My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 93KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V64"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h"
  51. #include "../gcode/gcode.h"
  52. #include "../Marlin.h"
  53. #if ENABLED(EEPROM_SETTINGS) || ENABLED(SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if HAS_SERVOS
  60. #include "servo.h"
  61. #endif
  62. #if HAS_SERVOS && HAS_SERVO_ANGLES
  63. #define EEPROM_NUM_SERVOS NUM_SERVOS
  64. #else
  65. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  66. #endif
  67. #if HAS_BED_PROBE
  68. #include "probe.h"
  69. #endif
  70. #include "../feature/fwretract.h"
  71. #if ENABLED(POWER_LOSS_RECOVERY)
  72. #include "../feature/power_loss_recovery.h"
  73. #endif
  74. #include "../feature/pause.h"
  75. #if EXTRUDERS > 1
  76. #include "tool_change.h"
  77. void M217_report(const bool eeprom);
  78. #endif
  79. #if HAS_TRINAMIC
  80. #include "stepper_indirection.h"
  81. #include "../feature/tmc_util.h"
  82. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  83. #endif
  84. #pragma pack(push, 1) // No padding between variables
  85. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  86. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  87. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  88. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  89. // Limit an index to an array size
  90. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  91. /**
  92. * Current EEPROM Layout
  93. *
  94. * Keep this data structure up to date so
  95. * EEPROM size is known at compile time!
  96. */
  97. typedef struct SettingsDataStruct {
  98. char version[4]; // Vnn\0
  99. uint16_t crc; // Data Checksum
  100. //
  101. // DISTINCT_E_FACTORS
  102. //
  103. uint8_t esteppers; // XYZE_N - XYZ
  104. planner_settings_t planner_settings;
  105. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  106. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  107. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  108. #if HAS_HOTEND_OFFSET
  109. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  110. #endif
  111. //
  112. // ENABLE_LEVELING_FADE_HEIGHT
  113. //
  114. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  115. //
  116. // MESH_BED_LEVELING
  117. //
  118. float mbl_z_offset; // mbl.z_offset
  119. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  120. #if ENABLED(MESH_BED_LEVELING)
  121. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  122. #else
  123. float mbl_z_values[3][3];
  124. #endif
  125. //
  126. // HAS_BED_PROBE
  127. //
  128. float zprobe_zoffset;
  129. //
  130. // ABL_PLANAR
  131. //
  132. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  133. //
  134. // AUTO_BED_LEVELING_BILINEAR
  135. //
  136. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  137. int bilinear_grid_spacing[2],
  138. bilinear_start[2]; // G29 L F
  139. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  140. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  141. #else
  142. float z_values[3][3];
  143. #endif
  144. //
  145. // AUTO_BED_LEVELING_UBL
  146. //
  147. bool planner_leveling_active; // M420 S planner.leveling_active
  148. int8_t ubl_storage_slot; // ubl.storage_slot
  149. //
  150. // SERVO_ANGLES
  151. //
  152. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  153. //
  154. // DELTA / [XYZ]_DUAL_ENDSTOPS
  155. //
  156. #if ENABLED(DELTA)
  157. float delta_height, // M666 H
  158. delta_endstop_adj[ABC], // M666 XYZ
  159. delta_radius, // M665 R
  160. delta_diagonal_rod, // M665 L
  161. delta_segments_per_second, // M665 S
  162. delta_calibration_radius, // M665 B
  163. delta_tower_angle_trim[ABC]; // M665 XYZ
  164. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  165. float x2_endstop_adj, // M666 X
  166. y2_endstop_adj, // M666 Y
  167. z2_endstop_adj, // M666 Z (S2)
  168. z3_endstop_adj; // M666 Z (S3)
  169. #endif
  170. //
  171. // ULTIPANEL
  172. //
  173. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  174. ui_preheat_bed_temp[2]; // M145 S0 B
  175. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  176. //
  177. // PIDTEMP
  178. //
  179. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  180. int16_t lpq_len; // M301 L
  181. //
  182. // PIDTEMPBED
  183. //
  184. PID_t bedPID; // M304 PID / M303 E-1 U
  185. //
  186. // HAS_LCD_CONTRAST
  187. //
  188. int16_t lcd_contrast; // M250 C
  189. //
  190. // POWER_LOSS_RECOVERY
  191. //
  192. bool recovery_enabled; // M413 S
  193. //
  194. // FWRETRACT
  195. //
  196. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  197. bool autoretract_enabled; // M209 S
  198. //
  199. // !NO_VOLUMETRIC
  200. //
  201. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  202. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  203. //
  204. // HAS_TRINAMIC
  205. //
  206. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  207. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  208. tmc_sgt_t tmc_sgt; // M914 X Y Z
  209. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  210. //
  211. // LIN_ADVANCE
  212. //
  213. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  214. //
  215. // HAS_MOTOR_CURRENT_PWM
  216. //
  217. uint32_t motor_current_setting[3]; // M907 X Z E
  218. //
  219. // CNC_COORDINATE_SYSTEMS
  220. //
  221. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  222. //
  223. // SKEW_CORRECTION
  224. //
  225. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  226. //
  227. // ADVANCED_PAUSE_FEATURE
  228. //
  229. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  230. //
  231. // Tool-change settings
  232. //
  233. #if EXTRUDERS > 1
  234. toolchange_settings_t toolchange_settings; // M217 S P R
  235. #endif
  236. } SettingsData;
  237. MarlinSettings settings;
  238. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  239. /**
  240. * Post-process after Retrieve or Reset
  241. */
  242. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  243. float new_z_fade_height;
  244. #endif
  245. void MarlinSettings::postprocess() {
  246. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  247. // steps per s2 needs to be updated to agree with units per s2
  248. planner.reset_acceleration_rates();
  249. // Make sure delta kinematics are updated before refreshing the
  250. // planner position so the stepper counts will be set correctly.
  251. #if ENABLED(DELTA)
  252. recalc_delta_settings();
  253. #endif
  254. #if ENABLED(PIDTEMP)
  255. thermalManager.updatePID();
  256. #endif
  257. #if DISABLED(NO_VOLUMETRICS)
  258. planner.calculate_volumetric_multipliers();
  259. #else
  260. for (uint8_t i = COUNT(planner.e_factor); i--;)
  261. planner.refresh_e_factor(i);
  262. #endif
  263. // Software endstops depend on home_offset
  264. LOOP_XYZ(i) {
  265. update_workspace_offset((AxisEnum)i);
  266. update_software_endstops((AxisEnum)i);
  267. }
  268. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  269. set_z_fade_height(new_z_fade_height, false); // false = no report
  270. #endif
  271. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  272. refresh_bed_level();
  273. #endif
  274. #if HAS_MOTOR_CURRENT_PWM
  275. stepper.refresh_motor_power();
  276. #endif
  277. #if ENABLED(FWRETRACT)
  278. fwretract.refresh_autoretract();
  279. #endif
  280. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  281. planner.recalculate_max_e_jerk();
  282. #endif
  283. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  284. // and init stepper.count[], planner.position[] with current_position
  285. planner.refresh_positioning();
  286. // Various factors can change the current position
  287. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  288. report_current_position();
  289. }
  290. #if ENABLED(SD_FIRMWARE_UPDATE)
  291. #if ENABLED(EEPROM_SETTINGS)
  292. static_assert(
  293. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  294. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  295. );
  296. #endif
  297. bool MarlinSettings::sd_update_status() {
  298. uint8_t val;
  299. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  300. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  301. }
  302. bool MarlinSettings::set_sd_update_status(const bool enable) {
  303. if (enable != sd_update_status())
  304. persistentStore.write_data(
  305. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  306. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  307. );
  308. return true;
  309. }
  310. #endif // SD_FIRMWARE_UPDATE
  311. #if ENABLED(EEPROM_CHITCHAT)
  312. #define CHITCHAT_ECHO(V) SERIAL_ECHO(V)
  313. #define CHITCHAT_ECHOLNPGM(STR) SERIAL_ECHOLNPGM(STR)
  314. #define CHITCHAT_ECHOPAIR(STR,V) SERIAL_ECHOPAIR(STR,V)
  315. #define CHITCHAT_ECHOLNPAIR(STR,V) SERIAL_ECHOLNPAIR(STR,V)
  316. #define CHITCHAT_ECHO_START() SERIAL_ECHO_START()
  317. #define CHITCHAT_ERROR_START() SERIAL_ERROR_START()
  318. #define CHITCHAT_ERROR_MSG(STR) SERIAL_ERROR_MSG(STR)
  319. #define CHITCHAT_ECHOPGM(STR) SERIAL_ECHOPGM(STR)
  320. #define CHITCHAT_EOL() SERIAL_EOL()
  321. #else
  322. #define CHITCHAT_ECHO(V) NOOP
  323. #define CHITCHAT_ECHOLNPGM(STR) NOOP
  324. #define CHITCHAT_ECHOPAIR(STR,V) NOOP
  325. #define CHITCHAT_ECHOLNPAIR(STR,V) NOOP
  326. #define CHITCHAT_ECHO_START() NOOP
  327. #define CHITCHAT_ERROR_START() NOOP
  328. #define CHITCHAT_ERROR_MSG(STR) NOOP
  329. #define CHITCHAT_ECHOPGM(STR) NOOP
  330. #define CHITCHAT_EOL() NOOP
  331. #endif
  332. #if ENABLED(EEPROM_SETTINGS)
  333. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  334. #define EEPROM_FINISH() persistentStore.access_finish()
  335. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  336. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  337. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  338. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  339. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  340. #if ENABLED(DEBUG_EEPROM_READWRITE)
  341. #define _FIELD_TEST(FIELD) \
  342. EEPROM_ASSERT( \
  343. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  344. "Field " STRINGIFY(FIELD) " mismatch." \
  345. )
  346. #else
  347. #define _FIELD_TEST(FIELD) NOOP
  348. #endif
  349. const char version[4] = EEPROM_VERSION;
  350. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  351. bool MarlinSettings::size_error(const uint16_t size) {
  352. if (size != datasize()) {
  353. CHITCHAT_ERROR_MSG("EEPROM datasize error.");
  354. return true;
  355. }
  356. return false;
  357. }
  358. /**
  359. * M500 - Store Configuration
  360. */
  361. bool MarlinSettings::save() {
  362. float dummy = 0;
  363. char ver[4] = "ERR";
  364. uint16_t working_crc = 0;
  365. EEPROM_START();
  366. eeprom_error = false;
  367. #if ENABLED(FLASH_EEPROM_EMULATION)
  368. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  369. #else
  370. EEPROM_WRITE(ver); // invalidate data first
  371. #endif
  372. EEPROM_SKIP(working_crc); // Skip the checksum slot
  373. working_crc = 0; // clear before first "real data"
  374. _FIELD_TEST(esteppers);
  375. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  376. EEPROM_WRITE(esteppers);
  377. //
  378. // Planner Motion
  379. //
  380. {
  381. EEPROM_WRITE(planner.settings);
  382. #if HAS_CLASSIC_JERK
  383. EEPROM_WRITE(planner.max_jerk);
  384. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  385. dummy = float(DEFAULT_EJERK);
  386. EEPROM_WRITE(dummy);
  387. #endif
  388. #else
  389. const float planner_max_jerk[XYZE] = { float(DEFAULT_EJERK) };
  390. EEPROM_WRITE(planner_max_jerk);
  391. #endif
  392. #if ENABLED(JUNCTION_DEVIATION)
  393. EEPROM_WRITE(planner.junction_deviation_mm);
  394. #else
  395. dummy = 0.02f;
  396. EEPROM_WRITE(dummy);
  397. #endif
  398. }
  399. //
  400. // Home Offset
  401. //
  402. {
  403. _FIELD_TEST(home_offset);
  404. #if HAS_SCARA_OFFSET
  405. EEPROM_WRITE(scara_home_offset);
  406. #else
  407. #if !HAS_HOME_OFFSET
  408. const float home_offset[XYZ] = { 0 };
  409. #endif
  410. EEPROM_WRITE(home_offset);
  411. #endif
  412. #if HAS_HOTEND_OFFSET
  413. // Skip hotend 0 which must be 0
  414. for (uint8_t e = 1; e < HOTENDS; e++)
  415. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  416. #endif
  417. }
  418. //
  419. // Global Leveling
  420. //
  421. {
  422. const float zfh = (
  423. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  424. planner.z_fade_height
  425. #else
  426. 10.0
  427. #endif
  428. );
  429. EEPROM_WRITE(zfh);
  430. }
  431. //
  432. // Mesh Bed Leveling
  433. //
  434. {
  435. #if ENABLED(MESH_BED_LEVELING)
  436. // Compile time test that sizeof(mbl.z_values) is as expected
  437. static_assert(
  438. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  439. "MBL Z array is the wrong size."
