My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 353KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "UBL.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char errormagic[] PROGMEM = "Error:";
  407. const char echomagic[] PROGMEM = "echo:";
  408. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  409. // Number of characters read in the current line of serial input
  410. static int serial_count = 0;
  411. // Inactivity shutdown
  412. millis_t previous_cmd_ms = 0;
  413. static millis_t max_inactive_time = 0;
  414. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  415. // Print Job Timer
  416. #if ENABLED(PRINTCOUNTER)
  417. PrintCounter print_job_timer = PrintCounter();
  418. #else
  419. Stopwatch print_job_timer = Stopwatch();
  420. #endif
  421. // Buzzer - I2C on the LCD or a BEEPER_PIN
  422. #if ENABLED(LCD_USE_I2C_BUZZER)
  423. #define BUZZ(d,f) lcd_buzz(d, f)
  424. #elif PIN_EXISTS(BEEPER)
  425. Buzzer buzzer;
  426. #define BUZZ(d,f) buzzer.tone(d, f)
  427. #else
  428. #define BUZZ(d,f) NOOP
  429. #endif
  430. static uint8_t target_extruder;
  431. #if HAS_BED_PROBE
  432. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  433. #endif
  434. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  435. #if HAS_ABL
  436. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  437. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  438. #elif defined(XY_PROBE_SPEED)
  439. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  440. #else
  441. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  442. #endif
  443. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  444. #if ENABLED(DELTA)
  445. #define ADJUST_DELTA(V) \
  446. if (planner.abl_enabled) { \
  447. const float zadj = bilinear_z_offset(V); \
  448. delta[A_AXIS] += zadj; \
  449. delta[B_AXIS] += zadj; \
  450. delta[C_AXIS] += zadj; \
  451. }
  452. #else
  453. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  454. #endif
  455. #elif IS_KINEMATIC
  456. #define ADJUST_DELTA(V) NOOP
  457. #endif
  458. #if ENABLED(Z_DUAL_ENDSTOPS)
  459. float z_endstop_adj =
  460. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  461. Z_DUAL_ENDSTOPS_ADJUSTMENT
  462. #else
  463. 0
  464. #endif
  465. ;
  466. #endif
  467. // Extruder offsets
  468. #if HOTENDS > 1
  469. float hotend_offset[XYZ][HOTENDS];
  470. #endif
  471. #if HAS_Z_SERVO_ENDSTOP
  472. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  473. #endif
  474. #if ENABLED(BARICUDA)
  475. int baricuda_valve_pressure = 0;
  476. int baricuda_e_to_p_pressure = 0;
  477. #endif
  478. #if ENABLED(FWRETRACT)
  479. bool autoretract_enabled = false;
  480. bool retracted[EXTRUDERS] = { false };
  481. bool retracted_swap[EXTRUDERS] = { false };
  482. float retract_length = RETRACT_LENGTH;
  483. float retract_length_swap = RETRACT_LENGTH_SWAP;
  484. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  485. float retract_zlift = RETRACT_ZLIFT;
  486. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  487. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  488. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  489. #endif // FWRETRACT
  490. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  491. bool powersupply =
  492. #if ENABLED(PS_DEFAULT_OFF)
  493. false
  494. #else
  495. true
  496. #endif
  497. ;
  498. #endif
  499. #if HAS_CASE_LIGHT
  500. bool case_light_on =
  501. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  502. true
  503. #else
  504. false
  505. #endif
  506. ;
  507. #endif
  508. #if ENABLED(DELTA)
  509. float delta[ABC],
  510. endstop_adj[ABC] = { 0 };
  511. // These values are loaded or reset at boot time when setup() calls
  512. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  513. float delta_radius,
  514. delta_tower_angle_trim[ABC],
  515. delta_tower[ABC][2],
  516. delta_diagonal_rod,
  517. delta_diagonal_rod_trim[ABC],
  518. delta_diagonal_rod_2_tower[ABC],
  519. delta_segments_per_second,
  520. delta_clip_start_height = Z_MAX_POS;
  521. float delta_safe_distance_from_top();
  522. #endif
  523. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  524. #define UNPROBED 9999.0f
  525. int bilinear_grid_spacing[2], bilinear_start[2];
  526. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  527. #endif
  528. #if IS_SCARA
  529. // Float constants for SCARA calculations
  530. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  531. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  532. L2_2 = sq(float(L2));
  533. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  534. delta[ABC];
  535. #endif
  536. float cartes[XYZ] = { 0 };
  537. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  538. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  539. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  540. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  541. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  542. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  543. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  544. #endif
  545. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  546. static bool filament_ran_out = false;
  547. #endif
  548. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  549. FilamentChangeMenuResponse filament_change_menu_response;
  550. #endif
  551. #if ENABLED(MIXING_EXTRUDER)
  552. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  553. #if MIXING_VIRTUAL_TOOLS > 1
  554. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  555. #endif
  556. #endif
  557. static bool send_ok[BUFSIZE];
  558. #if HAS_SERVOS
  559. Servo servo[NUM_SERVOS];
  560. #define MOVE_SERVO(I, P) servo[I].move(P)
  561. #if HAS_Z_SERVO_ENDSTOP
  562. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  563. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  564. #endif
  565. #endif
  566. #ifdef CHDK
  567. millis_t chdkHigh = 0;
  568. bool chdkActive = false;
  569. #endif
  570. #if ENABLED(PID_EXTRUSION_SCALING)
  571. int lpq_len = 20;
  572. #endif
  573. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  574. MarlinBusyState busy_state = NOT_BUSY;
  575. static millis_t next_busy_signal_ms = 0;
  576. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  577. #else
  578. #define host_keepalive() NOOP
  579. #endif
  580. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  581. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  582. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  583. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  584. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  585. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  586. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  587. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  588. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  589. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  590. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  591. /**
  592. * ***************************************************************************
  593. * ******************************** FUNCTIONS ********************************
  594. * ***************************************************************************
  595. */
  596. void stop();
  597. void get_available_commands();
  598. void process_next_command();
  599. void prepare_move_to_destination();
  600. void get_cartesian_from_steppers();
  601. void set_current_from_steppers_for_axis(const AxisEnum axis);
  602. #if ENABLED(ARC_SUPPORT)
  603. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  604. #endif
  605. #if ENABLED(BEZIER_CURVE_SUPPORT)
  606. void plan_cubic_move(const float offset[4]);
  607. #endif
  608. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  609. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  610. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  611. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  612. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  613. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  614. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  615. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  616. static void report_current_position();
  617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  618. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  619. serialprintPGM(prefix);
  620. SERIAL_ECHOPAIR("(", x);
  621. SERIAL_ECHOPAIR(", ", y);
  622. SERIAL_ECHOPAIR(", ", z);
  623. SERIAL_CHAR(')');
  624. if (suffix) serialprintPGM(suffix);
  625. else SERIAL_EOL;
  626. }
  627. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  628. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  629. }
  630. #if HAS_ABL
  631. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  632. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  633. }
  634. #endif
  635. #define DEBUG_POS(SUFFIX,VAR) do { \
  636. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  637. #endif
  638. /**
  639. * sync_plan_position
  640. *
  641. * Set the planner/stepper positions directly from current_position with
  642. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  643. */
  644. inline void sync_plan_position() {
  645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  646. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  647. #endif
  648. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  649. }
  650. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  651. #if IS_KINEMATIC
  652. inline void sync_plan_position_kinematic() {
  653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  654. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  655. #endif
  656. planner.set_position_mm_kinematic(current_position);
  657. }
  658. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  659. #else
  660. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  661. #endif
  662. #if ENABLED(SDSUPPORT)
  663. #include "SdFatUtil.h"
  664. int freeMemory() { return SdFatUtil::FreeRam(); }
  665. #else
  666. extern "C" {
  667. extern char __bss_end;
  668. extern char __heap_start;
  669. extern void* __brkval;
  670. int freeMemory() {
  671. int free_memory;
  672. if ((int)__brkval == 0)
  673. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  674. else
  675. free_memory = ((int)&free_memory) - ((int)__brkval);
  676. return free_memory;
  677. }
  678. }
  679. #endif //!SDSUPPORT
  680. #if ENABLED(DIGIPOT_I2C)
  681. extern void digipot_i2c_set_current(int channel, float current);
  682. extern void digipot_i2c_init();
  683. #endif
  684. inline void echo_command(const char* cmd) {
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  687. SERIAL_CHAR('"');
  688. SERIAL_EOL;
  689. }
  690. /**
  691. * Inject the next "immediate" command, when possible, onto the front of the queue.
  692. * Return true if any immediate commands remain to inject.
  693. */
  694. static bool drain_injected_commands_P() {
  695. if (injected_commands_P != NULL) {
  696. size_t i = 0;
  697. char c, cmd[30];
  698. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  699. cmd[sizeof(cmd) - 1] = '\0';
  700. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  701. cmd[i] = '\0';
  702. if (enqueue_and_echo_command(cmd)) // success?
  703. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  704. }
  705. return (injected_commands_P != NULL); // return whether any more remain
  706. }
  707. /**
  708. * Record one or many commands to run from program memory.
  709. * Aborts the current queue, if any.
  710. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  711. */
  712. void enqueue_and_echo_commands_P(const char* pgcode) {
  713. injected_commands_P = pgcode;
  714. drain_injected_commands_P(); // first command executed asap (when possible)
  715. }
  716. /**
  717. * Clear the Marlin command queue
  718. */
  719. void clear_command_queue() {
  720. cmd_queue_index_r = cmd_queue_index_w;
  721. commands_in_queue = 0;
  722. }
  723. /**
  724. * Once a new command is in the ring buffer, call this to commit it
  725. */
  726. inline void _commit_command(bool say_ok) {
  727. send_ok[cmd_queue_index_w] = say_ok;
  728. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  729. commands_in_queue++;
  730. }
  731. /**
  732. * Copy a command from RAM into the main command buffer.
  733. * Return true if the command was successfully added.
  734. * Return false for a full buffer, or if the 'command' is a comment.
  735. */
  736. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  737. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  738. strcpy(command_queue[cmd_queue_index_w], cmd);
  739. _commit_command(say_ok);
  740. return true;
  741. }
  742. /**
  743. * Enqueue with Serial Echo
  744. */
  745. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  746. if (_enqueuecommand(cmd, say_ok)) {
  747. echo_command(cmd);
  748. return true;
  749. }
  750. return false;
  751. }
  752. void setup_killpin() {
  753. #if HAS_KILL
  754. SET_INPUT_PULLUP(KILL_PIN);
  755. #endif
  756. }
  757. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  758. void setup_filrunoutpin() {
  759. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  760. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  761. #else
  762. SET_INPUT(FIL_RUNOUT_PIN);
  763. #endif
  764. }
  765. #endif
  766. void setup_homepin(void) {
  767. #if HAS_HOME
  768. SET_INPUT_PULLUP(HOME_PIN);
  769. #endif
  770. }
  771. void setup_powerhold() {
  772. #if HAS_SUICIDE
  773. OUT_WRITE(SUICIDE_PIN, HIGH);
  774. #endif
  775. #if HAS_POWER_SWITCH
  776. #if ENABLED(PS_DEFAULT_OFF)
  777. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  778. #else
  779. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  780. #endif
  781. #endif
  782. }
  783. void suicide() {
  784. #if HAS_SUICIDE
  785. OUT_WRITE(SUICIDE_PIN, LOW);
  786. #endif
  787. }
  788. void servo_init() {
  789. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  790. servo[0].attach(SERVO0_PIN);
  791. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  792. #endif
  793. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  794. servo[1].attach(SERVO1_PIN);
  795. servo[1].detach();
  796. #endif
  797. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  798. servo[2].attach(SERVO2_PIN);
  799. servo[2].detach();
  800. #endif
  801. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  802. servo[3].attach(SERVO3_PIN);
  803. servo[3].detach();
  804. #endif
  805. #if HAS_Z_SERVO_ENDSTOP
  806. /**
  807. * Set position of Z Servo Endstop
  808. *
  809. * The servo might be deployed and positioned too low to stow
  810. * when starting up the machine or rebooting the board.
  811. * There's no way to know where the nozzle is positioned until
  812. * homing has been done - no homing with z-probe without init!
  813. *
  814. */
  815. STOW_Z_SERVO();
  816. #endif
  817. }
  818. /**
  819. * Stepper Reset (RigidBoard, et.al.)
  820. */
  821. #if HAS_STEPPER_RESET
  822. void disableStepperDrivers() {
  823. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  824. }
  825. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  826. #endif
  827. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  828. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  829. i2c.receive(bytes);
  830. }
  831. void i2c_on_request() { // just send dummy data for now
  832. i2c.reply("Hello World!\n");
  833. }
  834. #endif
  835. void gcode_line_error(const char* err, bool doFlush = true) {
  836. SERIAL_ERROR_START;
  837. serialprintPGM(err);
  838. SERIAL_ERRORLN(gcode_LastN);
  839. //Serial.println(gcode_N);
  840. if (doFlush) FlushSerialRequestResend();
  841. serial_count = 0;
  842. }
  843. /**
  844. * Get all commands waiting on the serial port and queue them.
  845. * Exit when the buffer is full or when no more characters are
  846. * left on the serial port.
  847. */
  848. inline void get_serial_commands() {
  849. static char serial_line_buffer[MAX_CMD_SIZE];
  850. static bool serial_comment_mode = false;
  851. // If the command buffer is empty for too long,
  852. // send "wait" to indicate Marlin is still waiting.
  853. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  854. static millis_t last_command_time = 0;
  855. const millis_t ms = millis();
  856. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  857. SERIAL_ECHOLNPGM(MSG_WAIT);
  858. last_command_time = ms;
  859. }
  860. #endif
  861. /**
  862. * Loop while serial characters are incoming and the queue is not full
  863. */
  864. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  865. char serial_char = MYSERIAL.read();
  866. /**
  867. * If the character ends the line
  868. */
  869. if (serial_char == '\n' || serial_char == '\r') {
  870. serial_comment_mode = false; // end of line == end of comment
  871. if (!serial_count) continue; // skip empty lines
  872. serial_line_buffer[serial_count] = 0; // terminate string
  873. serial_count = 0; //reset buffer
  874. char* command = serial_line_buffer;
  875. while (*command == ' ') command++; // skip any leading spaces
  876. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  877. char* apos = strchr(command, '*');
  878. if (npos) {
  879. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  880. if (M110) {
  881. char* n2pos = strchr(command + 4, 'N');
  882. if (n2pos) npos = n2pos;
  883. }
  884. gcode_N = strtol(npos + 1, NULL, 10);
  885. if (gcode_N != gcode_LastN + 1 && !M110) {
  886. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  887. return;
  888. }
  889. if (apos) {
  890. byte checksum = 0, count = 0;
  891. while (command[count] != '*') checksum ^= command[count++];
  892. if (strtol(apos + 1, NULL, 10) != checksum) {
  893. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  894. return;
  895. }
  896. // if no errors, continue parsing
  897. }
  898. else {
  899. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  900. return;
  901. }
  902. gcode_LastN = gcode_N;
  903. // if no errors, continue parsing
  904. }
  905. else if (apos) { // No '*' without 'N'
  906. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  907. return;
  908. }
  909. // Movement commands alert when stopped
  910. if (IsStopped()) {
  911. char* gpos = strchr(command, 'G');
  912. if (gpos) {
  913. int codenum = strtol(gpos + 1, NULL, 10);
  914. switch (codenum) {
  915. case 0:
  916. case 1:
  917. case 2:
  918. case 3:
  919. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  920. LCD_MESSAGEPGM(MSG_STOPPED);
  921. break;
  922. }
  923. }
  924. }
  925. #if DISABLED(EMERGENCY_PARSER)
  926. // If command was e-stop process now
  927. if (strcmp(command, "M108") == 0) {
  928. wait_for_heatup = false;
  929. #if ENABLED(ULTIPANEL)
  930. wait_for_user = false;
  931. #endif
  932. }
  933. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  934. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  935. #endif
  936. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  937. last_command_time = ms;
  938. #endif
  939. // Add the command to the queue
  940. _enqueuecommand(serial_line_buffer, true);
  941. }
  942. else if (serial_count >= MAX_CMD_SIZE - 1) {
  943. // Keep fetching, but ignore normal characters beyond the max length
  944. // The command will be injected when EOL is reached
  945. }
  946. else if (serial_char == '\\') { // Handle escapes
  947. if (MYSERIAL.available() > 0) {
  948. // if we have one more character, copy it over
  949. serial_char = MYSERIAL.read();
  950. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  951. }
  952. // otherwise do nothing
  953. }
  954. else { // it's not a newline, carriage return or escape char
  955. if (serial_char == ';') serial_comment_mode = true;
  956. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  957. }
  958. } // queue has space, serial has data
  959. }
  960. #if ENABLED(SDSUPPORT)
  961. /**
  962. * Get commands from the SD Card until the command buffer is full
  963. * or until the end of the file is reached. The special character '#'
  964. * can also interrupt buffering.
  965. */
  966. inline void get_sdcard_commands() {
  967. static bool stop_buffering = false,
  968. sd_comment_mode = false;
  969. if (!card.sdprinting) return;
  970. /**
  971. * '#' stops reading from SD to the buffer prematurely, so procedural
  972. * macro calls are possible. If it occurs, stop_buffering is triggered
  973. * and the buffer is run dry; this character _can_ occur in serial com
  974. * due to checksums, however, no checksums are used in SD printing.
  975. */
  976. if (commands_in_queue == 0) stop_buffering = false;
  977. uint16_t sd_count = 0;
  978. bool card_eof = card.eof();
  979. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  980. const int16_t n = card.get();
  981. char sd_char = (char)n;
  982. card_eof = card.eof();
  983. if (card_eof || n == -1
  984. || sd_char == '\n' || sd_char == '\r'
  985. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  986. ) {
  987. if (card_eof) {
  988. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  989. card.printingHasFinished();
  990. card.checkautostart(true);
  991. }
  992. else if (n == -1) {
  993. SERIAL_ERROR_START;
  994. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  995. }
  996. if (sd_char == '#') stop_buffering = true;
  997. sd_comment_mode = false; // for new command
  998. if (!sd_count) continue; // skip empty lines (and comment lines)
  999. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1000. sd_count = 0; // clear sd line buffer
  1001. _commit_command(false);
  1002. }
  1003. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1004. /**
  1005. * Keep fetching, but ignore normal characters beyond the max length
  1006. * The command will be injected when EOL is reached
  1007. */
  1008. }
  1009. else {
  1010. if (sd_char == ';') sd_comment_mode = true;
  1011. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1012. }
  1013. }
  1014. }
  1015. #endif // SDSUPPORT
  1016. /**
  1017. * Add to the circular command queue the next command from:
  1018. * - The command-injection queue (injected_commands_P)
  1019. * - The active serial input (usually USB)
  1020. * - The SD card file being actively printed
  1021. */
  1022. void get_available_commands() {
  1023. // if any immediate commands remain, don't get other commands yet
  1024. if (drain_injected_commands_P()) return;
  1025. get_serial_commands();
  1026. #if ENABLED(SDSUPPORT)
  1027. get_sdcard_commands();
  1028. #endif
  1029. }
  1030. inline bool code_has_value() {
  1031. int i = 1;
  1032. char c = seen_pointer[i];
  1033. while (c == ' ') c = seen_pointer[++i];
  1034. if (c == '-' || c == '+') c = seen_pointer[++i];
  1035. if (c == '.') c = seen_pointer[++i];
  1036. return NUMERIC(c);
  1037. }
  1038. inline float code_value_float() {
  1039. char* e = strchr(seen_pointer, 'E');
  1040. if (!e) return strtod(seen_pointer + 1, NULL);
  1041. *e = 0;
  1042. float ret = strtod(seen_pointer + 1, NULL);
  1043. *e = 'E';
  1044. return ret;
  1045. }
  1046. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1047. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1048. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1049. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1050. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1051. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1052. #if ENABLED(INCH_MODE_SUPPORT)
  1053. inline void set_input_linear_units(LinearUnit units) {
  1054. switch (units) {
  1055. case LINEARUNIT_INCH:
  1056. linear_unit_factor = 25.4;
  1057. break;
  1058. case LINEARUNIT_MM:
  1059. default:
  1060. linear_unit_factor = 1.0;
  1061. break;
  1062. }
  1063. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1064. }
  1065. inline float axis_unit_factor(int axis) {
  1066. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1067. }
  1068. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1069. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1070. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1071. #else
  1072. inline float code_value_linear_units() { return code_value_float(); }
  1073. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1074. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1075. #endif
  1076. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1077. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1078. float code_value_temp_abs() {
  1079. switch (input_temp_units) {
  1080. case TEMPUNIT_C:
  1081. return code_value_float();
  1082. case TEMPUNIT_F:
  1083. return (code_value_float() - 32) * 0.5555555556;
  1084. case TEMPUNIT_K:
  1085. return code_value_float() - 273.15;
  1086. default:
  1087. return code_value_float();
  1088. }
  1089. }
  1090. float code_value_temp_diff() {
  1091. switch (input_temp_units) {
  1092. case TEMPUNIT_C:
  1093. case TEMPUNIT_K:
  1094. return code_value_float();
  1095. case TEMPUNIT_F:
  1096. return code_value_float() * 0.5555555556;
  1097. default:
  1098. return code_value_float();
  1099. }
  1100. }
  1101. #else
  1102. float code_value_temp_abs() { return code_value_float(); }
  1103. float code_value_temp_diff() { return code_value_float(); }
  1104. #endif
  1105. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1106. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1107. bool code_seen(char code) {
  1108. seen_pointer = strchr(current_command_args, code);
  1109. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1110. }
  1111. /**
  1112. * Set target_extruder from the T parameter or the active_extruder
  1113. *
  1114. * Returns TRUE if the target is invalid
  1115. */
  1116. bool get_target_extruder_from_command(int code) {
  1117. if (code_seen('T')) {
  1118. if (code_value_byte() >= EXTRUDERS) {
  1119. SERIAL_ECHO_START;
  1120. SERIAL_CHAR('M');
  1121. SERIAL_ECHO(code);
  1122. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1123. return true;
  1124. }
  1125. target_extruder = code_value_byte();
  1126. }
  1127. else
  1128. target_extruder = active_extruder;
  1129. return false;
  1130. }
  1131. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1132. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1133. #endif
  1134. #if ENABLED(DUAL_X_CARRIAGE)
  1135. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1136. static float x_home_pos(const int extruder) {
  1137. if (extruder == 0)
  1138. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1139. else
  1140. /**
  1141. * In dual carriage mode the extruder offset provides an override of the
  1142. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1143. * This allows soft recalibration of the second extruder home position
  1144. * without firmware reflash (through the M218 command).
  1145. */
  1146. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1147. }
  1148. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1149. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1150. static bool active_extruder_parked = false; // used in mode 1 & 2
  1151. static float raised_parked_position[XYZE]; // used in mode 1
  1152. static millis_t delayed_move_time = 0; // used in mode 1
  1153. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1154. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1155. #endif // DUAL_X_CARRIAGE
  1156. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1157. /**
  1158. * Software endstops can be used to monitor the open end of
  1159. * an axis that has a hardware endstop on the other end. Or
  1160. * they can prevent axes from moving past endstops and grinding.
  1161. *
  1162. * To keep doing their job as the coordinate system changes,
  1163. * the software endstop positions must be refreshed to remain
  1164. * at the same positions relative to the machine.
  1165. */
  1166. void update_software_endstops(const AxisEnum axis) {
  1167. const float offs = workspace_offset[axis] = LOGICAL_POSITION(0, axis);
  1168. #if ENABLED(DUAL_X_CARRIAGE)
  1169. if (axis == X_AXIS) {
  1170. // In Dual X mode hotend_offset[X] is T1's home position
  1171. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1172. if (active_extruder != 0) {
  1173. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1174. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1175. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1176. }
  1177. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1178. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1179. // but not so far to the right that T1 would move past the end
  1180. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1181. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1182. }
  1183. else {
  1184. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1185. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1186. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1187. }
  1188. }
  1189. #else
  1190. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1191. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1192. #endif
  1193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1194. if (DEBUGGING(LEVELING)) {
  1195. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1196. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1197. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1198. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1199. #endif
  1200. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1201. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1202. }
  1203. #endif
  1204. #if ENABLED(DELTA)
  1205. if (axis == Z_AXIS)
  1206. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1207. #endif
  1208. }
  1209. #endif // NO_WORKSPACE_OFFSETS
  1210. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1211. /**
  1212. * Change the home offset for an axis, update the current
  1213. * position and the software endstops to retain the same
  1214. * relative distance to the new home.
  1215. *
  1216. * Since this changes the current_position, code should
  1217. * call sync_plan_position soon after this.
  1218. */
  1219. static void set_home_offset(const AxisEnum axis, const float v) {
  1220. current_position[axis] += v - home_offset[axis];
  1221. home_offset[axis] = v;
  1222. update_software_endstops(axis);
  1223. }
  1224. #endif // NO_WORKSPACE_OFFSETS
  1225. /**
  1226. * Set an axis' current position to its home position (after homing).
  1227. *
  1228. * For Core and Cartesian robots this applies one-to-one when an
  1229. * individual axis has been homed.
  1230. *
  1231. * DELTA should wait until all homing is done before setting the XYZ
  1232. * current_position to home, because homing is a single operation.
  1233. * In the case where the axis positions are already known and previously
  1234. * homed, DELTA could home to X or Y individually by moving either one
  1235. * to the center. However, homing Z always homes XY and Z.
  1236. *
  1237. * SCARA should wait until all XY homing is done before setting the XY
  1238. * current_position to home, because neither X nor Y is at home until
  1239. * both are at home. Z can however be homed individually.
  1240. *
  1241. * Callers must sync the planner position after calling this!
  1242. */
  1243. static void set_axis_is_at_home(AxisEnum axis) {
  1244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1245. if (DEBUGGING(LEVELING)) {
  1246. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1247. SERIAL_CHAR(')');
  1248. SERIAL_EOL;
  1249. }
  1250. #endif
  1251. axis_known_position[axis] = axis_homed[axis] = true;
  1252. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1253. position_shift[axis] = 0;
  1254. update_software_endstops(axis);
  1255. #endif
  1256. #if ENABLED(DUAL_X_CARRIAGE)
  1257. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1258. current_position[X_AXIS] = x_home_pos(active_extruder);
  1259. return;
  1260. }
  1261. #endif
  1262. #if ENABLED(MORGAN_SCARA)
  1263. /**
  1264. * Morgan SCARA homes XY at the same time
  1265. */
  1266. if (axis == X_AXIS || axis == Y_AXIS) {
  1267. float homeposition[XYZ];
  1268. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1269. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1270. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1271. /**
  1272. * Get Home position SCARA arm angles using inverse kinematics,
  1273. * and calculate homing offset using forward kinematics
  1274. */
  1275. inverse_kinematics(homeposition);
  1276. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1277. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1278. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1279. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1280. /**
  1281. * SCARA home positions are based on configuration since the actual
  1282. * limits are determined by the inverse kinematic transform.
  1283. */
  1284. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1285. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1286. }
  1287. else
  1288. #endif
  1289. {
  1290. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1291. }
  1292. /**
  1293. * Z Probe Z Homing? Account for the probe's Z offset.
  1294. */
  1295. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1296. if (axis == Z_AXIS) {
  1297. #if HOMING_Z_WITH_PROBE
  1298. current_position[Z_AXIS] -= zprobe_zoffset;
  1299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1300. if (DEBUGGING(LEVELING)) {
  1301. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1302. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1303. }
  1304. #endif
  1305. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1306. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1307. #endif
  1308. }
  1309. #endif
  1310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1311. if (DEBUGGING(LEVELING)) {
  1312. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1313. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1314. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1315. #endif
  1316. DEBUG_POS("", current_position);
  1317. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1318. SERIAL_CHAR(')');
  1319. SERIAL_EOL;
  1320. }
  1321. #endif
  1322. }
  1323. /**
  1324. * Some planner shorthand inline functions
  1325. */
  1326. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1327. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1328. int hbd = homing_bump_divisor[axis];
  1329. if (hbd < 1) {
  1330. hbd = 10;
  1331. SERIAL_ECHO_START;
  1332. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1333. }
  1334. return homing_feedrate_mm_s[axis] / hbd;
  1335. }
  1336. //
  1337. // line_to_current_position
  1338. // Move the planner to the current position from wherever it last moved
  1339. // (or from wherever it has been told it is located).
  1340. //
  1341. inline void line_to_current_position() {
  1342. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1343. }
  1344. //
  1345. // line_to_destination
  1346. // Move the planner, not necessarily synced with current_position
  1347. //
  1348. inline void line_to_destination(float fr_mm_s) {
  1349. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1350. }
  1351. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1352. inline void set_current_to_destination() { COPY(current_position, destination); }
  1353. inline void set_destination_to_current() { COPY(destination, current_position); }
  1354. #if IS_KINEMATIC
  1355. /**
  1356. * Calculate delta, start a line, and set current_position to destination
  1357. */
  1358. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1360. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1361. #endif
  1362. if ( current_position[X_AXIS] == destination[X_AXIS]
  1363. && current_position[Y_AXIS] == destination[Y_AXIS]
  1364. && current_position[Z_AXIS] == destination[Z_AXIS]
  1365. && current_position[E_AXIS] == destination[E_AXIS]
  1366. ) return;
  1367. refresh_cmd_timeout();
  1368. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1369. set_current_to_destination();
  1370. }
  1371. #endif // IS_KINEMATIC
  1372. /**
  1373. * Plan a move to (X, Y, Z) and set the current_position
  1374. * The final current_position may not be the one that was requested
  1375. */
  1376. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1377. const float old_feedrate_mm_s = feedrate_mm_s;
  1378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1379. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1380. #endif
  1381. #if ENABLED(DELTA)
  1382. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1383. set_destination_to_current(); // sync destination at the start
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1386. #endif
  1387. // when in the danger zone
  1388. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1389. if (z > delta_clip_start_height) { // staying in the danger zone
  1390. destination[X_AXIS] = x; // move directly (uninterpolated)
  1391. destination[Y_AXIS] = y;
  1392. destination[Z_AXIS] = z;
  1393. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1395. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1396. #endif
  1397. return;
  1398. }
  1399. else {
  1400. destination[Z_AXIS] = delta_clip_start_height;
  1401. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1403. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1404. #endif
  1405. }
  1406. }
  1407. if (z > current_position[Z_AXIS]) { // raising?
  1408. destination[Z_AXIS] = z;
  1409. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1412. #endif
  1413. }
  1414. destination[X_AXIS] = x;
  1415. destination[Y_AXIS] = y;
  1416. prepare_move_to_destination(); // set_current_to_destination
  1417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1418. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1419. #endif
  1420. if (z < current_position[Z_AXIS]) { // lowering?
  1421. destination[Z_AXIS] = z;
  1422. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1425. #endif
  1426. }
  1427. #elif IS_SCARA
  1428. set_destination_to_current();
  1429. // If Z needs to raise, do it before moving XY
  1430. if (destination[Z_AXIS] < z) {
  1431. destination[Z_AXIS] = z;
  1432. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1433. }
  1434. destination[X_AXIS] = x;
  1435. destination[Y_AXIS] = y;
  1436. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1437. // If Z needs to lower, do it after moving XY
  1438. if (destination[Z_AXIS] > z) {
  1439. destination[Z_AXIS] = z;
  1440. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1441. }
  1442. #else
  1443. // If Z needs to raise, do it before moving XY
  1444. if (current_position[Z_AXIS] < z) {
  1445. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1446. current_position[Z_AXIS] = z;
  1447. line_to_current_position();
  1448. }
  1449. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1450. current_position[X_AXIS] = x;
  1451. current_position[Y_AXIS] = y;
  1452. line_to_current_position();
  1453. // If Z needs to lower, do it after moving XY
  1454. if (current_position[Z_AXIS] > z) {
  1455. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1456. current_position[Z_AXIS] = z;
  1457. line_to_current_position();
  1458. }
  1459. #endif
  1460. stepper.synchronize();
  1461. feedrate_mm_s = old_feedrate_mm_s;
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1464. #endif
  1465. }
  1466. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1467. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1468. }
  1469. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1470. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1471. }
  1472. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1473. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1474. }
  1475. //
  1476. // Prepare to do endstop or probe moves
  1477. // with custom feedrates.
  1478. //
  1479. // - Save current feedrates
  1480. // - Reset the rate multiplier
  1481. // - Reset the command timeout
  1482. // - Enable the endstops (for endstop moves)
  1483. //
  1484. static void setup_for_endstop_or_probe_move() {
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1487. #endif
  1488. saved_feedrate_mm_s = feedrate_mm_s;
  1489. saved_feedrate_percentage = feedrate_percentage;
  1490. feedrate_percentage = 100;
  1491. refresh_cmd_timeout();
  1492. }
  1493. static void clean_up_after_endstop_or_probe_move() {
  1494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1495. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1496. #endif
  1497. feedrate_mm_s = saved_feedrate_mm_s;
  1498. feedrate_percentage = saved_feedrate_percentage;
  1499. refresh_cmd_timeout();
  1500. }
  1501. #if HAS_BED_PROBE
  1502. /**
  1503. * Raise Z to a minimum height to make room for a probe to move
  1504. */
  1505. inline void do_probe_raise(float z_raise) {
  1506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1507. if (DEBUGGING(LEVELING)) {
  1508. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1509. SERIAL_CHAR(')');
  1510. SERIAL_EOL;
  1511. }
  1512. #endif
  1513. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1514. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1515. if (z_dest > current_position[Z_AXIS])
  1516. do_blocking_move_to_z(z_dest);
  1517. }
  1518. #endif //HAS_BED_PROBE
  1519. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1520. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1521. const bool xx = x && !axis_homed[X_AXIS],
  1522. yy = y && !axis_homed[Y_AXIS],
  1523. zz = z && !axis_homed[Z_AXIS];
  1524. if (xx || yy || zz) {
  1525. SERIAL_ECHO_START;
  1526. SERIAL_ECHOPGM(MSG_HOME " ");
  1527. if (xx) SERIAL_ECHOPGM(MSG_X);
  1528. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1529. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1530. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1531. #if ENABLED(ULTRA_LCD)
  1532. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1533. strcat_P(message, PSTR(MSG_HOME " "));
  1534. if (xx) strcat_P(message, PSTR(MSG_X));
  1535. if (yy) strcat_P(message, PSTR(MSG_Y));
  1536. if (zz) strcat_P(message, PSTR(MSG_Z));
  1537. strcat_P(message, PSTR(" " MSG_FIRST));
  1538. lcd_setstatus(message);
  1539. #endif
  1540. return true;
  1541. }
  1542. return false;
  1543. }
  1544. #endif
  1545. #if ENABLED(Z_PROBE_SLED)
  1546. #ifndef SLED_DOCKING_OFFSET
  1547. #define SLED_DOCKING_OFFSET 0
  1548. #endif
  1549. /**
  1550. * Method to dock/undock a sled designed by Charles Bell.
