My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

temperature.cpp 48KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  60. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  61. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  62. #ifdef THERMAL_PROTECTION_HOTENDS
  63. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  64. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  65. #endif
  66. #ifdef THERMAL_PROTECTION_BED
  67. static TRState thermal_runaway_bed_state_machine = TRReset;
  68. static millis_t thermal_runaway_bed_timer;
  69. #endif
  70. #endif
  71. //===========================================================================
  72. //============================ private variables ============================
  73. //===========================================================================
  74. static volatile bool temp_meas_ready = false;
  75. #ifdef PIDTEMP
  76. //static cannot be external:
  77. static float temp_iState[EXTRUDERS] = { 0 };
  78. static float temp_dState[EXTRUDERS] = { 0 };
  79. static float pTerm[EXTRUDERS];
  80. static float iTerm[EXTRUDERS];
  81. static float dTerm[EXTRUDERS];
  82. //int output;
  83. static float pid_error[EXTRUDERS];
  84. static float temp_iState_min[EXTRUDERS];
  85. static float temp_iState_max[EXTRUDERS];
  86. static bool pid_reset[EXTRUDERS];
  87. #endif //PIDTEMP
  88. #ifdef PIDTEMPBED
  89. //static cannot be external:
  90. static float temp_iState_bed = { 0 };
  91. static float temp_dState_bed = { 0 };
  92. static float pTerm_bed;
  93. static float iTerm_bed;
  94. static float dTerm_bed;
  95. //int output;
  96. static float pid_error_bed;
  97. static float temp_iState_min_bed;
  98. static float temp_iState_max_bed;
  99. #else //PIDTEMPBED
  100. static millis_t next_bed_check_ms;
  101. #endif //PIDTEMPBED
  102. static unsigned char soft_pwm[EXTRUDERS];
  103. #ifdef FAN_SOFT_PWM
  104. static unsigned char soft_pwm_fan;
  105. #endif
  106. #if HAS_AUTO_FAN
  107. static millis_t next_auto_fan_check_ms;
  108. #endif
  109. #ifdef PIDTEMP
  110. #ifdef PID_PARAMS_PER_EXTRUDER
  111. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  112. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  113. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  114. #ifdef PID_ADD_EXTRUSION_RATE
  115. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  116. #endif // PID_ADD_EXTRUSION_RATE
  117. #else //PID_PARAMS_PER_EXTRUDER
  118. float Kp = DEFAULT_Kp;
  119. float Ki = DEFAULT_Ki * PID_dT;
  120. float Kd = DEFAULT_Kd / PID_dT;
  121. #ifdef PID_ADD_EXTRUSION_RATE
  122. float Kc = DEFAULT_Kc;
  123. #endif // PID_ADD_EXTRUSION_RATE
  124. #endif // PID_PARAMS_PER_EXTRUDER
  125. #endif //PIDTEMP
  126. // Init min and max temp with extreme values to prevent false errors during startup
  127. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  128. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  129. static int minttemp[EXTRUDERS] = { 0 };
  130. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  131. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  132. #ifdef BED_MAXTEMP
  133. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  134. #endif
  135. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  136. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  137. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  138. #else
  139. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  140. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  141. #endif
  142. static float analog2temp(int raw, uint8_t e);
  143. static float analog2tempBed(int raw);
  144. static void updateTemperaturesFromRawValues();
  145. #ifdef THERMAL_PROTECTION_HOTENDS
  146. int watch_target_temp[EXTRUDERS] = { 0 };
  147. millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
  148. #endif
  149. #ifndef SOFT_PWM_SCALE
  150. #define SOFT_PWM_SCALE 0
  151. #endif
  152. #ifdef FILAMENT_SENSOR
  153. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  154. #endif
  155. #ifdef HEATER_0_USES_MAX6675
  156. static int read_max6675();
  157. #endif
  158. //===========================================================================
  159. //================================ Functions ================================
  160. //===========================================================================
  161. void PID_autotune(float temp, int extruder, int ncycles)
  162. {
  163. float input = 0.0;
  164. int cycles = 0;
  165. bool heating = true;
  166. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  167. long t_high = 0, t_low = 0;
  168. long bias, d;
  169. float Ku, Tu;
  170. float Kp, Ki, Kd;
  171. float max = 0, min = 10000;
  172. #if HAS_AUTO_FAN
  173. millis_t next_auto_fan_check_ms = temp_ms + 2500;
  174. #endif
  175. if (extruder >= EXTRUDERS
  176. #if !HAS_TEMP_BED
  177. || extruder < 0
  178. #endif
  179. ) {
  180. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  181. return;
  182. }
  183. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  184. disable_all_heaters(); // switch off all heaters.
