUPPORT
  2545. /**
  2546. * M33: Get the long full path of a file or folder
  2547. *
  2548. * Parameters:
  2549. * <dospath> Case-insensitive DOS-style path to a file or folder
  2550. *
  2551. * Example:
  2552. * M33 miscel~1/armchair/armcha~1.gco
  2553. *
  2554. * Output:
  2555. * /Miscellaneous/Armchair/Armchair.gcode
  2556. */
  2557. inline void gcode_M33() {
  2558. char *args = strchr_pointer + 4;
  2559. while (*args == ' ') ++args;
  2560. clear_asterisk(args);
  2561. card.printLongPath(args);
  2562. }
  2563. #endif
  2564. /**
  2565. * M928: Start SD Write
  2566. */
  2567. inline void gcode_M928() {
  2568. card.openLogFile(current_command_args);
  2569. }
  2570. #endif // SDSUPPORT
  2571. /**
  2572. * M42: Change pin status via GCode
  2573. */
  2574. inline void gcode_M42() {
  2575. if (code_seen('S')) {
  2576. int pin_status = code_value_short(),
  2577. pin_number = LED_PIN;
  2578. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2579. pin_number = code_value_short();
  2580. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2581. if (sensitive_pins[i] == pin_number) {
  2582. pin_number = -1;
  2583. break;
  2584. }
  2585. }
  2586. #if HAS_FAN
  2587. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2588. #endif
  2589. if (pin_number > -1) {
  2590. pinMode(pin_number, OUTPUT);
  2591. digitalWrite(pin_number, pin_status);
  2592. analogWrite(pin_number, pin_status);
  2593. }
  2594. } // code_seen('S')
  2595. }
  2596. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2597. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2598. #ifdef Z_PROBE_ENDSTOP
  2599. #if !HAS_Z_PROBE
  2600. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2601. #endif
  2602. #elif !HAS_Z_MIN
  2603. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2604. #endif
  2605. /**
  2606. * M48: Z-Probe repeatability measurement function.
  2607. *
  2608. * Usage:
  2609. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2610. * P = Number of sampled points (4-50, default 10)
  2611. * X = Sample X position
  2612. * Y = Sample Y position
  2613. * V = Verbose level (0-4, default=1)
  2614. * E = Engage probe for each reading
  2615. * L = Number of legs of movement before probe
  2616. *
  2617. * This function assumes the bed has been homed. Specifically, that a G28 command
  2618. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2619. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2620. * regenerated.
  2621. */
  2622. inline void gcode_M48() {
  2623. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2624. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2625. if (code_seen('V') || code_seen('v')) {
  2626. verbose_level = code_value_short();
  2627. if (verbose_level < 0 || verbose_level > 4 ) {
  2628. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2629. return;
  2630. }
  2631. }
  2632. if (verbose_level > 0)
  2633. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2634. if (code_seen('P') || code_seen('p')) {
  2635. n_samples = code_value_short();
  2636. if (n_samples < 4 || n_samples > 50) {
  2637. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2638. return;
  2639. }
  2640. }
  2641. double X_current = st_get_position_mm(X_AXIS),
  2642. Y_current = st_get_position_mm(Y_AXIS),
  2643. Z_current = st_get_position_mm(Z_AXIS),
  2644. E_current = st_get_position_mm(E_AXIS),
  2645. X_probe_location = X_current, Y_probe_location = Y_current,
  2646. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2647. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2648. if (code_seen('X') || code_seen('x')) {
  2649. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2650. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2651. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2652. return;
  2653. }
  2654. }
  2655. if (code_seen('Y') || code_seen('y')) {
  2656. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2657. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2658. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2659. return;
  2660. }
  2661. }
  2662. if (code_seen('L') || code_seen('l')) {
  2663. n_legs = code_value_short();
  2664. if (n_legs == 1) n_legs = 2;
  2665. if (n_legs < 0 || n_legs > 15) {
  2666. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2667. return;
  2668. }
  2669. }
  2670. //
  2671. // Do all the preliminary setup work. First raise the probe.
  2672. //
  2673. st_synchronize();
  2674. plan_bed_level_matrix.set_to_identity();
  2675. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2676. st_synchronize();
  2677. //
  2678. // Now get everything to the specified probe point So we can safely do a probe to
  2679. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2680. // use that as a starting point for each probe.
  2681. //
  2682. if (verbose_level > 2)
  2683. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2684. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2685. E_current,
  2686. homing_feedrate[X_AXIS]/60,
  2687. active_extruder);
  2688. st_synchronize();
  2689. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2690. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2691. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2692. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2693. //
  2694. // OK, do the initial probe to get us close to the bed.
  2695. // Then retrace the right amount and use that in subsequent probes
  2696. //
  2697. deploy_z_probe();
  2698. setup_for_endstop_move();
  2699. run_z_probe();
  2700. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2701. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2702. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2703. E_current,
  2704. homing_feedrate[X_AXIS]/60,
  2705. active_extruder);
  2706. st_synchronize();
  2707. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2708. if (deploy_probe_for_each_reading) stow_z_probe();
  2709. for (uint8_t n=0; n < n_samples; n++) {
  2710. // Make sure we are at the probe location
  2711. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2712. if (n_legs) {
  2713. millis_t ms = millis();
  2714. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2715. theta = RADIANS(ms % 360L);
  2716. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2717. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2718. //SERIAL_ECHOPAIR(" theta: ",theta);
  2719. //SERIAL_ECHOPAIR(" direction: ",dir);
  2720. //SERIAL_EOL;
  2721. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2722. ms = millis();
  2723. theta += RADIANS(dir * (ms % 20L));
  2724. radius += (ms % 10L) - 5L;
  2725. if (radius < 0.0) radius = -radius;
  2726. X_current = X_probe_location + cos(theta) * radius;
  2727. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2728. Y_current = Y_probe_location + sin(theta) * radius;
  2729. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2730. if (verbose_level > 3) {
  2731. SERIAL_ECHOPAIR("x: ", X_current);
  2732. SERIAL_ECHOPAIR("y: ", Y_current);
  2733. SERIAL_EOL;
  2734. }
  2735. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2736. } // n_legs loop
  2737. // Go back to the probe location
  2738. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2739. } // n_legs
  2740. if (deploy_probe_for_each_reading) {
  2741. deploy_z_probe();
  2742. delay(1000);
  2743. }
  2744. setup_for_endstop_move();
  2745. run_z_probe();
  2746. sample_set[n] = current_position[Z_AXIS];
  2747. //
  2748. // Get the current mean for the data points we have so far
  2749. //
  2750. sum = 0.0;
  2751. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2752. mean = sum / (n + 1);
  2753. //
  2754. // Now, use that mean to calculate the standard deviation for the
  2755. // data points we have so far
  2756. //
  2757. sum = 0.0;
  2758. for (uint8_t j = 0; j <= n; j++) {
  2759. float ss = sample_set[j] - mean;
  2760. sum += ss * ss;
  2761. }
  2762. sigma = sqrt(sum / (n + 1));
  2763. if (verbose_level > 1) {
  2764. SERIAL_PROTOCOL(n+1);
  2765. SERIAL_PROTOCOLPGM(" of ");
  2766. SERIAL_PROTOCOL(n_samples);
  2767. SERIAL_PROTOCOLPGM(" z: ");
  2768. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2769. if (verbose_level > 2) {
  2770. SERIAL_PROTOCOLPGM(" mean: ");
  2771. SERIAL_PROTOCOL_F(mean,6);
  2772. SERIAL_PROTOCOLPGM(" sigma: ");
  2773. SERIAL_PROTOCOL_F(sigma,6);
  2774. }
  2775. }
  2776. if (verbose_level > 0) SERIAL_EOL;
  2777. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2778. st_synchronize();
  2779. // Stow between
  2780. if (deploy_probe_for_each_reading) {
  2781. stow_z_probe();
  2782. delay(1000);
  2783. }
  2784. }
  2785. // Stow after
  2786. if (!deploy_probe_for_each_reading) {
  2787. stow_z_probe();
  2788. delay(1000);
  2789. }
  2790. clean_up_after_endstop_move();
  2791. if (verbose_level > 0) {
  2792. SERIAL_PROTOCOLPGM("Mean: ");
  2793. SERIAL_PROTOCOL_F(mean, 6);
  2794. SERIAL_EOL;
  2795. }
  2796. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2797. SERIAL_PROTOCOL_F(sigma, 6);
  2798. SERIAL_EOL; SERIAL_EOL;
  2799. }
  2800. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2801. /**
  2802. * M104: Set hot end temperature
  2803. */
  2804. inline void gcode_M104() {
  2805. if (setTargetedHotend(104)) return;
  2806. if (code_seen('S')) {
  2807. float temp = code_value();
  2808. setTargetHotend(temp, target_extruder);
  2809. #ifdef DUAL_X_CARRIAGE
  2810. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2811. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2812. #endif
  2813. #ifdef THERMAL_PROTECTION_HOTENDS
  2814. start_watching_heater(target_extruder);
  2815. #endif
  2816. }
  2817. }
  2818. /**
  2819. * M105: Read hot end and bed temperature
  2820. */
  2821. inline void gcode_M105() {
  2822. if (setTargetedHotend(105)) return;
  2823. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2824. SERIAL_PROTOCOLPGM(MSG_OK);
  2825. #if HAS_TEMP_0
  2826. SERIAL_PROTOCOLPGM(" T:");
  2827. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2828. SERIAL_PROTOCOLPGM(" /");
  2829. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2830. #endif
  2831. #if HAS_TEMP_BED
  2832. SERIAL_PROTOCOLPGM(" B:");
  2833. SERIAL_PROTOCOL_F(degBed(), 1);
  2834. SERIAL_PROTOCOLPGM(" /");
  2835. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2836. #endif
  2837. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2838. SERIAL_PROTOCOLPGM(" T");
  2839. SERIAL_PROTOCOL(e);
  2840. SERIAL_PROTOCOLCHAR(':');
  2841. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2842. SERIAL_PROTOCOLPGM(" /");
  2843. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2844. }
  2845. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2846. SERIAL_ERROR_START;
  2847. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2848. #endif
  2849. SERIAL_PROTOCOLPGM(" @:");
  2850. #ifdef EXTRUDER_WATTS
  2851. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2852. SERIAL_PROTOCOLCHAR('W');
  2853. #else
  2854. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2855. #endif
  2856. SERIAL_PROTOCOLPGM(" B@:");
  2857. #ifdef BED_WATTS
  2858. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2859. SERIAL_PROTOCOLCHAR('W');
  2860. #else
  2861. SERIAL_PROTOCOL(getHeaterPower(-1));
  2862. #endif
  2863. #ifdef SHOW_TEMP_ADC_VALUES
  2864. #if HAS_TEMP_BED
  2865. SERIAL_PROTOCOLPGM(" ADC B:");
  2866. SERIAL_PROTOCOL_F(degBed(),1);
  2867. SERIAL_PROTOCOLPGM("C->");
  2868. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2869. #endif
  2870. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2871. SERIAL_PROTOCOLPGM(" T");
  2872. SERIAL_PROTOCOL(cur_extruder);
  2873. SERIAL_PROTOCOLCHAR(':');
  2874. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2875. SERIAL_PROTOCOLPGM("C->");
  2876. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2877. }
  2878. #endif
  2879. SERIAL_EOL;
  2880. }
  2881. #if HAS_FAN
  2882. /**
  2883. * M106: Set Fan Speed
  2884. */
  2885. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2886. /**
  2887. * M107: Fan Off
  2888. */
  2889. inline void gcode_M107() { fanSpeed = 0; }
  2890. #endif // HAS_FAN