  1551. *
  1552. * stow[in] If false, move to MAX_X and engage the solenoid
  1553. * If true, move to MAX_X and release the solenoid
  1554. */
  1555. static void dock_sled(bool stow) {
  1556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1557. if (DEBUGGING(LEVELING)) {
  1558. SERIAL_ECHOPAIR("dock_sled(", stow);
  1559. SERIAL_CHAR(')');
  1560. SERIAL_EOL;
  1561. }
  1562. #endif
  1563. // Dock sled a bit closer to ensure proper capturing
  1564. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1565. #if PIN_EXISTS(SLED)
  1566. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1567. #endif
  1568. }
  1569. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1570. void run_deploy_moves_script() {
  1571. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1582. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1583. #endif
  1584. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1585. #endif
  1586. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1598. #endif
  1599. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1600. #endif
  1601. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1613. #endif
  1614. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1615. #endif
  1616. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1628. #endif
  1629. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1630. #endif
  1631. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1643. #endif
  1644. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1645. #endif
  1646. }
  1647. void run_stow_moves_script() {
  1648. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1650. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1653. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1656. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1659. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1660. #endif
  1661. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1662. #endif
  1663. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1665. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1668. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1671. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1674. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1675. #endif
  1676. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1677. #endif
  1678. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1680. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1683. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1686. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1689. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1690. #endif
  1691. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1692. #endif
  1693. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1695. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1698. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1701. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1704. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1705. #endif
  1706. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1707. #endif
  1708. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1710. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1713. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1716. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1719. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1720. #endif
  1721. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1722. #endif
  1723. }
  1724. #endif
  1725. #if HAS_BED_PROBE
  1726. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1727. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1728. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1729. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1730. #else
  1731. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1732. #endif
  1733. #endif
  1734. #define DEPLOY_PROBE() set_probe_deployed(true)
  1735. #define STOW_PROBE() set_probe_deployed(false)
  1736. #if ENABLED(BLTOUCH)
  1737. void bltouch_command(int angle) {
  1738. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1739. safe_delay(375);
  1740. }
  1741. void set_bltouch_deployed(const bool deploy) {
  1742. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1744. if (DEBUGGING(LEVELING)) {
  1745. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1746. SERIAL_CHAR(')');
  1747. SERIAL_EOL;
  1748. }
  1749. #endif
  1750. }
  1751. #endif
  1752. // returns false for ok and true for failure
  1753. bool set_probe_deployed(bool deploy) {
  1754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1755. if (DEBUGGING(LEVELING)) {
  1756. DEBUG_POS("set_probe_deployed", current_position);
  1757. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1758. }
  1759. #endif
  1760. if (endstops.z_probe_enabled == deploy) return false;
  1761. // Make room for probe
  1762. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1763. // When deploying make sure BLTOUCH is not already triggered
  1764. #if ENABLED(BLTOUCH)
  1765. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1766. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1767. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1768. set_bltouch_deployed(false); // clear the triggered condition.
  1769. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1770. SERIAL_ERROR_START;
  1771. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1772. stop(); // punt!
  1773. return true;
  1774. }
  1775. }
  1776. #elif ENABLED(Z_PROBE_SLED)
  1777. if (axis_unhomed_error(true, false, false)) {
  1778. SERIAL_ERROR_START;
  1779. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1780. stop();
  1781. return true;
  1782. }
  1783. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1784. if (axis_unhomed_error(true, true, true )) {
  1785. SERIAL_ERROR_START;
  1786. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1787. stop();
  1788. return true;
  1789. }
  1790. #endif
  1791. const float oldXpos = current_position[X_AXIS],
  1792. oldYpos = current_position[Y_AXIS];
  1793. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1794. // If endstop is already false, the Z probe is deployed
  1795. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1796. // Would a goto be less ugly?
  1797. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1798. // for a triggered when stowed manual probe.
  1799. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1800. // otherwise an Allen-Key probe can't be stowed.
  1801. #endif
  1802. #if ENABLED(Z_PROBE_SLED)
  1803. dock_sled(!deploy);
  1804. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1805. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1806. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1807. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1808. #endif
  1809. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1810. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1811. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1812. if (IsRunning()) {
  1813. SERIAL_ERROR_START;
  1814. SERIAL_ERRORLNPGM("Z-Probe failed");
  1815. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1816. }
  1817. stop();
  1818. return true;
  1819. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1820. #endif
  1821. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1822. endstops.enable_z_probe(deploy);
  1823. return false;
  1824. }
  1825. static void do_probe_move(float z, float fr_mm_m) {
  1826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1827. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1828. #endif
  1829. // Deploy BLTouch at the start of any probe
  1830. #if ENABLED(BLTOUCH)
  1831. set_bltouch_deployed(true);
  1832. #endif
  1833. // Move down until probe triggered
  1834. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1835. // Retract BLTouch immediately after a probe
  1836. #if ENABLED(BLTOUCH)
  1837. set_bltouch_deployed(false);
  1838. #endif
  1839. // Clear endstop flags
  1840. endstops.hit_on_purpose();
  1841. // Get Z where the steppers were interrupted
  1842. set_current_from_steppers_for_axis(Z_AXIS);
  1843. // Tell the planner where we actually are
  1844. SYNC_PLAN_POSITION_KINEMATIC();
  1845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1846. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1847. #endif
  1848. }
  1849. // Do a single Z probe and return with current_position[Z_AXIS]
  1850. // at the height where the probe triggered.
  1851. static float run_z_probe() {
  1852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1853. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1854. #endif
  1855. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1856. refresh_cmd_timeout();
  1857. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1858. // Do a first probe at the fast speed
  1859. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. float first_probe_z = current_position[Z_AXIS];
  1862. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1863. #endif
  1864. // move up by the bump distance
  1865. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1866. #else
  1867. // If the nozzle is above the travel height then
  1868. // move down quickly before doing the slow probe
  1869. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1870. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1871. if (z < current_position[Z_AXIS])
  1872. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1873. #endif
  1874. // move down slowly to find bed
  1875. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1877. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1878. #endif
  1879. // Debug: compare probe heights
  1880. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1881. if (DEBUGGING(LEVELING)) {
  1882. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1883. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1884. }
  1885. #endif
  1886. return current_position[Z_AXIS] + zprobe_zoffset;
  1887. }
  1888. //
  1889. // - Move to the given XY
  1890. // - Deploy the probe, if not already deployed
  1891. // - Probe the bed, get the Z position
  1892. // - Depending on the 'stow' flag
  1893. // - Stow the probe, or
  1894. // - Raise to the BETWEEN height
  1895. // - Return the probed Z position
  1896. //
  1897. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1898. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) {
  1901. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1902. SERIAL_ECHOPAIR(", ", y);
  1903. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1904. SERIAL_ECHOLNPGM("stow)");
  1905. DEBUG_POS("", current_position);
  1906. }
  1907. #endif
  1908. const float old_feedrate_mm_s = feedrate_mm_s;
  1909. #if ENABLED(DELTA)
  1910. if (current_position[Z_AXIS] > delta_clip_start_height)
  1911. do_blocking_move_to_z(delta_clip_start_height);
  1912. #endif
  1913. // Ensure a minimum height before moving the probe
  1914. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1915. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1916. // Move the probe to the given XY
  1917. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1918. if (DEPLOY_PROBE()) return NAN;
  1919. const float measured_z = run_z_probe();
  1920. if (!stow)
  1921. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1922. else
  1923. if (STOW_PROBE()) return NAN;
  1924. if (verbose_level > 2) {
  1925. SERIAL_PROTOCOLPGM("Bed X: ");
  1926. SERIAL_PROTOCOL_F(x, 3);
  1927. SERIAL_PROTOCOLPGM(" Y: ");
  1928. SERIAL_PROTOCOL_F(y, 3);
  1929. SERIAL_PROTOCOLPGM(" Z: ");
  1930. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1931. SERIAL_EOL;
  1932. }
  1933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1934. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1935. #endif
  1936. feedrate_mm_s = old_feedrate_mm_s;
  1937. return measured_z;
  1938. }
  1939. #endif // HAS_BED_PROBE
  1940. #if PLANNER_LEVELING
  1941. /**
  1942. * Turn bed leveling on or off, fixing the current
  1943. * position as-needed.
  1944. *
  1945. * Disable: Current position = physical position
  1946. * Enable: Current position = "unleveled" physical position
  1947. */
  1948. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1949. #if ENABLED(MESH_BED_LEVELING)
  1950. if (enable != mbl.active()) {
  1951. if (!enable)
  1952. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1953. mbl.set_active(enable && mbl.has_mesh());
  1954. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1955. }
  1956. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1957. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1958. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1959. #else
  1960. constexpr bool can_change = true;
  1961. #endif
  1962. if (can_change && enable != planner.abl_enabled) {
  1963. planner.abl_enabled = enable;
  1964. if (!enable)
  1965. set_current_from_steppers_for_axis(
  1966. #if ABL_PLANAR
  1967. ALL_AXES
  1968. #else
  1969. Z_AXIS
  1970. #endif
  1971. );
  1972. else
  1973. planner.unapply_leveling(current_position);
  1974. }
  1975. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1976. ubl.state.active = enable;
  1977. //set_current_from_steppers_for_axis(Z_AXIS);
  1978. #endif
  1979. }
  1980. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1981. void set_z_fade_height(const float zfh) {
  1982. planner.z_fade_height = zfh;
  1983. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1984. if (
  1985. #if ENABLED(MESH_BED_LEVELING)
  1986. mbl.active()
  1987. #else
  1988. planner.abl_enabled
  1989. #endif
  1990. ) {
  1991. set_current_from_steppers_for_axis(
  1992. #if ABL_PLANAR
  1993. ALL_AXES
  1994. #else
  1995. Z_AXIS
  1996. #endif
  1997. );
  1998. }
  1999. }
  2000. #endif // LEVELING_FADE_HEIGHT
  2001. /**
  2002. * Reset calibration results to zero.
  2003. */
  2004. void reset_bed_level() {
  2005. set_bed_leveling_enabled(false);
  2006. #if ENABLED(MESH_BED_LEVELING)
  2007. if (mbl.has_mesh()) {
  2008. mbl.reset();
  2009. mbl.set_has_mesh(false);
  2010. }
  2011. #else
  2012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2013. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2014. #endif
  2015. #if ABL_PLANAR
  2016. planner.bed_level_matrix.set_to_identity();
  2017. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2018. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2019. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2020. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2021. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2022. bed_level_grid[x][y] = UNPROBED;
  2023. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2024. ubl.reset();
  2025. #endif
  2026. #endif
  2027. }
  2028. #endif // PLANNER_LEVELING
  2029. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2030. /**
  2031. * Extrapolate a single point from its neighbors
  2032. */
  2033. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2035. if (DEBUGGING(LEVELING)) {
  2036. SERIAL_ECHOPGM("Extrapolate [");
  2037. if (x < 10) SERIAL_CHAR(' ');
  2038. SERIAL_ECHO((int)x);
  2039. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2040. SERIAL_CHAR(' ');
  2041. if (y < 10) SERIAL_CHAR(' ');
  2042. SERIAL_ECHO((int)y);
  2043. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2044. SERIAL_CHAR(']');
  2045. }
  2046. #endif
  2047. if (bed_level_grid[x][y] != UNPROBED) {
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2050. #endif
  2051. return; // Don't overwrite good values.
  2052. }
  2053. SERIAL_EOL;
  2054. // Get X neighbors, Y neighbors, and XY neighbors
  2055. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2056. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2057. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2058. // Treat far unprobed points as zero, near as equal to far
  2059. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2060. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2061. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2062. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2063. // Take the average instead of the median
  2064. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2065. // Median is robust (ignores outliers).
  2066. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2067. // : ((c < b) ? b : (a < c) ? a : c);
  2068. }
  2069. //Enable this if your SCARA uses 180° of total area
  2070. //#define EXTRAPOLATE_FROM_EDGE
  2071. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2072. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2073. #define HALF_IN_X
  2074. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2075. #define HALF_IN_Y
  2076. #endif
  2077. #endif
  2078. /**
  2079. * Fill in the unprobed points (corners of circular print surface)
  2080. * using linear extrapolation, away from the center.
  2081. */
  2082. static void extrapolate_unprobed_bed_level() {
  2083. #ifdef HALF_IN_X
  2084. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2085. #else
  2086. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2087. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2088. xlen = ctrx1;
  2089. #endif
  2090. #ifdef HALF_IN_Y
  2091. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2092. #else
  2093. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2094. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2095. ylen = ctry1;
  2096. #endif
  2097. for (uint8_t xo = 0; xo <= xlen; xo++)
  2098. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2099. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2100. #ifndef HALF_IN_X
  2101. const uint8_t x1 = ctrx1 - xo;
  2102. #endif
  2103. #ifndef HALF_IN_Y
  2104. const uint8_t y1 = ctry1 - yo;
  2105. #ifndef HALF_IN_X
  2106. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2107. #endif
  2108. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2109. #endif
  2110. #ifndef HALF_IN_X
  2111. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2112. #endif
  2113. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2114. }
  2115. }
  2116. /**
  2117. * Print calibration results for plotting or manual frame adjustment.
  2118. */
  2119. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2120. for (uint8_t x = 0; x < sx; x++) {
  2121. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2122. SERIAL_PROTOCOLCHAR(' ');
  2123. SERIAL_PROTOCOL((int)x);
  2124. }
  2125. SERIAL_EOL;
  2126. for (uint8_t y = 0; y < sy; y++) {
  2127. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2128. SERIAL_PROTOCOL((int)y);
  2129. for (uint8_t x = 0; x < sx; x++) {
  2130. SERIAL_PROTOCOLCHAR(' ');
  2131. float offset = fn(x, y);
  2132. if (offset != UNPROBED) {
  2133. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2134. SERIAL_PROTOCOL_F(offset, precision);
  2135. }
  2136. else
  2137. for (uint8_t i = 0; i < precision + 3; i++)
  2138. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2139. }
  2140. SERIAL_EOL;
  2141. }
  2142. SERIAL_EOL;
  2143. }
  2144. static void print_bilinear_leveling_grid() {
  2145. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2146. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2147. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2148. );
  2149. }
  2150. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2151. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2152. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2153. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2154. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2155. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2156. int bilinear_grid_spacing_virt[2] = { 0 };
  2157. static void bed_level_virt_print() {
  2158. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2159. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2160. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2161. );
  2162. }
  2163. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2164. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2165. uint8_t ep = 0, ip = 1;
  2166. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2167. if (x) {
  2168. ep = ABL_GRID_MAX_POINTS_X - 1;
  2169. ip = ABL_GRID_MAX_POINTS_X - 2;
  2170. }
  2171. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2172. return LINEAR_EXTRAPOLATION(
  2173. bed_level_grid[ep][y - 1],
  2174. bed_level_grid[ip][y - 1]
  2175. );
  2176. else
  2177. return LINEAR_EXTRAPOLATION(
  2178. bed_level_virt_coord(ep + 1, y),
  2179. bed_level_virt_coord(ip + 1, y)
  2180. );
  2181. }
  2182. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2183. if (y) {
  2184. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2185. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2186. }
  2187. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2188. return LINEAR_EXTRAPOLATION(
  2189. bed_level_grid[x - 1][ep],
  2190. bed_level_grid[x - 1][ip]
  2191. );
  2192. else
  2193. return LINEAR_EXTRAPOLATION(
  2194. bed_level_virt_coord(x, ep + 1),
  2195. bed_level_virt_coord(x, ip + 1)
  2196. );
  2197. }
  2198. return bed_level_grid[x - 1][y - 1];
  2199. }
  2200. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2201. return (
  2202. p[i-1] * -t * sq(1 - t)
  2203. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2204. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2205. - p[i+2] * sq(t) * (1 - t)
  2206. ) * 0.5;
  2207. }
  2208. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2209. float row[4], column[4];
  2210. for (uint8_t i = 0; i < 4; i++) {
  2211. for (uint8_t j = 0; j < 4; j++) {
  2212. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2213. }
  2214. row[i] = bed_level_virt_cmr(column, 1, ty);
  2215. }
  2216. return bed_level_virt_cmr(row, 1, tx);
  2217. }
  2218. void bed_level_virt_interpolate() {
  2219. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2220. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2221. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2222. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2223. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2224. continue;
  2225. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2226. bed_level_virt_2cmr(
  2227. x + 1,
  2228. y + 1,
  2229. (float)tx / (BILINEAR_SUBDIVISIONS),
  2230. (float)ty / (BILINEAR_SUBDIVISIONS)
  2231. );
  2232. }
  2233. }
  2234. #endif // ABL_BILINEAR_SUBDIVISION
  2235. #endif // AUTO_BED_LEVELING_BILINEAR
  2236. /**
  2237. * Home an individual linear axis
  2238. */
  2239. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2240. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2241. if (DEBUGGING(LEVELING)) {
  2242. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2243. SERIAL_ECHOPAIR(", ", distance);
  2244. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2245. SERIAL_CHAR(')');
  2246. SERIAL_EOL;
  2247. }
  2248. #endif
  2249. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2250. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2251. if (deploy_bltouch) set_bltouch_deployed(true);
  2252. #endif
  2253. // Tell the planner we're at Z=0
  2254. current_position[axis] = 0;
  2255. #if IS_SCARA
  2256. SYNC_PLAN_POSITION_KINEMATIC();
  2257. current_position[axis] = distance;
  2258. inverse_kinematics(current_position);
  2259. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2260. #else
  2261. sync_plan_position();
  2262. current_position[axis] = distance;
  2263. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2264. #endif
  2265. stepper.synchronize();
  2266. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2267. if (deploy_bltouch) set_bltouch_deployed(false);
  2268. #endif
  2269. endstops.hit_on_purpose();
  2270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2271. if (DEBUGGING(LEVELING)) {
  2272. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2273. SERIAL_CHAR(')');
  2274. SERIAL_EOL;
  2275. }
  2276. #endif
  2277. }
  2278. /**
  2279. * Home an individual "raw axis" to its endstop.
  2280. * This applies to XYZ on Cartesian and Core robots, and
  2281. * to the individual ABC steppers on DELTA and SCARA.
  2282. *
  2283. * At the end of the procedure the axis is marked as
  2284. * homed and the current position of that axis is updated.
  2285. * Kinematic robots should wait till all axes are homed
  2286. * before updating the current position.
  2287. */
  2288. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2289. static void homeaxis(const AxisEnum axis) {
  2290. #if IS_SCARA
  2291. // Only Z homing (with probe) is permitted
  2292. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2293. #else
  2294. #define CAN_HOME(A) \
  2295. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2296. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2297. #endif
  2298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2299. if (DEBUGGING(LEVELING)) {
  2300. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2301. SERIAL_CHAR(')');
  2302. SERIAL_EOL;
  2303. }
  2304. #endif
  2305. const int axis_home_dir =
  2306. #if ENABLED(DUAL_X_CARRIAGE)
  2307. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2308. #endif
  2309. home_dir(axis);
  2310. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2311. #if HOMING_Z_WITH_PROBE
  2312. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2313. #endif
  2314. // Set a flag for Z motor locking
  2315. #if ENABLED(Z_DUAL_ENDSTOPS)
  2316. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2317. #endif
  2318. // Fast move towards endstop until triggered
  2319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2320. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2321. #endif
  2322. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2323. // When homing Z with probe respect probe clearance
  2324. const float bump = axis_home_dir * (
  2325. #if HOMING_Z_WITH_PROBE
  2326. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2327. #endif
  2328. home_bump_mm(axis)
  2329. );
  2330. // If a second homing move is configured...
  2331. if (bump) {
  2332. // Move away from the endstop by the axis HOME_BUMP_MM
  2333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2334. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2335. #endif
  2336. do_homing_move(axis, -bump);
  2337. // Slow move towards endstop until triggered
  2338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2339. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2340. #endif
  2341. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2342. }
  2343. #if ENABLED(Z_DUAL_ENDSTOPS)
  2344. if (axis == Z_AXIS) {
  2345. float adj = fabs(z_endstop_adj);
  2346. bool lockZ1;
  2347. if (axis_home_dir > 0) {
  2348. adj = -adj;
  2349. lockZ1 = (z_endstop_adj > 0);
  2350. }
  2351. else
  2352. lockZ1 = (z_endstop_adj < 0);
  2353. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2354. // Move to the adjusted endstop height
  2355. do_homing_move(axis, adj);
  2356. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2357. stepper.set_homing_flag(false);
  2358. } // Z_AXIS
  2359. #endif
  2360. #if IS_SCARA
  2361. set_axis_is_at_home(axis);
  2362. SYNC_PLAN_POSITION_KINEMATIC();
  2363. #elif ENABLED(DELTA)
  2364. // Delta has already moved all three towers up in G28
  2365. // so here it re-homes each tower in turn.
  2366. // Delta homing treats the axes as normal linear axes.
  2367. // retrace by the amount specified in endstop_adj
  2368. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2370. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2371. #endif
  2372. do_homing_move(axis, endstop_adj[axis]);
  2373. }
  2374. #else
  2375. // For cartesian/core machines,
  2376. // set the axis to its home position
  2377. set_axis_is_at_home(axis);
  2378. sync_plan_position();
  2379. destination[axis] = current_position[axis];
  2380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2381. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2382. #endif
  2383. #endif
  2384. // Put away the Z probe
  2385. #if HOMING_Z_WITH_PROBE
  2386. if (axis == Z_AXIS && STOW_PROBE()) return;
  2387. #endif
  2388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2389. if (DEBUGGING(LEVELING)) {
  2390. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2391. SERIAL_CHAR(')');
  2392. SERIAL_EOL;
  2393. }
  2394. #endif
  2395. } // homeaxis()
  2396. #if ENABLED(FWRETRACT)
  2397. void retract(const bool retracting, const bool swapping = false) {
  2398. static float hop_height;
  2399. if (retracting == retracted[active_extruder]) return;
  2400. const float old_feedrate_mm_s = feedrate_mm_s;
  2401. set_destination_to_current();
  2402. if (retracting) {
  2403. feedrate_mm_s = retract_feedrate_mm_s;
  2404. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2405. sync_plan_position_e();
  2406. prepare_move_to_destination();
  2407. if (retract_zlift > 0.01) {
  2408. hop_height = current_position[Z_AXIS];
  2409. // Pretend current position is lower
  2410. current_position[Z_AXIS] -= retract_zlift;
  2411. SYNC_PLAN_POSITION_KINEMATIC();
  2412. // Raise up to the old current_position
  2413. prepare_move_to_destination();
  2414. }
  2415. }
  2416. else {
  2417. // If the height hasn't been altered, undo the Z hop
  2418. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2419. // Pretend current position is higher. Z will lower on the next move
  2420. current_position[Z_AXIS] += retract_zlift;
  2421. SYNC_PLAN_POSITION_KINEMATIC();
  2422. }
  2423. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2424. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2425. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2426. sync_plan_position_e();
  2427. // Lower Z and recover E
  2428. prepare_move_to_destination();
  2429. }
  2430. feedrate_mm_s = old_feedrate_mm_s;
  2431. retracted[active_extruder] = retracting;
  2432. } // retract()
  2433. #endif // FWRETRACT
  2434. #if ENABLED(MIXING_EXTRUDER)
  2435. void normalize_mix() {
  2436. float mix_total = 0.0;
  2437. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2438. // Scale all values if they don't add up to ~1.0
  2439. if (!NEAR(mix_total, 1.0)) {
  2440. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2441. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2442. }
  2443. }
  2444. #if ENABLED(DIRECT_MIXING_IN_G1)
  2445. // Get mixing parameters from the GCode
  2446. // The total "must" be 1.0 (but it will be normalized)
  2447. // If no mix factors are given, the old mix is preserved
  2448. void gcode_get_mix() {
  2449. const char* mixing_codes = "ABCDHI";
  2450. byte mix_bits = 0;
  2451. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2452. if (code_seen(mixing_codes[i])) {
  2453. SBI(mix_bits, i);
  2454. float v = code_value_float();
  2455. NOLESS(v, 0.0);
  2456. mixing_factor[i] = RECIPROCAL(v);
  2457. }
  2458. }
  2459. // If any mixing factors were included, clear the rest
  2460. // If none were included, preserve the last mix
  2461. if (mix_bits) {
  2462. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2463. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2464. normalize_mix();
  2465. }
  2466. }
  2467. #endif
  2468. #endif
  2469. /**
  2470. * ***************************************************************************
  2471. * ***************************** G-CODE HANDLING *****************************
  2472. * ***************************************************************************
  2473. */
  2474. /**
  2475. * Set XYZE destination and feedrate from the current GCode command
  2476. *
  2477. * - Set destination from included axis codes
  2478. * - Set to current for missing axis codes
  2479. * - Set the feedrate, if included
  2480. */
  2481. void gcode_get_destination() {
  2482. LOOP_XYZE(i) {
  2483. if (code_seen(axis_codes[i]))
  2484. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2485. else
  2486. destination[i] = current_position[i];
  2487. }
  2488. if (code_seen('F') && code_value_linear_units() > 0.0)
  2489. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2490. #if ENABLED(PRINTCOUNTER)
  2491. if (!DEBUGGING(DRYRUN))
  2492. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2493. #endif
  2494. // Get ABCDHI mixing factors
  2495. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2496. gcode_get_mix();
  2497. #endif
  2498. }
  2499. void unknown_command_error() {
  2500. SERIAL_ECHO_START;
  2501. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2502. SERIAL_CHAR('"');
  2503. SERIAL_EOL;
  2504. }
  2505. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2506. /**
  2507. * Output a "busy" message at regular intervals
  2508. * while the machine is not accepting commands.
  2509. */
  2510. void host_keepalive() {
  2511. const millis_t ms = millis();
  2512. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2513. if (PENDING(ms, next_busy_signal_ms)) return;
  2514. switch (busy_state) {
  2515. case IN_HANDLER:
  2516. case IN_PROCESS:
  2517. SERIAL_ECHO_START;
  2518. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2519. break;
  2520. case PAUSED_FOR_USER:
  2521. SERIAL_ECHO_START;
  2522. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2523. break;
  2524. case PAUSED_FOR_INPUT:
  2525. SERIAL_ECHO_START;
  2526. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2527. break;
  2528. default:
  2529. break;
  2530. }
  2531. }
  2532. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2533. }
  2534. #endif //HOST_KEEPALIVE_FEATURE
  2535. bool position_is_reachable(float target[XYZ]
  2536. #if HAS_BED_PROBE
  2537. , bool by_probe=false
  2538. #endif
  2539. ) {
  2540. float dx = RAW_X_POSITION(target[X_AXIS]),
  2541. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2542. #if HAS_BED_PROBE
  2543. if (by_probe) {
  2544. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2545. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2546. }
  2547. #endif
  2548. #if IS_SCARA
  2549. #if MIDDLE_DEAD_ZONE_R > 0
  2550. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2551. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2552. #else
  2553. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2554. #endif
  2555. #elif ENABLED(DELTA)
  2556. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2557. #else
  2558. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2559. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2560. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2561. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2562. #endif
  2563. }
  2564. /**************************************************
  2565. ***************** GCode Handlers *****************
  2566. **************************************************/
  2567. /**
  2568. * G0, G1: Coordinated movement of X Y Z E axes
  2569. */
  2570. inline void gcode_G0_G1(
  2571. #if IS_SCARA
  2572. bool fast_move=false
  2573. #endif
  2574. ) {
  2575. if (IsRunning()) {
  2576. gcode_get_destination(); // For X Y Z E F
  2577. #if ENABLED(FWRETRACT)
  2578. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2579. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2580. // Is this move an attempt to retract or recover?
  2581. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2582. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2583. sync_plan_position_e(); // AND from the planner
  2584. retract(!retracted[active_extruder]);
  2585. return;
  2586. }
  2587. }
  2588. #endif //FWRETRACT
  2589. #if IS_SCARA
  2590. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2591. #else
  2592. prepare_move_to_destination();
  2593. #endif
  2594. }
  2595. }
  2596. /**
  2597. * G2: Clockwise Arc
  2598. * G3: Counterclockwise Arc
  2599. *
  2600. * This command has two forms: IJ-form and R-form.
  2601. *
  2602. * - I specifies an X offset. J specifies a Y offset.
  2603. * At least one of the IJ parameters is required.
  2604. * X and Y can be omitted to do a complete circle.
  2605. * The given XY is not error-checked. The arc ends
  2606. * based on the angle of the destination.
  2607. * Mixing I or J with R will throw an error.
  2608. *
  2609. * - R specifies the radius. X or Y is required.
  2610. * Omitting both X and Y will throw an error.
  2611. * X or Y must differ from the current XY.
  2612. * Mixing R with I or J will throw an error.
  2613. *
  2614. * Examples:
  2615. *
  2616. * G2 I10 ; CW circle centered at X+10
  2617. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2618. */
  2619. #if ENABLED(ARC_SUPPORT)
  2620. inline void gcode_G2_G3(bool clockwise) {
  2621. if (IsRunning()) {
  2622. #if ENABLED(SF_ARC_FIX)
  2623. const bool relative_mode_backup = relative_mode;
  2624. relative_mode = true;
  2625. #endif
  2626. gcode_get_destination();
  2627. #if ENABLED(SF_ARC_FIX)
  2628. relative_mode = relative_mode_backup;
  2629. #endif
  2630. float arc_offset[2] = { 0.0, 0.0 };
  2631. if (code_seen('R')) {
  2632. const float r = code_value_axis_units(X_AXIS),
  2633. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2634. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2635. if (r && (x2 != x1 || y2 != y1)) {
  2636. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2637. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2638. d = HYPOT(dx, dy), // Linear distance between the points
  2639. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2640. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2641. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2642. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2643. arc_offset[X_AXIS] = cx - x1;
  2644. arc_offset[Y_AXIS] = cy - y1;
  2645. }
  2646. }
  2647. else {
  2648. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2649. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2650. }
  2651. if (arc_offset[0] || arc_offset[1]) {
  2652. // Send an arc to the planner
  2653. plan_arc(destination, arc_offset, clockwise);
  2654. refresh_cmd_timeout();
  2655. }
  2656. else {
  2657. // Bad arguments
  2658. SERIAL_ERROR_START;
  2659. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2660. }
  2661. }
  2662. }
  2663. #endif
  2664. /**
  2665. * G4: Dwell S<seconds> or P<milliseconds>
  2666. */
  2667. inline void gcode_G4() {
  2668. millis_t dwell_ms = 0;
  2669. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2670. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2671. stepper.synchronize();
  2672. refresh_cmd_timeout();
  2673. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2674. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2675. while (PENDING(millis(), dwell_ms)) idle();
  2676. }
  2677. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2678. /**
  2679. * Parameters interpreted according to:
  2680. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2681. * However I, J omission is not supported at this point; all
  2682. * parameters can be omitted and default to zero.
  2683. */
  2684. /**
  2685. * G5: Cubic B-spline
  2686. */
  2687. inline void gcode_G5() {
  2688. if (IsRunning()) {
  2689. gcode_get_destination();
  2690. const float offset[] = {
  2691. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2692. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2693. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2694. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2695. };
  2696. plan_cubic_move(offset);
  2697. }
  2698. }
  2699. #endif // BEZIER_CURVE_SUPPORT
  2700. #if ENABLED(FWRETRACT)
  2701. /**
  2702. * G10 - Retract filament according to settings of M207
  2703. * G11 - Recover filament according to settings of M208
  2704. */
  2705. inline void gcode_G10_G11(bool doRetract=false) {
  2706. #if EXTRUDERS > 1
  2707. if (doRetract) {
  2708. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2709. }
  2710. #endif
  2711. retract(doRetract
  2712. #if EXTRUDERS > 1
  2713. , retracted_swap[active_extruder]
  2714. #endif
  2715. );
  2716. }
  2717. #endif //FWRETRACT
  2718. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2719. /**
  2720. * G12: Clean the nozzle
  2721. */
  2722. inline void gcode_G12() {
  2723. // Don't allow nozzle cleaning without homing first
  2724. if (axis_unhomed_error(true, true, true)) return;
  2725. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2726. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2727. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2728. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2729. Nozzle::clean(pattern, strokes, radius, objects);
  2730. }
  2731. #endif
  2732. #if ENABLED(INCH_MODE_SUPPORT)
  2733. /**
  2734. * G20: Set input mode to inches
  2735. */
  2736. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2737. /**
  2738. * G21: Set input mode to millimeters
  2739. */
  2740. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2741. #endif
  2742. #if ENABLED(NOZZLE_PARK_FEATURE)
  2743. /**
  2744. * G27: Park the nozzle
  2745. */
  2746. inline void gcode_G27() {
  2747. // Don't allow nozzle parking without homing first
  2748. if (axis_unhomed_error(true, true, true)) return;
  2749. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2750. }
  2751. #endif // NOZZLE_PARK_FEATURE
  2752. #if ENABLED(QUICK_HOME)
  2753. static void quick_home_xy() {
  2754. // Pretend the current position is 0,0
  2755. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2756. sync_plan_position();
  2757. const int x_axis_home_dir =
  2758. #if ENABLED(DUAL_X_CARRIAGE)
  2759. x_home_dir(active_extruder)
  2760. #else
  2761. home_dir(X_AXIS)
  2762. #endif
  2763. ;
  2764. const float mlx = max_length(X_AXIS),
  2765. mly = max_length(Y_AXIS),
  2766. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2767. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2768. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2769. endstops.hit_on_purpose(); // clear endstop hit flags
  2770. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2771. }
  2772. #endif // QUICK_HOME
  2773. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2774. void log_machine_info() {
  2775. SERIAL_ECHOPGM("Machine Type: ");
  2776. #if ENABLED(DELTA)
  2777. SERIAL_ECHOLNPGM("Delta");
  2778. #elif IS_SCARA
  2779. SERIAL_ECHOLNPGM("SCARA");
  2780. #elif IS_CORE
  2781. SERIAL_ECHOLNPGM("Core");
  2782. #else
  2783. SERIAL_ECHOLNPGM("Cartesian");
  2784. #endif
  2785. SERIAL_ECHOPGM("Probe: ");
  2786. #if ENABLED(PROBE_MANUALLY)
  2787. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2788. #elif ENABLED(FIX_MOUNTED_PROBE)
  2789. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2790. #elif ENABLED(BLTOUCH)
  2791. SERIAL_ECHOLNPGM("BLTOUCH");
  2792. #elif HAS_Z_SERVO_ENDSTOP
  2793. SERIAL_ECHOLNPGM("SERVO PROBE");
  2794. #elif ENABLED(Z_PROBE_SLED)
  2795. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2796. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2797. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2798. #else
  2799. SERIAL_ECHOLNPGM("NONE");
  2800. #endif
  2801. #if HAS_BED_PROBE
  2802. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2803. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2804. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2805. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2806. SERIAL_ECHOPGM(" (Right");
  2807. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2808. SERIAL_ECHOPGM(" (Left");
  2809. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2810. SERIAL_ECHOPGM(" (Middle");
  2811. #else
  2812. SERIAL_ECHOPGM(" (Aligned With");
  2813. #endif
  2814. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2815. SERIAL_ECHOPGM("-Back");
  2816. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2817. SERIAL_ECHOPGM("-Front");
  2818. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2819. SERIAL_ECHOPGM("-Center");
  2820. #endif
  2821. if (zprobe_zoffset < 0)
  2822. SERIAL_ECHOPGM(" & Below");
  2823. else if (zprobe_zoffset > 0)
  2824. SERIAL_ECHOPGM(" & Above");
  2825. else
  2826. SERIAL_ECHOPGM(" & Same Z as");
  2827. SERIAL_ECHOLNPGM(" Nozzle)");
  2828. #endif
  2829. #if HAS_ABL
  2830. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2831. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2832. SERIAL_ECHOPGM("LINEAR");
  2833. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2834. SERIAL_ECHOPGM("BILINEAR");
  2835. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2836. SERIAL_ECHOPGM("3POINT");
  2837. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2838. SERIAL_ECHOPGM("UBL");
  2839. #endif
  2840. if (planner.abl_enabled) {
  2841. SERIAL_ECHOLNPGM(" (enabled)");
  2842. #if ABL_PLANAR
  2843. float diff[XYZ] = {
  2844. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2845. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2846. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2847. };
  2848. SERIAL_ECHOPGM("ABL Adjustment X");
  2849. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2850. SERIAL_ECHO(diff[X_AXIS]);
  2851. SERIAL_ECHOPGM(" Y");
  2852. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2853. SERIAL_ECHO(diff[Y_AXIS]);
  2854. SERIAL_ECHOPGM(" Z");
  2855. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2856. SERIAL_ECHO(diff[Z_AXIS]);
  2857. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2858. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2859. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2860. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2861. #endif
  2862. }
  2863. else
  2864. SERIAL_ECHOLNPGM(" (disabled)");
  2865. SERIAL_EOL;
  2866. #elif ENABLED(MESH_BED_LEVELING)
  2867. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2868. if (mbl.active()) {
  2869. float lz = current_position[Z_AXIS];
  2870. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2871. SERIAL_ECHOLNPGM(" (enabled)");
  2872. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2873. }
  2874. else
  2875. SERIAL_ECHOPGM(" (disabled)");
  2876. SERIAL_EOL;
  2877. #endif // MESH_BED_LEVELING
  2878. }
  2879. #endif // DEBUG_LEVELING_FEATURE
  2880. #if ENABLED(DELTA)
  2881. /**
  2882. * A delta can only safely home all axes at the same time
  2883. * This is like quick_home_xy() but for 3 towers.
