My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 187KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  97. // M80 - Turn on Power Supply
  98. // M81 - Turn off Power Supply
  99. // M82 - Set E codes absolute (default)
  100. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  101. // M84 - Disable steppers until next move,
  102. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  103. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. // M92 - Set axis_steps_per_unit - same syntax as G92
  105. // M104 - Set extruder target temp
  106. // M105 - Read current temp
  107. // M106 - Fan on
  108. // M107 - Fan off
  109. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  110. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  111. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  112. // M112 - Emergency stop
  113. // M114 - Output current position to serial port
  114. // M115 - Capabilities string
  115. // M117 - display message
  116. // M119 - Output Endstop status to serial port
  117. // M120 - Enable endstop detection
  118. // M121 - Disable endstop detection
  119. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  120. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  121. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  123. // M140 - Set bed target temp
  124. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  125. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  127. // M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  128. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  129. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  130. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  131. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  132. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  133. // M206 - Set additional homing offset
  134. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  135. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  136. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  137. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  138. // M220 - Set speed factor override percentage: S<factor in percent>
  139. // M221 - Set extrude factor override percentage: S<factor in percent>
  140. // M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  141. // M240 - Trigger a camera to take a photograph
  142. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  143. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  144. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  145. // M301 - Set PID parameters P I and D
  146. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  147. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  148. // M304 - Set bed PID parameters P I and D
  149. // M380 - Activate solenoid on active extruder
  150. // M381 - Disable all solenoids
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Display measured filament diameter
  158. // M500 - Store parameters in EEPROM
  159. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  165. // M666 - Set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. #ifdef SDSUPPORT
  182. CardReader card;
  183. #endif
  184. bool Running = true;
  185. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  186. float current_position[NUM_AXIS] = { 0.0 };
  187. static float destination[NUM_AXIS] = { 0.0 };
  188. bool axis_known_position[3] = { false };
  189. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  190. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  191. float homing_feedrate[] = HOMING_FEEDRATE;
  192. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  193. int feedmultiply = 100; //100->1 200->2
  194. int saved_feedmultiply;
  195. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  196. bool volumetric_enabled = false;
  197. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  198. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  199. float home_offset[3] = { 0 };
  200. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  201. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  202. uint8_t active_extruder = 0;
  203. int fanSpeed = 0;
  204. bool cancel_heatup = false;
  205. const char errormagic[] PROGMEM = "Error:";
  206. const char echomagic[] PROGMEM = "echo:";
  207. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  208. static float offset[3] = { 0 };
  209. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  210. static int bufindr = 0;
  211. static int bufindw = 0;
  212. static int buflen = 0;
  213. static char serial_char;
  214. static int serial_count = 0;
  215. static boolean comment_mode = false;
  216. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  217. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  218. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  219. // Inactivity shutdown
  220. unsigned long previous_millis_cmd = 0;
  221. static unsigned long max_inactive_time = 0;
  222. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  223. unsigned long starttime = 0; ///< Print job start time
  224. unsigned long stoptime = 0; ///< Print job stop time
  225. static uint8_t target_extruder;
  226. bool CooldownNoWait = true;
  227. bool target_direction;
  228. #ifdef ENABLE_AUTO_BED_LEVELING
  229. int xy_travel_speed = XY_TRAVEL_SPEED;
  230. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  231. #endif
  232. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  233. float z_endstop_adj = 0;
  234. #endif
  235. // Extruder offsets
  236. #if EXTRUDERS > 1
  237. #ifndef EXTRUDER_OFFSET_X
  238. #define EXTRUDER_OFFSET_X { 0 }
  239. #endif
  240. #ifndef EXTRUDER_OFFSET_Y
  241. #define EXTRUDER_OFFSET_Y { 0 }
  242. #endif
  243. float extruder_offset[][EXTRUDERS] = {
  244. EXTRUDER_OFFSET_X,
  245. EXTRUDER_OFFSET_Y
  246. #ifdef DUAL_X_CARRIAGE
  247. , { 0 } // supports offsets in XYZ plane
  248. #endif
  249. };
  250. #endif
  251. #ifdef SERVO_ENDSTOPS
  252. int servo_endstops[] = SERVO_ENDSTOPS;
  253. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  254. #endif
  255. #ifdef BARICUDA
  256. int ValvePressure = 0;
  257. int EtoPPressure = 0;
  258. #endif
  259. #ifdef FWRETRACT
  260. bool autoretract_enabled = false;
  261. bool retracted[EXTRUDERS] = { false };
  262. bool retracted_swap[EXTRUDERS] = { false };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif // FWRETRACT
  271. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  272. bool powersupply =
  273. #ifdef PS_DEFAULT_OFF
  274. false
  275. #else
  276. true
  277. #endif
  278. ;
  279. #endif
  280. #ifdef DELTA
  281. float delta[3] = { 0 };
  282. #define SIN_60 0.8660254037844386
  283. #define COS_60 0.5
  284. float endstop_adj[3] = { 0 };
  285. // these are the default values, can be overriden with M665
  286. float delta_radius = DELTA_RADIUS;
  287. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  288. float delta_tower1_y = -COS_60 * delta_radius;
  289. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  290. float delta_tower2_y = -COS_60 * delta_radius;
  291. float delta_tower3_x = 0; // back middle tower
  292. float delta_tower3_y = delta_radius;
  293. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  294. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  295. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  296. #ifdef ENABLE_AUTO_BED_LEVELING
  297. int delta_grid_spacing[2] = { 0, 0 };
  298. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  299. #endif
  300. #else
  301. static bool home_all_axis = true;
  302. #endif
  303. #ifdef SCARA
  304. static float delta[3] = { 0 };
  305. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  306. #endif
  307. #ifdef FILAMENT_SENSOR
  308. //Variables for Filament Sensor input
  309. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  310. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  311. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  312. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  313. int delay_index1 = 0; //index into ring buffer
  314. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  315. float delay_dist = 0; //delay distance counter
  316. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  317. #endif
  318. #ifdef FILAMENT_RUNOUT_SENSOR
  319. static bool filrunoutEnqued = false;
  320. #endif
  321. #ifdef SDSUPPORT
  322. static bool fromsd[BUFSIZE];
  323. #endif
  324. #if NUM_SERVOS > 0
  325. Servo servos[NUM_SERVOS];
  326. #endif
  327. #ifdef CHDK
  328. unsigned long chdkHigh = 0;
  329. boolean chdkActive = false;
  330. #endif
  331. //===========================================================================
  332. //================================ Functions ================================
  333. //===========================================================================
  334. void get_arc_coordinates();
  335. bool setTargetedHotend(int code);
  336. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  337. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. #ifdef PREVENT_DANGEROUS_EXTRUDE
  340. float extrude_min_temp = EXTRUDE_MINTEMP;
  341. #endif
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. //Injects the next command from the pending sequence of commands, when possible
  361. //Return false if and only if no command was pending
  362. static bool drain_queued_commands_P() {
  363. if (!queued_commands_P) return false;
  364. // Get the next 30 chars from the sequence of gcodes to run
  365. char cmd[30];
  366. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  367. cmd[sizeof(cmd) - 1] = '\0';
  368. // Look for the end of line, or the end of sequence
  369. size_t i = 0;
  370. char c;
  371. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  372. cmd[i] = '\0';
  373. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  374. if (c)
  375. queued_commands_P += i + 1; // move to next command
  376. else
  377. queued_commands_P = NULL; // will have no more commands in the sequence
  378. }
  379. return true;
  380. }
  381. //Record one or many commands to run from program memory.
  382. //Aborts the current queue, if any.
  383. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  384. void enquecommands_P(const char* pgcode) {
  385. queued_commands_P = pgcode;
  386. drain_queued_commands_P(); // first command executed asap (when possible)
  387. }
  388. //adds a single command to the main command buffer, from RAM
  389. //that is really done in a non-safe way.
  390. //needs overworking someday
  391. //Returns false if it failed to do so
  392. bool enquecommand(const char *cmd)
  393. {
  394. if(*cmd==';')
  395. return false;
  396. if(buflen >= BUFSIZE)
  397. return false;
  398. //this is dangerous if a mixing of serial and this happens
  399. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_Enqueing);
  402. SERIAL_ECHO(cmdbuffer[bufindw]);
  403. SERIAL_ECHOLNPGM("\"");
  404. bufindw= (bufindw + 1)%BUFSIZE;
  405. buflen += 1;
  406. return true;
  407. }
  408. void setup_killpin()
  409. {
  410. #if HAS_KILL
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN, HIGH);
  413. #endif
  414. }
  415. void setup_filrunoutpin()
  416. {
  417. #if HAS_FILRUNOUT
  418. pinMode(FILRUNOUT_PIN, INPUT);
  419. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  420. WRITE(FILLRUNOUT_PIN, HIGH);
  421. #endif
  422. #endif
  423. }
  424. // Set home pin
  425. void setup_homepin(void)
  426. {
  427. #if HAS_HOME
  428. SET_INPUT(HOME_PIN);
  429. WRITE(HOME_PIN, HIGH);
  430. #endif
  431. }
  432. void setup_photpin()
  433. {
  434. #if HAS_PHOTOGRAPH
  435. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  436. #endif
  437. }
  438. void setup_powerhold()
  439. {
  440. #if HAS_SUICIDE
  441. OUT_WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if HAS_POWER_SWITCH
  444. #ifdef PS_DEFAULT_OFF
  445. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if HAS_SUICIDE
  454. OUT_WRITE(SUICIDE_PIN, LOW);
  455. #endif
  456. }
  457. void servo_init()
  458. {
  459. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  460. servos[0].attach(SERVO0_PIN);
  461. #endif
  462. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  463. servos[1].attach(SERVO1_PIN);
  464. #endif
  465. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  466. servos[2].attach(SERVO2_PIN);
  467. #endif
  468. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  469. servos[3].attach(SERVO3_PIN);
  470. #endif
  471. // Set position of Servo Endstops that are defined
  472. #ifdef SERVO_ENDSTOPS
  473. for (int i = 0; i < 3; i++)
  474. if (servo_endstops[i] >= 0)
  475. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  476. #endif
  477. #if SERVO_LEVELING
  478. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  479. servos[servo_endstops[Z_AXIS]].detach();
  480. #endif
  481. }
  482. void setup() {
  483. setup_killpin();
  484. setup_filrunoutpin();
  485. setup_powerhold();
  486. MYSERIAL.begin(BAUDRATE);
  487. SERIAL_PROTOCOLLNPGM("start");
  488. SERIAL_ECHO_START;
  489. // Check startup - does nothing if bootloader sets MCUSR to 0
  490. byte mcu = MCUSR;
  491. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  492. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  493. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  494. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  495. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  496. MCUSR = 0;
  497. SERIAL_ECHOPGM(MSG_MARLIN);
  498. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  499. #ifdef STRING_VERSION_CONFIG_H
  500. #ifdef STRING_CONFIG_H_AUTHOR
  501. SERIAL_ECHO_START;
  502. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  503. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  504. SERIAL_ECHOPGM(MSG_AUTHOR);
  505. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  506. SERIAL_ECHOPGM("Compiled: ");
  507. SERIAL_ECHOLNPGM(__DATE__);
  508. #endif // STRING_CONFIG_H_AUTHOR
  509. #endif // STRING_VERSION_CONFIG_H
  510. SERIAL_ECHO_START;
  511. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  512. SERIAL_ECHO(freeMemory());
  513. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  514. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  515. #ifdef SDSUPPORT
  516. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  517. #endif // !SDSUPPORT
  518. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  519. Config_RetrieveSettings();
  520. tp_init(); // Initialize temperature loop
  521. plan_init(); // Initialize planner;
  522. watchdog_init();
  523. st_init(); // Initialize stepper, this enables interrupts!
  524. setup_photpin();
  525. servo_init();
  526. lcd_init();
  527. _delay_ms(1000); // wait 1sec to display the splash screen
  528. #if HAS_CONTROLLERFAN
  529. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  530. #endif
  531. #ifdef DIGIPOT_I2C
  532. digipot_i2c_init();
  533. #endif
  534. #ifdef Z_PROBE_SLED
  535. pinMode(SERVO0_PIN, OUTPUT);
  536. digitalWrite(SERVO0_PIN, LOW); // turn it off
  537. #endif // Z_PROBE_SLED
  538. setup_homepin();
  539. #ifdef STAT_LED_RED
  540. pinMode(STAT_LED_RED, OUTPUT);
  541. digitalWrite(STAT_LED_RED, LOW); // turn it off
  542. #endif
  543. #ifdef STAT_LED_BLUE
  544. pinMode(STAT_LED_BLUE, OUTPUT);
  545. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  546. #endif
  547. }
  548. void loop() {
  549. if (buflen < BUFSIZE - 1) get_command();
  550. #ifdef SDSUPPORT
  551. card.checkautostart(false);
  552. #endif
  553. if (buflen) {
  554. #ifdef SDSUPPORT
  555. if (card.saving) {
  556. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  557. card.write_command(cmdbuffer[bufindr]);
  558. if (card.logging)
  559. process_commands();
  560. else
  561. SERIAL_PROTOCOLLNPGM(MSG_OK);
  562. }
  563. else {
  564. card.closefile();
  565. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  566. }
  567. }
  568. else
  569. process_commands();
  570. #else
  571. process_commands();
  572. #endif // SDSUPPORT
  573. buflen--;
  574. bufindr = (bufindr + 1) % BUFSIZE;
  575. }
  576. // Check heater every n milliseconds
  577. manage_heater();
  578. manage_inactivity();
  579. checkHitEndstops();
  580. lcd_update();
  581. }
  582. void get_command()
  583. {
  584. if (drain_queued_commands_P()) // priority is given to non-serial commands
  585. return;
  586. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  587. serial_char = MYSERIAL.read();
  588. if(serial_char == '\n' ||
  589. serial_char == '\r' ||
  590. serial_count >= (MAX_CMD_SIZE - 1) )
  591. {
  592. // end of line == end of comment
  593. comment_mode = false;
  594. if(!serial_count) {
  595. // short cut for empty lines
  596. return;
  597. }
  598. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  599. #ifdef SDSUPPORT
  600. fromsd[bufindw] = false;
  601. #endif //!SDSUPPORT
  602. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  603. {
  604. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  605. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  606. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  607. SERIAL_ERROR_START;
  608. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  609. SERIAL_ERRORLN(gcode_LastN);
  610. //Serial.println(gcode_N);
  611. FlushSerialRequestResend();
  612. serial_count = 0;
  613. return;
  614. }
  615. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  616. {
  617. byte checksum = 0;
  618. byte count = 0;
  619. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  620. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  621. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  622. SERIAL_ERROR_START;
  623. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  624. SERIAL_ERRORLN(gcode_LastN);
  625. FlushSerialRequestResend();
  626. serial_count = 0;
  627. return;
  628. }
  629. //if no errors, continue parsing
  630. }
  631. else
  632. {
  633. SERIAL_ERROR_START;
  634. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  635. SERIAL_ERRORLN(gcode_LastN);
  636. FlushSerialRequestResend();
  637. serial_count = 0;
  638. return;
  639. }
  640. gcode_LastN = gcode_N;
  641. //if no errors, continue parsing
  642. }
  643. else // if we don't receive 'N' but still see '*'
  644. {
  645. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  646. {
  647. SERIAL_ERROR_START;
  648. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  649. SERIAL_ERRORLN(gcode_LastN);
  650. serial_count = 0;
  651. return;
  652. }
  653. }
  654. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  655. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  656. switch(strtol(strchr_pointer + 1, NULL, 10)){
  657. case 0:
  658. case 1:
  659. case 2:
  660. case 3:
  661. if (IsStopped()) {
  662. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  663. LCD_MESSAGEPGM(MSG_STOPPED);
  664. }
  665. break;
  666. default:
  667. break;
  668. }
  669. }
  670. //If command was e-stop process now
  671. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  672. kill();
  673. bufindw = (bufindw + 1)%BUFSIZE;
  674. buflen += 1;
  675. serial_count = 0; //clear buffer
  676. }
  677. else if(serial_char == '\\') { //Handle escapes
  678. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  679. // if we have one more character, copy it over
  680. serial_char = MYSERIAL.read();
  681. cmdbuffer[bufindw][serial_count++] = serial_char;
  682. }
  683. //otherwise do nothing
  684. }
  685. else { // its not a newline, carriage return or escape char
  686. if(serial_char == ';') comment_mode = true;
  687. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  688. }
  689. }
  690. #ifdef SDSUPPORT
  691. if(!card.sdprinting || serial_count!=0){
  692. return;
  693. }
  694. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  695. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  696. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  697. static bool stop_buffering=false;
  698. if(buflen==0) stop_buffering=false;
  699. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  700. int16_t n=card.get();
  701. serial_char = (char)n;
  702. if(serial_char == '\n' ||
  703. serial_char == '\r' ||
  704. (serial_char == '#' && comment_mode == false) ||
  705. (serial_char == ':' && comment_mode == false) ||
  706. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  707. {
  708. if(card.eof()){
  709. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  710. stoptime=millis();
  711. char time[30];
  712. unsigned long t=(stoptime-starttime)/1000;
  713. int hours, minutes;
  714. minutes=(t/60)%60;
  715. hours=t/60/60;
  716. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  717. SERIAL_ECHO_START;
  718. SERIAL_ECHOLN(time);
  719. lcd_setstatus(time, true);
  720. card.printingHasFinished();
  721. card.checkautostart(true);
  722. }
  723. if(serial_char=='#')
  724. stop_buffering=true;
  725. if(!serial_count)
  726. {
  727. comment_mode = false; //for new command
  728. return; //if empty line
  729. }
  730. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  731. // if(!comment_mode){
  732. fromsd[bufindw] = true;
  733. buflen += 1;
  734. bufindw = (bufindw + 1)%BUFSIZE;
  735. // }
  736. comment_mode = false; //for new command
  737. serial_count = 0; //clear buffer
  738. }
  739. else
  740. {
  741. if(serial_char == ';') comment_mode = true;
  742. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  743. }
  744. }
  745. #endif //SDSUPPORT
  746. }
  747. float code_has_value() {
  748. char c = *(strchr_pointer + 1);
  749. return (c >= '0' && c <= '9') || c == '-' || c == '+' || c == '.';
  750. }
  751. float code_value() {
  752. float ret;
  753. char *e = strchr(strchr_pointer, 'E');
  754. if (e) {
  755. *e = 0;
  756. ret = strtod(strchr_pointer+1, NULL);
  757. *e = 'E';
  758. }
  759. else
  760. ret = strtod(strchr_pointer+1, NULL);
  761. return ret;
  762. }
  763. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  764. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  765. bool code_seen(char code) {
  766. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  767. return (strchr_pointer != NULL); //Return True if a character was found
  768. }
  769. #define DEFINE_PGM_READ_ANY(type, reader) \
  770. static inline type pgm_read_any(const type *p) \
  771. { return pgm_read_##reader##_near(p); }
  772. DEFINE_PGM_READ_ANY(float, float);
  773. DEFINE_PGM_READ_ANY(signed char, byte);
  774. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  775. static const PROGMEM type array##_P[3] = \
  776. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  777. static inline type array(int axis) \
  778. { return pgm_read_any(&array##_P[axis]); }
  779. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  780. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  782. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  783. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  784. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  785. #ifdef DUAL_X_CARRIAGE
  786. #define DXC_FULL_CONTROL_MODE 0
  787. #define DXC_AUTO_PARK_MODE 1
  788. #define DXC_DUPLICATION_MODE 2
  789. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  790. static float x_home_pos(int extruder) {
  791. if (extruder == 0)
  792. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  793. else
  794. // In dual carriage mode the extruder offset provides an override of the
  795. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  796. // This allow soft recalibration of the second extruder offset position without firmware reflash
  797. // (through the M218 command).