  2891. /**
  2892. * M109: Wait for extruder(s) to reach temperature
  2893. */
  2894. inline void gcode_M109() {
  2895. if (setTargetedHotend(109)) return;
  2896. LCD_MESSAGEPGM(MSG_HEATING);
  2897. no_wait_for_cooling = code_seen('S');
  2898. if (no_wait_for_cooling || code_seen('R')) {
  2899. float temp = code_value();
  2900. setTargetHotend(temp, target_extruder);
  2901. #ifdef DUAL_X_CARRIAGE
  2902. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2903. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2904. #endif
  2905. }
  2906. #ifdef AUTOTEMP
  2907. autotemp_enabled = code_seen('F');
  2908. if (autotemp_enabled) autotemp_factor = code_value();
  2909. if (code_seen('S')) autotemp_min = code_value();
  2910. if (code_seen('B')) autotemp_max = code_value();
  2911. #endif
  2912. #ifdef THERMAL_PROTECTION_HOTENDS
  2913. start_watching_heater(target_extruder);
  2914. #endif
  2915. millis_t temp_ms = millis();
  2916. /* See if we are heating up or cooling down */
  2917. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2918. cancel_heatup = false;
  2919. #ifdef TEMP_RESIDENCY_TIME
  2920. long residency_start_ms = -1;
  2921. /* continue to loop until we have reached the target temp
  2922. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2923. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2924. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2925. #else
  2926. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2927. #endif //TEMP_RESIDENCY_TIME
  2928. { // while loop
  2929. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2930. SERIAL_PROTOCOLPGM("T:");
  2931. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2932. SERIAL_PROTOCOLPGM(" E:");
  2933. SERIAL_PROTOCOL((int)target_extruder);
  2934. #ifdef TEMP_RESIDENCY_TIME
  2935. SERIAL_PROTOCOLPGM(" W:");
  2936. if (residency_start_ms > -1) {
  2937. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2938. SERIAL_PROTOCOLLN(temp_ms);
  2939. }
  2940. else {
  2941. SERIAL_PROTOCOLLNPGM("?");
  2942. }
  2943. #else
  2944. SERIAL_EOL;
  2945. #endif
  2946. temp_ms = millis();
  2947. }
  2948. manage_heater();
  2949. manage_inactivity();
  2950. lcd_update();
  2951. #ifdef TEMP_RESIDENCY_TIME
  2952. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2953. // or when current temp falls outside the hysteresis after target temp was reached
  2954. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2955. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2956. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2957. {
  2958. residency_start_ms = millis();
  2959. }
  2960. #endif //TEMP_RESIDENCY_TIME
  2961. }
  2962. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2963. refresh_cmd_timeout();
  2964. print_job_start_ms = previous_cmd_ms;
  2965. }
  2966. #if HAS_TEMP_BED
  2967. /**
  2968. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2969. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2970. */
  2971. inline void gcode_M190() {
  2972. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2973. no_wait_for_cooling = code_seen('S');
  2974. if (no_wait_for_cooling || code_seen('R'))
  2975. setTargetBed(code_value());
  2976. millis_t temp_ms = millis();
  2977. cancel_heatup = false;
  2978. target_direction = isHeatingBed(); // true if heating, false if cooling
  2979. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2980. millis_t ms = millis();
  2981. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2982. temp_ms = ms;
  2983. float tt = degHotend(active_extruder);
  2984. SERIAL_PROTOCOLPGM("T:");
  2985. SERIAL_PROTOCOL(tt);
  2986. SERIAL_PROTOCOLPGM(" E:");
  2987. SERIAL_PROTOCOL((int)active_extruder);
  2988. SERIAL_PROTOCOLPGM(" B:");
  2989. SERIAL_PROTOCOL_F(degBed(), 1);
  2990. SERIAL_EOL;
  2991. }
  2992. manage_heater();
  2993. manage_inactivity();
  2994. lcd_update();
  2995. }
  2996. LCD_MESSAGEPGM(MSG_BED_DONE);
  2997. refresh_cmd_timeout();
  2998. }
  2999. #endif // HAS_TEMP_BED
  3000. /**
  3001. * M111: Set the debug level
  3002. */
  3003. inline void gcode_M111() {
  3004. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  3005. }
  3006. /**
  3007. * M112: Emergency Stop
  3008. */
  3009. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3010. #ifdef BARICUDA
  3011. #if HAS_HEATER_1
  3012. /**
  3013. * M126: Heater 1 valve open
  3014. */
  3015. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3016. /**
  3017. * M127: Heater 1 valve close
  3018. */
  3019. inline void gcode_M127() { ValvePressure = 0; }
  3020. #endif
  3021. #if HAS_HEATER_2
  3022. /**
  3023. * M128: Heater 2 valve open
  3024. */
  3025. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3026. /**
  3027. * M129: Heater 2 valve close
  3028. */
  3029. inline void gcode_M129() { EtoPPressure = 0; }
  3030. #endif
  3031. #endif //BARICUDA
  3032. /**
  3033. * M140: Set bed temperature
  3034. */
  3035. inline void gcode_M140() {
  3036. if (code_seen('S')) setTargetBed(code_value());
  3037. }
  3038. #ifdef ULTIPANEL
  3039. /**
  3040. * M145: Set the heatup state for a material in the LCD menu
  3041. * S<material> (0=PLA, 1=ABS)
  3042. * H<hotend temp>
  3043. * B<bed temp>
  3044. * F<fan speed>
  3045. */
  3046. inline void gcode_M145() {
  3047. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3048. if (material < 0 || material > 1) {
  3049. SERIAL_ERROR_START;
  3050. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3051. }
  3052. else {
  3053. int v;
  3054. switch (material) {
  3055. case 0:
  3056. if (code_seen('H')) {
  3057. v = code_value_short();
  3058. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3059. }
  3060. if (code_seen('F')) {
  3061. v = code_value_short();
  3062. plaPreheatFanSpeed = constrain(v, 0, 255);
  3063. }
  3064. #if TEMP_SENSOR_BED != 0
  3065. if (code_seen('B')) {
  3066. v = code_value_short();
  3067. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3068. }
  3069. #endif
  3070. break;
  3071. case 1:
  3072. if (code_seen('H')) {
  3073. v = code_value_short();
  3074. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3075. }
  3076. if (code_seen('F')) {
  3077. v = code_value_short();
  3078. absPreheatFanSpeed = constrain(v, 0, 255);
  3079. }
  3080. #if TEMP_SENSOR_BED != 0
  3081. if (code_seen('B')) {
  3082. v = code_value_short();
  3083. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3084. }
  3085. #endif
  3086. break;
  3087. }
  3088. }
  3089. }
  3090. #endif
  3091. #if HAS_POWER_SWITCH
  3092. /**
  3093. * M80: Turn on Power Supply
  3094. */
  3095. inline void gcode_M80() {
  3096. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3097. // If you have a switch on suicide pin, this is useful
  3098. // if you want to start another print with suicide feature after
  3099. // a print without suicide...
  3100. #if HAS_SUICIDE
  3101. OUT_WRITE(SUICIDE_PIN, HIGH);
  3102. #endif
  3103. #ifdef ULTIPANEL
  3104. powersupply = true;
  3105. LCD_MESSAGEPGM(WELCOME_MSG);
  3106. lcd_update();
  3107. #endif
  3108. }
  3109. #endif // HAS_POWER_SWITCH
  3110. /**
  3111. * M81: Turn off Power, including Power Supply, if there is one.
  3112. *
  3113. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3114. */
  3115. inline void gcode_M81() {
  3116. disable_all_heaters();
  3117. st_synchronize();
  3118. disable_e0();
  3119. disable_e1();
  3120. disable_e2();
  3121. disable_e3();
  3122. finishAndDisableSteppers();
  3123. fanSpeed = 0;
  3124. delay(1000); // Wait 1 second before switching off
  3125. #if HAS_SUICIDE
  3126. st_synchronize();
  3127. suicide();
  3128. #elif HAS_POWER_SWITCH
  3129. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3130. #endif
  3131. #ifdef ULTIPANEL
  3132. #if HAS_POWER_SWITCH
  3133. powersupply = false;
  3134. #endif
  3135. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3136. lcd_update();
  3137. #endif
  3138. }
  3139. /**
  3140. * M82: Set E codes absolute (default)
  3141. */
  3142. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3143. /**
  3144. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3145. */
  3146. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3147. /**
  3148. * M18, M84: Disable all stepper motors
  3149. */
  3150. inline void gcode_M18_M84() {
  3151. if (code_seen('S')) {
  3152. stepper_inactive_time = code_value() * 1000;
  3153. }
  3154. else {
  3155. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3156. if (all_axis) {
  3157. st_synchronize();
  3158. disable_e0();
  3159. disable_e1();
  3160. disable_e2();
  3161. disable_e3();
  3162. finishAndDisableSteppers();
  3163. }
  3164. else {
  3165. st_synchronize();
  3166. if (code_seen('X')) disable_x();
  3167. if (code_seen('Y')) disable_y();
  3168. if (code_seen('Z')) disable_z();
  3169. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3170. if (code_seen('E')) {
  3171. disable_e0();
  3172. disable_e1();
  3173. disable_e2();
  3174. disable_e3();
  3175. }
  3176. #endif
  3177. }
  3178. }
  3179. }
  3180. /**
  3181. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3182. */
  3183. inline void gcode_M85() {
  3184. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3185. }
  3186. /**
  3187. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3188. * (Follows the same syntax as G92)
  3189. */
  3190. inline void gcode_M92() {
  3191. for(int8_t i=0; i < NUM_AXIS; i++) {
  3192. if (code_seen(axis_codes[i])) {
  3193. if (i == E_AXIS) {
  3194. float value = code_value();
  3195. if (value < 20.0) {
  3196. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3197. max_e_jerk *= factor;
  3198. max_feedrate[i] *= factor;
  3199. axis_steps_per_sqr_second[i] *= factor;
  3200. }
  3201. axis_steps_per_unit[i] = value;
  3202. }
  3203. else {
  3204. axis_steps_per_unit[i] = code_value();
  3205. }
  3206. }
  3207. }
  3208. }
  3209. /**
  3210. * M114: Output current position to serial port
  3211. */
  3212. inline void gcode_M114() {
  3213. SERIAL_PROTOCOLPGM("X:");
  3214. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3215. SERIAL_PROTOCOLPGM(" Y:");
  3216. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3217. SERIAL_PROTOCOLPGM(" Z:");
  3218. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3219. SERIAL_PROTOCOLPGM(" E:");
  3220. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3221. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3222. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3223. SERIAL_PROTOCOLPGM(" Y:");
  3224. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3225. SERIAL_PROTOCOLPGM(" Z:");
  3226. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3227. SERIAL_EOL;
  3228. #ifdef SCARA
  3229. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3230. SERIAL_PROTOCOL(delta[X_AXIS]);
  3231. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3232. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3233. SERIAL_EOL;
  3234. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3235. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3236. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3237. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3238. SERIAL_EOL;
  3239. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3240. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3241. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3242. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3243. SERIAL_EOL; SERIAL_EOL;
  3244. #endif
  3245. }
  3246. /**
  3247. * M115: Capabilities string
  3248. */
  3249. inline void gcode_M115() {
  3250. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3251. }
  3252. /**
  3253. * M117: Set LCD Status Message
  3254. */
  3255. inline void gcode_M117() {
  3256. lcd_setstatus(current_command_args);
  3257. }
  3258. /**
  3259. * M119: Output endstop states to serial output
  3260. */
  3261. inline void gcode_M119() {
  3262. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3263. #if HAS_X_MIN
  3264. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3265. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3266. #endif
  3267. #if HAS_X_MAX