  440. );
  441. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  442. EEPROM_WRITE(mbl.z_offset);
  443. EEPROM_WRITE(mesh_num_x);
  444. EEPROM_WRITE(mesh_num_y);
  445. EEPROM_WRITE(mbl.z_values);
  446. #else // For disabled MBL write a default mesh
  447. dummy = 0;
  448. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  449. EEPROM_WRITE(dummy); // z_offset
  450. EEPROM_WRITE(mesh_num_x);
  451. EEPROM_WRITE(mesh_num_y);
  452. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  453. #endif
  454. }
  455. //
  456. // Probe Z Offset
  457. //
  458. {
  459. _FIELD_TEST(zprobe_zoffset);
  460. #if !HAS_BED_PROBE
  461. const float zprobe_zoffset = 0;
  462. #endif
  463. EEPROM_WRITE(zprobe_zoffset);
  464. }
  465. //
  466. // Planar Bed Leveling matrix
  467. //
  468. {
  469. #if ABL_PLANAR
  470. EEPROM_WRITE(planner.bed_level_matrix);
  471. #else
  472. dummy = 0;
  473. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  474. #endif
  475. }
  476. //
  477. // Bilinear Auto Bed Leveling
  478. //
  479. {
  480. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  481. // Compile time test that sizeof(z_values) is as expected
  482. static_assert(
  483. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  484. "Bilinear Z array is the wrong size."
  485. );
  486. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  487. EEPROM_WRITE(grid_max_x); // 1 byte
  488. EEPROM_WRITE(grid_max_y); // 1 byte
  489. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  490. EEPROM_WRITE(bilinear_start); // 2 ints
  491. EEPROM_WRITE(z_values); // 9-256 floats
  492. #else
  493. // For disabled Bilinear Grid write an empty 3x3 grid
  494. const uint8_t grid_max_x = 3, grid_max_y = 3;
  495. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  496. dummy = 0;
  497. EEPROM_WRITE(grid_max_x);
  498. EEPROM_WRITE(grid_max_y);
  499. EEPROM_WRITE(bilinear_grid_spacing);
  500. EEPROM_WRITE(bilinear_start);
  501. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  502. #endif
  503. }
  504. //
  505. // Unified Bed Leveling
  506. //
  507. {
  508. _FIELD_TEST(planner_leveling_active);
  509. #if ENABLED(AUTO_BED_LEVELING_UBL)
  510. EEPROM_WRITE(planner.leveling_active);
  511. EEPROM_WRITE(ubl.storage_slot);
  512. #else
  513. const bool ubl_active = false;
  514. const int8_t storage_slot = -1;
  515. EEPROM_WRITE(ubl_active);
  516. EEPROM_WRITE(storage_slot);
  517. #endif // AUTO_BED_LEVELING_UBL
  518. }
  519. //
  520. // Servo Angles
  521. //
  522. {
  523. _FIELD_TEST(servo_angles);
  524. #if !HAS_SERVO_ANGLES
  525. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  526. #endif
  527. EEPROM_WRITE(servo_angles);
  528. }
  529. //
  530. // DELTA Geometry or Dual Endstops offsets
  531. //
  532. {
  533. #if ENABLED(DELTA)
  534. _FIELD_TEST(delta_height);
  535. EEPROM_WRITE(delta_height); // 1 float
  536. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  537. EEPROM_WRITE(delta_radius); // 1 float
  538. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  539. EEPROM_WRITE(delta_segments_per_second); // 1 float
  540. EEPROM_WRITE(delta_calibration_radius); // 1 float
  541. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  542. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  543. _FIELD_TEST(x2_endstop_adj);
  544. // Write dual endstops in X, Y, Z order. Unused = 0.0
  545. dummy = 0;
  546. #if ENABLED(X_DUAL_ENDSTOPS)
  547. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  548. #else
  549. EEPROM_WRITE(dummy);
  550. #endif
  551. #if ENABLED(Y_DUAL_ENDSTOPS)
  552. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  553. #else
  554. EEPROM_WRITE(dummy);
  555. #endif
  556. #if Z_MULTI_ENDSTOPS
  557. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  558. #else
  559. EEPROM_WRITE(dummy);
  560. #endif
  561. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  562. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  563. #else
  564. EEPROM_WRITE(dummy);
  565. #endif
  566. #endif
  567. }
  568. //
  569. // LCD Preheat settings
  570. //
  571. {
  572. _FIELD_TEST(ui_preheat_hotend_temp);
  573. #if HAS_LCD_MENU
  574. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  575. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  576. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  577. #else
  578. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  579. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  580. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  581. #endif
  582. EEPROM_WRITE(ui_preheat_hotend_temp);
  583. EEPROM_WRITE(ui_preheat_bed_temp);
  584. EEPROM_WRITE(ui_preheat_fan_speed);
  585. }
  586. //
  587. // PIDTEMP
  588. //
  589. {
  590. _FIELD_TEST(hotendPID);
  591. HOTEND_LOOP() {
  592. PIDC_t pidc = {
  593. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  594. };
  595. EEPROM_WRITE(pidc);
  596. }
  597. _FIELD_TEST(lpq_len);
  598. #if ENABLED(PID_EXTRUSION_SCALING)
  599. EEPROM_WRITE(thermalManager.lpq_len);
  600. #else
  601. const int16_t lpq_len = 20;
  602. EEPROM_WRITE(lpq_len);
  603. #endif
  604. }
  605. //
  606. // PIDTEMPBED
  607. //
  608. {
  609. _FIELD_TEST(bedPID);
  610. #if DISABLED(PIDTEMPBED)
  611. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  612. EEPROM_WRITE(bed_pid);
  613. #else
  614. EEPROM_WRITE(thermalManager.bed_pid);
  615. #endif
  616. }
  617. //
  618. // LCD Contrast
  619. //
  620. {
  621. _FIELD_TEST(lcd_contrast);
  622. const int16_t lcd_contrast =
  623. #if HAS_LCD_CONTRAST
  624. ui.contrast
  625. #else
  626. 32
  627. #endif
  628. ;
  629. EEPROM_WRITE(lcd_contrast);
  630. }
  631. //
  632. // Power-Loss Recovery
  633. //
  634. {
  635. _FIELD_TEST(recovery_enabled);
  636. const bool recovery_enabled =
  637. #if ENABLED(POWER_LOSS_RECOVERY)
  638. recovery.enabled
  639. #else
  640. true
  641. #endif
  642. ;
  643. EEPROM_WRITE(recovery_enabled);
  644. }
  645. //
  646. // Firmware Retraction
  647. //
  648. {
  649. _FIELD_TEST(fwretract_settings);
  650. #if ENABLED(FWRETRACT)
  651. EEPROM_WRITE(fwretract.settings);
  652. #else
  653. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  654. EEPROM_WRITE(autoretract_defaults);
  655. #endif
  656. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  657. EEPROM_WRITE(fwretract.autoretract_enabled);
  658. #else
  659. const bool autoretract_enabled = false;
  660. EEPROM_WRITE(autoretract_enabled);
  661. #endif
  662. }
  663. //
  664. // Volumetric & Filament Size
  665. //
  666. {
  667. _FIELD_TEST(parser_volumetric_enabled);
  668. #if DISABLED(NO_VOLUMETRICS)
  669. EEPROM_WRITE(parser.volumetric_enabled);
  670. EEPROM_WRITE(planner.filament_size);
  671. #else
  672. const bool volumetric_enabled = false;
  673. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  674. EEPROM_WRITE(volumetric_enabled);
  675. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  676. #endif
  677. }
  678. //
  679. // TMC Configuration
  680. //
  681. {
  682. _FIELD_TEST(tmc_stepper_current);
  683. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  684. #if HAS_TRINAMIC
  685. #if AXIS_IS_TMC(X)
  686. tmc_stepper_current.X = stepperX.getMilliamps();
  687. #endif
  688. #if AXIS_IS_TMC(Y)
  689. tmc_stepper_current.Y = stepperY.getMilliamps();
  690. #endif
  691. #if AXIS_IS_TMC(Z)
  692. tmc_stepper_current.Z = stepperZ.getMilliamps();
  693. #endif
  694. #if AXIS_IS_TMC(X2)
  695. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  696. #endif
  697. #if AXIS_IS_TMC(Y2)
  698. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  699. #endif
  700. #if AXIS_IS_TMC(Z2)
  701. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  702. #endif
  703. #if AXIS_IS_TMC(Z3)
  704. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  705. #endif
  706. #if MAX_EXTRUDERS
  707. #if AXIS_IS_TMC(E0)
  708. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  709. #endif
  710. #if MAX_EXTRUDERS > 1
  711. #if AXIS_IS_TMC(E1)
  712. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  713. #endif
  714. #if MAX_EXTRUDERS > 2
  715. #if AXIS_IS_TMC(E2)
  716. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  717. #endif
  718. #if MAX_EXTRUDERS > 3
  719. #if AXIS_IS_TMC(E3)
  720. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  721. #endif
  722. #if MAX_EXTRUDERS > 4
  723. #if AXIS_IS_TMC(E4)
  724. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  725. #endif
  726. #if MAX_EXTRUDERS > 5
  727. #if AXIS_IS_TMC(E5)
  728. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  729. #endif
  730. #endif // MAX_EXTRUDERS > 5
  731. #endif // MAX_EXTRUDERS > 4
  732. #endif // MAX_EXTRUDERS > 3
  733. #endif // MAX_EXTRUDERS > 2
  734. #endif // MAX_EXTRUDERS > 1
  735. #endif // MAX_EXTRUDERS
  736. #endif
  737. EEPROM_WRITE(tmc_stepper_current);
  738. }
  739. //
  740. // TMC Hybrid Threshold, and placeholder values
  741. //
  742. {
  743. _FIELD_TEST(tmc_hybrid_threshold);
  744. #if ENABLED(HYBRID_THRESHOLD)
  745. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  746. #if AXIS_HAS_STEALTHCHOP(X)
  747. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  748. #endif
  749. #if AXIS_HAS_STEALTHCHOP(Y)
  750. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  751. #endif
  752. #if AXIS_HAS_STEALTHCHOP(Z)
  753. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  754. #endif
  755. #if AXIS_HAS_STEALTHCHOP(X2)
  756. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  757. #endif
  758. #if AXIS_HAS_STEALTHCHOP(Y2)
  759. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  760. #endif
  761. #if AXIS_HAS_STEALTHCHOP(Z2)
  762. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  763. #endif
  764. #if AXIS_HAS_STEALTHCHOP(Z3)
  765. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  766. #endif