  798. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  799. }
  800. static int x_home_dir(int extruder) {
  801. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  802. }
  803. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  804. static bool active_extruder_parked = false; // used in mode 1 & 2
  805. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  806. static unsigned long delayed_move_time = 0; // used in mode 1
  807. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  808. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  809. bool extruder_duplication_enabled = false; // used in mode 2
  810. #endif //DUAL_X_CARRIAGE
  811. static void axis_is_at_home(int axis) {
  812. #ifdef DUAL_X_CARRIAGE
  813. if (axis == X_AXIS) {
  814. if (active_extruder != 0) {
  815. current_position[X_AXIS] = x_home_pos(active_extruder);
  816. min_pos[X_AXIS] = X2_MIN_POS;
  817. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  818. return;
  819. }
  820. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  821. float xoff = home_offset[X_AXIS];
  822. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  823. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  824. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  825. return;
  826. }
  827. }
  828. #endif
  829. #ifdef SCARA
  830. float homeposition[3];
  831. if (axis < 2) {
  832. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  833. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  834. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  835. // Works out real Homeposition angles using inverse kinematics,
  836. // and calculates homing offset using forward kinematics
  837. calculate_delta(homeposition);
  838. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  839. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  840. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  841. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  844. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  845. calculate_SCARA_forward_Transform(delta);
  846. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  847. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  848. current_position[axis] = delta[axis];
  849. // SCARA home positions are based on configuration since the actual limits are determined by the
  850. // inverse kinematic transform.
  851. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  853. }
  854. else {
  855. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  856. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  857. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  858. }
  859. #else
  860. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  861. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  862. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  863. #endif
  864. }
  865. /**
  866. * Some planner shorthand inline functions
  867. */
  868. inline void set_homing_bump_feedrate(AxisEnum axis) {
  869. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  870. if (homing_bump_divisor[axis] >= 1)
  871. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  872. else {
  873. feedrate = homing_feedrate[axis] / 10;
  874. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  875. }
  876. }
  877. inline void line_to_current_position() {
  878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  879. }
  880. inline void line_to_z(float zPosition) {
  881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  882. }
  883. inline void line_to_destination(float mm_m) {
  884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  885. }
  886. inline void line_to_destination() {
  887. line_to_destination(feedrate);
  888. }
  889. inline void sync_plan_position() {
  890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  891. }
  892. #if defined(DELTA) || defined(SCARA)
  893. inline void sync_plan_position_delta() {
  894. calculate_delta(current_position);
  895. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  896. }
  897. #endif
  898. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  899. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  900. #ifdef ENABLE_AUTO_BED_LEVELING
  901. #ifdef DELTA
  902. /**
  903. * Calculate delta, start a line, and set current_position to destination
  904. */
  905. void prepare_move_raw() {
  906. refresh_cmd_timeout();
  907. calculate_delta(destination);
  908. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  909. set_current_to_destination();
  910. }
  911. #endif
  912. #ifdef AUTO_BED_LEVELING_GRID
  913. #ifndef DELTA
  914. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  915. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  916. planeNormal.debug("planeNormal");
  917. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  918. //bedLevel.debug("bedLevel");
  919. //plan_bed_level_matrix.debug("bed level before");
  920. //vector_3 uncorrected_position = plan_get_position_mm();
  921. //uncorrected_position.debug("position before");
  922. vector_3 corrected_position = plan_get_position();
  923. //corrected_position.debug("position after");
  924. current_position[X_AXIS] = corrected_position.x;
  925. current_position[Y_AXIS] = corrected_position.y;
  926. current_position[Z_AXIS] = corrected_position.z;
  927. sync_plan_position();
  928. }
  929. #endif // !DELTA
  930. #else // !AUTO_BED_LEVELING_GRID
  931. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  932. plan_bed_level_matrix.set_to_identity();
  933. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  934. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  935. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  936. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  937. if (planeNormal.z < 0) {
  938. planeNormal.x = -planeNormal.x;
  939. planeNormal.y = -planeNormal.y;
  940. planeNormal.z = -planeNormal.z;
  941. }
  942. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  943. vector_3 corrected_position = plan_get_position();
  944. current_position[X_AXIS] = corrected_position.x;
  945. current_position[Y_AXIS] = corrected_position.y;
  946. current_position[Z_AXIS] = corrected_position.z;
  947. sync_plan_position();
  948. }
  949. #endif // !AUTO_BED_LEVELING_GRID
  950. static void run_z_probe() {
  951. #ifdef DELTA
  952. float start_z = current_position[Z_AXIS];
  953. long start_steps = st_get_position(Z_AXIS);
  954. // move down slowly until you find the bed
  955. feedrate = homing_feedrate[Z_AXIS] / 4;
  956. destination[Z_AXIS] = -10;
  957. prepare_move_raw();
  958. st_synchronize();
  959. endstops_hit_on_purpose(); // clear endstop hit flags
  960. // we have to let the planner know where we are right now as it is not where we said to go.
  961. long stop_steps = st_get_position(Z_AXIS);
  962. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  963. current_position[Z_AXIS] = mm;
  964. sync_plan_position_delta();
  965. #else // !DELTA
  966. plan_bed_level_matrix.set_to_identity();
  967. feedrate = homing_feedrate[Z_AXIS];
  968. // move down until you find the bed
  969. float zPosition = -10;
  970. line_to_z(zPosition);
  971. st_synchronize();
  972. // we have to let the planner know where we are right now as it is not where we said to go.
  973. zPosition = st_get_position_mm(Z_AXIS);
  974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  975. // move up the retract distance
  976. zPosition += home_bump_mm(Z_AXIS);
  977. line_to_z(zPosition);
  978. st_synchronize();
  979. endstops_hit_on_purpose(); // clear endstop hit flags
  980. // move back down slowly to find bed
  981. set_homing_bump_feedrate(Z_AXIS);
  982. zPosition -= home_bump_mm(Z_AXIS) * 2;
  983. line_to_z(zPosition);
  984. st_synchronize();
  985. endstops_hit_on_purpose(); // clear endstop hit flags
  986. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  987. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  988. sync_plan_position();
  989. #endif // !DELTA
  990. }
  991. /**
  992. *
  993. */
  994. static void do_blocking_move_to(float x, float y, float z) {
  995. float oldFeedRate = feedrate;
  996. #ifdef DELTA
  997. feedrate = XY_TRAVEL_SPEED;
  998. destination[X_AXIS] = x;
  999. destination[Y_AXIS] = y;
  1000. destination[Z_AXIS] = z;
  1001. prepare_move_raw();
  1002. st_synchronize();
  1003. #else
  1004. feedrate = homing_feedrate[Z_AXIS];
  1005. current_position[Z_AXIS] = z;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. feedrate = xy_travel_speed;
  1009. current_position[X_AXIS] = x;
  1010. current_position[Y_AXIS] = y;
  1011. line_to_current_position();
  1012. st_synchronize();
  1013. #endif
  1014. feedrate = oldFeedRate;
  1015. }
  1016. static void setup_for_endstop_move() {
  1017. saved_feedrate = feedrate;
  1018. saved_feedmultiply = feedmultiply;
  1019. feedmultiply = 100;
  1020. refresh_cmd_timeout();
  1021. enable_endstops(true);
  1022. }
  1023. static void clean_up_after_endstop_move() {
  1024. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1025. enable_endstops(false);
  1026. #endif
  1027. feedrate = saved_feedrate;
  1028. feedmultiply = saved_feedmultiply;
  1029. refresh_cmd_timeout();
  1030. }
  1031. static void deploy_z_probe() {
  1032. #ifdef SERVO_ENDSTOPS
  1033. // Engage Z Servo endstop if enabled
  1034. if (servo_endstops[Z_AXIS] >= 0) {
  1035. #if SERVO_LEVELING
  1036. servos[servo_endstops[Z_AXIS]].attach(0);
  1037. #endif
  1038. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1039. #if SERVO_LEVELING
  1040. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1041. servos[servo_endstops[Z_AXIS]].detach();
  1042. #endif
  1043. }
  1044. #elif defined(Z_PROBE_ALLEN_KEY)
  1045. feedrate = homing_feedrate[X_AXIS];
  1046. // Move to the start position to initiate deployment
  1047. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1048. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1049. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1050. prepare_move_raw();
  1051. // Home X to touch the belt
  1052. feedrate = homing_feedrate[X_AXIS]/10;
  1053. destination[X_AXIS] = 0;
  1054. prepare_move_raw();
  1055. // Home Y for safety
  1056. feedrate = homing_feedrate[X_AXIS]/2;
  1057. destination[Y_AXIS] = 0;
  1058. prepare_move_raw();
  1059. st_synchronize();
  1060. #ifdef Z_PROBE_ENDSTOP
  1061. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1062. if (z_probe_endstop)
  1063. #else
  1064. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1065. if (z_min_endstop)
  1066. #endif
  1067. {
  1068. if (IsRunning()) {
  1069. SERIAL_ERROR_START;
  1070. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1071. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1072. }
  1073. Stop();
  1074. }
  1075. #endif // Z_PROBE_ALLEN_KEY
  1076. }
  1077. static void stow_z_probe() {
  1078. #ifdef SERVO_ENDSTOPS
  1079. // Retract Z Servo endstop if enabled
  1080. if (servo_endstops[Z_AXIS] >= 0) {
  1081. #if Z_RAISE_AFTER_PROBING > 0
  1082. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1083. st_synchronize();
  1084. #endif
  1085. #if SERVO_LEVELING
  1086. servos[servo_endstops[Z_AXIS]].attach(0);
  1087. #endif
  1088. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1089. #if SERVO_LEVELING
  1090. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1091. servos[servo_endstops[Z_AXIS]].detach();
  1092. #endif
  1093. }
  1094. #elif defined(Z_PROBE_ALLEN_KEY)
  1095. // Move up for safety
  1096. feedrate = homing_feedrate[X_AXIS];
  1097. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1098. prepare_move_raw();
  1099. // Move to the start position to initiate retraction
  1100. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1101. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1102. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1103. prepare_move_raw();
  1104. // Move the nozzle down to push the probe into retracted position
  1105. feedrate = homing_feedrate[Z_AXIS]/10;
  1106. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1107. prepare_move_raw();
  1108. // Move up for safety
  1109. feedrate = homing_feedrate[Z_AXIS]/2;
  1110. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1111. prepare_move_raw();
  1112. // Home XY for safety
  1113. feedrate = homing_feedrate[X_AXIS]/2;
  1114. destination[X_AXIS] = 0;
  1115. destination[Y_AXIS] = 0;
  1116. prepare_move_raw();
  1117. st_synchronize();
  1118. #ifdef Z_PROBE_ENDSTOP
  1119. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1120. if (!z_probe_endstop)
  1121. #else
  1122. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1123. if (!z_min_endstop)
  1124. #endif
  1125. {
  1126. if (IsRunning()) {
  1127. SERIAL_ERROR_START;
  1128. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1129. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1130. }
  1131. Stop();
  1132. }
  1133. #endif
  1134. }
  1135. enum ProbeAction {
  1136. ProbeStay = 0,
  1137. ProbeDeploy = BIT(0),
  1138. ProbeStow = BIT(1),
  1139. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1140. };
  1141. // Probe bed height at position (x,y), returns the measured z value
  1142. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1143. // move to right place
  1144. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1145. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1146. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1147. if (retract_action & ProbeDeploy) deploy_z_probe();
  1148. #endif
  1149. run_z_probe();
  1150. float measured_z = current_position[Z_AXIS];
  1151. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1152. if (retract_action == ProbeStay) {
  1153. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1154. st_synchronize();
  1155. }
  1156. #endif
  1157. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1158. if (retract_action & ProbeStow) stow_z_probe();
  1159. #endif
  1160. if (verbose_level > 2) {
  1161. SERIAL_PROTOCOLPGM("Bed");
  1162. SERIAL_PROTOCOLPGM(" X: ");
  1163. SERIAL_PROTOCOL_F(x, 3);
  1164. SERIAL_PROTOCOLPGM(" Y: ");
  1165. SERIAL_PROTOCOL_F(y, 3);
  1166. SERIAL_PROTOCOLPGM(" Z: ");
  1167. SERIAL_PROTOCOL_F(measured_z, 3);
  1168. SERIAL_EOL;
  1169. }
  1170. return measured_z;
  1171. }
  1172. #ifdef DELTA
  1173. /**
  1174. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1175. */
  1176. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1177. if (bed_level[x][y] != 0.0) {
  1178. return; // Don't overwrite good values.
  1179. }
  1180. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1181. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1182. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1183. float median = c; // Median is robust (ignores outliers).
  1184. if (a < b) {
  1185. if (b < c) median = b;
  1186. if (c < a) median = a;
  1187. } else { // b <= a
  1188. if (c < b) median = b;
  1189. if (a < c) median = a;
  1190. }
  1191. bed_level[x][y] = median;
  1192. }
  1193. // Fill in the unprobed points (corners of circular print surface)
  1194. // using linear extrapolation, away from the center.
  1195. static void extrapolate_unprobed_bed_level() {
  1196. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1197. for (int y = 0; y <= half; y++) {
  1198. for (int x = 0; x <= half; x++) {
  1199. if (x + y < 3) continue;
  1200. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1201. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1202. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1203. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1204. }
  1205. }
  1206. }
  1207. // Print calibration results for plotting or manual frame adjustment.
  1208. static void print_bed_level() {
  1209. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1210. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1211. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1212. SERIAL_PROTOCOLCHAR(' ');
  1213. }
  1214. SERIAL_EOL;
  1215. }
  1216. }
  1217. // Reset calibration results to zero.
  1218. void reset_bed_level() {
  1219. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1220. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1221. bed_level[x][y] = 0.0;
  1222. }
  1223. }
  1224. }
  1225. #endif // DELTA
  1226. #endif // ENABLE_AUTO_BED_LEVELING
  1227. /**
  1228. * Home an individual axis
  1229. */
  1230. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1231. static void homeaxis(AxisEnum axis) {
  1232. #define HOMEAXIS_DO(LETTER) \
  1233. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1234. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1235. int axis_home_dir;
  1236. #ifdef DUAL_X_CARRIAGE
  1237. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1238. #else
  1239. axis_home_dir = home_dir(axis);
  1240. #endif
  1241. // Set the axis position as setup for the move
  1242. current_position[axis] = 0;
  1243. sync_plan_position();
  1244. // Engage Servo endstop if enabled
  1245. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1246. #if SERVO_LEVELING
  1247. if (axis == Z_AXIS) deploy_z_probe(); else
  1248. #endif
  1249. {
  1250. if (servo_endstops[axis] > -1)
  1251. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1252. }
  1253. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1254. #ifdef Z_DUAL_ENDSTOPS
  1255. if (axis == Z_AXIS) In_Homing_Process(true);
  1256. #endif
  1257. // Move towards the endstop until an endstop is triggered
  1258. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1259. feedrate = homing_feedrate[axis];
  1260. line_to_destination();
  1261. st_synchronize();
  1262. // Set the axis position as setup for the move
  1263. current_position[axis] = 0;
  1264. sync_plan_position();
  1265. // Move away from the endstop by the axis HOME_BUMP_MM
  1266. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1267. line_to_destination();
  1268. st_synchronize();
  1269. // Slow down the feedrate for the next move
  1270. set_homing_bump_feedrate(axis);
  1271. // Move slowly towards the endstop until triggered
  1272. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1273. line_to_destination();
  1274. st_synchronize();
  1275. #ifdef Z_DUAL_ENDSTOPS
  1276. if (axis == Z_AXIS) {
  1277. float adj = fabs(z_endstop_adj);
  1278. bool lockZ1;
  1279. if (axis_home_dir > 0) {
  1280. adj = -adj;
  1281. lockZ1 = (z_endstop_adj > 0);
  1282. }
  1283. else
  1284. lockZ1 = (z_endstop_adj < 0);
  1285. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1286. sync_plan_position();
  1287. // Move to the adjusted endstop height
  1288. feedrate = homing_feedrate[axis];
  1289. destination[Z_AXIS] = adj;
  1290. line_to_destination();
  1291. st_synchronize();
  1292. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1293. In_Homing_Process(false);
  1294. } // Z_AXIS
  1295. #endif
  1296. #ifdef DELTA
  1297. // retrace by the amount specified in endstop_adj
  1298. if (endstop_adj[axis] * axis_home_dir < 0) {
  1299. sync_plan_position();
  1300. destination[axis] = endstop_adj[axis];
  1301. line_to_destination();
  1302. st_synchronize();
  1303. }
  1304. #endif
  1305. // Set the axis position to its home position (plus home offsets)
  1306. axis_is_at_home(axis);
  1307. destination[axis] = current_position[axis];
  1308. feedrate = 0.0;
  1309. endstops_hit_on_purpose(); // clear endstop hit flags
  1310. axis_known_position[axis] = true;
  1311. // Retract Servo endstop if enabled
  1312. #ifdef SERVO_ENDSTOPS
  1313. if (servo_endstops[axis] > -1)
  1314. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1315. #endif
  1316. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1317. if (axis == Z_AXIS) stow_z_probe();
  1318. #endif
  1319. }
  1320. }
  1321. #ifdef FWRETRACT
  1322. void retract(bool retracting, bool swapretract = false) {
  1323. if (retracting == retracted[active_extruder]) return;
  1324. float oldFeedrate = feedrate;
  1325. set_destination_to_current();
  1326. if (retracting) {
  1327. feedrate = retract_feedrate * 60;
  1328. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1329. plan_set_e_position(current_position[E_AXIS]);
  1330. prepare_move();
  1331. if (retract_zlift > 0.01) {
  1332. current_position[Z_AXIS] -= retract_zlift;
  1333. #ifdef DELTA
  1334. sync_plan_position_delta();
  1335. #else
  1336. sync_plan_position();
  1337. #endif
  1338. prepare_move();
  1339. }
  1340. }
  1341. else {
  1342. if (retract_zlift > 0.01) {
  1343. current_position[Z_AXIS] += retract_zlift;
  1344. #ifdef DELTA
  1345. sync_plan_position_delta();
  1346. #else
  1347. sync_plan_position();
  1348. #endif
  1349. //prepare_move();
  1350. }
  1351. feedrate = retract_recover_feedrate * 60;
  1352. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1353. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1354. plan_set_e_position(current_position[E_AXIS]);
  1355. prepare_move();
  1356. }
  1357. feedrate = oldFeedrate;
  1358. retracted[active_extruder] = retracting;
  1359. } // retract()
  1360. #endif // FWRETRACT
  1361. #ifdef Z_PROBE_SLED
  1362. #ifndef SLED_DOCKING_OFFSET
  1363. #define SLED_DOCKING_OFFSET 0
  1364. #endif
  1365. //
  1366. // Method to dock/undock a sled designed by Charles Bell.
  1367. //
  1368. // dock[in] If true, move to MAX_X and engage the electromagnet
  1369. // offset[in] The additional distance to move to adjust docking location
  1370. //
  1371. static void dock_sled(bool dock, int offset=0) {
  1372. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1373. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1374. SERIAL_ECHO_START;
  1375. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1376. return;
  1377. }
  1378. if (dock) {
  1379. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1380. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1381. } else {
  1382. float z_loc = current_position[Z_AXIS];
  1383. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1384. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1385. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1386. }
  1387. }
  1388. #endif // Z_PROBE_SLED
  1389. /**
  1390. *
  1391. * G-Code Handler functions
  1392. *
  1393. */
  1394. /**
  1395. * G0, G1: Coordinated movement of X Y Z E axes
  1396. */
  1397. inline void gcode_G0_G1() {
  1398. if (IsRunning()) {
  1399. get_coordinates(); // For X Y Z E F
  1400. #ifdef FWRETRACT
  1401. if (autoretract_enabled)
  1402. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1403. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1404. // Is this move an attempt to retract or recover?
