My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

configuration_store.cpp 106KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V79"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../libs/vector_3.h" // for matrix_3x3
  50. #include "../gcode/gcode.h"
  51. #include "../MarlinCore.h"
  52. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  53. #include "../HAL/shared/eeprom_api.h"
  54. #endif
  55. #include "probe.h"
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  60. #include "../feature/z_stepper_align.h"
  61. #endif
  62. #if ENABLED(EXTENSIBLE_UI)
  63. #include "../lcd/extui/ui_api.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_SERVOS && HAS_SERVO_ANGLES
  69. #define EEPROM_NUM_SERVOS NUM_SERVOS
  70. #else
  71. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  72. #endif
  73. #include "../feature/fwretract.h"
  74. #if ENABLED(POWER_LOSS_RECOVERY)
  75. #include "../feature/powerloss.h"
  76. #endif
  77. #include "../feature/pause.h"
  78. #if ENABLED(BACKLASH_COMPENSATION)
  79. #include "../feature/backlash.h"
  80. #endif
  81. #if HAS_FILAMENT_SENSOR
  82. #include "../feature/runout.h"
  83. #endif
  84. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  85. extern float other_extruder_advance_K[EXTRUDERS];
  86. #endif
  87. #if EXTRUDERS > 1
  88. #include "tool_change.h"
  89. void M217_report(const bool eeprom);
  90. #endif
  91. #if ENABLED(BLTOUCH)
  92. #include "../feature/bltouch.h"
  93. #endif
  94. #if HAS_TRINAMIC_CONFIG
  95. #include "stepper/indirection.h"
  96. #include "../feature/tmc_util.h"
  97. #endif
  98. #if ENABLED(PROBE_TEMP_COMPENSATION)
  99. #include "../feature/probe_temp_comp.h"
  100. #endif
  101. #include "../feature/controllerfan.h"
  102. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  103. void M710_report(const bool forReplay);
  104. #endif
  105. #if ENABLED(CASE_LIGHT_MENU) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
  106. #include "../feature/caselight.h"
  107. #define HAS_CASE_LIGHT_BRIGHTNESS 1
  108. #endif
  109. #pragma pack(push, 1) // No padding between variables
  110. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  111. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  112. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  113. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  114. // Limit an index to an array size
  115. #define ALIM(I,ARR) _MIN(I, COUNT(ARR) - 1)
  116. // Defaults for reset / fill in on load
  117. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  118. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  119. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  120. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  121. /**
  122. * Current EEPROM Layout
  123. *
  124. * Keep this data structure up to date so
  125. * EEPROM size is known at compile time!
  126. */
  127. typedef struct SettingsDataStruct {
  128. char version[4]; // Vnn\0
  129. uint16_t crc; // Data Checksum
  130. //
  131. // DISTINCT_E_FACTORS
  132. //
  133. uint8_t esteppers; // XYZE_N - XYZ
  134. planner_settings_t planner_settings;
  135. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  136. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  137. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  138. #if HAS_HOTEND_OFFSET
  139. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  140. #endif
  141. //
  142. // FILAMENT_RUNOUT_SENSOR
  143. //
  144. bool runout_sensor_enabled; // M412 S
  145. float runout_distance_mm; // M412 D
  146. //
  147. // ENABLE_LEVELING_FADE_HEIGHT
  148. //
  149. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  150. //
  151. // MESH_BED_LEVELING
  152. //
  153. float mbl_z_offset; // mbl.z_offset
  154. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  155. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  156. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  157. //
  158. // HAS_BED_PROBE
  159. //
  160. xyz_pos_t probe_offset;
  161. //
  162. // ABL_PLANAR
  163. //
  164. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  165. //
  166. // AUTO_BED_LEVELING_BILINEAR
  167. //
  168. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  169. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  170. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  171. bed_mesh_t z_values; // G29
  172. #else
  173. float z_values[3][3];
  174. #endif
  175. //
  176. // AUTO_BED_LEVELING_UBL
  177. //
  178. bool planner_leveling_active; // M420 S planner.leveling_active
  179. int8_t ubl_storage_slot; // ubl.storage_slot
  180. //
  181. // SERVO_ANGLES
  182. //
  183. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  184. //
  185. // Temperature first layer compensation values
  186. //
  187. #if ENABLED(PROBE_TEMP_COMPENSATION)
  188. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  189. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  190. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  191. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  192. #endif
  193. ;
  194. #endif
  195. //
  196. // BLTOUCH
  197. //
  198. bool bltouch_last_written_mode;
  199. //
  200. // DELTA / [XYZ]_DUAL_ENDSTOPS
  201. //
  202. #if ENABLED(DELTA)
  203. float delta_height; // M666 H
  204. abc_float_t delta_endstop_adj; // M666 XYZ
  205. float delta_radius, // M665 R
  206. delta_diagonal_rod, // M665 L
  207. delta_segments_per_second; // M665 S
  208. abc_float_t delta_tower_angle_trim; // M665 XYZ
  209. #elif HAS_EXTRA_ENDSTOPS
  210. float x2_endstop_adj, // M666 X
  211. y2_endstop_adj, // M666 Y