  2884. */
  2885. inline void home_delta() {
  2886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2887. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2888. #endif
  2889. // Init the current position of all carriages to 0,0,0
  2890. ZERO(current_position);
  2891. sync_plan_position();
  2892. // Move all carriages together linearly until an endstop is hit.
  2893. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2894. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2895. line_to_current_position();
  2896. stepper.synchronize();
  2897. endstops.hit_on_purpose(); // clear endstop hit flags
  2898. // At least one carriage has reached the top.
  2899. // Now re-home each carriage separately.
  2900. HOMEAXIS(A);
  2901. HOMEAXIS(B);
  2902. HOMEAXIS(C);
  2903. // Set all carriages to their home positions
  2904. // Do this here all at once for Delta, because
  2905. // XYZ isn't ABC. Applying this per-tower would
  2906. // give the impression that they are the same.
  2907. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2908. SYNC_PLAN_POSITION_KINEMATIC();
  2909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2910. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2911. #endif
  2912. }
  2913. #endif // DELTA
  2914. #if ENABLED(Z_SAFE_HOMING)
  2915. inline void home_z_safely() {
  2916. // Disallow Z homing if X or Y are unknown
  2917. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2918. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2919. SERIAL_ECHO_START;
  2920. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2921. return;
  2922. }
  2923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2924. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2925. #endif
  2926. SYNC_PLAN_POSITION_KINEMATIC();
  2927. /**
  2928. * Move the Z probe (or just the nozzle) to the safe homing point
  2929. */
  2930. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2931. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2932. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2933. if (position_is_reachable(
  2934. destination
  2935. #if HOMING_Z_WITH_PROBE
  2936. , true
  2937. #endif
  2938. )
  2939. ) {
  2940. #if HOMING_Z_WITH_PROBE
  2941. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2942. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2943. #endif
  2944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2945. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2946. #endif
  2947. // This causes the carriage on Dual X to unpark
  2948. #if ENABLED(DUAL_X_CARRIAGE)
  2949. active_extruder_parked = false;
  2950. #endif
  2951. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2952. HOMEAXIS(Z);
  2953. }
  2954. else {
  2955. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2956. SERIAL_ECHO_START;
  2957. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2958. }
  2959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2960. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2961. #endif
  2962. }
  2963. #endif // Z_SAFE_HOMING
  2964. #if ENABLED(PROBE_MANUALLY)
  2965. bool g29_in_progress = false;
  2966. #else
  2967. constexpr bool g29_in_progress = false;
  2968. #endif
  2969. /**
  2970. * G28: Home all axes according to settings
  2971. *
  2972. * Parameters
  2973. *
  2974. * None Home to all axes with no parameters.
  2975. * With QUICK_HOME enabled XY will home together, then Z.
  2976. *
  2977. * Cartesian parameters
  2978. *
  2979. * X Home to the X endstop
  2980. * Y Home to the Y endstop
  2981. * Z Home to the Z endstop
  2982. *
  2983. */
  2984. inline void gcode_G28() {
  2985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2986. if (DEBUGGING(LEVELING)) {
  2987. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2988. log_machine_info();
  2989. }
  2990. #endif
  2991. // Wait for planner moves to finish!
  2992. stepper.synchronize();
  2993. // Cancel the active G29 session
  2994. #if ENABLED(PROBE_MANUALLY)
  2995. g29_in_progress = false;
  2996. #endif
  2997. // Disable the leveling matrix before homing
  2998. #if PLANNER_LEVELING
  2999. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3000. const bool bed_leveling_state_at_entry = ubl.state.active;
  3001. #endif
  3002. set_bed_leveling_enabled(false);
  3003. #endif
  3004. // Always home with tool 0 active
  3005. #if HOTENDS > 1
  3006. const uint8_t old_tool_index = active_extruder;
  3007. tool_change(0, 0, true);
  3008. #endif
  3009. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3010. extruder_duplication_enabled = false;
  3011. #endif
  3012. setup_for_endstop_or_probe_move();
  3013. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3014. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3015. #endif
  3016. endstops.enable(true); // Enable endstops for next homing move
  3017. #if ENABLED(DELTA)
  3018. home_delta();
  3019. #else // NOT DELTA
  3020. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3021. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3022. set_destination_to_current();
  3023. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3024. if (home_all_axis || homeZ) {
  3025. HOMEAXIS(Z);
  3026. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3027. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3028. #endif
  3029. }
  3030. #else
  3031. if (home_all_axis || homeX || homeY) {
  3032. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3033. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3034. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3036. if (DEBUGGING(LEVELING))
  3037. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3038. #endif
  3039. do_blocking_move_to_z(destination[Z_AXIS]);
  3040. }
  3041. }
  3042. #endif
  3043. #if ENABLED(QUICK_HOME)
  3044. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3045. #endif
  3046. #if ENABLED(HOME_Y_BEFORE_X)
  3047. // Home Y
  3048. if (home_all_axis || homeY) {
  3049. HOMEAXIS(Y);
  3050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3051. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3052. #endif
  3053. }
  3054. #endif
  3055. // Home X
  3056. if (home_all_axis || homeX) {
  3057. #if ENABLED(DUAL_X_CARRIAGE)
  3058. // Always home the 2nd (right) extruder first
  3059. active_extruder = 1;
  3060. HOMEAXIS(X);
  3061. // Remember this extruder's position for later tool change
  3062. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3063. // Home the 1st (left) extruder
  3064. active_extruder = 0;
  3065. HOMEAXIS(X);
  3066. // Consider the active extruder to be parked
  3067. COPY(raised_parked_position, current_position);
  3068. delayed_move_time = 0;
  3069. active_extruder_parked = true;
  3070. #else
  3071. HOMEAXIS(X);
  3072. #endif
  3073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3074. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3075. #endif
  3076. }
  3077. #if DISABLED(HOME_Y_BEFORE_X)
  3078. // Home Y
  3079. if (home_all_axis || homeY) {
  3080. HOMEAXIS(Y);
  3081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3082. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3083. #endif
  3084. }
  3085. #endif
  3086. // Home Z last if homing towards the bed
  3087. #if Z_HOME_DIR < 0
  3088. if (home_all_axis || homeZ) {
  3089. #if ENABLED(Z_SAFE_HOMING)
  3090. home_z_safely();
  3091. #else
  3092. HOMEAXIS(Z);
  3093. #endif
  3094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3095. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3096. #endif
  3097. } // home_all_axis || homeZ
  3098. #endif // Z_HOME_DIR < 0
  3099. SYNC_PLAN_POSITION_KINEMATIC();
  3100. #endif // !DELTA (gcode_G28)
  3101. endstops.not_homing();
  3102. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3103. // move to a height where we can use the full xy-area
  3104. do_blocking_move_to_z(delta_clip_start_height);
  3105. #endif
  3106. // Enable mesh leveling again
  3107. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3108. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3109. #endif
  3110. #if ENABLED(MESH_BED_LEVELING)
  3111. if (mbl.reactivate()) {
  3112. set_bed_leveling_enabled(true);
  3113. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3114. #if ENABLED(MESH_G28_REST_ORIGIN)
  3115. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3116. set_destination_to_current();
  3117. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3118. stepper.synchronize();
  3119. #endif
  3120. }
  3121. }
  3122. #endif
  3123. clean_up_after_endstop_or_probe_move();
  3124. // Restore the active tool after homing
  3125. #if HOTENDS > 1
  3126. tool_change(old_tool_index, 0, true);
  3127. #endif
  3128. report_current_position();
  3129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3130. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3131. #endif
  3132. }
  3133. #if HAS_PROBING_PROCEDURE
  3134. void out_of_range_error(const char* p_edge) {
  3135. SERIAL_PROTOCOLPGM("?Probe ");
  3136. serialprintPGM(p_edge);
  3137. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3138. }
  3139. #endif
  3140. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3141. inline void _manual_goto_xy(const float &x, const float &y) {
  3142. const float old_feedrate_mm_s = feedrate_mm_s;
  3143. #if MANUAL_PROBE_HEIGHT > 0
  3144. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3145. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3146. line_to_current_position();
  3147. #endif
  3148. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3149. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3150. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3151. line_to_current_position();
  3152. #if MANUAL_PROBE_HEIGHT > 0
  3153. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3154. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3155. line_to_current_position();
  3156. #endif
  3157. feedrate_mm_s = old_feedrate_mm_s;
  3158. stepper.synchronize();
  3159. }
  3160. #endif
  3161. #if ENABLED(MESH_BED_LEVELING)
  3162. // Save 130 bytes with non-duplication of PSTR
  3163. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3164. void mbl_mesh_report() {
  3165. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3166. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3167. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3168. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3169. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3170. SERIAL_PROTOCOLPGM(" ");
  3171. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3172. }
  3173. SERIAL_EOL;
  3174. }
  3175. }
  3176. /**
  3177. * G29: Mesh-based Z probe, probes a grid and produces a
  3178. * mesh to compensate for variable bed height
  3179. *
  3180. * Parameters With MESH_BED_LEVELING:
  3181. *
  3182. * S0 Produce a mesh report
  3183. * S1 Start probing mesh points
  3184. * S2 Probe the next mesh point
  3185. * S3 Xn Yn Zn.nn Manually modify a single point
  3186. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3187. * S5 Reset and disable mesh
  3188. *
  3189. * The S0 report the points as below
  3190. *
  3191. * +----> X-axis 1-n
  3192. * |
  3193. * |
  3194. * v Y-axis 1-n
  3195. *
  3196. */
  3197. inline void gcode_G29() {
  3198. static int mbl_probe_index = -1;
  3199. #if HAS_SOFTWARE_ENDSTOPS
  3200. static bool enable_soft_endstops;
  3201. #endif
  3202. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3203. if (!WITHIN(state, 0, 5)) {
  3204. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3205. return;
  3206. }
  3207. int8_t px, py;
  3208. switch (state) {
  3209. case MeshReport:
  3210. if (mbl.has_mesh()) {
  3211. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3212. mbl_mesh_report();
  3213. }
  3214. else
  3215. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3216. break;
  3217. case MeshStart:
  3218. mbl.reset();
  3219. mbl_probe_index = 0;
  3220. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3221. break;
  3222. case MeshNext:
  3223. if (mbl_probe_index < 0) {
  3224. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3225. return;
  3226. }
  3227. // For each G29 S2...
  3228. if (mbl_probe_index == 0) {
  3229. #if HAS_SOFTWARE_ENDSTOPS
  3230. // For the initial G29 S2 save software endstop state
  3231. enable_soft_endstops = soft_endstops_enabled;
  3232. #endif
  3233. }
  3234. else {
  3235. // For G29 S2 after adjusting Z.
  3236. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3237. #if HAS_SOFTWARE_ENDSTOPS
  3238. soft_endstops_enabled = enable_soft_endstops;
  3239. #endif
  3240. }
  3241. // If there's another point to sample, move there with optional lift.
  3242. if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3243. mbl.zigzag(mbl_probe_index, px, py);
  3244. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3245. #if HAS_SOFTWARE_ENDSTOPS
  3246. // Disable software endstops to allow manual adjustment
  3247. // If G29 is not completed, they will not be re-enabled
  3248. soft_endstops_enabled = false;
  3249. #endif
  3250. mbl_probe_index++;
  3251. }
  3252. else {
  3253. // One last "return to the bed" (as originally coded) at completion
  3254. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3255. line_to_current_position();
  3256. stepper.synchronize();
  3257. // After recording the last point, activate the mbl and home
  3258. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3259. mbl_probe_index = -1;
  3260. mbl.set_has_mesh(true);
  3261. mbl.set_reactivate(true);
  3262. enqueue_and_echo_commands_P(PSTR("G28"));
  3263. BUZZ(100, 659);
  3264. BUZZ(100, 698);
  3265. }
  3266. break;
  3267. case MeshSet:
  3268. if (code_seen('X')) {
  3269. px = code_value_int() - 1;
  3270. if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) {
  3271. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3272. return;
  3273. }
  3274. }
  3275. else {
  3276. SERIAL_CHAR('X'); say_not_entered();
  3277. return;
  3278. }
  3279. if (code_seen('Y')) {
  3280. py = code_value_int() - 1;
  3281. if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) {
  3282. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3283. return;
  3284. }
  3285. }
  3286. else {
  3287. SERIAL_CHAR('Y'); say_not_entered();
  3288. return;
  3289. }
  3290. if (code_seen('Z')) {
  3291. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3292. }
  3293. else {
  3294. SERIAL_CHAR('Z'); say_not_entered();
  3295. return;
  3296. }
  3297. break;
  3298. case MeshSetZOffset:
  3299. if (code_seen('Z')) {
  3300. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3301. }
  3302. else {
  3303. SERIAL_CHAR('Z'); say_not_entered();
  3304. return;
  3305. }
  3306. break;
  3307. case MeshReset:
  3308. reset_bed_level();
  3309. break;
  3310. } // switch(state)
  3311. report_current_position();
  3312. }
  3313. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3314. #if ABL_GRID
  3315. #if ENABLED(PROBE_Y_FIRST)
  3316. #define PR_OUTER_VAR xCount
  3317. #define PR_OUTER_END abl_grid_points_x
  3318. #define PR_INNER_VAR yCount
  3319. #define PR_INNER_END abl_grid_points_y
  3320. #else
  3321. #define PR_OUTER_VAR yCount
  3322. #define PR_OUTER_END abl_grid_points_y
  3323. #define PR_INNER_VAR xCount
  3324. #define PR_INNER_END abl_grid_points_x
  3325. #endif
  3326. #endif
  3327. /**
  3328. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3329. * Will fail if the printer has not been homed with G28.
  3330. *
  3331. * Enhanced G29 Auto Bed Leveling Probe Routine
  3332. *
  3333. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3334. * or alter the bed level data. Useful to check the topology
  3335. * after a first run of G29.
  3336. *
  3337. * J Jettison current bed leveling data
  3338. *
  3339. * V Set the verbose level (0-4). Example: "G29 V3"
  3340. *
  3341. * Parameters With LINEAR leveling only:
  3342. *
  3343. * P Set the size of the grid that will be probed (P x P points).
  3344. * Example: "G29 P4"
  3345. *
  3346. * X Set the X size of the grid that will be probed (X x Y points).
  3347. * Example: "G29 X7 Y5"
  3348. *
  3349. * Y Set the Y size of the grid that will be probed (X x Y points).
  3350. *
  3351. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3352. * This is useful for manual bed leveling and finding flaws in the bed (to
  3353. * assist with part placement).
  3354. * Not supported by non-linear delta printer bed leveling.
  3355. *
  3356. * Parameters With LINEAR and BILINEAR leveling only:
  3357. *
  3358. * S Set the XY travel speed between probe points (in units/min)
  3359. *
  3360. * F Set the Front limit of the probing grid
  3361. * B Set the Back limit of the probing grid
  3362. * L Set the Left limit of the probing grid
  3363. * R Set the Right limit of the probing grid
  3364. *
  3365. * Parameters with BILINEAR leveling only:
  3366. *
  3367. * Z Supply an additional Z probe offset
  3368. *
  3369. * Extra parameters with PROBE_MANUALLY:
  3370. *
  3371. * To do manual probing simply repeat G29 until the procedure is complete.
  3372. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3373. *
  3374. * Q Query leveling and G29 state
  3375. *
  3376. * A Abort current leveling procedure
  3377. *
  3378. * W Write a mesh point. (Ignored during leveling.)
  3379. * X Required X for mesh point
  3380. * Y Required Y for mesh point
  3381. * Z Required Z for mesh point
  3382. *
  3383. * Without PROBE_MANUALLY:
  3384. *
  3385. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3386. * Include "E" to engage/disengage the Z probe for each sample.
  3387. * There's no extra effect if you have a fixed Z probe.
  3388. *
  3389. */
  3390. inline void gcode_G29() {
  3391. // G29 Q is also available if debugging
  3392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3393. const bool query = code_seen('Q');
  3394. const uint8_t old_debug_flags = marlin_debug_flags;
  3395. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3396. if (DEBUGGING(LEVELING)) {
  3397. DEBUG_POS(">>> gcode_G29", current_position);
  3398. log_machine_info();
  3399. }
  3400. marlin_debug_flags = old_debug_flags;
  3401. #if DISABLED(PROBE_MANUALLY)
  3402. if (query) return;
  3403. #endif
  3404. #endif
  3405. // Don't allow auto-leveling without homing first
  3406. if (axis_unhomed_error(true, true, true)) return;
  3407. // Define local vars 'static' for manual probing, 'auto' otherwise
  3408. #if ENABLED(PROBE_MANUALLY)
  3409. #define ABL_VAR static
  3410. #else
  3411. #define ABL_VAR
  3412. #endif
  3413. ABL_VAR int verbose_level, abl_probe_index;
  3414. ABL_VAR float xProbe, yProbe, measured_z;
  3415. ABL_VAR bool dryrun, abl_should_enable;
  3416. #if HAS_SOFTWARE_ENDSTOPS
  3417. ABL_VAR bool enable_soft_endstops = true;
  3418. #endif
  3419. #if ABL_GRID
  3420. ABL_VAR uint8_t PR_OUTER_VAR;
  3421. ABL_VAR int8_t PR_INNER_VAR;
  3422. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3423. ABL_VAR float xGridSpacing, yGridSpacing;
  3424. #define ABL_GRID_MAX (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y)
  3425. #if ABL_PLANAR
  3426. ABL_VAR uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3427. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3428. ABL_VAR int abl2;
  3429. ABL_VAR bool do_topography_map;
  3430. #else // 3-point
  3431. uint8_t constexpr abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3432. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3433. int constexpr abl2 = ABL_GRID_MAX;
  3434. #endif
  3435. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3436. ABL_VAR float zoffset;
  3437. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3438. ABL_VAR int indexIntoAB[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  3439. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3440. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3441. mean;
  3442. #endif
  3443. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3444. // Probe at 3 arbitrary points
  3445. ABL_VAR vector_3 points[3] = {
  3446. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3447. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3448. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3449. };
  3450. #endif // AUTO_BED_LEVELING_3POINT
  3451. /**
  3452. * On the initial G29 fetch command parameters.
  3453. */
  3454. if (!g29_in_progress) {
  3455. abl_probe_index = 0;
  3456. abl_should_enable = planner.abl_enabled;
  3457. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3458. if (code_seen('W')) {
  3459. if (!bilinear_grid_spacing[X_AXIS]) {
  3460. SERIAL_ERROR_START;
  3461. SERIAL_ERRORLNPGM("No bilinear grid");
  3462. return;
  3463. }
  3464. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3465. if (!WITHIN(z, -10, 10)) {
  3466. SERIAL_ERROR_START;
  3467. SERIAL_ERRORLNPGM("Bad Z value");
  3468. return;
  3469. }
  3470. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3471. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3472. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3473. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3474. if (x < 99998 && y < 99998) {
  3475. // Get nearest i / j from x / y
  3476. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3477. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3478. i = constrain(i, 0, ABL_GRID_MAX_POINTS_X - 1);
  3479. j = constrain(j, 0, ABL_GRID_MAX_POINTS_Y - 1);
  3480. }
  3481. if (WITHIN(i, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, ABL_GRID_MAX_POINTS_Y)) {
  3482. set_bed_leveling_enabled(false);
  3483. bed_level_grid[i][j] = z;
  3484. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3485. bed_level_virt_interpolate();
  3486. #endif
  3487. set_bed_leveling_enabled(abl_should_enable);
  3488. }
  3489. return;
  3490. } // code_seen('W')
  3491. #endif
  3492. #if PLANNER_LEVELING
  3493. // Jettison bed leveling data
  3494. if (code_seen('J')) {
  3495. reset_bed_level();
  3496. return;
  3497. }
  3498. #endif
  3499. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3500. if (!WITHIN(verbose_level, 0, 4)) {
  3501. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3502. return;
  3503. }
  3504. dryrun = code_seen('D') ? code_value_bool() : false;
  3505. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3506. do_topography_map = verbose_level > 2 || code_seen('T');
  3507. // X and Y specify points in each direction, overriding the default
  3508. // These values may be saved with the completed mesh
  3509. abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X;
  3510. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3511. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3512. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3513. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3514. return;
  3515. }
  3516. abl2 = abl_grid_points_x * abl_grid_points_y;
  3517. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3518. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3519. #if HAS_BED_PROBE
  3520. zoffset += zprobe_zoffset;
  3521. #endif
  3522. #endif
  3523. #if ABL_GRID
  3524. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3525. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3526. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3527. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3528. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3529. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3530. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3531. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3532. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3533. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3534. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3535. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3536. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3537. if (left_out || right_out || front_out || back_out) {
  3538. if (left_out) {
  3539. out_of_range_error(PSTR("(L)eft"));
  3540. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3541. }
  3542. if (right_out) {
  3543. out_of_range_error(PSTR("(R)ight"));
  3544. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3545. }
  3546. if (front_out) {
  3547. out_of_range_error(PSTR("(F)ront"));
  3548. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3549. }
  3550. if (back_out) {
  3551. out_of_range_error(PSTR("(B)ack"));
  3552. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3553. }
  3554. return;
  3555. }
  3556. // probe at the points of a lattice grid
  3557. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3558. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3559. #endif // ABL_GRID
  3560. if (verbose_level > 0) {
  3561. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3562. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3563. }
  3564. stepper.synchronize();
  3565. // Disable auto bed leveling during G29
  3566. planner.abl_enabled = false;
  3567. if (!dryrun) {
  3568. // Re-orient the current position without leveling
  3569. // based on where the steppers are positioned.
  3570. set_current_from_steppers_for_axis(ALL_AXES);
  3571. // Sync the planner to where the steppers stopped
  3572. SYNC_PLAN_POSITION_KINEMATIC();
  3573. }
  3574. setup_for_endstop_or_probe_move();
  3575. //xProbe = yProbe = measured_z = 0;
  3576. #if HAS_BED_PROBE
  3577. // Deploy the probe. Probe will raise if needed.
  3578. if (DEPLOY_PROBE()) {
  3579. planner.abl_enabled = abl_should_enable;
  3580. return;
  3581. }
  3582. #endif
  3583. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3584. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3585. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3586. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3587. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3588. ) {
  3589. if (dryrun) {
  3590. // Before reset bed level, re-enable to correct the position
  3591. planner.abl_enabled = abl_should_enable;
  3592. }
  3593. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3594. reset_bed_level();
  3595. // Initialize a grid with the given dimensions
  3596. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3597. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3598. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3599. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3600. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3601. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3602. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3603. #endif
  3604. // Can't re-enable (on error) until the new grid is written
  3605. abl_should_enable = false;
  3606. }
  3607. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3608. mean = 0.0;
  3609. #endif // AUTO_BED_LEVELING_LINEAR
  3610. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3612. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3613. #endif
  3614. // Probe at 3 arbitrary points
  3615. points[0].z = points[1].z = points[2].z = 0;
  3616. #endif // AUTO_BED_LEVELING_3POINT
  3617. } // !g29_in_progress
  3618. #if ENABLED(PROBE_MANUALLY)
  3619. // Abort current G29 procedure, go back to ABLStart
  3620. if (code_seen('A') && g29_in_progress) {
  3621. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3622. #if HAS_SOFTWARE_ENDSTOPS
  3623. soft_endstops_enabled = enable_soft_endstops;
  3624. #endif
  3625. planner.abl_enabled = abl_should_enable;
  3626. g29_in_progress = false;
  3627. }
  3628. // Query G29 status
  3629. if (code_seen('Q')) {
  3630. if (!g29_in_progress)
  3631. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3632. else {
  3633. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3634. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3635. }
  3636. }
  3637. if (code_seen('A') || code_seen('Q')) return;
  3638. // Fall through to probe the first point
  3639. g29_in_progress = true;
  3640. if (abl_probe_index == 0) {
  3641. // For the initial G29 S2 save software endstop state
  3642. #if HAS_SOFTWARE_ENDSTOPS
  3643. enable_soft_endstops = soft_endstops_enabled;
  3644. #endif
  3645. }
  3646. else {
  3647. // For G29 after adjusting Z.
  3648. // Save the previous Z before going to the next point
  3649. measured_z = current_position[Z_AXIS];
  3650. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3651. mean += measured_z;
  3652. eqnBVector[abl_probe_index] = measured_z;
  3653. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3654. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3655. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3656. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3657. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3658. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3659. points[i].z = measured_z;
  3660. #endif
  3661. }
  3662. //
  3663. // If there's another point to sample, move there with optional lift.
  3664. //
  3665. #if ABL_GRID
  3666. // Find a next point to probe
  3667. // On the first G29 this will be the first probe point
  3668. while (abl_probe_index < abl2) {
  3669. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3670. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3671. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3672. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3673. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3674. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3675. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3676. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3677. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3678. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3679. indexIntoAB[xCount][yCount] = abl_probe_index;
  3680. #endif
  3681. float pos[XYZ] = { xProbe, yProbe, 0 };
  3682. if (position_is_reachable(pos)) break;
  3683. ++abl_probe_index;
  3684. }
  3685. // Is there a next point to move to?
  3686. if (abl_probe_index < abl2) {
  3687. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3688. ++abl_probe_index;
  3689. #if HAS_SOFTWARE_ENDSTOPS
  3690. // Disable software endstops to allow manual adjustment
  3691. // If G29 is not completed, they will not be re-enabled
  3692. soft_endstops_enabled = false;
  3693. #endif
  3694. return;
  3695. }
  3696. else {
  3697. // Then leveling is done!
  3698. // G29 finishing code goes here
  3699. // After recording the last point, activate abl
  3700. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3701. g29_in_progress = false;
  3702. // Re-enable software endstops, if needed
  3703. #if HAS_SOFTWARE_ENDSTOPS
  3704. soft_endstops_enabled = enable_soft_endstops;
  3705. #endif
  3706. }
  3707. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3708. // Probe at 3 arbitrary points
  3709. if (abl_probe_index < 3) {
  3710. xProbe = LOGICAL_X_POSITION(points[i].x);
  3711. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3712. ++abl_probe_index;
  3713. #if HAS_SOFTWARE_ENDSTOPS
  3714. // Disable software endstops to allow manual adjustment
  3715. // If G29 is not completed, they will not be re-enabled
  3716. soft_endstops_enabled = false;
  3717. #endif
  3718. return;
  3719. }
  3720. else {
  3721. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3722. g29_in_progress = false;
  3723. // Re-enable software endstops, if needed
  3724. #if HAS_SOFTWARE_ENDSTOPS
  3725. soft_endstops_enabled = enable_soft_endstops;
  3726. #endif
  3727. if (!dryrun) {
  3728. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3729. if (planeNormal.z < 0) {
  3730. planeNormal.x *= -1;
  3731. planeNormal.y *= -1;
  3732. planeNormal.z *= -1;
  3733. }
  3734. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3735. // Can't re-enable (on error) until the new grid is written
  3736. abl_should_enable = false;
  3737. }
  3738. }
  3739. #endif // AUTO_BED_LEVELING_3POINT
  3740. #else // !PROBE_MANUALLY
  3741. bool stow_probe_after_each = code_seen('E');
  3742. #if ABL_GRID
  3743. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3744. // Outer loop is Y with PROBE_Y_FIRST disabled
  3745. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3746. int8_t inStart, inStop, inInc;
  3747. if (zig) { // away from origin
  3748. inStart = 0;
  3749. inStop = PR_INNER_END;
  3750. inInc = 1;
  3751. }
  3752. else { // towards origin
  3753. inStart = PR_INNER_END - 1;
  3754. inStop = -1;
  3755. inInc = -1;
  3756. }
  3757. zig = !zig; // zag
  3758. // Inner loop is Y with PROBE_Y_FIRST enabled
  3759. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3760. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3761. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3762. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3763. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3764. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3765. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3766. #endif
  3767. #if IS_KINEMATIC
  3768. // Avoid probing outside the round or hexagonal area
  3769. float pos[XYZ] = { xProbe, yProbe, 0 };
  3770. if (!position_is_reachable(pos, true)) continue;
  3771. #endif
  3772. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3773. if (measured_z == NAN) {
  3774. planner.abl_enabled = abl_should_enable;
  3775. return;
  3776. }
  3777. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3778. mean += measured_z;
  3779. eqnBVector[abl_probe_index] = measured_z;
  3780. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3781. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3782. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3783. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3784. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3785. #endif
  3786. abl_should_enable = false;
  3787. idle();
  3788. } // inner
  3789. } // outer
  3790. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3791. // Probe at 3 arbitrary points
  3792. for (uint8_t i = 0; i < 3; ++i) {
  3793. // Retain the last probe position
  3794. xProbe = LOGICAL_X_POSITION(points[i].x);
  3795. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3796. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3797. }
  3798. if (measured_z == NAN) {
  3799. planner.abl_enabled = abl_should_enable;
  3800. return;
  3801. }
  3802. if (!dryrun) {
  3803. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3804. if (planeNormal.z < 0) {
  3805. planeNormal.x *= -1;
  3806. planeNormal.y *= -1;
  3807. planeNormal.z *= -1;
  3808. }
  3809. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3810. // Can't re-enable (on error) until the new grid is written
  3811. abl_should_enable = false;
  3812. }
  3813. #endif // AUTO_BED_LEVELING_3POINT
  3814. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3815. if (STOW_PROBE()) {
  3816. planner.abl_enabled = abl_should_enable;
  3817. return;
  3818. }
  3819. #endif // !PROBE_MANUALLY
  3820. //
  3821. // G29 Finishing Code
  3822. //
  3823. // Unless this is a dry run, auto bed leveling will
  3824. // definitely be enabled after this point
  3825. //
  3826. // Restore state after probing
  3827. clean_up_after_endstop_or_probe_move();
  3828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3829. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3830. #endif
  3831. // Calculate leveling, print reports, correct the position
  3832. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3833. if (!dryrun) extrapolate_unprobed_bed_level();
  3834. print_bilinear_leveling_grid();
  3835. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3836. bed_level_virt_interpolate();
  3837. bed_level_virt_print();
  3838. #endif
  3839. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3840. // For LINEAR leveling calculate matrix, print reports, correct the position
  3841. /**
  3842. * solve the plane equation ax + by + d = z
  3843. * A is the matrix with rows [x y 1] for all the probed points
  3844. * B is the vector of the Z positions
  3845. * the normal vector to the plane is formed by the coefficients of the
  3846. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3847. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3848. */
  3849. float plane_equation_coefficients[3];
  3850. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3851. mean /= abl2;
  3852. if (verbose_level) {
  3853. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3854. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3855. SERIAL_PROTOCOLPGM(" b: ");
  3856. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3857. SERIAL_PROTOCOLPGM(" d: ");
  3858. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3859. SERIAL_EOL;
  3860. if (verbose_level > 2) {
  3861. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3862. SERIAL_PROTOCOL_F(mean, 8);
  3863. SERIAL_EOL;
  3864. }
  3865. }
  3866. // Create the matrix but don't correct the position yet
  3867. if (!dryrun) {
  3868. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3869. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3870. );
  3871. }
  3872. // Show the Topography map if enabled
  3873. if (do_topography_map) {
  3874. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3875. " +--- BACK --+\n"
  3876. " | |\n"
  3877. " L | (+) | R\n"
  3878. " E | | I\n"
  3879. " F | (-) N (+) | G\n"
  3880. " T | | H\n"
  3881. " | (-) | T\n"
  3882. " | |\n"
  3883. " O-- FRONT --+\n"
  3884. " (0,0)");
  3885. float min_diff = 999;
  3886. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3887. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3888. int ind = indexIntoAB[xx][yy];
  3889. float diff = eqnBVector[ind] - mean,
  3890. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3891. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3892. z_tmp = 0;
  3893. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3894. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3895. if (diff >= 0.0)
  3896. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3897. else
  3898. SERIAL_PROTOCOLCHAR(' ');
  3899. SERIAL_PROTOCOL_F(diff, 5);
  3900. } // xx
  3901. SERIAL_EOL;
  3902. } // yy
  3903. SERIAL_EOL;
  3904. if (verbose_level > 3) {
  3905. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3906. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3907. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3908. int ind = indexIntoAB[xx][yy];
  3909. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3910. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3911. z_tmp = 0;
  3912. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3913. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3914. if (diff >= 0.0)
  3915. SERIAL_PROTOCOLPGM(" +");
  3916. // Include + for column alignment
  3917. else
  3918. SERIAL_PROTOCOLCHAR(' ');
  3919. SERIAL_PROTOCOL_F(diff, 5);
  3920. } // xx
  3921. SERIAL_EOL;
  3922. } // yy
  3923. SERIAL_EOL;
  3924. }
  3925. } //do_topography_map
  3926. #endif // AUTO_BED_LEVELING_LINEAR
  3927. #if ABL_PLANAR
  3928. // For LINEAR and 3POINT leveling correct the current position
  3929. if (verbose_level > 0)
  3930. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3931. if (!dryrun) {
  3932. //
  3933. // Correct the current XYZ position based on the tilted plane.
