My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #include "vector_3.h"
  25. #ifndef UNIFIED_BED_LEVELING_H
  26. #define UNIFIED_BED_LEVELING_H
  27. #if ENABLED(AUTO_BED_LEVELING_UBL)
  28. #define UBL_OK false
  29. #define UBL_ERR true
  30. typedef struct {
  31. int8_t x_index, y_index;
  32. float distance; // When populated, the distance from the search location
  33. } mesh_index_pair;
  34. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  35. void dump(char * const str, const float &f);
  36. bool ubl_lcd_clicked();
  37. void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
  38. void debug_current_and_destination(char *title);
  39. void ubl_line_to_destination(const float&, uint8_t);
  40. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  41. vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
  42. float measure_business_card_thickness(const float&);
  43. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
  44. void find_mean_mesh_height();
  45. void shift_mesh_height();
  46. bool g29_parameter_parsing();
  47. void g29_what_command();
  48. void g29_eeprom_dump();
  49. void g29_compare_current_mesh_to_stored_mesh();
  50. void fine_tune_mesh(const float&, const float&, const bool);
  51. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  52. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  53. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  54. char *ftostr43sign(const float&, char);
  55. void gcode_G26();
  56. void gcode_G28();
  57. void gcode_G29();
  58. extern char conv[9];
  59. void save_ubl_active_state_and_disable();
  60. void restore_ubl_active_state_and_leave();
  61. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  62. #if ENABLED(ULTRA_LCD)
  63. extern char lcd_status_message[];
  64. void lcd_quick_feedback();
  65. #endif
  66. enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
  67. #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
  68. #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
  69. typedef struct {
  70. bool active = false;
  71. float z_offset = 0.0;
  72. int8_t eeprom_storage_slot = -1,
  73. n_x = UBL_MESH_NUM_X_POINTS,
  74. n_y = UBL_MESH_NUM_Y_POINTS;
  75. float mesh_x_min = UBL_MESH_MIN_X,
  76. mesh_y_min = UBL_MESH_MIN_Y,
  77. mesh_x_max = UBL_MESH_MAX_X,
  78. mesh_y_max = UBL_MESH_MAX_Y,
  79. mesh_x_dist = MESH_X_DIST,
  80. mesh_y_dist = MESH_Y_DIST;
  81. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  82. float g29_correction_fade_height = 10.0,
  83. g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
  84. // so keep this value and its reciprocal.
  85. #endif
  86. // If you change this struct, adjust TOTAL_STRUCT_SIZE
  87. #define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
  88. // padding provides space to add state variables without
  89. // changing the location of data structures in the EEPROM.
  90. // This is for compatibility with future versions to keep
  91. // users from having to regenerate their mesh data.
  92. unsigned char padding[64 - TOTAL_STRUCT_SIZE];
  93. } ubl_state;
  94. class unified_bed_leveling {
  95. private:
  96. static float last_specified_z;
  97. public:
  98. static ubl_state state, pre_initialized;
  99. static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
  100. mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
  101. mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
  102. static bool g26_debug_flag,
  103. has_control_of_lcd_panel;
  104. static int8_t eeprom_start;
  105. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  106. unified_bed_leveling();
  107. static void display_map(const int);
  108. static void reset();
  109. static void invalidate();
  110. static void store_state();
  111. static void load_state();
  112. static void store_mesh(const int16_t);
  113. static void load_mesh(const int16_t);
  114. static bool sanity_check();
  115. static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  116. static int8_t get_cell_index_x(const float &x) {
  117. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  118. return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
  119. } // position. But with this defined this way, it is possible
  120. // to extrapolate off of this point even further out. Probably
  121. // that is OK because something else should be keeping that from
  122. // happening and should not be worried about at this level.
  123. static int8_t get_cell_index_y(const float &y) {
  124. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  125. return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  126. } // position. But with this defined this way, it is possible
  127. // to extrapolate off of this point even further out. Probably
  128. // that is OK because something else should be keeping that from
  129. // happening and should not be worried about at this level.
  130. static int8_t find_closest_x_index(const float &x) {
  131. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  132. return WITHIN(px, 0, UBL_MESH_NUM_X_POINTS - 1) ? px : -1;
  133. }
  134. static int8_t find_closest_y_index(const float &y) {
  135. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  136. return WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1) ? py : -1;
  137. }
  138. /**
  139. * z2 --|
  140. * z0 | |
  141. * | | + (z2-z1)
  142. * z1 | | |
  143. * ---+-------------+--------+-- --|
  144. * a1 a0 a2
  145. * |<---delta_a---------->|
  146. *
  147. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  148. * find the expected Z Height at a position between two known Z-Height locations.