  185. if (extruder < 0)
  186. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  187. else
  188. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  189. // PID Tuning loop
  190. for (;;) {
  191. millis_t ms = millis();
  192. if (temp_meas_ready) { // temp sample ready
  193. updateTemperaturesFromRawValues();
  194. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  195. max = max(max, input);
  196. min = min(min, input);
  197. #if HAS_AUTO_FAN
  198. if (ms > next_auto_fan_check_ms) {
  199. checkExtruderAutoFans();
  200. next_auto_fan_check_ms = ms + 2500;
  201. }
  202. #endif
  203. if (heating && input > temp) {
  204. if (ms > t2 + 5000) {
  205. heating = false;
  206. if (extruder < 0)
  207. soft_pwm_bed = (bias - d) >> 1;
  208. else
  209. soft_pwm[extruder] = (bias - d) >> 1;
  210. t1 = ms;
  211. t_high = t1 - t2;
  212. max = temp;
  213. }
  214. }
  215. if (!heating && input < temp) {
  216. if (ms > t1 + 5000) {
  217. heating = true;
  218. t2 = ms;
  219. t_low = t2 - t1;
  220. if (cycles > 0) {
  221. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  222. bias += (d*(t_high - t_low))/(t_low + t_high);
  223. bias = constrain(bias, 20, max_pow - 20);
  224. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  225. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  226. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  227. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  228. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  229. if (cycles > 2) {
  230. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  231. Tu = ((float)(t_low + t_high) / 1000.0);
  232. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  233. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  234. Kp = 0.6 * Ku;
  235. Ki = 2 * Kp / Tu;
  236. Kd = Kp * Tu / 8;
  237. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  238. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  239. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  240. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  241. /*
  242. Kp = 0.33*Ku;
  243. Ki = Kp/Tu;
  244. Kd = Kp*Tu/3;
  245. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  246. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  247. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  248. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  249. Kp = 0.2*Ku;
  250. Ki = 2*Kp/Tu;
  251. Kd = Kp*Tu/3;
  252. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  253. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  254. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  255. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  256. */
  257. }
  258. }
  259. if (extruder < 0)
  260. soft_pwm_bed = (bias + d) >> 1;
  261. else
  262. soft_pwm[extruder] = (bias + d) >> 1;
  263. cycles++;
  264. min = temp;
  265. }
  266. }
  267. }
  268. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  269. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  270. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  271. return;
  272. }
  273. // Every 2 seconds...
  274. if (ms > temp_ms + 2000) {
  275. int p;
  276. if (extruder < 0) {
  277. p = soft_pwm_bed;
  278. SERIAL_PROTOCOLPGM(MSG_OK_B);
  279. }
  280. else {
  281. p = soft_pwm[extruder];
  282. SERIAL_PROTOCOLPGM(MSG_OK_T);
  283. }
  284. SERIAL_PROTOCOL(input);
  285. SERIAL_PROTOCOLPGM(MSG_AT);
  286. SERIAL_PROTOCOLLN(p);
  287. temp_ms = ms;
  288. } // every 2 seconds
  289. // Over 2 minutes?
  290. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  291. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  292. return;
  293. }
  294. if (cycles > ncycles) {
  295. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  296. const char *estring = extruder < 0 ? "bed" : "";
  297. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
  298. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
  299. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
  300. return;
  301. }
  302. lcd_update();
  303. }
  304. }
  305. void updatePID() {
  306. #ifdef PIDTEMP
  307. for (int e = 0; e < EXTRUDERS; e++) {
  308. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  309. }
  310. #endif
  311. #ifdef PIDTEMPBED
  312. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  313. #endif
  314. }
  315. int getHeaterPower(int heater) {
  316. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  317. }
  318. #if HAS_AUTO_FAN
  319. void setExtruderAutoFanState(int pin, bool state)
  320. {
  321. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  322. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  323. pinMode(pin, OUTPUT);
  324. digitalWrite(pin, newFanSpeed);
  325. analogWrite(pin, newFanSpeed);
  326. }
  327. void checkExtruderAutoFans()
  328. {
  329. uint8_t fanState = 0;
  330. // which fan pins need to be turned on?
  331. #if HAS_AUTO_FAN_0
  332. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  333. fanState |= 1;
  334. #endif
  335. #if HAS_AUTO_FAN_1
  336. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  337. {
  338. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  339. fanState |= 1;
  340. else
  341. fanState |= 2;
  342. }
  343. #endif
  344. #if HAS_AUTO_FAN_2
  345. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  346. {
  347. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  348. fanState |= 1;
  349. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  350. fanState |= 2;
  351. else
  352. fanState |= 4;
  353. }
  354. #endif
  355. #if HAS_AUTO_FAN_3
  356. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  357. {
  358. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  359. fanState |= 1;
  360. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  361. fanState |= 2;
  362. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  363. fanState |= 4;
  364. else
  365. fanState |= 8;
  366. }
  367. #endif
  368. // update extruder auto fan states
  369. #if HAS_AUTO_FAN_0
  370. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  371. #endif
  372. #if HAS_AUTO_FAN_1
  373. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  374. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  375. #endif
  376. #if HAS_AUTO_FAN_2
  377. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  378. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  379. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  380. #endif
  381. #if HAS_AUTO_FAN_3
  382. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  383. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  384. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  385. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  386. #endif
  387. }
  388. #endif // any extruder auto fan pins set
  389. //
  390. // Temperature Error Handlers
  391. //
  392. inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
  393. if (IsRunning()) {
  394. SERIAL_ERROR_START;
  395. serialprintPGM(serial_msg);
  396. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  397. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  398. }
  399. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  400. kill(lcd_msg);
  401. #endif
  402. }
  403. void max_temp_error(uint8_t e) {
  404. disable_all_heaters();
  405. _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  406. }
  407. void min_temp_error(uint8_t e) {
  408. disable_all_heaters();
  409. _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  410. }
  411. void bed_max_temp_error(void) {
  412. #if HAS_HEATER_BED
  413. WRITE_HEATER_BED(0);
  414. #endif