  3934. //
  3935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3936. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3937. #endif
  3938. float converted[XYZ];
  3939. COPY(converted, current_position);
  3940. planner.abl_enabled = true;
  3941. planner.unapply_leveling(converted); // use conversion machinery
  3942. planner.abl_enabled = false;
  3943. // Use the last measured distance to the bed, if possible
  3944. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3945. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3946. ) {
  3947. float simple_z = current_position[Z_AXIS] - measured_z;
  3948. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3949. if (DEBUGGING(LEVELING)) {
  3950. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3951. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3952. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3953. }
  3954. #endif
  3955. converted[Z_AXIS] = simple_z;
  3956. }
  3957. // The rotated XY and corrected Z are now current_position
  3958. COPY(current_position, converted);
  3959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3960. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3961. #endif
  3962. }
  3963. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3964. if (!dryrun) {
  3965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3966. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3967. #endif
  3968. // Unapply the offset because it is going to be immediately applied
  3969. // and cause compensation movement in Z
  3970. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3972. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3973. #endif
  3974. }
  3975. #endif // ABL_PLANAR
  3976. #ifdef Z_PROBE_END_SCRIPT
  3977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3978. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3979. #endif
  3980. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3981. stepper.synchronize();
  3982. #endif
  3983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3984. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3985. #endif
  3986. report_current_position();
  3987. KEEPALIVE_STATE(IN_HANDLER);
  3988. // Auto Bed Leveling is complete! Enable if possible.
  3989. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3990. if (planner.abl_enabled)
  3991. SYNC_PLAN_POSITION_KINEMATIC();
  3992. }
  3993. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3994. #if HAS_BED_PROBE
  3995. /**
  3996. * G30: Do a single Z probe at the current XY
  3997. * Usage:
  3998. * G30 <X#> <Y#> <S#>
  3999. * X = Probe X position (default=current probe position)
  4000. * Y = Probe Y position (default=current probe position)
  4001. * S = Stows the probe if 1 (default=1)
  4002. */
  4003. inline void gcode_G30() {
  4004. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4005. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4006. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4007. if (!position_is_reachable(pos, true)) return;
  4008. bool stow = code_seen('S') ? code_value_bool() : true;
  4009. // Disable leveling so the planner won't mess with us
  4010. #if PLANNER_LEVELING
  4011. set_bed_leveling_enabled(false);
  4012. #endif
  4013. setup_for_endstop_or_probe_move();
  4014. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4015. SERIAL_PROTOCOLPGM("Bed X: ");
  4016. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4017. SERIAL_PROTOCOLPGM(" Y: ");
  4018. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4019. SERIAL_PROTOCOLPGM(" Z: ");
  4020. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4021. clean_up_after_endstop_or_probe_move();
  4022. report_current_position();
  4023. }
  4024. #if ENABLED(Z_PROBE_SLED)
  4025. /**
  4026. * G31: Deploy the Z probe
  4027. */
  4028. inline void gcode_G31() { DEPLOY_PROBE(); }
  4029. /**
  4030. * G32: Stow the Z probe
  4031. */
  4032. inline void gcode_G32() { STOW_PROBE(); }
  4033. #endif // Z_PROBE_SLED
  4034. #endif // HAS_BED_PROBE
  4035. #if ENABLED(G38_PROBE_TARGET)
  4036. static bool G38_run_probe() {
  4037. bool G38_pass_fail = false;
  4038. // Get direction of move and retract
  4039. float retract_mm[XYZ];
  4040. LOOP_XYZ(i) {
  4041. float dist = destination[i] - current_position[i];
  4042. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4043. }
  4044. stepper.synchronize(); // wait until the machine is idle
  4045. // Move until destination reached or target hit
  4046. endstops.enable(true);
  4047. G38_move = true;
  4048. G38_endstop_hit = false;
  4049. prepare_move_to_destination();
  4050. stepper.synchronize();
  4051. G38_move = false;
  4052. endstops.hit_on_purpose();
  4053. set_current_from_steppers_for_axis(ALL_AXES);
  4054. SYNC_PLAN_POSITION_KINEMATIC();
  4055. // Only do remaining moves if target was hit
  4056. if (G38_endstop_hit) {
  4057. G38_pass_fail = true;
  4058. // Move away by the retract distance
  4059. set_destination_to_current();
  4060. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4061. endstops.enable(false);
  4062. prepare_move_to_destination();
  4063. stepper.synchronize();
  4064. feedrate_mm_s /= 4;
  4065. // Bump the target more slowly
  4066. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4067. endstops.enable(true);
  4068. G38_move = true;
  4069. prepare_move_to_destination();
  4070. stepper.synchronize();
  4071. G38_move = false;
  4072. set_current_from_steppers_for_axis(ALL_AXES);
  4073. SYNC_PLAN_POSITION_KINEMATIC();
  4074. }
  4075. endstops.hit_on_purpose();
  4076. endstops.not_homing();
  4077. return G38_pass_fail;
  4078. }
  4079. /**
  4080. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4081. * G38.3 - probe toward workpiece, stop on contact
  4082. *
  4083. * Like G28 except uses Z min endstop for all axes
  4084. */
  4085. inline void gcode_G38(bool is_38_2) {
  4086. // Get X Y Z E F
  4087. gcode_get_destination();
  4088. setup_for_endstop_or_probe_move();
  4089. // If any axis has enough movement, do the move
  4090. LOOP_XYZ(i)
  4091. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4092. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4093. // If G38.2 fails throw an error
  4094. if (!G38_run_probe() && is_38_2) {
  4095. SERIAL_ERROR_START;
  4096. SERIAL_ERRORLNPGM("Failed to reach target");
  4097. }
  4098. break;
  4099. }
  4100. clean_up_after_endstop_or_probe_move();
  4101. }
  4102. #endif // G38_PROBE_TARGET
  4103. /**
  4104. * G92: Set current position to given X Y Z E
  4105. */
  4106. inline void gcode_G92() {
  4107. bool didXYZ = false,
  4108. didE = code_seen('E');
  4109. if (!didE) stepper.synchronize();
  4110. LOOP_XYZE(i) {
  4111. if (code_seen(axis_codes[i])) {
  4112. #if IS_SCARA
  4113. current_position[i] = code_value_axis_units(i);
  4114. if (i != E_AXIS) didXYZ = true;
  4115. #else
  4116. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4117. float p = current_position[i];
  4118. #endif
  4119. float v = code_value_axis_units(i);
  4120. current_position[i] = v;
  4121. if (i != E_AXIS) {
  4122. didXYZ = true;
  4123. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4124. position_shift[i] += v - p; // Offset the coordinate space
  4125. update_software_endstops((AxisEnum)i);
  4126. #endif
  4127. }
  4128. #endif
  4129. }
  4130. }
  4131. if (didXYZ)
  4132. SYNC_PLAN_POSITION_KINEMATIC();
  4133. else if (didE)
  4134. sync_plan_position_e();
  4135. report_current_position();
  4136. }
  4137. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4138. /**
  4139. * M0: Unconditional stop - Wait for user button press on LCD
  4140. * M1: Conditional stop - Wait for user button press on LCD
  4141. */
  4142. inline void gcode_M0_M1() {
  4143. char* args = current_command_args;
  4144. millis_t codenum = 0;
  4145. bool hasP = false, hasS = false;
  4146. if (code_seen('P')) {
  4147. codenum = code_value_millis(); // milliseconds to wait
  4148. hasP = codenum > 0;
  4149. }
  4150. if (code_seen('S')) {
  4151. codenum = code_value_millis_from_seconds(); // seconds to wait
  4152. hasS = codenum > 0;
  4153. }
  4154. #if ENABLED(ULTIPANEL)
  4155. if (!hasP && !hasS && *args != '\0')
  4156. lcd_setstatus(args, true);
  4157. else {
  4158. LCD_MESSAGEPGM(MSG_USERWAIT);
  4159. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4160. dontExpireStatus();
  4161. #endif
  4162. }
  4163. #else
  4164. if (!hasP && !hasS && *args != '\0') {
  4165. SERIAL_ECHO_START;
  4166. SERIAL_ECHOLN(args);
  4167. }
  4168. #endif
  4169. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4170. wait_for_user = true;
  4171. stepper.synchronize();
  4172. refresh_cmd_timeout();
  4173. if (codenum > 0) {
  4174. codenum += previous_cmd_ms; // wait until this time for a click
  4175. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4176. }
  4177. else {
  4178. #if ENABLED(ULTIPANEL)
  4179. if (lcd_detected()) {
  4180. while (wait_for_user) idle();
  4181. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4182. }
  4183. #else
  4184. while (wait_for_user) idle();
  4185. #endif
  4186. }
  4187. wait_for_user = false;
  4188. KEEPALIVE_STATE(IN_HANDLER);
  4189. }
  4190. #endif // EMERGENCY_PARSER || ULTIPANEL
  4191. /**
  4192. * M17: Enable power on all stepper motors
  4193. */
  4194. inline void gcode_M17() {
  4195. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4196. enable_all_steppers();
  4197. }
  4198. #if IS_KINEMATIC
  4199. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4200. #else
  4201. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4202. #endif
  4203. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4204. float resume_position[XYZE];
  4205. bool move_away_flag = false;
  4206. inline void move_back_on_resume() {
  4207. if (!move_away_flag) return;
  4208. move_away_flag = false;
  4209. // Set extruder to saved position
  4210. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4211. planner.set_e_position_mm(current_position[E_AXIS]);
  4212. #if IS_KINEMATIC
  4213. // Move XYZ to starting position
  4214. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4215. #else
  4216. // Move XY to starting position, then Z
  4217. destination[X_AXIS] = resume_position[X_AXIS];
  4218. destination[Y_AXIS] = resume_position[Y_AXIS];
  4219. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4220. destination[Z_AXIS] = resume_position[Z_AXIS];
  4221. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4222. #endif
  4223. stepper.synchronize();
  4224. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4225. filament_ran_out = false;
  4226. #endif
  4227. set_current_to_destination();
  4228. }
  4229. #endif // PARK_HEAD_ON_PAUSE
  4230. #if ENABLED(SDSUPPORT)
  4231. /**
  4232. * M20: List SD card to serial output
  4233. */
  4234. inline void gcode_M20() {
  4235. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4236. card.ls();
  4237. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4238. }
  4239. /**
  4240. * M21: Init SD Card
  4241. */
  4242. inline void gcode_M21() { card.initsd(); }
  4243. /**
  4244. * M22: Release SD Card
  4245. */
  4246. inline void gcode_M22() { card.release(); }
  4247. /**
  4248. * M23: Open a file
  4249. */
  4250. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4251. /**
  4252. * M24: Start or Resume SD Print
  4253. */
  4254. inline void gcode_M24() {
  4255. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4256. move_back_on_resume();
  4257. #endif
  4258. card.startFileprint();
  4259. print_job_timer.start();
  4260. }
  4261. /**
  4262. * M25: Pause SD Print
  4263. */
  4264. inline void gcode_M25() {
  4265. card.pauseSDPrint();
  4266. print_job_timer.pause();
  4267. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4268. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4269. #endif
  4270. }
  4271. /**
  4272. * M26: Set SD Card file index
  4273. */
  4274. inline void gcode_M26() {
  4275. if (card.cardOK && code_seen('S'))
  4276. card.setIndex(code_value_long());
  4277. }
  4278. /**
  4279. * M27: Get SD Card status
  4280. */
  4281. inline void gcode_M27() { card.getStatus(); }
  4282. /**
  4283. * M28: Start SD Write
  4284. */
  4285. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4286. /**
  4287. * M29: Stop SD Write
  4288. * Processed in write to file routine above
  4289. */
  4290. inline void gcode_M29() {
  4291. // card.saving = false;
  4292. }
  4293. /**
  4294. * M30 <filename>: Delete SD Card file
  4295. */
  4296. inline void gcode_M30() {
  4297. if (card.cardOK) {
  4298. card.closefile();
  4299. card.removeFile(current_command_args);
  4300. }
  4301. }
  4302. #endif // SDSUPPORT
  4303. /**
  4304. * M31: Get the time since the start of SD Print (or last M109)
  4305. */
  4306. inline void gcode_M31() {
  4307. char buffer[21];
  4308. duration_t elapsed = print_job_timer.duration();
  4309. elapsed.toString(buffer);
  4310. lcd_setstatus(buffer);
  4311. SERIAL_ECHO_START;
  4312. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4313. #if ENABLED(AUTOTEMP)
  4314. thermalManager.autotempShutdown();
  4315. #endif
  4316. }
  4317. #if ENABLED(SDSUPPORT)
  4318. /**
  4319. * M32: Select file and start SD Print
  4320. */
  4321. inline void gcode_M32() {
  4322. if (card.sdprinting)
  4323. stepper.synchronize();
  4324. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4325. if (!namestartpos)
  4326. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4327. else
  4328. namestartpos++; //to skip the '!'
  4329. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4330. if (card.cardOK) {
  4331. card.openFile(namestartpos, true, call_procedure);
  4332. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4333. card.setIndex(code_value_long());
  4334. card.startFileprint();
  4335. // Procedure calls count as normal print time.
  4336. if (!call_procedure) print_job_timer.start();
  4337. }
  4338. }
  4339. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4340. /**
  4341. * M33: Get the long full path of a file or folder
  4342. *
  4343. * Parameters:
  4344. * <dospath> Case-insensitive DOS-style path to a file or folder
  4345. *
  4346. * Example:
  4347. * M33 miscel~1/armchair/armcha~1.gco
  4348. *
  4349. * Output:
  4350. * /Miscellaneous/Armchair/Armchair.gcode
  4351. */
  4352. inline void gcode_M33() {
  4353. card.printLongPath(current_command_args);
  4354. }
  4355. #endif
  4356. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4357. /**
  4358. * M34: Set SD Card Sorting Options
  4359. */
  4360. inline void gcode_M34() {
  4361. if (code_seen('S')) card.setSortOn(code_value_bool());
  4362. if (code_seen('F')) {
  4363. int v = code_value_long();
  4364. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4365. }
  4366. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4367. }
  4368. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4369. /**
  4370. * M928: Start SD Write
  4371. */
  4372. inline void gcode_M928() {
  4373. card.openLogFile(current_command_args);
  4374. }
  4375. #endif // SDSUPPORT
  4376. /**
  4377. * Sensitive pin test for M42, M226
  4378. */
  4379. static bool pin_is_protected(uint8_t pin) {
  4380. static const int sensitive_pins[] = SENSITIVE_PINS;
  4381. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4382. if (sensitive_pins[i] == pin) return true;
  4383. return false;
  4384. }
  4385. /**
  4386. * M42: Change pin status via GCode
  4387. *
  4388. * P<pin> Pin number (LED if omitted)
  4389. * S<byte> Pin status from 0 - 255
  4390. */
  4391. inline void gcode_M42() {
  4392. if (!code_seen('S')) return;
  4393. int pin_status = code_value_int();
  4394. if (!WITHIN(pin_status, 0, 255)) return;
  4395. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4396. if (pin_number < 0) return;
  4397. if (pin_is_protected(pin_number)) {
  4398. SERIAL_ERROR_START;
  4399. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4400. return;
  4401. }
  4402. pinMode(pin_number, OUTPUT);
  4403. digitalWrite(pin_number, pin_status);
  4404. analogWrite(pin_number, pin_status);
  4405. #if FAN_COUNT > 0
  4406. switch (pin_number) {
  4407. #if HAS_FAN0
  4408. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4409. #endif
  4410. #if HAS_FAN1
  4411. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4412. #endif
  4413. #if HAS_FAN2
  4414. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4415. #endif
  4416. }
  4417. #endif
  4418. }
  4419. #if ENABLED(PINS_DEBUGGING)
  4420. #include "pinsDebug.h"
  4421. /**
  4422. * M43: Pin report and debug
  4423. *
  4424. * E<bool> Enable / disable background endstop monitoring
  4425. * - Machine continues to operate
  4426. * - Reports changes to endstops
  4427. * - Toggles LED when an endstop changes
  4428. *
  4429. * or
  4430. *
  4431. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4432. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4433. * I<bool> Flag to ignore Marlin's pin protection.
  4434. *
  4435. */
  4436. inline void gcode_M43() {
  4437. // Enable or disable endstop monitoring
  4438. if (code_seen('E')) {
  4439. endstop_monitor_flag = code_value_bool();
  4440. SERIAL_PROTOCOLPGM("endstop monitor ");
  4441. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4442. SERIAL_PROTOCOLLNPGM("abled");
  4443. return;
  4444. }
  4445. // Get the range of pins to test or watch
  4446. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4447. if (code_seen('P')) {
  4448. first_pin = last_pin = code_value_byte();
  4449. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4450. }
  4451. const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4452. // Watch until click, M108, or reset
  4453. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4454. byte pin_state[last_pin - first_pin + 1];
  4455. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4456. if (pin_is_protected(pin) && !ignore_protection) continue;
  4457. pinMode(pin, INPUT_PULLUP);
  4458. // if (IS_ANALOG(pin))
  4459. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4460. // else
  4461. pin_state[pin - first_pin] = digitalRead(pin);
  4462. }
  4463. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4464. wait_for_user = true;
  4465. #endif
  4466. for(;;) {
  4467. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4468. if (pin_is_protected(pin)) continue;
  4469. byte val;
  4470. // if (IS_ANALOG(pin))
  4471. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4472. // else
  4473. val = digitalRead(pin);
  4474. if (val != pin_state[pin - first_pin]) {
  4475. report_pin_state(pin);
  4476. pin_state[pin - first_pin] = val;
  4477. }
  4478. }
  4479. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4480. if (!wait_for_user) break;
  4481. #endif
  4482. safe_delay(500);
  4483. }
  4484. return;
  4485. }
  4486. // Report current state of selected pin(s)
  4487. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4488. report_pin_state_extended(pin, ignore_protection);
  4489. }
  4490. #endif // PINS_DEBUGGING
  4491. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4492. /**
  4493. * M48: Z probe repeatability measurement function.
  4494. *
  4495. * Usage:
  4496. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4497. * P = Number of sampled points (4-50, default 10)
  4498. * X = Sample X position
  4499. * Y = Sample Y position
  4500. * V = Verbose level (0-4, default=1)
  4501. * E = Engage Z probe for each reading
  4502. * L = Number of legs of movement before probe
  4503. * S = Schizoid (Or Star if you prefer)
  4504. *
  4505. * This function assumes the bed has been homed. Specifically, that a G28 command
  4506. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4507. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4508. * regenerated.
  4509. */
  4510. inline void gcode_M48() {
  4511. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4512. bool bed_leveling_state_at_entry=0;
  4513. bed_leveling_state_at_entry = ubl.state.active;
  4514. #endif
  4515. if (axis_unhomed_error(true, true, true)) return;
  4516. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4517. if (!WITHIN(verbose_level, 0, 4)) {
  4518. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4519. return;
  4520. }
  4521. if (verbose_level > 0)
  4522. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4523. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4524. if (!WITHIN(n_samples, 4, 50)) {
  4525. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4526. return;
  4527. }
  4528. float X_current = current_position[X_AXIS],
  4529. Y_current = current_position[Y_AXIS];
  4530. bool stow_probe_after_each = code_seen('E');
  4531. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4532. #if DISABLED(DELTA)
  4533. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4534. out_of_range_error(PSTR("X"));
  4535. return;
  4536. }
  4537. #endif
  4538. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4539. #if DISABLED(DELTA)
  4540. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4541. out_of_range_error(PSTR("Y"));
  4542. return;
  4543. }
  4544. #else
  4545. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4546. if (!position_is_reachable(pos, true)) {
  4547. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4548. return;
  4549. }
  4550. #endif
  4551. bool seen_L = code_seen('L');
  4552. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4553. if (n_legs > 15) {
  4554. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4555. return;
  4556. }
  4557. if (n_legs == 1) n_legs = 2;
  4558. bool schizoid_flag = code_seen('S');
  4559. if (schizoid_flag && !seen_L) n_legs = 7;
  4560. /**
  4561. * Now get everything to the specified probe point So we can safely do a
  4562. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4563. * we don't want to use that as a starting point for each probe.
  4564. */
  4565. if (verbose_level > 2)
  4566. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4567. // Disable bed level correction in M48 because we want the raw data when we probe
  4568. #if HAS_ABL
  4569. const bool abl_was_enabled = planner.abl_enabled;
  4570. set_bed_leveling_enabled(false);
  4571. #endif
  4572. setup_for_endstop_or_probe_move();
  4573. // Move to the first point, deploy, and probe
  4574. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4575. randomSeed(millis());
  4576. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4577. for (uint8_t n = 0; n < n_samples; n++) {
  4578. if (n_legs) {
  4579. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4580. float angle = random(0.0, 360.0),
  4581. radius = random(
  4582. #if ENABLED(DELTA)
  4583. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4584. #else
  4585. 5, X_MAX_LENGTH / 8
  4586. #endif
  4587. );
  4588. if (verbose_level > 3) {
  4589. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4590. SERIAL_ECHOPAIR(" angle: ", angle);
  4591. SERIAL_ECHOPGM(" Direction: ");
  4592. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4593. SERIAL_ECHOLNPGM("Clockwise");
  4594. }
  4595. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4596. double delta_angle;
  4597. if (schizoid_flag)
  4598. // The points of a 5 point star are 72 degrees apart. We need to
  4599. // skip a point and go to the next one on the star.
  4600. delta_angle = dir * 2.0 * 72.0;
  4601. else
  4602. // If we do this line, we are just trying to move further
  4603. // around the circle.
  4604. delta_angle = dir * (float) random(25, 45);
  4605. angle += delta_angle;
  4606. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4607. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4608. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4609. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4610. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4611. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4612. #if DISABLED(DELTA)
  4613. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4614. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4615. #else
  4616. // If we have gone out too far, we can do a simple fix and scale the numbers
  4617. // back in closer to the origin.
  4618. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4619. X_current /= 1.25;
  4620. Y_current /= 1.25;
  4621. if (verbose_level > 3) {
  4622. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4623. SERIAL_ECHOLNPAIR(", ", Y_current);
  4624. }
  4625. }
  4626. #endif
  4627. if (verbose_level > 3) {
  4628. SERIAL_PROTOCOLPGM("Going to:");
  4629. SERIAL_ECHOPAIR(" X", X_current);
  4630. SERIAL_ECHOPAIR(" Y", Y_current);
  4631. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4632. }
  4633. do_blocking_move_to_xy(X_current, Y_current);
  4634. } // n_legs loop
  4635. } // n_legs
  4636. // Probe a single point
  4637. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4638. /**
  4639. * Get the current mean for the data points we have so far
  4640. */
  4641. double sum = 0.0;
  4642. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4643. mean = sum / (n + 1);
  4644. NOMORE(min, sample_set[n]);
  4645. NOLESS(max, sample_set[n]);
  4646. /**
  4647. * Now, use that mean to calculate the standard deviation for the
  4648. * data points we have so far
  4649. */
  4650. sum = 0.0;
  4651. for (uint8_t j = 0; j <= n; j++)
  4652. sum += sq(sample_set[j] - mean);
  4653. sigma = sqrt(sum / (n + 1));
  4654. if (verbose_level > 0) {
  4655. if (verbose_level > 1) {
  4656. SERIAL_PROTOCOL(n + 1);
  4657. SERIAL_PROTOCOLPGM(" of ");
  4658. SERIAL_PROTOCOL((int)n_samples);
  4659. SERIAL_PROTOCOLPGM(": z: ");
  4660. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4661. if (verbose_level > 2) {
  4662. SERIAL_PROTOCOLPGM(" mean: ");
  4663. SERIAL_PROTOCOL_F(mean, 4);
  4664. SERIAL_PROTOCOLPGM(" sigma: ");
  4665. SERIAL_PROTOCOL_F(sigma, 6);
  4666. SERIAL_PROTOCOLPGM(" min: ");
  4667. SERIAL_PROTOCOL_F(min, 3);
  4668. SERIAL_PROTOCOLPGM(" max: ");
  4669. SERIAL_PROTOCOL_F(max, 3);
  4670. SERIAL_PROTOCOLPGM(" range: ");
  4671. SERIAL_PROTOCOL_F(max-min, 3);
  4672. }
  4673. SERIAL_EOL;
  4674. }
  4675. }
  4676. } // End of probe loop
  4677. if (STOW_PROBE()) return;
  4678. SERIAL_PROTOCOLPGM("Finished!");
  4679. SERIAL_EOL;
  4680. if (verbose_level > 0) {
  4681. SERIAL_PROTOCOLPGM("Mean: ");
  4682. SERIAL_PROTOCOL_F(mean, 6);
  4683. SERIAL_PROTOCOLPGM(" Min: ");
  4684. SERIAL_PROTOCOL_F(min, 3);
  4685. SERIAL_PROTOCOLPGM(" Max: ");
  4686. SERIAL_PROTOCOL_F(max, 3);
  4687. SERIAL_PROTOCOLPGM(" Range: ");
  4688. SERIAL_PROTOCOL_F(max-min, 3);
  4689. SERIAL_EOL;
  4690. }
  4691. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4692. SERIAL_PROTOCOL_F(sigma, 6);
  4693. SERIAL_EOL;
  4694. SERIAL_EOL;
  4695. clean_up_after_endstop_or_probe_move();
  4696. // Re-enable bed level correction if it has been on
  4697. #if HAS_ABL
  4698. set_bed_leveling_enabled(abl_was_enabled);
  4699. #endif
  4700. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4701. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4702. ubl.state.active = bed_leveling_state_at_entry;
  4703. #endif
  4704. report_current_position();
  4705. }
  4706. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4707. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4708. inline void gcode_M49() {
  4709. ubl.g26_debug_flag = !ubl.g26_debug_flag;
  4710. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4711. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4712. }
  4713. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4714. /**
  4715. * M75: Start print timer
  4716. */
  4717. inline void gcode_M75() { print_job_timer.start(); }
  4718. /**
  4719. * M76: Pause print timer
  4720. */
  4721. inline void gcode_M76() { print_job_timer.pause(); }
  4722. /**
  4723. * M77: Stop print timer
  4724. */
  4725. inline void gcode_M77() { print_job_timer.stop(); }
  4726. #if ENABLED(PRINTCOUNTER)
  4727. /**
  4728. * M78: Show print statistics
  4729. */
  4730. inline void gcode_M78() {
  4731. // "M78 S78" will reset the statistics
  4732. if (code_seen('S') && code_value_int() == 78)
  4733. print_job_timer.initStats();
  4734. else
  4735. print_job_timer.showStats();
  4736. }
  4737. #endif
  4738. /**
  4739. * M104: Set hot end temperature
  4740. */
  4741. inline void gcode_M104() {
  4742. if (get_target_extruder_from_command(104)) return;
  4743. if (DEBUGGING(DRYRUN)) return;
  4744. #if ENABLED(SINGLENOZZLE)
  4745. if (target_extruder != active_extruder) return;
  4746. #endif
  4747. if (code_seen('S')) {
  4748. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4749. #if ENABLED(DUAL_X_CARRIAGE)
  4750. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4751. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4752. #endif
  4753. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4754. /**
  4755. * Stop the timer at the end of print, starting is managed by
  4756. * 'heat and wait' M109.
  4757. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4758. * stand by mode, for instance in a dual extruder setup, without affecting
  4759. * the running print timer.
  4760. */
  4761. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4762. print_job_timer.stop();
  4763. LCD_MESSAGEPGM(WELCOME_MSG);
  4764. }
  4765. #endif
  4766. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4767. }
  4768. #if ENABLED(AUTOTEMP)
  4769. planner.autotemp_M104_M109();
  4770. #endif
  4771. }
  4772. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4773. void print_heaterstates() {
  4774. #if HAS_TEMP_HOTEND
  4775. SERIAL_PROTOCOLPGM(" T:");
  4776. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4777. SERIAL_PROTOCOLPGM(" /");
  4778. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4779. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4780. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4781. SERIAL_PROTOCOLCHAR(')');
  4782. #endif
  4783. #endif
  4784. #if HAS_TEMP_BED
  4785. SERIAL_PROTOCOLPGM(" B:");
  4786. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4787. SERIAL_PROTOCOLPGM(" /");
  4788. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4789. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4790. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4791. SERIAL_PROTOCOLCHAR(')');
  4792. #endif
  4793. #endif
  4794. #if HOTENDS > 1
  4795. HOTEND_LOOP() {
  4796. SERIAL_PROTOCOLPAIR(" T", e);
  4797. SERIAL_PROTOCOLCHAR(':');
  4798. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4799. SERIAL_PROTOCOLPGM(" /");
  4800. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4801. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4802. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4803. SERIAL_PROTOCOLCHAR(')');
  4804. #endif
  4805. }
  4806. #endif
  4807. SERIAL_PROTOCOLPGM(" @:");
  4808. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4809. #if HAS_TEMP_BED
  4810. SERIAL_PROTOCOLPGM(" B@:");
  4811. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4812. #endif
  4813. #if HOTENDS > 1
  4814. HOTEND_LOOP() {
  4815. SERIAL_PROTOCOLPAIR(" @", e);
  4816. SERIAL_PROTOCOLCHAR(':');
  4817. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4818. }
  4819. #endif
  4820. }
  4821. #endif
  4822. /**
  4823. * M105: Read hot end and bed temperature
  4824. */
  4825. inline void gcode_M105() {
  4826. if (get_target_extruder_from_command(105)) return;
  4827. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4828. SERIAL_PROTOCOLPGM(MSG_OK);
  4829. print_heaterstates();
  4830. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4831. SERIAL_ERROR_START;
  4832. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4833. #endif
  4834. SERIAL_EOL;
  4835. }
  4836. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4837. static uint8_t auto_report_temp_interval;
  4838. static millis_t next_temp_report_ms;
  4839. /**
  4840. * M155: Set temperature auto-report interval. M155 S<seconds>
  4841. */
  4842. inline void gcode_M155() {
  4843. if (code_seen('S')) {
  4844. auto_report_temp_interval = code_value_byte();
  4845. NOMORE(auto_report_temp_interval, 60);
  4846. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4847. }
  4848. }
  4849. inline void auto_report_temperatures() {
  4850. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4851. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4852. print_heaterstates();
  4853. SERIAL_EOL;
  4854. }
  4855. }
  4856. #endif // AUTO_REPORT_TEMPERATURES
  4857. #if FAN_COUNT > 0
  4858. /**
  4859. * M106: Set Fan Speed
  4860. *
  4861. * S<int> Speed between 0-255
  4862. * P<index> Fan index, if more than one fan
  4863. */
  4864. inline void gcode_M106() {
  4865. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4866. p = code_seen('P') ? code_value_ushort() : 0;
  4867. NOMORE(s, 255);
  4868. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4869. }
  4870. /**
  4871. * M107: Fan Off
  4872. */
  4873. inline void gcode_M107() {
  4874. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4875. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4876. }
  4877. #endif // FAN_COUNT > 0
  4878. #if DISABLED(EMERGENCY_PARSER)
  4879. /**
  4880. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4881. */
  4882. inline void gcode_M108() { wait_for_heatup = false; }
  4883. /**
  4884. * M112: Emergency Stop
  4885. */
  4886. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4887. /**
  4888. * M410: Quickstop - Abort all planned moves
  4889. *
  4890. * This will stop the carriages mid-move, so most likely they
  4891. * will be out of sync with the stepper position after this.
  4892. */
  4893. inline void gcode_M410() { quickstop_stepper(); }
  4894. #endif
  4895. #ifndef MIN_COOLING_SLOPE_DEG
  4896. #define MIN_COOLING_SLOPE_DEG 1.50
  4897. #endif
  4898. #ifndef MIN_COOLING_SLOPE_TIME
  4899. #define MIN_COOLING_SLOPE_TIME 60
  4900. #endif
  4901. /**
  4902. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4903. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4904. */
  4905. inline void gcode_M109() {
  4906. if (get_target_extruder_from_command(109)) return;
  4907. if (DEBUGGING(DRYRUN)) return;
  4908. #if ENABLED(SINGLENOZZLE)
  4909. if (target_extruder != active_extruder) return;
  4910. #endif
  4911. bool no_wait_for_cooling = code_seen('S');
  4912. if (no_wait_for_cooling || code_seen('R')) {
  4913. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4914. #if ENABLED(DUAL_X_CARRIAGE)
  4915. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4916. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4917. #endif
  4918. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4919. /**
  4920. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4921. * stand by mode, for instance in a dual extruder setup, without affecting
  4922. * the running print timer.
  4923. */
  4924. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4925. print_job_timer.stop();
  4926. LCD_MESSAGEPGM(WELCOME_MSG);
  4927. }
  4928. /**
  4929. * We do not check if the timer is already running because this check will
  4930. * be done for us inside the Stopwatch::start() method thus a running timer
  4931. * will not restart.
  4932. */
  4933. else print_job_timer.start();
  4934. #endif
  4935. if (thermalManager.isHeatingHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4936. }
  4937. #if ENABLED(AUTOTEMP)
  4938. planner.autotemp_M104_M109();
  4939. #endif
  4940. #if TEMP_RESIDENCY_TIME > 0
  4941. millis_t residency_start_ms = 0;
  4942. // Loop until the temperature has stabilized
  4943. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4944. #else
  4945. // Loop until the temperature is very close target
  4946. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4947. #endif //TEMP_RESIDENCY_TIME > 0
  4948. float theTarget = -1.0, old_temp = 9999.0;
  4949. bool wants_to_cool = false;
  4950. wait_for_heatup = true;
  4951. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4952. KEEPALIVE_STATE(NOT_BUSY);
  4953. do {
  4954. // Target temperature might be changed during the loop
  4955. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4956. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4957. theTarget = thermalManager.degTargetHotend(target_extruder);
  4958. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4959. if (no_wait_for_cooling && wants_to_cool) break;
  4960. }
  4961. now = millis();
  4962. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4963. next_temp_ms = now + 1000UL;
  4964. print_heaterstates();
  4965. #if TEMP_RESIDENCY_TIME > 0
  4966. SERIAL_PROTOCOLPGM(" W:");
  4967. if (residency_start_ms) {
  4968. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4969. SERIAL_PROTOCOLLN(rem);
  4970. }
  4971. else {
  4972. SERIAL_PROTOCOLLNPGM("?");
  4973. }
  4974. #else
  4975. SERIAL_EOL;
  4976. #endif
  4977. }
  4978. idle();
  4979. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4980. float temp = thermalManager.degHotend(target_extruder);
  4981. #if TEMP_RESIDENCY_TIME > 0
  4982. float temp_diff = fabs(theTarget - temp);
  4983. if (!residency_start_ms) {
  4984. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4985. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4986. }
  4987. else if (temp_diff > TEMP_HYSTERESIS) {
  4988. // Restart the timer whenever the temperature falls outside the hysteresis.