  212. z2_endstop_adj, // M666 (S2) Z
  213. z3_endstop_adj, // M666 (S3) Z
  214. z4_endstop_adj; // M666 (S4) Z
  215. #endif
  216. //
  217. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  218. //
  219. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  220. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  221. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  222. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  223. #endif
  224. #endif
  225. //
  226. // ULTIPANEL
  227. //
  228. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  229. ui_preheat_bed_temp[2]; // M145 S0 B
  230. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  231. //
  232. // PIDTEMP
  233. //
  234. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  235. int16_t lpq_len; // M301 L
  236. //
  237. // PIDTEMPBED
  238. //
  239. PID_t bedPID; // M304 PID / M303 E-1 U
  240. //
  241. // User-defined Thermistors
  242. //
  243. #if HAS_USER_THERMISTORS
  244. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  245. #endif
  246. //
  247. // HAS_LCD_CONTRAST
  248. //
  249. int16_t lcd_contrast; // M250 C
  250. //
  251. // Controller fan settings
  252. //
  253. controllerFan_settings_t controllerFan_settings; // M710
  254. //
  255. // POWER_LOSS_RECOVERY
  256. //
  257. bool recovery_enabled; // M413 S
  258. //
  259. // FWRETRACT
  260. //
  261. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  262. bool autoretract_enabled; // M209 S
  263. //
  264. // !NO_VOLUMETRIC
  265. //
  266. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  267. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  268. //
  269. // HAS_TRINAMIC_CONFIG
  270. //
  271. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  272. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  273. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  274. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  275. //
  276. // LIN_ADVANCE
  277. //
  278. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  279. //
  280. // HAS_MOTOR_CURRENT_PWM
  281. //
  282. uint32_t motor_current_setting[3]; // M907 X Z E
  283. //
  284. // CNC_COORDINATE_SYSTEMS
  285. //
  286. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  287. //
  288. // SKEW_CORRECTION
  289. //
  290. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  291. //
  292. // ADVANCED_PAUSE_FEATURE
  293. //
  294. #if EXTRUDERS
  295. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  296. #endif
  297. //
  298. // Tool-change settings
  299. //
  300. #if EXTRUDERS > 1
  301. toolchange_settings_t toolchange_settings; // M217 S P R
  302. #endif
  303. //
  304. // BACKLASH_COMPENSATION
  305. //
  306. xyz_float_t backlash_distance_mm; // M425 X Y Z
  307. uint8_t backlash_correction; // M425 F
  308. float backlash_smoothing_mm; // M425 S
  309. //
  310. // EXTENSIBLE_UI
  311. //
  312. #if ENABLED(EXTENSIBLE_UI)
  313. // This is a significant hardware change; don't reserve space when not present
  314. uint8_t extui_data[ExtUI::eeprom_data_size];
  315. #endif
  316. //
  317. // HAS_CASE_LIGHT_BRIGHTNESS
  318. //
  319. #if HAS_CASE_LIGHT_BRIGHTNESS
  320. uint8_t case_light_brightness;
  321. #endif
  322. } SettingsData;
  323. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  324. MarlinSettings settings;
  325. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  326. /**
  327. * Post-process after Retrieve or Reset
  328. */
  329. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  330. float new_z_fade_height;
  331. #endif
  332. void MarlinSettings::postprocess() {
  333. xyze_pos_t oldpos = current_position;
  334. // steps per s2 needs to be updated to agree with units per s2
  335. planner.reset_acceleration_rates();
  336. // Make sure delta kinematics are updated before refreshing the
  337. // planner position so the stepper counts will be set correctly.
  338. TERN_(DELTA, recalc_delta_settings());
  339. TERN_(PIDTEMP, thermalManager.updatePID());
  340. #if DISABLED(NO_VOLUMETRICS)
  341. planner.calculate_volumetric_multipliers();
  342. #elif EXTRUDERS
  343. for (uint8_t i = COUNT(planner.e_factor); i--;)
  344. planner.refresh_e_factor(i);
  345. #endif
  346. // Software endstops depend on home_offset
  347. LOOP_XYZ(i) {
  348. update_workspace_offset((AxisEnum)i);
  349. update_software_endstops((AxisEnum)i);
  350. }
  351. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  352. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  353. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  354. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  355. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  356. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, update_case_light());
  357. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  358. // and init stepper.count[], planner.position[] with current_position
  359. planner.refresh_positioning();
  360. // Various factors can change the current position
  361. if (oldpos != current_position)
  362. report_current_position();
  363. }
  364. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  365. #include "printcounter.h"
  366. static_assert(
  367. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  368. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  369. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  370. );
  371. #endif
  372. #if ENABLED(SD_FIRMWARE_UPDATE)
  373. #if ENABLED(EEPROM_SETTINGS)
  374. static_assert(
  375. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  376. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  377. );
  378. #endif