  415. _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
  416. }
  417. float get_pid_output(int e) {
  418. float pid_output;
  419. #ifdef PIDTEMP
  420. #ifndef PID_OPENLOOP
  421. pid_error[e] = target_temperature[e] - current_temperature[e];
  422. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  423. pid_output = BANG_MAX;
  424. pid_reset[e] = true;
  425. }
  426. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  427. pid_output = 0;
  428. pid_reset[e] = true;
  429. }
  430. else {
  431. if (pid_reset[e]) {
  432. temp_iState[e] = 0.0;
  433. pid_reset[e] = false;
  434. }
  435. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  436. temp_iState[e] += pid_error[e];
  437. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  438. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  439. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  440. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  441. if (pid_output > PID_MAX) {
  442. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  443. pid_output = PID_MAX;
  444. }
  445. else if (pid_output < 0) {
  446. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  447. pid_output = 0;
  448. }
  449. }
  450. temp_dState[e] = current_temperature[e];
  451. #else
  452. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  453. #endif //PID_OPENLOOP
  454. #ifdef PID_DEBUG
  455. SERIAL_ECHO_START;
  456. SERIAL_ECHO(MSG_PID_DEBUG);
  457. SERIAL_ECHO(e);
  458. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  459. SERIAL_ECHO(current_temperature[e]);
  460. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  461. SERIAL_ECHO(pid_output);
  462. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  463. SERIAL_ECHO(pTerm[e]);
  464. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  465. SERIAL_ECHO(iTerm[e]);
  466. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  467. SERIAL_ECHOLN(dTerm[e]);
  468. #endif //PID_DEBUG
  469. #else /* PID off */
  470. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  471. #endif
  472. return pid_output;
  473. }
  474. #ifdef PIDTEMPBED
  475. float get_pid_output_bed() {
  476. float pid_output;
  477. #ifndef PID_OPENLOOP
  478. pid_error_bed = target_temperature_bed - current_temperature_bed;
  479. pTerm_bed = bedKp * pid_error_bed;
  480. temp_iState_bed += pid_error_bed;
  481. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  482. iTerm_bed = bedKi * temp_iState_bed;
  483. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  484. temp_dState_bed = current_temperature_bed;
  485. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  486. if (pid_output > MAX_BED_POWER) {
  487. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  488. pid_output = MAX_BED_POWER;
  489. }
  490. else if (pid_output < 0) {
  491. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  492. pid_output = 0;
  493. }
  494. #else
  495. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  496. #endif // PID_OPENLOOP
  497. #ifdef PID_BED_DEBUG
  498. SERIAL_ECHO_START;
  499. SERIAL_ECHO(" PID_BED_DEBUG ");
  500. SERIAL_ECHO(": Input ");
  501. SERIAL_ECHO(current_temperature_bed);
  502. SERIAL_ECHO(" Output ");
  503. SERIAL_ECHO(pid_output);
  504. SERIAL_ECHO(" pTerm ");
  505. SERIAL_ECHO(pTerm_bed);
  506. SERIAL_ECHO(" iTerm ");
  507. SERIAL_ECHO(iTerm_bed);
  508. SERIAL_ECHO(" dTerm ");
  509. SERIAL_ECHOLN(dTerm_bed);
  510. #endif //PID_BED_DEBUG
  511. return pid_output;
  512. }
  513. #endif
  514. /**
  515. * Manage heating activities for extruder hot-ends and a heated bed
  516. * - Acquire updated temperature readings
  517. * - Invoke thermal runaway protection
  518. * - Manage extruder auto-fan
  519. * - Apply filament width to the extrusion rate (may move)
  520. * - Update the heated bed PID output value
  521. */
  522. void manage_heater() {
  523. if (!temp_meas_ready) return;
  524. updateTemperaturesFromRawValues();
  525. #ifdef HEATER_0_USES_MAX6675
  526. float ct = current_temperature[0];
  527. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  528. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  529. #endif
  530. #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  531. millis_t ms = millis();
  532. #endif
  533. // Loop through all extruders
  534. for (int e = 0; e < EXTRUDERS; e++) {
  535. #ifdef THERMAL_PROTECTION_HOTENDS
  536. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  537. #endif
  538. float pid_output = get_pid_output(e);
  539. // Check if temperature is within the correct range
  540. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  541. // Check if the temperature is failing to increase
  542. #ifdef THERMAL_PROTECTION_HOTENDS
  543. // Is it time to check this extruder's heater?
  544. if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
  545. // Has it failed to increase enough?
  546. if (degHotend(e) < watch_target_temp[e]) {
  547. // Stop!
  548. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  549. }
  550. else {
  551. // Start again if the target is still far off
  552. start_watching_heater(e);
  553. }
  554. }
  555. #endif // THERMAL_PROTECTION_HOTENDS
  556. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  557. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  558. disable_all_heaters();
  559. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  560. }
  561. #endif
  562. } // Extruders Loop
  563. #if HAS_AUTO_FAN
  564. if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
  565. checkExtruderAutoFans();
  566. next_auto_fan_check_ms = ms + 2500;
  567. }
  568. #endif
  569. // Control the extruder rate based on the width sensor
  570. #ifdef FILAMENT_SENSOR
  571. if (filament_sensor) {
  572. meas_shift_index = delay_index1 - meas_delay_cm;
  573. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  574. // Get the delayed info and add 100 to reconstitute to a percent of
  575. // the nominal filament diameter then square it to get an area
  576. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  577. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  578. if (vm < 0.01) vm = 0.01;
  579. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  580. }
  581. #endif //FILAMENT_SENSOR
  582. #ifndef PIDTEMPBED
  583. if (ms < next_bed_check_ms) return;
  584. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  585. #endif
  586. #if TEMP_SENSOR_BED != 0
  587. #ifdef THERMAL_PROTECTION_BED
  588. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  589. #endif
  590. #ifdef PIDTEMPBED
  591. float pid_output = get_pid_output_bed();
  592. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  593. #elif defined(BED_LIMIT_SWITCHING)
  594. // Check if temperature is within the correct band
  595. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  596. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  597. soft_pwm_bed = 0;
  598. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  599. soft_pwm_bed = MAX_BED_POWER >> 1;
  600. }
  601. else {
  602. soft_pwm_bed = 0;
  603. WRITE_HEATER_BED(LOW);
  604. }
  605. #else // BED_LIMIT_SWITCHING
  606. // Check if temperature is within the correct range
  607. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  608. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  609. }
  610. else {
  611. soft_pwm_bed = 0;
  612. WRITE_HEATER_BED(LOW);
  613. }
  614. #endif
  615. #endif //TEMP_SENSOR_BED != 0
  616. }
  617. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  618. // Derived from RepRap FiveD extruder::getTemperature()
  619. // For hot end temperature measurement.