  1405. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1406. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1407. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1408. retract(!retracted[active_extruder]);
  1409. return;
  1410. }
  1411. }
  1412. #endif //FWRETRACT
  1413. prepare_move();
  1414. //ClearToSend();
  1415. }
  1416. }
  1417. /**
  1418. * G2: Clockwise Arc
  1419. * G3: Counterclockwise Arc
  1420. */
  1421. inline void gcode_G2_G3(bool clockwise) {
  1422. if (IsRunning()) {
  1423. get_arc_coordinates();
  1424. prepare_arc_move(clockwise);
  1425. }
  1426. }
  1427. /**
  1428. * G4: Dwell S<seconds> or P<milliseconds>
  1429. */
  1430. inline void gcode_G4() {
  1431. unsigned long codenum = 0;
  1432. LCD_MESSAGEPGM(MSG_DWELL);
  1433. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1434. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1435. st_synchronize();
  1436. refresh_cmd_timeout();
  1437. codenum += previous_millis_cmd; // keep track of when we started waiting
  1438. while (millis() < codenum) {
  1439. manage_heater();
  1440. manage_inactivity();
  1441. lcd_update();
  1442. }
  1443. }
  1444. #ifdef FWRETRACT
  1445. /**
  1446. * G10 - Retract filament according to settings of M207
  1447. * G11 - Recover filament according to settings of M208
  1448. */
  1449. inline void gcode_G10_G11(bool doRetract=false) {
  1450. #if EXTRUDERS > 1
  1451. if (doRetract) {
  1452. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1453. }
  1454. #endif
  1455. retract(doRetract
  1456. #if EXTRUDERS > 1
  1457. , retracted_swap[active_extruder]
  1458. #endif
  1459. );
  1460. }
  1461. #endif //FWRETRACT
  1462. /**
  1463. * G28: Home all axes according to settings
  1464. *
  1465. * Parameters
  1466. *
  1467. * None Home to all axes with no parameters.
  1468. * With QUICK_HOME enabled XY will home together, then Z.
  1469. *
  1470. * Cartesian parameters
  1471. *
  1472. * X Home to the X endstop
  1473. * Y Home to the Y endstop
  1474. * Z Home to the Z endstop
  1475. *
  1476. * If numbers are included with XYZ set the position as with G92
  1477. * Currently adds the home_offset, which may be wrong and removed soon.
  1478. *
  1479. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1480. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1481. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1482. */
  1483. inline void gcode_G28() {
  1484. // For auto bed leveling, clear the level matrix
  1485. #ifdef ENABLE_AUTO_BED_LEVELING
  1486. plan_bed_level_matrix.set_to_identity();
  1487. #ifdef DELTA
  1488. reset_bed_level();
  1489. #endif
  1490. #endif
  1491. // For manual bed leveling deactivate the matrix temporarily
  1492. #ifdef MESH_BED_LEVELING
  1493. uint8_t mbl_was_active = mbl.active;
  1494. mbl.active = 0;
  1495. #endif
  1496. saved_feedrate = feedrate;
  1497. saved_feedmultiply = feedmultiply;
  1498. feedmultiply = 100;
  1499. refresh_cmd_timeout();
  1500. enable_endstops(true);
  1501. set_destination_to_current();
  1502. feedrate = 0.0;
  1503. #ifdef DELTA
  1504. // A delta can only safely home all axis at the same time
  1505. // all axis have to home at the same time
  1506. // Pretend the current position is 0,0,0
  1507. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1508. sync_plan_position();
  1509. // Move all carriages up together until the first endstop is hit.
  1510. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1511. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1512. line_to_destination();
  1513. st_synchronize();
  1514. endstops_hit_on_purpose(); // clear endstop hit flags
  1515. // Destination reached
  1516. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1517. // take care of back off and rehome now we are all at the top
  1518. HOMEAXIS(X);
  1519. HOMEAXIS(Y);
  1520. HOMEAXIS(Z);
  1521. sync_plan_position_delta();
  1522. #else // NOT DELTA
  1523. bool homeX = code_seen(axis_codes[X_AXIS]),
  1524. homeY = code_seen(axis_codes[Y_AXIS]),
  1525. homeZ = code_seen(axis_codes[Z_AXIS]);
  1526. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1527. if (home_all_axis || homeZ) {
  1528. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1529. HOMEAXIS(Z);
  1530. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1531. // Raise Z before homing any other axes
  1532. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1533. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1534. feedrate = max_feedrate[Z_AXIS] * 60;
  1535. line_to_destination();
  1536. st_synchronize();
  1537. #endif
  1538. } // home_all_axis || homeZ
  1539. #ifdef QUICK_HOME
  1540. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1541. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1542. #ifdef DUAL_X_CARRIAGE
  1543. int x_axis_home_dir = x_home_dir(active_extruder);
  1544. extruder_duplication_enabled = false;
  1545. #else
  1546. int x_axis_home_dir = home_dir(X_AXIS);
  1547. #endif
  1548. sync_plan_position();
  1549. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1550. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1551. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1552. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1553. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1554. line_to_destination();
  1555. st_synchronize();
  1556. axis_is_at_home(X_AXIS);
  1557. axis_is_at_home(Y_AXIS);
  1558. sync_plan_position();
  1559. destination[X_AXIS] = current_position[X_AXIS];
  1560. destination[Y_AXIS] = current_position[Y_AXIS];
  1561. line_to_destination();
  1562. feedrate = 0.0;
  1563. st_synchronize();
  1564. endstops_hit_on_purpose(); // clear endstop hit flags
  1565. current_position[X_AXIS] = destination[X_AXIS];
  1566. current_position[Y_AXIS] = destination[Y_AXIS];
  1567. #ifndef SCARA
  1568. current_position[Z_AXIS] = destination[Z_AXIS];
  1569. #endif
  1570. }
  1571. #endif // QUICK_HOME
  1572. // Home X
  1573. if (home_all_axis || homeX) {
  1574. #ifdef DUAL_X_CARRIAGE
  1575. int tmp_extruder = active_extruder;
  1576. extruder_duplication_enabled = false;
  1577. active_extruder = !active_extruder;
  1578. HOMEAXIS(X);
  1579. inactive_extruder_x_pos = current_position[X_AXIS];
  1580. active_extruder = tmp_extruder;
  1581. HOMEAXIS(X);
  1582. // reset state used by the different modes
  1583. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1584. delayed_move_time = 0;
  1585. active_extruder_parked = true;
  1586. #else
  1587. HOMEAXIS(X);
  1588. #endif
  1589. }
  1590. // Home Y
  1591. if (home_all_axis || homeY) HOMEAXIS(Y);
  1592. // Set the X position, if included
  1593. if (code_seen(axis_codes[X_AXIS]) && code_has_value())
  1594. current_position[X_AXIS] = code_value();
  1595. // Set the Y position, if included
  1596. if (code_seen(axis_codes[Y_AXIS]) && code_has_value())
  1597. current_position[Y_AXIS] = code_value();
  1598. // Home Z last if homing towards the bed
  1599. #if Z_HOME_DIR < 0
  1600. if (home_all_axis || homeZ) {
  1601. #ifdef Z_SAFE_HOMING
  1602. if (home_all_axis) {
  1603. current_position[Z_AXIS] = 0;
  1604. sync_plan_position();
  1605. //
  1606. // Set the probe (or just the nozzle) destination to the safe homing point
  1607. //
  1608. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1609. // then this may not work as expected.
  1610. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1611. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1612. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1613. feedrate = XY_TRAVEL_SPEED;
  1614. // This could potentially move X, Y, Z all together
  1615. line_to_destination();
  1616. st_synchronize();
  1617. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1618. current_position[X_AXIS] = destination[X_AXIS];
  1619. current_position[Y_AXIS] = destination[Y_AXIS];
  1620. // Home the Z axis
  1621. HOMEAXIS(Z);
  1622. }
  1623. else if (homeZ) { // Don't need to Home Z twice
  1624. // Let's see if X and Y are homed
  1625. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1626. // Make sure the probe is within the physical limits
  1627. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1628. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1629. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1630. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1631. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1632. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1633. // Set the plan current position to X, Y, 0
  1634. current_position[Z_AXIS] = 0;
  1635. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1636. // Set Z destination away from bed and raise the axis
  1637. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1638. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1639. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1640. line_to_destination();
  1641. st_synchronize();
  1642. // Home the Z axis
  1643. HOMEAXIS(Z);
  1644. }
  1645. else {
  1646. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1647. SERIAL_ECHO_START;
  1648. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1649. }
  1650. }
  1651. else {
  1652. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1653. SERIAL_ECHO_START;
  1654. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1655. }
  1656. } // !home_all_axes && homeZ
  1657. #else // !Z_SAFE_HOMING
  1658. HOMEAXIS(Z);
  1659. #endif // !Z_SAFE_HOMING
  1660. } // home_all_axis || homeZ
  1661. #endif // Z_HOME_DIR < 0
  1662. // Set the Z position, if included
  1663. if (code_seen(axis_codes[Z_AXIS]) && code_has_value())
  1664. current_position[Z_AXIS] = code_value();
  1665. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1666. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1667. #endif
  1668. sync_plan_position();
  1669. #endif // else DELTA
  1670. #ifdef SCARA
  1671. sync_plan_position_delta();
  1672. #endif
  1673. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1674. enable_endstops(false);
  1675. #endif
  1676. // For manual leveling move back to 0,0
  1677. #ifdef MESH_BED_LEVELING
  1678. if (mbl_was_active) {
  1679. current_position[X_AXIS] = mbl.get_x(0);
  1680. current_position[Y_AXIS] = mbl.get_y(0);
  1681. set_destination_to_current();
  1682. feedrate = homing_feedrate[X_AXIS];
  1683. line_to_destination();
  1684. st_synchronize();
  1685. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1686. sync_plan_position();
  1687. mbl.active = 1;
  1688. }
  1689. #endif
  1690. feedrate = saved_feedrate;
  1691. feedmultiply = saved_feedmultiply;
  1692. refresh_cmd_timeout();
  1693. endstops_hit_on_purpose(); // clear endstop hit flags
  1694. }
  1695. #ifdef MESH_BED_LEVELING
  1696. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1697. /**
  1698. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1699. * mesh to compensate for variable bed height
  1700. *
  1701. * Parameters With MESH_BED_LEVELING:
  1702. *
  1703. * S0 Produce a mesh report
  1704. * S1 Start probing mesh points
  1705. * S2 Probe the next mesh point
  1706. * S3 Xn Yn Zn.nn Manually modify a single point
  1707. *
  1708. * The S0 report the points as below
  1709. *
  1710. * +----> X-axis
  1711. * |
  1712. * |
  1713. * v Y-axis
  1714. *
  1715. */
  1716. inline void gcode_G29() {
  1717. static int probe_point = -1;
  1718. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1719. if (state < 0 || state > 3) {
  1720. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1721. return;
  1722. }
  1723. int ix, iy;
  1724. float z;
  1725. switch(state) {
  1726. case MeshReport:
  1727. if (mbl.active) {
  1728. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1729. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1730. SERIAL_PROTOCOLCHAR(',');
  1731. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1732. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1733. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1734. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1735. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1736. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1737. SERIAL_PROTOCOLPGM(" ");
  1738. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1739. }
  1740. SERIAL_EOL;
  1741. }
  1742. }
  1743. else
  1744. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1745. break;
  1746. case MeshStart:
  1747. mbl.reset();
  1748. probe_point = 0;
  1749. enquecommands_P(PSTR("G28\nG29 S2"));
  1750. break;
  1751. case MeshNext:
  1752. if (probe_point < 0) {
  1753. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1754. return;
  1755. }
  1756. if (probe_point == 0) {
  1757. // Set Z to a positive value before recording the first Z.
  1758. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1759. sync_plan_position();
  1760. }
  1761. else {
  1762. // For others, save the Z of the previous point, then raise Z again.
  1763. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1764. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1765. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1766. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1767. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1769. st_synchronize();
  1770. }
  1771. // Is there another point to sample? Move there.
  1772. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1773. ix = probe_point % MESH_NUM_X_POINTS;
  1774. iy = probe_point / MESH_NUM_X_POINTS;
  1775. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1776. current_position[X_AXIS] = mbl.get_x(ix);
  1777. current_position[Y_AXIS] = mbl.get_y(iy);
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1779. st_synchronize();
  1780. probe_point++;
  1781. }
  1782. else {
  1783. // After recording the last point, activate the mbl and home
  1784. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1785. probe_point = -1;
  1786. mbl.active = 1;
  1787. enquecommands_P(PSTR("G28"));
  1788. }
  1789. break;
  1790. case MeshSet:
  1791. if (code_seen('X') || code_seen('x')) {
  1792. ix = code_value_long()-1;
  1793. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1794. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1795. return;
  1796. }
  1797. } else {
  1798. SERIAL_PROTOCOLPGM("X not entered.\n");
  1799. return;
  1800. }
  1801. if (code_seen('Y') || code_seen('y')) {
  1802. iy = code_value_long()-1;
  1803. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1804. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1805. return;
  1806. }
  1807. } else {
  1808. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1809. return;
  1810. }
  1811. if (code_seen('Z') || code_seen('z')) {
  1812. z = code_value();
  1813. } else {
  1814. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1815. return;
  1816. }
  1817. mbl.z_values[iy][ix] = z;
  1818. } // switch(state)
  1819. }
  1820. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1821. /**
  1822. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1823. * Will fail if the printer has not been homed with G28.
  1824. *
  1825. * Enhanced G29 Auto Bed Leveling Probe Routine
  1826. *
  1827. * Parameters With AUTO_BED_LEVELING_GRID:
  1828. *
  1829. * P Set the size of the grid that will be probed (P x P points).
  1830. * Not supported by non-linear delta printer bed leveling.
  1831. * Example: "G29 P4"
  1832. *
  1833. * S Set the XY travel speed between probe points (in mm/min)
  1834. *
  1835. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1836. * or clean the rotation Matrix. Useful to check the topology
  1837. * after a first run of G29.
  1838. *
  1839. * V Set the verbose level (0-4). Example: "G29 V3"
  1840. *
  1841. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1842. * This is useful for manual bed leveling and finding flaws in the bed (to
  1843. * assist with part placement).
  1844. * Not supported by non-linear delta printer bed leveling.
  1845. *
  1846. * F Set the Front limit of the probing grid
  1847. * B Set the Back limit of the probing grid
  1848. * L Set the Left limit of the probing grid
  1849. * R Set the Right limit of the probing grid
  1850. *
  1851. * Global Parameters:
  1852. *
  1853. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1854. * Include "E" to engage/disengage the probe for each sample.
  1855. * There's no extra effect if you have a fixed probe.
  1856. * Usage: "G29 E" or "G29 e"
  1857. *
  1858. */
  1859. inline void gcode_G29() {
  1860. // Don't allow auto-leveling without homing first
  1861. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1862. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1863. SERIAL_ECHO_START;
  1864. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1865. return;
  1866. }
  1867. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1868. if (verbose_level < 0 || verbose_level > 4) {
  1869. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1870. return;
  1871. }
  1872. bool dryrun = code_seen('D') || code_seen('d'),
  1873. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1874. #ifdef AUTO_BED_LEVELING_GRID
  1875. #ifndef DELTA
  1876. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1877. #endif
  1878. if (verbose_level > 0) {
  1879. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1880. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1881. }
  1882. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1883. #ifndef DELTA
  1884. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1885. if (auto_bed_leveling_grid_points < 2) {
  1886. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1887. return;
  1888. }
  1889. #endif
  1890. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1891. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1892. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1893. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1894. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1895. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1896. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1897. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1898. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1899. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1900. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1901. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1902. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1903. if (left_out || right_out || front_out || back_out) {
  1904. if (left_out) {
  1905. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1906. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1907. }
  1908. if (right_out) {
  1909. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1910. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1911. }
  1912. if (front_out) {
  1913. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1914. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1915. }
  1916. if (back_out) {
  1917. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1918. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1919. }
  1920. return;
  1921. }
  1922. #endif // AUTO_BED_LEVELING_GRID
  1923. #ifdef Z_PROBE_SLED
  1924. dock_sled(false); // engage (un-dock) the probe
  1925. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1926. deploy_z_probe();
  1927. #endif
  1928. st_synchronize();
  1929. if (!dryrun) {
  1930. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1931. plan_bed_level_matrix.set_to_identity();
  1932. #ifdef DELTA
  1933. reset_bed_level();
  1934. #else //!DELTA
  1935. //vector_3 corrected_position = plan_get_position_mm();
  1936. //corrected_position.debug("position before G29");
  1937. vector_3 uncorrected_position = plan_get_position();
  1938. //uncorrected_position.debug("position during G29");
  1939. current_position[X_AXIS] = uncorrected_position.x;
  1940. current_position[Y_AXIS] = uncorrected_position.y;
  1941. current_position[Z_AXIS] = uncorrected_position.z;
  1942. sync_plan_position();
  1943. #endif // !DELTA
  1944. }
  1945. setup_for_endstop_move();
  1946. feedrate = homing_feedrate[Z_AXIS];
  1947. #ifdef AUTO_BED_LEVELING_GRID
  1948. // probe at the points of a lattice grid
  1949. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1950. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1951. #ifdef DELTA
  1952. delta_grid_spacing[0] = xGridSpacing;
  1953. delta_grid_spacing[1] = yGridSpacing;
  1954. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1955. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1956. #else // !DELTA
  1957. // solve the plane equation ax + by + d = z
  1958. // A is the matrix with rows [x y 1] for all the probed points
  1959. // B is the vector of the Z positions
  1960. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1961. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1962. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1963. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1964. eqnBVector[abl2], // "B" vector of Z points
  1965. mean = 0.0;
  1966. #endif // !DELTA
  1967. int probePointCounter = 0;
  1968. bool zig = true;
  1969. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1970. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1971. int xStart, xStop, xInc;
  1972. if (zig) {
  1973. xStart = 0;
  1974. xStop = auto_bed_leveling_grid_points;
  1975. xInc = 1;
  1976. }
  1977. else {
  1978. xStart = auto_bed_leveling_grid_points - 1;
  1979. xStop = -1;
  1980. xInc = -1;
  1981. }
  1982. #ifndef DELTA
  1983. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1984. // This gets the probe points in more readable order.