  3268. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3269. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3270. #endif
  3271. #if HAS_Y_MIN
  3272. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3273. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3274. #endif
  3275. #if HAS_Y_MAX
  3276. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3277. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3278. #endif
  3279. #if HAS_Z_MIN
  3280. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3281. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3282. #endif
  3283. #if HAS_Z_MAX
  3284. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3285. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3286. #endif
  3287. #if HAS_Z2_MAX
  3288. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3289. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3290. #endif
  3291. #if HAS_Z_PROBE
  3292. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3293. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3294. #endif
  3295. }
  3296. /**
  3297. * M120: Enable endstops
  3298. */
  3299. inline void gcode_M120() { enable_endstops(true); }
  3300. /**
  3301. * M121: Disable endstops
  3302. */
  3303. inline void gcode_M121() { enable_endstops(false); }
  3304. #ifdef BLINKM
  3305. /**
  3306. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3307. */
  3308. inline void gcode_M150() {
  3309. SendColors(
  3310. code_seen('R') ? (byte)code_value_short() : 0,
  3311. code_seen('U') ? (byte)code_value_short() : 0,
  3312. code_seen('B') ? (byte)code_value_short() : 0
  3313. );
  3314. }
  3315. #endif // BLINKM
  3316. /**
  3317. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3318. * T<extruder>
  3319. * D<millimeters>
  3320. */
  3321. inline void gcode_M200() {
  3322. int tmp_extruder = active_extruder;
  3323. if (code_seen('T')) {
  3324. tmp_extruder = code_value_short();
  3325. if (tmp_extruder >= EXTRUDERS) {
  3326. SERIAL_ECHO_START;
  3327. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3328. return;
  3329. }
  3330. }
  3331. if (code_seen('D')) {
  3332. float diameter = code_value();
  3333. // setting any extruder filament size disables volumetric on the assumption that
  3334. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3335. // for all extruders
  3336. volumetric_enabled = (diameter != 0.0);
  3337. if (volumetric_enabled) {
  3338. filament_size[tmp_extruder] = diameter;
  3339. // make sure all extruders have some sane value for the filament size
  3340. for (int i=0; i<EXTRUDERS; i++)
  3341. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3342. }
  3343. }
  3344. else {
  3345. //reserved for setting filament diameter via UFID or filament measuring device
  3346. return;
  3347. }
  3348. calculate_volumetric_multipliers();
  3349. }
  3350. /**
  3351. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3352. */
  3353. inline void gcode_M201() {
  3354. for (int8_t i=0; i < NUM_AXIS; i++) {
  3355. if (code_seen(axis_codes[i])) {
  3356. max_acceleration_units_per_sq_second[i] = code_value();
  3357. }
  3358. }
  3359. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3360. reset_acceleration_rates();
  3361. }
  3362. #if 0 // Not used for Sprinter/grbl gen6
  3363. inline void gcode_M202() {
  3364. for(int8_t i=0; i < NUM_AXIS; i++) {
  3365. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3366. }
  3367. }
  3368. #endif
  3369. /**
  3370. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3371. */
  3372. inline void gcode_M203() {
  3373. for (int8_t i=0; i < NUM_AXIS; i++) {
  3374. if (code_seen(axis_codes[i])) {
  3375. max_feedrate[i] = code_value();
  3376. }
  3377. }
  3378. }
  3379. /**
  3380. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3381. *
  3382. * P = Printing moves
  3383. * R = Retract only (no X, Y, Z) moves
  3384. * T = Travel (non printing) moves
  3385. *
  3386. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3387. */
  3388. inline void gcode_M204() {
  3389. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3390. acceleration = code_value();
  3391. travel_acceleration = acceleration;
  3392. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3393. SERIAL_EOL;
  3394. }
  3395. if (code_seen('P')) {
  3396. acceleration = code_value();
  3397. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3398. SERIAL_EOL;
  3399. }
  3400. if (code_seen('R')) {
  3401. retract_acceleration = code_value();
  3402. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3403. SERIAL_EOL;
  3404. }
  3405. if (code_seen('T')) {
  3406. travel_acceleration = code_value();
  3407. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3408. SERIAL_EOL;
  3409. }
  3410. }
  3411. /**
  3412. * M205: Set Advanced Settings
  3413. *
  3414. * S = Min Feed Rate (mm/s)
  3415. * T = Min Travel Feed Rate (mm/s)
  3416. * B = Min Segment Time (µs)
  3417. * X = Max XY Jerk (mm/s/s)
  3418. * Z = Max Z Jerk (mm/s/s)
  3419. * E = Max E Jerk (mm/s/s)
  3420. */
  3421. inline void gcode_M205() {
  3422. if (code_seen('S')) minimumfeedrate = code_value();
  3423. if (code_seen('T')) mintravelfeedrate = code_value();
  3424. if (code_seen('B')) minsegmenttime = code_value();
  3425. if (code_seen('X')) max_xy_jerk = code_value();
  3426. if (code_seen('Z')) max_z_jerk = code_value();
  3427. if (code_seen('E')) max_e_jerk = code_value();
  3428. }
  3429. /**
  3430. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3431. */
  3432. inline void gcode_M206() {
  3433. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3434. if (code_seen(axis_codes[i])) {
  3435. home_offset[i] = code_value();
  3436. }
  3437. }
  3438. #ifdef SCARA
  3439. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3440. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3441. #endif
  3442. }
  3443. #ifdef DELTA
  3444. /**
  3445. * M665: Set delta configurations
  3446. *
  3447. * L = diagonal rod
  3448. * R = delta radius
  3449. * S = segments per second
  3450. */
  3451. inline void gcode_M665() {
  3452. if (code_seen('L')) delta_diagonal_rod = code_value();
  3453. if (code_seen('R')) delta_radius = code_value();
  3454. if (code_seen('S')) delta_segments_per_second = code_value();
  3455. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3456. }
  3457. /**
  3458. * M666: Set delta endstop adjustment
  3459. */
  3460. inline void gcode_M666() {
  3461. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3462. if (code_seen(axis_codes[i])) {
  3463. endstop_adj[i] = code_value();
  3464. }
  3465. }
  3466. }
  3467. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3468. /**
  3469. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3470. */
  3471. inline void gcode_M666() {
  3472. if (code_seen('Z')) z_endstop_adj = code_value();
  3473. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3474. SERIAL_EOL;
  3475. }
  3476. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3477. #ifdef FWRETRACT
  3478. /**
  3479. * M207: Set firmware retraction values
  3480. *
  3481. * S[+mm] retract_length
  3482. * W[+mm] retract_length_swap (multi-extruder)
  3483. * F[mm/min] retract_feedrate
  3484. * Z[mm] retract_zlift
  3485. */
  3486. inline void gcode_M207() {
  3487. if (code_seen('S')) retract_length = code_value();
  3488. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3489. if (code_seen('Z')) retract_zlift = code_value();
  3490. #if EXTRUDERS > 1
  3491. if (code_seen('W')) retract_length_swap = code_value();
  3492. #endif
  3493. }
  3494. /**
  3495. * M208: Set firmware un-retraction values
  3496. *
  3497. * S[+mm] retract_recover_length (in addition to M207 S*)
  3498. * W[+mm] retract_recover_length_swap (multi-extruder)
  3499. * F[mm/min] retract_recover_feedrate
  3500. */
  3501. inline void gcode_M208() {
  3502. if (code_seen('S')) retract_recover_length = code_value();
  3503. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3504. #if EXTRUDERS > 1
  3505. if (code_seen('W')) retract_recover_length_swap = code_value();
  3506. #endif
  3507. }
  3508. /**
  3509. * M209: Enable automatic retract (M209 S1)
  3510. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3511. */
  3512. inline void gcode_M209() {
  3513. if (code_seen('S')) {
  3514. int t = code_value_short();
  3515. switch(t) {
  3516. case 0:
  3517. autoretract_enabled = false;
  3518. break;
  3519. case 1:
  3520. autoretract_enabled = true;
  3521. break;
  3522. default:
  3523. unknown_command_error();
  3524. return;
  3525. }
  3526. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3527. }
  3528. }
  3529. #endif // FWRETRACT
  3530. #if EXTRUDERS > 1
  3531. /**
  3532. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3533. */
  3534. inline void gcode_M218() {
  3535. if (setTargetedHotend(218)) return;
  3536. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3537. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3538. #ifdef DUAL_X_CARRIAGE
  3539. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3540. #endif
  3541. SERIAL_ECHO_START;
  3542. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3543. for (int e = 0; e < EXTRUDERS; e++) {
  3544. SERIAL_CHAR(' ');
  3545. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3546. SERIAL_CHAR(',');
  3547. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3548. #ifdef DUAL_X_CARRIAGE
  3549. SERIAL_CHAR(',');
  3550. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3551. #endif
  3552. }
  3553. SERIAL_EOL;
  3554. }
  3555. #endif // EXTRUDERS > 1
  3556. /**
  3557. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3558. */
  3559. inline void gcode_M220() {
  3560. if (code_seen('S')) feedrate_multiplier = code_value();
  3561. }
  3562. /**
  3563. * M221: Set extrusion percentage (M221 T0 S95)
  3564. */
  3565. inline void gcode_M221() {
  3566. if (code_seen('S')) {
  3567. int sval = code_value();
  3568. if (code_seen('T')) {
  3569. if (setTargetedHotend(221)) return;
  3570. extruder_multiply[target_extruder] = sval;
  3571. }
  3572. else {
  3573. extruder_multiply[active_extruder] = sval;
  3574. }
  3575. }
  3576. }
  3577. /**
  3578. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3579. */
  3580. inline void gcode_M226() {
  3581. if (code_seen('P')) {
  3582. int pin_number = code_value();
  3583. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3584. if (pin_state >= -1 && pin_state <= 1) {
  3585. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3586. if (sensitive_pins[i] == pin_number) {
  3587. pin_number = -1;
  3588. break;
  3589. }
  3590. }
  3591. if (pin_number > -1) {
  3592. int target = LOW;
  3593. st_synchronize();
  3594. pinMode(pin_number, INPUT);
  3595. switch(pin_state){
  3596. case 1:
  3597. target = HIGH;
  3598. break;
  3599. case 0:
  3600. target = LOW;
  3601. break;
  3602. case -1:
  3603. target = !digitalRead(pin_number);
  3604. break;
  3605. }
  3606. while(digitalRead(pin_number) != target) {
  3607. manage_heater();
  3608. manage_inactivity();
  3609. lcd_update();
  3610. }
  3611. } // pin_number > -1
  3612. } // pin_state -1 0 1
  3613. } // code_seen('P')
  3614. }
  3615. #if NUM_SERVOS > 0
  3616. /**
  3617. * M280: Get or set servo position. P<index> S<angle>
  3618. */
  3619. inline void gcode_M280() {
  3620. int servo_index = code_seen('P') ? code_value_short() : -1;
  3621. int servo_position = 0;
  3622. if (code_seen('S')) {
  3623. servo_position = code_value_short();
  3624. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3625. Servo *srv = &servo[servo_index];
  3626. #if SERVO_LEVELING
  3627. srv->attach(0);
  3628. #endif
  3629. srv->write(servo_position);
  3630. #if SERVO_LEVELING
  3631. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3632. srv->detach();
  3633. #endif
  3634. }
  3635. else {
  3636. SERIAL_ECHO_START;
  3637. SERIAL_ECHO("Servo ");
  3638. SERIAL_ECHO(servo_index);
  3639. SERIAL_ECHOLN(" out of range");
  3640. }
  3641. }
  3642. else if (servo_index >= 0) {
  3643. SERIAL_PROTOCOL(MSG_OK);
  3644. SERIAL_PROTOCOL(" Servo ");
  3645. SERIAL_PROTOCOL(servo_index);
  3646. SERIAL_PROTOCOL(": ");
  3647. SERIAL_PROTOCOL(servo[servo_index].read());