  4989. residency_start_ms = now;
  4990. }
  4991. #endif //TEMP_RESIDENCY_TIME > 0
  4992. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4993. if (wants_to_cool) {
  4994. // break after MIN_COOLING_SLOPE_TIME seconds
  4995. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4996. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4997. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4998. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4999. old_temp = temp;
  5000. }
  5001. }
  5002. } while (wait_for_heatup && TEMP_CONDITIONS);
  5003. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5004. KEEPALIVE_STATE(IN_HANDLER);
  5005. }
  5006. #if HAS_TEMP_BED
  5007. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5008. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5009. #endif
  5010. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5011. #define MIN_COOLING_SLOPE_TIME_BED 60
  5012. #endif
  5013. /**
  5014. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5015. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5016. */
  5017. inline void gcode_M190() {
  5018. if (DEBUGGING(DRYRUN)) return;
  5019. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5020. bool no_wait_for_cooling = code_seen('S');
  5021. if (no_wait_for_cooling || code_seen('R')) {
  5022. thermalManager.setTargetBed(code_value_temp_abs());
  5023. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5024. if (code_value_temp_abs() > BED_MINTEMP) {
  5025. /**
  5026. * We start the timer when 'heating and waiting' command arrives, LCD
  5027. * functions never wait. Cooling down managed by extruders.
  5028. *
  5029. * We do not check if the timer is already running because this check will
  5030. * be done for us inside the Stopwatch::start() method thus a running timer
  5031. * will not restart.
  5032. */
  5033. print_job_timer.start();
  5034. }
  5035. #endif
  5036. }
  5037. #if TEMP_BED_RESIDENCY_TIME > 0
  5038. millis_t residency_start_ms = 0;
  5039. // Loop until the temperature has stabilized
  5040. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5041. #else
  5042. // Loop until the temperature is very close target
  5043. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5044. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5045. float theTarget = -1.0, old_temp = 9999.0;
  5046. bool wants_to_cool = false;
  5047. wait_for_heatup = true;
  5048. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5049. KEEPALIVE_STATE(NOT_BUSY);
  5050. target_extruder = active_extruder; // for print_heaterstates
  5051. do {
  5052. // Target temperature might be changed during the loop
  5053. if (theTarget != thermalManager.degTargetBed()) {
  5054. wants_to_cool = thermalManager.isCoolingBed();
  5055. theTarget = thermalManager.degTargetBed();
  5056. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5057. if (no_wait_for_cooling && wants_to_cool) break;
  5058. }
  5059. now = millis();
  5060. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5061. next_temp_ms = now + 1000UL;
  5062. print_heaterstates();
  5063. #if TEMP_BED_RESIDENCY_TIME > 0
  5064. SERIAL_PROTOCOLPGM(" W:");
  5065. if (residency_start_ms) {
  5066. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5067. SERIAL_PROTOCOLLN(rem);
  5068. }
  5069. else {
  5070. SERIAL_PROTOCOLLNPGM("?");
  5071. }
  5072. #else
  5073. SERIAL_EOL;
  5074. #endif
  5075. }
  5076. idle();
  5077. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5078. float temp = thermalManager.degBed();
  5079. #if TEMP_BED_RESIDENCY_TIME > 0
  5080. float temp_diff = fabs(theTarget - temp);
  5081. if (!residency_start_ms) {
  5082. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5083. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5084. }
  5085. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5086. // Restart the timer whenever the temperature falls outside the hysteresis.
  5087. residency_start_ms = now;
  5088. }
  5089. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5090. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5091. if (wants_to_cool) {
  5092. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  5093. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5094. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5095. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5096. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5097. old_temp = temp;
  5098. }
  5099. }
  5100. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5101. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5102. KEEPALIVE_STATE(IN_HANDLER);
  5103. }
  5104. #endif // HAS_TEMP_BED
  5105. /**
  5106. * M110: Set Current Line Number
  5107. */
  5108. inline void gcode_M110() {
  5109. if (code_seen('N')) gcode_LastN = code_value_long();
  5110. }
  5111. /**
  5112. * M111: Set the debug level
  5113. */
  5114. inline void gcode_M111() {
  5115. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  5116. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5117. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5118. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5119. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5120. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5122. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5123. #endif
  5124. const static char* const debug_strings[] PROGMEM = {
  5125. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5127. str_debug_32
  5128. #endif
  5129. };
  5130. SERIAL_ECHO_START;
  5131. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5132. if (marlin_debug_flags) {
  5133. uint8_t comma = 0;
  5134. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5135. if (TEST(marlin_debug_flags, i)) {
  5136. if (comma++) SERIAL_CHAR(',');
  5137. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5138. }
  5139. }
  5140. }
  5141. else {
  5142. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5143. }
  5144. SERIAL_EOL;
  5145. }
  5146. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5147. /**
  5148. * M113: Get or set Host Keepalive interval (0 to disable)
  5149. *
  5150. * S<seconds> Optional. Set the keepalive interval.
  5151. */
  5152. inline void gcode_M113() {
  5153. if (code_seen('S')) {
  5154. host_keepalive_interval = code_value_byte();
  5155. NOMORE(host_keepalive_interval, 60);
  5156. }
  5157. else {
  5158. SERIAL_ECHO_START;
  5159. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5160. }
  5161. }
  5162. #endif
  5163. #if ENABLED(BARICUDA)
  5164. #if HAS_HEATER_1
  5165. /**
  5166. * M126: Heater 1 valve open
  5167. */
  5168. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5169. /**
  5170. * M127: Heater 1 valve close
  5171. */
  5172. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5173. #endif
  5174. #if HAS_HEATER_2
  5175. /**
  5176. * M128: Heater 2 valve open
  5177. */
  5178. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5179. /**
  5180. * M129: Heater 2 valve close
  5181. */
  5182. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5183. #endif
  5184. #endif //BARICUDA
  5185. /**
  5186. * M140: Set bed temperature
  5187. */
  5188. inline void gcode_M140() {
  5189. if (DEBUGGING(DRYRUN)) return;
  5190. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5191. }
  5192. #if ENABLED(ULTIPANEL)
  5193. /**
  5194. * M145: Set the heatup state for a material in the LCD menu
  5195. * S<material> (0=PLA, 1=ABS)
  5196. * H<hotend temp>
  5197. * B<bed temp>
  5198. * F<fan speed>
  5199. */
  5200. inline void gcode_M145() {
  5201. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5202. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5203. SERIAL_ERROR_START;
  5204. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5205. }
  5206. else {
  5207. int v;
  5208. if (code_seen('H')) {
  5209. v = code_value_int();
  5210. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5211. }
  5212. if (code_seen('F')) {
  5213. v = code_value_int();
  5214. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5215. }
  5216. #if TEMP_SENSOR_BED != 0
  5217. if (code_seen('B')) {
  5218. v = code_value_int();
  5219. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5220. }
  5221. #endif
  5222. }
  5223. }
  5224. #endif // ULTIPANEL
  5225. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5226. /**
  5227. * M149: Set temperature units
  5228. */
  5229. inline void gcode_M149() {
  5230. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5231. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5232. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5233. }
  5234. #endif
  5235. #if HAS_POWER_SWITCH
  5236. /**
  5237. * M80: Turn on Power Supply
  5238. */
  5239. inline void gcode_M80() {
  5240. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5241. /**
  5242. * If you have a switch on suicide pin, this is useful
  5243. * if you want to start another print with suicide feature after
  5244. * a print without suicide...
  5245. */
  5246. #if HAS_SUICIDE
  5247. OUT_WRITE(SUICIDE_PIN, HIGH);
  5248. #endif
  5249. #if ENABLED(ULTIPANEL)
  5250. powersupply = true;
  5251. LCD_MESSAGEPGM(WELCOME_MSG);
  5252. lcd_update();
  5253. #endif
  5254. }
  5255. #endif // HAS_POWER_SWITCH
  5256. /**
  5257. * M81: Turn off Power, including Power Supply, if there is one.
  5258. *
  5259. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5260. */
  5261. inline void gcode_M81() {
  5262. thermalManager.disable_all_heaters();
  5263. stepper.finish_and_disable();
  5264. #if FAN_COUNT > 0
  5265. #if FAN_COUNT > 1
  5266. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5267. #else
  5268. fanSpeeds[0] = 0;
  5269. #endif
  5270. #endif
  5271. safe_delay(1000); // Wait 1 second before switching off
  5272. #if HAS_SUICIDE
  5273. stepper.synchronize();
  5274. suicide();
  5275. #elif HAS_POWER_SWITCH
  5276. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5277. #endif
  5278. #if ENABLED(ULTIPANEL)
  5279. #if HAS_POWER_SWITCH
  5280. powersupply = false;
  5281. #endif
  5282. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5283. lcd_update();
  5284. #endif
  5285. }
  5286. /**
  5287. * M82: Set E codes absolute (default)
  5288. */
  5289. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5290. /**
  5291. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5292. */
  5293. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5294. /**
  5295. * M18, M84: Disable all stepper motors
  5296. */
  5297. inline void gcode_M18_M84() {
  5298. if (code_seen('S')) {
  5299. stepper_inactive_time = code_value_millis_from_seconds();
  5300. }
  5301. else {
  5302. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5303. if (all_axis) {
  5304. stepper.finish_and_disable();
  5305. }
  5306. else {
  5307. stepper.synchronize();
  5308. if (code_seen('X')) disable_x();
  5309. if (code_seen('Y')) disable_y();
  5310. if (code_seen('Z')) disable_z();
  5311. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5312. if (code_seen('E')) disable_e_steppers();
  5313. #endif
  5314. }
  5315. }
  5316. }
  5317. /**
  5318. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5319. */
  5320. inline void gcode_M85() {
  5321. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5322. }
  5323. /**
  5324. * Multi-stepper support for M92, M201, M203
  5325. */
  5326. #if ENABLED(DISTINCT_E_FACTORS)
  5327. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5328. #define TARGET_EXTRUDER target_extruder
  5329. #else
  5330. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5331. #define TARGET_EXTRUDER 0
  5332. #endif
  5333. /**
  5334. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5335. * (Follows the same syntax as G92)
  5336. *
  5337. * With multiple extruders use T to specify which one.
  5338. */
  5339. inline void gcode_M92() {
  5340. GET_TARGET_EXTRUDER(92);
  5341. LOOP_XYZE(i) {
  5342. if (code_seen(axis_codes[i])) {
  5343. if (i == E_AXIS) {
  5344. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5345. if (value < 20.0) {
  5346. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5347. planner.max_jerk[E_AXIS] *= factor;
  5348. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5349. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5350. }
  5351. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5352. }
  5353. else {
  5354. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5355. }
  5356. }
  5357. }
  5358. planner.refresh_positioning();
  5359. }
  5360. /**
  5361. * Output the current position to serial
  5362. */
  5363. static void report_current_position() {
  5364. SERIAL_PROTOCOLPGM("X:");
  5365. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5366. SERIAL_PROTOCOLPGM(" Y:");
  5367. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5368. SERIAL_PROTOCOLPGM(" Z:");
  5369. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5370. SERIAL_PROTOCOLPGM(" E:");
  5371. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5372. stepper.report_positions();
  5373. #if IS_SCARA
  5374. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5375. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5376. SERIAL_EOL;
  5377. #endif
  5378. }
  5379. /**
  5380. * M114: Output current position to serial port
  5381. */
  5382. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5383. /**
  5384. * M115: Capabilities string
  5385. */
  5386. inline void gcode_M115() {
  5387. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5388. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5389. // EEPROM (M500, M501)
  5390. #if ENABLED(EEPROM_SETTINGS)
  5391. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5392. #else
  5393. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5394. #endif
  5395. // AUTOREPORT_TEMP (M155)
  5396. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5397. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5398. #else
  5399. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5400. #endif
  5401. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5402. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5403. // AUTOLEVEL (G29)
  5404. #if HAS_ABL
  5405. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5406. #else
  5407. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5408. #endif
  5409. // Z_PROBE (G30)
  5410. #if HAS_BED_PROBE
  5411. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5412. #else
  5413. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5414. #endif
  5415. // SOFTWARE_POWER (G30)
  5416. #if HAS_POWER_SWITCH
  5417. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5418. #else
  5419. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5420. #endif
  5421. // TOGGLE_LIGHTS (M355)
  5422. #if HAS_CASE_LIGHT
  5423. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5424. #else
  5425. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5426. #endif
  5427. // EMERGENCY_PARSER (M108, M112, M410)
  5428. #if ENABLED(EMERGENCY_PARSER)
  5429. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5430. #else
  5431. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5432. #endif
  5433. #endif // EXTENDED_CAPABILITIES_REPORT
  5434. }
  5435. /**
  5436. * M117: Set LCD Status Message
  5437. */
  5438. inline void gcode_M117() {
  5439. lcd_setstatus(current_command_args);
  5440. }
  5441. /**
  5442. * M119: Output endstop states to serial output
  5443. */
  5444. inline void gcode_M119() { endstops.M119(); }
  5445. /**
  5446. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5447. */
  5448. inline void gcode_M120() { endstops.enable_globally(true); }
  5449. /**
  5450. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5451. */
  5452. inline void gcode_M121() { endstops.enable_globally(false); }
  5453. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5454. /**
  5455. * M125: Store current position and move to filament change position.
  5456. * Called on pause (by M25) to prevent material leaking onto the
  5457. * object. On resume (M24) the head will be moved back and the
  5458. * print will resume.
  5459. *
  5460. * If Marlin is compiled without SD Card support, M125 can be
  5461. * used directly to pause the print and move to park position,
  5462. * resuming with a button click or M108.
  5463. *
  5464. * L = override retract length
  5465. * X = override X
  5466. * Y = override Y
  5467. * Z = override Z raise
  5468. */
  5469. inline void gcode_M125() {
  5470. if (move_away_flag) return; // already paused
  5471. const bool job_running = print_job_timer.isRunning();
  5472. // there are blocks after this one, or sd printing
  5473. move_away_flag = job_running || planner.blocks_queued()
  5474. #if ENABLED(SDSUPPORT)
  5475. || card.sdprinting
  5476. #endif
  5477. ;
  5478. if (!move_away_flag) return; // nothing to pause
  5479. // M125 can be used to pause a print too
  5480. #if ENABLED(SDSUPPORT)
  5481. card.pauseSDPrint();
  5482. #endif
  5483. print_job_timer.pause();
  5484. // Save current position
  5485. COPY(resume_position, current_position);
  5486. set_destination_to_current();
  5487. // Initial retract before move to filament change position
  5488. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5489. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5490. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5491. #endif
  5492. ;
  5493. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5494. // Lift Z axis
  5495. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5496. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5497. FILAMENT_CHANGE_Z_ADD
  5498. #else
  5499. 0
  5500. #endif
  5501. ;
  5502. if (z_lift > 0) {
  5503. destination[Z_AXIS] += z_lift;
  5504. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5505. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5506. }
  5507. // Move XY axes to filament change position or given position
  5508. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5509. #ifdef FILAMENT_CHANGE_X_POS
  5510. + FILAMENT_CHANGE_X_POS
  5511. #endif
  5512. ;
  5513. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5514. #ifdef FILAMENT_CHANGE_Y_POS
  5515. + FILAMENT_CHANGE_Y_POS
  5516. #endif
  5517. ;
  5518. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5519. if (active_extruder > 0) {
  5520. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5521. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5522. }
  5523. #endif
  5524. clamp_to_software_endstops(destination);
  5525. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5526. set_current_to_destination();
  5527. stepper.synchronize();
  5528. disable_e_steppers();
  5529. #if DISABLED(SDSUPPORT)
  5530. // Wait for lcd click or M108
  5531. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5532. wait_for_user = true;
  5533. while (wait_for_user) idle();
  5534. KEEPALIVE_STATE(IN_HANDLER);
  5535. // Return to print position and continue
  5536. move_back_on_resume();
  5537. if (job_running) print_job_timer.start();
  5538. move_away_flag = false;
  5539. #endif
  5540. }
  5541. #endif // PARK_HEAD_ON_PAUSE
  5542. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5543. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5544. #if ENABLED(BLINKM)
  5545. // This variant uses i2c to send the RGB components to the device.
  5546. SendColors(r, g, b);
  5547. #else
  5548. // This variant uses 3 separate pins for the RGB components.
  5549. // If the pins can do PWM then their intensity will be set.
  5550. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5551. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5552. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5553. analogWrite(RGB_LED_R_PIN, r);
  5554. analogWrite(RGB_LED_G_PIN, g);
  5555. analogWrite(RGB_LED_B_PIN, b);
  5556. #endif
  5557. }
  5558. /**
  5559. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5560. *
  5561. * Always sets all 3 components. If a component is left out, set to 0.
  5562. *
  5563. * Examples:
  5564. *
  5565. * M150 R255 ; Turn LED red
  5566. * M150 R255 U127 ; Turn LED orange (PWM only)
  5567. * M150 ; Turn LED off
  5568. * M150 R U B ; Turn LED white
  5569. *
  5570. */
  5571. inline void gcode_M150() {
  5572. set_led_color(
  5573. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5574. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5575. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5576. );
  5577. }
  5578. #endif // BLINKM || RGB_LED
  5579. /**
  5580. * M200: Set filament diameter and set E axis units to cubic units
  5581. *
  5582. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5583. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5584. */
  5585. inline void gcode_M200() {
  5586. if (get_target_extruder_from_command(200)) return;
  5587. if (code_seen('D')) {
  5588. // setting any extruder filament size disables volumetric on the assumption that
  5589. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5590. // for all extruders
  5591. volumetric_enabled = (code_value_linear_units() != 0.0);
  5592. if (volumetric_enabled) {
  5593. filament_size[target_extruder] = code_value_linear_units();
  5594. // make sure all extruders have some sane value for the filament size
  5595. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5596. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5597. }
  5598. }
  5599. else {
  5600. //reserved for setting filament diameter via UFID or filament measuring device
  5601. return;
  5602. }
  5603. calculate_volumetric_multipliers();
  5604. }
  5605. /**
  5606. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5607. *
  5608. * With multiple extruders use T to specify which one.
  5609. */
  5610. inline void gcode_M201() {
  5611. GET_TARGET_EXTRUDER(201);
  5612. LOOP_XYZE(i) {
  5613. if (code_seen(axis_codes[i])) {
  5614. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5615. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5616. }
  5617. }
  5618. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5619. planner.reset_acceleration_rates();
  5620. }
  5621. #if 0 // Not used for Sprinter/grbl gen6
  5622. inline void gcode_M202() {
  5623. LOOP_XYZE(i) {
  5624. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5625. }
  5626. }
  5627. #endif
  5628. /**
  5629. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5630. *
  5631. * With multiple extruders use T to specify which one.
  5632. */
  5633. inline void gcode_M203() {
  5634. GET_TARGET_EXTRUDER(203);
  5635. LOOP_XYZE(i)
  5636. if (code_seen(axis_codes[i])) {
  5637. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5638. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5639. }
  5640. }
  5641. /**
  5642. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5643. *
  5644. * P = Printing moves
  5645. * R = Retract only (no X, Y, Z) moves
  5646. * T = Travel (non printing) moves
  5647. *
  5648. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5649. */
  5650. inline void gcode_M204() {
  5651. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5652. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5653. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5654. }
  5655. if (code_seen('P')) {
  5656. planner.acceleration = code_value_linear_units();
  5657. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5658. }
  5659. if (code_seen('R')) {
  5660. planner.retract_acceleration = code_value_linear_units();
  5661. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5662. }
  5663. if (code_seen('T')) {
  5664. planner.travel_acceleration = code_value_linear_units();
  5665. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5666. }
  5667. }
  5668. /**
  5669. * M205: Set Advanced Settings
  5670. *
  5671. * S = Min Feed Rate (units/s)
  5672. * T = Min Travel Feed Rate (units/s)
  5673. * B = Min Segment Time (µs)
  5674. * X = Max X Jerk (units/sec^2)
  5675. * Y = Max Y Jerk (units/sec^2)
  5676. * Z = Max Z Jerk (units/sec^2)
  5677. * E = Max E Jerk (units/sec^2)
  5678. */
  5679. inline void gcode_M205() {
  5680. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5681. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5682. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5683. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5684. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5685. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5686. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5687. }
  5688. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5689. /**
  5690. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5691. */
  5692. inline void gcode_M206() {
  5693. LOOP_XYZ(i)
  5694. if (code_seen(axis_codes[i]))
  5695. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5696. #if ENABLED(MORGAN_SCARA)
  5697. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5698. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5699. #endif
  5700. SYNC_PLAN_POSITION_KINEMATIC();
  5701. report_current_position();
  5702. }
  5703. #endif // NO_WORKSPACE_OFFSETS
  5704. #if ENABLED(DELTA)
  5705. /**
  5706. * M665: Set delta configurations
  5707. *
  5708. * L = diagonal rod
  5709. * R = delta radius
  5710. * S = segments per second
  5711. * A = Alpha (Tower 1) diagonal rod trim
  5712. * B = Beta (Tower 2) diagonal rod trim
  5713. * C = Gamma (Tower 3) diagonal rod trim
  5714. */
  5715. inline void gcode_M665() {
  5716. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5717. if (code_seen('R')) delta_radius = code_value_linear_units();
  5718. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5719. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5720. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5721. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5722. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5723. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5724. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5725. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5726. }
  5727. /**
  5728. * M666: Set delta endstop adjustment
  5729. */
  5730. inline void gcode_M666() {
  5731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5732. if (DEBUGGING(LEVELING)) {
  5733. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5734. }
  5735. #endif
  5736. LOOP_XYZ(i) {
  5737. if (code_seen(axis_codes[i])) {
  5738. endstop_adj[i] = code_value_axis_units(i);
  5739. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5740. if (DEBUGGING(LEVELING)) {
  5741. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5742. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5743. }
  5744. #endif
  5745. }
  5746. }
  5747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5748. if (DEBUGGING(LEVELING)) {
  5749. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5750. }
  5751. #endif
  5752. }
  5753. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5754. /**
  5755. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5756. */
  5757. inline void gcode_M666() {
  5758. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5759. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5760. }
  5761. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5762. #if ENABLED(FWRETRACT)
  5763. /**
  5764. * M207: Set firmware retraction values
  5765. *
  5766. * S[+units] retract_length
  5767. * W[+units] retract_length_swap (multi-extruder)
  5768. * F[units/min] retract_feedrate_mm_s
  5769. * Z[units] retract_zlift
  5770. */
  5771. inline void gcode_M207() {
  5772. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5773. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5774. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5775. #if EXTRUDERS > 1
  5776. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5777. #endif
  5778. }
  5779. /**
  5780. * M208: Set firmware un-retraction values
  5781. *
  5782. * S[+units] retract_recover_length (in addition to M207 S*)
  5783. * W[+units] retract_recover_length_swap (multi-extruder)
  5784. * F[units/min] retract_recover_feedrate_mm_s
  5785. */
  5786. inline void gcode_M208() {
  5787. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5788. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5789. #if EXTRUDERS > 1
  5790. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5791. #endif
  5792. }
  5793. /**
  5794. * M209: Enable automatic retract (M209 S1)
  5795. * For slicers that don't support G10/11, reversed extrude-only
  5796. * moves will be classified as retraction.
  5797. */
  5798. inline void gcode_M209() {
  5799. if (code_seen('S')) {
  5800. autoretract_enabled = code_value_bool();
  5801. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5802. }
  5803. }
  5804. #endif // FWRETRACT
  5805. /**
  5806. * M211: Enable, Disable, and/or Report software endstops
  5807. *
  5808. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5809. */
  5810. inline void gcode_M211() {
  5811. SERIAL_ECHO_START;
  5812. #if HAS_SOFTWARE_ENDSTOPS
  5813. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5814. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5815. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5816. #else
  5817. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5818. SERIAL_ECHOPGM(MSG_OFF);
  5819. #endif
  5820. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5821. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5822. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5823. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5824. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5825. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5826. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5827. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5828. }
  5829. #if HOTENDS > 1
  5830. /**
  5831. * M218 - set hotend offset (in linear units)
  5832. *
  5833. * T<tool>
  5834. * X<xoffset>
  5835. * Y<yoffset>
  5836. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5837. */
  5838. inline void gcode_M218() {
  5839. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5840. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5841. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5842. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5843. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5844. #endif
  5845. SERIAL_ECHO_START;
  5846. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5847. HOTEND_LOOP() {
  5848. SERIAL_CHAR(' ');
  5849. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5850. SERIAL_CHAR(',');
  5851. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5852. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5853. SERIAL_CHAR(',');
  5854. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5855. #endif
  5856. }
  5857. SERIAL_EOL;
  5858. }
  5859. #endif // HOTENDS > 1
  5860. /**
  5861. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5862. */
  5863. inline void gcode_M220() {
  5864. if (code_seen('S')) feedrate_percentage = code_value_int();
  5865. }
  5866. /**
  5867. * M221: Set extrusion percentage (M221 T0 S95)
  5868. */
  5869. inline void gcode_M221() {
  5870. if (get_target_extruder_from_command(221)) return;
  5871. if (code_seen('S'))
  5872. flow_percentage[target_extruder] = code_value_int();
  5873. }
  5874. /**
  5875. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5876. */
  5877. inline void gcode_M226() {
  5878. if (code_seen('P')) {
  5879. int pin_number = code_value_int(),
  5880. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5881. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5882. int target = LOW;
  5883. stepper.synchronize();
  5884. pinMode(pin_number, INPUT);
  5885. switch (pin_state) {
  5886. case 1:
  5887. target = HIGH;
  5888. break;
  5889. case 0:
  5890. target = LOW;
  5891. break;
  5892. case -1:
  5893. target = !digitalRead(pin_number);
  5894. break;
  5895. }
  5896. while (digitalRead(pin_number) != target) idle();
  5897. } // pin_state -1 0 1 && pin_number > -1
  5898. } // code_seen('P')
  5899. }
  5900. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5901. /**
  5902. * M260: Send data to a I2C slave device
  5903. *
  5904. * This is a PoC, the formating and arguments for the GCODE will
  5905. * change to be more compatible, the current proposal is:
  5906. *
  5907. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5908. *
  5909. * M260 B<byte-1 value in base 10>
  5910. * M260 B<byte-2 value in base 10>
  5911. * M260 B<byte-3 value in base 10>
  5912. *
  5913. * M260 S1 ; Send the buffered data and reset the buffer
  5914. * M260 R1 ; Reset the buffer without sending data
  5915. *
  5916. */
  5917. inline void gcode_M260() {
  5918. // Set the target address
  5919. if (code_seen('A')) i2c.address(code_value_byte());
  5920. // Add a new byte to the buffer
  5921. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5922. // Flush the buffer to the bus
  5923. if (code_seen('S')) i2c.send();
  5924. // Reset and rewind the buffer
  5925. else if (code_seen('R')) i2c.reset();
  5926. }
  5927. /**
  5928. * M261: Request X bytes from I2C slave device
  5929. *
  5930. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5931. */
  5932. inline void gcode_M261() {
  5933. if (code_seen('A')) i2c.address(code_value_byte());
  5934. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5935. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5936. i2c.relay(bytes);
  5937. }
  5938. else {
  5939. SERIAL_ERROR_START;
  5940. SERIAL_ERRORLN("Bad i2c request");
  5941. }
  5942. }
  5943. #endif // EXPERIMENTAL_I2CBUS
  5944. #if HAS_SERVOS
  5945. /**
  5946. * M280: Get or set servo position. P<index> [S<angle>]
  5947. */
  5948. inline void gcode_M280() {
  5949. if (!code_seen('P')) return;
  5950. int servo_index = code_value_int();
  5951. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  5952. if (code_seen('S'))
  5953. MOVE_SERVO(servo_index, code_value_int());
  5954. else {
  5955. SERIAL_ECHO_START;
  5956. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5957. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5958. }
  5959. }
  5960. else {
  5961. SERIAL_ERROR_START;
  5962. SERIAL_ECHOPAIR("Servo ", servo_index);
  5963. SERIAL_ECHOLNPGM(" out of range");
  5964. }
  5965. }
  5966. #endif // HAS_SERVOS
  5967. #if HAS_BUZZER
  5968. /**
  5969. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5970. */
  5971. inline void gcode_M300() {
  5972. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5973. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5974. // Limits the tone duration to 0-5 seconds.