  1985. if (!do_topography_map) zig = !zig;
  1986. #endif
  1987. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1988. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1989. // raise extruder
  1990. float measured_z,
  1991. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  1992. #ifdef DELTA
  1993. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1994. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1995. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1996. #endif //DELTA
  1997. ProbeAction act;
  1998. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  1999. act = ProbeDeployAndStow;
  2000. else if (yCount == 0 && xCount == xStart)
  2001. act = ProbeDeploy;
  2002. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2003. act = ProbeStow;
  2004. else
  2005. act = ProbeStay;
  2006. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2007. #ifndef DELTA
  2008. mean += measured_z;
  2009. eqnBVector[probePointCounter] = measured_z;
  2010. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2011. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2012. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2013. #else
  2014. bed_level[xCount][yCount] = measured_z + z_offset;
  2015. #endif
  2016. probePointCounter++;
  2017. manage_heater();
  2018. manage_inactivity();
  2019. lcd_update();
  2020. } //xProbe
  2021. } //yProbe
  2022. clean_up_after_endstop_move();
  2023. #ifdef DELTA
  2024. if (!dryrun) extrapolate_unprobed_bed_level();
  2025. print_bed_level();
  2026. #else // !DELTA
  2027. // solve lsq problem
  2028. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2029. mean /= abl2;
  2030. if (verbose_level) {
  2031. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2032. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2033. SERIAL_PROTOCOLPGM(" b: ");
  2034. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2035. SERIAL_PROTOCOLPGM(" d: ");
  2036. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2037. SERIAL_EOL;
  2038. if (verbose_level > 2) {
  2039. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2040. SERIAL_PROTOCOL_F(mean, 8);
  2041. SERIAL_EOL;
  2042. }
  2043. }
  2044. // Show the Topography map if enabled
  2045. if (do_topography_map) {
  2046. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2047. SERIAL_PROTOCOLPGM("+-----------+\n");
  2048. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2049. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2050. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2051. SERIAL_PROTOCOLPGM("+-----------+\n");
  2052. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2053. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2054. int ind = yy * auto_bed_leveling_grid_points + xx;
  2055. float diff = eqnBVector[ind] - mean;
  2056. if (diff >= 0.0)
  2057. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2058. else
  2059. SERIAL_PROTOCOLCHAR(' ');
  2060. SERIAL_PROTOCOL_F(diff, 5);
  2061. } // xx
  2062. SERIAL_EOL;
  2063. } // yy
  2064. SERIAL_EOL;
  2065. } //do_topography_map
  2066. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2067. free(plane_equation_coefficients);
  2068. #endif //!DELTA
  2069. #else // !AUTO_BED_LEVELING_GRID
  2070. // Actions for each probe
  2071. ProbeAction p1, p2, p3;
  2072. if (deploy_probe_for_each_reading)
  2073. p1 = p2 = p3 = ProbeDeployAndStow;
  2074. else
  2075. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2076. // Probe at 3 arbitrary points
  2077. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2078. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2079. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2080. clean_up_after_endstop_move();
  2081. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2082. #endif // !AUTO_BED_LEVELING_GRID
  2083. #ifndef DELTA
  2084. if (verbose_level > 0)
  2085. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2086. if (!dryrun) {
  2087. // Correct the Z height difference from z-probe position and hotend tip position.
  2088. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2089. // When the bed is uneven, this height must be corrected.
  2090. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2091. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2092. z_tmp = current_position[Z_AXIS],
  2093. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2094. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2095. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2096. sync_plan_position();
  2097. }
  2098. #endif // !DELTA
  2099. #ifdef Z_PROBE_SLED
  2100. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2101. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2102. stow_z_probe();
  2103. #endif
  2104. #ifdef Z_PROBE_END_SCRIPT
  2105. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2106. st_synchronize();
  2107. #endif
  2108. }
  2109. #ifndef Z_PROBE_SLED
  2110. inline void gcode_G30() {
  2111. deploy_z_probe(); // Engage Z Servo endstop if available
  2112. st_synchronize();
  2113. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2114. setup_for_endstop_move();
  2115. feedrate = homing_feedrate[Z_AXIS];
  2116. run_z_probe();
  2117. SERIAL_PROTOCOLPGM("Bed");
  2118. SERIAL_PROTOCOLPGM(" X: ");
  2119. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2120. SERIAL_PROTOCOLPGM(" Y: ");
  2121. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2122. SERIAL_PROTOCOLPGM(" Z: ");
  2123. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2124. SERIAL_EOL;
  2125. clean_up_after_endstop_move();
  2126. stow_z_probe(); // Retract Z Servo endstop if available
  2127. }
  2128. #endif //!Z_PROBE_SLED
  2129. #endif //ENABLE_AUTO_BED_LEVELING
  2130. /**
  2131. * G92: Set current position to given X Y Z E
  2132. */
  2133. inline void gcode_G92() {
  2134. if (!code_seen(axis_codes[E_AXIS]))
  2135. st_synchronize();
  2136. bool didXYZ = false;
  2137. for (int i = 0; i < NUM_AXIS; i++) {
  2138. if (code_seen(axis_codes[i])) {
  2139. float v = current_position[i] = code_value();
  2140. if (i == E_AXIS)
  2141. plan_set_e_position(v);
  2142. else
  2143. didXYZ = true;
  2144. }
  2145. }
  2146. if (didXYZ) sync_plan_position();
  2147. }
  2148. #ifdef ULTIPANEL
  2149. /**
  2150. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2151. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2152. */
  2153. inline void gcode_M0_M1() {
  2154. char *src = strchr_pointer + 2;
  2155. unsigned long codenum = 0;
  2156. bool hasP = false, hasS = false;
  2157. if (code_seen('P')) {
  2158. codenum = code_value_short(); // milliseconds to wait
  2159. hasP = codenum > 0;
  2160. }
  2161. if (code_seen('S')) {
  2162. codenum = code_value_short() * 1000UL; // seconds to wait
  2163. hasS = codenum > 0;
  2164. }
  2165. char* starpos = strchr(src, '*');
  2166. if (starpos != NULL) *(starpos) = '\0';
  2167. while (*src == ' ') ++src;
  2168. if (!hasP && !hasS && *src != '\0')
  2169. lcd_setstatus(src, true);
  2170. else {
  2171. LCD_MESSAGEPGM(MSG_USERWAIT);
  2172. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2173. dontExpireStatus();
  2174. #endif
  2175. }
  2176. lcd_ignore_click();
  2177. st_synchronize();
  2178. refresh_cmd_timeout();
  2179. if (codenum > 0) {
  2180. codenum += previous_millis_cmd; // keep track of when we started waiting
  2181. while(millis() < codenum && !lcd_clicked()) {
  2182. manage_heater();
  2183. manage_inactivity();
  2184. lcd_update();
  2185. }
  2186. lcd_ignore_click(false);
  2187. }
  2188. else {
  2189. if (!lcd_detected()) return;
  2190. while (!lcd_clicked()) {
  2191. manage_heater();
  2192. manage_inactivity();
  2193. lcd_update();
  2194. }
  2195. }
  2196. if (IS_SD_PRINTING)
  2197. LCD_MESSAGEPGM(MSG_RESUMING);
  2198. else
  2199. LCD_MESSAGEPGM(WELCOME_MSG);
  2200. }
  2201. #endif // ULTIPANEL
  2202. /**
  2203. * M17: Enable power on all stepper motors
  2204. */
  2205. inline void gcode_M17() {
  2206. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2207. enable_all_steppers();
  2208. }
  2209. #ifdef SDSUPPORT
  2210. /**
  2211. * M20: List SD card to serial output
  2212. */
  2213. inline void gcode_M20() {
  2214. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2215. card.ls();
  2216. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2217. }
  2218. /**
  2219. * M21: Init SD Card
  2220. */
  2221. inline void gcode_M21() {
  2222. card.initsd();
  2223. }
  2224. /**
  2225. * M22: Release SD Card
  2226. */
  2227. inline void gcode_M22() {
  2228. card.release();
  2229. }
  2230. /**
  2231. * M23: Select a file
  2232. */
  2233. inline void gcode_M23() {
  2234. char* codepos = strchr_pointer + 4;
  2235. char* starpos = strchr(codepos, '*');
  2236. if (starpos) *starpos = '\0';
  2237. card.openFile(codepos, true);
  2238. }
  2239. /**
  2240. * M24: Start SD Print
  2241. */
  2242. inline void gcode_M24() {
  2243. card.startFileprint();
  2244. starttime = millis();
  2245. }
  2246. /**
  2247. * M25: Pause SD Print
  2248. */
  2249. inline void gcode_M25() {
  2250. card.pauseSDPrint();
  2251. }
  2252. /**
  2253. * M26: Set SD Card file index
  2254. */
  2255. inline void gcode_M26() {
  2256. if (card.cardOK && code_seen('S'))
  2257. card.setIndex(code_value_short());
  2258. }
  2259. /**
  2260. * M27: Get SD Card status
  2261. */
  2262. inline void gcode_M27() {
  2263. card.getStatus();
  2264. }
  2265. /**
  2266. * M28: Start SD Write
  2267. */
  2268. inline void gcode_M28() {
  2269. char* codepos = strchr_pointer + 4;
  2270. char* starpos = strchr(codepos, '*');
  2271. if (starpos) {
  2272. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2273. strchr_pointer = strchr(npos, ' ') + 1;
  2274. *(starpos) = '\0';
  2275. }
  2276. card.openFile(codepos, false);
  2277. }
  2278. /**
  2279. * M29: Stop SD Write
  2280. * Processed in write to file routine above
  2281. */
  2282. inline void gcode_M29() {
  2283. // card.saving = false;
  2284. }
  2285. /**
  2286. * M30 <filename>: Delete SD Card file
  2287. */
  2288. inline void gcode_M30() {
  2289. if (card.cardOK) {
  2290. card.closefile();
  2291. char* starpos = strchr(strchr_pointer + 4, '*');
  2292. if (starpos) {
  2293. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2294. strchr_pointer = strchr(npos, ' ') + 1;
  2295. *(starpos) = '\0';
  2296. }
  2297. card.removeFile(strchr_pointer + 4);
  2298. }
  2299. }
  2300. #endif
  2301. /**
  2302. * M31: Get the time since the start of SD Print (or last M109)
  2303. */
  2304. inline void gcode_M31() {
  2305. stoptime = millis();
  2306. unsigned long t = (stoptime - starttime) / 1000;
  2307. int min = t / 60, sec = t % 60;
  2308. char time[30];
  2309. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2310. SERIAL_ECHO_START;
  2311. SERIAL_ECHOLN(time);
  2312. lcd_setstatus(time);
  2313. autotempShutdown();
  2314. }
  2315. #ifdef SDSUPPORT
  2316. /**
  2317. * M32: Select file and start SD Print
  2318. */
  2319. inline void gcode_M32() {
  2320. if (card.sdprinting)
  2321. st_synchronize();
  2322. char* codepos = strchr_pointer + 4;
  2323. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2324. if (! namestartpos)
  2325. namestartpos = codepos; //default name position, 4 letters after the M
  2326. else
  2327. namestartpos++; //to skip the '!'
  2328. char* starpos = strchr(codepos, '*');
  2329. if (starpos) *(starpos) = '\0';
  2330. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2331. if (card.cardOK) {
  2332. card.openFile(namestartpos, true, !call_procedure);
  2333. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2334. card.setIndex(code_value_short());
  2335. card.startFileprint();
  2336. if (!call_procedure)
  2337. starttime = millis(); //procedure calls count as normal print time.
  2338. }
  2339. }
  2340. /**
  2341. * M928: Start SD Write
  2342. */
  2343. inline void gcode_M928() {
  2344. char* starpos = strchr(strchr_pointer + 5, '*');
  2345. if (starpos) {
  2346. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2347. strchr_pointer = strchr(npos, ' ') + 1;
  2348. *(starpos) = '\0';
  2349. }
  2350. card.openLogFile(strchr_pointer + 5);
  2351. }
  2352. #endif // SDSUPPORT
  2353. /**
  2354. * M42: Change pin status via GCode
  2355. */
  2356. inline void gcode_M42() {
  2357. if (code_seen('S')) {
  2358. int pin_status = code_value_short(),
  2359. pin_number = LED_PIN;
  2360. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2361. pin_number = code_value_short();
  2362. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2363. if (sensitive_pins[i] == pin_number) {
  2364. pin_number = -1;
  2365. break;
  2366. }
  2367. }
  2368. #if HAS_FAN
  2369. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2370. #endif
  2371. if (pin_number > -1) {
  2372. pinMode(pin_number, OUTPUT);
  2373. digitalWrite(pin_number, pin_status);
  2374. analogWrite(pin_number, pin_status);
  2375. }
  2376. } // code_seen('S')
  2377. }
  2378. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2379. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2380. #ifdef Z_PROBE_ENDSTOP
  2381. #if !HAS_Z_PROBE
  2382. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2383. #endif
  2384. #elif !HAS_Z_MIN
  2385. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2386. #endif
  2387. /**
  2388. * M48: Z-Probe repeatability measurement function.
  2389. *
  2390. * Usage:
  2391. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2392. * P = Number of sampled points (4-50, default 10)
  2393. * X = Sample X position
  2394. * Y = Sample Y position
  2395. * V = Verbose level (0-4, default=1)
  2396. * E = Engage probe for each reading
  2397. * L = Number of legs of movement before probe
  2398. *
  2399. * This function assumes the bed has been homed. Specifically, that a G28 command
  2400. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2401. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2402. * regenerated.
  2403. *
  2404. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2405. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2406. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2407. */
  2408. inline void gcode_M48() {
  2409. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2410. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2411. if (code_seen('V') || code_seen('v')) {
  2412. verbose_level = code_value_short();
  2413. if (verbose_level < 0 || verbose_level > 4 ) {
  2414. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2415. return;
  2416. }
  2417. }
  2418. if (verbose_level > 0)
  2419. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2420. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2421. n_samples = code_value_short();
  2422. if (n_samples < 4 || n_samples > 50) {
  2423. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2424. return;
  2425. }
  2426. }
  2427. double X_probe_location, Y_probe_location,
  2428. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2429. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2430. Z_current = st_get_position_mm(Z_AXIS),
  2431. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2432. ext_position = st_get_position_mm(E_AXIS);
  2433. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2434. if (code_seen('X') || code_seen('x')) {
  2435. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2436. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2437. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2438. return;
  2439. }
  2440. }
  2441. if (code_seen('Y') || code_seen('y')) {
  2442. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2443. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2444. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2445. return;
  2446. }
  2447. }
  2448. if (code_seen('L') || code_seen('l')) {
  2449. n_legs = code_value_short();
  2450. if (n_legs == 1) n_legs = 2;
  2451. if (n_legs < 0 || n_legs > 15) {
  2452. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2453. return;
  2454. }
  2455. }
  2456. //
  2457. // Do all the preliminary setup work. First raise the probe.
  2458. //
  2459. st_synchronize();
  2460. plan_bed_level_matrix.set_to_identity();
  2461. plan_buffer_line(X_current, Y_current, Z_start_location,
  2462. ext_position,
  2463. homing_feedrate[Z_AXIS] / 60,
  2464. active_extruder);
  2465. st_synchronize();
  2466. //
  2467. // Now get everything to the specified probe point So we can safely do a probe to
  2468. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2469. // use that as a starting point for each probe.
  2470. //
  2471. if (verbose_level > 2)
  2472. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2473. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2474. ext_position,
  2475. homing_feedrate[X_AXIS]/60,
  2476. active_extruder);
  2477. st_synchronize();
  2478. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2479. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2480. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2481. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2482. //
  2483. // OK, do the inital probe to get us close to the bed.