  3648. SERIAL_EOL;
  3649. }
  3650. }
  3651. #endif // NUM_SERVOS > 0
  3652. #if HAS_LCD_BUZZ
  3653. /**
  3654. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3655. */
  3656. inline void gcode_M300() {
  3657. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3658. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3659. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3660. lcd_buzz(beepP, beepS);
  3661. }
  3662. #endif // HAS_LCD_BUZZ
  3663. #ifdef PIDTEMP
  3664. /**
  3665. * M301: Set PID parameters P I D (and optionally C)
  3666. */
  3667. inline void gcode_M301() {
  3668. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3669. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3670. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3671. if (e < EXTRUDERS) { // catch bad input value
  3672. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3673. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3674. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3675. #ifdef PID_ADD_EXTRUSION_RATE
  3676. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3677. #endif
  3678. updatePID();
  3679. SERIAL_PROTOCOL(MSG_OK);
  3680. #ifdef PID_PARAMS_PER_EXTRUDER
  3681. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3682. SERIAL_PROTOCOL(e);
  3683. #endif // PID_PARAMS_PER_EXTRUDER
  3684. SERIAL_PROTOCOL(" p:");
  3685. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3686. SERIAL_PROTOCOL(" i:");
  3687. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3688. SERIAL_PROTOCOL(" d:");
  3689. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3690. #ifdef PID_ADD_EXTRUSION_RATE
  3691. SERIAL_PROTOCOL(" c:");
  3692. //Kc does not have scaling applied above, or in resetting defaults
  3693. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3694. #endif
  3695. SERIAL_EOL;
  3696. }
  3697. else {
  3698. SERIAL_ECHO_START;
  3699. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3700. }
  3701. }
  3702. #endif // PIDTEMP
  3703. #ifdef PIDTEMPBED
  3704. inline void gcode_M304() {
  3705. if (code_seen('P')) bedKp = code_value();
  3706. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3707. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3708. updatePID();
  3709. SERIAL_PROTOCOL(MSG_OK);
  3710. SERIAL_PROTOCOL(" p:");
  3711. SERIAL_PROTOCOL(bedKp);
  3712. SERIAL_PROTOCOL(" i:");
  3713. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3714. SERIAL_PROTOCOL(" d:");
  3715. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3716. SERIAL_EOL;
  3717. }
  3718. #endif // PIDTEMPBED
  3719. #if defined(CHDK) || HAS_PHOTOGRAPH
  3720. /**
  3721. * M240: Trigger a camera by emulating a Canon RC-1
  3722. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3723. */
  3724. inline void gcode_M240() {
  3725. #ifdef CHDK
  3726. OUT_WRITE(CHDK, HIGH);
  3727. chdkHigh = millis();
  3728. chdkActive = true;
  3729. #elif HAS_PHOTOGRAPH
  3730. const uint8_t NUM_PULSES = 16;
  3731. const float PULSE_LENGTH = 0.01524;
  3732. for (int i = 0; i < NUM_PULSES; i++) {
  3733. WRITE(PHOTOGRAPH_PIN, HIGH);
  3734. _delay_ms(PULSE_LENGTH);
  3735. WRITE(PHOTOGRAPH_PIN, LOW);
  3736. _delay_ms(PULSE_LENGTH);
  3737. }
  3738. delay(7.33);
  3739. for (int i = 0; i < NUM_PULSES; i++) {
  3740. WRITE(PHOTOGRAPH_PIN, HIGH);
  3741. _delay_ms(PULSE_LENGTH);
  3742. WRITE(PHOTOGRAPH_PIN, LOW);
  3743. _delay_ms(PULSE_LENGTH);
  3744. }
  3745. #endif // !CHDK && HAS_PHOTOGRAPH
  3746. }
  3747. #endif // CHDK || PHOTOGRAPH_PIN
  3748. #ifdef HAS_LCD_CONTRAST
  3749. /**
  3750. * M250: Read and optionally set the LCD contrast
  3751. */
  3752. inline void gcode_M250() {
  3753. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3754. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3755. SERIAL_PROTOCOL(lcd_contrast);
  3756. SERIAL_EOL;
  3757. }
  3758. #endif // HAS_LCD_CONTRAST
  3759. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3760. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3761. /**
  3762. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3763. */
  3764. inline void gcode_M302() {
  3765. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3766. }
  3767. #endif // PREVENT_DANGEROUS_EXTRUDE
  3768. /**
  3769. * M303: PID relay autotune
  3770. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3771. * E<extruder> (-1 for the bed)
  3772. * C<cycles>
  3773. */
  3774. inline void gcode_M303() {
  3775. int e = code_seen('E') ? code_value_short() : 0;
  3776. int c = code_seen('C') ? code_value_short() : 5;
  3777. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3778. PID_autotune(temp, e, c);
  3779. // Suppress a line mismatch error
  3780. gcode_LastN += 1;
  3781. FlushSerialRequestResend();
  3782. }
  3783. #ifdef SCARA
  3784. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3785. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3786. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3787. if (IsRunning()) {
  3788. //gcode_get_destination(); // For X Y Z E F
  3789. delta[X_AXIS] = delta_x;
  3790. delta[Y_AXIS] = delta_y;
  3791. calculate_SCARA_forward_Transform(delta);
  3792. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3793. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3794. prepare_move();
  3795. //ok_to_send();
  3796. return true;
  3797. }
  3798. return false;
  3799. }
  3800. /**
  3801. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3802. */
  3803. inline bool gcode_M360() {
  3804. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3805. return SCARA_move_to_cal(0, 120);
  3806. }
  3807. /**
  3808. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3809. */
  3810. inline bool gcode_M361() {
  3811. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3812. return SCARA_move_to_cal(90, 130);
  3813. }
  3814. /**
  3815. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3816. */
  3817. inline bool gcode_M362() {
  3818. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3819. return SCARA_move_to_cal(60, 180);
  3820. }
  3821. /**
  3822. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3823. */
  3824. inline bool gcode_M363() {
  3825. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3826. return SCARA_move_to_cal(50, 90);
  3827. }
  3828. /**
  3829. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3830. */
  3831. inline bool gcode_M364() {
  3832. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3833. return SCARA_move_to_cal(45, 135);
  3834. }
  3835. /**
  3836. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3837. */
  3838. inline void gcode_M365() {
  3839. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3840. if (code_seen(axis_codes[i])) {
  3841. axis_scaling[i] = code_value();
  3842. }
  3843. }
  3844. }
  3845. #endif // SCARA
  3846. #ifdef EXT_SOLENOID
  3847. void enable_solenoid(uint8_t num) {
  3848. switch(num) {
  3849. case 0:
  3850. OUT_WRITE(SOL0_PIN, HIGH);
  3851. break;
  3852. #if HAS_SOLENOID_1
  3853. case 1:
  3854. OUT_WRITE(SOL1_PIN, HIGH);
  3855. break;
  3856. #endif
  3857. #if HAS_SOLENOID_2
  3858. case 2:
  3859. OUT_WRITE(SOL2_PIN, HIGH);
  3860. break;
  3861. #endif
  3862. #if HAS_SOLENOID_3
  3863. case 3:
  3864. OUT_WRITE(SOL3_PIN, HIGH);
  3865. break;
  3866. #endif
  3867. default:
  3868. SERIAL_ECHO_START;
  3869. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3870. break;
  3871. }
  3872. }
  3873. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3874. void disable_all_solenoids() {
  3875. OUT_WRITE(SOL0_PIN, LOW);
  3876. OUT_WRITE(SOL1_PIN, LOW);
  3877. OUT_WRITE(SOL2_PIN, LOW);
  3878. OUT_WRITE(SOL3_PIN, LOW);
  3879. }
  3880. /**
  3881. * M380: Enable solenoid on the active extruder
  3882. */
  3883. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3884. /**
  3885. * M381: Disable all solenoids
  3886. */
  3887. inline void gcode_M381() { disable_all_solenoids(); }
  3888. #endif // EXT_SOLENOID
  3889. /**
  3890. * M400: Finish all moves
  3891. */
  3892. inline void gcode_M400() { st_synchronize(); }
  3893. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3894. #ifdef SERVO_ENDSTOPS
  3895. void raise_z_for_servo() {
  3896. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3897. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3898. if (zpos < z_dest)
  3899. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3900. }
  3901. #endif
  3902. /**
  3903. * M401: Engage Z Servo endstop if available
  3904. */
  3905. inline void gcode_M401() {
  3906. #ifdef SERVO_ENDSTOPS
  3907. raise_z_for_servo();
  3908. #endif
  3909. deploy_z_probe();
  3910. }
  3911. /**
  3912. * M402: Retract Z Servo endstop if enabled
  3913. */
  3914. inline void gcode_M402() {
  3915. #ifdef SERVO_ENDSTOPS
  3916. raise_z_for_servo();
  3917. #endif
  3918. stow_z_probe(false);
  3919. }
  3920. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3921. #ifdef FILAMENT_SENSOR
  3922. /**
  3923. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3924. */
  3925. inline void gcode_M404() {
  3926. #if HAS_FILWIDTH
  3927. if (code_seen('W')) {
  3928. filament_width_nominal = code_value();
  3929. }
  3930. else {
  3931. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3932. SERIAL_PROTOCOLLN(filament_width_nominal);
  3933. }
  3934. #endif
  3935. }
  3936. /**
  3937. * M405: Turn on filament sensor for control
  3938. */
  3939. inline void gcode_M405() {
  3940. if (code_seen('D')) meas_delay_cm = code_value();
  3941. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3942. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3943. int temp_ratio = widthFil_to_size_ratio();
  3944. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3945. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3946. delay_index1 = delay_index2 = 0;
  3947. }
  3948. filament_sensor = true;
  3949. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3950. //SERIAL_PROTOCOL(filament_width_meas);
  3951. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3952. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3953. }
  3954. /**
  3955. * M406: Turn off filament sensor for control
  3956. */
  3957. inline void gcode_M406() { filament_sensor = false; }
  3958. /**
  3959. * M407: Get measured filament diameter on serial output
  3960. */
  3961. inline void gcode_M407() {
  3962. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3963. SERIAL_PROTOCOLLN(filament_width_meas);
  3964. }
  3965. #endif // FILAMENT_SENSOR
  3966. /**
  3967. * M410: Quickstop - Abort all planned moves
  3968. *
  3969. * This will stop the carriages mid-move, so most likely they
  3970. * will be out of sync with the stepper position after this.
  3971. */
  3972. inline void gcode_M410() { quickStop(); }
  3973. #ifdef MESH_BED_LEVELING
  3974. /**
  3975. * M420: Enable/Disable Mesh Bed Leveling
  3976. */
  3977. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3978. /**
  3979. * M421: Set a single Mesh Bed Leveling Z coordinate
  3980. */
  3981. inline void gcode_M421() {
  3982. float x, y, z;
  3983. bool err = false, hasX, hasY, hasZ;
  3984. if ((hasX = code_seen('X'))) x = code_value();
  3985. if ((hasY = code_seen('Y'))) y = code_value();
  3986. if ((hasZ = code_seen('Z'))) z = code_value();
  3987. if (!hasX || !hasY || !hasZ) {
  3988. SERIAL_ERROR_START;
  3989. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3990. err = true;
  3991. }
  3992. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3993. SERIAL_ERROR_START;
  3994. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3995. err = true;
  3996. }
  3997. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3998. }
  3999. #endif
  4000. /**
  4001. * M428: Set home_offset based on the distance between the
  4002. * current_position and the nearest "reference point."
  4003. * If an axis is past center its endstop position
  4004. * is the reference-point. Otherwise it uses 0. This allows
  4005. * the Z offset to be set near the bed when using a max endstop.
  4006. *
  4007. * M428 can't be used more than 2cm away from 0 or an endstop.
  4008. *
  4009. * Use M206 to set these values directly.