  767. #if MAX_EXTRUDERS
  768. #if AXIS_HAS_STEALTHCHOP(E0)
  769. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  770. #endif
  771. #if MAX_EXTRUDERS > 1
  772. #if AXIS_HAS_STEALTHCHOP(E1)
  773. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  774. #endif
  775. #if MAX_EXTRUDERS > 2
  776. #if AXIS_HAS_STEALTHCHOP(E2)
  777. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  778. #endif
  779. #if MAX_EXTRUDERS > 3
  780. #if AXIS_HAS_STEALTHCHOP(E3)
  781. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  782. #endif
  783. #if MAX_EXTRUDERS > 4
  784. #if AXIS_HAS_STEALTHCHOP(E4)
  785. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  786. #endif
  787. #if MAX_EXTRUDERS > 5
  788. #if AXIS_HAS_STEALTHCHOP(E5)
  789. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  790. #endif
  791. #endif // MAX_EXTRUDERS > 5
  792. #endif // MAX_EXTRUDERS > 4
  793. #endif // MAX_EXTRUDERS > 3
  794. #endif // MAX_EXTRUDERS > 2
  795. #endif // MAX_EXTRUDERS > 1
  796. #endif // MAX_EXTRUDERS
  797. #else
  798. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  799. .X = 100, .Y = 100, .Z = 3,
  800. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  801. .E0 = 30, .E1 = 30, .E2 = 30,
  802. .E3 = 30, .E4 = 30, .E5 = 30
  803. };
  804. #endif
  805. EEPROM_WRITE(tmc_hybrid_threshold);
  806. }
  807. //
  808. // TMC StallGuard threshold
  809. //
  810. {
  811. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  812. #if USE_SENSORLESS
  813. #if X_SENSORLESS
  814. tmc_sgt.X = stepperX.sgt();
  815. #endif
  816. #if Y_SENSORLESS
  817. tmc_sgt.Y = stepperY.sgt();
  818. #endif
  819. #if Z_SENSORLESS
  820. tmc_sgt.Z = stepperZ.sgt();
  821. #endif
  822. #endif
  823. EEPROM_WRITE(tmc_sgt);
  824. }
  825. //
  826. // TMC stepping mode
  827. //
  828. {
  829. _FIELD_TEST(tmc_stealth_enabled);
  830. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  831. #if HAS_STEALTHCHOP
  832. #if AXIS_HAS_STEALTHCHOP(X)
  833. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  834. #endif
  835. #if AXIS_HAS_STEALTHCHOP(Y)
  836. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  837. #endif
  838. #if AXIS_HAS_STEALTHCHOP(Z)
  839. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  840. #endif
  841. #if AXIS_HAS_STEALTHCHOP(X2)
  842. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  843. #endif
  844. #if AXIS_HAS_STEALTHCHOP(Y2)
  845. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  846. #endif
  847. #if AXIS_HAS_STEALTHCHOP(Z2)
  848. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  849. #endif
  850. #if AXIS_HAS_STEALTHCHOP(Z3)
  851. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  852. #endif
  853. #if MAX_EXTRUDERS
  854. #if AXIS_HAS_STEALTHCHOP(E0)
  855. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  856. #endif
  857. #if MAX_EXTRUDERS > 1
  858. #if AXIS_HAS_STEALTHCHOP(E1)
  859. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  860. #endif
  861. #if MAX_EXTRUDERS > 2
  862. #if AXIS_HAS_STEALTHCHOP(E2)
  863. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  864. #endif
  865. #if MAX_EXTRUDERS > 3
  866. #if AXIS_HAS_STEALTHCHOP(E3)
  867. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  868. #endif
  869. #if MAX_EXTRUDERS > 4
  870. #if AXIS_HAS_STEALTHCHOP(E4)
  871. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  872. #endif
  873. #if MAX_EXTRUDERS > 5
  874. #if AXIS_HAS_STEALTHCHOP(E5)
  875. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  876. #endif
  877. #endif // MAX_EXTRUDERS > 5
  878. #endif // MAX_EXTRUDERS > 4
  879. #endif // MAX_EXTRUDERS > 3
  880. #endif // MAX_EXTRUDERS > 2
  881. #endif // MAX_EXTRUDERS > 1
  882. #endif // MAX_EXTRUDERS
  883. #endif
  884. EEPROM_WRITE(tmc_stealth_enabled);
  885. }
  886. //
  887. // Linear Advance
  888. //
  889. {
  890. _FIELD_TEST(planner_extruder_advance_K);
  891. #if ENABLED(LIN_ADVANCE)
  892. EEPROM_WRITE(planner.extruder_advance_K);
  893. #else
  894. dummy = 0;
  895. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  896. #endif
  897. }
  898. //
  899. // Motor Current PWM
  900. //
  901. {
  902. _FIELD_TEST(motor_current_setting);
  903. #if HAS_MOTOR_CURRENT_PWM
  904. EEPROM_WRITE(stepper.motor_current_setting);
  905. #else
  906. const uint32_t dummyui32[XYZ] = { 0 };
  907. EEPROM_WRITE(dummyui32);
  908. #endif
  909. }
  910. //
  911. // CNC Coordinate Systems
  912. //
  913. _FIELD_TEST(coordinate_system);
  914. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  915. EEPROM_WRITE(gcode.coordinate_system);
  916. #else
  917. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  918. EEPROM_WRITE(coordinate_system);
  919. #endif
  920. //
  921. // Skew correction factors
  922. //
  923. _FIELD_TEST(planner_skew_factor);
  924. EEPROM_WRITE(planner.skew_factor);
  925. //
  926. // Advanced Pause filament load & unload lengths
  927. //
  928. {
  929. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  930. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  931. #endif
  932. _FIELD_TEST(fc_settings);
  933. EEPROM_WRITE(fc_settings);
  934. }
  935. //
  936. // Multiple Extruders
  937. //
  938. #if EXTRUDERS > 1
  939. _FIELD_TEST(toolchange_settings);
  940. EEPROM_WRITE(toolchange_settings);
  941. #endif
  942. //
  943. // Validate CRC and Data Size
  944. //
  945. if (!eeprom_error) {
  946. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  947. final_crc = working_crc;
  948. // Write the EEPROM header
  949. eeprom_index = EEPROM_OFFSET;
  950. EEPROM_WRITE(version);
  951. EEPROM_WRITE(final_crc);
  952. // Report storage size
  953. CHITCHAT_ECHO_START();
  954. CHITCHAT_ECHOPAIR("Settings Stored (", eeprom_size);
  955. CHITCHAT_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  956. CHITCHAT_ECHOLNPGM(")");
  957. eeprom_error |= size_error(eeprom_size);
  958. }
  959. EEPROM_FINISH();
  960. //
  961. // UBL Mesh
  962. //
  963. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  964. if (ubl.storage_slot >= 0)
  965. store_mesh(ubl.storage_slot);
  966. #endif
  967. return !eeprom_error;
  968. }
  969. /**
  970. * M501 - Retrieve Configuration
  971. */
  972. bool MarlinSettings::_load() {
  973. uint16_t working_crc = 0;
  974. EEPROM_START();
  975. char stored_ver[4];
  976. EEPROM_READ_ALWAYS(stored_ver);
  977. uint16_t stored_crc;
  978. EEPROM_READ_ALWAYS(stored_crc);
  979. // Version has to match or defaults are used
  980. if (strncmp(version, stored_ver, 3) != 0) {
  981. if (stored_ver[3] != '\0') {
  982. stored_ver[0] = '?';
  983. stored_ver[1] = '\0';
  984. }
  985. CHITCHAT_ECHO_START();
  986. CHITCHAT_ECHOPGM("EEPROM version mismatch ");
  987. CHITCHAT_ECHOPAIR("(EEPROM=", stored_ver);
  988. CHITCHAT_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  989. eeprom_error = true;
  990. }
  991. else {
  992. float dummy = 0;
  993. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  994. _FIELD_TEST(esteppers);
  995. // Number of esteppers may change
  996. uint8_t esteppers;
  997. EEPROM_READ_ALWAYS(esteppers);
  998. //
  999. // Planner Motion
  1000. //
  1001. {
  1002. // Get only the number of E stepper parameters previously stored
  1003. // Any steppers added later are set to their defaults
  1004. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  1005. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  1006. uint32_t tmp1[XYZ + esteppers];
  1007. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1008. EEPROM_READ(planner.settings.min_segment_time_us);
  1009. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  1010. EEPROM_READ(tmp2); // axis_steps_per_mm
  1011. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1012. if (!validating) LOOP_XYZE_N(i) {
  1013. const bool in = (i < esteppers + XYZ);
  1014. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  1015. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  1016. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  1017. }
  1018. EEPROM_READ(planner.settings.acceleration);
  1019. EEPROM_READ(planner.settings.retract_acceleration);
  1020. EEPROM_READ(planner.settings.travel_acceleration);
  1021. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1022. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1023. #if HAS_CLASSIC_JERK
  1024. EEPROM_READ(planner.max_jerk);
  1025. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  1026. EEPROM_READ(dummy);
  1027. #endif
  1028. #else
  1029. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1030. #endif
  1031. #if ENABLED(JUNCTION_DEVIATION)
  1032. EEPROM_READ(planner.junction_deviation_mm);
  1033. #else
  1034. EEPROM_READ(dummy);
  1035. #endif
  1036. }
  1037. //
  1038. // Home Offset (M206 / M665)
  1039. //
  1040. {
  1041. _FIELD_TEST(home_offset);
  1042. #if HAS_SCARA_OFFSET
  1043. EEPROM_READ(scara_home_offset);
  1044. #else
  1045. #if !HAS_HOME_OFFSET
  1046. float home_offset[XYZ];
  1047. #endif
  1048. EEPROM_READ(home_offset);
  1049. #endif
  1050. }
  1051. //
  1052. // Hotend Offsets, if any
  1053. //
  1054. {
  1055. #if HAS_HOTEND_OFFSET
  1056. // Skip hotend 0 which must be 0
  1057. for (uint8_t e = 1; e < HOTENDS; e++)
  1058. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1059. #endif
  1060. }
  1061. //
  1062. // Global Leveling
  1063. //
  1064. {
  1065. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1066. EEPROM_READ(new_z_fade_height);
  1067. #else
  1068. EEPROM_READ(dummy);
  1069. #endif
  1070. }
  1071. //
  1072. // Mesh (Manual) Bed Leveling
  1073. //
  1074. {
  1075. uint8_t mesh_num_x, mesh_num_y;
  1076. EEPROM_READ(dummy);
  1077. EEPROM_READ_ALWAYS(mesh_num_x);
  1078. EEPROM_READ_ALWAYS(mesh_num_y);
  1079. #if ENABLED(MESH_BED_LEVELING)