  620. static float analog2temp(int raw, uint8_t e) {
  621. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  622. if (e > EXTRUDERS)
  623. #else
  624. if (e >= EXTRUDERS)
  625. #endif
  626. {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERROR((int)e);
  629. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  630. kill(PSTR(MSG_KILLED));
  631. return 0.0;
  632. }
  633. #ifdef HEATER_0_USES_MAX6675
  634. if (e == 0) return 0.25 * raw;
  635. #endif
  636. if (heater_ttbl_map[e] != NULL) {
  637. float celsius = 0;
  638. uint8_t i;
  639. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  640. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  641. if (PGM_RD_W((*tt)[i][0]) > raw) {
  642. celsius = PGM_RD_W((*tt)[i-1][1]) +
  643. (raw - PGM_RD_W((*tt)[i-1][0])) *
  644. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  645. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  646. break;
  647. }
  648. }
  649. // Overflow: Set to last value in the table
  650. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  651. return celsius;
  652. }
  653. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  654. }
  655. // Derived from RepRap FiveD extruder::getTemperature()
  656. // For bed temperature measurement.
  657. static float analog2tempBed(int raw) {
  658. #ifdef BED_USES_THERMISTOR
  659. float celsius = 0;
  660. byte i;
  661. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  662. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  663. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  664. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  665. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  666. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  667. break;
  668. }
  669. }
  670. // Overflow: Set to last value in the table
  671. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  672. return celsius;
  673. #elif defined BED_USES_AD595
  674. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  675. #else
  676. return 0;
  677. #endif
  678. }
  679. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  680. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  681. static void updateTemperaturesFromRawValues() {
  682. #ifdef HEATER_0_USES_MAX6675
  683. current_temperature_raw[0] = read_max6675();
  684. #endif
  685. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  686. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  687. }
  688. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  689. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  690. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  691. #endif
  692. #if HAS_FILAMENT_SENSOR
  693. filament_width_meas = analog2widthFil();
  694. #endif
  695. //Reset the watchdog after we know we have a temperature measurement.
  696. watchdog_reset();
  697. CRITICAL_SECTION_START;
  698. temp_meas_ready = false;
  699. CRITICAL_SECTION_END;
  700. }
  701. #ifdef FILAMENT_SENSOR
  702. // Convert raw Filament Width to millimeters
  703. float analog2widthFil() {
  704. return current_raw_filwidth / 16383.0 * 5.0;
  705. //return current_raw_filwidth;
  706. }
  707. // Convert raw Filament Width to a ratio
  708. int widthFil_to_size_ratio() {
  709. float temp = filament_width_meas;
  710. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  711. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  712. return filament_width_nominal / temp * 100;
  713. }
  714. #endif
  715. /**
  716. * Initialize the temperature manager
  717. * The manager is implemented by periodic calls to manage_heater()
  718. */
  719. void tp_init() {
  720. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  721. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  722. MCUCR=BIT(JTD);
  723. MCUCR=BIT(JTD);
  724. #endif
  725. // Finish init of mult extruder arrays
  726. for (int e = 0; e < EXTRUDERS; e++) {
  727. // populate with the first value
  728. maxttemp[e] = maxttemp[0];
  729. #ifdef PIDTEMP
  730. temp_iState_min[e] = 0.0;
  731. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  732. #endif //PIDTEMP
  733. #ifdef PIDTEMPBED
  734. temp_iState_min_bed = 0.0;