  2484. // Then retrace the right amount and use that in subsequent probes
  2485. //
  2486. deploy_z_probe();
  2487. setup_for_endstop_move();
  2488. run_z_probe();
  2489. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2490. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2491. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2492. ext_position,
  2493. homing_feedrate[X_AXIS]/60,
  2494. active_extruder);
  2495. st_synchronize();
  2496. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2497. if (deploy_probe_for_each_reading) stow_z_probe();
  2498. for (uint8_t n=0; n < n_samples; n++) {
  2499. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2500. if (n_legs) {
  2501. unsigned long ms = millis();
  2502. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2503. theta = RADIANS(ms % 360L);
  2504. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2505. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2506. //SERIAL_ECHOPAIR(" theta: ",theta);
  2507. //SERIAL_ECHOPAIR(" direction: ",dir);
  2508. //SERIAL_EOL;
  2509. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2510. ms = millis();
  2511. theta += RADIANS(dir * (ms % 20L));
  2512. radius += (ms % 10L) - 5L;
  2513. if (radius < 0.0) radius = -radius;
  2514. X_current = X_probe_location + cos(theta) * radius;
  2515. Y_current = Y_probe_location + sin(theta) * radius;
  2516. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2517. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2518. if (verbose_level > 3) {
  2519. SERIAL_ECHOPAIR("x: ", X_current);
  2520. SERIAL_ECHOPAIR("y: ", Y_current);
  2521. SERIAL_EOL;
  2522. }
  2523. do_blocking_move_to(X_current, Y_current, Z_current);
  2524. } // n_legs loop
  2525. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2526. } // n_legs
  2527. if (deploy_probe_for_each_reading) {
  2528. deploy_z_probe();
  2529. delay(1000);
  2530. }
  2531. setup_for_endstop_move();
  2532. run_z_probe();
  2533. sample_set[n] = current_position[Z_AXIS];
  2534. //
  2535. // Get the current mean for the data points we have so far
  2536. //
  2537. sum = 0.0;
  2538. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2539. mean = sum / (n + 1);
  2540. //
  2541. // Now, use that mean to calculate the standard deviation for the
  2542. // data points we have so far
  2543. //
  2544. sum = 0.0;
  2545. for (uint8_t j = 0; j <= n; j++) {
  2546. float ss = sample_set[j] - mean;
  2547. sum += ss * ss;
  2548. }
  2549. sigma = sqrt(sum / (n + 1));
  2550. if (verbose_level > 1) {
  2551. SERIAL_PROTOCOL(n+1);
  2552. SERIAL_PROTOCOLPGM(" of ");
  2553. SERIAL_PROTOCOL(n_samples);
  2554. SERIAL_PROTOCOLPGM(" z: ");
  2555. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2556. if (verbose_level > 2) {
  2557. SERIAL_PROTOCOLPGM(" mean: ");
  2558. SERIAL_PROTOCOL_F(mean,6);
  2559. SERIAL_PROTOCOLPGM(" sigma: ");
  2560. SERIAL_PROTOCOL_F(sigma,6);
  2561. }
  2562. }
  2563. if (verbose_level > 0) SERIAL_EOL;
  2564. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2565. st_synchronize();
  2566. if (deploy_probe_for_each_reading) {
  2567. stow_z_probe();
  2568. delay(1000);
  2569. }
  2570. }
  2571. if (!deploy_probe_for_each_reading) {
  2572. stow_z_probe();
  2573. delay(1000);
  2574. }
  2575. clean_up_after_endstop_move();
  2576. // enable_endstops(true);
  2577. if (verbose_level > 0) {
  2578. SERIAL_PROTOCOLPGM("Mean: ");
  2579. SERIAL_PROTOCOL_F(mean, 6);
  2580. SERIAL_EOL;
  2581. }
  2582. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2583. SERIAL_PROTOCOL_F(sigma, 6);
  2584. SERIAL_EOL; SERIAL_EOL;
  2585. }
  2586. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2587. /**
  2588. * M104: Set hot end temperature
  2589. */
  2590. inline void gcode_M104() {
  2591. if (setTargetedHotend(104)) return;
  2592. if (code_seen('S')) {
  2593. float temp = code_value();
  2594. setTargetHotend(temp, target_extruder);
  2595. #ifdef DUAL_X_CARRIAGE
  2596. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2597. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2598. #endif
  2599. setWatch();
  2600. }
  2601. }
  2602. /**
  2603. * M105: Read hot end and bed temperature
  2604. */
  2605. inline void gcode_M105() {
  2606. if (setTargetedHotend(105)) return;
  2607. #if HAS_TEMP_0 || HAS_TEMP_BED
  2608. SERIAL_PROTOCOLPGM("ok");
  2609. #if HAS_TEMP_0
  2610. SERIAL_PROTOCOLPGM(" T:");
  2611. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2612. SERIAL_PROTOCOLPGM(" /");
  2613. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2614. #endif
  2615. #if HAS_TEMP_BED
  2616. SERIAL_PROTOCOLPGM(" B:");
  2617. SERIAL_PROTOCOL_F(degBed(), 1);
  2618. SERIAL_PROTOCOLPGM(" /");
  2619. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2620. #endif
  2621. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2622. SERIAL_PROTOCOLPGM(" T");
  2623. SERIAL_PROTOCOL(e);
  2624. SERIAL_PROTOCOLCHAR(':');
  2625. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2626. SERIAL_PROTOCOLPGM(" /");
  2627. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2628. }
  2629. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2630. SERIAL_ERROR_START;
  2631. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2632. #endif
  2633. SERIAL_PROTOCOLPGM(" @:");
  2634. #ifdef EXTRUDER_WATTS
  2635. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2636. SERIAL_PROTOCOLCHAR('W');
  2637. #else
  2638. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2639. #endif
  2640. SERIAL_PROTOCOLPGM(" B@:");
  2641. #ifdef BED_WATTS
  2642. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2643. SERIAL_PROTOCOLCHAR('W');
  2644. #else
  2645. SERIAL_PROTOCOL(getHeaterPower(-1));
  2646. #endif
  2647. #ifdef SHOW_TEMP_ADC_VALUES
  2648. #if HAS_TEMP_BED
  2649. SERIAL_PROTOCOLPGM(" ADC B:");
  2650. SERIAL_PROTOCOL_F(degBed(),1);
  2651. SERIAL_PROTOCOLPGM("C->");
  2652. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2653. #endif
  2654. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2655. SERIAL_PROTOCOLPGM(" T");
  2656. SERIAL_PROTOCOL(cur_extruder);
  2657. SERIAL_PROTOCOLCHAR(':');
  2658. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2659. SERIAL_PROTOCOLPGM("C->");
  2660. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2661. }
  2662. #endif
  2663. SERIAL_EOL;
  2664. }
  2665. #if HAS_FAN
  2666. /**
  2667. * M106: Set Fan Speed
  2668. */
  2669. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2670. /**
  2671. * M107: Fan Off
  2672. */
  2673. inline void gcode_M107() { fanSpeed = 0; }
  2674. #endif // HAS_FAN
  2675. /**
  2676. * M109: Wait for extruder(s) to reach temperature
  2677. */
  2678. inline void gcode_M109() {
  2679. if (setTargetedHotend(109)) return;
  2680. LCD_MESSAGEPGM(MSG_HEATING);
  2681. CooldownNoWait = code_seen('S');
  2682. if (CooldownNoWait || code_seen('R')) {
  2683. float temp = code_value();
  2684. setTargetHotend(temp, target_extruder);
  2685. #ifdef DUAL_X_CARRIAGE
  2686. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2687. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2688. #endif
  2689. }
  2690. #ifdef AUTOTEMP
  2691. autotemp_enabled = code_seen('F');
  2692. if (autotemp_enabled) autotemp_factor = code_value();
  2693. if (code_seen('S')) autotemp_min = code_value();
  2694. if (code_seen('B')) autotemp_max = code_value();
  2695. #endif
  2696. setWatch();
  2697. unsigned long timetemp = millis();
  2698. /* See if we are heating up or cooling down */
  2699. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2700. cancel_heatup = false;
  2701. #ifdef TEMP_RESIDENCY_TIME
  2702. long residencyStart = -1;
  2703. /* continue to loop until we have reached the target temp
  2704. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2705. while((!cancel_heatup)&&((residencyStart == -1) ||
  2706. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2707. #else
  2708. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
  2709. #endif //TEMP_RESIDENCY_TIME
  2710. { // while loop
  2711. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2712. SERIAL_PROTOCOLPGM("T:");
  2713. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2714. SERIAL_PROTOCOLPGM(" E:");
  2715. SERIAL_PROTOCOL((int)target_extruder);
  2716. #ifdef TEMP_RESIDENCY_TIME
  2717. SERIAL_PROTOCOLPGM(" W:");
  2718. if (residencyStart > -1) {
  2719. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2720. SERIAL_PROTOCOLLN( timetemp );
  2721. }
  2722. else {
  2723. SERIAL_PROTOCOLLNPGM("?");
  2724. }
  2725. #else
  2726. SERIAL_EOL;
  2727. #endif
  2728. timetemp = millis();
  2729. }
  2730. manage_heater();
  2731. manage_inactivity();
  2732. lcd_update();
  2733. #ifdef TEMP_RESIDENCY_TIME
  2734. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2735. // or when current temp falls outside the hysteresis after target temp was reached
  2736. if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2737. (residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2738. (residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2739. {
  2740. residencyStart = millis();
  2741. }
  2742. #endif //TEMP_RESIDENCY_TIME
  2743. }
  2744. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2745. refresh_cmd_timeout();
  2746. starttime = previous_millis_cmd;
  2747. }
  2748. #if HAS_TEMP_BED
  2749. /**
  2750. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2751. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2752. */
  2753. inline void gcode_M190() {
  2754. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2755. CooldownNoWait = code_seen('S');
  2756. if (CooldownNoWait || code_seen('R'))
  2757. setTargetBed(code_value());
  2758. unsigned long timetemp = millis();
  2759. cancel_heatup = false;
  2760. target_direction = isHeatingBed(); // true if heating, false if cooling
  2761. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2762. unsigned long ms = millis();
  2763. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2764. timetemp = ms;
  2765. float tt = degHotend(active_extruder);
  2766. SERIAL_PROTOCOLPGM("T:");
  2767. SERIAL_PROTOCOL(tt);
  2768. SERIAL_PROTOCOLPGM(" E:");
  2769. SERIAL_PROTOCOL((int)active_extruder);
  2770. SERIAL_PROTOCOLPGM(" B:");
  2771. SERIAL_PROTOCOL_F(degBed(), 1);
  2772. SERIAL_EOL;
  2773. }
  2774. manage_heater();
  2775. manage_inactivity();
  2776. lcd_update();
  2777. }
  2778. LCD_MESSAGEPGM(MSG_BED_DONE);
  2779. refresh_cmd_timeout();
  2780. }
  2781. #endif // HAS_TEMP_BED
  2782. /**
  2783. * M112: Emergency Stop
  2784. */
  2785. inline void gcode_M112() {
  2786. kill();
  2787. }
  2788. #ifdef BARICUDA
  2789. #if HAS_HEATER_1
  2790. /**
  2791. * M126: Heater 1 valve open
  2792. */
  2793. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2794. /**
  2795. * M127: Heater 1 valve close
  2796. */
  2797. inline void gcode_M127() { ValvePressure = 0; }
  2798. #endif
  2799. #if HAS_HEATER_2
  2800. /**
  2801. * M128: Heater 2 valve open
  2802. */
  2803. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2804. /**
  2805. * M129: Heater 2 valve close
  2806. */
  2807. inline void gcode_M129() { EtoPPressure = 0; }
  2808. #endif
  2809. #endif //BARICUDA
  2810. /**
  2811. * M140: Set bed temperature
  2812. */
  2813. inline void gcode_M140() {
  2814. if (code_seen('S')) setTargetBed(code_value());
  2815. }
  2816. #if HAS_POWER_SWITCH
  2817. /**
  2818. * M80: Turn on Power Supply
  2819. */
  2820. inline void gcode_M80() {
  2821. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2822. // If you have a switch on suicide pin, this is useful
  2823. // if you want to start another print with suicide feature after
  2824. // a print without suicide...
  2825. #if HAS_SUICIDE
  2826. OUT_WRITE(SUICIDE_PIN, HIGH);
  2827. #endif
  2828. #ifdef ULTIPANEL
  2829. powersupply = true;
  2830. LCD_MESSAGEPGM(WELCOME_MSG);
  2831. lcd_update();
  2832. #endif
  2833. }
  2834. #endif // HAS_POWER_SWITCH
  2835. /**
  2836. * M81: Turn off Power, including Power Supply, if there is one.
  2837. *
  2838. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2839. */
  2840. inline void gcode_M81() {
  2841. disable_heater();
  2842. st_synchronize();
  2843. disable_e0();
  2844. disable_e1();
  2845. disable_e2();
  2846. disable_e3();
  2847. finishAndDisableSteppers();
  2848. fanSpeed = 0;
  2849. delay(1000); // Wait 1 second before switching off
  2850. #if HAS_SUICIDE
  2851. st_synchronize();
  2852. suicide();
  2853. #elif HAS_POWER_SWITCH
  2854. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2855. #endif
  2856. #ifdef ULTIPANEL
  2857. #if HAS_POWER_SWITCH
  2858. powersupply = false;
  2859. #endif
  2860. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2861. lcd_update();
  2862. #endif
  2863. }
  2864. /**
  2865. * M82: Set E codes absolute (default)
  2866. */
  2867. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2868. /**
  2869. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2870. */
  2871. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2872. /**
  2873. * M18, M84: Disable all stepper motors
  2874. */
  2875. inline void gcode_M18_M84() {
  2876. if (code_seen('S')) {
  2877. stepper_inactive_time = code_value() * 1000;
  2878. }
  2879. else {
  2880. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2881. if (all_axis) {
  2882. st_synchronize();
  2883. disable_e0();
  2884. disable_e1();
  2885. disable_e2();
  2886. disable_e3();
  2887. finishAndDisableSteppers();
  2888. }
  2889. else {
  2890. st_synchronize();
  2891. if (code_seen('X')) disable_x();
  2892. if (code_seen('Y')) disable_y();
  2893. if (code_seen('Z')) disable_z();
  2894. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2895. if (code_seen('E')) {
  2896. disable_e0();
  2897. disable_e1();
  2898. disable_e2();
  2899. disable_e3();
  2900. }
  2901. #endif
  2902. }
  2903. }
  2904. }
  2905. /**
  2906. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2907. */
  2908. inline void gcode_M85() {
  2909. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2910. }
  2911. /**
  2912. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2913. */
  2914. inline void gcode_M92() {
  2915. for(int8_t i=0; i < NUM_AXIS; i++) {
  2916. if (code_seen(axis_codes[i])) {
  2917. if (i == E_AXIS) {
  2918. float value = code_value();
  2919. if (value < 20.0) {
  2920. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2921. max_e_jerk *= factor;
  2922. max_feedrate[i] *= factor;
  2923. axis_steps_per_sqr_second[i] *= factor;
  2924. }
  2925. axis_steps_per_unit[i] = value;
  2926. }
  2927. else {
  2928. axis_steps_per_unit[i] = code_value();
  2929. }
  2930. }
  2931. }
  2932. }
  2933. /**
  2934. * M114: Output current position to serial port
  2935. */
  2936. inline void gcode_M114() {
  2937. SERIAL_PROTOCOLPGM("X:");
  2938. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2939. SERIAL_PROTOCOLPGM(" Y:");
  2940. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2941. SERIAL_PROTOCOLPGM(" Z:");
  2942. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2943. SERIAL_PROTOCOLPGM(" E:");
  2944. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2945. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2946. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2947. SERIAL_PROTOCOLPGM(" Y:");
  2948. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2949. SERIAL_PROTOCOLPGM(" Z:");
  2950. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2951. SERIAL_EOL;
  2952. #ifdef SCARA
  2953. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2954. SERIAL_PROTOCOL(delta[X_AXIS]);
  2955. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2956. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2957. SERIAL_EOL;
  2958. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2959. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2960. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2961. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2962. SERIAL_EOL;
  2963. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2964. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2965. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2966. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2967. SERIAL_EOL; SERIAL_EOL;
  2968. #endif
  2969. }
  2970. /**
  2971. * M115: Capabilities string
  2972. */
  2973. inline void gcode_M115() {
  2974. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2975. }
  2976. /**
  2977. * M117: Set LCD Status Message
  2978. */
  2979. inline void gcode_M117() {
  2980. char* codepos = strchr_pointer + 5;
  2981. char* starpos = strchr(codepos, '*');
  2982. if (starpos) *starpos = '\0';
  2983. lcd_setstatus(codepos);
  2984. }
  2985. /**
  2986. * M119: Output endstop states to serial output
  2987. */
  2988. inline void gcode_M119() {
  2989. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2990. #if HAS_X_MIN
  2991. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2992. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2993. #endif
  2994. #if HAS_X_MAX
  2995. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2996. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2997. #endif
  2998. #if HAS_Y_MIN
  2999. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3000. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3001. #endif
  3002. #if HAS_Y_MAX
  3003. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3004. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3005. #endif
  3006. #if HAS_Z_MIN
  3007. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3008. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3009. #endif
  3010. #if HAS_Z_MAX
  3011. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3012. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3013. #endif
  3014. #if HAS_Z2_MAX
  3015. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3016. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3017. #endif
  3018. #if HAS_Z_PROBE
  3019. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3020. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3021. #endif
  3022. }
  3023. /**
  3024. * M120: Enable endstops
  3025. */
  3026. inline void gcode_M120() { enable_endstops(false); }
  3027. /**
  3028. * M121: Disable endstops
  3029. */
  3030. inline void gcode_M121() { enable_endstops(true); }
  3031. #ifdef BLINKM
  3032. /**
  3033. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3034. */
  3035. inline void gcode_M150() {
  3036. SendColors(
  3037. code_seen('R') ? (byte)code_value_short() : 0,
  3038. code_seen('U') ? (byte)code_value_short() : 0,
  3039. code_seen('B') ? (byte)code_value_short() : 0
  3040. );
  3041. }
  3042. #endif // BLINKM
  3043. /**
  3044. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3045. * T<extruder>
  3046. * D<millimeters>
  3047. */
  3048. inline void gcode_M200() {
  3049. int tmp_extruder = active_extruder;
  3050. if (code_seen('T')) {
  3051. tmp_extruder = code_value_short();
  3052. if (tmp_extruder >= EXTRUDERS) {
  3053. SERIAL_ECHO_START;
  3054. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3055. return;
  3056. }
  3057. }
  3058. if (code_seen('D')) {
  3059. float diameter = code_value();
  3060. // setting any extruder filament size disables volumetric on the assumption that
  3061. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3062. // for all extruders
  3063. volumetric_enabled = (diameter != 0.0);
  3064. if (volumetric_enabled) {
  3065. filament_size[tmp_extruder] = diameter;
  3066. // make sure all extruders have some sane value for the filament size
  3067. for (int i=0; i<EXTRUDERS; i++)
  3068. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3069. }
  3070. }
  3071. else {
  3072. //reserved for setting filament diameter via UFID or filament measuring device
  3073. return;
  3074. }
  3075. calculate_volumetric_multipliers();
  3076. }
  3077. /**
  3078. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3079. */
  3080. inline void gcode_M201() {
  3081. for (int8_t i=0; i < NUM_AXIS; i++) {
  3082. if (code_seen(axis_codes[i])) {
  3083. max_acceleration_units_per_sq_second[i] = code_value();
  3084. }
  3085. }
  3086. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3087. reset_acceleration_rates();
  3088. }
  3089. #if 0 // Not used for Sprinter/grbl gen6
  3090. inline void gcode_M202() {
  3091. for(int8_t i=0; i < NUM_AXIS; i++) {
  3092. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3093. }
  3094. }
  3095. #endif
  3096. /**
  3097. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3098. */
  3099. inline void gcode_M203() {
  3100. for (int8_t i=0; i < NUM_AXIS; i++) {
  3101. if (code_seen(axis_codes[i])) {
  3102. max_feedrate[i] = code_value();
  3103. }
  3104. }
  3105. }
  3106. /**
  3107. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3108. *
  3109. * P = Printing moves
  3110. * R = Retract only (no X, Y, Z) moves
  3111. * T = Travel (non printing) moves
  3112. *
  3113. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3114. */
  3115. inline void gcode_M204() {
  3116. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3117. acceleration = code_value();
  3118. travel_acceleration = acceleration;
  3119. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3120. SERIAL_EOL;
  3121. }
  3122. if (code_seen('P')) {
  3123. acceleration = code_value();
  3124. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3125. SERIAL_EOL;
  3126. }
  3127. if (code_seen('R')) {
  3128. retract_acceleration = code_value();
  3129. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3130. SERIAL_EOL;
  3131. }
  3132. if (code_seen('T')) {
  3133. travel_acceleration = code_value();
  3134. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3135. SERIAL_EOL;
  3136. }
  3137. }
  3138. /**
  3139. * M205: Set Advanced Settings
  3140. *
  3141. * S = Min Feed Rate (mm/s)
  3142. * T = Min Travel Feed Rate (mm/s)
  3143. * B = Min Segment Time (µs)
  3144. * X = Max XY Jerk (mm/s/s)
  3145. * Z = Max Z Jerk (mm/s/s)
  3146. * E = Max E Jerk (mm/s/s)
  3147. */
  3148. inline void gcode_M205() {
  3149. if (code_seen('S')) minimumfeedrate = code_value();
  3150. if (code_seen('T')) mintravelfeedrate = code_value();
  3151. if (code_seen('B')) minsegmenttime = code_value();
  3152. if (code_seen('X')) max_xy_jerk = code_value();
  3153. if (code_seen('Z')) max_z_jerk = code_value();
  3154. if (code_seen('E')) max_e_jerk = code_value();
  3155. }
  3156. /**
  3157. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3158. */
  3159. inline void gcode_M206() {
  3160. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3161. if (code_seen(axis_codes[i])) {
  3162. home_offset[i] = code_value();
  3163. }
  3164. }
  3165. #ifdef SCARA
  3166. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3167. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3168. #endif
  3169. }
  3170. #ifdef DELTA
  3171. /**
  3172. * M665: Set delta configurations
  3173. *
  3174. * L = diagonal rod
  3175. * R = delta radius
  3176. * S = segments per second
  3177. */
  3178. inline void gcode_M665() {
  3179. if (code_seen('L')) delta_diagonal_rod = code_value();
  3180. if (code_seen('R')) delta_radius = code_value();
  3181. if (code_seen('S')) delta_segments_per_second = code_value();
  3182. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3183. }
  3184. /**
  3185. * M666: Set delta endstop adjustment
  3186. */
  3187. inline void gcode_M666() {
  3188. for (int8_t i = 0; i < 3; i++) {
  3189. if (code_seen(axis_codes[i])) {
  3190. endstop_adj[i] = code_value();
  3191. }
  3192. }
  3193. }
  3194. #elif defined(Z_DUAL_ENDSTOPS)
  3195. /**