  149. *
  150. * It is fairly expensive with its 4 floating point additions and 2 floating point
  151. * multiplications.
  152. */
  153. static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  154. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  155. }
  156. /**
  157. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  158. * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
  159. */
  160. static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
  161. if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  162. SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
  163. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  164. SERIAL_ECHOPAIR(",yi=", yi);
  165. SERIAL_CHAR(')');
  166. SERIAL_EOL;
  167. return NAN;
  168. }
  169. const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
  170. z1 = z_values[x1_i][yi];
  171. return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
  172. }
  173. //
  174. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  175. //
  176. static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
  177. if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  178. SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0);
  179. SERIAL_ECHOPAIR(", x1_i=", xi);
  180. SERIAL_ECHOPAIR(", yi=", y1_i);
  181. SERIAL_CHAR(')');
  182. SERIAL_EOL;
  183. return NAN;
  184. }
  185. const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
  186. z1 = z_values[xi][y1_i];
  187. return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
  188. }
  189. /**
  190. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  191. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  192. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  193. * on the Y position within the cell.
  194. */
  195. static float get_z_correction(const float &lx0, const float &ly0) {
  196. const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
  197. cy = get_cell_index_y(RAW_Y_POSITION(ly0));
  198. if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
  199. SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
  200. SERIAL_ECHOPAIR(", ly0=", ly0);
  201. SERIAL_CHAR(')');
  202. SERIAL_EOL;
  203. #if ENABLED(ULTRA_LCD)
  204. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  205. lcd_quick_feedback();
  206. #endif
  207. return 0.0; // this used to return state.z_offset
  208. }
  209. const float z1 = calc_z0(RAW_X_POSITION(lx0),
  210. mesh_index_to_xpos[cx], z_values[cx][cy],
  211. mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
  212. z2 = calc_z0(RAW_X_POSITION(lx0),
  213. mesh_index_to_xpos[cx], z_values[cx][cy + 1],
  214. mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
  215. float z0 = calc_z0(RAW_Y_POSITION(ly0),
  216. mesh_index_to_ypos[cy], z1,
  217. mesh_index_to_ypos[cy + 1], z2);
  218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  219. if (DEBUGGING(MESH_ADJUST)) {
  220. SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
  221. SERIAL_CHAR(',')
  222. SERIAL_ECHO(ly0);
  223. SERIAL_ECHOPGM(") = ");
  224. SERIAL_ECHO_F(z0, 6);
  225. }
  226. #endif
  227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  228. if (DEBUGGING(MESH_ADJUST)) {
  229. SERIAL_ECHOPGM(" >>>---> ");
  230. SERIAL_ECHO_F(z0, 6);
  231. SERIAL_EOL;
  232. }
  233. #endif
  234. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  235. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  236. // calculations. If our correction is NAN, we throw it out
  237. // because part of the Mesh is undefined and we don't have the
  238. // information we need to complete the height correction.
  239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  240. if (DEBUGGING(MESH_ADJUST)) {
  241. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
  242. SERIAL_CHAR(',');
  243. SERIAL_ECHO(ly0);
  244. SERIAL_CHAR(')');
  245. SERIAL_EOL;
  246. }
  247. #endif
  248. }
  249. return z0; // there used to be a +state.z_offset on this line
  250. }
  251. /**
  252. * This function sets the Z leveling fade factor based on the given Z height,
  253. * only re-calculating when necessary.
  254. *
  255. * Returns 1.0 if g29_correction_fade_height is 0.0.
  256. * Returns 0.0 if Z is past the specified 'Fade Height'.
  257. */
  258. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  259. static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
  260. if (state.g29_correction_fade_height == 0.0) return 1.0;
  261. static float fade_scaling_factor = 1.0;
  262. const float rz = RAW_Z_POSITION(lz);
  263. if (last_specified_z != rz) {
  264. last_specified_z = rz;
  265. fade_scaling_factor =
  266. rz < state.g29_correction_fade_height
  267. ? 1.0 - (rz * state.g29_fade_height_multiplier)
  268. : 0.0;
  269. }
  270. return fade_scaling_factor;
  271. }
  272. #endif
  273. }; // class unified_bed_leveling
  274. extern unified_bed_leveling ubl;
  275. #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
  276. #endif // AUTO_BED_LEVELING_UBL
  277. #endif // UNIFIED_BED_LEVELING_H