  1080. if (!validating) mbl.z_offset = dummy;
  1081. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1082. // EEPROM data fits the current mesh
  1083. EEPROM_READ(mbl.z_values);
  1084. }
  1085. else {
  1086. // EEPROM data is stale
  1087. if (!validating) mbl.reset();
  1088. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1089. }
  1090. #else
  1091. // MBL is disabled - skip the stored data
  1092. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1093. #endif // MESH_BED_LEVELING
  1094. }
  1095. //
  1096. // Probe Z Offset
  1097. //
  1098. {
  1099. _FIELD_TEST(zprobe_zoffset);
  1100. #if !HAS_BED_PROBE
  1101. float zprobe_zoffset;
  1102. #endif
  1103. EEPROM_READ(zprobe_zoffset);
  1104. }
  1105. //
  1106. // Planar Bed Leveling matrix
  1107. //
  1108. {
  1109. #if ABL_PLANAR
  1110. EEPROM_READ(planner.bed_level_matrix);
  1111. #else
  1112. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1113. #endif
  1114. }
  1115. //
  1116. // Bilinear Auto Bed Leveling
  1117. //
  1118. {
  1119. uint8_t grid_max_x, grid_max_y;
  1120. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1121. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1122. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1123. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1124. if (!validating) set_bed_leveling_enabled(false);
  1125. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1126. EEPROM_READ(bilinear_start); // 2 ints
  1127. EEPROM_READ(z_values); // 9 to 256 floats
  1128. }
  1129. else // EEPROM data is stale
  1130. #endif // AUTO_BED_LEVELING_BILINEAR
  1131. {
  1132. // Skip past disabled (or stale) Bilinear Grid data
  1133. int bgs[2], bs[2];
  1134. EEPROM_READ(bgs);
  1135. EEPROM_READ(bs);
  1136. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1137. }
  1138. }
  1139. //
  1140. // Unified Bed Leveling active state
  1141. //
  1142. {
  1143. _FIELD_TEST(planner_leveling_active);
  1144. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1145. EEPROM_READ(planner.leveling_active);
  1146. EEPROM_READ(ubl.storage_slot);
  1147. #else
  1148. bool planner_leveling_active;
  1149. uint8_t ubl_storage_slot;
  1150. EEPROM_READ(planner_leveling_active);
  1151. EEPROM_READ(ubl_storage_slot);
  1152. #endif
  1153. }
  1154. //
  1155. // SERVO_ANGLES
  1156. //
  1157. {
  1158. _FIELD_TEST(servo_angles);
  1159. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1160. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1161. #else
  1162. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1163. #endif
  1164. EEPROM_READ(servo_angles_arr);
  1165. }
  1166. //
  1167. // DELTA Geometry or Dual Endstops offsets
  1168. //
  1169. {
  1170. #if ENABLED(DELTA)
  1171. _FIELD_TEST(delta_height);
  1172. EEPROM_READ(delta_height); // 1 float
  1173. EEPROM_READ(delta_endstop_adj); // 3 floats
  1174. EEPROM_READ(delta_radius); // 1 float
  1175. EEPROM_READ(delta_diagonal_rod); // 1 float
  1176. EEPROM_READ(delta_segments_per_second); // 1 float
  1177. EEPROM_READ(delta_calibration_radius); // 1 float
  1178. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1179. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1180. _FIELD_TEST(x2_endstop_adj);
  1181. #if ENABLED(X_DUAL_ENDSTOPS)
  1182. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1183. #else
  1184. EEPROM_READ(dummy);
  1185. #endif
  1186. #if ENABLED(Y_DUAL_ENDSTOPS)
  1187. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1188. #else
  1189. EEPROM_READ(dummy);
  1190. #endif
  1191. #if Z_MULTI_ENDSTOPS
  1192. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1193. #else
  1194. EEPROM_READ(dummy);
  1195. #endif
  1196. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1197. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1198. #else
  1199. EEPROM_READ(dummy);
  1200. #endif
  1201. #endif
  1202. }
  1203. //
  1204. // LCD Preheat settings
  1205. //
  1206. {
  1207. _FIELD_TEST(ui_preheat_hotend_temp);
  1208. #if HAS_LCD_MENU
  1209. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1210. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1211. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1212. #else
  1213. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1214. uint8_t ui_preheat_fan_speed[2];
  1215. #endif
  1216. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1217. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1218. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1219. }
  1220. //
  1221. // Hotend PID
  1222. //
  1223. {
  1224. HOTEND_LOOP() {
  1225. PIDC_t pidc;
  1226. EEPROM_READ(pidc);
  1227. #if ENABLED(PIDTEMP)
  1228. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1229. // No need to scale PID values since EEPROM values are scaled
  1230. PID_PARAM(Kp, e) = pidc.Kp;
  1231. PID_PARAM(Ki, e) = pidc.Ki;
  1232. PID_PARAM(Kd, e) = pidc.Kd;
  1233. #if ENABLED(PID_EXTRUSION_SCALING)
  1234. PID_PARAM(Kc, e) = pidc.Kc;
  1235. #endif
  1236. }
  1237. #endif
  1238. }
  1239. }
  1240. //
  1241. // PID Extrusion Scaling
  1242. //
  1243. {
  1244. _FIELD_TEST(lpq_len);
  1245. #if ENABLED(PID_EXTRUSION_SCALING)
  1246. EEPROM_READ(thermalManager.lpq_len);
  1247. #else
  1248. int16_t lpq_len;
  1249. EEPROM_READ(lpq_len);
  1250. #endif
  1251. }
  1252. //
  1253. // Heated Bed PID
  1254. //
  1255. {
  1256. PID_t pid;
  1257. EEPROM_READ(pid);
  1258. #if ENABLED(PIDTEMPBED)
  1259. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1260. memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
  1261. #endif
  1262. }
  1263. //
  1264. // LCD Contrast
  1265. //
  1266. {
  1267. _FIELD_TEST(lcd_contrast);
  1268. int16_t lcd_contrast;
  1269. EEPROM_READ(lcd_contrast);
  1270. #if HAS_LCD_CONTRAST
  1271. ui.set_contrast(lcd_contrast);
  1272. #endif
  1273. }
  1274. //
  1275. // Power-Loss Recovery
  1276. //
  1277. {
  1278. _FIELD_TEST(recovery_enabled);
  1279. #if ENABLED(POWER_LOSS_RECOVERY)
  1280. EEPROM_READ(recovery.enabled);
  1281. #else
  1282. bool recovery_enabled;
  1283. EEPROM_READ(recovery_enabled);
  1284. #endif
  1285. }
  1286. //
  1287. // Firmware Retraction
  1288. //
  1289. {
  1290. _FIELD_TEST(fwretract_settings);
  1291. #if ENABLED(FWRETRACT)
  1292. EEPROM_READ(fwretract.settings);
  1293. #else
  1294. fwretract_settings_t fwretract_settings;
  1295. EEPROM_READ(fwretract_settings);
  1296. #endif
  1297. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  1298. EEPROM_READ(fwretract.autoretract_enabled);
  1299. #else
  1300. bool autoretract_enabled;
  1301. EEPROM_READ(autoretract_enabled);
  1302. #endif
  1303. }
  1304. //
  1305. // Volumetric & Filament Size
  1306. //
  1307. {
  1308. struct {
  1309. bool volumetric_enabled;
  1310. float filament_size[EXTRUDERS];
  1311. } storage;
  1312. _FIELD_TEST(parser_volumetric_enabled);
  1313. EEPROM_READ(storage);
  1314. #if DISABLED(NO_VOLUMETRICS)
  1315. if (!validating) {
  1316. parser.volumetric_enabled = storage.volumetric_enabled;
  1317. COPY(planner.filament_size, storage.filament_size);
  1318. }
  1319. #endif
  1320. }
  1321. //
  1322. // TMC Stepper Settings
  1323. //
  1324. if (!validating) reset_stepper_drivers();
  1325. // TMC Stepper Current
  1326. {
  1327. _FIELD_TEST(tmc_stepper_current);
  1328. tmc_stepper_current_t currents;
  1329. EEPROM_READ(currents);
  1330. #if HAS_TRINAMIC
  1331. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1332. if (!validating) {
  1333. #if AXIS_IS_TMC(X)
  1334. SET_CURR(X);
  1335. #endif
  1336. #if AXIS_IS_TMC(Y)
  1337. SET_CURR(Y);
  1338. #endif
  1339. #if AXIS_IS_TMC(Z)
  1340. SET_CURR(Z);
  1341. #endif
  1342. #if AXIS_IS_TMC(X2)
  1343. SET_CURR(X2);
  1344. #endif
  1345. #if AXIS_IS_TMC(Y2)
  1346. SET_CURR(Y2);
  1347. #endif
  1348. #if AXIS_IS_TMC(Z2)
  1349. SET_CURR(Z2);
  1350. #endif
  1351. #if AXIS_IS_TMC(Z3)
  1352. SET_CURR(Z3);
  1353. #endif
  1354. #if AXIS_IS_TMC(E0)
  1355. SET_CURR(E0);
  1356. #endif
  1357. #if AXIS_IS_TMC(E1)
  1358. SET_CURR(E1);
  1359. #endif
  1360. #if AXIS_IS_TMC(E2)
  1361. SET_CURR(E2);
  1362. #endif
  1363. #if AXIS_IS_TMC(E3)
  1364. SET_CURR(E3);
  1365. #endif
  1366. #if AXIS_IS_TMC(E4)
  1367. SET_CURR(E4);
  1368. #endif
  1369. #if AXIS_IS_TMC(E5)
  1370. SET_CURR(E5);
  1371. #endif
  1372. }
  1373. #endif
  1374. }
  1375. // TMC Hybrid Threshold
  1376. {
  1377. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1378. _FIELD_TEST(tmc_hybrid_threshold);
  1379. EEPROM_READ(tmc_hybrid_threshold);
  1380. #if ENABLED(HYBRID_THRESHOLD)
  1381. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1382. if (!validating) {
  1383. #if AXIS_HAS_STEALTHCHOP(X)
  1384. TMC_SET_PWMTHRS(X, X);
  1385. #endif
  1386. #if AXIS_HAS_STEALTHCHOP(Y)
  1387. TMC_SET_PWMTHRS(Y, Y);
  1388. #endif
  1389. #if AXIS_HAS_STEALTHCHOP(Z)
  1390. TMC_SET_PWMTHRS(Z, Z);
  1391. #endif
  1392. #if AXIS_HAS_STEALTHCHOP(X2)
  1393. TMC_SET_PWMTHRS(X, X2);
  1394. #endif
  1395. #if AXIS_HAS_STEALTHCHOP(Y2)
  1396. TMC_SET_PWMTHRS(Y, Y2);
  1397. #endif
  1398. #if AXIS_HAS_STEALTHCHOP(Z2)
  1399. TMC_SET_PWMTHRS(Z, Z2);
  1400. #endif
  1401. #if AXIS_HAS_STEALTHCHOP(Z3)
  1402. TMC_SET_PWMTHRS(Z, Z3);
  1403. #endif
  1404. #if AXIS_HAS_STEALTHCHOP(E0)
  1405. TMC_SET_PWMTHRS(E, E0);
  1406. #endif
  1407. #if AXIS_HAS_STEALTHCHOP(E1)
  1408. TMC_SET_PWMTHRS(E, E1);
  1409. #endif
  1410. #if AXIS_HAS_STEALTHCHOP(E2)
  1411. TMC_SET_PWMTHRS(E, E2);
  1412. #endif
  1413. #if AXIS_HAS_STEALTHCHOP(E3)
  1414. TMC_SET_PWMTHRS(E, E3);
  1415. #endif
  1416. #if AXIS_HAS_STEALTHCHOP(E4)
  1417. TMC_SET_PWMTHRS(E, E4);
  1418. #endif
  1419. #if AXIS_HAS_STEALTHCHOP(E5)
  1420. TMC_SET_PWMTHRS(E, E5);
  1421. #endif
  1422. }
  1423. #endif
  1424. }
  1425. //
  1426. // TMC StallGuard threshold.