  379. bool MarlinSettings::sd_update_status() {
  380. uint8_t val;
  381. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  382. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  383. }
  384. bool MarlinSettings::set_sd_update_status(const bool enable) {
  385. if (enable != sd_update_status())
  386. persistentStore.write_data(
  387. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  388. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  389. );
  390. return true;
  391. }
  392. #endif // SD_FIRMWARE_UPDATE
  393. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  394. static_assert(
  395. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  396. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  397. );
  398. #endif
  399. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  400. #include "../core/debug_out.h"
  401. #if ENABLED(EEPROM_SETTINGS)
  402. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  403. int eeprom_index = EEPROM_OFFSET
  404. #define EEPROM_FINISH() persistentStore.access_finish()
  405. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  406. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  407. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  408. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  409. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  410. #if ENABLED(DEBUG_EEPROM_READWRITE)
  411. #define _FIELD_TEST(FIELD) \
  412. EEPROM_ASSERT( \
  413. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  414. "Field " STRINGIFY(FIELD) " mismatch." \
  415. )
  416. #else
  417. #define _FIELD_TEST(FIELD) NOOP
  418. #endif
  419. const char version[4] = EEPROM_VERSION;
  420. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  421. bool MarlinSettings::size_error(const uint16_t size) {
  422. if (size != datasize()) {
  423. DEBUG_ERROR_MSG("EEPROM datasize error.");
  424. return true;
  425. }
  426. return false;
  427. }
  428. /**
  429. * M500 - Store Configuration
  430. */
  431. bool MarlinSettings::save() {
  432. float dummyf = 0;
  433. char ver[4] = "ERR";
  434. uint16_t working_crc = 0;
  435. EEPROM_START();
  436. eeprom_error = false;
  437. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  438. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  439. EEPROM_SKIP(working_crc); // Skip the checksum slot
  440. working_crc = 0; // clear before first "real data"
  441. _FIELD_TEST(esteppers);
  442. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  443. EEPROM_WRITE(esteppers);
  444. //
  445. // Planner Motion
  446. //
  447. {
  448. EEPROM_WRITE(planner.settings);
  449. #if HAS_CLASSIC_JERK
  450. EEPROM_WRITE(planner.max_jerk);
  451. #if HAS_LINEAR_E_JERK
  452. dummyf = float(DEFAULT_EJERK);
  453. EEPROM_WRITE(dummyf);
  454. #endif
  455. #else
  456. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  457. EEPROM_WRITE(planner_max_jerk);
  458. #endif
  459. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  460. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  461. }
  462. //
  463. // Home Offset
  464. //
  465. {
  466. _FIELD_TEST(home_offset);
  467. #if HAS_SCARA_OFFSET
  468. EEPROM_WRITE(scara_home_offset);
  469. #else
  470. #if !HAS_HOME_OFFSET
  471. const xyz_pos_t home_offset{0};
  472. #endif
  473. EEPROM_WRITE(home_offset);
  474. #endif
  475. #if HAS_HOTEND_OFFSET
  476. // Skip hotend 0 which must be 0
  477. LOOP_S_L_N(e, 1, HOTENDS)
  478. EEPROM_WRITE(hotend_offset[e]);
  479. #endif
  480. }
  481. //
  482. // Filament Runout Sensor
  483. //
  484. {
  485. #if HAS_FILAMENT_SENSOR
  486. const bool &runout_sensor_enabled = runout.enabled;
  487. #else
  488. constexpr bool runout_sensor_enabled = true;
  489. #endif
  490. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  491. const float &runout_distance_mm = runout.runout_distance();
  492. #else
  493. constexpr float runout_distance_mm = 0;
  494. #endif
  495. _FIELD_TEST(runout_sensor_enabled);
  496. EEPROM_WRITE(runout_sensor_enabled);
  497. EEPROM_WRITE(runout_distance_mm);
  498. }
  499. //
  500. // Global Leveling
  501. //
  502. {
  503. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  504. EEPROM_WRITE(zfh);
  505. }
  506. //
  507. // Mesh Bed Leveling
  508. //
  509. {
  510. #if ENABLED(MESH_BED_LEVELING)
  511. static_assert(
  512. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  513. "MBL Z array is the wrong size."
  514. );
  515. #else
  516. dummyf = 0;
  517. #endif
  518. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  519. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  520. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  521. EEPROM_WRITE(mesh_num_x);
  522. EEPROM_WRITE(mesh_num_y);
  523. #if ENABLED(MESH_BED_LEVELING)
  524. EEPROM_WRITE(mbl.z_values);
  525. #else
  526. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  527. #endif
  528. }
  529. //
  530. // Probe XYZ Offsets
  531. //
  532. {
  533. _FIELD_TEST(probe_offset);
  534. #if HAS_BED_PROBE
  535. const xyz_pos_t &zpo = probe.offset;
  536. #else
  537. constexpr xyz_pos_t zpo{0};
  538. #endif
  539. EEPROM_WRITE(zpo);
  540. }
  541. //
  542. // Planar Bed Leveling matrix
  543. //
  544. {
  545. #if ABL_PLANAR
  546. EEPROM_WRITE(planner.bed_level_matrix);
  547. #else
  548. dummyf = 0;
  549. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  550. #endif
  551. }
  552. //
  553. // Bilinear Auto Bed Leveling
  554. //
  555. {
  556. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  557. static_assert(
  558. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  559. "Bilinear Z array is the wrong size."