  4010. */
  4011. inline void gcode_M428() {
  4012. bool err = false;
  4013. float new_offs[3], new_pos[3];
  4014. memcpy(new_pos, current_position, sizeof(new_pos));
  4015. memcpy(new_offs, home_offset, sizeof(new_offs));
  4016. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4017. if (axis_known_position[i]) {
  4018. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4019. diff = new_pos[i] - base;
  4020. if (diff > -20 && diff < 20) {
  4021. new_offs[i] -= diff;
  4022. new_pos[i] = base;
  4023. }
  4024. else {
  4025. SERIAL_ERROR_START;
  4026. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4027. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4028. #if HAS_LCD_BUZZ
  4029. enqueuecommands_P(PSTR("M300 S40 P200"));
  4030. #endif
  4031. err = true;
  4032. break;
  4033. }
  4034. }
  4035. }
  4036. if (!err) {
  4037. memcpy(current_position, new_pos, sizeof(new_pos));
  4038. memcpy(home_offset, new_offs, sizeof(new_offs));
  4039. sync_plan_position();
  4040. LCD_ALERTMESSAGEPGM("Offset applied.");
  4041. #if HAS_LCD_BUZZ
  4042. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4043. #endif
  4044. }
  4045. }
  4046. /**
  4047. * M500: Store settings in EEPROM
  4048. */
  4049. inline void gcode_M500() {
  4050. Config_StoreSettings();
  4051. }
  4052. /**
  4053. * M501: Read settings from EEPROM
  4054. */
  4055. inline void gcode_M501() {
  4056. Config_RetrieveSettings();
  4057. }
  4058. /**
  4059. * M502: Revert to default settings
  4060. */
  4061. inline void gcode_M502() {
  4062. Config_ResetDefault();
  4063. }
  4064. /**
  4065. * M503: print settings currently in memory
  4066. */
  4067. inline void gcode_M503() {
  4068. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4069. }
  4070. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4071. /**
  4072. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4073. */
  4074. inline void gcode_M540() {
  4075. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4076. }
  4077. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4078. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4079. inline void gcode_SET_Z_PROBE_OFFSET() {
  4080. float value;
  4081. if (code_seen('Z')) {
  4082. value = code_value();
  4083. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4084. zprobe_zoffset = -value;
  4085. SERIAL_ECHO_START;
  4086. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4087. SERIAL_EOL;
  4088. }
  4089. else {
  4090. SERIAL_ECHO_START;
  4091. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4092. SERIAL_ECHOPGM(MSG_Z_MIN);
  4093. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4094. SERIAL_ECHOPGM(MSG_Z_MAX);
  4095. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4096. SERIAL_EOL;
  4097. }
  4098. }
  4099. else {
  4100. SERIAL_ECHO_START;
  4101. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4102. SERIAL_ECHO(-zprobe_zoffset);
  4103. SERIAL_EOL;
  4104. }
  4105. }
  4106. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4107. #ifdef FILAMENTCHANGEENABLE
  4108. /**
  4109. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4110. */
  4111. inline void gcode_M600() {
  4112. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4113. for (int i=0; i<NUM_AXIS; i++)
  4114. target[i] = lastpos[i] = current_position[i];
  4115. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4116. #ifdef DELTA
  4117. #define RUNPLAN calculate_delta(target); BASICPLAN
  4118. #else
  4119. #define RUNPLAN BASICPLAN
  4120. #endif
  4121. //retract by E
  4122. if (code_seen('E')) target[E_AXIS] += code_value();
  4123. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4124. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4125. #endif
  4126. RUNPLAN;
  4127. //lift Z
  4128. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4129. #ifdef FILAMENTCHANGE_ZADD
  4130. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4131. #endif
  4132. RUNPLAN;
  4133. //move xy
  4134. if (code_seen('X')) target[X_AXIS] = code_value();
  4135. #ifdef FILAMENTCHANGE_XPOS
  4136. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4137. #endif
  4138. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4139. #ifdef FILAMENTCHANGE_YPOS
  4140. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4141. #endif
  4142. RUNPLAN;
  4143. if (code_seen('L')) target[E_AXIS] += code_value();
  4144. #ifdef FILAMENTCHANGE_FINALRETRACT
  4145. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4146. #endif
  4147. RUNPLAN;
  4148. //finish moves
  4149. st_synchronize();
  4150. //disable extruder steppers so filament can be removed
  4151. disable_e0();
  4152. disable_e1();
  4153. disable_e2();
  4154. disable_e3();
  4155. delay(100);
  4156. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4157. uint8_t cnt = 0;
  4158. while (!lcd_clicked()) {
  4159. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4160. manage_heater();
  4161. manage_inactivity(true);
  4162. lcd_update();
  4163. } // while(!lcd_clicked)
  4164. //return to normal
  4165. if (code_seen('L')) target[E_AXIS] -= code_value();
  4166. #ifdef FILAMENTCHANGE_FINALRETRACT
  4167. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4168. #endif
  4169. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4170. plan_set_e_position(current_position[E_AXIS]);
  4171. RUNPLAN; //should do nothing
  4172. lcd_reset_alert_level();
  4173. #ifdef DELTA
  4174. calculate_delta(lastpos);
  4175. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4176. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4177. #else
  4178. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4179. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4180. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4181. #endif
  4182. #ifdef FILAMENT_RUNOUT_SENSOR
  4183. filrunoutEnqueued = false;
  4184. #endif
  4185. }
  4186. #endif // FILAMENTCHANGEENABLE
  4187. #ifdef DUAL_X_CARRIAGE
  4188. /**
  4189. * M605: Set dual x-carriage movement mode
  4190. *
  4191. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4192. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4193. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4194. * millimeters x-offset and an optional differential hotend temperature of
  4195. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4196. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4197. *
  4198. * Note: the X axis should be homed after changing dual x-carriage mode.
  4199. */
  4200. inline void gcode_M605() {
  4201. st_synchronize();
  4202. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4203. switch(dual_x_carriage_mode) {
  4204. case DXC_DUPLICATION_MODE:
  4205. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4206. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4207. SERIAL_ECHO_START;
  4208. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4209. SERIAL_CHAR(' ');
  4210. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4211. SERIAL_CHAR(',');
  4212. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4213. SERIAL_CHAR(' ');
  4214. SERIAL_ECHO(duplicate_extruder_x_offset);
  4215. SERIAL_CHAR(',');
  4216. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4217. break;
  4218. case DXC_FULL_CONTROL_MODE:
  4219. case DXC_AUTO_PARK_MODE:
  4220. break;
  4221. default:
  4222. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4223. break;
  4224. }
  4225. active_extruder_parked = false;
  4226. extruder_duplication_enabled = false;
  4227. delayed_move_time = 0;
  4228. }
  4229. #endif // DUAL_X_CARRIAGE
  4230. /**
  4231. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4232. */
  4233. inline void gcode_M907() {
  4234. #if HAS_DIGIPOTSS
  4235. for (int i=0;i<NUM_AXIS;i++)
  4236. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4237. if (code_seen('B')) digipot_current(4, code_value());
  4238. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4239. #endif
  4240. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4241. if (code_seen('X')) digipot_current(0, code_value());
  4242. #endif
  4243. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4244. if (code_seen('Z')) digipot_current(1, code_value());
  4245. #endif
  4246. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4247. if (code_seen('E')) digipot_current(2, code_value());
  4248. #endif
  4249. #ifdef DIGIPOT_I2C
  4250. // this one uses actual amps in floating point
  4251. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4252. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4253. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4254. #endif
  4255. }
  4256. #if HAS_DIGIPOTSS
  4257. /**
  4258. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4259. */
  4260. inline void gcode_M908() {
  4261. digitalPotWrite(
  4262. code_seen('P') ? code_value() : 0,
  4263. code_seen('S') ? code_value() : 0
  4264. );
  4265. }
  4266. #endif // HAS_DIGIPOTSS
  4267. #if HAS_MICROSTEPS
  4268. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4269. inline void gcode_M350() {
  4270. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4271. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4272. if(code_seen('B')) microstep_mode(4,code_value());
  4273. microstep_readings();
  4274. }
  4275. /**
  4276. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4277. * S# determines MS1 or MS2, X# sets the pin high/low.
  4278. */
  4279. inline void gcode_M351() {
  4280. if (code_seen('S')) switch(code_value_short()) {
  4281. case 1:
  4282. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4283. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4284. break;
  4285. case 2:
  4286. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4287. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4288. break;
  4289. }
  4290. microstep_readings();
  4291. }
  4292. #endif // HAS_MICROSTEPS
  4293. /**
  4294. * M999: Restart after being stopped
  4295. */
  4296. inline void gcode_M999() {
  4297. Running = true;
  4298. lcd_reset_alert_level();
  4299. gcode_LastN = Stopped_gcode_LastN;
  4300. FlushSerialRequestResend();
  4301. }
  4302. /**
  4303. * T0-T3: Switch tool, usually switching extruders
  4304. *
  4305. * F[mm/min] Set the movement feedrate
  4306. */
  4307. inline void gcode_T(uint8_t tmp_extruder) {
  4308. if (tmp_extruder >= EXTRUDERS) {
  4309. SERIAL_ECHO_START;
  4310. SERIAL_CHAR('T');
  4311. SERIAL_ECHO(tmp_extruder);
  4312. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4313. }
  4314. else {
  4315. target_extruder = tmp_extruder;
  4316. #if EXTRUDERS > 1
  4317. bool make_move = false;
  4318. #endif
  4319. if (code_seen('F')) {
  4320. #if EXTRUDERS > 1
  4321. make_move = true;
  4322. #endif
  4323. float next_feedrate = code_value();
  4324. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4325. }
  4326. #if EXTRUDERS > 1
  4327. if (tmp_extruder != active_extruder) {
  4328. // Save current position to return to after applying extruder offset
  4329. set_destination_to_current();
  4330. #ifdef DUAL_X_CARRIAGE
  4331. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4332. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4333. // Park old head: 1) raise 2) move to park position 3) lower
  4334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4335. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4336. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4337. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4338. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4339. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4340. st_synchronize();
  4341. }
  4342. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4343. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4344. extruder_offset[Y_AXIS][active_extruder] +
  4345. extruder_offset[Y_AXIS][tmp_extruder];
  4346. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4347. extruder_offset[Z_AXIS][active_extruder] +
  4348. extruder_offset[Z_AXIS][tmp_extruder];
  4349. active_extruder = tmp_extruder;
  4350. // This function resets the max/min values - the current position may be overwritten below.
  4351. axis_is_at_home(X_AXIS);
  4352. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4353. current_position[X_AXIS] = inactive_extruder_x_pos;
  4354. inactive_extruder_x_pos = destination[X_AXIS];
  4355. }
  4356. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4357. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4358. if (active_extruder == 0 || active_extruder_parked)
  4359. current_position[X_AXIS] = inactive_extruder_x_pos;
  4360. else
  4361. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4362. inactive_extruder_x_pos = destination[X_AXIS];
  4363. extruder_duplication_enabled = false;
  4364. }
  4365. else {
  4366. // record raised toolhead position for use by unpark
  4367. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4368. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4369. active_extruder_parked = true;
  4370. delayed_move_time = 0;
  4371. }
  4372. #else // !DUAL_X_CARRIAGE
  4373. // Offset extruder (only by XY)
  4374. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4375. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4376. // Set the new active extruder and position
  4377. active_extruder = tmp_extruder;
  4378. #endif // !DUAL_X_CARRIAGE
  4379. #ifdef DELTA
  4380. sync_plan_position_delta();
  4381. #else
  4382. sync_plan_position();
  4383. #endif
  4384. // Move to the old position if 'F' was in the parameters
  4385. if (make_move && IsRunning()) prepare_move();
  4386. }
  4387. #ifdef EXT_SOLENOID
  4388. st_synchronize();
  4389. disable_all_solenoids();
  4390. enable_solenoid_on_active_extruder();
  4391. #endif // EXT_SOLENOID
  4392. #endif // EXTRUDERS > 1
  4393. SERIAL_ECHO_START;
  4394. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4395. SERIAL_PROTOCOLLN((int)active_extruder);
  4396. }
  4397. }
  4398. /**
  4399. * Process a single command and dispatch it to its handler
  4400. * This is called from the main loop()
  4401. */
  4402. void process_next_command() {
  4403. current_command = command_queue[cmd_queue_index_r];
  4404. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4405. SERIAL_ECHO_START;
  4406. SERIAL_ECHOLN(current_command);
  4407. }
  4408. // Sanitize the current command:
  4409. // - Skip leading spaces
  4410. // - Bypass N...