  735. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  736. #endif //PIDTEMPBED
  737. }
  738. #if HAS_HEATER_0
  739. SET_OUTPUT(HEATER_0_PIN);
  740. #endif
  741. #if HAS_HEATER_1
  742. SET_OUTPUT(HEATER_1_PIN);
  743. #endif
  744. #if HAS_HEATER_2
  745. SET_OUTPUT(HEATER_2_PIN);
  746. #endif
  747. #if HAS_HEATER_3
  748. SET_OUTPUT(HEATER_3_PIN);
  749. #endif
  750. #if HAS_HEATER_BED
  751. SET_OUTPUT(HEATER_BED_PIN);
  752. #endif
  753. #if HAS_FAN
  754. SET_OUTPUT(FAN_PIN);
  755. #ifdef FAST_PWM_FAN
  756. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  757. #endif
  758. #ifdef FAN_SOFT_PWM
  759. soft_pwm_fan = fanSpeedSoftPwm / 2;
  760. #endif
  761. #endif
  762. #ifdef HEATER_0_USES_MAX6675
  763. #ifndef SDSUPPORT
  764. OUT_WRITE(SCK_PIN, LOW);
  765. OUT_WRITE(MOSI_PIN, HIGH);
  766. OUT_WRITE(MISO_PIN, HIGH);
  767. #else
  768. pinMode(SS_PIN, OUTPUT);
  769. digitalWrite(SS_PIN, HIGH);
  770. #endif
  771. OUT_WRITE(MAX6675_SS,HIGH);
  772. #endif //HEATER_0_USES_MAX6675
  773. #ifdef DIDR2
  774. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  775. #else
  776. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  777. #endif
  778. // Set analog inputs
  779. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  780. DIDR0 = 0;
  781. #ifdef DIDR2
  782. DIDR2 = 0;
  783. #endif
  784. #if HAS_TEMP_0
  785. ANALOG_SELECT(TEMP_0_PIN);
  786. #endif
  787. #if HAS_TEMP_1
  788. ANALOG_SELECT(TEMP_1_PIN);
  789. #endif
  790. #if HAS_TEMP_2
  791. ANALOG_SELECT(TEMP_2_PIN);
  792. #endif
  793. #if HAS_TEMP_3
  794. ANALOG_SELECT(TEMP_3_PIN);
  795. #endif
  796. #if HAS_TEMP_BED
  797. ANALOG_SELECT(TEMP_BED_PIN);
  798. #endif
  799. #if HAS_FILAMENT_SENSOR
  800. ANALOG_SELECT(FILWIDTH_PIN);
  801. #endif
  802. // Use timer0 for temperature measurement
  803. // Interleave temperature interrupt with millies interrupt
  804. OCR0B = 128;
  805. TIMSK0 |= BIT(OCIE0B);
  806. // Wait for temperature measurement to settle
  807. delay(250);
  808. #define TEMP_MIN_ROUTINE(NR) \
  809. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  810. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  811. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  812. minttemp_raw[NR] += OVERSAMPLENR; \
  813. else \
  814. minttemp_raw[NR] -= OVERSAMPLENR; \
  815. }
  816. #define TEMP_MAX_ROUTINE(NR) \
  817. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  818. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  819. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  820. maxttemp_raw[NR] -= OVERSAMPLENR; \
  821. else \
  822. maxttemp_raw[NR] += OVERSAMPLENR; \
  823. }
  824. #ifdef HEATER_0_MINTEMP
  825. TEMP_MIN_ROUTINE(0);
  826. #endif
  827. #ifdef HEATER_0_MAXTEMP
  828. TEMP_MAX_ROUTINE(0);
  829. #endif
  830. #if EXTRUDERS > 1
  831. #ifdef HEATER_1_MINTEMP
  832. TEMP_MIN_ROUTINE(1);
  833. #endif
  834. #ifdef HEATER_1_MAXTEMP
  835. TEMP_MAX_ROUTINE(1);
  836. #endif
  837. #if EXTRUDERS > 2
  838. #ifdef HEATER_2_MINTEMP
  839. TEMP_MIN_ROUTINE(2);
  840. #endif
  841. #ifdef HEATER_2_MAXTEMP
  842. TEMP_MAX_ROUTINE(2);
  843. #endif
  844. #if EXTRUDERS > 3
  845. #ifdef HEATER_3_MINTEMP
  846. TEMP_MIN_ROUTINE(3);
  847. #endif
  848. #ifdef HEATER_3_MAXTEMP
  849. TEMP_MAX_ROUTINE(3);
  850. #endif
  851. #endif // EXTRUDERS > 3
  852. #endif // EXTRUDERS > 2
  853. #endif // EXTRUDERS > 1
  854. #ifdef BED_MINTEMP
  855. /* No bed MINTEMP error implemented?!? */ /*
  856. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  857. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  858. bed_minttemp_raw += OVERSAMPLENR;
  859. #else
  860. bed_minttemp_raw -= OVERSAMPLENR;
  861. #endif
  862. }
  863. */
  864. #endif //BED_MINTEMP
  865. #ifdef BED_MAXTEMP
  866. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  867. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  868. bed_maxttemp_raw -= OVERSAMPLENR;
  869. #else
  870. bed_maxttemp_raw += OVERSAMPLENR;
  871. #endif
  872. }
  873. #endif //BED_MAXTEMP
  874. }
  875. #ifdef THERMAL_PROTECTION_HOTENDS
  876. /**
  877. * Start Heating Sanity Check for hotends that are below
  878. * their target temperature by a configurable margin.