  560. );
  561. #else
  562. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  563. #endif
  564. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  565. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  566. EEPROM_WRITE(grid_max_x);
  567. EEPROM_WRITE(grid_max_y);
  568. EEPROM_WRITE(bilinear_grid_spacing);
  569. EEPROM_WRITE(bilinear_start);
  570. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  571. EEPROM_WRITE(z_values); // 9-256 floats
  572. #else
  573. dummyf = 0;
  574. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  575. #endif
  576. }
  577. //
  578. // Unified Bed Leveling
  579. //
  580. {
  581. _FIELD_TEST(planner_leveling_active);
  582. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  583. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  584. EEPROM_WRITE(ubl_active);
  585. EEPROM_WRITE(storage_slot);
  586. }
  587. //
  588. // Servo Angles
  589. //
  590. {
  591. _FIELD_TEST(servo_angles);
  592. #if !HAS_SERVO_ANGLES
  593. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  594. #endif
  595. EEPROM_WRITE(servo_angles);
  596. }
  597. //
  598. // Thermal first layer compensation values
  599. //
  600. #if ENABLED(PROBE_TEMP_COMPENSATION)
  601. EEPROM_WRITE(temp_comp.z_offsets_probe);
  602. EEPROM_WRITE(temp_comp.z_offsets_bed);
  603. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  604. EEPROM_WRITE(temp_comp.z_offsets_ext);
  605. #endif
  606. #else
  607. // No placeholder data for this feature
  608. #endif
  609. //
  610. // BLTOUCH
  611. //
  612. {
  613. _FIELD_TEST(bltouch_last_written_mode);
  614. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  615. EEPROM_WRITE(bltouch_last_written_mode);
  616. }
  617. //
  618. // DELTA Geometry or Dual Endstops offsets
  619. //
  620. {
  621. #if ENABLED(DELTA)
  622. _FIELD_TEST(delta_height);
  623. EEPROM_WRITE(delta_height); // 1 float
  624. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  625. EEPROM_WRITE(delta_radius); // 1 float
  626. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  627. EEPROM_WRITE(delta_segments_per_second); // 1 float
  628. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  629. #elif HAS_EXTRA_ENDSTOPS
  630. _FIELD_TEST(x2_endstop_adj);
  631. // Write dual endstops in X, Y, Z order. Unused = 0.0
  632. dummyf = 0;
  633. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  634. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  635. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  636. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  637. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  638. #else
  639. EEPROM_WRITE(dummyf);
  640. #endif
  641. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  642. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  643. #else
  644. EEPROM_WRITE(dummyf);
  645. #endif
  646. #endif
  647. }
  648. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  649. EEPROM_WRITE(z_stepper_align.xy);
  650. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  651. EEPROM_WRITE(z_stepper_align.stepper_xy);
  652. #endif
  653. #endif
  654. //
  655. // LCD Preheat settings
  656. //
  657. {
  658. _FIELD_TEST(ui_preheat_hotend_temp);
  659. #if HAS_HOTEND && HAS_LCD_MENU
  660. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  661. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  662. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  663. #else
  664. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  665. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  666. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  667. #endif
  668. EEPROM_WRITE(ui_preheat_hotend_temp);
  669. EEPROM_WRITE(ui_preheat_bed_temp);
  670. EEPROM_WRITE(ui_preheat_fan_speed);
  671. }
  672. //
  673. // PIDTEMP
  674. //
  675. {
  676. _FIELD_TEST(hotendPID);
  677. HOTEND_LOOP() {
  678. PIDCF_t pidcf = {
  679. #if DISABLED(PIDTEMP)
  680. NAN, NAN, NAN,
  681. NAN, NAN
  682. #else
  683. PID_PARAM(Kp, e),
  684. unscalePID_i(PID_PARAM(Ki, e)),
  685. unscalePID_d(PID_PARAM(Kd, e)),
  686. PID_PARAM(Kc, e),
  687. PID_PARAM(Kf, e)
  688. #endif
  689. };
  690. EEPROM_WRITE(pidcf);
  691. }
  692. _FIELD_TEST(lpq_len);
  693. #if DISABLED(PID_EXTRUSION_SCALING)
  694. const int16_t lpq_len = 20;
  695. #endif
  696. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  697. }
  698. //
  699. // PIDTEMPBED
  700. //
  701. {
  702. _FIELD_TEST(bedPID);
  703. const PID_t bed_pid = {
  704. #if DISABLED(PIDTEMPBED)
  705. NAN, NAN, NAN
  706. #else
  707. // Store the unscaled PID values
  708. thermalManager.temp_bed.pid.Kp,
  709. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  710. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  711. #endif
  712. };
  713. EEPROM_WRITE(bed_pid);
  714. }
  715. //
  716. // User-defined Thermistors
  717. //
  718. #if HAS_USER_THERMISTORS
  719. {
  720. _FIELD_TEST(user_thermistor);
  721. EEPROM_WRITE(thermalManager.user_thermistor);
  722. }
  723. #endif
  724. //
  725. // LCD Contrast
  726. //
  727. {