  5975. NOMORE(duration, 5000);
  5976. BUZZ(duration, frequency);
  5977. }
  5978. #endif // HAS_BUZZER
  5979. #if ENABLED(PIDTEMP)
  5980. /**
  5981. * M301: Set PID parameters P I D (and optionally C, L)
  5982. *
  5983. * P[float] Kp term
  5984. * I[float] Ki term (unscaled)
  5985. * D[float] Kd term (unscaled)
  5986. *
  5987. * With PID_EXTRUSION_SCALING:
  5988. *
  5989. * C[float] Kc term
  5990. * L[float] LPQ length
  5991. */
  5992. inline void gcode_M301() {
  5993. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5994. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5995. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5996. if (e < HOTENDS) { // catch bad input value
  5997. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5998. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5999. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6000. #if ENABLED(PID_EXTRUSION_SCALING)
  6001. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6002. if (code_seen('L')) lpq_len = code_value_float();
  6003. NOMORE(lpq_len, LPQ_MAX_LEN);
  6004. #endif
  6005. thermalManager.updatePID();
  6006. SERIAL_ECHO_START;
  6007. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6008. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6009. #endif // PID_PARAMS_PER_HOTEND
  6010. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6011. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6012. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6013. #if ENABLED(PID_EXTRUSION_SCALING)
  6014. //Kc does not have scaling applied above, or in resetting defaults
  6015. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6016. #endif
  6017. SERIAL_EOL;
  6018. }
  6019. else {
  6020. SERIAL_ERROR_START;
  6021. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6022. }
  6023. }
  6024. #endif // PIDTEMP
  6025. #if ENABLED(PIDTEMPBED)
  6026. inline void gcode_M304() {
  6027. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6028. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6029. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6030. thermalManager.updatePID();
  6031. SERIAL_ECHO_START;
  6032. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6033. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6034. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6035. }
  6036. #endif // PIDTEMPBED
  6037. #if defined(CHDK) || HAS_PHOTOGRAPH
  6038. /**
  6039. * M240: Trigger a camera by emulating a Canon RC-1
  6040. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6041. */
  6042. inline void gcode_M240() {
  6043. #ifdef CHDK
  6044. OUT_WRITE(CHDK, HIGH);
  6045. chdkHigh = millis();
  6046. chdkActive = true;
  6047. #elif HAS_PHOTOGRAPH
  6048. const uint8_t NUM_PULSES = 16;
  6049. const float PULSE_LENGTH = 0.01524;
  6050. for (int i = 0; i < NUM_PULSES; i++) {
  6051. WRITE(PHOTOGRAPH_PIN, HIGH);
  6052. _delay_ms(PULSE_LENGTH);
  6053. WRITE(PHOTOGRAPH_PIN, LOW);
  6054. _delay_ms(PULSE_LENGTH);
  6055. }
  6056. delay(7.33);
  6057. for (int i = 0; i < NUM_PULSES; i++) {
  6058. WRITE(PHOTOGRAPH_PIN, HIGH);
  6059. _delay_ms(PULSE_LENGTH);
  6060. WRITE(PHOTOGRAPH_PIN, LOW);
  6061. _delay_ms(PULSE_LENGTH);
  6062. }
  6063. #endif // !CHDK && HAS_PHOTOGRAPH
  6064. }
  6065. #endif // CHDK || PHOTOGRAPH_PIN
  6066. #if HAS_LCD_CONTRAST
  6067. /**
  6068. * M250: Read and optionally set the LCD contrast
  6069. */
  6070. inline void gcode_M250() {
  6071. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6072. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6073. SERIAL_PROTOCOL(lcd_contrast);
  6074. SERIAL_EOL;
  6075. }
  6076. #endif // HAS_LCD_CONTRAST
  6077. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6078. /**
  6079. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6080. *
  6081. * S<temperature> sets the minimum extrude temperature
  6082. * P<bool> enables (1) or disables (0) cold extrusion
  6083. *
  6084. * Examples:
  6085. *
  6086. * M302 ; report current cold extrusion state
  6087. * M302 P0 ; enable cold extrusion checking
  6088. * M302 P1 ; disables cold extrusion checking
  6089. * M302 S0 ; always allow extrusion (disables checking)
  6090. * M302 S170 ; only allow extrusion above 170
  6091. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6092. */
  6093. inline void gcode_M302() {
  6094. bool seen_S = code_seen('S');
  6095. if (seen_S) {
  6096. thermalManager.extrude_min_temp = code_value_temp_abs();
  6097. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6098. }
  6099. if (code_seen('P'))
  6100. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6101. else if (!seen_S) {
  6102. // Report current state
  6103. SERIAL_ECHO_START;
  6104. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6105. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6106. SERIAL_ECHOLNPGM("C)");
  6107. }
  6108. }
  6109. #endif // PREVENT_COLD_EXTRUSION
  6110. /**
  6111. * M303: PID relay autotune
  6112. *
  6113. * S<temperature> sets the target temperature. (default 150C)
  6114. * E<extruder> (-1 for the bed) (default 0)
  6115. * C<cycles>
  6116. * U<bool> with a non-zero value will apply the result to current settings
  6117. */
  6118. inline void gcode_M303() {
  6119. #if HAS_PID_HEATING
  6120. int e = code_seen('E') ? code_value_int() : 0;
  6121. int c = code_seen('C') ? code_value_int() : 5;
  6122. bool u = code_seen('U') && code_value_bool();
  6123. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6124. if (WITHIN(e, 0, HOTENDS - 1))
  6125. target_extruder = e;
  6126. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6127. thermalManager.PID_autotune(temp, e, c, u);
  6128. KEEPALIVE_STATE(IN_HANDLER);
  6129. #else
  6130. SERIAL_ERROR_START;
  6131. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6132. #endif
  6133. }
  6134. #if ENABLED(MORGAN_SCARA)
  6135. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6136. if (IsRunning()) {
  6137. forward_kinematics_SCARA(delta_a, delta_b);
  6138. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6139. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6140. destination[Z_AXIS] = current_position[Z_AXIS];
  6141. prepare_move_to_destination();
  6142. return true;
  6143. }
  6144. return false;
  6145. }
  6146. /**
  6147. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6148. */
  6149. inline bool gcode_M360() {
  6150. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6151. return SCARA_move_to_cal(0, 120);
  6152. }
  6153. /**
  6154. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6155. */
  6156. inline bool gcode_M361() {
  6157. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6158. return SCARA_move_to_cal(90, 130);
  6159. }
  6160. /**
  6161. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6162. */
  6163. inline bool gcode_M362() {
  6164. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6165. return SCARA_move_to_cal(60, 180);
  6166. }
  6167. /**
  6168. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6169. */
  6170. inline bool gcode_M363() {
  6171. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6172. return SCARA_move_to_cal(50, 90);
  6173. }
  6174. /**
  6175. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6176. */
  6177. inline bool gcode_M364() {
  6178. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6179. return SCARA_move_to_cal(45, 135);
  6180. }
  6181. #endif // SCARA
  6182. #if ENABLED(EXT_SOLENOID)
  6183. void enable_solenoid(uint8_t num) {
  6184. switch (num) {
  6185. case 0:
  6186. OUT_WRITE(SOL0_PIN, HIGH);
  6187. break;
  6188. #if HAS_SOLENOID_1
  6189. case 1:
  6190. OUT_WRITE(SOL1_PIN, HIGH);
  6191. break;
  6192. #endif
  6193. #if HAS_SOLENOID_2
  6194. case 2:
  6195. OUT_WRITE(SOL2_PIN, HIGH);
  6196. break;
  6197. #endif
  6198. #if HAS_SOLENOID_3
  6199. case 3:
  6200. OUT_WRITE(SOL3_PIN, HIGH);
  6201. break;
  6202. #endif
  6203. default:
  6204. SERIAL_ECHO_START;
  6205. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6206. break;
  6207. }
  6208. }
  6209. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6210. void disable_all_solenoids() {
  6211. OUT_WRITE(SOL0_PIN, LOW);
  6212. OUT_WRITE(SOL1_PIN, LOW);
  6213. OUT_WRITE(SOL2_PIN, LOW);
  6214. OUT_WRITE(SOL3_PIN, LOW);
  6215. }
  6216. /**
  6217. * M380: Enable solenoid on the active extruder
  6218. */
  6219. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6220. /**
  6221. * M381: Disable all solenoids
  6222. */
  6223. inline void gcode_M381() { disable_all_solenoids(); }
  6224. #endif // EXT_SOLENOID
  6225. /**
  6226. * M400: Finish all moves
  6227. */
  6228. inline void gcode_M400() { stepper.synchronize(); }
  6229. #if HAS_BED_PROBE
  6230. /**
  6231. * M401: Engage Z Servo endstop if available
  6232. */
  6233. inline void gcode_M401() { DEPLOY_PROBE(); }
  6234. /**
  6235. * M402: Retract Z Servo endstop if enabled
  6236. */
  6237. inline void gcode_M402() { STOW_PROBE(); }
  6238. #endif // HAS_BED_PROBE
  6239. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6240. /**
  6241. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6242. */
  6243. inline void gcode_M404() {
  6244. if (code_seen('W')) {
  6245. filament_width_nominal = code_value_linear_units();
  6246. }
  6247. else {
  6248. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6249. SERIAL_PROTOCOLLN(filament_width_nominal);
  6250. }
  6251. }
  6252. /**
  6253. * M405: Turn on filament sensor for control
  6254. */
  6255. inline void gcode_M405() {
  6256. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6257. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6258. if (code_seen('D')) meas_delay_cm = code_value_int();
  6259. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6260. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6261. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6262. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6263. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6264. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6265. }
  6266. filament_sensor = true;
  6267. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6268. //SERIAL_PROTOCOL(filament_width_meas);
  6269. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6270. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6271. }
  6272. /**
  6273. * M406: Turn off filament sensor for control
  6274. */
  6275. inline void gcode_M406() { filament_sensor = false; }
  6276. /**
  6277. * M407: Get measured filament diameter on serial output
  6278. */
  6279. inline void gcode_M407() {
  6280. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6281. SERIAL_PROTOCOLLN(filament_width_meas);
  6282. }
  6283. #endif // FILAMENT_WIDTH_SENSOR
  6284. void quickstop_stepper() {
  6285. stepper.quick_stop();
  6286. stepper.synchronize();
  6287. set_current_from_steppers_for_axis(ALL_AXES);
  6288. SYNC_PLAN_POSITION_KINEMATIC();
  6289. }
  6290. #if PLANNER_LEVELING
  6291. /**
  6292. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6293. *
  6294. * S[bool] Turns leveling on or off
  6295. * Z[height] Sets the Z fade height (0 or none to disable)
  6296. * V[bool] Verbose - Print the leveling grid
  6297. *
  6298. * With AUTO_BED_LEVELING_UBL only:
  6299. *
  6300. * L[index] Load UBL mesh from index (0 is default)
  6301. */
  6302. inline void gcode_M420() {
  6303. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6304. // L to load a mesh from the EEPROM
  6305. if (code_seen('L')) {
  6306. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6307. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6308. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6309. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6310. return;
  6311. }
  6312. ubl.load_mesh(storage_slot);
  6313. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6314. ubl.state.eeprom_storage_slot = storage_slot;
  6315. ubl.display_map(0); // Right now, we only support one type of map
  6316. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6317. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6318. }
  6319. #endif // AUTO_BED_LEVELING_UBL
  6320. // V to print the matrix or mesh
  6321. if (code_seen('V')) {
  6322. #if ABL_PLANAR
  6323. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6324. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6325. if (bilinear_grid_spacing[X_AXIS]) {
  6326. print_bilinear_leveling_grid();
  6327. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6328. bed_level_virt_print();
  6329. #endif
  6330. }
  6331. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6332. ubl.display_map(0); // Currently only supports one map type
  6333. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6334. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6335. #elif ENABLED(MESH_BED_LEVELING)
  6336. if (mbl.has_mesh()) {
  6337. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6338. mbl_mesh_report();
  6339. }
  6340. #endif
  6341. }
  6342. bool to_enable = false;
  6343. if (code_seen('S')) {
  6344. to_enable = code_value_bool();
  6345. set_bed_leveling_enabled(to_enable);
  6346. }
  6347. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6348. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6349. #endif
  6350. const bool new_status =
  6351. #if ENABLED(MESH_BED_LEVELING)
  6352. mbl.active()
  6353. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6354. ubl.state.active
  6355. #else
  6356. planner.abl_enabled
  6357. #endif
  6358. ;
  6359. if (to_enable && !new_status) {
  6360. SERIAL_ERROR_START;
  6361. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6362. }
  6363. SERIAL_ECHO_START;
  6364. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6365. }
  6366. #endif
  6367. #if ENABLED(MESH_BED_LEVELING)
  6368. /**
  6369. * M421: Set a single Mesh Bed Leveling Z coordinate
  6370. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6371. */
  6372. inline void gcode_M421() {
  6373. int8_t px = 0, py = 0;
  6374. float z = 0;
  6375. bool hasX, hasY, hasZ, hasI, hasJ;
  6376. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6377. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6378. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6379. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6380. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6381. if (hasX && hasY && hasZ) {
  6382. if (px >= 0 && py >= 0)
  6383. mbl.set_z(px, py, z);
  6384. else {
  6385. SERIAL_ERROR_START;
  6386. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6387. }
  6388. }
  6389. else if (hasI && hasJ && hasZ) {
  6390. if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1))
  6391. mbl.set_z(px, py, z);
  6392. else {
  6393. SERIAL_ERROR_START;
  6394. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6395. }
  6396. }
  6397. else {
  6398. SERIAL_ERROR_START;
  6399. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6400. }
  6401. }
  6402. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6403. /**
  6404. * M421: Set a single Mesh Bed Leveling Z coordinate
  6405. *
  6406. * M421 I<xindex> J<yindex> Z<linear>
  6407. */
  6408. inline void gcode_M421() {
  6409. int8_t px = 0, py = 0;
  6410. float z = 0;
  6411. bool hasI, hasJ, hasZ;
  6412. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6413. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6414. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6415. if (hasI && hasJ && hasZ) {
  6416. if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) {
  6417. bed_level_grid[px][py] = z;
  6418. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6419. bed_level_virt_interpolate();
  6420. #endif
  6421. }
  6422. else {
  6423. SERIAL_ERROR_START;
  6424. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6425. }
  6426. }
  6427. else {
  6428. SERIAL_ERROR_START;
  6429. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6430. }
  6431. }
  6432. #endif
  6433. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6434. /**
  6435. * M428: Set home_offset based on the distance between the
  6436. * current_position and the nearest "reference point."
  6437. * If an axis is past center its endstop position
  6438. * is the reference-point. Otherwise it uses 0. This allows
  6439. * the Z offset to be set near the bed when using a max endstop.
  6440. *
  6441. * M428 can't be used more than 2cm away from 0 or an endstop.
  6442. *
  6443. * Use M206 to set these values directly.
  6444. */
  6445. inline void gcode_M428() {
  6446. bool err = false;
  6447. LOOP_XYZ(i) {
  6448. if (axis_homed[i]) {
  6449. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6450. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6451. if (WITHIN(diff, -20, 20)) {
  6452. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6453. }
  6454. else {
  6455. SERIAL_ERROR_START;
  6456. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6457. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6458. BUZZ(200, 40);
  6459. err = true;
  6460. break;
  6461. }
  6462. }
  6463. }
  6464. if (!err) {
  6465. SYNC_PLAN_POSITION_KINEMATIC();
  6466. report_current_position();
  6467. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6468. BUZZ(100, 659);
  6469. BUZZ(100, 698);
  6470. }
  6471. }
  6472. #endif // NO_WORKSPACE_OFFSETS
  6473. /**
  6474. * M500: Store settings in EEPROM
  6475. */
  6476. inline void gcode_M500() {
  6477. (void)Config_StoreSettings();
  6478. }
  6479. /**
  6480. * M501: Read settings from EEPROM
  6481. */
  6482. inline void gcode_M501() {
  6483. (void)Config_RetrieveSettings();
  6484. }
  6485. /**
  6486. * M502: Revert to default settings
  6487. */
  6488. inline void gcode_M502() {
  6489. (void)Config_ResetDefault();
  6490. }
  6491. /**
  6492. * M503: print settings currently in memory
  6493. */
  6494. inline void gcode_M503() {
  6495. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6496. }
  6497. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6498. /**
  6499. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6500. */
  6501. inline void gcode_M540() {
  6502. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6503. }
  6504. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6505. #if HAS_BED_PROBE
  6506. inline void gcode_M851() {
  6507. SERIAL_ECHO_START;
  6508. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6509. SERIAL_CHAR(' ');
  6510. if (code_seen('Z')) {
  6511. float value = code_value_axis_units(Z_AXIS);
  6512. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6513. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6514. // Correct bilinear grid for new probe offset
  6515. const float diff = value - zprobe_zoffset;
  6516. if (diff) {
  6517. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  6518. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  6519. bed_level_grid[x][y] += diff;
  6520. }
  6521. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6522. bed_level_virt_interpolate();
  6523. #endif
  6524. #endif
  6525. zprobe_zoffset = value;
  6526. SERIAL_ECHO(zprobe_zoffset);
  6527. }
  6528. else {
  6529. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6530. SERIAL_CHAR(' ');
  6531. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6532. }
  6533. }
  6534. else {
  6535. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6536. }
  6537. SERIAL_EOL;
  6538. }
  6539. #endif // HAS_BED_PROBE
  6540. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6541. void filament_change_beep(const bool init=false) {
  6542. static millis_t next_buzz = 0;
  6543. static uint16_t runout_beep = 0;
  6544. if (init) next_buzz = runout_beep = 0;
  6545. const millis_t ms = millis();
  6546. if (ELAPSED(ms, next_buzz)) {
  6547. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6548. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6549. BUZZ(300, 2000);
  6550. runout_beep++;
  6551. }
  6552. }
  6553. }
  6554. static bool busy_doing_M600 = false;
  6555. /**
  6556. * M600: Pause for filament change
  6557. *
  6558. * E[distance] - Retract the filament this far (negative value)
  6559. * Z[distance] - Move the Z axis by this distance
  6560. * X[position] - Move to this X position, with Y
  6561. * Y[position] - Move to this Y position, with X
  6562. * L[distance] - Retract distance for removal (manual reload)
  6563. *
  6564. * Default values are used for omitted arguments.
  6565. *
  6566. */
  6567. inline void gcode_M600() {
  6568. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6569. SERIAL_ERROR_START;
  6570. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6571. return;
  6572. }
  6573. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6574. // Pause the print job timer
  6575. const bool job_running = print_job_timer.isRunning();
  6576. print_job_timer.pause();
  6577. // Show initial message and wait for synchronize steppers
  6578. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6579. stepper.synchronize();
  6580. // Save current position of all axes
  6581. float lastpos[XYZE];
  6582. COPY(lastpos, current_position);
  6583. set_destination_to_current();
  6584. // Initial retract before move to filament change position
  6585. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6586. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6587. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6588. #endif
  6589. ;
  6590. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6591. // Lift Z axis
  6592. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6593. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6594. FILAMENT_CHANGE_Z_ADD
  6595. #else
  6596. 0
  6597. #endif
  6598. ;
  6599. if (z_lift > 0) {
  6600. destination[Z_AXIS] += z_lift;
  6601. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6602. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6603. }
  6604. // Move XY axes to filament exchange position
  6605. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6606. #ifdef FILAMENT_CHANGE_X_POS
  6607. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6608. #endif
  6609. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6610. #ifdef FILAMENT_CHANGE_Y_POS
  6611. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6612. #endif
  6613. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6614. stepper.synchronize();
  6615. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6616. idle();
  6617. // Unload filament
  6618. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6619. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6620. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6621. #endif
  6622. ;
  6623. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6624. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6625. stepper.synchronize();
  6626. disable_e_steppers();
  6627. safe_delay(100);
  6628. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6629. bool nozzle_timed_out = false;
  6630. float temps[4];
  6631. // Wait for filament insert by user and press button
  6632. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6633. #if HAS_BUZZER
  6634. filament_change_beep(true);
  6635. #endif
  6636. idle();
  6637. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6639. wait_for_user = true; // LCD click or M108 will clear this
  6640. while (wait_for_user) {
  6641. if (nozzle_timed_out)
  6642. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6643. #if HAS_BUZZER
  6644. filament_change_beep();
  6645. #endif
  6646. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6647. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6648. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6649. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6650. }
  6651. idle(true);
  6652. }
  6653. KEEPALIVE_STATE(IN_HANDLER);
  6654. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6655. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6656. // Show "wait for heating"
  6657. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6658. wait_for_heatup = true;
  6659. while (wait_for_heatup) {
  6660. idle();
  6661. wait_for_heatup = false;
  6662. HOTEND_LOOP() {
  6663. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6664. wait_for_heatup = true;
  6665. break;
  6666. }
  6667. }
  6668. }
  6669. // Show "insert filament"
  6670. if (nozzle_timed_out)
  6671. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6672. #if HAS_BUZZER
  6673. filament_change_beep(true);
  6674. #endif
  6675. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6676. wait_for_user = true; // LCD click or M108 will clear this
  6677. while (wait_for_user && nozzle_timed_out) {
  6678. #if HAS_BUZZER
  6679. filament_change_beep();
  6680. #endif
  6681. idle(true);
  6682. }
  6683. KEEPALIVE_STATE(IN_HANDLER);
  6684. // Show "load" message
  6685. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6686. // Load filament
  6687. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6688. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6689. + FILAMENT_CHANGE_LOAD_LENGTH
  6690. #endif
  6691. ;
  6692. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6693. stepper.synchronize();
  6694. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6695. do {
  6696. // "Wait for filament extrude"
  6697. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6698. // Extrude filament to get into hotend
  6699. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6700. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6701. stepper.synchronize();
  6702. // Show "Extrude More" / "Resume" menu and wait for reply
  6703. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6704. wait_for_user = false;
  6705. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6706. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6707. KEEPALIVE_STATE(IN_HANDLER);
  6708. // Keep looping if "Extrude More" was selected
  6709. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6710. #endif
  6711. // "Wait for print to resume"
  6712. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6713. // Set extruder to saved position
  6714. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6715. planner.set_e_position_mm(current_position[E_AXIS]);
  6716. #if IS_KINEMATIC
  6717. // Move XYZ to starting position
  6718. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6719. #else
  6720. // Move XY to starting position, then Z
  6721. destination[X_AXIS] = lastpos[X_AXIS];
  6722. destination[Y_AXIS] = lastpos[Y_AXIS];
  6723. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6724. destination[Z_AXIS] = lastpos[Z_AXIS];
  6725. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6726. #endif
  6727. stepper.synchronize();
  6728. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6729. filament_ran_out = false;
  6730. #endif
  6731. // Show status screen
  6732. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6733. // Resume the print job timer if it was running
  6734. if (job_running) print_job_timer.start();
  6735. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6736. }
  6737. #endif // FILAMENT_CHANGE_FEATURE
  6738. #if ENABLED(DUAL_X_CARRIAGE)
  6739. /**
  6740. * M605: Set dual x-carriage movement mode
  6741. *
  6742. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6743. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6744. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6745. * units x-offset and an optional differential hotend temperature of
  6746. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6747. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6748. *
  6749. * Note: the X axis should be homed after changing dual x-carriage mode.
  6750. */
  6751. inline void gcode_M605() {
  6752. stepper.synchronize();
  6753. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6754. switch (dual_x_carriage_mode) {
  6755. case DXC_FULL_CONTROL_MODE:
  6756. case DXC_AUTO_PARK_MODE:
  6757. break;
  6758. case DXC_DUPLICATION_MODE:
  6759. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6760. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6761. SERIAL_ECHO_START;
  6762. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6763. SERIAL_CHAR(' ');
  6764. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6765. SERIAL_CHAR(',');
  6766. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6767. SERIAL_CHAR(' ');
  6768. SERIAL_ECHO(duplicate_extruder_x_offset);
  6769. SERIAL_CHAR(',');
  6770. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6771. break;
  6772. default:
  6773. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6774. break;
  6775. }
  6776. active_extruder_parked = false;
  6777. extruder_duplication_enabled = false;
  6778. delayed_move_time = 0;
  6779. }
  6780. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6781. inline void gcode_M605() {
  6782. stepper.synchronize();
  6783. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6784. SERIAL_ECHO_START;
  6785. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6786. }
  6787. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6788. #if ENABLED(LIN_ADVANCE)
  6789. /**
  6790. * M905: Set advance factor
  6791. */
  6792. inline void gcode_M905() {
  6793. stepper.synchronize();
  6794. const float newK = code_seen('K') ? code_value_float() : -1,
  6795. newD = code_seen('D') ? code_value_float() : -1,
  6796. newW = code_seen('W') ? code_value_float() : -1,
  6797. newH = code_seen('H') ? code_value_float() : -1;
  6798. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6799. SERIAL_ECHO_START;
  6800. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6801. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6802. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6803. planner.set_advance_ed_ratio(ratio);
  6804. SERIAL_ECHO_START;
  6805. SERIAL_ECHOPGM("E/D ratio: ");
  6806. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6807. }
  6808. }
  6809. #endif // LIN_ADVANCE
  6810. #if ENABLED(HAVE_TMC2130)
  6811. static void tmc2130_print_current(const int mA, const char name) {
  6812. SERIAL_CHAR(name);
  6813. SERIAL_ECHOPGM(" axis driver current: ");
  6814. SERIAL_ECHOLN(mA);
  6815. }
  6816. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  6817. tmc2130_print_current(mA, name);
  6818. st.setCurrent(mA, 0.11, 0.5);
  6819. }
  6820. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  6821. tmc2130_print_current(st.getCurrent(), name);
  6822. }
  6823. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  6824. SERIAL_CHAR(name);
  6825. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  6826. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  6827. }
  6828. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  6829. st.clear_otpw();
  6830. SERIAL_CHAR(name);
  6831. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  6832. }
  6833. /**
  6834. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  6835. *
  6836. * Report driver currents when no axis specified
  6837. */
  6838. inline void gcode_M906() {
  6839. uint16_t values[XYZE];
  6840. LOOP_XYZE(i)
  6841. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  6842. #if ENABLED(X_IS_TMC2130)
  6843. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  6844. else tmc2130_get_current(stepperX, 'X');
  6845. #endif
  6846. #if ENABLED(Y_IS_TMC2130)
  6847. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  6848. else tmc2130_get_current(stepperY, 'Y');
  6849. #endif
  6850. #if ENABLED(Z_IS_TMC2130)
  6851. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  6852. else tmc2130_get_current(stepperZ, 'Z');
  6853. #endif
  6854. #if ENABLED(E0_IS_TMC2130)
  6855. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  6856. else tmc2130_get_current(stepperE0, 'E');
  6857. #endif
  6858. }
  6859. /**
  6860. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  6861. * The flag is held by the library and persist until manually cleared by M912
  6862. */
  6863. inline void gcode_M911() {
  6864. #if ENABLED(X_IS_TMC2130)
  6865. tmc2130_report_otpw(stepperX, 'X');
  6866. #endif
  6867. #if ENABLED(Y_IS_TMC2130)
  6868. tmc2130_report_otpw(stepperY, 'Y');
  6869. #endif
  6870. #if ENABLED(Z_IS_TMC2130)
  6871. tmc2130_report_otpw(stepperZ, 'Z');
  6872. #endif
  6873. #if ENABLED(E0_IS_TMC2130)
  6874. tmc2130_report_otpw(stepperE0, 'E');
  6875. #endif
  6876. }
  6877. /**
  6878. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  6879. */
  6880. inline void gcode_M912() {
  6881. #if ENABLED(X_IS_TMC2130)
  6882. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  6883. #endif
  6884. #if ENABLED(Y_IS_TMC2130)
  6885. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  6886. #endif
  6887. #if ENABLED(Z_IS_TMC2130)
  6888. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  6889. #endif
  6890. #if ENABLED(E0_IS_TMC2130)
  6891. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  6892. #endif
  6893. }
  6894. #endif // HAVE_TMC2130
  6895. /**
  6896. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6897. */
  6898. inline void gcode_M907() {
  6899. #if HAS_DIGIPOTSS
  6900. LOOP_XYZE(i)
  6901. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6902. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6903. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6904. #elif HAS_MOTOR_CURRENT_PWM
  6905. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6906. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6907. #endif
  6908. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6909. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6910. #endif
  6911. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6912. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6913. #endif
  6914. #endif
  6915. #if ENABLED(DIGIPOT_I2C)
  6916. // this one uses actual amps in floating point
  6917. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6918. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6919. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6920. #endif
  6921. #if ENABLED(DAC_STEPPER_CURRENT)
  6922. if (code_seen('S')) {
  6923. float dac_percent = code_value_float();
  6924. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6925. }
  6926. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6927. #endif
  6928. }
  6929. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6930. /**
  6931. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6932. */
  6933. inline void gcode_M908() {
  6934. #if HAS_DIGIPOTSS
  6935. stepper.digitalPotWrite(
  6936. code_seen('P') ? code_value_int() : 0,
  6937. code_seen('S') ? code_value_int() : 0
  6938. );
  6939. #endif
  6940. #ifdef DAC_STEPPER_CURRENT
  6941. dac_current_raw(
  6942. code_seen('P') ? code_value_byte() : -1,
  6943. code_seen('S') ? code_value_ushort() : 0
  6944. );
  6945. #endif
  6946. }
  6947. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6948. inline void gcode_M909() { dac_print_values(); }
  6949. inline void gcode_M910() { dac_commit_eeprom(); }
  6950. #endif
  6951. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6952. #if HAS_MICROSTEPS
  6953. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6954. inline void gcode_M350() {
  6955. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6956. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6957. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6958. stepper.microstep_readings();
  6959. }
  6960. /**
  6961. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6962. * S# determines MS1 or MS2, X# sets the pin high/low.
  6963. */
  6964. inline void gcode_M351() {
  6965. if (code_seen('S')) switch (code_value_byte()) {
  6966. case 1:
  6967. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6968. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6969. break;
  6970. case 2:
  6971. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6972. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6973. break;
  6974. }
  6975. stepper.microstep_readings();
  6976. }
  6977. #endif // HAS_MICROSTEPS
  6978. #if HAS_CASE_LIGHT
  6979. uint8_t case_light_brightness = 255;
  6980. void update_case_light() {
  6981. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6982. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6983. }
  6984. #endif // HAS_CASE_LIGHT
  6985. /**
  6986. * M355: Turn case lights on/off and set brightness
  6987. *
  6988. * S<bool> Turn case light on or off
  6989. * P<byte> Set case light brightness (PWM pin required)
  6990. */
  6991. inline void gcode_M355() {
  6992. #if HAS_CASE_LIGHT
  6993. if (code_seen('P')) case_light_brightness = code_value_byte();
  6994. if (code_seen('S')) case_light_on = code_value_bool();
  6995. update_case_light();
  6996. SERIAL_ECHO_START;
  6997. SERIAL_ECHOPGM("Case lights ");
  6998. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6999. #else
  7000. SERIAL_ERROR_START;
  7001. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7002. #endif // HAS_CASE_LIGHT
  7003. }
  7004. #if ENABLED(MIXING_EXTRUDER)
  7005. /**
  7006. * M163: Set a single mix factor for a mixing extruder
  7007. * This is called "weight" by some systems.
  7008. *
  7009. * S[index] The channel index to set
  7010. * P[float] The mix value
  7011. *
  7012. */
  7013. inline void gcode_M163() {
  7014. int mix_index = code_seen('S') ? code_value_int() : 0;
  7015. if (mix_index < MIXING_STEPPERS) {
  7016. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7017. NOLESS(mix_value, 0.0);
  7018. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7019. }
  7020. }
  7021. #if MIXING_VIRTUAL_TOOLS > 1
  7022. /**
  7023. * M164: Store the current mix factors as a virtual tool.
  7024. *
  7025. * S[index] The virtual tool to store
  7026. *
  7027. */
  7028. inline void gcode_M164() {
  7029. int tool_index = code_seen('S') ? code_value_int() : 0;
  7030. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7031. normalize_mix();
  7032. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7033. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7034. }
  7035. }
  7036. #endif
  7037. #if ENABLED(DIRECT_MIXING_IN_G1)
  7038. /**
  7039. * M165: Set multiple mix factors for a mixing extruder.
  7040. * Factors that are left out will be set to 0.
  7041. * All factors together must add up to 1.0.
  7042. *
  7043. * A[factor] Mix factor for extruder stepper 1
  7044. * B[factor] Mix factor for extruder stepper 2
  7045. * C[factor] Mix factor for extruder stepper 3
  7046. * D[factor] Mix factor for extruder stepper 4
  7047. * H[factor] Mix factor for extruder stepper 5
  7048. * I[factor] Mix factor for extruder stepper 6
  7049. *
  7050. */
  7051. inline void gcode_M165() { gcode_get_mix(); }
  7052. #endif
  7053. #endif // MIXING_EXTRUDER
  7054. /**
  7055. * M999: Restart after being stopped
  7056. *
  7057. * Default behaviour is to flush the serial buffer and request
  7058. * a resend to the host starting on the last N line received.
  7059. *
  7060. * Sending "M999 S1" will resume printing without flushing the
  7061. * existing command buffer.
  7062. *
  7063. */
  7064. inline void gcode_M999() {
  7065. Running = true;
  7066. lcd_reset_alert_level();
  7067. if (code_seen('S') && code_value_bool()) return;
  7068. // gcode_LastN = Stopped_gcode_LastN;
  7069. FlushSerialRequestResend();
  7070. }
  7071. #if ENABLED(SWITCHING_EXTRUDER)
  7072. inline void move_extruder_servo(uint8_t e) {
  7073. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7074. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7075. safe_delay(500);
  7076. }
  7077. #endif
  7078. inline void invalid_extruder_error(const uint8_t &e) {
  7079. SERIAL_ECHO_START;
  7080. SERIAL_CHAR('T');
  7081. SERIAL_ECHO_F(e, DEC);
  7082. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7083. }
  7084. /**
  7085. * Perform a tool-change, which may result in moving the
  7086. * previous tool out of the way and the new tool into place.
  7087. */
  7088. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7089. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7090. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7091. return invalid_extruder_error(tmp_extruder);
  7092. // T0-Tnnn: Switch virtual tool by changing the mix
  7093. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7094. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7095. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7096. #if HOTENDS > 1
  7097. if (tmp_extruder >= EXTRUDERS)
  7098. return invalid_extruder_error(tmp_extruder);
  7099. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7100. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7101. if (tmp_extruder != active_extruder) {
  7102. if (!no_move && axis_unhomed_error(true, true, true)) {
  7103. SERIAL_ECHOLNPGM("No move on toolchange");
  7104. no_move = true;
  7105. }
  7106. // Save current position to destination, for use later
  7107. set_destination_to_current();
  7108. #if ENABLED(DUAL_X_CARRIAGE)
  7109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7110. if (DEBUGGING(LEVELING)) {
  7111. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7112. switch (dual_x_carriage_mode) {
  7113. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7114. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7115. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7116. }
  7117. }
  7118. #endif
  7119. const float xhome = x_home_pos(active_extruder);
  7120. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7121. && IsRunning()
  7122. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7123. ) {
  7124. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7125. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7126. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7127. #endif
  7128. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7129. if (DEBUGGING(LEVELING)) {
  7130. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7131. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7132. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7133. }
  7134. #endif
  7135. // Park old head: 1) raise 2) move to park position 3) lower
  7136. for (uint8_t i = 0; i < 3; i++)
  7137. planner.buffer_line(
  7138. i == 0 ? current_position[X_AXIS] : xhome,
  7139. current_position[Y_AXIS],
  7140. i == 2 ? current_position[Z_AXIS] : raised_z,
  7141. current_position[E_AXIS],
  7142. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7143. active_extruder
  7144. );
  7145. stepper.synchronize();
  7146. }
  7147. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7148. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7149. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7150. // Activate the new extruder
  7151. active_extruder = tmp_extruder;
  7152. // This function resets the max/min values - the current position may be overwritten below.
  7153. set_axis_is_at_home(X_AXIS);
  7154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7155. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7156. #endif
  7157. // Only when auto-parking are carriages safe to move
  7158. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7159. switch (dual_x_carriage_mode) {
  7160. case DXC_FULL_CONTROL_MODE:
  7161. // New current position is the position of the activated extruder
  7162. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7163. // Save the inactive extruder's position (from the old current_position)
  7164. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7165. break;
  7166. case DXC_AUTO_PARK_MODE:
  7167. // record raised toolhead position for use by unpark
  7168. COPY(raised_parked_position, current_position);
  7169. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7170. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7171. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7172. #endif
  7173. active_extruder_parked = true;
  7174. delayed_move_time = 0;
  7175. break;
  7176. case DXC_DUPLICATION_MODE:
  7177. // If the new extruder is the left one, set it "parked"
  7178. // This triggers the second extruder to move into the duplication position
  7179. active_extruder_parked = (active_extruder == 0);
  7180. if (active_extruder_parked)
  7181. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7182. else
  7183. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7184. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7185. extruder_duplication_enabled = false;
  7186. break;
  7187. }
  7188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7189. if (DEBUGGING(LEVELING)) {
  7190. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7191. DEBUG_POS("New extruder (parked)", current_position);
  7192. }
  7193. #endif
  7194. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7195. #else // !DUAL_X_CARRIAGE
  7196. #if ENABLED(SWITCHING_EXTRUDER)
  7197. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7198. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7199. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7200. // Always raise by some amount (destination copied from current_position earlier)
  7201. current_position[Z_AXIS] += z_raise;
  7202. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7203. stepper.synchronize();
  7204. move_extruder_servo(active_extruder);
  7205. #endif
  7206. /**
  7207. * Set current_position to the position of the new nozzle.
  7208. * Offsets are based on linear distance, so we need to get
  7209. * the resulting position in coordinate space.
  7210. *
  7211. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7212. * - With mesh leveling, update Z for the new position
  7213. * - Otherwise, just use the raw linear distance
  7214. *
  7215. * Software endstops are altered here too. Consider a case where:
  7216. * E0 at X=0 ... E1 at X=10
  7217. * When we switch to E1 now X=10, but E1 can't move left.
  7218. * To express this we apply the change in XY to the software endstops.
  7219. * E1 can move farther right than E0, so the right limit is extended.
  7220. *
  7221. * Note that we don't adjust the Z software endstops. Why not?
  7222. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7223. * because the bed is 1mm lower at the new position. As long as
  7224. * the first nozzle is out of the way, the carriage should be
  7225. * allowed to move 1mm lower. This technically "breaks" the
  7226. * Z software endstop. But this is technically correct (and
  7227. * there is no viable alternative).
  7228. */
  7229. #if ABL_PLANAR
  7230. // Offset extruder, make sure to apply the bed level rotation matrix
  7231. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7232. hotend_offset[Y_AXIS][tmp_extruder],
  7233. 0),
  7234. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7235. hotend_offset[Y_AXIS][active_extruder],
  7236. 0),
  7237. offset_vec = tmp_offset_vec - act_offset_vec;
  7238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7239. if (DEBUGGING(LEVELING)) {
  7240. tmp_offset_vec.debug("tmp_offset_vec");
  7241. act_offset_vec.debug("act_offset_vec");
  7242. offset_vec.debug("offset_vec (BEFORE)");
  7243. }
  7244. #endif
  7245. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7247. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7248. #endif
  7249. // Adjustments to the current position
  7250. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7251. current_position[Z_AXIS] += offset_vec.z;
  7252. #else // !ABL_PLANAR
  7253. const float xydiff[2] = {
  7254. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7255. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7256. };
  7257. #if ENABLED(MESH_BED_LEVELING)
  7258. if (mbl.active()) {
  7259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7260. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7261. #endif
  7262. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7263. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7264. z1 = current_position[Z_AXIS], z2 = z1;
  7265. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7266. planner.apply_leveling(x2, y2, z2);
  7267. current_position[Z_AXIS] += z2 - z1;
  7268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7269. if (DEBUGGING(LEVELING))
  7270. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7271. #endif
  7272. }
  7273. #endif // MESH_BED_LEVELING
  7274. #endif // !HAS_ABL
  7275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7276. if (DEBUGGING(LEVELING)) {
  7277. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7278. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7279. SERIAL_ECHOLNPGM(" }");
  7280. }
  7281. #endif
  7282. // The newly-selected extruder XY is actually at...
  7283. current_position[X_AXIS] += xydiff[X_AXIS];
  7284. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7285. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7286. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7287. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7288. position_shift[i] += xydiff[i];
  7289. #endif
  7290. update_software_endstops((AxisEnum)i);
  7291. }
  7292. #endif
  7293. // Set the new active extruder
  7294. active_extruder = tmp_extruder;
  7295. #endif // !DUAL_X_CARRIAGE
  7296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7297. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7298. #endif
  7299. // Tell the planner the new "current position"
  7300. SYNC_PLAN_POSITION_KINEMATIC();
  7301. // Move to the "old position" (move the extruder into place)
  7302. if (!no_move && IsRunning()) {
  7303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7304. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7305. #endif
  7306. prepare_move_to_destination();
  7307. }
  7308. #if ENABLED(SWITCHING_EXTRUDER)
  7309. // Move back down, if needed. (Including when the new tool is higher.)