  879. * This is called when the temperature is set. (M104, M109)
  880. */
  881. void start_watching_heater(int e) {
  882. millis_t ms = millis() + WATCH_TEMP_PERIOD * 1000;
  883. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  884. watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
  885. watch_heater_next_ms[e] = ms;
  886. }
  887. else
  888. watch_heater_next_ms[e] = 0;
  889. }
  890. #endif
  891. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  892. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  893. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  894. /*
  895. SERIAL_ECHO_START;
  896. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  897. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  898. SERIAL_ECHOPGM(" ; State:");
  899. SERIAL_ECHOPGM(*state);
  900. SERIAL_ECHOPGM(" ; Timer:");
  901. SERIAL_ECHOPGM(*timer);
  902. SERIAL_ECHOPGM(" ; Temperature:");
  903. SERIAL_ECHOPGM(temperature);
  904. SERIAL_ECHOPGM(" ; Target Temp:");
  905. SERIAL_ECHOPGM(target_temperature);
  906. SERIAL_EOL;
  907. */
  908. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  909. // If the target temperature changes, restart
  910. if (tr_target_temperature[heater_index] != target_temperature)
  911. *state = TRReset;
  912. switch (*state) {
  913. case TRReset:
  914. *timer = 0;
  915. *state = TRInactive;
  916. break;
  917. // Inactive state waits for a target temperature to be set
  918. case TRInactive:
  919. if (target_temperature > 0) {
  920. tr_target_temperature[heater_index] = target_temperature;
  921. *state = TRFirstHeating;
  922. }
  923. break;
  924. // When first heating, wait for the temperature to be reached then go to Stable state
  925. case TRFirstHeating:
  926. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  927. break;
  928. // While the temperature is stable watch for a bad temperature
  929. case TRStable:
  930. // If the temperature is over the target (-hysteresis) restart the timer
  931. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  932. *timer = millis();
  933. // If the timer goes too long without a reset, trigger shutdown
  934. else if (millis() > *timer + period_seconds * 1000UL)
  935. *state = TRRunaway;
  936. break;
  937. case TRRunaway:
  938. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  939. }
  940. }
  941. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  942. void disable_all_heaters() {
  943. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  944. setTargetBed(0);
  945. #define DISABLE_HEATER(NR) { \
  946. target_temperature[NR] = 0; \
  947. soft_pwm[NR] = 0; \
  948. WRITE_HEATER_ ## NR (LOW); \
  949. }
  950. #if HAS_TEMP_0
  951. target_temperature[0] = 0;
  952. soft_pwm[0] = 0;
  953. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  954. #endif
  955. #if EXTRUDERS > 1 && HAS_TEMP_1
  956. DISABLE_HEATER(1);
  957. #endif
  958. #if EXTRUDERS > 2 && HAS_TEMP_2
  959. DISABLE_HEATER(2);
  960. #endif
  961. #if EXTRUDERS > 3 && HAS_TEMP_3
  962. DISABLE_HEATER(3);
  963. #endif
  964. #if HAS_TEMP_BED
  965. target_temperature_bed = 0;
  966. soft_pwm_bed = 0;
  967. #if HAS_HEATER_BED
  968. WRITE_HEATER_BED(LOW);
  969. #endif
  970. #endif
  971. }
  972. #ifdef HEATER_0_USES_MAX6675
  973. #define MAX6675_HEAT_INTERVAL 250u
  974. static millis_t next_max6675_ms = 0;
  975. int max6675_temp = 2000;
  976. static int read_max6675() {
  977. millis_t ms = millis();
  978. if (ms < next_max6675_ms)
  979. return max6675_temp;
  980. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  981. max6675_temp = 0;
  982. #ifdef PRR
  983. PRR &= ~BIT(PRSPI);
  984. #elif defined(PRR0)
  985. PRR0 &= ~BIT(PRSPI);
  986. #endif
  987. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  988. // enable TT_MAX6675
  989. WRITE(MAX6675_SS, 0);
  990. // ensure 100ns delay - a bit extra is fine
  991. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  992. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  993. // read MSB
  994. SPDR = 0;
  995. for (;(SPSR & BIT(SPIF)) == 0;);
  996. max6675_temp = SPDR;
  997. max6675_temp <<= 8;
  998. // read LSB
  999. SPDR = 0;
  1000. for (;(SPSR & BIT(SPIF)) == 0;);
  1001. max6675_temp |= SPDR;
  1002. // disable TT_MAX6675
  1003. WRITE(MAX6675_SS, 1);
  1004. if (max6675_temp & 4) {
  1005. // thermocouple open
  1006. max6675_temp = 4000;
  1007. }
  1008. else {
  1009. max6675_temp = max6675_temp >> 3;
  1010. }
  1011. return max6675_temp;
  1012. }
  1013. #endif //HEATER_0_USES_MAX6675
  1014. /**
  1015. * Stages in the ISR loop
  1016. */
  1017. enum TempState {
  1018. PrepareTemp_0,
  1019. MeasureTemp_0,
  1020. PrepareTemp_BED,
  1021. MeasureTemp_BED,
  1022. PrepareTemp_1,
  1023. MeasureTemp_1,
  1024. PrepareTemp_2,
  1025. MeasureTemp_2,
  1026. PrepareTemp_3,
  1027. MeasureTemp_3,
  1028. Prepare_FILWIDTH,
  1029. Measure_FILWIDTH,
  1030. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1031. };
  1032. static unsigned long raw_temp_value[4] = { 0 };
  1033. static unsigned long raw_temp_bed_value = 0;
  1034. static void set_current_temp_raw() {
  1035. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1036. current_temperature_raw[0] = raw_temp_value[0];
  1037. #endif
  1038. #if HAS_TEMP_1
  1039. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1040. redundant_temperature_raw = raw_temp_value[1];
  1041. #else
  1042. current_temperature_raw[1] = raw_temp_value[1];
  1043. #endif
  1044. #if HAS_TEMP_2
  1045. current_temperature_raw[2] = raw_temp_value[2];
  1046. #if HAS_TEMP_3
  1047. current_temperature_raw[3] = raw_temp_value[3];
  1048. #endif
  1049. #endif
  1050. #endif
  1051. current_temperature_bed_raw = raw_temp_bed_value;
  1052. temp_meas_ready = true;
  1053. }
  1054. /**
  1055. * Timer 0 is shared with millies