  4411. // - Overwrite * with nul to mark the end
  4412. while (*current_command == ' ') ++current_command;
  4413. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4414. while (*current_command != ' ') ++current_command;
  4415. while (*current_command == ' ') ++current_command;
  4416. }
  4417. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4418. if (starpos) *starpos = '\0';
  4419. // Get the command code, which must be G, M, or T
  4420. char command_code = *current_command;
  4421. // The code must have a numeric value
  4422. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4423. int codenum; // define ahead of goto
  4424. // Bail early if there's no code
  4425. if (!code_is_good) goto ExitUnknownCommand;
  4426. // Args pointer optimizes code_seen, especially those taking XYZEF
  4427. // This wastes a little cpu on commands that expect no arguments.
  4428. current_command_args = current_command;
  4429. while (*current_command_args != ' ') ++current_command_args;
  4430. while (*current_command_args == ' ') ++current_command_args;
  4431. // Interpret the code int
  4432. codenum = code_value_short();
  4433. // Handle a known G, M, or T
  4434. switch(command_code) {
  4435. case 'G': switch (codenum) {
  4436. // G0, G1
  4437. case 0:
  4438. case 1:
  4439. gcode_G0_G1();
  4440. break;
  4441. // G2, G3
  4442. #ifndef SCARA
  4443. case 2: // G2 - CW ARC
  4444. case 3: // G3 - CCW ARC
  4445. gcode_G2_G3(codenum == 2);
  4446. break;
  4447. #endif
  4448. // G4 Dwell
  4449. case 4:
  4450. gcode_G4();
  4451. break;
  4452. #ifdef FWRETRACT
  4453. case 10: // G10: retract
  4454. case 11: // G11: retract_recover
  4455. gcode_G10_G11(codenum == 10);
  4456. break;
  4457. #endif //FWRETRACT
  4458. case 28: // G28: Home all axes, one at a time
  4459. gcode_G28();
  4460. break;
  4461. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4462. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4463. gcode_G29();
  4464. break;
  4465. #endif
  4466. #ifdef ENABLE_AUTO_BED_LEVELING
  4467. #ifndef Z_PROBE_SLED
  4468. case 30: // G30 Single Z Probe
  4469. gcode_G30();
  4470. break;
  4471. #else // Z_PROBE_SLED
  4472. case 31: // G31: dock the sled
  4473. case 32: // G32: undock the sled
  4474. dock_sled(codenum == 31);
  4475. break;
  4476. #endif // Z_PROBE_SLED
  4477. #endif // ENABLE_AUTO_BED_LEVELING
  4478. case 90: // G90
  4479. relative_mode = false;
  4480. break;
  4481. case 91: // G91
  4482. relative_mode = true;
  4483. break;
  4484. case 92: // G92
  4485. gcode_G92();
  4486. break;
  4487. default: code_is_good = false;
  4488. }
  4489. break;
  4490. case 'M': switch (codenum) {
  4491. #ifdef ULTIPANEL
  4492. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4493. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4494. gcode_M0_M1();
  4495. break;
  4496. #endif // ULTIPANEL
  4497. case 17:
  4498. gcode_M17();
  4499. break;
  4500. #ifdef SDSUPPORT
  4501. case 20: // M20 - list SD card
  4502. gcode_M20(); break;
  4503. case 21: // M21 - init SD card
  4504. gcode_M21(); break;
  4505. case 22: //M22 - release SD card
  4506. gcode_M22(); break;
  4507. case 23: //M23 - Select file
  4508. gcode_M23(); break;
  4509. case 24: //M24 - Start SD print
  4510. gcode_M24(); break;
  4511. case 25: //M25 - Pause SD print
  4512. gcode_M25(); break;
  4513. case 26: //M26 - Set SD index
  4514. gcode_M26(); break;
  4515. case 27: //M27 - Get SD status
  4516. gcode_M27(); break;
  4517. case 28: //M28 - Start SD write
  4518. gcode_M28(); break;
  4519. case 29: //M29 - Stop SD write
  4520. gcode_M29(); break;
  4521. case 30: //M30 <filename> Delete File
  4522. gcode_M30(); break;
  4523. case 32: //M32 - Select file and start SD print
  4524. gcode_M32(); break;
  4525. #ifdef LONG_FILENAME_HOST_SUPPORT
  4526. case 33: //M33 - Get the long full path to a file or folder
  4527. gcode_M33(); break;
  4528. #endif // LONG_FILENAME_HOST_SUPPORT
  4529. case 928: //M928 - Start SD write
  4530. gcode_M928(); break;
  4531. #endif //SDSUPPORT
  4532. case 31: //M31 take time since the start of the SD print or an M109 command
  4533. gcode_M31();
  4534. break;
  4535. case 42: //M42 -Change pin status via gcode
  4536. gcode_M42();
  4537. break;
  4538. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4539. case 48: // M48 Z-Probe repeatability
  4540. gcode_M48();
  4541. break;
  4542. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4543. case 104: // M104
  4544. gcode_M104();
  4545. break;
  4546. case 111: // M111: Set debug level
  4547. gcode_M111();
  4548. break;
  4549. case 112: // M112: Emergency Stop
  4550. gcode_M112();
  4551. break;
  4552. case 140: // M140: Set bed temp
  4553. gcode_M140();
  4554. break;
  4555. case 105: // M105: Read current temperature
  4556. gcode_M105();
  4557. return; // "ok" already printed
  4558. case 109: // M109: Wait for temperature
  4559. gcode_M109();
  4560. break;
  4561. #if HAS_TEMP_BED
  4562. case 190: // M190: Wait for bed heater to reach target
  4563. gcode_M190();
  4564. break;
  4565. #endif // HAS_TEMP_BED
  4566. #if HAS_FAN
  4567. case 106: // M106: Fan On
  4568. gcode_M106();
  4569. break;
  4570. case 107: // M107: Fan Off
  4571. gcode_M107();
  4572. break;
  4573. #endif // HAS_FAN
  4574. #ifdef BARICUDA
  4575. // PWM for HEATER_1_PIN
  4576. #if HAS_HEATER_1
  4577. case 126: // M126: valve open
  4578. gcode_M126();
  4579. break;
  4580. case 127: // M127: valve closed
  4581. gcode_M127();
  4582. break;
  4583. #endif // HAS_HEATER_1
  4584. // PWM for HEATER_2_PIN
  4585. #if HAS_HEATER_2
  4586. case 128: // M128: valve open
  4587. gcode_M128();
  4588. break;
  4589. case 129: // M129: valve closed
  4590. gcode_M129();
  4591. break;
  4592. #endif // HAS_HEATER_2
  4593. #endif // BARICUDA
  4594. #if HAS_POWER_SWITCH
  4595. case 80: // M80: Turn on Power Supply
  4596. gcode_M80();
  4597. break;
  4598. #endif // HAS_POWER_SWITCH
  4599. case 81: // M81: Turn off Power, including Power Supply, if possible
  4600. gcode_M81();
  4601. break;
  4602. case 82:
  4603. gcode_M82();
  4604. break;
  4605. case 83:
  4606. gcode_M83();
  4607. break;
  4608. case 18: // (for compatibility)
  4609. case 84: // M84
  4610. gcode_M18_M84();
  4611. break;
  4612. case 85: // M85
  4613. gcode_M85();
  4614. break;
  4615. case 92: // M92: Set the steps-per-unit for one or more axes
  4616. gcode_M92();
  4617. break;
  4618. case 115: // M115: Report capabilities
  4619. gcode_M115();
  4620. break;
  4621. case 117: // M117: Set LCD message text, if possible
  4622. gcode_M117();
  4623. break;
  4624. case 114: // M114: Report current position
  4625. gcode_M114();
  4626. break;
  4627. case 120: // M120: Enable endstops
  4628. gcode_M120();
  4629. break;
  4630. case 121: // M121: Disable endstops
  4631. gcode_M121();
  4632. break;
  4633. case 119: // M119: Report endstop states
  4634. gcode_M119();
  4635. break;
  4636. #ifdef ULTIPANEL
  4637. case 145: // M145: Set material heatup parameters
  4638. gcode_M145();
  4639. break;
  4640. #endif
  4641. #ifdef BLINKM
  4642. case 150: // M150
  4643. gcode_M150();
  4644. break;
  4645. #endif //BLINKM
  4646. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4647. gcode_M200();
  4648. break;
  4649. case 201: // M201
  4650. gcode_M201();
  4651. break;
  4652. #if 0 // Not used for Sprinter/grbl gen6
  4653. case 202: // M202
  4654. gcode_M202();
  4655. break;
  4656. #endif
  4657. case 203: // M203 max feedrate mm/sec
  4658. gcode_M203();
  4659. break;
  4660. case 204: // M204 acclereration S normal moves T filmanent only moves
  4661. gcode_M204();
  4662. break;
  4663. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4664. gcode_M205();
  4665. break;
  4666. case 206: // M206 additional homing offset
  4667. gcode_M206();
  4668. break;
  4669. #ifdef DELTA
  4670. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4671. gcode_M665();
  4672. break;
  4673. #endif
  4674. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4675. case 666: // M666 set delta / dual endstop adjustment
  4676. gcode_M666();
  4677. break;
  4678. #endif
  4679. #ifdef FWRETRACT
  4680. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4681. gcode_M207();
  4682. break;
  4683. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4684. gcode_M208();
  4685. break;
  4686. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4687. gcode_M209();
  4688. break;
  4689. #endif // FWRETRACT
  4690. #if EXTRUDERS > 1
  4691. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4692. gcode_M218();
  4693. break;
  4694. #endif
  4695. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4696. gcode_M220();
  4697. break;
  4698. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4699. gcode_M221();
  4700. break;
  4701. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4702. gcode_M226();
  4703. break;
  4704. #if NUM_SERVOS > 0
  4705. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4706. gcode_M280();
  4707. break;
  4708. #endif // NUM_SERVOS > 0
  4709. #if HAS_LCD_BUZZ
  4710. case 300: // M300 - Play beep tone
  4711. gcode_M300();
  4712. break;
  4713. #endif // HAS_LCD_BUZZ
  4714. #ifdef PIDTEMP
  4715. case 301: // M301
  4716. gcode_M301();
  4717. break;
  4718. #endif // PIDTEMP
  4719. #ifdef PIDTEMPBED
  4720. case 304: // M304
  4721. gcode_M304();
  4722. break;
  4723. #endif // PIDTEMPBED
  4724. #if defined(CHDK) || HAS_PHOTOGRAPH
  4725. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4726. gcode_M240();
  4727. break;
  4728. #endif // CHDK || PHOTOGRAPH_PIN
  4729. #ifdef HAS_LCD_CONTRAST
  4730. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4731. gcode_M250();
  4732. break;
  4733. #endif // HAS_LCD_CONTRAST
  4734. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4735. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4736. gcode_M302();
  4737. break;
  4738. #endif // PREVENT_DANGEROUS_EXTRUDE
  4739. case 303: // M303 PID autotune
  4740. gcode_M303();
  4741. break;
  4742. #ifdef SCARA
  4743. case 360: // M360 SCARA Theta pos1
  4744. if (gcode_M360()) return;
  4745. break;
  4746. case 361: // M361 SCARA Theta pos2
  4747. if (gcode_M361()) return;
  4748. break;
  4749. case 362: // M362 SCARA Psi pos1
  4750. if (gcode_M362()) return;
  4751. break;
  4752. case 363: // M363 SCARA Psi pos2
  4753. if (gcode_M363()) return;
  4754. break;
  4755. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4756. if (gcode_M364()) return;
  4757. break;
  4758. case 365: // M365 Set SCARA scaling for X Y Z
  4759. gcode_M365();
  4760. break;
  4761. #endif // SCARA
  4762. case 400: // M400 finish all moves
  4763. gcode_M400();
  4764. break;
  4765. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4766. case 401:
  4767. gcode_M401();
  4768. break;
  4769. case 402:
  4770. gcode_M402();
  4771. break;
  4772. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4773. #ifdef FILAMENT_SENSOR
  4774. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4775. gcode_M404();
  4776. break;
  4777. case 405: //M405 Turn on filament sensor for control
  4778. gcode_M405();
  4779. break;
  4780. case 406: //M406 Turn off filament sensor for control
  4781. gcode_M406();
  4782. break;
  4783. case 407: //M407 Display measured filament diameter
  4784. gcode_M407();
  4785. break;
  4786. #endif // FILAMENT_SENSOR
  4787. case 410: // M410 quickstop - Abort all the planned moves.