  7310. if (z_raise != z_diff) {
  7311. destination[Z_AXIS] += z_diff;
  7312. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7313. prepare_move_to_destination();
  7314. }
  7315. #endif
  7316. } // (tmp_extruder != active_extruder)
  7317. stepper.synchronize();
  7318. #if ENABLED(EXT_SOLENOID)
  7319. disable_all_solenoids();
  7320. enable_solenoid_on_active_extruder();
  7321. #endif // EXT_SOLENOID
  7322. feedrate_mm_s = old_feedrate_mm_s;
  7323. #else // HOTENDS <= 1
  7324. // Set the new active extruder
  7325. active_extruder = tmp_extruder;
  7326. UNUSED(fr_mm_s);
  7327. UNUSED(no_move);
  7328. #endif // HOTENDS <= 1
  7329. SERIAL_ECHO_START;
  7330. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7331. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7332. }
  7333. /**
  7334. * T0-T3: Switch tool, usually switching extruders
  7335. *
  7336. * F[units/min] Set the movement feedrate
  7337. * S1 Don't move the tool in XY after change
  7338. */
  7339. inline void gcode_T(uint8_t tmp_extruder) {
  7340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7341. if (DEBUGGING(LEVELING)) {
  7342. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7343. SERIAL_CHAR(')');
  7344. SERIAL_EOL;
  7345. DEBUG_POS("BEFORE", current_position);
  7346. }
  7347. #endif
  7348. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7349. tool_change(tmp_extruder);
  7350. #elif HOTENDS > 1
  7351. tool_change(
  7352. tmp_extruder,
  7353. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7354. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7355. );
  7356. #endif
  7357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7358. if (DEBUGGING(LEVELING)) {
  7359. DEBUG_POS("AFTER", current_position);
  7360. SERIAL_ECHOLNPGM("<<< gcode_T");
  7361. }
  7362. #endif
  7363. }
  7364. /**
  7365. * Process a single command and dispatch it to its handler
  7366. * This is called from the main loop()
  7367. */
  7368. void process_next_command() {
  7369. current_command = command_queue[cmd_queue_index_r];
  7370. if (DEBUGGING(ECHO)) {
  7371. SERIAL_ECHO_START;
  7372. SERIAL_ECHOLN(current_command);
  7373. }
  7374. // Sanitize the current command:
  7375. // - Skip leading spaces
  7376. // - Bypass N[-0-9][0-9]*[ ]*
  7377. // - Overwrite * with nul to mark the end
  7378. while (*current_command == ' ') ++current_command;
  7379. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7380. current_command += 2; // skip N[-0-9]
  7381. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7382. while (*current_command == ' ') ++current_command; // skip [ ]*
  7383. }
  7384. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7385. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7386. char *cmd_ptr = current_command;
  7387. // Get the command code, which must be G, M, or T
  7388. char command_code = *cmd_ptr++;
  7389. // Skip spaces to get the numeric part
  7390. while (*cmd_ptr == ' ') cmd_ptr++;
  7391. // Allow for decimal point in command
  7392. #if ENABLED(G38_PROBE_TARGET)
  7393. uint8_t subcode = 0;
  7394. #endif
  7395. uint16_t codenum = 0; // define ahead of goto
  7396. // Bail early if there's no code
  7397. bool code_is_good = NUMERIC(*cmd_ptr);
  7398. if (!code_is_good) goto ExitUnknownCommand;
  7399. // Get and skip the code number
  7400. do {
  7401. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7402. cmd_ptr++;
  7403. } while (NUMERIC(*cmd_ptr));
  7404. // Allow for decimal point in command
  7405. #if ENABLED(G38_PROBE_TARGET)
  7406. if (*cmd_ptr == '.') {
  7407. cmd_ptr++;
  7408. while (NUMERIC(*cmd_ptr))
  7409. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7410. }
  7411. #endif
  7412. // Skip all spaces to get to the first argument, or nul
  7413. while (*cmd_ptr == ' ') cmd_ptr++;
  7414. // The command's arguments (if any) start here, for sure!
  7415. current_command_args = cmd_ptr;
  7416. KEEPALIVE_STATE(IN_HANDLER);
  7417. // Handle a known G, M, or T
  7418. switch (command_code) {
  7419. case 'G': switch (codenum) {
  7420. // G0, G1
  7421. case 0:
  7422. case 1:
  7423. #if IS_SCARA
  7424. gcode_G0_G1(codenum == 0);
  7425. #else
  7426. gcode_G0_G1();
  7427. #endif
  7428. break;
  7429. // G2, G3
  7430. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7431. case 2: // G2 - CW ARC
  7432. case 3: // G3 - CCW ARC
  7433. gcode_G2_G3(codenum == 2);
  7434. break;
  7435. #endif
  7436. // G4 Dwell
  7437. case 4:
  7438. gcode_G4();
  7439. break;
  7440. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7441. // G5
  7442. case 5: // G5 - Cubic B_spline
  7443. gcode_G5();
  7444. break;
  7445. #endif // BEZIER_CURVE_SUPPORT
  7446. #if ENABLED(FWRETRACT)
  7447. case 10: // G10: retract
  7448. case 11: // G11: retract_recover
  7449. gcode_G10_G11(codenum == 10);
  7450. break;
  7451. #endif // FWRETRACT
  7452. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7453. case 12:
  7454. gcode_G12(); // G12: Nozzle Clean
  7455. break;
  7456. #endif // NOZZLE_CLEAN_FEATURE
  7457. #if ENABLED(INCH_MODE_SUPPORT)
  7458. case 20: //G20: Inch Mode
  7459. gcode_G20();
  7460. break;
  7461. case 21: //G21: MM Mode
  7462. gcode_G21();
  7463. break;
  7464. #endif // INCH_MODE_SUPPORT
  7465. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7466. case 26: // G26: Mesh Validation Pattern generation
  7467. gcode_G26();
  7468. break;
  7469. #endif // AUTO_BED_LEVELING_UBL
  7470. #if ENABLED(NOZZLE_PARK_FEATURE)
  7471. case 27: // G27: Nozzle Park
  7472. gcode_G27();
  7473. break;
  7474. #endif // NOZZLE_PARK_FEATURE
  7475. case 28: // G28: Home all axes, one at a time
  7476. gcode_G28();
  7477. break;
  7478. #if PLANNER_LEVELING && !ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7479. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7480. // or provides access to the UBL System if enabled.
  7481. gcode_G29();
  7482. break;
  7483. #endif // PLANNER_LEVELING
  7484. #if HAS_BED_PROBE
  7485. case 30: // G30 Single Z probe
  7486. gcode_G30();
  7487. break;
  7488. #if ENABLED(Z_PROBE_SLED)
  7489. case 31: // G31: dock the sled
  7490. gcode_G31();
  7491. break;
  7492. case 32: // G32: undock the sled
  7493. gcode_G32();
  7494. break;
  7495. #endif // Z_PROBE_SLED
  7496. #endif // HAS_BED_PROBE
  7497. #if ENABLED(G38_PROBE_TARGET)
  7498. case 38: // G38.2 & G38.3
  7499. if (subcode == 2 || subcode == 3)
  7500. gcode_G38(subcode == 2);
  7501. break;
  7502. #endif
  7503. case 90: // G90
  7504. relative_mode = false;
  7505. break;
  7506. case 91: // G91
  7507. relative_mode = true;
  7508. break;
  7509. case 92: // G92
  7510. gcode_G92();
  7511. break;
  7512. }
  7513. break;
  7514. case 'M': switch (codenum) {
  7515. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7516. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7517. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7518. gcode_M0_M1();
  7519. break;
  7520. #endif // ULTIPANEL
  7521. case 17: // M17: Enable all stepper motors
  7522. gcode_M17();
  7523. break;
  7524. #if ENABLED(SDSUPPORT)
  7525. case 20: // M20: list SD card
  7526. gcode_M20(); break;
  7527. case 21: // M21: init SD card
  7528. gcode_M21(); break;
  7529. case 22: // M22: release SD card
  7530. gcode_M22(); break;
  7531. case 23: // M23: Select file
  7532. gcode_M23(); break;
  7533. case 24: // M24: Start SD print
  7534. gcode_M24(); break;
  7535. case 25: // M25: Pause SD print
  7536. gcode_M25(); break;
  7537. case 26: // M26: Set SD index
  7538. gcode_M26(); break;
  7539. case 27: // M27: Get SD status
  7540. gcode_M27(); break;
  7541. case 28: // M28: Start SD write
  7542. gcode_M28(); break;
  7543. case 29: // M29: Stop SD write
  7544. gcode_M29(); break;
  7545. case 30: // M30 <filename> Delete File
  7546. gcode_M30(); break;
  7547. case 32: // M32: Select file and start SD print
  7548. gcode_M32(); break;
  7549. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7550. case 33: // M33: Get the long full path to a file or folder
  7551. gcode_M33(); break;
  7552. #endif
  7553. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7554. case 34: //M34 - Set SD card sorting options
  7555. gcode_M34(); break;
  7556. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7557. case 928: // M928: Start SD write
  7558. gcode_M928(); break;
  7559. #endif //SDSUPPORT
  7560. case 31: // M31: Report time since the start of SD print or last M109
  7561. gcode_M31(); break;
  7562. case 42: // M42: Change pin state
  7563. gcode_M42(); break;
  7564. #if ENABLED(PINS_DEBUGGING)
  7565. case 43: // M43: Read pin state
  7566. gcode_M43(); break;
  7567. #endif
  7568. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7569. case 48: // M48: Z probe repeatability test
  7570. gcode_M48();
  7571. break;
  7572. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7573. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7574. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7575. gcode_M49();
  7576. break;
  7577. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7578. case 75: // M75: Start print timer
  7579. gcode_M75(); break;
  7580. case 76: // M76: Pause print timer
  7581. gcode_M76(); break;
  7582. case 77: // M77: Stop print timer
  7583. gcode_M77(); break;
  7584. #if ENABLED(PRINTCOUNTER)
  7585. case 78: // M78: Show print statistics
  7586. gcode_M78(); break;
  7587. #endif
  7588. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7589. case 100: // M100: Free Memory Report
  7590. gcode_M100();
  7591. break;
  7592. #endif
  7593. case 104: // M104: Set hot end temperature
  7594. gcode_M104();
  7595. break;
  7596. case 110: // M110: Set Current Line Number
  7597. gcode_M110();
  7598. break;
  7599. case 111: // M111: Set debug level
  7600. gcode_M111();
  7601. break;
  7602. #if DISABLED(EMERGENCY_PARSER)
  7603. case 108: // M108: Cancel Waiting
  7604. gcode_M108();
  7605. break;
  7606. case 112: // M112: Emergency Stop
  7607. gcode_M112();
  7608. break;
  7609. case 410: // M410 quickstop - Abort all the planned moves.
  7610. gcode_M410();
  7611. break;
  7612. #endif
  7613. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7614. case 113: // M113: Set Host Keepalive interval
  7615. gcode_M113();
  7616. break;
  7617. #endif
  7618. case 140: // M140: Set bed temperature
  7619. gcode_M140();
  7620. break;
  7621. case 105: // M105: Report current temperature
  7622. gcode_M105();
  7623. KEEPALIVE_STATE(NOT_BUSY);
  7624. return; // "ok" already printed
  7625. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7626. case 155: // M155: Set temperature auto-report interval
  7627. gcode_M155();
  7628. break;
  7629. #endif
  7630. case 109: // M109: Wait for hotend temperature to reach target
  7631. gcode_M109();
  7632. break;
  7633. #if HAS_TEMP_BED
  7634. case 190: // M190: Wait for bed temperature to reach target
  7635. gcode_M190();
  7636. break;
  7637. #endif // HAS_TEMP_BED
  7638. #if FAN_COUNT > 0
  7639. case 106: // M106: Fan On
  7640. gcode_M106();
  7641. break;
  7642. case 107: // M107: Fan Off
  7643. gcode_M107();
  7644. break;
  7645. #endif // FAN_COUNT > 0
  7646. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7647. case 125: // M125: Store current position and move to filament change position
  7648. gcode_M125(); break;
  7649. #endif
  7650. #if ENABLED(BARICUDA)
  7651. // PWM for HEATER_1_PIN
  7652. #if HAS_HEATER_1
  7653. case 126: // M126: valve open
  7654. gcode_M126();
  7655. break;
  7656. case 127: // M127: valve closed
  7657. gcode_M127();
  7658. break;
  7659. #endif // HAS_HEATER_1
  7660. // PWM for HEATER_2_PIN
  7661. #if HAS_HEATER_2
  7662. case 128: // M128: valve open
  7663. gcode_M128();
  7664. break;
  7665. case 129: // M129: valve closed
  7666. gcode_M129();
  7667. break;
  7668. #endif // HAS_HEATER_2
  7669. #endif // BARICUDA
  7670. #if HAS_POWER_SWITCH
  7671. case 80: // M80: Turn on Power Supply
  7672. gcode_M80();
  7673. break;
  7674. #endif // HAS_POWER_SWITCH
  7675. case 81: // M81: Turn off Power, including Power Supply, if possible
  7676. gcode_M81();
  7677. break;
  7678. case 82: // M83: Set E axis normal mode (same as other axes)
  7679. gcode_M82();
  7680. break;
  7681. case 83: // M83: Set E axis relative mode
  7682. gcode_M83();
  7683. break;
  7684. case 18: // M18 => M84
  7685. case 84: // M84: Disable all steppers or set timeout
  7686. gcode_M18_M84();
  7687. break;
  7688. case 85: // M85: Set inactivity stepper shutdown timeout
  7689. gcode_M85();
  7690. break;
  7691. case 92: // M92: Set the steps-per-unit for one or more axes
  7692. gcode_M92();
  7693. break;
  7694. case 114: // M114: Report current position
  7695. gcode_M114();
  7696. break;
  7697. case 115: // M115: Report capabilities
  7698. gcode_M115();
  7699. break;
  7700. case 117: // M117: Set LCD message text, if possible
  7701. gcode_M117();
  7702. break;
  7703. case 119: // M119: Report endstop states
  7704. gcode_M119();
  7705. break;
  7706. case 120: // M120: Enable endstops
  7707. gcode_M120();
  7708. break;
  7709. case 121: // M121: Disable endstops
  7710. gcode_M121();
  7711. break;
  7712. #if ENABLED(ULTIPANEL)
  7713. case 145: // M145: Set material heatup parameters
  7714. gcode_M145();
  7715. break;
  7716. #endif
  7717. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7718. case 149: // M149: Set temperature units
  7719. gcode_M149();
  7720. break;
  7721. #endif
  7722. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7723. case 150: // M150: Set Status LED Color
  7724. gcode_M150();
  7725. break;
  7726. #endif // BLINKM
  7727. #if ENABLED(MIXING_EXTRUDER)
  7728. case 163: // M163: Set a component weight for mixing extruder
  7729. gcode_M163();
  7730. break;
  7731. #if MIXING_VIRTUAL_TOOLS > 1
  7732. case 164: // M164: Save current mix as a virtual extruder
  7733. gcode_M164();
  7734. break;
  7735. #endif
  7736. #if ENABLED(DIRECT_MIXING_IN_G1)
  7737. case 165: // M165: Set multiple mix weights
  7738. gcode_M165();
  7739. break;
  7740. #endif
  7741. #endif
  7742. case 200: // M200: Set filament diameter, E to cubic units
  7743. gcode_M200();
  7744. break;
  7745. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7746. gcode_M201();
  7747. break;
  7748. #if 0 // Not used for Sprinter/grbl gen6
  7749. case 202: // M202
  7750. gcode_M202();
  7751. break;
  7752. #endif
  7753. case 203: // M203: Set max feedrate (units/sec)
  7754. gcode_M203();
  7755. break;
  7756. case 204: // M204: Set acceleration
  7757. gcode_M204();
  7758. break;
  7759. case 205: //M205: Set advanced settings
  7760. gcode_M205();
  7761. break;
  7762. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7763. case 206: // M206: Set home offsets
  7764. gcode_M206();
  7765. break;
  7766. #endif
  7767. #if ENABLED(DELTA)
  7768. case 665: // M665: Set delta configurations
  7769. gcode_M665();
  7770. break;
  7771. #endif
  7772. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7773. case 666: // M666: Set delta or dual endstop adjustment
  7774. gcode_M666();
  7775. break;
  7776. #endif
  7777. #if ENABLED(FWRETRACT)
  7778. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7779. gcode_M207();
  7780. break;
  7781. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7782. gcode_M208();
  7783. break;
  7784. case 209: // M209: Turn Automatic Retract Detection on/off
  7785. gcode_M209();
  7786. break;
  7787. #endif // FWRETRACT
  7788. case 211: // M211: Enable, Disable, and/or Report software endstops
  7789. gcode_M211();
  7790. break;
  7791. #if HOTENDS > 1
  7792. case 218: // M218: Set a tool offset
  7793. gcode_M218();
  7794. break;
  7795. #endif
  7796. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7797. gcode_M220();
  7798. break;
  7799. case 221: // M221: Set Flow Percentage
  7800. gcode_M221();
  7801. break;
  7802. case 226: // M226: Wait until a pin reaches a state
  7803. gcode_M226();
  7804. break;
  7805. #if HAS_SERVOS
  7806. case 280: // M280: Set servo position absolute
  7807. gcode_M280();
  7808. break;
  7809. #endif // HAS_SERVOS
  7810. #if HAS_BUZZER
  7811. case 300: // M300: Play beep tone
  7812. gcode_M300();
  7813. break;
  7814. #endif // HAS_BUZZER
  7815. #if ENABLED(PIDTEMP)
  7816. case 301: // M301: Set hotend PID parameters
  7817. gcode_M301();
  7818. break;
  7819. #endif // PIDTEMP
  7820. #if ENABLED(PIDTEMPBED)
  7821. case 304: // M304: Set bed PID parameters
  7822. gcode_M304();
  7823. break;
  7824. #endif // PIDTEMPBED
  7825. #if defined(CHDK) || HAS_PHOTOGRAPH
  7826. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7827. gcode_M240();
  7828. break;
  7829. #endif // CHDK || PHOTOGRAPH_PIN
  7830. #if HAS_LCD_CONTRAST
  7831. case 250: // M250: Set LCD contrast
  7832. gcode_M250();
  7833. break;
  7834. #endif // HAS_LCD_CONTRAST
  7835. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7836. case 260: // M260: Send data to an i2c slave
  7837. gcode_M260();
  7838. break;
  7839. case 261: // M261: Request data from an i2c slave
  7840. gcode_M261();
  7841. break;
  7842. #endif // EXPERIMENTAL_I2CBUS
  7843. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7844. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7845. gcode_M302();
  7846. break;
  7847. #endif // PREVENT_COLD_EXTRUSION
  7848. case 303: // M303: PID autotune
  7849. gcode_M303();
  7850. break;
  7851. #if ENABLED(MORGAN_SCARA)
  7852. case 360: // M360: SCARA Theta pos1
  7853. if (gcode_M360()) return;
  7854. break;
  7855. case 361: // M361: SCARA Theta pos2
  7856. if (gcode_M361()) return;
  7857. break;
  7858. case 362: // M362: SCARA Psi pos1
  7859. if (gcode_M362()) return;
  7860. break;
  7861. case 363: // M363: SCARA Psi pos2
  7862. if (gcode_M363()) return;
  7863. break;
  7864. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7865. if (gcode_M364()) return;
  7866. break;
  7867. #endif // SCARA
  7868. case 400: // M400: Finish all moves
  7869. gcode_M400();
  7870. break;
  7871. #if HAS_BED_PROBE
  7872. case 401: // M401: Deploy probe
  7873. gcode_M401();
  7874. break;
  7875. case 402: // M402: Stow probe
  7876. gcode_M402();
  7877. break;
  7878. #endif // HAS_BED_PROBE
  7879. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7880. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7881. gcode_M404();
  7882. break;
  7883. case 405: // M405: Turn on filament sensor for control
  7884. gcode_M405();
  7885. break;
  7886. case 406: // M406: Turn off filament sensor for control
  7887. gcode_M406();
  7888. break;
  7889. case 407: // M407: Display measured filament diameter
  7890. gcode_M407();
  7891. break;
  7892. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7893. #if PLANNER_LEVELING
  7894. case 420: // M420: Enable/Disable Bed Leveling
  7895. gcode_M420();
  7896. break;
  7897. #endif
  7898. #if ENABLED(MESH_BED_LEVELING)
  7899. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7900. gcode_M421();
  7901. break;
  7902. #endif
  7903. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7904. case 428: // M428: Apply current_position to home_offset
  7905. gcode_M428();
  7906. break;
  7907. #endif
  7908. case 500: // M500: Store settings in EEPROM
  7909. gcode_M500();
  7910. break;
  7911. case 501: // M501: Read settings from EEPROM
  7912. gcode_M501();
  7913. break;
  7914. case 502: // M502: Revert to default settings
  7915. gcode_M502();
  7916. break;
  7917. case 503: // M503: print settings currently in memory
  7918. gcode_M503();
  7919. break;
  7920. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7921. case 540: // M540: Set abort on endstop hit for SD printing
  7922. gcode_M540();
  7923. break;
  7924. #endif
  7925. #if HAS_BED_PROBE
  7926. case 851: // M851: Set Z Probe Z Offset
  7927. gcode_M851();
  7928. break;
  7929. #endif // HAS_BED_PROBE
  7930. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7931. case 600: // M600: Pause for filament change
  7932. gcode_M600();
  7933. break;
  7934. #endif // FILAMENT_CHANGE_FEATURE
  7935. #if ENABLED(DUAL_X_CARRIAGE)
  7936. case 605: // M605: Set Dual X Carriage movement mode
  7937. gcode_M605();
  7938. break;
  7939. #endif // DUAL_X_CARRIAGE
  7940. #if ENABLED(LIN_ADVANCE)
  7941. case 905: // M905: Set advance K factor.
  7942. gcode_M905();
  7943. break;
  7944. #endif
  7945. #if ENABLED(HAVE_TMC2130)
  7946. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7947. gcode_M906();
  7948. break;
  7949. #endif
  7950. case 907: // M907: Set digital trimpot motor current using axis codes.
  7951. gcode_M907();
  7952. break;
  7953. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7954. case 908: // M908: Control digital trimpot directly.
  7955. gcode_M908();
  7956. break;
  7957. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7958. case 909: // M909: Print digipot/DAC current value
  7959. gcode_M909();
  7960. break;
  7961. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7962. gcode_M910();
  7963. break;
  7964. #endif
  7965. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7966. #if ENABLED(HAVE_TMC2130)
  7967. case 911: // M911: Report TMC2130 prewarn triggered flags
  7968. gcode_M911();
  7969. break;
  7970. case 912: // M911: Clear TMC2130 prewarn triggered flags
  7971. gcode_M912();
  7972. break;
  7973. #endif
  7974. #if HAS_MICROSTEPS
  7975. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7976. gcode_M350();
  7977. break;
  7978. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7979. gcode_M351();
  7980. break;
  7981. #endif // HAS_MICROSTEPS
  7982. case 355: // M355 Turn case lights on/off
  7983. gcode_M355();
  7984. break;
  7985. case 999: // M999: Restart after being Stopped
  7986. gcode_M999();
  7987. break;
  7988. }
  7989. break;
  7990. case 'T':
  7991. gcode_T(codenum);
  7992. break;
  7993. default: code_is_good = false;
  7994. }
  7995. KEEPALIVE_STATE(NOT_BUSY);
  7996. ExitUnknownCommand:
  7997. // Still unknown command? Throw an error
  7998. if (!code_is_good) unknown_command_error();
  7999. ok_to_send();
  8000. }
  8001. /**
  8002. * Send a "Resend: nnn" message to the host to
  8003. * indicate that a command needs to be re-sent.
  8004. */
  8005. void FlushSerialRequestResend() {
  8006. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8007. MYSERIAL.flush();
  8008. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8009. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8010. ok_to_send();
  8011. }
  8012. /**
  8013. * Send an "ok" message to the host, indicating
  8014. * that a command was successfully processed.
  8015. *
  8016. * If ADVANCED_OK is enabled also include:
  8017. * N<int> Line number of the command, if any
  8018. * P<int> Planner space remaining
  8019. * B<int> Block queue space remaining
  8020. */
  8021. void ok_to_send() {
  8022. refresh_cmd_timeout();
  8023. if (!send_ok[cmd_queue_index_r]) return;
  8024. SERIAL_PROTOCOLPGM(MSG_OK);
  8025. #if ENABLED(ADVANCED_OK)
  8026. char* p = command_queue[cmd_queue_index_r];
  8027. if (*p == 'N') {
  8028. SERIAL_PROTOCOL(' ');
  8029. SERIAL_ECHO(*p++);
  8030. while (NUMERIC_SIGNED(*p))
  8031. SERIAL_ECHO(*p++);
  8032. }
  8033. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8034. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8035. #endif
  8036. SERIAL_EOL;
  8037. }
  8038. #if HAS_SOFTWARE_ENDSTOPS
  8039. /**
  8040. * Constrain the given coordinates to the software endstops.
  8041. */
  8042. void clamp_to_software_endstops(float target[XYZ]) {
  8043. if (!soft_endstops_enabled) return;
  8044. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8045. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8046. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8047. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8048. #endif
  8049. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8050. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8051. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8052. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8053. #endif
  8054. }
  8055. #endif
  8056. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8057. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8058. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8059. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8060. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8061. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8062. #else
  8063. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8064. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  8065. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  8066. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8067. #endif
  8068. // Get the Z adjustment for non-linear bed leveling
  8069. float bilinear_z_offset(float cartesian[XYZ]) {
  8070. // XY relative to the probed area
  8071. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8072. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8073. // Convert to grid box units
  8074. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8075. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8076. // Whole units for the grid line indices. Constrained within bounds.
  8077. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8078. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8079. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8080. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8081. // Subtract whole to get the ratio within the grid box
  8082. ratio_x -= gridx; ratio_y -= gridy;
  8083. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8084. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8085. // Z at the box corners
  8086. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8087. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8088. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8089. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8090. // Bilinear interpolate
  8091. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8092. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8093. offset = L + ratio_x * (R - L);
  8094. /*
  8095. static float last_offset = 0;
  8096. if (fabs(last_offset - offset) > 0.2) {
  8097. SERIAL_ECHOPGM("Sudden Shift at ");
  8098. SERIAL_ECHOPAIR("x=", x);
  8099. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8100. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8101. SERIAL_ECHOPAIR(" y=", y);
  8102. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8103. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8104. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8105. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8106. SERIAL_ECHOPAIR(" z1=", z1);
  8107. SERIAL_ECHOPAIR(" z2=", z2);
  8108. SERIAL_ECHOPAIR(" z3=", z3);
  8109. SERIAL_ECHOLNPAIR(" z4=", z4);
  8110. SERIAL_ECHOPAIR(" L=", L);
  8111. SERIAL_ECHOPAIR(" R=", R);
  8112. SERIAL_ECHOLNPAIR(" offset=", offset);
  8113. }
  8114. last_offset = offset;
  8115. */
  8116. return offset;
  8117. }
  8118. #endif // AUTO_BED_LEVELING_BILINEAR
  8119. #if ENABLED(DELTA)
  8120. /**
  8121. * Recalculate factors used for delta kinematics whenever
  8122. * settings have been changed (e.g., by M665).
  8123. */
  8124. void recalc_delta_settings(float radius, float diagonal_rod) {
  8125. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8126. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8127. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8128. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8129. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8130. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8131. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8132. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8133. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8134. }
  8135. #if ENABLED(DELTA_FAST_SQRT)
  8136. /**
  8137. * Fast inverse sqrt from Quake III Arena
  8138. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8139. */
  8140. float Q_rsqrt(float number) {
  8141. long i;
  8142. float x2, y;
  8143. const float threehalfs = 1.5f;
  8144. x2 = number * 0.5f;
  8145. y = number;
  8146. i = * ( long * ) &y; // evil floating point bit level hacking
  8147. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8148. y = * ( float * ) &i;
  8149. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8150. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8151. return y;
  8152. }
  8153. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8154. #else
  8155. #define _SQRT(n) sqrt(n)
  8156. #endif
  8157. /**
  8158. * Delta Inverse Kinematics
  8159. *
  8160. * Calculate the tower positions for a given logical
  8161. * position, storing the result in the delta[] array.
  8162. *
  8163. * This is an expensive calculation, requiring 3 square
  8164. * roots per segmented linear move, and strains the limits
  8165. * of a Mega2560 with a Graphical Display.
  8166. *
  8167. * Suggested optimizations include:
  8168. *
  8169. * - Disable the home_offset (M206) and/or position_shift (G92)
  8170. * features to remove up to 12 float additions.
  8171. *
  8172. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8173. * (see above)
  8174. */
  8175. // Macro to obtain the Z position of an individual tower
  8176. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8177. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8178. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8179. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8180. ) \
  8181. )
  8182. #define DELTA_RAW_IK() do { \
  8183. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8184. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8185. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8186. } while(0)
  8187. #define DELTA_LOGICAL_IK() do { \
  8188. const float raw[XYZ] = { \
  8189. RAW_X_POSITION(logical[X_AXIS]), \
  8190. RAW_Y_POSITION(logical[Y_AXIS]), \
  8191. RAW_Z_POSITION(logical[Z_AXIS]) \
  8192. }; \
  8193. DELTA_RAW_IK(); \
  8194. } while(0)
  8195. #define DELTA_DEBUG() do { \
  8196. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8197. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8198. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8199. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8200. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8201. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8202. } while(0)
  8203. void inverse_kinematics(const float logical[XYZ]) {
  8204. DELTA_LOGICAL_IK();
  8205. // DELTA_DEBUG();
  8206. }
  8207. /**
  8208. * Calculate the highest Z position where the
  8209. * effector has the full range of XY motion.
  8210. */
  8211. float delta_safe_distance_from_top() {
  8212. float cartesian[XYZ] = {
  8213. LOGICAL_X_POSITION(0),
  8214. LOGICAL_Y_POSITION(0),
  8215. LOGICAL_Z_POSITION(0)
  8216. };
  8217. inverse_kinematics(cartesian);
  8218. float distance = delta[A_AXIS];
  8219. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8220. inverse_kinematics(cartesian);
  8221. return abs(distance - delta[A_AXIS]);
  8222. }
  8223. /**
  8224. * Delta Forward Kinematics
  8225. *
  8226. * See the Wikipedia article "Trilateration"
  8227. * https://en.wikipedia.org/wiki/Trilateration
  8228. *
  8229. * Establish a new coordinate system in the plane of the
  8230. * three carriage points. This system has its origin at
  8231. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8232. * plane with a Z component of zero.
  8233. * We will define unit vectors in this coordinate system
  8234. * in our original coordinate system. Then when we calculate
  8235. * the Xnew, Ynew and Znew values, we can translate back into
  8236. * the original system by moving along those unit vectors
  8237. * by the corresponding values.
  8238. *
  8239. * Variable names matched to Marlin, c-version, and avoid the
  8240. * use of any vector library.
  8241. *
  8242. * by Andreas Hardtung 2016-06-07
  8243. * based on a Java function from "Delta Robot Kinematics V3"
  8244. * by Steve Graves
  8245. *
  8246. * The result is stored in the cartes[] array.
  8247. */
  8248. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8249. // Create a vector in old coordinates along x axis of new coordinate
  8250. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8251. // Get the Magnitude of vector.
  8252. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8253. // Create unit vector by dividing by magnitude.
  8254. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8255. // Get the vector from the origin of the new system to the third point.
  8256. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8257. // Use the dot product to find the component of this vector on the X axis.
  8258. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8259. // Create a vector along the x axis that represents the x component of p13.
  8260. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8261. // Subtract the X component from the original vector leaving only Y. We use the
  8262. // variable that will be the unit vector after we scale it.
  8263. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8264. // The magnitude of Y component
  8265. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8266. // Convert to a unit vector
  8267. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8268. // The cross product of the unit x and y is the unit z
  8269. // float[] ez = vectorCrossProd(ex, ey);
  8270. float ez[3] = {
  8271. ex[1] * ey[2] - ex[2] * ey[1],
  8272. ex[2] * ey[0] - ex[0] * ey[2],
  8273. ex[0] * ey[1] - ex[1] * ey[0]
  8274. };
  8275. // We now have the d, i and j values defined in Wikipedia.
  8276. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8277. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8278. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8279. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8280. // Start from the origin of the old coordinates and add vectors in the
  8281. // old coords that represent the Xnew, Ynew and Znew to find the point
  8282. // in the old system.
  8283. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8284. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8285. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8286. }
  8287. void forward_kinematics_DELTA(float point[ABC]) {
  8288. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8289. }
  8290. #endif // DELTA
  8291. /**
  8292. * Get the stepper positions in the cartes[] array.
  8293. * Forward kinematics are applied for DELTA and SCARA.
  8294. *
  8295. * The result is in the current coordinate space with
  8296. * leveling applied. The coordinates need to be run through
  8297. * unapply_leveling to obtain the "ideal" coordinates
  8298. * suitable for current_position, etc.
  8299. */
  8300. void get_cartesian_from_steppers() {
  8301. #if ENABLED(DELTA)
  8302. forward_kinematics_DELTA(
  8303. stepper.get_axis_position_mm(A_AXIS),
  8304. stepper.get_axis_position_mm(B_AXIS),
  8305. stepper.get_axis_position_mm(C_AXIS)
  8306. );
  8307. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8308. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8309. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8310. #elif IS_SCARA
  8311. forward_kinematics_SCARA(
  8312. stepper.get_axis_position_degrees(A_AXIS),
  8313. stepper.get_axis_position_degrees(B_AXIS)
  8314. );
  8315. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8316. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8317. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8318. #else
  8319. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8320. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8321. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8322. #endif
  8323. }
  8324. /**
  8325. * Set the current_position for an axis based on
  8326. * the stepper positions, removing any leveling that
  8327. * may have been applied.
  8328. */
  8329. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8330. get_cartesian_from_steppers();
  8331. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8332. planner.unapply_leveling(cartes);
  8333. #endif
  8334. if (axis == ALL_AXES)
  8335. COPY(current_position, cartes);
  8336. else
  8337. current_position[axis] = cartes[axis];
  8338. }
  8339. #if ENABLED(MESH_BED_LEVELING)
  8340. /**
  8341. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8342. * splitting the move where it crosses mesh borders.
  8343. */
  8344. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8345. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8346. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8347. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8348. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8349. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  8350. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  8351. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  8352. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  8353. if (cx1 == cx2 && cy1 == cy2) {
  8354. // Start and end on same mesh square
  8355. line_to_destination(fr_mm_s);
  8356. set_current_to_destination();
  8357. return;
  8358. }
  8359. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8360. float normalized_dist, end[XYZE];
  8361. // Split at the left/front border of the right/top square
  8362. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8363. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8364. COPY(end, destination);
  8365. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8366. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8367. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8368. CBI(x_splits, gcx);
  8369. }
  8370. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8371. COPY(end, destination);
  8372. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8373. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8374. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8375. CBI(y_splits, gcy);
  8376. }
  8377. else {
  8378. // Already split on a border
  8379. line_to_destination(fr_mm_s);
  8380. set_current_to_destination();
  8381. return;
  8382. }
  8383. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8384. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8385. // Do the split and look for more borders
  8386. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8387. // Restore destination from stack
  8388. COPY(destination, end);
  8389. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8390. }
  8391. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8392. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8393. /**
  8394. * Prepare a bilinear-leveled linear move on Cartesian,
  8395. * splitting the move where it crosses grid borders.