  3196. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3197. */
  3198. inline void gcode_M666() {
  3199. if (code_seen('Z')) z_endstop_adj = code_value();
  3200. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3201. SERIAL_EOL;
  3202. }
  3203. #endif // DELTA
  3204. #ifdef FWRETRACT
  3205. /**
  3206. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3207. */
  3208. inline void gcode_M207() {
  3209. if (code_seen('S')) retract_length = code_value();
  3210. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3211. if (code_seen('Z')) retract_zlift = code_value();
  3212. }
  3213. /**
  3214. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3215. */
  3216. inline void gcode_M208() {
  3217. if (code_seen('S')) retract_recover_length = code_value();
  3218. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3219. }
  3220. /**
  3221. * M209: Enable automatic retract (M209 S1)
  3222. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3223. */
  3224. inline void gcode_M209() {
  3225. if (code_seen('S')) {
  3226. int t = code_value_short();
  3227. switch(t) {
  3228. case 0:
  3229. autoretract_enabled = false;
  3230. break;
  3231. case 1:
  3232. autoretract_enabled = true;
  3233. break;
  3234. default:
  3235. SERIAL_ECHO_START;
  3236. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3237. SERIAL_ECHO(cmdbuffer[bufindr]);
  3238. SERIAL_ECHOLNPGM("\"");
  3239. return;
  3240. }
  3241. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3242. }
  3243. }
  3244. #endif // FWRETRACT
  3245. #if EXTRUDERS > 1
  3246. /**
  3247. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3248. */
  3249. inline void gcode_M218() {
  3250. if (setTargetedHotend(218)) return;
  3251. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3252. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3253. #ifdef DUAL_X_CARRIAGE
  3254. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3255. #endif
  3256. SERIAL_ECHO_START;
  3257. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3258. for (int e = 0; e < EXTRUDERS; e++) {
  3259. SERIAL_CHAR(' ');
  3260. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3261. SERIAL_CHAR(',');
  3262. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3263. #ifdef DUAL_X_CARRIAGE
  3264. SERIAL_CHAR(',');
  3265. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3266. #endif
  3267. }
  3268. SERIAL_EOL;
  3269. }
  3270. #endif // EXTRUDERS > 1
  3271. /**
  3272. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3273. */
  3274. inline void gcode_M220() {
  3275. if (code_seen('S')) feedmultiply = code_value();
  3276. }
  3277. /**
  3278. * M221: Set extrusion percentage (M221 T0 S95)
  3279. */
  3280. inline void gcode_M221() {
  3281. if (code_seen('S')) {
  3282. int sval = code_value();
  3283. if (code_seen('T')) {
  3284. if (setTargetedHotend(221)) return;
  3285. extruder_multiply[target_extruder] = sval;
  3286. }
  3287. else {
  3288. extruder_multiply[active_extruder] = sval;
  3289. }
  3290. }
  3291. }
  3292. /**
  3293. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3294. */
  3295. inline void gcode_M226() {
  3296. if (code_seen('P')) {
  3297. int pin_number = code_value();
  3298. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3299. if (pin_state >= -1 && pin_state <= 1) {
  3300. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3301. if (sensitive_pins[i] == pin_number) {
  3302. pin_number = -1;
  3303. break;
  3304. }
  3305. }
  3306. if (pin_number > -1) {
  3307. int target = LOW;
  3308. st_synchronize();
  3309. pinMode(pin_number, INPUT);
  3310. switch(pin_state){
  3311. case 1:
  3312. target = HIGH;
  3313. break;
  3314. case 0:
  3315. target = LOW;
  3316. break;
  3317. case -1:
  3318. target = !digitalRead(pin_number);
  3319. break;
  3320. }
  3321. while(digitalRead(pin_number) != target) {
  3322. manage_heater();
  3323. manage_inactivity();
  3324. lcd_update();
  3325. }
  3326. } // pin_number > -1
  3327. } // pin_state -1 0 1
  3328. } // code_seen('P')
  3329. }
  3330. #if NUM_SERVOS > 0
  3331. /**
  3332. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3333. */
  3334. inline void gcode_M280() {
  3335. int servo_index = code_seen('P') ? code_value() : -1;
  3336. int servo_position = 0;
  3337. if (code_seen('S')) {
  3338. servo_position = code_value();
  3339. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3340. #if SERVO_LEVELING
  3341. servos[servo_index].attach(0);
  3342. #endif
  3343. servos[servo_index].write(servo_position);
  3344. #if SERVO_LEVELING
  3345. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3346. servos[servo_index].detach();
  3347. #endif
  3348. }
  3349. else {
  3350. SERIAL_ECHO_START;
  3351. SERIAL_ECHO("Servo ");
  3352. SERIAL_ECHO(servo_index);
  3353. SERIAL_ECHOLN(" out of range");
  3354. }
  3355. }
  3356. else if (servo_index >= 0) {
  3357. SERIAL_PROTOCOL(MSG_OK);
  3358. SERIAL_PROTOCOL(" Servo ");
  3359. SERIAL_PROTOCOL(servo_index);
  3360. SERIAL_PROTOCOL(": ");
  3361. SERIAL_PROTOCOL(servos[servo_index].read());
  3362. SERIAL_EOL;
  3363. }
  3364. }
  3365. #endif // NUM_SERVOS > 0
  3366. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3367. /**
  3368. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3369. */
  3370. inline void gcode_M300() {
  3371. int beepS = code_seen('S') ? code_value() : 110;
  3372. int beepP = code_seen('P') ? code_value() : 1000;
  3373. if (beepS > 0) {
  3374. #if BEEPER > 0
  3375. tone(BEEPER, beepS);
  3376. delay(beepP);
  3377. noTone(BEEPER);
  3378. #elif defined(ULTRALCD)
  3379. lcd_buzz(beepS, beepP);
  3380. #elif defined(LCD_USE_I2C_BUZZER)
  3381. lcd_buzz(beepP, beepS);
  3382. #endif
  3383. }
  3384. else {
  3385. delay(beepP);
  3386. }
  3387. }
  3388. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3389. #ifdef PIDTEMP
  3390. /**
  3391. * M301: Set PID parameters P I D (and optionally C)
  3392. */
  3393. inline void gcode_M301() {
  3394. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3395. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3396. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3397. if (e < EXTRUDERS) { // catch bad input value
  3398. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3399. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3400. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3401. #ifdef PID_ADD_EXTRUSION_RATE
  3402. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3403. #endif
  3404. updatePID();
  3405. SERIAL_PROTOCOL(MSG_OK);
  3406. #ifdef PID_PARAMS_PER_EXTRUDER
  3407. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3408. SERIAL_PROTOCOL(e);
  3409. #endif // PID_PARAMS_PER_EXTRUDER
  3410. SERIAL_PROTOCOL(" p:");
  3411. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3412. SERIAL_PROTOCOL(" i:");
  3413. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3414. SERIAL_PROTOCOL(" d:");
  3415. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3416. #ifdef PID_ADD_EXTRUSION_RATE
  3417. SERIAL_PROTOCOL(" c:");
  3418. //Kc does not have scaling applied above, or in resetting defaults
  3419. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3420. #endif
  3421. SERIAL_EOL;
  3422. }
  3423. else {
  3424. SERIAL_ECHO_START;
  3425. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3426. }
  3427. }
  3428. #endif // PIDTEMP
  3429. #ifdef PIDTEMPBED
  3430. inline void gcode_M304() {
  3431. if (code_seen('P')) bedKp = code_value();
  3432. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3433. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3434. updatePID();
  3435. SERIAL_PROTOCOL(MSG_OK);
  3436. SERIAL_PROTOCOL(" p:");
  3437. SERIAL_PROTOCOL(bedKp);
  3438. SERIAL_PROTOCOL(" i:");
  3439. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3440. SERIAL_PROTOCOL(" d:");
  3441. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3442. SERIAL_EOL;
  3443. }
  3444. #endif // PIDTEMPBED
  3445. #if defined(CHDK) || HAS_PHOTOGRAPH
  3446. /**
  3447. * M240: Trigger a camera by emulating a Canon RC-1
  3448. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3449. */
  3450. inline void gcode_M240() {
  3451. #ifdef CHDK
  3452. OUT_WRITE(CHDK, HIGH);
  3453. chdkHigh = millis();
  3454. chdkActive = true;
  3455. #elif HAS_PHOTOGRAPH
  3456. const uint8_t NUM_PULSES = 16;
  3457. const float PULSE_LENGTH = 0.01524;
  3458. for (int i = 0; i < NUM_PULSES; i++) {
  3459. WRITE(PHOTOGRAPH_PIN, HIGH);
  3460. _delay_ms(PULSE_LENGTH);
  3461. WRITE(PHOTOGRAPH_PIN, LOW);
  3462. _delay_ms(PULSE_LENGTH);
  3463. }
  3464. delay(7.33);
  3465. for (int i = 0; i < NUM_PULSES; i++) {
  3466. WRITE(PHOTOGRAPH_PIN, HIGH);
  3467. _delay_ms(PULSE_LENGTH);
  3468. WRITE(PHOTOGRAPH_PIN, LOW);
  3469. _delay_ms(PULSE_LENGTH);
  3470. }
  3471. #endif // !CHDK && HAS_PHOTOGRAPH
  3472. }
  3473. #endif // CHDK || PHOTOGRAPH_PIN
  3474. #ifdef HAS_LCD_CONTRAST
  3475. /**
  3476. * M250: Read and optionally set the LCD contrast
  3477. */
  3478. inline void gcode_M250() {
  3479. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3480. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3481. SERIAL_PROTOCOL(lcd_contrast);
  3482. SERIAL_EOL;
  3483. }
  3484. #endif // HAS_LCD_CONTRAST
  3485. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3486. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3487. /**
  3488. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3489. */
  3490. inline void gcode_M302() {
  3491. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3492. }
  3493. #endif // PREVENT_DANGEROUS_EXTRUDE
  3494. /**
  3495. * M303: PID relay autotune
  3496. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3497. * E<extruder> (-1 for the bed)
  3498. * C<cycles>
  3499. */
  3500. inline void gcode_M303() {
  3501. int e = code_seen('E') ? code_value_short() : 0;
  3502. int c = code_seen('C') ? code_value_short() : 5;
  3503. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3504. PID_autotune(temp, e, c);
  3505. }
  3506. #ifdef SCARA
  3507. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3508. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3509. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3510. if (IsRunning()) {
  3511. //get_coordinates(); // For X Y Z E F
  3512. delta[X_AXIS] = delta_x;
  3513. delta[Y_AXIS] = delta_y;
  3514. calculate_SCARA_forward_Transform(delta);
  3515. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3516. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3517. prepare_move();
  3518. //ClearToSend();
  3519. return true;
  3520. }
  3521. return false;
  3522. }
  3523. /**
  3524. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3525. */
  3526. inline bool gcode_M360() {
  3527. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3528. return SCARA_move_to_cal(0, 120);
  3529. }
  3530. /**
  3531. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3532. */
  3533. inline bool gcode_M361() {
  3534. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3535. return SCARA_move_to_cal(90, 130);
  3536. }
  3537. /**
  3538. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3539. */
  3540. inline bool gcode_M362() {
  3541. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3542. return SCARA_move_to_cal(60, 180);
  3543. }
  3544. /**
  3545. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3546. */
  3547. inline bool gcode_M363() {
  3548. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3549. return SCARA_move_to_cal(50, 90);
  3550. }
  3551. /**
  3552. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3553. */
  3554. inline bool gcode_M364() {
  3555. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3556. return SCARA_move_to_cal(45, 135);
  3557. }
  3558. /**
  3559. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3560. */
  3561. inline void gcode_M365() {
  3562. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3563. if (code_seen(axis_codes[i])) {
  3564. axis_scaling[i] = code_value();
  3565. }
  3566. }
  3567. }
  3568. #endif // SCARA
  3569. #ifdef EXT_SOLENOID
  3570. void enable_solenoid(uint8_t num) {
  3571. switch(num) {
  3572. case 0:
  3573. OUT_WRITE(SOL0_PIN, HIGH);
  3574. break;
  3575. #if HAS_SOLENOID_1
  3576. case 1:
  3577. OUT_WRITE(SOL1_PIN, HIGH);
  3578. break;
  3579. #endif
  3580. #if HAS_SOLENOID_2
  3581. case 2:
  3582. OUT_WRITE(SOL2_PIN, HIGH);
  3583. break;
  3584. #endif
  3585. #if HAS_SOLENOID_3
  3586. case 3:
  3587. OUT_WRITE(SOL3_PIN, HIGH);
  3588. break;
  3589. #endif
  3590. default:
  3591. SERIAL_ECHO_START;
  3592. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3593. break;
  3594. }
  3595. }
  3596. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3597. void disable_all_solenoids() {
  3598. OUT_WRITE(SOL0_PIN, LOW);
  3599. OUT_WRITE(SOL1_PIN, LOW);
  3600. OUT_WRITE(SOL2_PIN, LOW);
  3601. OUT_WRITE(SOL3_PIN, LOW);
  3602. }
  3603. /**
  3604. * M380: Enable solenoid on the active extruder
  3605. */
  3606. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3607. /**
  3608. * M381: Disable all solenoids
  3609. */
  3610. inline void gcode_M381() { disable_all_solenoids(); }
  3611. #endif // EXT_SOLENOID
  3612. /**
  3613. * M400: Finish all moves
  3614. */
  3615. inline void gcode_M400() { st_synchronize(); }
  3616. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3617. /**
  3618. * M401: Engage Z Servo endstop if available
  3619. */
  3620. inline void gcode_M401() { deploy_z_probe(); }
  3621. /**
  3622. * M402: Retract Z Servo endstop if enabled
  3623. */
  3624. inline void gcode_M402() { stow_z_probe(); }
  3625. #endif
  3626. #ifdef FILAMENT_SENSOR
  3627. /**
  3628. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3629. */
  3630. inline void gcode_M404() {
  3631. #if HAS_FILWIDTH
  3632. if (code_seen('W')) {
  3633. filament_width_nominal = code_value();
  3634. }
  3635. else {
  3636. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3637. SERIAL_PROTOCOLLN(filament_width_nominal);
  3638. }
  3639. #endif
  3640. }
  3641. /**
  3642. * M405: Turn on filament sensor for control
  3643. */
  3644. inline void gcode_M405() {
  3645. if (code_seen('D')) meas_delay_cm = code_value();
  3646. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3647. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3648. int temp_ratio = widthFil_to_size_ratio();
  3649. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3650. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3651. delay_index1 = delay_index2 = 0;
  3652. }
  3653. filament_sensor = true;
  3654. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3655. //SERIAL_PROTOCOL(filament_width_meas);
  3656. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3657. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3658. }
  3659. /**
  3660. * M406: Turn off filament sensor for control
  3661. */
  3662. inline void gcode_M406() { filament_sensor = false; }
  3663. /**
  3664. * M407: Get measured filament diameter on serial output
  3665. */
  3666. inline void gcode_M407() {
  3667. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3668. SERIAL_PROTOCOLLN(filament_width_meas);
  3669. }
  3670. #endif // FILAMENT_SENSOR
  3671. /**
  3672. * M500: Store settings in EEPROM
  3673. */
  3674. inline void gcode_M500() {
  3675. Config_StoreSettings();
  3676. }
  3677. /**
  3678. * M501: Read settings from EEPROM
  3679. */
  3680. inline void gcode_M501() {
  3681. Config_RetrieveSettings();
  3682. }
  3683. /**
  3684. * M502: Revert to default settings
  3685. */
  3686. inline void gcode_M502() {
  3687. Config_ResetDefault();
  3688. }
  3689. /**
  3690. * M503: print settings currently in memory
  3691. */
  3692. inline void gcode_M503() {
  3693. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3694. }
  3695. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3696. /**
  3697. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3698. */
  3699. inline void gcode_M540() {
  3700. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3701. }
  3702. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3703. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3704. inline void gcode_SET_Z_PROBE_OFFSET() {
  3705. float value;
  3706. if (code_seen('Z')) {
  3707. value = code_value();
  3708. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3709. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3710. SERIAL_ECHO_START;
  3711. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3712. SERIAL_EOL;
  3713. }
  3714. else {
  3715. SERIAL_ECHO_START;
  3716. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3717. SERIAL_ECHOPGM(MSG_Z_MIN);
  3718. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3719. SERIAL_ECHOPGM(MSG_Z_MAX);
  3720. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3721. SERIAL_EOL;
  3722. }
  3723. }
  3724. else {
  3725. SERIAL_ECHO_START;
  3726. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3727. SERIAL_ECHO(-zprobe_zoffset);
  3728. SERIAL_EOL;
  3729. }
  3730. }
  3731. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3732. #ifdef FILAMENTCHANGEENABLE
  3733. /**
  3734. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3735. */
  3736. inline void gcode_M600() {
  3737. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3738. for (int i=0; i<NUM_AXIS; i++)
  3739. target[i] = lastpos[i] = current_position[i];
  3740. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3741. #ifdef DELTA
  3742. #define RUNPLAN calculate_delta(target); BASICPLAN
  3743. #else
  3744. #define RUNPLAN BASICPLAN
  3745. #endif
  3746. //retract by E
  3747. if (code_seen('E')) target[E_AXIS] += code_value();
  3748. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3749. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3750. #endif
  3751. RUNPLAN;
  3752. //lift Z
  3753. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3754. #ifdef FILAMENTCHANGE_ZADD
  3755. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3756. #endif
  3757. RUNPLAN;
  3758. //move xy
  3759. if (code_seen('X')) target[X_AXIS] = code_value();
  3760. #ifdef FILAMENTCHANGE_XPOS
  3761. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3762. #endif
  3763. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3764. #ifdef FILAMENTCHANGE_YPOS
  3765. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3766. #endif
  3767. RUNPLAN;
  3768. if (code_seen('L')) target[E_AXIS] += code_value();
  3769. #ifdef FILAMENTCHANGE_FINALRETRACT
  3770. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3771. #endif
  3772. RUNPLAN;
  3773. //finish moves
  3774. st_synchronize();
  3775. //disable extruder steppers so filament can be removed
  3776. disable_e0();
  3777. disable_e1();
  3778. disable_e2();
  3779. disable_e3();
  3780. delay(100);
  3781. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3782. uint8_t cnt = 0;
  3783. while (!lcd_clicked()) {
  3784. cnt++;
  3785. manage_heater();
  3786. manage_inactivity(true);
  3787. lcd_update();
  3788. if (cnt == 0) {
  3789. #if BEEPER > 0
  3790. OUT_WRITE(BEEPER,HIGH);
  3791. delay(3);
  3792. WRITE(BEEPER,LOW);
  3793. delay(3);
  3794. #else
  3795. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3796. lcd_buzz(1000/6, 100);
  3797. #else
  3798. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3799. #endif
  3800. #endif
  3801. }
  3802. } // while(!lcd_clicked)
  3803. //return to normal
  3804. if (code_seen('L')) target[E_AXIS] -= code_value();
  3805. #ifdef FILAMENTCHANGE_FINALRETRACT
  3806. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3807. #endif
  3808. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3809. plan_set_e_position(current_position[E_AXIS]);
  3810. RUNPLAN; //should do nothing
  3811. lcd_reset_alert_level();
  3812. #ifdef DELTA
  3813. calculate_delta(lastpos);
  3814. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3815. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3816. #else
  3817. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3818. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3819. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3820. #endif
  3821. #ifdef FILAMENT_RUNOUT_SENSOR
  3822. filrunoutEnqued = false;
  3823. #endif
  3824. }
  3825. #endif // FILAMENTCHANGEENABLE
  3826. #ifdef DUAL_X_CARRIAGE
  3827. /**
  3828. * M605: Set dual x-carriage movement mode
  3829. *
  3830. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3831. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3832. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3833. * millimeters x-offset and an optional differential hotend temperature of
  3834. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3835. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3836. *
  3837. * Note: the X axis should be homed after changing dual x-carriage mode.
  3838. */
  3839. inline void gcode_M605() {
  3840. st_synchronize();
  3841. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3842. switch(dual_x_carriage_mode) {
  3843. case DXC_DUPLICATION_MODE:
  3844. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3845. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3846. SERIAL_ECHO_START;
  3847. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3848. SERIAL_CHAR(' ');
  3849. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3850. SERIAL_CHAR(',');
  3851. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3852. SERIAL_CHAR(' ');
  3853. SERIAL_ECHO(duplicate_extruder_x_offset);
  3854. SERIAL_CHAR(',');
  3855. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3856. break;
  3857. case DXC_FULL_CONTROL_MODE:
  3858. case DXC_AUTO_PARK_MODE:
  3859. break;
  3860. default:
  3861. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3862. break;
  3863. }
  3864. active_extruder_parked = false;
  3865. extruder_duplication_enabled = false;
  3866. delayed_move_time = 0;
  3867. }
  3868. #endif // DUAL_X_CARRIAGE
  3869. /**
  3870. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3871. */
  3872. inline void gcode_M907() {
  3873. #if HAS_DIGIPOTSS
  3874. for (int i=0;i<NUM_AXIS;i++)
  3875. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3876. if (code_seen('B')) digipot_current(4, code_value());
  3877. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3878. #endif
  3879. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3880. if (code_seen('X')) digipot_current(0, code_value());
  3881. #endif
  3882. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3883. if (code_seen('Z')) digipot_current(1, code_value());
  3884. #endif
  3885. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3886. if (code_seen('E')) digipot_current(2, code_value());
  3887. #endif
  3888. #ifdef DIGIPOT_I2C
  3889. // this one uses actual amps in floating point
  3890. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3891. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3892. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3893. #endif
  3894. }
  3895. #if HAS_DIGIPOTSS
  3896. /**
  3897. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3898. */
  3899. inline void gcode_M908() {
  3900. digitalPotWrite(
  3901. code_seen('P') ? code_value() : 0,
  3902. code_seen('S') ? code_value() : 0
  3903. );
  3904. }
  3905. #endif // HAS_DIGIPOTSS
  3906. #if HAS_MICROSTEPS
  3907. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3908. inline void gcode_M350() {
  3909. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3910. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3911. if(code_seen('B')) microstep_mode(4,code_value());
  3912. microstep_readings();
  3913. }
  3914. /**
  3915. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3916. * S# determines MS1 or MS2, X# sets the pin high/low.