  1056. * - Manage PWM to all the heaters and fan
  1057. * - Update the raw temperature values
  1058. * - Check new temperature values for MIN/MAX errors
  1059. * - Step the babysteps value for each axis towards 0
  1060. */
  1061. ISR(TIMER0_COMPB_vect) {
  1062. static unsigned char temp_count = 0;
  1063. static TempState temp_state = StartupDelay;
  1064. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1065. // Static members for each heater
  1066. #ifdef SLOW_PWM_HEATERS
  1067. static unsigned char slow_pwm_count = 0;
  1068. #define ISR_STATICS(n) \
  1069. static unsigned char soft_pwm_ ## n; \
  1070. static unsigned char state_heater_ ## n = 0; \
  1071. static unsigned char state_timer_heater_ ## n = 0
  1072. #else
  1073. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1074. #endif
  1075. // Statics per heater
  1076. ISR_STATICS(0);
  1077. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1078. ISR_STATICS(1);
  1079. #if EXTRUDERS > 2
  1080. ISR_STATICS(2);
  1081. #if EXTRUDERS > 3
  1082. ISR_STATICS(3);
  1083. #endif
  1084. #endif
  1085. #endif
  1086. #if HAS_HEATER_BED
  1087. ISR_STATICS(BED);
  1088. #endif
  1089. #if HAS_FILAMENT_SENSOR
  1090. static unsigned long raw_filwidth_value = 0;
  1091. #endif
  1092. #ifndef SLOW_PWM_HEATERS
  1093. /**
  1094. * standard PWM modulation
  1095. */
  1096. if (pwm_count == 0) {
  1097. soft_pwm_0 = soft_pwm[0];
  1098. if (soft_pwm_0 > 0) {
  1099. WRITE_HEATER_0(1);
  1100. }
  1101. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1102. #if EXTRUDERS > 1
  1103. soft_pwm_1 = soft_pwm[1];
  1104. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1105. #if EXTRUDERS > 2
  1106. soft_pwm_2 = soft_pwm[2];
  1107. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1108. #if EXTRUDERS > 3
  1109. soft_pwm_3 = soft_pwm[3];
  1110. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1111. #endif
  1112. #endif
  1113. #endif
  1114. #if HAS_HEATER_BED
  1115. soft_pwm_BED = soft_pwm_bed;
  1116. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1117. #endif
  1118. #ifdef FAN_SOFT_PWM
  1119. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1120. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1121. #endif
  1122. }
  1123. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1124. #if EXTRUDERS > 1
  1125. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1126. #if EXTRUDERS > 2
  1127. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1128. #if EXTRUDERS > 3
  1129. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1130. #endif
  1131. #endif
  1132. #endif
  1133. #if HAS_HEATER_BED
  1134. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1135. #endif
  1136. #ifdef FAN_SOFT_PWM
  1137. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1138. #endif
  1139. pwm_count += BIT(SOFT_PWM_SCALE);
  1140. pwm_count &= 0x7f;
  1141. #else // SLOW_PWM_HEATERS
  1142. /*
  1143. * SLOW PWM HEATERS
  1144. *
  1145. * for heaters drived by relay
  1146. */
  1147. #ifndef MIN_STATE_TIME
  1148. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1149. #endif
  1150. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1151. #define _SLOW_PWM_ROUTINE(NR, src) \
  1152. soft_pwm_ ## NR = src; \
  1153. if (soft_pwm_ ## NR > 0) { \
  1154. if (state_timer_heater_ ## NR == 0) { \
  1155. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1156. state_heater_ ## NR = 1; \
  1157. WRITE_HEATER_ ## NR(1); \
  1158. } \
  1159. } \
  1160. else { \
  1161. if (state_timer_heater_ ## NR == 0) { \
  1162. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1163. state_heater_ ## NR = 0; \
  1164. WRITE_HEATER_ ## NR(0); \
  1165. } \
  1166. }
  1167. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1168. #define PWM_OFF_ROUTINE(NR) \
  1169. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1170. if (state_timer_heater_ ## NR == 0) { \
  1171. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1172. state_heater_ ## NR = 0; \
  1173. WRITE_HEATER_ ## NR (0); \
  1174. } \
  1175. }
  1176. if (slow_pwm_count == 0) {
  1177. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1178. #if EXTRUDERS > 1
  1179. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1180. #if EXTRUDERS > 2
  1181. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1182. #if EXTRUDERS > 3
  1183. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1184. #endif
  1185. #endif
  1186. #endif
  1187. #if HAS_HEATER_BED
  1188. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1189. #endif
  1190. } // slow_pwm_count == 0
  1191. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1192. #if EXTRUDERS > 1
  1193. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1194. #if EXTRUDERS > 2
  1195. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1196. #if EXTRUDERS > 3
  1197. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1198. #endif
  1199. #endif
  1200. #endif
  1201. #if HAS_HEATER_BED
  1202. PWM_OFF_ROUTINE(BED); // BED
  1203. #endif
  1204. #ifdef FAN_SOFT_PWM
  1205. if (pwm_count == 0) {
  1206. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1207. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1208. }
  1209. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1210. #endif //FAN_SOFT_PWM
  1211. pwm_count += BIT(SOFT_PWM_SCALE);
  1212. pwm_count &= 0x7f;
  1213. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1214. if ((pwm_count % 64) == 0) {
  1215. slow_pwm_count++;
  1216. slow_pwm_count &= 0x7f;
  1217. // EXTRUDER 0
  1218. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1219. #if EXTRUDERS > 1 // EXTRUDER 1
  1220. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1221. #if EXTRUDERS > 2 // EXTRUDER 2
  1222. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1223. #if EXTRUDERS > 3 // EXTRUDER 3
  1224. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1225. #endif
  1226. #endif