  4788. gcode_M410();
  4789. break;
  4790. #ifdef MESH_BED_LEVELING
  4791. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4792. gcode_M420();
  4793. break;
  4794. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4795. gcode_M421();
  4796. break;
  4797. #endif
  4798. case 428: // M428 Apply current_position to home_offset
  4799. gcode_M428();
  4800. break;
  4801. case 500: // M500 Store settings in EEPROM
  4802. gcode_M500();
  4803. break;
  4804. case 501: // M501 Read settings from EEPROM
  4805. gcode_M501();
  4806. break;
  4807. case 502: // M502 Revert to default settings
  4808. gcode_M502();
  4809. break;
  4810. case 503: // M503 print settings currently in memory
  4811. gcode_M503();
  4812. break;
  4813. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4814. case 540:
  4815. gcode_M540();
  4816. break;
  4817. #endif
  4818. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4819. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4820. gcode_SET_Z_PROBE_OFFSET();
  4821. break;
  4822. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4823. #ifdef FILAMENTCHANGEENABLE
  4824. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4825. gcode_M600();
  4826. break;
  4827. #endif // FILAMENTCHANGEENABLE
  4828. #ifdef DUAL_X_CARRIAGE
  4829. case 605:
  4830. gcode_M605();
  4831. break;
  4832. #endif // DUAL_X_CARRIAGE
  4833. case 907: // M907 Set digital trimpot motor current using axis codes.
  4834. gcode_M907();
  4835. break;
  4836. #if HAS_DIGIPOTSS
  4837. case 908: // M908 Control digital trimpot directly.
  4838. gcode_M908();
  4839. break;
  4840. #endif // HAS_DIGIPOTSS
  4841. #if HAS_MICROSTEPS
  4842. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4843. gcode_M350();
  4844. break;
  4845. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4846. gcode_M351();
  4847. break;
  4848. #endif // HAS_MICROSTEPS
  4849. case 999: // M999: Restart after being Stopped
  4850. gcode_M999();
  4851. break;
  4852. default: code_is_good = false;
  4853. }
  4854. break;
  4855. case 'T':
  4856. gcode_T(codenum);
  4857. break;
  4858. }
  4859. ExitUnknownCommand:
  4860. // Still unknown command? Throw an error
  4861. if (!code_is_good) unknown_command_error();
  4862. ok_to_send();
  4863. }
  4864. void FlushSerialRequestResend() {
  4865. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4866. MYSERIAL.flush();
  4867. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4868. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4869. ok_to_send();
  4870. }
  4871. void ok_to_send() {
  4872. refresh_cmd_timeout();
  4873. #ifdef SDSUPPORT
  4874. if (fromsd[cmd_queue_index_r]) return;
  4875. #endif
  4876. SERIAL_PROTOCOLPGM(MSG_OK);
  4877. #ifdef ADVANCED_OK
  4878. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4879. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4880. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4881. #endif
  4882. SERIAL_EOL;
  4883. }
  4884. void clamp_to_software_endstops(float target[3]) {
  4885. if (min_software_endstops) {
  4886. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4887. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4888. float negative_z_offset = 0;
  4889. #ifdef ENABLE_AUTO_BED_LEVELING
  4890. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4891. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4892. #endif
  4893. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4894. }
  4895. if (max_software_endstops) {
  4896. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4897. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4898. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4899. }
  4900. }
  4901. #ifdef DELTA
  4902. void recalc_delta_settings(float radius, float diagonal_rod) {
  4903. delta_tower1_x = -SIN_60 * radius; // front left tower
  4904. delta_tower1_y = -COS_60 * radius;
  4905. delta_tower2_x = SIN_60 * radius; // front right tower
  4906. delta_tower2_y = -COS_60 * radius;
  4907. delta_tower3_x = 0.0; // back middle tower
  4908. delta_tower3_y = radius;
  4909. delta_diagonal_rod_2 = sq(diagonal_rod);
  4910. }
  4911. void calculate_delta(float cartesian[3]) {
  4912. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4913. - sq(delta_tower1_x-cartesian[X_AXIS])
  4914. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4915. ) + cartesian[Z_AXIS];
  4916. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4917. - sq(delta_tower2_x-cartesian[X_AXIS])
  4918. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4919. ) + cartesian[Z_AXIS];
  4920. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4921. - sq(delta_tower3_x-cartesian[X_AXIS])
  4922. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4923. ) + cartesian[Z_AXIS];
  4924. /*
  4925. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4926. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4927. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4928. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4929. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4930. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4931. */
  4932. }
  4933. #ifdef ENABLE_AUTO_BED_LEVELING
  4934. // Adjust print surface height by linear interpolation over the bed_level array.
  4935. void adjust_delta(float cartesian[3]) {
  4936. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4937. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4938. float h1 = 0.001 - half, h2 = half - 0.001,
  4939. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4940. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4941. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4942. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4943. z1 = bed_level[floor_x + half][floor_y + half],
  4944. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4945. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4946. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4947. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4948. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4949. offset = (1 - ratio_x) * left + ratio_x * right;
  4950. delta[X_AXIS] += offset;
  4951. delta[Y_AXIS] += offset;
  4952. delta[Z_AXIS] += offset;
  4953. /*
  4954. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4955. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4956. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4957. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4958. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4959. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4960. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4961. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4962. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4963. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4964. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4965. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4966. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4967. */
  4968. }
  4969. #endif // ENABLE_AUTO_BED_LEVELING
  4970. #endif // DELTA
  4971. #ifdef MESH_BED_LEVELING
  4972. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4973. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4974. {
  4975. if (!mbl.active) {
  4976. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4977. set_current_to_destination();
  4978. return;
  4979. }
  4980. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4981. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4982. int ix = mbl.select_x_index(x);
  4983. int iy = mbl.select_y_index(y);
  4984. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4985. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4986. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4987. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4988. if (pix == ix && piy == iy) {
  4989. // Start and end on same mesh square
  4990. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4991. set_current_to_destination();
  4992. return;
  4993. }
  4994. float nx, ny, ne, normalized_dist;
  4995. if (ix > pix && (x_splits) & BIT(ix)) {
  4996. nx = mbl.get_x(ix);
  4997. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4998. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4999. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5000. x_splits ^= BIT(ix);
  5001. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5002. nx = mbl.get_x(pix);
  5003. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5004. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5005. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5006. x_splits ^= BIT(pix);
  5007. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5008. ny = mbl.get_y(iy);
  5009. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5010. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5011. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5012. y_splits ^= BIT(iy);
  5013. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5014. ny = mbl.get_y(piy);
  5015. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5016. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5017. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5018. y_splits ^= BIT(piy);
  5019. } else {
  5020. // Already split on a border
  5021. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5022. set_current_to_destination();
  5023. return;
  5024. }
  5025. // Do the split and look for more borders
  5026. destination[X_AXIS] = nx;
  5027. destination[Y_AXIS] = ny;
  5028. destination[E_AXIS] = ne;
  5029. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5030. destination[X_AXIS] = x;
  5031. destination[Y_AXIS] = y;
  5032. destination[E_AXIS] = e;
  5033. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5034. }
  5035. #endif // MESH_BED_LEVELING
  5036. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5037. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5038. float de = dest_e - curr_e;
  5039. if (de) {
  5040. if (degHotend(active_extruder) < extrude_min_temp) {
  5041. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5042. SERIAL_ECHO_START;
  5043. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5044. }
  5045. #ifdef PREVENT_LENGTHY_EXTRUDE
  5046. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5047. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5048. SERIAL_ECHO_START;
  5049. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5050. }
  5051. #endif
  5052. }
  5053. }
  5054. #endif // PREVENT_DANGEROUS_EXTRUDE
  5055. #if defined(DELTA) || defined(SCARA)
  5056. inline bool prepare_move_delta() {
  5057. float difference[NUM_AXIS];
  5058. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5059. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5060. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5061. if (cartesian_mm < 0.000001) return false;
  5062. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5063. int steps = max(1, int(delta_segments_per_second * seconds));
  5064. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5065. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5066. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5067. for (int s = 1; s <= steps; s++) {
  5068. float fraction = float(s) / float(steps);
  5069. for (int8_t i = 0; i < NUM_AXIS; i++)
  5070. destination[i] = current_position[i] + difference[i] * fraction;
  5071. calculate_delta(destination);
  5072. #ifdef ENABLE_AUTO_BED_LEVELING
  5073. adjust_delta(destination);
  5074. #endif
  5075. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5076. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5077. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5078. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5079. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5080. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5081. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5082. }
  5083. return true;
  5084. }
  5085. #endif // DELTA || SCARA
  5086. #ifdef SCARA
  5087. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5088. #endif
  5089. #ifdef DUAL_X_CARRIAGE
  5090. inline bool prepare_move_dual_x_carriage() {
  5091. if (active_extruder_parked) {
  5092. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5093. // move duplicate extruder into correct duplication position.
  5094. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5095. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5096. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5097. sync_plan_position();
  5098. st_synchronize();
  5099. extruder_duplication_enabled = true;
  5100. active_extruder_parked = false;
  5101. }
  5102. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5103. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5104. // This is a travel move (with no extrusion)
  5105. // Skip it, but keep track of the current position
  5106. // (so it can be used as the start of the next non-travel move)
  5107. if (delayed_move_time != 0xFFFFFFFFUL) {
  5108. set_current_to_destination();
  5109. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5110. delayed_move_time = millis();
  5111. return false;
  5112. }
  5113. }
  5114. delayed_move_time = 0;
  5115. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5116. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5119. active_extruder_parked = false;
  5120. }
  5121. }
  5122. return true;
  5123. }
  5124. #endif // DUAL_X_CARRIAGE
  5125. #if !defined(DELTA) && !defined(SCARA)
  5126. inline bool prepare_move_cartesian() {
  5127. // Do not use feedrate_multiplier for E or Z only moves
  5128. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5129. line_to_destination();
  5130. }
  5131. else {
  5132. #ifdef MESH_BED_LEVELING
  5133. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5134. return false;
  5135. #else
  5136. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5137. #endif
  5138. }
  5139. return true;
  5140. }
  5141. #endif // !DELTA && !SCARA
  5142. /**
  5143. * Prepare a single move and get ready for the next one
  5144. */
  5145. void prepare_move() {
  5146. clamp_to_software_endstops(destination);
  5147. refresh_cmd_timeout();
  5148. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5149. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5150. #endif
  5151. #ifdef SCARA
  5152. if (!prepare_move_scara()) return;
  5153. #elif defined(DELTA)
  5154. if (!prepare_move_delta()) return;
  5155. #endif
  5156. #ifdef DUAL_X_CARRIAGE
  5157. if (!prepare_move_dual_x_carriage()) return;
  5158. #endif
  5159. #if !defined(DELTA) && !defined(SCARA)
  5160. if (!prepare_move_cartesian()) return;
  5161. #endif
  5162. set_current_to_destination();
  5163. }
  5164. #if HAS_CONTROLLERFAN
  5165. void controllerFan() {
  5166. static millis_t lastMotor = 0; // Last time a motor was turned on
  5167. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5168. millis_t ms = millis();
  5169. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5170. lastMotorCheck = ms;
  5171. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5172. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5173. #if EXTRUDERS > 1
  5174. || E1_ENABLE_READ == E_ENABLE_ON
  5175. #if HAS_X2_ENABLE
  5176. || X2_ENABLE_READ == X_ENABLE_ON
  5177. #endif
  5178. #if EXTRUDERS > 2
  5179. || E2_ENABLE_READ == E_ENABLE_ON
  5180. #if EXTRUDERS > 3
  5181. || E3_ENABLE_READ == E_ENABLE_ON
  5182. #endif
  5183. #endif
  5184. #endif
  5185. ) {
  5186. lastMotor = ms; //... set time to NOW so the fan will turn on
  5187. }
  5188. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5189. // allows digital or PWM fan output to be used (see M42 handling)
  5190. digitalWrite(CONTROLLERFAN_PIN, speed);
  5191. analogWrite(CONTROLLERFAN_PIN, speed);
  5192. }
  5193. }
  5194. #endif // HAS_CONTROLLERFAN
  5195. #ifdef SCARA
  5196. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5197. // Perform forward kinematics, and place results in delta[3]
  5198. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5199. float x_sin, x_cos, y_sin, y_cos;
  5200. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5201. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5202. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5203. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5204. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5205. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5206. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5207. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5208. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5209. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5210. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5211. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5212. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5213. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5214. }
  5215. void calculate_delta(float cartesian[3]){
  5216. //reverse kinematics.