  1427. // X and X2 use the same value
  1428. // Y and Y2 use the same value
  1429. // Z, Z2 and Z3 use the same value
  1430. //
  1431. {
  1432. tmc_sgt_t tmc_sgt;
  1433. _FIELD_TEST(tmc_sgt);
  1434. EEPROM_READ(tmc_sgt);
  1435. #if USE_SENSORLESS
  1436. if (!validating) {
  1437. #ifdef X_STALL_SENSITIVITY
  1438. #if AXIS_HAS_STALLGUARD(X)
  1439. stepperX.sgt(tmc_sgt.X);
  1440. #endif
  1441. #if AXIS_HAS_STALLGUARD(X2)
  1442. stepperX2.sgt(tmc_sgt.X);
  1443. #endif
  1444. #endif
  1445. #ifdef Y_STALL_SENSITIVITY
  1446. #if AXIS_HAS_STALLGUARD(Y)
  1447. stepperY.sgt(tmc_sgt.Y);
  1448. #endif
  1449. #if AXIS_HAS_STALLGUARD(Y2)
  1450. stepperY2.sgt(tmc_sgt.Y);
  1451. #endif
  1452. #endif
  1453. #ifdef Z_STALL_SENSITIVITY
  1454. #if AXIS_HAS_STALLGUARD(Z)
  1455. stepperZ.sgt(tmc_sgt.Z);
  1456. #endif
  1457. #if AXIS_HAS_STALLGUARD(Z2)
  1458. stepperZ2.sgt(tmc_sgt.Z);
  1459. #endif
  1460. #if AXIS_HAS_STALLGUARD(Z3)
  1461. stepperZ3.sgt(tmc_sgt.Z);
  1462. #endif
  1463. #endif
  1464. }
  1465. #endif
  1466. }
  1467. // TMC stepping mode
  1468. {
  1469. _FIELD_TEST(tmc_stealth_enabled);
  1470. tmc_stealth_enabled_t tmc_stealth_enabled;
  1471. EEPROM_READ(tmc_stealth_enabled);
  1472. #if HAS_TRINAMIC
  1473. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1474. if (!validating) {
  1475. #if AXIS_HAS_STEALTHCHOP(X)
  1476. SET_STEPPING_MODE(X);
  1477. #endif
  1478. #if AXIS_HAS_STEALTHCHOP(Y)
  1479. SET_STEPPING_MODE(Y);
  1480. #endif
  1481. #if AXIS_HAS_STEALTHCHOP(Z)
  1482. SET_STEPPING_MODE(Z);
  1483. #endif
  1484. #if AXIS_HAS_STEALTHCHOP(X2)
  1485. SET_STEPPING_MODE(X2);
  1486. #endif
  1487. #if AXIS_HAS_STEALTHCHOP(Y2)
  1488. SET_STEPPING_MODE(Y2);
  1489. #endif
  1490. #if AXIS_HAS_STEALTHCHOP(Z2)
  1491. SET_STEPPING_MODE(Z2);
  1492. #endif
  1493. #if AXIS_HAS_STEALTHCHOP(Z3)
  1494. SET_STEPPING_MODE(Z3);
  1495. #endif
  1496. #if AXIS_HAS_STEALTHCHOP(E0)
  1497. SET_STEPPING_MODE(E0);
  1498. #endif
  1499. #if AXIS_HAS_STEALTHCHOP(E1)
  1500. SET_STEPPING_MODE(E1);
  1501. #endif
  1502. #if AXIS_HAS_STEALTHCHOP(E2)
  1503. SET_STEPPING_MODE(E2);
  1504. #endif
  1505. #if AXIS_HAS_STEALTHCHOP(E3)
  1506. SET_STEPPING_MODE(E3);
  1507. #endif
  1508. #if AXIS_HAS_STEALTHCHOP(E4)
  1509. SET_STEPPING_MODE(E4);
  1510. #endif
  1511. #if AXIS_HAS_STEALTHCHOP(E5)
  1512. SET_STEPPING_MODE(E5);
  1513. #endif
  1514. }
  1515. #endif
  1516. }
  1517. //
  1518. // Linear Advance
  1519. //
  1520. {
  1521. float extruder_advance_K[EXTRUDERS];
  1522. _FIELD_TEST(planner_extruder_advance_K);
  1523. EEPROM_READ(extruder_advance_K);
  1524. #if ENABLED(LIN_ADVANCE)
  1525. if (!validating)
  1526. COPY(planner.extruder_advance_K, extruder_advance_K);
  1527. #endif
  1528. }
  1529. //
  1530. // Motor Current PWM
  1531. //
  1532. {
  1533. uint32_t motor_current_setting[3];
  1534. _FIELD_TEST(motor_current_setting);
  1535. EEPROM_READ(motor_current_setting);
  1536. #if HAS_MOTOR_CURRENT_PWM
  1537. if (!validating)
  1538. COPY(stepper.motor_current_setting, motor_current_setting);
  1539. #endif
  1540. }
  1541. //
  1542. // CNC Coordinate System
  1543. //
  1544. {
  1545. _FIELD_TEST(coordinate_system);
  1546. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1547. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1548. EEPROM_READ(gcode.coordinate_system);
  1549. #else
  1550. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1551. EEPROM_READ(coordinate_system);
  1552. #endif
  1553. }
  1554. //
  1555. // Skew correction factors
  1556. //
  1557. {
  1558. skew_factor_t skew_factor;
  1559. _FIELD_TEST(planner_skew_factor);
  1560. EEPROM_READ(skew_factor);
  1561. #if ENABLED(SKEW_CORRECTION_GCODE)
  1562. if (!validating) {
  1563. planner.skew_factor.xy = skew_factor.xy;
  1564. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1565. planner.skew_factor.xz = skew_factor.xz;
  1566. planner.skew_factor.yz = skew_factor.yz;
  1567. #endif
  1568. }
  1569. #endif
  1570. }
  1571. //
  1572. // Advanced Pause filament load & unload lengths
  1573. //
  1574. {
  1575. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1576. fil_change_settings_t fc_settings[EXTRUDERS];
  1577. #endif
  1578. _FIELD_TEST(fc_settings);
  1579. EEPROM_READ(fc_settings);
  1580. }
  1581. //
  1582. // Tool-change settings
  1583. //
  1584. #if EXTRUDERS > 1
  1585. _FIELD_TEST(toolchange_settings);
  1586. EEPROM_READ(toolchange_settings);
  1587. #endif
  1588. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1589. if (eeprom_error) {
  1590. CHITCHAT_ECHO_START();
  1591. CHITCHAT_ECHOPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1592. CHITCHAT_ECHOLNPAIR(" Size: ", datasize());
  1593. }
  1594. else if (working_crc != stored_crc) {
  1595. eeprom_error = true;
  1596. CHITCHAT_ERROR_START();
  1597. CHITCHAT_ECHOPGM("EEPROM CRC mismatch - (stored) ");
  1598. CHITCHAT_ECHO(stored_crc);
  1599. CHITCHAT_ECHOPGM(" != ");
  1600. CHITCHAT_ECHO(working_crc);
  1601. CHITCHAT_ECHOLNPGM(" (calculated)!");
  1602. }
  1603. else if (!validating) {
  1604. CHITCHAT_ECHO_START();
  1605. CHITCHAT_ECHO(version);
  1606. CHITCHAT_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1607. CHITCHAT_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  1608. CHITCHAT_ECHOLNPGM(")");
  1609. }
  1610. if (!validating && !eeprom_error) postprocess();
  1611. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1612. if (!validating) {
  1613. ubl.report_state();
  1614. if (!ubl.sanity_check()) {
  1615. SERIAL_EOL();
  1616. #if ENABLED(EEPROM_CHITCHAT)
  1617. ubl.echo_name();
  1618. CHITCHAT_ECHOLNPGM(" initialized.\n");
  1619. #endif
  1620. }
  1621. else {
  1622. eeprom_error = true;
  1623. #if ENABLED(EEPROM_CHITCHAT)
  1624. CHITCHAT_ECHOPGM("?Can't enable ");
  1625. ubl.echo_name();
  1626. CHITCHAT_ECHOLNPGM(".");
  1627. #endif
  1628. ubl.reset();
  1629. }
  1630. if (ubl.storage_slot >= 0) {
  1631. load_mesh(ubl.storage_slot);
  1632. CHITCHAT_ECHOPAIR("Mesh ", ubl.storage_slot);
  1633. CHITCHAT_ECHOLNPGM(" loaded from storage.");
  1634. }
  1635. else {
  1636. ubl.reset();
  1637. CHITCHAT_ECHOLNPGM("UBL System reset()");
  1638. }
  1639. }
  1640. #endif
  1641. }
  1642. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1643. if (!validating) report();
  1644. #endif
  1645. EEPROM_FINISH();
  1646. return !eeprom_error;
  1647. }
  1648. bool MarlinSettings::validate() {
  1649. validating = true;
  1650. const bool success = _load();
  1651. validating = false;
  1652. return success;
  1653. }
  1654. bool MarlinSettings::load() {
  1655. if (validate()) return _load();
  1656. reset();
  1657. return true;
  1658. }
  1659. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1660. inline void ubl_invalid_slot(const int s) {
  1661. #if ENABLED(EEPROM_CHITCHAT)
  1662. CHITCHAT_ECHOLNPGM("?Invalid slot.");
  1663. CHITCHAT_ECHO(s);
  1664. CHITCHAT_ECHOLNPGM(" mesh slots available.");
  1665. #else
  1666. UNUSED(s);
  1667. #endif
  1668. }
  1669. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1670. // is a placeholder for the size of the MAT; the MAT will always
  1671. // live at the very end of the eeprom
  1672. uint16_t MarlinSettings::meshes_start_index() {
  1673. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1674. // or down a little bit without disrupting the mesh data
  1675. }
  1676. uint16_t MarlinSettings::calc_num_meshes() {
  1677. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1678. }
  1679. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1680. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1681. }
  1682. void MarlinSettings::store_mesh(const int8_t slot) {
  1683. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1684. const int16_t a = calc_num_meshes();
  1685. if (!WITHIN(slot, 0, a - 1)) {
  1686. ubl_invalid_slot(a);
  1687. CHITCHAT_ECHOPAIR("E2END=", persistentStore.capacity() - 1);
  1688. CHITCHAT_ECHOPAIR(" meshes_end=", meshes_end);
  1689. CHITCHAT_ECHOLNPAIR(" slot=", slot);
  1690. CHITCHAT_EOL();
  1691. return;
  1692. }
  1693. int pos = mesh_slot_offset(slot);
  1694. uint16_t crc = 0;
  1695. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1696. persistentStore.access_start();
  1697. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1698. persistentStore.access_finish();
  1699. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1700. else CHITCHAT_ECHOLNPAIR("Mesh saved in slot ", slot);
  1701. #else
  1702. // Other mesh types
  1703. #endif
  1704. }
  1705. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1706. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1707. const int16_t a = settings.calc_num_meshes();
  1708. if (!WITHIN(slot, 0, a - 1)) {
  1709. ubl_invalid_slot(a);
  1710. return;
  1711. }
  1712. int pos = mesh_slot_offset(slot);
  1713. uint16_t crc = 0;
  1714. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1715. persistentStore.access_start();
  1716. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1717. persistentStore.access_finish();
  1718. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  1719. else CHITCHAT_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1720. EEPROM_FINISH();
  1721. #else
  1722. // Other mesh types
  1723. #endif
  1724. }
  1725. //void MarlinSettings::delete_mesh() { return; }
  1726. //void MarlinSettings::defrag_meshes() { return; }
  1727. #endif // AUTO_BED_LEVELING_UBL
  1728. #else // !EEPROM_SETTINGS
  1729. bool MarlinSettings::save() {
  1730. CHITCHAT_ERROR_MSG("EEPROM disabled");
  1731. return false;
  1732. }
  1733. #endif // !EEPROM_SETTINGS
  1734. /**
  1735. * M502 - Reset Configuration
  1736. */
  1737. void MarlinSettings::reset() {
  1738. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1739. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1740. LOOP_XYZE_N(i) {
  1741. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1742. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1743. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1744. }
  1745. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1746. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1747. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1748. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1749. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1750. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1751. #if HAS_CLASSIC_JERK
  1752. #ifndef DEFAULT_XJERK
  1753. #define DEFAULT_XJERK 0
  1754. #endif
  1755. #ifndef DEFAULT_YJERK
  1756. #define DEFAULT_YJERK 0
  1757. #endif
  1758. #ifndef DEFAULT_ZJERK
  1759. #define DEFAULT_ZJERK 0
  1760. #endif
  1761. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1762. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1763. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1764. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1765. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1766. #endif
  1767. #endif
  1768. #if ENABLED(JUNCTION_DEVIATION)
  1769. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1770. #endif
  1771. #if HAS_SCARA_OFFSET
  1772. ZERO(scara_home_offset);
  1773. #elif HAS_HOME_OFFSET
  1774. ZERO(home_offset);
  1775. #endif
  1776. #if HAS_HOTEND_OFFSET
  1777. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1778. static_assert(
  1779. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1780. "Offsets for the first hotend must be 0.0."