  1227. #endif
  1228. #if HAS_HEATER_BED
  1229. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1230. #endif
  1231. } // (pwm_count % 64) == 0
  1232. #endif // SLOW_PWM_HEATERS
  1233. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1234. #ifdef MUX5
  1235. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1236. #else
  1237. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1238. #endif
  1239. // Prepare or measure a sensor, each one every 12th frame
  1240. switch(temp_state) {
  1241. case PrepareTemp_0:
  1242. #if HAS_TEMP_0
  1243. START_ADC(TEMP_0_PIN);
  1244. #endif
  1245. lcd_buttons_update();
  1246. temp_state = MeasureTemp_0;
  1247. break;
  1248. case MeasureTemp_0:
  1249. #if HAS_TEMP_0
  1250. raw_temp_value[0] += ADC;
  1251. #endif
  1252. temp_state = PrepareTemp_BED;
  1253. break;
  1254. case PrepareTemp_BED:
  1255. #if HAS_TEMP_BED
  1256. START_ADC(TEMP_BED_PIN);
  1257. #endif
  1258. lcd_buttons_update();
  1259. temp_state = MeasureTemp_BED;
  1260. break;
  1261. case MeasureTemp_BED:
  1262. #if HAS_TEMP_BED
  1263. raw_temp_bed_value += ADC;
  1264. #endif
  1265. temp_state = PrepareTemp_1;
  1266. break;
  1267. case PrepareTemp_1:
  1268. #if HAS_TEMP_1
  1269. START_ADC(TEMP_1_PIN);
  1270. #endif
  1271. lcd_buttons_update();
  1272. temp_state = MeasureTemp_1;
  1273. break;
  1274. case MeasureTemp_1:
  1275. #if HAS_TEMP_1
  1276. raw_temp_value[1] += ADC;
  1277. #endif
  1278. temp_state = PrepareTemp_2;
  1279. break;
  1280. case PrepareTemp_2:
  1281. #if HAS_TEMP_2
  1282. START_ADC(TEMP_2_PIN);
  1283. #endif
  1284. lcd_buttons_update();
  1285. temp_state = MeasureTemp_2;
  1286. break;
  1287. case MeasureTemp_2:
  1288. #if HAS_TEMP_2
  1289. raw_temp_value[2] += ADC;
  1290. #endif
  1291. temp_state = PrepareTemp_3;
  1292. break;
  1293. case PrepareTemp_3:
  1294. #if HAS_TEMP_3
  1295. START_ADC(TEMP_3_PIN);
  1296. #endif
  1297. lcd_buttons_update();
  1298. temp_state = MeasureTemp_3;
  1299. break;
  1300. case MeasureTemp_3:
  1301. #if HAS_TEMP_3
  1302. raw_temp_value[3] += ADC;
  1303. #endif
  1304. temp_state = Prepare_FILWIDTH;
  1305. break;
  1306. case Prepare_FILWIDTH:
  1307. #if HAS_FILAMENT_SENSOR
  1308. START_ADC(FILWIDTH_PIN);
  1309. #endif
  1310. lcd_buttons_update();
  1311. temp_state = Measure_FILWIDTH;
  1312. break;
  1313. case Measure_FILWIDTH:
  1314. #if HAS_FILAMENT_SENSOR
  1315. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1316. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1317. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1318. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1319. }
  1320. #endif
  1321. temp_state = PrepareTemp_0;
  1322. temp_count++;
  1323. break;
  1324. case StartupDelay:
  1325. temp_state = PrepareTemp_0;
  1326. break;
  1327. // default:
  1328. // SERIAL_ERROR_START;
  1329. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1330. // break;
  1331. } // switch(temp_state)
  1332. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1333. // Update the raw values if they've been read. Else we could be updating them during reading.
  1334. if (!temp_meas_ready) set_current_temp_raw();
  1335. // Filament Sensor - can be read any time since IIR filtering is used
  1336. #if HAS_FILAMENT_SENSOR
  1337. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1338. #endif
  1339. temp_count = 0;
  1340. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1341. raw_temp_bed_value = 0;
  1342. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1343. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1344. #define GE0 <=
  1345. #else
  1346. #define GE0 >=
  1347. #endif
  1348. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1349. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1350. #endif
  1351. #if HAS_TEMP_1
  1352. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1353. #define GE1 <=
  1354. #else
  1355. #define GE1 >=
  1356. #endif
  1357. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1358. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1359. #endif // TEMP_SENSOR_1
  1360. #if HAS_TEMP_2
  1361. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1362. #define GE2 <=
  1363. #else
  1364. #define GE2 >=
  1365. #endif
  1366. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1367. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1368. #endif // TEMP_SENSOR_2
  1369. #if HAS_TEMP_3
  1370. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1371. #define GE3 <=
  1372. #else
  1373. #define GE3 >=
  1374. #endif
  1375. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1376. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1377. #endif // TEMP_SENSOR_3
  1378. #if HAS_TEMP_BED
  1379. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1380. #define GEBED <=
  1381. #else
  1382. #define GEBED >=
  1383. #endif
  1384. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
  1385. target_temperature_bed = 0;
  1386. bed_max_temp_error();
  1387. }
  1388. #endif
  1389. } // temp_count >= OVERSAMPLENR
  1390. #ifdef BABYSTEPPING
  1391. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1392. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1393. if (curTodo > 0) {
  1394. babystep(axis,/*fwd*/true);
  1395. babystepsTodo[axis]--; //fewer to do next time
  1396. }
  1397. else if (curTodo < 0) {
  1398. babystep(axis,/*fwd*/false);
  1399. babystepsTodo[axis]++; //fewer to do next time
  1400. }
  1401. }
  1402. #endif //BABYSTEPPING
  1403. }
  1404. #ifdef PIDTEMP
  1405. // Apply the scale factors to the PID values
  1406. float scalePID_i(float i) { return i * PID_dT; }
  1407. float unscalePID_i(float i) { return i / PID_dT; }
  1408. float scalePID_d(float d) { return d / PID_dT; }
  1409. float unscalePID_d(float d) { return d * PID_dT; }
  1410. #endif //PIDTEMP