  3917. */
  3918. inline void gcode_M351() {
  3919. if (code_seen('S')) switch(code_value_short()) {
  3920. case 1:
  3921. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3922. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3923. break;
  3924. case 2:
  3925. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3926. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3927. break;
  3928. }
  3929. microstep_readings();
  3930. }
  3931. #endif // HAS_MICROSTEPS
  3932. /**
  3933. * M999: Restart after being stopped
  3934. */
  3935. inline void gcode_M999() {
  3936. Running = true;
  3937. lcd_reset_alert_level();
  3938. gcode_LastN = Stopped_gcode_LastN;
  3939. FlushSerialRequestResend();
  3940. }
  3941. inline void gcode_T() {
  3942. int tmp_extruder = code_value();
  3943. if (tmp_extruder >= EXTRUDERS) {
  3944. SERIAL_ECHO_START;
  3945. SERIAL_CHAR('T');
  3946. SERIAL_ECHO(tmp_extruder);
  3947. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3948. }
  3949. else {
  3950. target_extruder = tmp_extruder;
  3951. #if EXTRUDERS > 1
  3952. bool make_move = false;
  3953. #endif
  3954. if (code_seen('F')) {
  3955. #if EXTRUDERS > 1
  3956. make_move = true;
  3957. #endif
  3958. next_feedrate = code_value();
  3959. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3960. }
  3961. #if EXTRUDERS > 1
  3962. if (tmp_extruder != active_extruder) {
  3963. // Save current position to return to after applying extruder offset
  3964. set_destination_to_current();
  3965. #ifdef DUAL_X_CARRIAGE
  3966. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3967. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3968. // Park old head: 1) raise 2) move to park position 3) lower
  3969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3970. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3971. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3972. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3973. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3974. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3975. st_synchronize();
  3976. }
  3977. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3978. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3979. extruder_offset[Y_AXIS][active_extruder] +
  3980. extruder_offset[Y_AXIS][tmp_extruder];
  3981. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3982. extruder_offset[Z_AXIS][active_extruder] +
  3983. extruder_offset[Z_AXIS][tmp_extruder];
  3984. active_extruder = tmp_extruder;
  3985. // This function resets the max/min values - the current position may be overwritten below.
  3986. axis_is_at_home(X_AXIS);
  3987. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3988. current_position[X_AXIS] = inactive_extruder_x_pos;
  3989. inactive_extruder_x_pos = destination[X_AXIS];
  3990. }
  3991. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3992. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3993. if (active_extruder == 0 || active_extruder_parked)
  3994. current_position[X_AXIS] = inactive_extruder_x_pos;
  3995. else
  3996. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3997. inactive_extruder_x_pos = destination[X_AXIS];
  3998. extruder_duplication_enabled = false;
  3999. }
  4000. else {
  4001. // record raised toolhead position for use by unpark
  4002. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4003. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4004. active_extruder_parked = true;
  4005. delayed_move_time = 0;
  4006. }
  4007. #else // !DUAL_X_CARRIAGE
  4008. // Offset extruder (only by XY)
  4009. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4010. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4011. // Set the new active extruder and position
  4012. active_extruder = tmp_extruder;
  4013. #endif // !DUAL_X_CARRIAGE
  4014. #ifdef DELTA
  4015. sync_plan_position_delta();
  4016. #else
  4017. sync_plan_position();
  4018. #endif
  4019. // Move to the old position if 'F' was in the parameters
  4020. if (make_move && IsRunning()) prepare_move();
  4021. }
  4022. #ifdef EXT_SOLENOID
  4023. st_synchronize();
  4024. disable_all_solenoids();
  4025. enable_solenoid_on_active_extruder();
  4026. #endif // EXT_SOLENOID
  4027. #endif // EXTRUDERS > 1
  4028. SERIAL_ECHO_START;
  4029. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4030. SERIAL_PROTOCOLLN((int)active_extruder);
  4031. }
  4032. }
  4033. /**
  4034. * Process Commands and dispatch them to handlers
  4035. * This is called from the main loop()
  4036. */
  4037. void process_commands() {
  4038. if (code_seen('G')) {
  4039. int gCode = code_value_short();
  4040. switch(gCode) {
  4041. // G0, G1
  4042. case 0:
  4043. case 1:
  4044. gcode_G0_G1();
  4045. break;
  4046. // G2, G3
  4047. #ifndef SCARA
  4048. case 2: // G2 - CW ARC
  4049. case 3: // G3 - CCW ARC
  4050. gcode_G2_G3(gCode == 2);
  4051. break;
  4052. #endif
  4053. // G4 Dwell
  4054. case 4:
  4055. gcode_G4();
  4056. break;
  4057. #ifdef FWRETRACT
  4058. case 10: // G10: retract
  4059. case 11: // G11: retract_recover
  4060. gcode_G10_G11(gCode == 10);
  4061. break;
  4062. #endif //FWRETRACT
  4063. case 28: // G28: Home all axes, one at a time
  4064. gcode_G28();
  4065. break;
  4066. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4067. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4068. gcode_G29();
  4069. break;
  4070. #endif
  4071. #ifdef ENABLE_AUTO_BED_LEVELING
  4072. #ifndef Z_PROBE_SLED
  4073. case 30: // G30 Single Z Probe
  4074. gcode_G30();
  4075. break;
  4076. #else // Z_PROBE_SLED
  4077. case 31: // G31: dock the sled
  4078. case 32: // G32: undock the sled
  4079. dock_sled(gCode == 31);
  4080. break;
  4081. #endif // Z_PROBE_SLED
  4082. #endif // ENABLE_AUTO_BED_LEVELING
  4083. case 90: // G90
  4084. relative_mode = false;
  4085. break;
  4086. case 91: // G91
  4087. relative_mode = true;
  4088. break;
  4089. case 92: // G92
  4090. gcode_G92();
  4091. break;
  4092. }
  4093. }
  4094. else if (code_seen('M')) {
  4095. switch(code_value_short()) {
  4096. #ifdef ULTIPANEL
  4097. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4098. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4099. gcode_M0_M1();
  4100. break;
  4101. #endif // ULTIPANEL
  4102. case 17:
  4103. gcode_M17();
  4104. break;
  4105. #ifdef SDSUPPORT
  4106. case 20: // M20 - list SD card
  4107. gcode_M20(); break;
  4108. case 21: // M21 - init SD card
  4109. gcode_M21(); break;
  4110. case 22: //M22 - release SD card
  4111. gcode_M22(); break;
  4112. case 23: //M23 - Select file
  4113. gcode_M23(); break;
  4114. case 24: //M24 - Start SD print
  4115. gcode_M24(); break;
  4116. case 25: //M25 - Pause SD print
  4117. gcode_M25(); break;
  4118. case 26: //M26 - Set SD index
  4119. gcode_M26(); break;
  4120. case 27: //M27 - Get SD status
  4121. gcode_M27(); break;
  4122. case 28: //M28 - Start SD write
  4123. gcode_M28(); break;
  4124. case 29: //M29 - Stop SD write
  4125. gcode_M29(); break;
  4126. case 30: //M30 <filename> Delete File
  4127. gcode_M30(); break;
  4128. case 32: //M32 - Select file and start SD print
  4129. gcode_M32(); break;
  4130. case 928: //M928 - Start SD write
  4131. gcode_M928(); break;
  4132. #endif //SDSUPPORT
  4133. case 31: //M31 take time since the start of the SD print or an M109 command
  4134. gcode_M31();
  4135. break;
  4136. case 42: //M42 -Change pin status via gcode
  4137. gcode_M42();
  4138. break;
  4139. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4140. case 48: // M48 Z-Probe repeatability
  4141. gcode_M48();
  4142. break;
  4143. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4144. case 104: // M104
  4145. gcode_M104();
  4146. break;
  4147. case 112: // M112 Emergency Stop
  4148. gcode_M112();
  4149. break;
  4150. case 140: // M140 Set bed temp
  4151. gcode_M140();
  4152. break;
  4153. case 105: // M105 Read current temperature
  4154. gcode_M105();
  4155. return;
  4156. break;
  4157. case 109: // M109 Wait for temperature
  4158. gcode_M109();
  4159. break;
  4160. #if HAS_TEMP_BED
  4161. case 190: // M190 - Wait for bed heater to reach target.
  4162. gcode_M190();
  4163. break;
  4164. #endif // HAS_TEMP_BED
  4165. #if HAS_FAN
  4166. case 106: //M106 Fan On
  4167. gcode_M106();
  4168. break;
  4169. case 107: //M107 Fan Off
  4170. gcode_M107();
  4171. break;
  4172. #endif // HAS_FAN
  4173. #ifdef BARICUDA
  4174. // PWM for HEATER_1_PIN
  4175. #if HAS_HEATER_1
  4176. case 126: // M126 valve open
  4177. gcode_M126();
  4178. break;
  4179. case 127: // M127 valve closed
  4180. gcode_M127();
  4181. break;
  4182. #endif // HAS_HEATER_1
  4183. // PWM for HEATER_2_PIN
  4184. #if HAS_HEATER_2
  4185. case 128: // M128 valve open
  4186. gcode_M128();
  4187. break;
  4188. case 129: // M129 valve closed
  4189. gcode_M129();
  4190. break;
  4191. #endif // HAS_HEATER_2
  4192. #endif // BARICUDA
  4193. #if HAS_POWER_SWITCH
  4194. case 80: // M80 - Turn on Power Supply
  4195. gcode_M80();
  4196. break;
  4197. #endif // HAS_POWER_SWITCH
  4198. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4199. gcode_M81();
  4200. break;
  4201. case 82:
  4202. gcode_M82();
  4203. break;
  4204. case 83:
  4205. gcode_M83();
  4206. break;
  4207. case 18: //compatibility
  4208. case 84: // M84
  4209. gcode_M18_M84();
  4210. break;
  4211. case 85: // M85
  4212. gcode_M85();
  4213. break;
  4214. case 92: // M92
  4215. gcode_M92();
  4216. break;
  4217. case 115: // M115
  4218. gcode_M115();
  4219. break;
  4220. case 117: // M117 display message
  4221. gcode_M117();
  4222. break;
  4223. case 114: // M114
  4224. gcode_M114();
  4225. break;
  4226. case 120: // M120
  4227. gcode_M120();
  4228. break;
  4229. case 121: // M121
  4230. gcode_M121();
  4231. break;
  4232. case 119: // M119
  4233. gcode_M119();
  4234. break;
  4235. //TODO: update for all axis, use for loop
  4236. #ifdef BLINKM
  4237. case 150: // M150
  4238. gcode_M150();
  4239. break;
  4240. #endif //BLINKM
  4241. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4242. gcode_M200();
  4243. break;
  4244. case 201: // M201
  4245. gcode_M201();
  4246. break;
  4247. #if 0 // Not used for Sprinter/grbl gen6
  4248. case 202: // M202
  4249. gcode_M202();
  4250. break;
  4251. #endif
  4252. case 203: // M203 max feedrate mm/sec
  4253. gcode_M203();
  4254. break;
  4255. case 204: // M204 acclereration S normal moves T filmanent only moves
  4256. gcode_M204();
  4257. break;
  4258. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4259. gcode_M205();
  4260. break;
  4261. case 206: // M206 additional homing offset
  4262. gcode_M206();
  4263. break;
  4264. #ifdef DELTA
  4265. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4266. gcode_M665();
  4267. break;
  4268. #endif
  4269. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4270. case 666: // M666 set delta / dual endstop adjustment
  4271. gcode_M666();
  4272. break;
  4273. #endif
  4274. #ifdef FWRETRACT
  4275. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4276. gcode_M207();
  4277. break;
  4278. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4279. gcode_M208();
  4280. break;
  4281. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4282. gcode_M209();
  4283. break;
  4284. #endif // FWRETRACT
  4285. #if EXTRUDERS > 1
  4286. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4287. gcode_M218();
  4288. break;
  4289. #endif
  4290. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4291. gcode_M220();
  4292. break;
  4293. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4294. gcode_M221();
  4295. break;
  4296. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4297. gcode_M226();
  4298. break;
  4299. #if NUM_SERVOS > 0
  4300. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4301. gcode_M280();
  4302. break;
  4303. #endif // NUM_SERVOS > 0
  4304. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4305. case 300: // M300 - Play beep tone
  4306. gcode_M300();
  4307. break;
  4308. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4309. #ifdef PIDTEMP
  4310. case 301: // M301
  4311. gcode_M301();
  4312. break;
  4313. #endif // PIDTEMP
  4314. #ifdef PIDTEMPBED
  4315. case 304: // M304
  4316. gcode_M304();
  4317. break;
  4318. #endif // PIDTEMPBED
  4319. #if defined(CHDK) || HAS_PHOTOGRAPH
  4320. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4321. gcode_M240();
  4322. break;
  4323. #endif // CHDK || PHOTOGRAPH_PIN
  4324. #ifdef HAS_LCD_CONTRAST
  4325. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4326. gcode_M250();
  4327. break;
  4328. #endif // HAS_LCD_CONTRAST
  4329. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4330. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4331. gcode_M302();
  4332. break;
  4333. #endif // PREVENT_DANGEROUS_EXTRUDE
  4334. case 303: // M303 PID autotune
  4335. gcode_M303();
  4336. break;
  4337. #ifdef SCARA
  4338. case 360: // M360 SCARA Theta pos1
  4339. if (gcode_M360()) return;
  4340. break;
  4341. case 361: // M361 SCARA Theta pos2
  4342. if (gcode_M361()) return;
  4343. break;
  4344. case 362: // M362 SCARA Psi pos1
  4345. if (gcode_M362()) return;
  4346. break;
  4347. case 363: // M363 SCARA Psi pos2
  4348. if (gcode_M363()) return;
  4349. break;
  4350. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4351. if (gcode_M364()) return;
  4352. break;
  4353. case 365: // M365 Set SCARA scaling for X Y Z
  4354. gcode_M365();
  4355. break;
  4356. #endif // SCARA
  4357. case 400: // M400 finish all moves
  4358. gcode_M400();
  4359. break;
  4360. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4361. case 401:
  4362. gcode_M401();
  4363. break;
  4364. case 402:
  4365. gcode_M402();
  4366. break;
  4367. #endif
  4368. #ifdef FILAMENT_SENSOR
  4369. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4370. gcode_M404();
  4371. break;
  4372. case 405: //M405 Turn on filament sensor for control
  4373. gcode_M405();
  4374. break;
  4375. case 406: //M406 Turn off filament sensor for control
  4376. gcode_M406();
  4377. break;
  4378. case 407: //M407 Display measured filament diameter
  4379. gcode_M407();
  4380. break;
  4381. #endif // FILAMENT_SENSOR
  4382. case 500: // M500 Store settings in EEPROM
  4383. gcode_M500();
  4384. break;
  4385. case 501: // M501 Read settings from EEPROM
  4386. gcode_M501();
  4387. break;
  4388. case 502: // M502 Revert to default settings
  4389. gcode_M502();
  4390. break;
  4391. case 503: // M503 print settings currently in memory
  4392. gcode_M503();
  4393. break;
  4394. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4395. case 540:
  4396. gcode_M540();
  4397. break;
  4398. #endif
  4399. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4400. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4401. gcode_SET_Z_PROBE_OFFSET();
  4402. break;
  4403. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4404. #ifdef FILAMENTCHANGEENABLE
  4405. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4406. gcode_M600();
  4407. break;
  4408. #endif // FILAMENTCHANGEENABLE
  4409. #ifdef DUAL_X_CARRIAGE
  4410. case 605:
  4411. gcode_M605();
  4412. break;
  4413. #endif // DUAL_X_CARRIAGE
  4414. case 907: // M907 Set digital trimpot motor current using axis codes.
  4415. gcode_M907();
  4416. break;
  4417. #if HAS_DIGIPOTSS
  4418. case 908: // M908 Control digital trimpot directly.
  4419. gcode_M908();
  4420. break;
  4421. #endif // HAS_DIGIPOTSS
  4422. #if HAS_MICROSTEPS
  4423. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4424. gcode_M350();
  4425. break;
  4426. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4427. gcode_M351();
  4428. break;
  4429. #endif // HAS_MICROSTEPS
  4430. case 999: // M999: Restart after being Stopped
  4431. gcode_M999();
  4432. break;
  4433. }
  4434. }
  4435. else if (code_seen('T')) {
  4436. gcode_T();
  4437. }
  4438. else {
  4439. SERIAL_ECHO_START;
  4440. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4441. SERIAL_ECHO(cmdbuffer[bufindr]);
  4442. SERIAL_ECHOLNPGM("\"");
  4443. }
  4444. ClearToSend();
  4445. }
  4446. void FlushSerialRequestResend() {
  4447. //char cmdbuffer[bufindr][100]="Resend:";
  4448. MYSERIAL.flush();
  4449. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4450. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4451. ClearToSend();
  4452. }
  4453. void ClearToSend() {
  4454. refresh_cmd_timeout();
  4455. #ifdef SDSUPPORT
  4456. if (fromsd[bufindr]) return;
  4457. #endif
  4458. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4459. }
  4460. void get_coordinates() {
  4461. for (int i = 0; i < NUM_AXIS; i++) {
  4462. if (code_seen(axis_codes[i]))
  4463. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4464. else
  4465. destination[i] = current_position[i];
  4466. }
  4467. if (code_seen('F')) {
  4468. next_feedrate = code_value();
  4469. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4470. }
  4471. }
  4472. void get_arc_coordinates() {
  4473. #ifdef SF_ARC_FIX
  4474. bool relative_mode_backup = relative_mode;
  4475. relative_mode = true;
  4476. #endif
  4477. get_coordinates();
  4478. #ifdef SF_ARC_FIX
  4479. relative_mode = relative_mode_backup;
  4480. #endif
  4481. offset[0] = code_seen('I') ? code_value() : 0;
  4482. offset[1] = code_seen('J') ? code_value() : 0;
  4483. }
  4484. void clamp_to_software_endstops(float target[3])
  4485. {
  4486. if (min_software_endstops) {
  4487. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4488. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4489. float negative_z_offset = 0;
  4490. #ifdef ENABLE_AUTO_BED_LEVELING
  4491. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4492. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4493. #endif
  4494. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4495. }
  4496. if (max_software_endstops) {
  4497. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4498. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4499. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4500. }
  4501. }
  4502. #ifdef DELTA
  4503. void recalc_delta_settings(float radius, float diagonal_rod) {
  4504. delta_tower1_x = -SIN_60 * radius; // front left tower
  4505. delta_tower1_y = -COS_60 * radius;
  4506. delta_tower2_x = SIN_60 * radius; // front right tower
  4507. delta_tower2_y = -COS_60 * radius;
  4508. delta_tower3_x = 0.0; // back middle tower
  4509. delta_tower3_y = radius;
  4510. delta_diagonal_rod_2 = sq(diagonal_rod);
  4511. }
  4512. void calculate_delta(float cartesian[3]) {
  4513. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4514. - sq(delta_tower1_x-cartesian[X_AXIS])
  4515. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4516. ) + cartesian[Z_AXIS];
  4517. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4518. - sq(delta_tower2_x-cartesian[X_AXIS])
  4519. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4520. ) + cartesian[Z_AXIS];
  4521. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4522. - sq(delta_tower3_x-cartesian[X_AXIS])
  4523. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4524. ) + cartesian[Z_AXIS];
  4525. /*
  4526. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4527. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4528. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4529. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4530. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4531. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4532. */
  4533. }
  4534. #ifdef ENABLE_AUTO_BED_LEVELING
  4535. // Adjust print surface height by linear interpolation over the bed_level array.