  728. _FIELD_TEST(lcd_contrast);
  729. const int16_t lcd_contrast =
  730. #if HAS_LCD_CONTRAST
  731. ui.contrast
  732. #else
  733. 127
  734. #endif
  735. ;
  736. EEPROM_WRITE(lcd_contrast);
  737. }
  738. //
  739. // Controller Fan
  740. //
  741. {
  742. _FIELD_TEST(controllerFan_settings);
  743. #if ENABLED(USE_CONTROLLER_FAN)
  744. const controllerFan_settings_t &cfs = controllerFan.settings;
  745. #else
  746. controllerFan_settings_t cfs = controllerFan_defaults;
  747. #endif
  748. EEPROM_WRITE(cfs);
  749. }
  750. //
  751. // Power-Loss Recovery
  752. //
  753. {
  754. _FIELD_TEST(recovery_enabled);
  755. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  756. EEPROM_WRITE(recovery_enabled);
  757. }
  758. //
  759. // Firmware Retraction
  760. //
  761. {
  762. _FIELD_TEST(fwretract_settings);
  763. #if DISABLED(FWRETRACT)
  764. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  765. #endif
  766. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  767. #if DISABLED(FWRETRACT_AUTORETRACT)
  768. const bool autoretract_enabled = false;
  769. #endif
  770. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  771. }
  772. //
  773. // Volumetric & Filament Size
  774. //
  775. {
  776. _FIELD_TEST(parser_volumetric_enabled);
  777. #if DISABLED(NO_VOLUMETRICS)
  778. EEPROM_WRITE(parser.volumetric_enabled);
  779. EEPROM_WRITE(planner.filament_size);
  780. #else
  781. const bool volumetric_enabled = false;
  782. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  783. EEPROM_WRITE(volumetric_enabled);
  784. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  785. #endif
  786. }
  787. //
  788. // TMC Configuration
  789. //
  790. {
  791. _FIELD_TEST(tmc_stepper_current);
  792. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  793. #if HAS_TRINAMIC_CONFIG
  794. #if AXIS_IS_TMC(X)
  795. tmc_stepper_current.X = stepperX.getMilliamps();
  796. #endif
  797. #if AXIS_IS_TMC(Y)
  798. tmc_stepper_current.Y = stepperY.getMilliamps();
  799. #endif
  800. #if AXIS_IS_TMC(Z)
  801. tmc_stepper_current.Z = stepperZ.getMilliamps();
  802. #endif
  803. #if AXIS_IS_TMC(X2)
  804. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  805. #endif
  806. #if AXIS_IS_TMC(Y2)
  807. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  808. #endif
  809. #if AXIS_IS_TMC(Z2)
  810. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  811. #endif
  812. #if AXIS_IS_TMC(Z3)
  813. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  814. #endif
  815. #if AXIS_IS_TMC(Z4)
  816. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  817. #endif
  818. #if MAX_EXTRUDERS
  819. #if AXIS_IS_TMC(E0)
  820. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  821. #endif
  822. #if MAX_EXTRUDERS > 1
  823. #if AXIS_IS_TMC(E1)
  824. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  825. #endif
  826. #if MAX_EXTRUDERS > 2
  827. #if AXIS_IS_TMC(E2)
  828. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  829. #endif
  830. #if MAX_EXTRUDERS > 3
  831. #if AXIS_IS_TMC(E3)
  832. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  833. #endif
  834. #if MAX_EXTRUDERS > 4
  835. #if AXIS_IS_TMC(E4)
  836. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  837. #endif
  838. #if MAX_EXTRUDERS > 5
  839. #if AXIS_IS_TMC(E5)
  840. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  841. #endif
  842. #if MAX_EXTRUDERS > 6
  843. #if AXIS_IS_TMC(E6)
  844. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  845. #endif
  846. #if MAX_EXTRUDERS > 7
  847. #if AXIS_IS_TMC(E7)
  848. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  849. #endif
  850. #endif // MAX_EXTRUDERS > 7
  851. #endif // MAX_EXTRUDERS > 6
  852. #endif // MAX_EXTRUDERS > 5
  853. #endif // MAX_EXTRUDERS > 4
  854. #endif // MAX_EXTRUDERS > 3
  855. #endif // MAX_EXTRUDERS > 2
  856. #endif // MAX_EXTRUDERS > 1
  857. #endif // MAX_EXTRUDERS
  858. #endif
  859. EEPROM_WRITE(tmc_stepper_current);
  860. }
  861. //
  862. // TMC Hybrid Threshold, and placeholder values
  863. //
  864. {
  865. _FIELD_TEST(tmc_hybrid_threshold);
  866. #if ENABLED(HYBRID_THRESHOLD)
  867. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  868. #if AXIS_HAS_STEALTHCHOP(X)
  869. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  870. #endif
  871. #if AXIS_HAS_STEALTHCHOP(Y)
  872. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  873. #endif
  874. #if AXIS_HAS_STEALTHCHOP(Z)
  875. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  876. #endif
  877. #if AXIS_HAS_STEALTHCHOP(X2)
  878. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  879. #endif
  880. #if AXIS_HAS_STEALTHCHOP(Y2)
  881. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  882. #endif
  883. #if AXIS_HAS_STEALTHCHOP(Z2)
  884. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  885. #endif
  886. #if AXIS_HAS_STEALTHCHOP(Z3)
  887. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  888. #endif
  889. #if AXIS_HAS_STEALTHCHOP(Z4)
  890. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  891. #endif