  5217. // Perform reversed kinematics, and place results in delta[3]
  5218. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5219. float SCARA_pos[2];
  5220. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5221. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5222. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5223. #if (Linkage_1 == Linkage_2)
  5224. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5225. #else
  5226. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5227. #endif
  5228. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5229. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5230. SCARA_K2 = Linkage_2 * SCARA_S2;
  5231. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5232. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5233. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5234. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5235. delta[Z_AXIS] = cartesian[Z_AXIS];
  5236. /*
  5237. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5238. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5239. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5240. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5241. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5242. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5243. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5244. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5245. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5246. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5247. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5248. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5249. SERIAL_EOL;
  5250. */
  5251. }
  5252. #endif // SCARA
  5253. #ifdef TEMP_STAT_LEDS
  5254. static bool red_led = false;
  5255. static millis_t next_status_led_update_ms = 0;
  5256. void handle_status_leds(void) {
  5257. float max_temp = 0.0;
  5258. if (millis() > next_status_led_update_ms) {
  5259. next_status_led_update_ms += 500; // Update every 0.5s
  5260. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5261. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5262. #if HAS_TEMP_BED
  5263. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5264. #endif
  5265. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5266. if (new_led != red_led) {
  5267. red_led = new_led;
  5268. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5269. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5270. }
  5271. }
  5272. }
  5273. #endif
  5274. void enable_all_steppers() {
  5275. enable_x();
  5276. enable_y();
  5277. enable_z();
  5278. enable_e0();
  5279. enable_e1();
  5280. enable_e2();
  5281. enable_e3();
  5282. }
  5283. void disable_all_steppers() {
  5284. disable_x();
  5285. disable_y();
  5286. disable_z();
  5287. disable_e0();
  5288. disable_e1();
  5289. disable_e2();
  5290. disable_e3();
  5291. }
  5292. /**
  5293. * Manage several activities:
  5294. * - Check for Filament Runout
  5295. * - Keep the command buffer full
  5296. * - Check for maximum inactive time between commands
  5297. * - Check for maximum inactive time between stepper commands
  5298. * - Check if pin CHDK needs to go LOW
  5299. * - Check for KILL button held down
  5300. * - Check for HOME button held down
  5301. * - Check if cooling fan needs to be switched on
  5302. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5303. */
  5304. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5305. #if HAS_FILRUNOUT
  5306. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5307. filrunout();
  5308. #endif
  5309. if (commands_in_queue < BUFSIZE - 1) get_command();
  5310. millis_t ms = millis();
  5311. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5312. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5313. && !ignore_stepper_queue && !blocks_queued())
  5314. disable_all_steppers();
  5315. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5316. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5317. chdkActive = false;
  5318. WRITE(CHDK, LOW);
  5319. }
  5320. #endif
  5321. #if HAS_KILL
  5322. // Check if the kill button was pressed and wait just in case it was an accidental
  5323. // key kill key press
  5324. // -------------------------------------------------------------------------------
  5325. static int killCount = 0; // make the inactivity button a bit less responsive
  5326. const int KILL_DELAY = 750;
  5327. if (!READ(KILL_PIN))
  5328. killCount++;
  5329. else if (killCount > 0)
  5330. killCount--;
  5331. // Exceeded threshold and we can confirm that it was not accidental
  5332. // KILL the machine
  5333. // ----------------------------------------------------------------
  5334. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5335. #endif
  5336. #if HAS_HOME
  5337. // Check to see if we have to home, use poor man's debouncer
  5338. // ---------------------------------------------------------
  5339. static int homeDebounceCount = 0; // poor man's debouncing count
  5340. const int HOME_DEBOUNCE_DELAY = 750;
  5341. if (!READ(HOME_PIN)) {
  5342. if (!homeDebounceCount) {
  5343. enqueuecommands_P(PSTR("G28"));
  5344. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5345. }
  5346. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5347. homeDebounceCount++;
  5348. else
  5349. homeDebounceCount = 0;
  5350. }
  5351. #endif
  5352. #if HAS_CONTROLLERFAN
  5353. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5354. #endif
  5355. #ifdef EXTRUDER_RUNOUT_PREVENT
  5356. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5357. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5358. bool oldstatus;
  5359. switch(active_extruder) {
  5360. case 0:
  5361. oldstatus = E0_ENABLE_READ;
  5362. enable_e0();
  5363. break;
  5364. #if EXTRUDERS > 1
  5365. case 1:
  5366. oldstatus = E1_ENABLE_READ;
  5367. enable_e1();
  5368. break;
  5369. #if EXTRUDERS > 2
  5370. case 2:
  5371. oldstatus = E2_ENABLE_READ;
  5372. enable_e2();
  5373. break;
  5374. #if EXTRUDERS > 3
  5375. case 3:
  5376. oldstatus = E3_ENABLE_READ;
  5377. enable_e3();
  5378. break;
  5379. #endif
  5380. #endif
  5381. #endif
  5382. }
  5383. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5384. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5385. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5386. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5387. current_position[E_AXIS] = oldepos;
  5388. destination[E_AXIS] = oldedes;
  5389. plan_set_e_position(oldepos);
  5390. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5391. st_synchronize();
  5392. switch(active_extruder) {
  5393. case 0:
  5394. E0_ENABLE_WRITE(oldstatus);
  5395. break;
  5396. #if EXTRUDERS > 1
  5397. case 1:
  5398. E1_ENABLE_WRITE(oldstatus);
  5399. break;
  5400. #if EXTRUDERS > 2
  5401. case 2:
  5402. E2_ENABLE_WRITE(oldstatus);
  5403. break;
  5404. #if EXTRUDERS > 3
  5405. case 3:
  5406. E3_ENABLE_WRITE(oldstatus);
  5407. break;
  5408. #endif
  5409. #endif
  5410. #endif
  5411. }
  5412. }
  5413. #endif
  5414. #ifdef DUAL_X_CARRIAGE
  5415. // handle delayed move timeout
  5416. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5417. // travel moves have been received so enact them
  5418. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5419. set_destination_to_current();
  5420. prepare_move();
  5421. }
  5422. #endif
  5423. #ifdef TEMP_STAT_LEDS
  5424. handle_status_leds();
  5425. #endif
  5426. check_axes_activity();
  5427. }
  5428. void kill(const char *lcd_msg) {
  5429. #ifdef ULTRA_LCD
  5430. lcd_setalertstatuspgm(lcd_msg);
  5431. #endif
  5432. cli(); // Stop interrupts
  5433. disable_all_heaters();
  5434. disable_all_steppers();
  5435. #if HAS_POWER_SWITCH
  5436. pinMode(PS_ON_PIN, INPUT);
  5437. #endif
  5438. SERIAL_ERROR_START;
  5439. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5440. // FMC small patch to update the LCD before ending
  5441. sei(); // enable interrupts
  5442. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5443. cli(); // disable interrupts
  5444. suicide();
  5445. while(1) { /* Intentionally left empty */ } // Wait for reset
  5446. }
  5447. #ifdef FILAMENT_RUNOUT_SENSOR
  5448. void filrunout() {
  5449. if (!filrunoutEnqueued) {
  5450. filrunoutEnqueued = true;
  5451. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5452. st_synchronize();
  5453. }
  5454. }
  5455. #endif // FILAMENT_RUNOUT_SENSOR
  5456. #ifdef FAST_PWM_FAN
  5457. void setPwmFrequency(uint8_t pin, int val) {
  5458. val &= 0x07;
  5459. switch (digitalPinToTimer(pin)) {
  5460. #if defined(TCCR0A)
  5461. case TIMER0A:
  5462. case TIMER0B:
  5463. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5464. // TCCR0B |= val;
  5465. break;
  5466. #endif
  5467. #if defined(TCCR1A)
  5468. case TIMER1A:
  5469. case TIMER1B:
  5470. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5471. // TCCR1B |= val;
  5472. break;
  5473. #endif
  5474. #if defined(TCCR2)
  5475. case TIMER2:
  5476. case TIMER2:
  5477. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5478. TCCR2 |= val;
  5479. break;
  5480. #endif
  5481. #if defined(TCCR2A)
  5482. case TIMER2A:
  5483. case TIMER2B:
  5484. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5485. TCCR2B |= val;
  5486. break;
  5487. #endif
  5488. #if defined(TCCR3A)
  5489. case TIMER3A:
  5490. case TIMER3B:
  5491. case TIMER3C:
  5492. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5493. TCCR3B |= val;
  5494. break;
  5495. #endif
  5496. #if defined(TCCR4A)
  5497. case TIMER4A:
  5498. case TIMER4B:
  5499. case TIMER4C:
  5500. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5501. TCCR4B |= val;
  5502. break;
  5503. #endif
  5504. #if defined(TCCR5A)
  5505. case TIMER5A:
  5506. case TIMER5B:
  5507. case TIMER5C:
  5508. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5509. TCCR5B |= val;
  5510. break;
  5511. #endif
  5512. }
  5513. }
  5514. #endif // FAST_PWM_FAN
  5515. void Stop() {
  5516. disable_all_heaters();
  5517. if (IsRunning()) {
  5518. Running = false;
  5519. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5520. SERIAL_ERROR_START;
  5521. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5522. LCD_MESSAGEPGM(MSG_STOPPED);
  5523. }
  5524. }
  5525. bool setTargetedHotend(int code){
  5526. target_extruder = active_extruder;
  5527. if (code_seen('T')) {
  5528. target_extruder = code_value_short();
  5529. if (target_extruder >= EXTRUDERS) {
  5530. SERIAL_ECHO_START;
  5531. switch(code){
  5532. case 104:
  5533. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5534. break;
  5535. case 105:
  5536. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5537. break;
  5538. case 109:
  5539. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5540. break;
  5541. case 218:
  5542. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5543. break;
  5544. case 221:
  5545. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5546. break;
  5547. }
  5548. SERIAL_ECHOLN(target_extruder);
  5549. return true;
  5550. }
  5551. }
  5552. return false;
  5553. }
  5554. float calculate_volumetric_multiplier(float diameter) {
  5555. if (!volumetric_enabled || diameter == 0) return 1.0;
  5556. float d2 = diameter * 0.5;
  5557. return 1.0 / (M_PI * d2 * d2);
  5558. }
  5559. void calculate_volumetric_multipliers() {
  5560. for (int i=0; i<EXTRUDERS; i++)
  5561. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5562. }