  4536. void adjust_delta(float cartesian[3]) {
  4537. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4538. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4539. float h1 = 0.001 - half, h2 = half - 0.001,
  4540. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4541. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4542. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4543. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4544. z1 = bed_level[floor_x + half][floor_y + half],
  4545. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4546. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4547. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4548. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4549. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4550. offset = (1 - ratio_x) * left + ratio_x * right;
  4551. delta[X_AXIS] += offset;
  4552. delta[Y_AXIS] += offset;
  4553. delta[Z_AXIS] += offset;
  4554. /*
  4555. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4556. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4557. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4558. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4559. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4560. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4561. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4562. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4563. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4564. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4565. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4566. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4567. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4568. */
  4569. }
  4570. #endif // ENABLE_AUTO_BED_LEVELING
  4571. #endif // DELTA
  4572. #ifdef MESH_BED_LEVELING
  4573. #if !defined(MIN)
  4574. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4575. #endif // ! MIN
  4576. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4577. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4578. {
  4579. if (!mbl.active) {
  4580. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4581. set_current_to_destination();
  4582. return;
  4583. }
  4584. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4585. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4586. int ix = mbl.select_x_index(x);
  4587. int iy = mbl.select_y_index(y);
  4588. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4589. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4590. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4591. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4592. if (pix == ix && piy == iy) {
  4593. // Start and end on same mesh square
  4594. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4595. set_current_to_destination();
  4596. return;
  4597. }
  4598. float nx, ny, ne, normalized_dist;
  4599. if (ix > pix && (x_splits) & BIT(ix)) {
  4600. nx = mbl.get_x(ix);
  4601. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4602. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4603. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4604. x_splits ^= BIT(ix);
  4605. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4606. nx = mbl.get_x(pix);
  4607. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4608. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4609. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4610. x_splits ^= BIT(pix);
  4611. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4612. ny = mbl.get_y(iy);
  4613. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4614. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4615. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4616. y_splits ^= BIT(iy);
  4617. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4618. ny = mbl.get_y(piy);
  4619. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4620. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4621. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4622. y_splits ^= BIT(piy);
  4623. } else {
  4624. // Already split on a border
  4625. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4626. set_current_to_destination();
  4627. return;
  4628. }
  4629. // Do the split and look for more borders
  4630. destination[X_AXIS] = nx;
  4631. destination[Y_AXIS] = ny;
  4632. destination[E_AXIS] = ne;
  4633. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4634. destination[X_AXIS] = x;
  4635. destination[Y_AXIS] = y;
  4636. destination[E_AXIS] = e;
  4637. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4638. }
  4639. #endif // MESH_BED_LEVELING
  4640. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4641. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4642. float de = dest_e - curr_e;
  4643. if (de) {
  4644. if (degHotend(active_extruder) < extrude_min_temp) {
  4645. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4646. SERIAL_ECHO_START;
  4647. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4648. return 0;
  4649. }
  4650. #ifdef PREVENT_LENGTHY_EXTRUDE
  4651. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4652. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4653. SERIAL_ECHO_START;
  4654. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4655. return 0;
  4656. }
  4657. #endif
  4658. }
  4659. return de;
  4660. }
  4661. #endif // PREVENT_DANGEROUS_EXTRUDE
  4662. void prepare_move() {
  4663. clamp_to_software_endstops(destination);
  4664. refresh_cmd_timeout();
  4665. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4666. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4667. #endif
  4668. #ifdef SCARA //for now same as delta-code
  4669. float difference[NUM_AXIS];
  4670. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4671. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4672. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4673. if (cartesian_mm < 0.000001) { return; }
  4674. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4675. int steps = max(1, int(scara_segments_per_second * seconds));
  4676. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4677. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4678. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4679. for (int s = 1; s <= steps; s++) {
  4680. float fraction = float(s) / float(steps);
  4681. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4682. calculate_delta(destination);
  4683. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4684. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4685. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4686. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4687. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4688. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4689. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4690. }
  4691. #endif // SCARA
  4692. #ifdef DELTA
  4693. float difference[NUM_AXIS];
  4694. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4695. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4696. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4697. if (cartesian_mm < 0.000001) return;
  4698. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4699. int steps = max(1, int(delta_segments_per_second * seconds));
  4700. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4701. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4702. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4703. for (int s = 1; s <= steps; s++) {
  4704. float fraction = float(s) / float(steps);
  4705. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4706. calculate_delta(destination);
  4707. #ifdef ENABLE_AUTO_BED_LEVELING
  4708. adjust_delta(destination);
  4709. #endif
  4710. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4711. }
  4712. #endif // DELTA
  4713. #ifdef DUAL_X_CARRIAGE
  4714. if (active_extruder_parked) {
  4715. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4716. // move duplicate extruder into correct duplication position.
  4717. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4718. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4719. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4720. sync_plan_position();
  4721. st_synchronize();
  4722. extruder_duplication_enabled = true;
  4723. active_extruder_parked = false;
  4724. }
  4725. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4726. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4727. // This is a travel move (with no extrusion)
  4728. // Skip it, but keep track of the current position
  4729. // (so it can be used as the start of the next non-travel move)
  4730. if (delayed_move_time != 0xFFFFFFFFUL) {
  4731. set_current_to_destination();
  4732. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS]) raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4733. delayed_move_time = millis();
  4734. return;
  4735. }
  4736. }
  4737. delayed_move_time = 0;
  4738. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4739. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4742. active_extruder_parked = false;
  4743. }
  4744. }
  4745. #endif // DUAL_X_CARRIAGE
  4746. #if !defined(DELTA) && !defined(SCARA)
  4747. // Do not use feedmultiply for E or Z only moves
  4748. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4749. line_to_destination();
  4750. }
  4751. else {
  4752. #ifdef MESH_BED_LEVELING
  4753. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4754. return;
  4755. #else
  4756. line_to_destination(feedrate * feedmultiply / 100.0);
  4757. #endif // MESH_BED_LEVELING
  4758. }
  4759. #endif // !(DELTA || SCARA)
  4760. set_current_to_destination();
  4761. }
  4762. void prepare_arc_move(char isclockwise) {
  4763. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4764. // Trace the arc
  4765. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4766. // As far as the parser is concerned, the position is now == target. In reality the
  4767. // motion control system might still be processing the action and the real tool position
  4768. // in any intermediate location.
  4769. set_current_to_destination();
  4770. refresh_cmd_timeout();
  4771. }
  4772. #if HAS_CONTROLLERFAN
  4773. unsigned long lastMotor = 0; // Last time a motor was turned on
  4774. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4775. void controllerFan() {
  4776. uint32_t ms = millis();
  4777. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4778. lastMotorCheck = ms;
  4779. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4780. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4781. #if EXTRUDERS > 1
  4782. || E1_ENABLE_READ == E_ENABLE_ON
  4783. #if HAS_X2_ENABLE
  4784. || X2_ENABLE_READ == X_ENABLE_ON
  4785. #endif
  4786. #if EXTRUDERS > 2
  4787. || E2_ENABLE_READ == E_ENABLE_ON
  4788. #if EXTRUDERS > 3
  4789. || E3_ENABLE_READ == E_ENABLE_ON
  4790. #endif
  4791. #endif
  4792. #endif
  4793. ) {
  4794. lastMotor = ms; //... set time to NOW so the fan will turn on
  4795. }
  4796. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4797. // allows digital or PWM fan output to be used (see M42 handling)
  4798. digitalWrite(CONTROLLERFAN_PIN, speed);
  4799. analogWrite(CONTROLLERFAN_PIN, speed);
  4800. }
  4801. }
  4802. #endif
  4803. #ifdef SCARA
  4804. void calculate_SCARA_forward_Transform(float f_scara[3])
  4805. {
  4806. // Perform forward kinematics, and place results in delta[3]
  4807. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4808. float x_sin, x_cos, y_sin, y_cos;
  4809. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4810. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4811. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4812. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4813. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4814. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4815. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4816. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4817. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4818. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4819. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4820. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4821. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4822. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4823. }
  4824. void calculate_delta(float cartesian[3]){
  4825. //reverse kinematics.
  4826. // Perform reversed kinematics, and place results in delta[3]
  4827. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4828. float SCARA_pos[2];
  4829. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4830. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4831. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4832. #if (Linkage_1 == Linkage_2)
  4833. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4834. #else
  4835. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4836. #endif
  4837. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4838. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4839. SCARA_K2 = Linkage_2 * SCARA_S2;
  4840. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4841. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4842. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4843. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4844. delta[Z_AXIS] = cartesian[Z_AXIS];
  4845. /*
  4846. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4847. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4848. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4849. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4850. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4851. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4852. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4853. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4854. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4855. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4856. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4857. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4858. SERIAL_ECHOLN(" ");*/
  4859. }
  4860. #endif
  4861. #ifdef TEMP_STAT_LEDS
  4862. static bool blue_led = false;
  4863. static bool red_led = false;
  4864. static uint32_t stat_update = 0;
  4865. void handle_status_leds(void) {
  4866. float max_temp = 0.0;
  4867. if(millis() > stat_update) {
  4868. stat_update += 500; // Update every 0.5s
  4869. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4870. max_temp = max(max_temp, degHotend(cur_extruder));
  4871. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4872. }
  4873. #if HAS_TEMP_BED
  4874. max_temp = max(max_temp, degTargetBed());
  4875. max_temp = max(max_temp, degBed());
  4876. #endif
  4877. if((max_temp > 55.0) && (red_led == false)) {
  4878. digitalWrite(STAT_LED_RED, 1);
  4879. digitalWrite(STAT_LED_BLUE, 0);
  4880. red_led = true;
  4881. blue_led = false;
  4882. }
  4883. if((max_temp < 54.0) && (blue_led == false)) {
  4884. digitalWrite(STAT_LED_RED, 0);
  4885. digitalWrite(STAT_LED_BLUE, 1);
  4886. red_led = false;
  4887. blue_led = true;
  4888. }
  4889. }
  4890. }
  4891. #endif
  4892. void enable_all_steppers() {
  4893. enable_x();
  4894. enable_y();
  4895. enable_z();
  4896. enable_e0();
  4897. enable_e1();
  4898. enable_e2();
  4899. enable_e3();
  4900. }
  4901. void disable_all_steppers() {
  4902. disable_x();
  4903. disable_y();
  4904. disable_z();
  4905. disable_e0();
  4906. disable_e1();
  4907. disable_e2();
  4908. disable_e3();
  4909. }
  4910. /**
  4911. * Manage several activities:
  4912. * - Check for Filament Runout
  4913. * - Keep the command buffer full
  4914. * - Check for maximum inactive time between commands
  4915. * - Check for maximum inactive time between stepper commands
  4916. * - Check if pin CHDK needs to go LOW
  4917. * - Check for KILL button held down
  4918. * - Check for HOME button held down
  4919. * - Check if cooling fan needs to be switched on
  4920. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4921. */
  4922. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4923. #if HAS_FILRUNOUT
  4924. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4925. filrunout();
  4926. #endif
  4927. if (buflen < BUFSIZE - 1) get_command();
  4928. unsigned long ms = millis();
  4929. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4930. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4931. && !ignore_stepper_queue && !blocks_queued())
  4932. disable_all_steppers();
  4933. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4934. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4935. chdkActive = false;
  4936. WRITE(CHDK, LOW);
  4937. }
  4938. #endif
  4939. #if HAS_KILL
  4940. // Check if the kill button was pressed and wait just in case it was an accidental
  4941. // key kill key press
  4942. // -------------------------------------------------------------------------------
  4943. static int killCount = 0; // make the inactivity button a bit less responsive
  4944. const int KILL_DELAY = 750;
  4945. if (!READ(KILL_PIN))
  4946. killCount++;
  4947. else if (killCount > 0)
  4948. killCount--;
  4949. // Exceeded threshold and we can confirm that it was not accidental
  4950. // KILL the machine
  4951. // ----------------------------------------------------------------
  4952. if (killCount >= KILL_DELAY) kill();
  4953. #endif
  4954. #if HAS_HOME
  4955. // Check to see if we have to home, use poor man's debouncer
  4956. // ---------------------------------------------------------
  4957. static int homeDebounceCount = 0; // poor man's debouncing count
  4958. const int HOME_DEBOUNCE_DELAY = 750;
  4959. if (!READ(HOME_PIN)) {
  4960. if (!homeDebounceCount) {
  4961. enquecommands_P(PSTR("G28"));
  4962. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4963. }
  4964. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4965. homeDebounceCount++;
  4966. else
  4967. homeDebounceCount = 0;
  4968. }
  4969. #endif
  4970. #if HAS_CONTROLLERFAN
  4971. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4972. #endif
  4973. #ifdef EXTRUDER_RUNOUT_PREVENT
  4974. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4975. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4976. bool oldstatus;
  4977. switch(active_extruder) {
  4978. case 0:
  4979. oldstatus = E0_ENABLE_READ;
  4980. enable_e0();
  4981. break;
  4982. #if EXTRUDERS > 1
  4983. case 1:
  4984. oldstatus = E1_ENABLE_READ;
  4985. enable_e1();
  4986. break;
  4987. #if EXTRUDERS > 2
  4988. case 2:
  4989. oldstatus = E2_ENABLE_READ;
  4990. enable_e2();
  4991. break;
  4992. #if EXTRUDERS > 3
  4993. case 3:
  4994. oldstatus = E3_ENABLE_READ;
  4995. enable_e3();
  4996. break;
  4997. #endif
  4998. #endif
  4999. #endif
  5000. }
  5001. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5003. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5004. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5005. current_position[E_AXIS] = oldepos;
  5006. destination[E_AXIS] = oldedes;
  5007. plan_set_e_position(oldepos);
  5008. previous_millis_cmd = ms; // refresh_cmd_timeout()
  5009. st_synchronize();
  5010. switch(active_extruder) {
  5011. case 0:
  5012. E0_ENABLE_WRITE(oldstatus);
  5013. break;
  5014. #if EXTRUDERS > 1
  5015. case 1:
  5016. E1_ENABLE_WRITE(oldstatus);
  5017. break;
  5018. #if EXTRUDERS > 2
  5019. case 2:
  5020. E2_ENABLE_WRITE(oldstatus);
  5021. break;
  5022. #if EXTRUDERS > 3
  5023. case 3:
  5024. E3_ENABLE_WRITE(oldstatus);
  5025. break;
  5026. #endif
  5027. #endif
  5028. #endif
  5029. }
  5030. }
  5031. #endif
  5032. #ifdef DUAL_X_CARRIAGE
  5033. // handle delayed move timeout
  5034. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5035. // travel moves have been received so enact them
  5036. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5037. set_destination_to_current();
  5038. prepare_move();
  5039. }
  5040. #endif
  5041. #ifdef TEMP_STAT_LEDS
  5042. handle_status_leds();
  5043. #endif
  5044. check_axes_activity();
  5045. }
  5046. void kill()
  5047. {
  5048. cli(); // Stop interrupts
  5049. disable_heater();
  5050. disable_all_steppers();
  5051. #if HAS_POWER_SWITCH
  5052. pinMode(PS_ON_PIN, INPUT);
  5053. #endif
  5054. SERIAL_ERROR_START;
  5055. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5056. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5057. // FMC small patch to update the LCD before ending
  5058. sei(); // enable interrupts
  5059. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5060. cli(); // disable interrupts
  5061. suicide();
  5062. while(1) { /* Intentionally left empty */ } // Wait for reset
  5063. }
  5064. #ifdef FILAMENT_RUNOUT_SENSOR
  5065. void filrunout()
  5066. {
  5067. if filrunoutEnqued == false {
  5068. filrunoutEnqued = true;
  5069. enquecommand("M600");
  5070. }
  5071. }
  5072. #endif
  5073. void Stop()
  5074. {
  5075. disable_heater();
  5076. if (IsRunning()) {
  5077. Running = false;
  5078. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5079. SERIAL_ERROR_START;
  5080. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5081. LCD_MESSAGEPGM(MSG_STOPPED);
  5082. }
  5083. }
  5084. #ifdef FAST_PWM_FAN
  5085. void setPwmFrequency(uint8_t pin, int val)
  5086. {
  5087. val &= 0x07;
  5088. switch(digitalPinToTimer(pin))
  5089. {
  5090. #if defined(TCCR0A)
  5091. case TIMER0A:
  5092. case TIMER0B:
  5093. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5094. // TCCR0B |= val;
  5095. break;
  5096. #endif
  5097. #if defined(TCCR1A)
  5098. case TIMER1A:
  5099. case TIMER1B:
  5100. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5101. // TCCR1B |= val;
  5102. break;
  5103. #endif
  5104. #if defined(TCCR2)
  5105. case TIMER2:
  5106. case TIMER2:
  5107. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5108. TCCR2 |= val;
  5109. break;
  5110. #endif
  5111. #if defined(TCCR2A)
  5112. case TIMER2A:
  5113. case TIMER2B:
  5114. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5115. TCCR2B |= val;
  5116. break;
  5117. #endif
  5118. #if defined(TCCR3A)
  5119. case TIMER3A:
  5120. case TIMER3B:
  5121. case TIMER3C:
  5122. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5123. TCCR3B |= val;
  5124. break;
  5125. #endif
  5126. #if defined(TCCR4A)
  5127. case TIMER4A:
  5128. case TIMER4B:
  5129. case TIMER4C:
  5130. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5131. TCCR4B |= val;
  5132. break;
  5133. #endif
  5134. #if defined(TCCR5A)
  5135. case TIMER5A:
  5136. case TIMER5B:
  5137. case TIMER5C:
  5138. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5139. TCCR5B |= val;
  5140. break;
  5141. #endif
  5142. }
  5143. }
  5144. #endif //FAST_PWM_FAN
  5145. bool setTargetedHotend(int code){
  5146. target_extruder = active_extruder;
  5147. if (code_seen('T')) {
  5148. target_extruder = code_value_short();
  5149. if (target_extruder >= EXTRUDERS) {
  5150. SERIAL_ECHO_START;
  5151. switch(code){
  5152. case 104:
  5153. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5154. break;
  5155. case 105:
  5156. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5157. break;
  5158. case 109:
  5159. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5160. break;
  5161. case 218:
  5162. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5163. break;
  5164. case 221:
  5165. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5166. break;
  5167. }
  5168. SERIAL_ECHOLN(target_extruder);
  5169. return true;
  5170. }
  5171. }
  5172. return false;
  5173. }
  5174. float calculate_volumetric_multiplier(float diameter) {
  5175. if (!volumetric_enabled || diameter == 0) return 1.0;
  5176. float d2 = diameter * 0.5;
  5177. return 1.0 / (M_PI * d2 * d2);
  5178. }
  5179. void calculate_volumetric_multipliers() {
  5180. for (int i=0; i<EXTRUDERS; i++)
  5181. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5182. }