  892. #if MAX_EXTRUDERS
  893. #if AXIS_HAS_STEALTHCHOP(E0)
  894. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  895. #endif
  896. #if MAX_EXTRUDERS > 1
  897. #if AXIS_HAS_STEALTHCHOP(E1)
  898. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  899. #endif
  900. #if MAX_EXTRUDERS > 2
  901. #if AXIS_HAS_STEALTHCHOP(E2)
  902. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  903. #endif
  904. #if MAX_EXTRUDERS > 3
  905. #if AXIS_HAS_STEALTHCHOP(E3)
  906. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  907. #endif
  908. #if MAX_EXTRUDERS > 4
  909. #if AXIS_HAS_STEALTHCHOP(E4)
  910. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  911. #endif
  912. #if MAX_EXTRUDERS > 5
  913. #if AXIS_HAS_STEALTHCHOP(E5)
  914. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  915. #endif
  916. #if MAX_EXTRUDERS > 6
  917. #if AXIS_HAS_STEALTHCHOP(E6)
  918. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  919. #endif
  920. #if MAX_EXTRUDERS > 7
  921. #if AXIS_HAS_STEALTHCHOP(E7)
  922. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  923. #endif
  924. #endif // MAX_EXTRUDERS > 7
  925. #endif // MAX_EXTRUDERS > 6
  926. #endif // MAX_EXTRUDERS > 5
  927. #endif // MAX_EXTRUDERS > 4
  928. #endif // MAX_EXTRUDERS > 3
  929. #endif // MAX_EXTRUDERS > 2
  930. #endif // MAX_EXTRUDERS > 1
  931. #endif // MAX_EXTRUDERS
  932. #else
  933. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  934. .X = 100, .Y = 100, .Z = 3,
  935. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  936. .E0 = 30, .E1 = 30, .E2 = 30,
  937. .E3 = 30, .E4 = 30, .E5 = 30
  938. };
  939. #endif
  940. EEPROM_WRITE(tmc_hybrid_threshold);
  941. }
  942. //
  943. // TMC StallGuard threshold
  944. //
  945. {
  946. tmc_sgt_t tmc_sgt{0};
  947. #if USE_SENSORLESS
  948. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  949. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  950. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  951. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  952. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  953. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  954. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  955. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  956. #endif
  957. EEPROM_WRITE(tmc_sgt);
  958. }
  959. //
  960. // TMC stepping mode
  961. //
  962. {
  963. _FIELD_TEST(tmc_stealth_enabled);
  964. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  965. #if HAS_STEALTHCHOP
  966. #if AXIS_HAS_STEALTHCHOP(X)
  967. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  968. #endif
  969. #if AXIS_HAS_STEALTHCHOP(Y)
  970. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  971. #endif
  972. #if AXIS_HAS_STEALTHCHOP(Z)
  973. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  974. #endif
  975. #if AXIS_HAS_STEALTHCHOP(X2)
  976. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  977. #endif
  978. #if AXIS_HAS_STEALTHCHOP(Y2)
  979. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  980. #endif
  981. #if AXIS_HAS_STEALTHCHOP(Z2)
  982. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  983. #endif
  984. #if AXIS_HAS_STEALTHCHOP(Z3)
  985. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  986. #endif
  987. #if AXIS_HAS_STEALTHCHOP(Z4)
  988. tmc_stealth_enabled.Z4 = stepperZ4.get_stealthChop_status();
  989. #endif
  990. #if MAX_EXTRUDERS
  991. #if AXIS_HAS_STEALTHCHOP(E0)
  992. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  993. #endif
  994. #if MAX_EXTRUDERS > 1
  995. #if AXIS_HAS_STEALTHCHOP(E1)
  996. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  997. #endif
  998. #if MAX_EXTRUDERS > 2
  999. #if AXIS_HAS_STEALTHCHOP(E2)
  1000. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  1001. #endif
  1002. #if MAX_EXTRUDERS > 3
  1003. #if AXIS_HAS_STEALTHCHOP(E3)
  1004. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  1005. #endif
  1006. #if MAX_EXTRUDERS > 4
  1007. #if AXIS_HAS_STEALTHCHOP(E4)
  1008. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  1009. #endif
  1010. #if MAX_EXTRUDERS > 5
  1011. #if AXIS_HAS_STEALTHCHOP(E5)
  1012. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  1013. #endif
  1014. #if MAX_EXTRUDERS > 6
  1015. #if AXIS_HAS_STEALTHCHOP(E6)
  1016. tmc_stealth_enabled.E6 = stepperE6.get_stealthChop_status();
  1017. #endif
  1018. #if MAX_EXTRUDERS > 7
  1019. #if AXIS_HAS_STEALTHCHOP(E7)
  1020. tmc_stealth_enabled.E7 = stepperE7.get_stealthChop_status();
  1021. #endif
  1022. #endif // MAX_EXTRUDERS > 7
  1023. #endif // MAX_EXTRUDERS > 6
  1024. #endif // MAX_EXTRUDERS > 5
  1025. #endif // MAX_EXTRUDERS > 4
  1026. #endif // MAX_EXTRUDERS > 3
  1027. #endif // MAX_EXTRUDERS > 2
  1028. #endif // MAX_EXTRUDERS > 1
  1029. #endif // MAX_EXTRUDERS
  1030. #endif
  1031. EEPROM_WRITE(tmc_stealth_enabled);
  1032. }
  1033. //
  1034. // Linear Advance
  1035. //
  1036. {
  1037. _FIELD_TEST(planner_extruder_advance_K);
  1038. #if ENABLED(LIN_ADVANCE)
  1039. EEPROM_WRITE(planner.extruder_advance_K);
  1040. #else
  1041. dummyf = 0;