  1781. );
  1782. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1783. #if ENABLED(DUAL_X_CARRIAGE)
  1784. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1785. #endif
  1786. #endif
  1787. #if EXTRUDERS > 1
  1788. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1789. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1790. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1791. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1792. #endif
  1793. #if ENABLED(TOOLCHANGE_PARK)
  1794. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1795. #endif
  1796. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1797. #endif
  1798. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  1799. mpe_settings_init();
  1800. #endif
  1801. //
  1802. // Global Leveling
  1803. //
  1804. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1805. new_z_fade_height = 0.0;
  1806. #endif
  1807. #if HAS_LEVELING
  1808. reset_bed_level();
  1809. #endif
  1810. #if HAS_BED_PROBE
  1811. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1812. #endif
  1813. //
  1814. // Servo Angles
  1815. //
  1816. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1817. COPY(servo_angles, base_servo_angles);
  1818. #endif
  1819. //
  1820. // Endstop Adjustments
  1821. //
  1822. #if ENABLED(DELTA)
  1823. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1824. delta_height = DELTA_HEIGHT;
  1825. COPY(delta_endstop_adj, adj);
  1826. delta_radius = DELTA_RADIUS;
  1827. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1828. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1829. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1830. COPY(delta_tower_angle_trim, dta);
  1831. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1832. #if ENABLED(X_DUAL_ENDSTOPS)
  1833. endstops.x2_endstop_adj = (
  1834. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1835. X_DUAL_ENDSTOPS_ADJUSTMENT
  1836. #else
  1837. 0
  1838. #endif
  1839. );
  1840. #endif
  1841. #if ENABLED(Y_DUAL_ENDSTOPS)
  1842. endstops.y2_endstop_adj = (
  1843. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1844. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1845. #else
  1846. 0
  1847. #endif
  1848. );
  1849. #endif
  1850. #if ENABLED(Z_DUAL_ENDSTOPS)
  1851. endstops.z2_endstop_adj = (
  1852. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1853. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1854. #else
  1855. 0
  1856. #endif
  1857. );
  1858. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1859. endstops.z2_endstop_adj = (
  1860. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1861. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1862. #else
  1863. 0
  1864. #endif
  1865. );
  1866. endstops.z3_endstop_adj = (
  1867. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1868. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1869. #else
  1870. 0
  1871. #endif
  1872. );
  1873. #endif
  1874. #endif
  1875. //
  1876. // Preheat parameters
  1877. //
  1878. #if HAS_LCD_MENU
  1879. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1880. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1881. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1882. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1883. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1884. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1885. #endif
  1886. //
  1887. // Hotend PID
  1888. //
  1889. #if ENABLED(PIDTEMP)
  1890. HOTEND_LOOP() {
  1891. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1892. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1893. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1894. #if ENABLED(PID_EXTRUSION_SCALING)
  1895. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1896. #endif
  1897. }
  1898. #endif
  1899. //
  1900. // PID Extrusion Scaling
  1901. //
  1902. #if ENABLED(PID_EXTRUSION_SCALING)
  1903. thermalManager.lpq_len = 20; // Default last-position-queue size
  1904. #endif
  1905. //
  1906. // Heated Bed PID
  1907. //
  1908. #if ENABLED(PIDTEMPBED)
  1909. thermalManager.bed_pid.Kp = DEFAULT_bedKp;
  1910. thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
  1911. thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
  1912. #endif
  1913. //
  1914. // LCD Contrast
  1915. //
  1916. #if HAS_LCD_CONTRAST
  1917. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  1918. #endif
  1919. //
  1920. // Power-Loss Recovery
  1921. //
  1922. #if ENABLED(POWER_LOSS_RECOVERY)
  1923. recovery.enable(true);
  1924. #endif
  1925. //
  1926. // Firmware Retraction
  1927. //
  1928. #if ENABLED(FWRETRACT)
  1929. fwretract.reset();
  1930. #endif
  1931. //
  1932. // Volumetric & Filament Size
  1933. //
  1934. #if DISABLED(NO_VOLUMETRICS)
  1935. parser.volumetric_enabled =
  1936. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1937. true
  1938. #else
  1939. false
  1940. #endif
  1941. ;
  1942. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1943. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1944. #endif
  1945. endstops.enable_globally(
  1946. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1947. true
  1948. #else
  1949. false
  1950. #endif
  1951. );
  1952. reset_stepper_drivers();
  1953. //
  1954. // Linear Advance
  1955. //
  1956. #if ENABLED(LIN_ADVANCE)
  1957. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1958. #endif
  1959. //
  1960. // Motor Current PWM
  1961. //
  1962. #if HAS_MOTOR_CURRENT_PWM
  1963. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1964. for (uint8_t q = 3; q--;)
  1965. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1966. #endif
  1967. //
  1968. // CNC Coordinate System
  1969. //
  1970. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1971. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1972. #endif
  1973. //
  1974. // Skew Correction
  1975. //
  1976. #if ENABLED(SKEW_CORRECTION_GCODE)
  1977. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1978. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1979. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1980. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1981. #endif
  1982. #endif
  1983. //
  1984. // Advanced Pause filament load & unload lengths
  1985. //
  1986. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1987. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1988. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1989. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1990. }
  1991. #endif
  1992. postprocess();
  1993. CHITCHAT_ECHO_START();
  1994. CHITCHAT_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1995. }
  1996. #if DISABLED(DISABLE_M503)
  1997. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1998. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  1999. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  2000. #if HAS_TRINAMIC
  2001. void say_M906() { SERIAL_ECHOPGM(" M906"); }
  2002. #if HAS_STEALTHCHOP
  2003. void say_M569(const char * const etc=NULL) {
  2004. SERIAL_ECHOPGM(" M569 S1");
  2005. if (etc) {
  2006. SERIAL_CHAR(' ');
  2007. serialprintPGM(etc);
  2008. SERIAL_EOL();
  2009. }
  2010. }
  2011. #endif
  2012. #if ENABLED(HYBRID_THRESHOLD)
  2013. void say_M913() { SERIAL_ECHOPGM(" M913"); }
  2014. #endif
  2015. #if USE_SENSORLESS
  2016. void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2017. #endif
  2018. #endif
  2019. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2020. void say_M603() { SERIAL_ECHOPGM(" M603 "); }
  2021. #endif
  2022. inline void say_units(const bool colon) {
  2023. serialprintPGM(
  2024. #if ENABLED(INCH_MODE_SUPPORT)
  2025. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2026. #endif
  2027. PSTR(" (mm)")
  2028. );
  2029. if (colon) SERIAL_ECHOLNPGM(":");
  2030. }
  2031. void report_M92(const bool echo=true, const int8_t e=-1);
  2032. /**
  2033. * M503 - Report current settings in RAM
  2034. *
  2035. * Unless specifically disabled, M503 is available even without EEPROM
  2036. */
  2037. void MarlinSettings::report(const bool forReplay) {
  2038. /**
  2039. * Announce current units, in case inches are being displayed
  2040. */
  2041. CONFIG_ECHO_START();
  2042. #if ENABLED(INCH_MODE_SUPPORT)
  2043. SERIAL_ECHOPGM(" G2");
  2044. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2045. SERIAL_ECHOPGM(" ;");
  2046. say_units(false);
  2047. #else
  2048. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2049. say_units(false);
  2050. #endif
  2051. SERIAL_EOL();
  2052. #if HAS_LCD_MENU
  2053. // Temperature units - for Ultipanel temperature options
  2054. CONFIG_ECHO_START();
  2055. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2056. SERIAL_ECHOPGM(" M149 ");
  2057. SERIAL_CHAR(parser.temp_units_code());
  2058. SERIAL_ECHOPGM(" ; Units in ");
  2059. serialprintPGM(parser.temp_units_name());
  2060. #else
  2061. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2062. #endif
  2063. #endif
  2064. SERIAL_EOL();
  2065. #if DISABLED(NO_VOLUMETRICS)
  2066. /**
  2067. * Volumetric extrusion M200
  2068. */
  2069. if (!forReplay) {
  2070. CONFIG_ECHO_START();
  2071. SERIAL_ECHOPGM("Filament settings:");
  2072. if (parser.volumetric_enabled)
  2073. SERIAL_EOL();
  2074. else
  2075. SERIAL_ECHOLNPGM(" Disabled");
  2076. }
  2077. CONFIG_ECHO_START();
  2078. SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2079. SERIAL_EOL();
  2080. #if EXTRUDERS > 1
  2081. CONFIG_ECHO_START();
  2082. SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2083. SERIAL_EOL();
  2084. #if EXTRUDERS > 2
  2085. CONFIG_ECHO_START();
  2086. SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2087. SERIAL_EOL();
  2088. #if EXTRUDERS > 3
  2089. CONFIG_ECHO_START();
  2090. SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2091. SERIAL_EOL();
  2092. #if EXTRUDERS > 4
  2093. CONFIG_ECHO_START();
  2094. SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2095. SERIAL_EOL();
  2096. #if EXTRUDERS > 5
  2097. CONFIG_ECHO_START();
  2098. SERIAL_ECHOPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2099. SERIAL_EOL();
  2100. #endif // EXTRUDERS > 5
  2101. #endif // EXTRUDERS > 4
  2102. #endif // EXTRUDERS > 3
  2103. #endif // EXTRUDERS > 2
  2104. #endif // EXTRUDERS > 1
  2105. if (!parser.volumetric_enabled)
  2106. CONFIG_ECHO_MSG(" M200 D0");
  2107. #endif // !NO_VOLUMETRICS
  2108. CONFIG_ECHO_HEADING("Steps per unit:");
  2109. report_M92(!forReplay);
  2110. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2111. CONFIG_ECHO_START();
  2112. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
  2113. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
  2114. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
  2115. #if DISABLED(DISTINCT_E_FACTORS)
  2116. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
  2117. #endif
  2118. SERIAL_EOL();
  2119. #if ENABLED(DISTINCT_E_FACTORS)
  2120. CONFIG_ECHO_START();
  2121. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2122. SERIAL_ECHOPAIR(" M203 T", (int)i);
  2123. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)]));
  2124. }
  2125. #endif
  2126. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2127. CONFIG_ECHO_START();
  2128. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
  2129. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
  2130. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
  2131. #if DISABLED(DISTINCT_E_FACTORS)
  2132. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
  2133. #endif
  2134. SERIAL_EOL();
  2135. #if ENABLED(DISTINCT_E_FACTORS)
  2136. CONFIG_ECHO_START();
  2137. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2138. SERIAL_ECHOPAIR(" M201 T", (int)i);
  2139. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]));
  2140. }
  2141. #endif
  2142. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2143. CONFIG_ECHO_START();
  2144. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.settings.acceleration));
  2145. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.settings.retract_acceleration));
  2146. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.settings.travel_acceleration));
  2147. if (!forReplay) {
  2148. CONFIG_ECHO_START();
  2149. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2150. #if ENABLED(JUNCTION_DEVIATION)
  2151. SERIAL_ECHOPGM(" J<junc_dev>");
  2152. #endif
  2153. #if HAS_CLASSIC_JERK
  2154. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2155. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2156. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2157. #endif
  2158. #endif
  2159. SERIAL_EOL();
  2160. }
  2161. CONFIG_ECHO_START();
  2162. SERIAL_ECHOPAIR(" M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
  2163. SERIAL_ECHOPAIR(" S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
  2164. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
  2165. #if ENABLED(JUNCTION_DEVIATION)
  2166. SERIAL_ECHOPAIR(" J", LINEAR_UNIT(planner.junction_deviation_mm));
  2167. #endif
  2168. #if HAS_CLASSIC_JERK
  2169. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  2170. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  2171. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  2172. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2173. SERIAL_ECHOPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  2174. #endif
  2175. #endif
  2176. SERIAL_EOL();
  2177. #if HAS_M206_COMMAND
  2178. CONFIG_ECHO_HEADING("Home offset:");
  2179. CONFIG_ECHO_START();
  2180. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  2181. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  2182. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  2183. #endif
  2184. #if HAS_HOTEND_OFFSET
  2185. CONFIG_ECHO_HEADING("Hotend offsets:");
  2186. CONFIG_ECHO_START();
  2187. for (uint8_t e = 1; e < HOTENDS; e++) {
  2188. SERIAL_ECHOPAIR(" M218 T", (int)e);
  2189. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  2190. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  2191. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2192. }
  2193. #endif
  2194. /**
  2195. * Bed Leveling
  2196. */
  2197. #if HAS_LEVELING
  2198. #if ENABLED(MESH_BED_LEVELING)
  2199. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2200. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2201. if (!forReplay) {
  2202. CONFIG_ECHO_START();
  2203. ubl.echo_name();
  2204. SERIAL_ECHOLNPGM(":");
  2205. }
  2206. #elif HAS_ABL_OR_UBL
  2207. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2208. #endif
  2209. CONFIG_ECHO_START();
  2210. SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
  2211. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2212. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  2213. #endif
  2214. SERIAL_EOL();
  2215. #if ENABLED(MESH_BED_LEVELING)
  2216. if (leveling_is_valid()) {
  2217. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2218. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2219. CONFIG_ECHO_START();
  2220. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  2221. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  2222. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2223. }
  2224. }
  2225. }
  2226. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2227. if (!forReplay) {
  2228. SERIAL_EOL();
  2229. ubl.report_state();
  2230. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2231. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  2232. SERIAL_ECHOLNPGM(" meshes.\n");
  2233. }
  2234. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2235. // solution needs to be found.