  8396. */
  8397. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8398. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8399. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8400. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8401. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8402. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8403. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8404. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8405. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8406. if (cx1 == cx2 && cy1 == cy2) {
  8407. // Start and end on same mesh square
  8408. line_to_destination(fr_mm_s);
  8409. set_current_to_destination();
  8410. return;
  8411. }
  8412. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8413. float normalized_dist, end[XYZE];
  8414. // Split at the left/front border of the right/top square
  8415. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8416. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8417. COPY(end, destination);
  8418. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8419. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8420. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8421. CBI(x_splits, gcx);
  8422. }
  8423. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8424. COPY(end, destination);
  8425. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8426. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8427. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8428. CBI(y_splits, gcy);
  8429. }
  8430. else {
  8431. // Already split on a border
  8432. line_to_destination(fr_mm_s);
  8433. set_current_to_destination();
  8434. return;
  8435. }
  8436. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8437. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8438. // Do the split and look for more borders
  8439. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8440. // Restore destination from stack
  8441. COPY(destination, end);
  8442. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8443. }
  8444. #endif // AUTO_BED_LEVELING_BILINEAR
  8445. #if IS_KINEMATIC
  8446. /**
  8447. * Prepare a linear move in a DELTA or SCARA setup.
  8448. *
  8449. * This calls planner.buffer_line several times, adding
  8450. * small incremental moves for DELTA or SCARA.
  8451. */
  8452. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8453. // Get the top feedrate of the move in the XY plane
  8454. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8455. // If the move is only in Z/E don't split up the move
  8456. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8457. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8458. return true;
  8459. }
  8460. // Get the cartesian distances moved in XYZE
  8461. float difference[XYZE];
  8462. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8463. // Get the linear distance in XYZ
  8464. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8465. // If the move is very short, check the E move distance
  8466. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8467. // No E move either? Game over.
  8468. if (UNEAR_ZERO(cartesian_mm)) return false;
  8469. // Minimum number of seconds to move the given distance
  8470. float seconds = cartesian_mm / _feedrate_mm_s;
  8471. // The number of segments-per-second times the duration
  8472. // gives the number of segments
  8473. uint16_t segments = delta_segments_per_second * seconds;
  8474. // For SCARA minimum segment size is 0.25mm
  8475. #if IS_SCARA
  8476. NOMORE(segments, cartesian_mm * 4);
  8477. #endif
  8478. // At least one segment is required
  8479. NOLESS(segments, 1);
  8480. // The approximate length of each segment
  8481. const float inv_segments = 1.0 / float(segments),
  8482. segment_distance[XYZE] = {
  8483. difference[X_AXIS] * inv_segments,
  8484. difference[Y_AXIS] * inv_segments,
  8485. difference[Z_AXIS] * inv_segments,
  8486. difference[E_AXIS] * inv_segments
  8487. };
  8488. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8489. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8490. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8491. #if IS_SCARA
  8492. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8493. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8494. feed_factor = inv_segment_length * _feedrate_mm_s;
  8495. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8496. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8497. #endif
  8498. // Get the logical current position as starting point
  8499. float logical[XYZE];
  8500. COPY(logical, current_position);
  8501. // Drop one segment so the last move is to the exact target.
  8502. // If there's only 1 segment, loops will be skipped entirely.
  8503. --segments;
  8504. // Calculate and execute the segments
  8505. for (uint16_t s = segments + 1; --s;) {
  8506. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8507. #if ENABLED(DELTA)
  8508. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8509. #else
  8510. inverse_kinematics(logical);
  8511. #endif
  8512. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8513. #if IS_SCARA
  8514. // For SCARA scale the feed rate from mm/s to degrees/s
  8515. // Use ratio between the length of the move and the larger angle change
  8516. const float adiff = abs(delta[A_AXIS] - oldA),
  8517. bdiff = abs(delta[B_AXIS] - oldB);
  8518. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8519. oldA = delta[A_AXIS];
  8520. oldB = delta[B_AXIS];
  8521. #else
  8522. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8523. #endif
  8524. }
  8525. // Since segment_distance is only approximate,
  8526. // the final move must be to the exact destination.
  8527. #if IS_SCARA
  8528. // For SCARA scale the feed rate from mm/s to degrees/s
  8529. // With segments > 1 length is 1 segment, otherwise total length
  8530. inverse_kinematics(ltarget);
  8531. ADJUST_DELTA(logical);
  8532. const float adiff = abs(delta[A_AXIS] - oldA),
  8533. bdiff = abs(delta[B_AXIS] - oldB);
  8534. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8535. #else
  8536. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8537. #endif
  8538. return true;
  8539. }
  8540. #else // !IS_KINEMATIC
  8541. /**
  8542. * Prepare a linear move in a Cartesian setup.
  8543. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8544. *
  8545. * Returns true if the caller didn't update current_position.
  8546. */
  8547. inline bool prepare_move_to_destination_cartesian() {
  8548. // Do not use feedrate_percentage for E or Z only moves
  8549. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8550. line_to_destination();
  8551. }
  8552. else {
  8553. #if ENABLED(MESH_BED_LEVELING)
  8554. if (mbl.active()) {
  8555. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8556. return false;
  8557. }
  8558. else
  8559. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8560. if (ubl.state.active) {
  8561. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8562. return false;
  8563. }
  8564. else
  8565. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8566. if (planner.abl_enabled) {
  8567. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8568. return false;
  8569. }
  8570. else
  8571. #endif
  8572. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8573. }
  8574. return true;
  8575. }
  8576. #endif // !IS_KINEMATIC
  8577. #if ENABLED(DUAL_X_CARRIAGE)
  8578. /**
  8579. * Prepare a linear move in a dual X axis setup
  8580. */
  8581. inline bool prepare_move_to_destination_dualx() {
  8582. if (active_extruder_parked) {
  8583. switch (dual_x_carriage_mode) {
  8584. case DXC_FULL_CONTROL_MODE:
  8585. break;
  8586. case DXC_AUTO_PARK_MODE:
  8587. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8588. // This is a travel move (with no extrusion)
  8589. // Skip it, but keep track of the current position
  8590. // (so it can be used as the start of the next non-travel move)
  8591. if (delayed_move_time != 0xFFFFFFFFUL) {
  8592. set_current_to_destination();
  8593. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8594. delayed_move_time = millis();
  8595. return false;
  8596. }
  8597. }
  8598. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8599. for (uint8_t i = 0; i < 3; i++)
  8600. planner.buffer_line(
  8601. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8602. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8603. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8604. current_position[E_AXIS],
  8605. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8606. active_extruder
  8607. );
  8608. delayed_move_time = 0;
  8609. active_extruder_parked = false;
  8610. break;
  8611. case DXC_DUPLICATION_MODE:
  8612. if (active_extruder == 0) {
  8613. // move duplicate extruder into correct duplication position.
  8614. planner.set_position_mm(
  8615. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8616. current_position[Y_AXIS],
  8617. current_position[Z_AXIS],
  8618. current_position[E_AXIS]
  8619. );
  8620. planner.buffer_line(
  8621. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8622. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8623. planner.max_feedrate_mm_s[X_AXIS], 1
  8624. );
  8625. SYNC_PLAN_POSITION_KINEMATIC();
  8626. stepper.synchronize();
  8627. extruder_duplication_enabled = true;
  8628. active_extruder_parked = false;
  8629. }
  8630. break;
  8631. }
  8632. }
  8633. return true;
  8634. }
  8635. #endif // DUAL_X_CARRIAGE
  8636. /**
  8637. * Prepare a single move and get ready for the next one
  8638. *
  8639. * This may result in several calls to planner.buffer_line to
  8640. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8641. */
  8642. void prepare_move_to_destination() {
  8643. clamp_to_software_endstops(destination);
  8644. refresh_cmd_timeout();
  8645. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8646. if (!DEBUGGING(DRYRUN)) {
  8647. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8648. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8649. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8650. SERIAL_ECHO_START;
  8651. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8652. }
  8653. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8654. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8655. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8656. SERIAL_ECHO_START;
  8657. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8658. }
  8659. #endif
  8660. }
  8661. }
  8662. #endif
  8663. #if IS_KINEMATIC
  8664. if (!prepare_kinematic_move_to(destination)) return;
  8665. #else
  8666. #if ENABLED(DUAL_X_CARRIAGE)
  8667. if (!prepare_move_to_destination_dualx()) return;
  8668. #endif
  8669. if (!prepare_move_to_destination_cartesian()) return;
  8670. #endif
  8671. set_current_to_destination();
  8672. }
  8673. #if ENABLED(ARC_SUPPORT)
  8674. /**
  8675. * Plan an arc in 2 dimensions
  8676. *
  8677. * The arc is approximated by generating many small linear segments.
  8678. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8679. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8680. * larger segments will tend to be more efficient. Your slicer should have
  8681. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8682. */
  8683. void plan_arc(
  8684. float logical[XYZE], // Destination position
  8685. float* offset, // Center of rotation relative to current_position
  8686. uint8_t clockwise // Clockwise?
  8687. ) {
  8688. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8689. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8690. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8691. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8692. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8693. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8694. r_Y = -offset[Y_AXIS],
  8695. rt_X = logical[X_AXIS] - center_X,
  8696. rt_Y = logical[Y_AXIS] - center_Y;
  8697. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8698. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8699. if (angular_travel < 0) angular_travel += RADIANS(360);
  8700. if (clockwise) angular_travel -= RADIANS(360);
  8701. // Make a circle if the angular rotation is 0
  8702. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8703. angular_travel += RADIANS(360);
  8704. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8705. if (mm_of_travel < 0.001) return;
  8706. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8707. if (segments == 0) segments = 1;
  8708. /**
  8709. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8710. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8711. * r_T = [cos(phi) -sin(phi);
  8712. * sin(phi) cos(phi)] * r ;
  8713. *
  8714. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8715. * defined from the circle center to the initial position. Each line segment is formed by successive
  8716. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8717. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8718. * all double numbers are single precision on the Arduino. (True double precision will not have
  8719. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8720. * tool precision in some cases. Therefore, arc path correction is implemented.
  8721. *
  8722. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8723. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8724. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8725. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8726. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8727. * issue for CNC machines with the single precision Arduino calculations.
  8728. *
  8729. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8730. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8731. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8732. * This is important when there are successive arc motions.
  8733. */
  8734. // Vector rotation matrix values
  8735. float arc_target[XYZE],
  8736. theta_per_segment = angular_travel / segments,
  8737. linear_per_segment = linear_travel / segments,
  8738. extruder_per_segment = extruder_travel / segments,
  8739. sin_T = theta_per_segment,
  8740. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8741. // Initialize the linear axis
  8742. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8743. // Initialize the extruder axis
  8744. arc_target[E_AXIS] = current_position[E_AXIS];
  8745. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8746. millis_t next_idle_ms = millis() + 200UL;
  8747. int8_t count = 0;
  8748. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8749. thermalManager.manage_heater();
  8750. if (ELAPSED(millis(), next_idle_ms)) {
  8751. next_idle_ms = millis() + 200UL;
  8752. idle();
  8753. }
  8754. if (++count < N_ARC_CORRECTION) {
  8755. // Apply vector rotation matrix to previous r_X / 1
  8756. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8757. r_X = r_X * cos_T - r_Y * sin_T;
  8758. r_Y = r_new_Y;
  8759. }
  8760. else {
  8761. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8762. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8763. // To reduce stuttering, the sin and cos could be computed at different times.
  8764. // For now, compute both at the same time.
  8765. float cos_Ti = cos(i * theta_per_segment),
  8766. sin_Ti = sin(i * theta_per_segment);
  8767. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8768. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8769. count = 0;
  8770. }
  8771. // Update arc_target location
  8772. arc_target[X_AXIS] = center_X + r_X;
  8773. arc_target[Y_AXIS] = center_Y + r_Y;
  8774. arc_target[Z_AXIS] += linear_per_segment;
  8775. arc_target[E_AXIS] += extruder_per_segment;
  8776. clamp_to_software_endstops(arc_target);
  8777. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8778. }
  8779. // Ensure last segment arrives at target location.
  8780. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8781. // As far as the parser is concerned, the position is now == target. In reality the
  8782. // motion control system might still be processing the action and the real tool position
  8783. // in any intermediate location.
  8784. set_current_to_destination();
  8785. }
  8786. #endif
  8787. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8788. void plan_cubic_move(const float offset[4]) {
  8789. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8790. // As far as the parser is concerned, the position is now == destination. In reality the
  8791. // motion control system might still be processing the action and the real tool position
  8792. // in any intermediate location.
  8793. set_current_to_destination();
  8794. }
  8795. #endif // BEZIER_CURVE_SUPPORT
  8796. #if HAS_CONTROLLERFAN
  8797. void controllerFan() {
  8798. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  8799. nextMotorCheck = 0; // Last time the state was checked
  8800. const millis_t ms = millis();
  8801. if (ELAPSED(ms, nextMotorCheck)) {
  8802. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8803. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8804. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8805. #if E_STEPPERS > 1
  8806. || E1_ENABLE_READ == E_ENABLE_ON
  8807. #if HAS_X2_ENABLE
  8808. || X2_ENABLE_READ == X_ENABLE_ON
  8809. #endif
  8810. #if E_STEPPERS > 2
  8811. || E2_ENABLE_READ == E_ENABLE_ON
  8812. #if E_STEPPERS > 3
  8813. || E3_ENABLE_READ == E_ENABLE_ON
  8814. #endif
  8815. #endif
  8816. #endif
  8817. ) {
  8818. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8819. }
  8820. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8821. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8822. // allows digital or PWM fan output to be used (see M42 handling)
  8823. digitalWrite(CONTROLLERFAN_PIN, speed);
  8824. analogWrite(CONTROLLERFAN_PIN, speed);
  8825. }
  8826. }
  8827. #endif // HAS_CONTROLLERFAN
  8828. #if ENABLED(MORGAN_SCARA)
  8829. /**
  8830. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8831. * Maths and first version by QHARLEY.
  8832. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8833. */
  8834. void forward_kinematics_SCARA(const float &a, const float &b) {
  8835. float a_sin = sin(RADIANS(a)) * L1,
  8836. a_cos = cos(RADIANS(a)) * L1,
  8837. b_sin = sin(RADIANS(b)) * L2,
  8838. b_cos = cos(RADIANS(b)) * L2;
  8839. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8840. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8841. /*
  8842. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8843. SERIAL_ECHOPAIR(" b=", b);
  8844. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8845. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8846. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8847. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8848. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8849. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8850. //*/
  8851. }
  8852. /**
  8853. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8854. *
  8855. * See http://forums.reprap.org/read.php?185,283327
  8856. *
  8857. * Maths and first version by QHARLEY.
  8858. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8859. */
  8860. void inverse_kinematics(const float logical[XYZ]) {
  8861. static float C2, S2, SK1, SK2, THETA, PSI;
  8862. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8863. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8864. if (L1 == L2)
  8865. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8866. else
  8867. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8868. S2 = sqrt(sq(C2) - 1);
  8869. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8870. SK1 = L1 + L2 * C2;
  8871. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8872. SK2 = L2 * S2;
  8873. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8874. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8875. // Angle of Arm2
  8876. PSI = atan2(S2, C2);
  8877. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8878. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8879. delta[C_AXIS] = logical[Z_AXIS];
  8880. /*
  8881. DEBUG_POS("SCARA IK", logical);
  8882. DEBUG_POS("SCARA IK", delta);
  8883. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8884. SERIAL_ECHOPAIR(",", sy);
  8885. SERIAL_ECHOPAIR(" C2=", C2);
  8886. SERIAL_ECHOPAIR(" S2=", S2);
  8887. SERIAL_ECHOPAIR(" Theta=", THETA);
  8888. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8889. //*/
  8890. }
  8891. #endif // MORGAN_SCARA
  8892. #if ENABLED(TEMP_STAT_LEDS)
  8893. static bool red_led = false;
  8894. static millis_t next_status_led_update_ms = 0;
  8895. void handle_status_leds(void) {
  8896. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8897. next_status_led_update_ms += 500; // Update every 0.5s
  8898. float max_temp = 0.0;
  8899. #if HAS_TEMP_BED
  8900. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8901. #endif
  8902. HOTEND_LOOP() {
  8903. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8904. }
  8905. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8906. if (new_led != red_led) {
  8907. red_led = new_led;
  8908. #if PIN_EXISTS(STAT_LED_RED)
  8909. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8910. #if PIN_EXISTS(STAT_LED_BLUE)
  8911. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8912. #endif
  8913. #else
  8914. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8915. #endif
  8916. }
  8917. }
  8918. }
  8919. #endif
  8920. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8921. void handle_filament_runout() {
  8922. if (!filament_ran_out) {
  8923. filament_ran_out = true;
  8924. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8925. stepper.synchronize();
  8926. }
  8927. }
  8928. #endif // FILAMENT_RUNOUT_SENSOR
  8929. #if ENABLED(FAST_PWM_FAN)
  8930. void setPwmFrequency(uint8_t pin, int val) {
  8931. val &= 0x07;
  8932. switch (digitalPinToTimer(pin)) {
  8933. #ifdef TCCR0A
  8934. case TIMER0A:
  8935. case TIMER0B:
  8936. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8937. // TCCR0B |= val;
  8938. break;
  8939. #endif
  8940. #ifdef TCCR1A
  8941. case TIMER1A:
  8942. case TIMER1B:
  8943. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8944. // TCCR1B |= val;
  8945. break;
  8946. #endif
  8947. #ifdef TCCR2
  8948. case TIMER2:
  8949. case TIMER2:
  8950. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8951. TCCR2 |= val;
  8952. break;
  8953. #endif
  8954. #ifdef TCCR2A
  8955. case TIMER2A:
  8956. case TIMER2B:
  8957. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8958. TCCR2B |= val;
  8959. break;
  8960. #endif
  8961. #ifdef TCCR3A
  8962. case TIMER3A:
  8963. case TIMER3B:
  8964. case TIMER3C:
  8965. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8966. TCCR3B |= val;
  8967. break;
  8968. #endif
  8969. #ifdef TCCR4A
  8970. case TIMER4A:
  8971. case TIMER4B:
  8972. case TIMER4C:
  8973. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8974. TCCR4B |= val;
  8975. break;
  8976. #endif
  8977. #ifdef TCCR5A
  8978. case TIMER5A:
  8979. case TIMER5B:
  8980. case TIMER5C:
  8981. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8982. TCCR5B |= val;
  8983. break;
  8984. #endif
  8985. }
  8986. }
  8987. #endif // FAST_PWM_FAN
  8988. float calculate_volumetric_multiplier(float diameter) {
  8989. if (!volumetric_enabled || diameter == 0) return 1.0;
  8990. return 1.0 / (M_PI * sq(diameter * 0.5));
  8991. }
  8992. void calculate_volumetric_multipliers() {
  8993. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8994. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8995. }
  8996. void enable_all_steppers() {
  8997. enable_x();
  8998. enable_y();
  8999. enable_z();
  9000. enable_e0();
  9001. enable_e1();
  9002. enable_e2();
  9003. enable_e3();
  9004. }
  9005. void disable_e_steppers() {
  9006. disable_e0();
  9007. disable_e1();
  9008. disable_e2();
  9009. disable_e3();
  9010. }
  9011. void disable_all_steppers() {
  9012. disable_x();
  9013. disable_y();
  9014. disable_z();
  9015. disable_e_steppers();
  9016. }
  9017. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9018. void automatic_current_control(const TMC2130Stepper &st) {
  9019. #if CURRENT_STEP > 0
  9020. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9021. is_otpw_triggered = st.getOTPW();
  9022. if (!is_otpw && !is_otpw_triggered) {
  9023. // OTPW bit not triggered yet -> Increase current
  9024. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9025. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9026. }
  9027. else if (is_otpw && is_otpw_triggered) {
  9028. // OTPW bit triggered, triggered flag raised -> Decrease current
  9029. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9030. }
  9031. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9032. #endif
  9033. }
  9034. void checkOverTemp() {
  9035. static millis_t next_cOT = 0;
  9036. if (ELAPSED(millis(), next_cOT)) {
  9037. next_cOT = millis() + 5000;
  9038. #if ENABLED(X_IS_TMC2130)
  9039. automatic_current_control(stepperX);
  9040. #endif
  9041. #if ENABLED(Y_IS_TMC2130)
  9042. automatic_current_control(stepperY);
  9043. #endif
  9044. #if ENABLED(Z_IS_TMC2130)
  9045. automatic_current_control(stepperZ);
  9046. #endif
  9047. #if ENABLED(X2_IS_TMC2130)
  9048. automatic_current_control(stepperX2);
  9049. #endif
  9050. #if ENABLED(Y2_IS_TMC2130)
  9051. automatic_current_control(stepperY2);
  9052. #endif
  9053. #if ENABLED(Z2_IS_TMC2130)
  9054. automatic_current_control(stepperZ2);
  9055. #endif
  9056. #if ENABLED(E0_IS_TMC2130)
  9057. automatic_current_control(stepperE0);
  9058. #endif
  9059. #if ENABLED(E1_IS_TMC2130)
  9060. automatic_current_control(stepperE1);
  9061. #endif
  9062. #if ENABLED(E2_IS_TMC2130)
  9063. automatic_current_control(stepperE2);
  9064. #endif
  9065. #if ENABLED(E3_IS_TMC2130)
  9066. automatic_current_control(stepperE3);
  9067. #endif
  9068. }
  9069. }
  9070. #endif // AUTOMATIC_CURRENT_CONTROL
  9071. /**
  9072. * Manage several activities:
  9073. * - Check for Filament Runout
  9074. * - Keep the command buffer full
  9075. * - Check for maximum inactive time between commands
  9076. * - Check for maximum inactive time between stepper commands
  9077. * - Check if pin CHDK needs to go LOW
  9078. * - Check for KILL button held down
  9079. * - Check for HOME button held down
  9080. * - Check if cooling fan needs to be switched on
  9081. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9082. */
  9083. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9084. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9085. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9086. handle_filament_runout();
  9087. #endif
  9088. if (commands_in_queue < BUFSIZE) get_available_commands();
  9089. const millis_t ms = millis();
  9090. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9091. SERIAL_ERROR_START;
  9092. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9093. kill(PSTR(MSG_KILLED));
  9094. }
  9095. // Prevent steppers timing-out in the middle of M600
  9096. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9097. #define M600_TEST !busy_doing_M600
  9098. #else
  9099. #define M600_TEST true
  9100. #endif
  9101. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9102. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9103. #if ENABLED(DISABLE_INACTIVE_X)
  9104. disable_x();
  9105. #endif
  9106. #if ENABLED(DISABLE_INACTIVE_Y)
  9107. disable_y();
  9108. #endif
  9109. #if ENABLED(DISABLE_INACTIVE_Z)
  9110. disable_z();
  9111. #endif
  9112. #if ENABLED(DISABLE_INACTIVE_E)
  9113. disable_e_steppers();
  9114. #endif
  9115. }
  9116. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9117. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9118. chdkActive = false;
  9119. WRITE(CHDK, LOW);
  9120. }
  9121. #endif
  9122. #if HAS_KILL
  9123. // Check if the kill button was pressed and wait just in case it was an accidental
  9124. // key kill key press
  9125. // -------------------------------------------------------------------------------
  9126. static int killCount = 0; // make the inactivity button a bit less responsive
  9127. const int KILL_DELAY = 750;
  9128. if (!READ(KILL_PIN))
  9129. killCount++;
  9130. else if (killCount > 0)
  9131. killCount--;
  9132. // Exceeded threshold and we can confirm that it was not accidental
  9133. // KILL the machine
  9134. // ----------------------------------------------------------------
  9135. if (killCount >= KILL_DELAY) {
  9136. SERIAL_ERROR_START;
  9137. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9138. kill(PSTR(MSG_KILLED));
  9139. }
  9140. #endif
  9141. #if HAS_HOME
  9142. // Check to see if we have to home, use poor man's debouncer
  9143. // ---------------------------------------------------------
  9144. static int homeDebounceCount = 0; // poor man's debouncing count
  9145. const int HOME_DEBOUNCE_DELAY = 2500;
  9146. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9147. if (!homeDebounceCount) {
  9148. enqueue_and_echo_commands_P(PSTR("G28"));
  9149. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9150. }
  9151. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9152. homeDebounceCount++;
  9153. else
  9154. homeDebounceCount = 0;
  9155. }
  9156. #endif
  9157. #if HAS_CONTROLLERFAN
  9158. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9159. #endif
  9160. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9161. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9162. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9163. bool oldstatus;
  9164. #if ENABLED(SWITCHING_EXTRUDER)
  9165. oldstatus = E0_ENABLE_READ;
  9166. enable_e0();
  9167. #else // !SWITCHING_EXTRUDER
  9168. switch (active_extruder) {
  9169. case 0:
  9170. oldstatus = E0_ENABLE_READ;
  9171. enable_e0();
  9172. break;
  9173. #if E_STEPPERS > 1
  9174. case 1:
  9175. oldstatus = E1_ENABLE_READ;
  9176. enable_e1();
  9177. break;
  9178. #if E_STEPPERS > 2
  9179. case 2:
  9180. oldstatus = E2_ENABLE_READ;
  9181. enable_e2();
  9182. break;
  9183. #if E_STEPPERS > 3
  9184. case 3:
  9185. oldstatus = E3_ENABLE_READ;
  9186. enable_e3();
  9187. break;
  9188. #endif
  9189. #endif
  9190. #endif
  9191. }
  9192. #endif // !SWITCHING_EXTRUDER
  9193. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9194. const float olde = current_position[E_AXIS];
  9195. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9196. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9197. current_position[E_AXIS] = olde;
  9198. planner.set_e_position_mm(olde);
  9199. stepper.synchronize();
  9200. #if ENABLED(SWITCHING_EXTRUDER)
  9201. E0_ENABLE_WRITE(oldstatus);
  9202. #else
  9203. switch (active_extruder) {
  9204. case 0:
  9205. E0_ENABLE_WRITE(oldstatus);
  9206. break;
  9207. #if E_STEPPERS > 1
  9208. case 1:
  9209. E1_ENABLE_WRITE(oldstatus);
  9210. break;
  9211. #if E_STEPPERS > 2
  9212. case 2:
  9213. E2_ENABLE_WRITE(oldstatus);
  9214. break;
  9215. #if E_STEPPERS > 3
  9216. case 3:
  9217. E3_ENABLE_WRITE(oldstatus);
  9218. break;
  9219. #endif
  9220. #endif
  9221. #endif
  9222. }
  9223. #endif // !SWITCHING_EXTRUDER
  9224. }
  9225. #endif // EXTRUDER_RUNOUT_PREVENT
  9226. #if ENABLED(DUAL_X_CARRIAGE)
  9227. // handle delayed move timeout
  9228. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9229. // travel moves have been received so enact them
  9230. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9231. set_destination_to_current();
  9232. prepare_move_to_destination();
  9233. }
  9234. #endif
  9235. #if ENABLED(TEMP_STAT_LEDS)
  9236. handle_status_leds();
  9237. #endif
  9238. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9239. checkOverTemp();
  9240. #endif
  9241. planner.check_axes_activity();
  9242. }
  9243. /**
  9244. * Standard idle routine keeps the machine alive
  9245. */
  9246. void idle(
  9247. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9248. bool no_stepper_sleep/*=false*/
  9249. #endif
  9250. ) {
  9251. lcd_update();
  9252. host_keepalive();
  9253. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9254. auto_report_temperatures();
  9255. #endif
  9256. manage_inactivity(
  9257. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9258. no_stepper_sleep
  9259. #endif
  9260. );
  9261. thermalManager.manage_heater();
  9262. #if ENABLED(PRINTCOUNTER)
  9263. print_job_timer.tick();
  9264. #endif
  9265. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9266. buzzer.tick();
  9267. #endif
  9268. }
  9269. /**
  9270. * Kill all activity and lock the machine.
  9271. * After this the machine will need to be reset.
  9272. */
  9273. void kill(const char* lcd_msg) {
  9274. SERIAL_ERROR_START;
  9275. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9276. thermalManager.disable_all_heaters();
  9277. disable_all_steppers();
  9278. #if ENABLED(ULTRA_LCD)
  9279. kill_screen(lcd_msg);
  9280. #else
  9281. UNUSED(lcd_msg);
  9282. #endif
  9283. _delay_ms(250); // Wait a short time
  9284. cli(); // Stop interrupts
  9285. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9286. thermalManager.disable_all_heaters(); //turn off heaters again
  9287. #if HAS_POWER_SWITCH
  9288. SET_INPUT(PS_ON_PIN);
  9289. #endif
  9290. suicide();
  9291. while (1) {
  9292. #if ENABLED(USE_WATCHDOG)
  9293. watchdog_reset();
  9294. #endif
  9295. } // Wait for reset
  9296. }
  9297. /**
  9298. * Turn off heaters and stop the print in progress
  9299. * After a stop the machine may be resumed with M999
  9300. */
  9301. void stop() {
  9302. thermalManager.disable_all_heaters();
  9303. if (IsRunning()) {
  9304. Running = false;
  9305. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9306. SERIAL_ERROR_START;
  9307. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9308. LCD_MESSAGEPGM(MSG_STOPPED);
  9309. }
  9310. }
  9311. /**
  9312. * Marlin entry-point: Set up before the program loop
  9313. * - Set up the kill pin, filament runout, power hold
  9314. * - Start the serial port
  9315. * - Print startup messages and diagnostics
  9316. * - Get EEPROM or default settings
  9317. * - Initialize managers for:
  9318. * • temperature
  9319. * • planner
  9320. * • watchdog
  9321. * • stepper
  9322. * • photo pin
  9323. * • servos
  9324. * • LCD controller
  9325. * • Digipot I2C
  9326. * • Z probe sled
  9327. * • status LEDs
  9328. */
  9329. void setup() {
  9330. #ifdef DISABLE_JTAG
  9331. // Disable JTAG on AT90USB chips to free up pins for IO
  9332. MCUCR = 0x80;
  9333. MCUCR = 0x80;
  9334. #endif
  9335. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9336. setup_filrunoutpin();
  9337. #endif
  9338. setup_killpin();
  9339. setup_powerhold();
  9340. #if HAS_STEPPER_RESET
  9341. disableStepperDrivers();
  9342. #endif
  9343. MYSERIAL.begin(BAUDRATE);
  9344. SERIAL_PROTOCOLLNPGM("start");
  9345. SERIAL_ECHO_START;
  9346. // Check startup - does nothing if bootloader sets MCUSR to 0
  9347. byte mcu = MCUSR;
  9348. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9349. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9350. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9351. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9352. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9353. MCUSR = 0;
  9354. SERIAL_ECHOPGM(MSG_MARLIN);
  9355. SERIAL_CHAR(' ');
  9356. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9357. SERIAL_EOL;
  9358. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9359. SERIAL_ECHO_START;
  9360. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9361. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9362. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9363. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9364. #endif
  9365. SERIAL_ECHO_START;
  9366. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9367. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9368. // Send "ok" after commands by default
  9369. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9370. // Load data from EEPROM if available (or use defaults)
  9371. // This also updates variables in the planner, elsewhere
  9372. (void)Config_RetrieveSettings();
  9373. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9374. // Initialize current position based on home_offset
  9375. COPY(current_position, home_offset);
  9376. #else
  9377. ZERO(current_position);
  9378. #endif
  9379. // Vital to init stepper/planner equivalent for current_position
  9380. SYNC_PLAN_POSITION_KINEMATIC();
  9381. thermalManager.init(); // Initialize temperature loop
  9382. #if ENABLED(USE_WATCHDOG)
  9383. watchdog_init();
  9384. #endif
  9385. stepper.init(); // Initialize stepper, this enables interrupts!
  9386. servo_init();
  9387. #if HAS_PHOTOGRAPH
  9388. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9389. #endif
  9390. #if HAS_CASE_LIGHT
  9391. update_case_light();
  9392. #endif
  9393. #if HAS_BED_PROBE
  9394. endstops.enable_z_probe(false);
  9395. #endif
  9396. #if HAS_CONTROLLERFAN
  9397. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9398. #endif
  9399. #if HAS_STEPPER_RESET
  9400. enableStepperDrivers();
  9401. #endif
  9402. #if ENABLED(DIGIPOT_I2C)
  9403. digipot_i2c_init();
  9404. #endif
  9405. #if ENABLED(DAC_STEPPER_CURRENT)
  9406. dac_init();
  9407. #endif
  9408. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9409. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9410. #endif // Z_PROBE_SLED
  9411. setup_homepin();
  9412. #if PIN_EXISTS(STAT_LED_RED)
  9413. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9414. #endif
  9415. #if PIN_EXISTS(STAT_LED_BLUE)
  9416. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9417. #endif
  9418. #if ENABLED(RGB_LED)
  9419. SET_OUTPUT(RGB_LED_R_PIN);
  9420. SET_OUTPUT(RGB_LED_G_PIN);
  9421. SET_OUTPUT(RGB_LED_B_PIN);
  9422. #endif
  9423. lcd_init();
  9424. #if ENABLED(SHOW_BOOTSCREEN)
  9425. #if ENABLED(DOGLCD)
  9426. safe_delay(BOOTSCREEN_TIMEOUT);
  9427. #elif ENABLED(ULTRA_LCD)
  9428. bootscreen();
  9429. #if DISABLED(SDSUPPORT)
  9430. lcd_init();
  9431. #endif
  9432. #endif
  9433. #endif
  9434. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9435. // Initialize mixing to 100% color 1
  9436. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9437. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9438. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9439. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9440. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9441. #endif
  9442. #if ENABLED(BLTOUCH)
  9443. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9444. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9445. set_bltouch_deployed(false); // error condition.
  9446. #endif
  9447. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9448. i2c.onReceive(i2c_on_receive);
  9449. i2c.onRequest(i2c_on_request);
  9450. #endif
  9451. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9452. setup_endstop_interrupts();
  9453. #endif
  9454. }
  9455. /**
  9456. * The main Marlin program loop
  9457. *
  9458. * - Save or log commands to SD
  9459. * - Process available commands (if not saving)
  9460. * - Call heater manager
  9461. * - Call inactivity manager
  9462. * - Call endstop manager
  9463. * - Call LCD update
  9464. */
  9465. void loop() {
  9466. if (commands_in_queue < BUFSIZE) get_available_commands();
  9467. #if ENABLED(SDSUPPORT)
  9468. card.checkautostart(false);
  9469. #endif
  9470. if (commands_in_queue) {
  9471. #if ENABLED(SDSUPPORT)
  9472. if (card.saving) {
  9473. char* command = command_queue[cmd_queue_index_r];
  9474. if (strstr_P(command, PSTR("M29"))) {
  9475. // M29 closes the file
  9476. card.closefile();
  9477. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9478. ok_to_send();
  9479. }
  9480. else {
  9481. // Write the string from the read buffer to SD
  9482. card.write_command(command);
  9483. if (card.logging)
  9484. process_next_command(); // The card is saving because it's logging
  9485. else
  9486. ok_to_send();
  9487. }
  9488. }
  9489. else
  9490. process_next_command();
  9491. #else
  9492. process_next_command();
  9493. #endif // SDSUPPORT
  9494. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9495. if (commands_in_queue) {
  9496. --commands_in_queue;
  9497. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9498. }
  9499. }
  9500. endstops.report_state();
  9501. idle();
  9502. }