  1042. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1043. #endif
  1044. }
  1045. //
  1046. // Motor Current PWM
  1047. //
  1048. {
  1049. _FIELD_TEST(motor_current_setting);
  1050. #if HAS_MOTOR_CURRENT_PWM
  1051. EEPROM_WRITE(stepper.motor_current_setting);
  1052. #else
  1053. const uint32_t no_current[3] = { 0 };
  1054. EEPROM_WRITE(no_current);
  1055. #endif
  1056. }
  1057. //
  1058. // CNC Coordinate Systems
  1059. //
  1060. _FIELD_TEST(coordinate_system);
  1061. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1062. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1063. #endif
  1064. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1065. //
  1066. // Skew correction factors
  1067. //
  1068. _FIELD_TEST(planner_skew_factor);
  1069. EEPROM_WRITE(planner.skew_factor);
  1070. //
  1071. // Advanced Pause filament load & unload lengths
  1072. //
  1073. #if EXTRUDERS
  1074. {
  1075. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1076. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1077. #endif
  1078. _FIELD_TEST(fc_settings);
  1079. EEPROM_WRITE(fc_settings);
  1080. }
  1081. #endif
  1082. //
  1083. // Multiple Extruders
  1084. //
  1085. #if EXTRUDERS > 1
  1086. _FIELD_TEST(toolchange_settings);
  1087. EEPROM_WRITE(toolchange_settings);
  1088. #endif
  1089. //
  1090. // Backlash Compensation
  1091. //
  1092. {
  1093. #if ENABLED(BACKLASH_GCODE)
  1094. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1095. const uint8_t &backlash_correction = backlash.correction;
  1096. #else
  1097. const xyz_float_t backlash_distance_mm{0};
  1098. const uint8_t backlash_correction = 0;
  1099. #endif
  1100. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1101. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1102. #else
  1103. const float backlash_smoothing_mm = 3;
  1104. #endif
  1105. _FIELD_TEST(backlash_distance_mm);
  1106. EEPROM_WRITE(backlash_distance_mm);
  1107. EEPROM_WRITE(backlash_correction);
  1108. EEPROM_WRITE(backlash_smoothing_mm);
  1109. }
  1110. //
  1111. // Extensible UI User Data
  1112. //
  1113. #if ENABLED(EXTENSIBLE_UI)
  1114. {
  1115. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1116. ExtUI::onStoreSettings(extui_data);
  1117. _FIELD_TEST(extui_data);
  1118. EEPROM_WRITE(extui_data);
  1119. }
  1120. #endif
  1121. //
  1122. // Case Light Brightness
  1123. //
  1124. #if HAS_CASE_LIGHT_BRIGHTNESS
  1125. EEPROM_WRITE(case_light_brightness);
  1126. #endif
  1127. //
  1128. // Validate CRC and Data Size
  1129. //
  1130. if (!eeprom_error) {
  1131. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1132. final_crc = working_crc;
  1133. // Write the EEPROM header
  1134. eeprom_index = EEPROM_OFFSET;
  1135. EEPROM_WRITE(version);
  1136. EEPROM_WRITE(final_crc);
  1137. // Report storage size
  1138. DEBUG_ECHO_START();
  1139. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1140. eeprom_error |= size_error(eeprom_size);
  1141. }
  1142. EEPROM_FINISH();
  1143. //
  1144. // UBL Mesh
  1145. //
  1146. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1147. if (ubl.storage_slot >= 0)
  1148. store_mesh(ubl.storage_slot);
  1149. #endif
  1150. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1151. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1152. return !eeprom_error;
  1153. }
  1154. /**
  1155. * M501 - Retrieve Configuration
  1156. */
  1157. bool MarlinSettings::_load() {
  1158. uint16_t working_crc = 0;
  1159. EEPROM_START();
  1160. char stored_ver[4];
  1161. EEPROM_READ_ALWAYS(stored_ver);
  1162. uint16_t stored_crc;
  1163. EEPROM_READ_ALWAYS(stored_crc);
  1164. // Version has to match or defaults are used
  1165. if (strncmp(version, stored_ver, 3) != 0) {
  1166. if (stored_ver[3] != '\0') {
  1167. stored_ver[0] = '?';
  1168. stored_ver[1] = '\0';
  1169. }
  1170. DEBUG_ECHO_START();
  1171. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1172. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
  1173. eeprom_error = true;
  1174. }
  1175. else {
  1176. float dummyf = 0;
  1177. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1178. _FIELD_TEST(esteppers);
  1179. // Number of esteppers may change
  1180. uint8_t esteppers;
  1181. EEPROM_READ_ALWAYS(esteppers);
  1182. //
  1183. // Planner Motion
  1184. //
  1185. {
  1186. // Get only the number of E stepper parameters previously stored
  1187. // Any steppers added later are set to their defaults
  1188. uint32_t tmp1[XYZ + esteppers];
  1189. float tmp2[XYZ + esteppers];
  1190. feedRate_t tmp3[XYZ + esteppers];
  1191. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1192. EEPROM_READ(planner.settings.min_segment_time_us);
  1193. EEPROM_READ(tmp2); // axis_steps_per_mm
  1194. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1195. if (!validating) LOOP_XYZE_N(i) {
  1196. const bool in = (i < esteppers + XYZ);
  1197. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1198. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1199. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1200. }