  2236. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2237. if (leveling_is_valid()) {
  2238. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2239. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2240. CONFIG_ECHO_START();
  2241. SERIAL_ECHOPAIR(" G29 W I", (int)px);
  2242. SERIAL_ECHOPAIR(" J", (int)py);
  2243. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(z_values[px][py]), 5);
  2244. }
  2245. }
  2246. }
  2247. #endif
  2248. #endif // HAS_LEVELING
  2249. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2250. CONFIG_ECHO_HEADING("Servo Angles:");
  2251. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2252. switch (i) {
  2253. #if ENABLED(SWITCHING_EXTRUDER)
  2254. case SWITCHING_EXTRUDER_SERVO_NR:
  2255. #if EXTRUDERS > 3
  2256. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2257. #endif
  2258. #elif ENABLED(SWITCHING_NOZZLE)
  2259. case SWITCHING_NOZZLE_SERVO_NR:
  2260. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2261. case Z_PROBE_SERVO_NR:
  2262. #endif
  2263. CONFIG_ECHO_START();
  2264. SERIAL_ECHOPAIR(" M281 P", int(i));
  2265. SERIAL_ECHOPAIR(" L", servo_angles[i][0]);
  2266. SERIAL_ECHOPAIR(" U", servo_angles[i][1]);
  2267. SERIAL_EOL();
  2268. default: break;
  2269. }
  2270. }
  2271. #endif // EDITABLE_SERVO_ANGLES
  2272. #if HAS_SCARA_OFFSET
  2273. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2274. CONFIG_ECHO_START();
  2275. SERIAL_ECHOPAIR(" M665 S", delta_segments_per_second);
  2276. SERIAL_ECHOPAIR(" P", scara_home_offset[A_AXIS]);
  2277. SERIAL_ECHOPAIR(" T", scara_home_offset[B_AXIS]);
  2278. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(scara_home_offset[Z_AXIS]));
  2279. SERIAL_EOL();
  2280. #elif ENABLED(DELTA)
  2281. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2282. CONFIG_ECHO_START();
  2283. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2284. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2285. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2286. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2287. CONFIG_ECHO_START();
  2288. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2289. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  2290. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
  2291. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  2292. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  2293. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2294. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2295. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2296. SERIAL_EOL();
  2297. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2298. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2299. CONFIG_ECHO_START();
  2300. SERIAL_ECHOPGM(" M666");
  2301. #if ENABLED(X_DUAL_ENDSTOPS)
  2302. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2303. #endif
  2304. #if ENABLED(Y_DUAL_ENDSTOPS)
  2305. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2306. #endif
  2307. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2308. SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2309. CONFIG_ECHO_START();
  2310. SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2311. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2312. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2313. #endif
  2314. SERIAL_EOL();
  2315. #endif // [XYZ]_DUAL_ENDSTOPS
  2316. #if HAS_LCD_MENU
  2317. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2318. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2319. CONFIG_ECHO_START();
  2320. SERIAL_ECHOPAIR(" M145 S", (int)i);
  2321. SERIAL_ECHOPAIR(" H", TEMP_UNIT(ui.preheat_hotend_temp[i]));
  2322. SERIAL_ECHOPAIR(" B", TEMP_UNIT(ui.preheat_bed_temp[i]));
  2323. SERIAL_ECHOLNPAIR(" F", int(ui.preheat_fan_speed[i]));
  2324. }
  2325. #endif
  2326. #if HAS_PID_HEATING
  2327. CONFIG_ECHO_HEADING("PID settings:");
  2328. #if ENABLED(PIDTEMP)
  2329. #if HOTENDS > 1
  2330. if (forReplay) {
  2331. HOTEND_LOOP() {
  2332. CONFIG_ECHO_START();
  2333. SERIAL_ECHOPAIR(" M301 E", e);
  2334. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  2335. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  2336. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  2337. #if ENABLED(PID_EXTRUSION_SCALING)
  2338. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2339. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2340. #endif
  2341. SERIAL_EOL();
  2342. }
  2343. }
  2344. else
  2345. #endif // HOTENDS > 1
  2346. // !forReplay || HOTENDS == 1
  2347. {
  2348. CONFIG_ECHO_START();
  2349. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2350. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  2351. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  2352. #if ENABLED(PID_EXTRUSION_SCALING)
  2353. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  2354. SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2355. #endif
  2356. SERIAL_EOL();
  2357. }
  2358. #endif // PIDTEMP
  2359. #if ENABLED(PIDTEMPBED)
  2360. CONFIG_ECHO_START();
  2361. SERIAL_ECHOPAIR(" M304 P", thermalManager.bed_pid.Kp);
  2362. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bed_pid.Ki));
  2363. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bed_pid.Kd));
  2364. SERIAL_EOL();
  2365. #endif
  2366. #endif // PIDTEMP || PIDTEMPBED
  2367. #if HAS_LCD_CONTRAST
  2368. CONFIG_ECHO_HEADING("LCD Contrast:");
  2369. CONFIG_ECHO_START();
  2370. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2371. #endif
  2372. #if ENABLED(POWER_LOSS_RECOVERY)
  2373. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2374. CONFIG_ECHO_START();
  2375. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2376. #endif
  2377. #if ENABLED(FWRETRACT)
  2378. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2379. CONFIG_ECHO_START();
  2380. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
  2381. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
  2382. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
  2383. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(fwretract.settings.retract_zraise));
  2384. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2385. CONFIG_ECHO_START();
  2386. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
  2387. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
  2388. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
  2389. #if ENABLED(FWRETRACT_AUTORETRACT)
  2390. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2391. CONFIG_ECHO_START();
  2392. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2393. #endif // FWRETRACT_AUTORETRACT
  2394. #endif // FWRETRACT
  2395. /**
  2396. * Probe Offset
  2397. */
  2398. #if HAS_BED_PROBE
  2399. if (!forReplay) {
  2400. CONFIG_ECHO_START();
  2401. SERIAL_ECHOPGM("Z-Probe Offset");
  2402. say_units(true);
  2403. }
  2404. CONFIG_ECHO_START();
  2405. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2406. #endif
  2407. /**
  2408. * Bed Skew Correction
  2409. */
  2410. #if ENABLED(SKEW_CORRECTION_GCODE)
  2411. CONFIG_ECHO_HEADING("Skew Factor: ");
  2412. CONFIG_ECHO_START();
  2413. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2414. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2415. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2416. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2417. #else
  2418. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2419. #endif
  2420. #endif
  2421. #if HAS_TRINAMIC
  2422. /**
  2423. * TMC stepper driver current
  2424. */
  2425. CONFIG_ECHO_HEADING("Stepper driver current:");
  2426. CONFIG_ECHO_START();
  2427. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2428. say_M906();
  2429. #endif
  2430. #if AXIS_IS_TMC(X)
  2431. SERIAL_ECHOPAIR(" X", stepperX.getMilliamps());
  2432. #endif
  2433. #if AXIS_IS_TMC(Y)
  2434. SERIAL_ECHOPAIR(" Y", stepperY.getMilliamps());
  2435. #endif
  2436. #if AXIS_IS_TMC(Z)
  2437. SERIAL_ECHOPAIR(" Z", stepperZ.getMilliamps());
  2438. #endif
  2439. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2440. SERIAL_EOL();
  2441. #endif
  2442. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2443. say_M906();
  2444. SERIAL_ECHOPGM(" I1");
  2445. #endif
  2446. #if AXIS_IS_TMC(X2)
  2447. SERIAL_ECHOPAIR(" X", stepperX2.getMilliamps());
  2448. #endif
  2449. #if AXIS_IS_TMC(Y2)
  2450. SERIAL_ECHOPAIR(" Y", stepperY2.getMilliamps());
  2451. #endif
  2452. #if AXIS_IS_TMC(Z2)
  2453. SERIAL_ECHOPAIR(" Z", stepperZ2.getMilliamps());
  2454. #endif
  2455. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2456. SERIAL_EOL();
  2457. #endif
  2458. #if AXIS_IS_TMC(Z3)
  2459. say_M906();
  2460. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2461. #endif
  2462. #if AXIS_IS_TMC(E0)
  2463. say_M906();
  2464. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2465. #endif
  2466. #if AXIS_IS_TMC(E1)
  2467. say_M906();
  2468. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2469. #endif
  2470. #if AXIS_IS_TMC(E2)
  2471. say_M906();
  2472. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2473. #endif
  2474. #if AXIS_IS_TMC(E3)
  2475. say_M906();
  2476. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2477. #endif
  2478. #if AXIS_IS_TMC(E4)
  2479. say_M906();
  2480. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2481. #endif
  2482. #if AXIS_IS_TMC(E5)
  2483. say_M906();
  2484. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2485. #endif
  2486. SERIAL_EOL();
  2487. /**
  2488. * TMC Hybrid Threshold
  2489. */
  2490. #if ENABLED(HYBRID_THRESHOLD)
  2491. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2492. CONFIG_ECHO_START();
  2493. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2494. say_M913();
  2495. #endif
  2496. #if AXIS_HAS_STEALTHCHOP(X)
  2497. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X));
  2498. #endif
  2499. #if AXIS_HAS_STEALTHCHOP(Y)
  2500. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y));
  2501. #endif
  2502. #if AXIS_HAS_STEALTHCHOP(Z)
  2503. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z));
  2504. #endif
  2505. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2506. SERIAL_EOL();
  2507. #endif
  2508. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2509. say_M913();
  2510. SERIAL_ECHOPGM(" I1");
  2511. #endif
  2512. #if AXIS_HAS_STEALTHCHOP(X2)
  2513. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X2));
  2514. #endif
  2515. #if AXIS_HAS_STEALTHCHOP(Y2)
  2516. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y2));
  2517. #endif
  2518. #if AXIS_HAS_STEALTHCHOP(Z2)
  2519. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z2));
  2520. #endif
  2521. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2522. SERIAL_EOL();
  2523. #endif
  2524. #if AXIS_HAS_STEALTHCHOP(Z3)
  2525. say_M913();
  2526. SERIAL_ECHOPGM(" I2");
  2527. SERIAL_ECHOLNPAIR(" Z", TMC_GET_PWMTHRS(Z, Z3));
  2528. #endif
  2529. #if AXIS_HAS_STEALTHCHOP(E0)
  2530. say_M913();
  2531. SERIAL_ECHOLNPAIR(" T0 E", TMC_GET_PWMTHRS(E, E0));
  2532. #endif
  2533. #if AXIS_HAS_STEALTHCHOP(E1)
  2534. say_M913();
  2535. SERIAL_ECHOLNPAIR(" T1 E", TMC_GET_PWMTHRS(E, E1));
  2536. #endif
  2537. #if AXIS_HAS_STEALTHCHOP(E2)
  2538. say_M913();
  2539. SERIAL_ECHOLNPAIR(" T2 E", TMC_GET_PWMTHRS(E, E2));
  2540. #endif
  2541. #if AXIS_HAS_STEALTHCHOP(E3)
  2542. say_M913();
  2543. SERIAL_ECHOLNPAIR(" T3 E", TMC_GET_PWMTHRS(E, E3));
  2544. #endif
  2545. #if AXIS_HAS_STEALTHCHOP(E4)
  2546. say_M913();
  2547. SERIAL_ECHOLNPAIR(" T4 E", TMC_GET_PWMTHRS(E, E4));
  2548. #endif
  2549. #if AXIS_HAS_STEALTHCHOP(E5)
  2550. say_M913();
  2551. SERIAL_ECHOLNPAIR(" T5 E", TMC_GET_PWMTHRS(E, E5));
  2552. #endif
  2553. SERIAL_EOL();
  2554. #endif // HYBRID_THRESHOLD
  2555. /**
  2556. * TMC Sensorless homing thresholds
  2557. */
  2558. #if USE_SENSORLESS
  2559. CONFIG_ECHO_HEADING("TMC2130 StallGuard threshold:");
  2560. CONFIG_ECHO_START();
  2561. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2562. say_M914();
  2563. #if X_SENSORLESS
  2564. SERIAL_ECHOPAIR(" X", stepperX.sgt());
  2565. #endif
  2566. #if Y_SENSORLESS
  2567. SERIAL_ECHOPAIR(" Y", stepperY.sgt());
  2568. #endif
  2569. #if Z_SENSORLESS
  2570. SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
  2571. #endif
  2572. SERIAL_EOL();
  2573. #endif
  2574. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2575. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2576. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2577. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2578. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2579. say_M914();
  2580. SERIAL_ECHOPGM(" I1");
  2581. #if HAS_X2_SENSORLESS
  2582. SERIAL_ECHOPAIR(" X", stepperX2.sgt());
  2583. #endif
  2584. #if HAS_Y2_SENSORLESS
  2585. SERIAL_ECHOPAIR(" Y", stepperY2.sgt());
  2586. #endif
  2587. #if HAS_Z2_SENSORLESS
  2588. SERIAL_ECHOPAIR(" Z", stepperZ2.sgt());
  2589. #endif
  2590. SERIAL_EOL();
  2591. #endif
  2592. #if HAS_Z3_SENSORLESS
  2593. say_M914();
  2594. SERIAL_ECHOPGM(" I2");
  2595. SERIAL_ECHOLNPAIR(" Z", stepperZ3.sgt());
  2596. #endif
  2597. #endif // USE_SENSORLESS
  2598. /**
  2599. * TMC stepping mode
  2600. */
  2601. #if HAS_STEALTHCHOP
  2602. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2603. CONFIG_ECHO_START();
  2604. #if AXIS_HAS_STEALTHCHOP(X)
  2605. const bool chop_x = stepperX.get_stealthChop_status();
  2606. #else
  2607. constexpr bool chop_x = false;
  2608. #endif
  2609. #if AXIS_HAS_STEALTHCHOP(Y)
  2610. const bool chop_y = stepperY.get_stealthChop_status();
  2611. #else
  2612. constexpr bool chop_y = false;
  2613. #endif
  2614. #if AXIS_HAS_STEALTHCHOP(Z)
  2615. const bool chop_z = stepperZ.get_stealthChop_status();
  2616. #else
  2617. constexpr bool chop_z = false;
  2618. #endif
  2619. if (chop_x || chop_y || chop_z) say_M569();
  2620. if (chop_x) SERIAL_ECHOPGM(" X");
  2621. if (chop_y) SERIAL_ECHOPGM(" Y");
  2622. if (chop_z) SERIAL_ECHOPGM(" Z");
  2623. if (chop_x || chop_y || chop_z) SERIAL_EOL();
  2624. #if AXIS_HAS_STEALTHCHOP(X2)
  2625. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2626. #else
  2627. constexpr bool chop_x2 = false;
  2628. #endif
  2629. #if AXIS_HAS_STEALTHCHOP(Y2)
  2630. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2631. #else
  2632. constexpr bool chop_y2 = false;
  2633. #endif
  2634. #if AXIS_HAS_STEALTHCHOP(Z2)
  2635. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2636. #else
  2637. constexpr bool chop_z2 = false;
  2638. #endif
  2639. if (chop_x2 || chop_y2 || chop_z2) say_M569(PSTR("I1"));
  2640. if (chop_x2) SERIAL_ECHOPGM(" X");
  2641. if (chop_y2) SERIAL_ECHOPGM(" Y");
  2642. if (chop_z2) SERIAL_ECHOPGM(" Z");
  2643. if (chop_x2 || chop_y2 || chop_z2) SERIAL_EOL();
  2644. #if AXIS_HAS_STEALTHCHOP(Z3)
  2645. if (stepperZ3.get_stealthChop_status()) { say_M569(PSTR("I2 Z")); }
  2646. #endif
  2647. #if AXIS_HAS_STEALTHCHOP(E0)
  2648. if (stepperE0.get_stealthChop_status()) { say_M569(PSTR("T0 E")); }
  2649. #endif
  2650. #if AXIS_HAS_STEALTHCHOP(E1)
  2651. if (stepperE1.get_stealthChop_status()) { say_M569(PSTR("T1 E")); }
  2652. #endif
  2653. #if AXIS_HAS_STEALTHCHOP(E2)
  2654. if (stepperE2.get_stealthChop_status()) { say_M569(PSTR("T2 E")); }
  2655. #endif
  2656. #if AXIS_HAS_STEALTHCHOP(E3)
  2657. if (stepperE3.get_stealthChop_status()) { say_M569(PSTR("T3 E")); }
  2658. #endif
  2659. #if AXIS_HAS_STEALTHCHOP(E4)
  2660. if (stepperE4.get_stealthChop_status()) { say_M569(PSTR("T4 E")); }
  2661. #endif
  2662. #if AXIS_HAS_STEALTHCHOP(E5)
  2663. if (stepperE5.get_stealthChop_status()) { say_M569(PSTR("T5 E")); }
  2664. #endif
  2665. #endif // HAS_STEALTHCHOP
  2666. #endif // HAS_TRINAMIC
  2667. /**
  2668. * Linear Advance
  2669. */
  2670. #if ENABLED(LIN_ADVANCE)
  2671. CONFIG_ECHO_HEADING("Linear Advance:");
  2672. CONFIG_ECHO_START();
  2673. #if EXTRUDERS < 2
  2674. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  2675. #else
  2676. LOOP_L_N(i, EXTRUDERS) {
  2677. SERIAL_ECHOPAIR(" M900 T", int(i));
  2678. SERIAL_ECHOLNPAIR(" K", planner.extruder_advance_K[i]);
  2679. }
  2680. #endif
  2681. #endif
  2682. #if HAS_MOTOR_CURRENT_PWM
  2683. CONFIG_ECHO_HEADING("Stepper motor currents:");
  2684. CONFIG_ECHO_START();
  2685. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  2686. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  2687. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  2688. SERIAL_EOL();
  2689. #endif
  2690. /**
  2691. * Advanced Pause filament load & unload lengths
  2692. */
  2693. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2694. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  2695. CONFIG_ECHO_START();
  2696. #if EXTRUDERS == 1
  2697. say_M603();
  2698. SERIAL_ECHOPAIR("L", LINEAR_UNIT(fc_settings[0].load_length));
  2699. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[0].unload_length));
  2700. #else
  2701. say_M603();
  2702. SERIAL_ECHOPAIR("T0 L", LINEAR_UNIT(fc_settings[0].load_length));
  2703. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[0].unload_length));
  2704. CONFIG_ECHO_START();
  2705. say_M603();
  2706. SERIAL_ECHOPAIR("T1 L", LINEAR_UNIT(fc_settings[1].load_length));
  2707. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[1].unload_length));
  2708. #if EXTRUDERS > 2
  2709. CONFIG_ECHO_START();
  2710. say_M603();
  2711. SERIAL_ECHOPAIR("T2 L", LINEAR_UNIT(fc_settings[2].load_length));
  2712. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[2].unload_length));
  2713. #if EXTRUDERS > 3
  2714. CONFIG_ECHO_START();
  2715. say_M603();
  2716. SERIAL_ECHOPAIR("T3 L", LINEAR_UNIT(fc_settings[3].load_length));
  2717. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[3].unload_length));
  2718. #if EXTRUDERS > 4
  2719. CONFIG_ECHO_START();
  2720. say_M603();
  2721. SERIAL_ECHOPAIR("T4 L", LINEAR_UNIT(fc_settings[4].load_length));
  2722. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[4].unload_length));
  2723. #if EXTRUDERS > 5
  2724. CONFIG_ECHO_START();
  2725. say_M603();
  2726. SERIAL_ECHOPAIR("T5 L", LINEAR_UNIT(fc_settings[5].load_length));
  2727. SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(fc_settings[5].unload_length));
  2728. #endif // EXTRUDERS > 5
  2729. #endif // EXTRUDERS > 4
  2730. #endif // EXTRUDERS > 3
  2731. #endif // EXTRUDERS > 2
  2732. #endif // EXTRUDERS == 1
  2733. #endif // ADVANCED_PAUSE_FEATURE
  2734. #if EXTRUDERS > 1
  2735. CONFIG_ECHO_HEADING("Tool-changing:");
  2736. CONFIG_ECHO_START();
  2737. M217_report(true);
  2738. #endif
  2739. }
  2740. #endif // !DISABLE_M503
  2741. #pragma pack(pop)