  1201. EEPROM_READ(planner.settings.acceleration);
  1202. EEPROM_READ(planner.settings.retract_acceleration);
  1203. EEPROM_READ(planner.settings.travel_acceleration);
  1204. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1205. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1206. #if HAS_CLASSIC_JERK
  1207. EEPROM_READ(planner.max_jerk);
  1208. #if HAS_LINEAR_E_JERK
  1209. EEPROM_READ(dummyf);
  1210. #endif
  1211. #else
  1212. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1213. #endif
  1214. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1215. }
  1216. //
  1217. // Home Offset (M206 / M665)
  1218. //
  1219. {
  1220. _FIELD_TEST(home_offset);
  1221. #if HAS_SCARA_OFFSET
  1222. EEPROM_READ(scara_home_offset);
  1223. #else
  1224. #if !HAS_HOME_OFFSET
  1225. xyz_pos_t home_offset;
  1226. #endif
  1227. EEPROM_READ(home_offset);
  1228. #endif
  1229. }
  1230. //
  1231. // Hotend Offsets, if any
  1232. //
  1233. {
  1234. #if HAS_HOTEND_OFFSET
  1235. // Skip hotend 0 which must be 0
  1236. LOOP_S_L_N(e, 1, HOTENDS)
  1237. EEPROM_READ(hotend_offset[e]);
  1238. #endif
  1239. }
  1240. //
  1241. // Filament Runout Sensor
  1242. //
  1243. {
  1244. #if HAS_FILAMENT_SENSOR
  1245. const bool &runout_sensor_enabled = runout.enabled;
  1246. #else
  1247. bool runout_sensor_enabled;
  1248. #endif
  1249. _FIELD_TEST(runout_sensor_enabled);
  1250. EEPROM_READ(runout_sensor_enabled);
  1251. float runout_distance_mm;
  1252. EEPROM_READ(runout_distance_mm);
  1253. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  1254. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1255. #endif
  1256. }
  1257. //
  1258. // Global Leveling
  1259. //
  1260. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1261. //
  1262. // Mesh (Manual) Bed Leveling
  1263. //
  1264. {
  1265. uint8_t mesh_num_x, mesh_num_y;
  1266. EEPROM_READ(dummyf);
  1267. EEPROM_READ_ALWAYS(mesh_num_x);
  1268. EEPROM_READ_ALWAYS(mesh_num_y);
  1269. #if ENABLED(MESH_BED_LEVELING)
  1270. if (!validating) mbl.z_offset = dummyf;
  1271. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1272. // EEPROM data fits the current mesh
  1273. EEPROM_READ(mbl.z_values);
  1274. }
  1275. else {
  1276. // EEPROM data is stale
  1277. if (!validating) mbl.reset();
  1278. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1279. }
  1280. #else
  1281. // MBL is disabled - skip the stored data
  1282. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1283. #endif // MESH_BED_LEVELING
  1284. }
  1285. //
  1286. // Probe Z Offset
  1287. //
  1288. {
  1289. _FIELD_TEST(probe_offset);
  1290. #if HAS_BED_PROBE
  1291. const xyz_pos_t &zpo = probe.offset;
  1292. #else
  1293. xyz_pos_t zpo;
  1294. #endif
  1295. EEPROM_READ(zpo);
  1296. }
  1297. //
  1298. // Planar Bed Leveling matrix
  1299. //
  1300. {
  1301. #if ABL_PLANAR
  1302. EEPROM_READ(planner.bed_level_matrix);
  1303. #else
  1304. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1305. #endif
  1306. }
  1307. //
  1308. // Bilinear Auto Bed Leveling
  1309. //
  1310. {
  1311. uint8_t grid_max_x, grid_max_y;
  1312. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1313. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1314. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1315. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1316. if (!validating) set_bed_leveling_enabled(false);
  1317. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1318. EEPROM_READ(bilinear_start); // 2 ints
  1319. EEPROM_READ(z_values); // 9 to 256 floats
  1320. }
  1321. else // EEPROM data is stale
  1322. #endif // AUTO_BED_LEVELING_BILINEAR
  1323. {
  1324. // Skip past disabled (or stale) Bilinear Grid data
  1325. xy_pos_t bgs, bs;
  1326. EEPROM_READ(bgs);
  1327. EEPROM_READ(bs);
  1328. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1329. }
  1330. }
  1331. //
  1332. // Unified Bed Leveling active state
  1333. //
  1334. {
  1335. _FIELD_TEST(planner_leveling_active);
  1336. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1337. const bool &planner_leveling_active = planner.leveling_active;
  1338. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1339. #else
  1340. bool planner_leveling_active;
  1341. int8_t ubl_storage_slot;
  1342. #endif
  1343. EEPROM_READ(planner_leveling_active);
  1344. EEPROM_READ(ubl_storage_slot);
  1345. }
  1346. //
  1347. // SERVO_ANGLES
  1348. //
  1349. {
  1350. _FIELD_TEST(servo_angles);
  1351. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1352. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1353. #else
  1354. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1355. #endif
  1356. EEPROM_READ(servo_angles_arr);
  1357. }
  1358. //
  1359. // Thermal first layer compensation values
  1360. //
  1361. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1362. EEPROM_READ(temp_comp.z_offsets_probe);
  1363. EEPROM_READ(temp_comp.z_offsets_bed);
  1364. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1365. EEPROM_READ(temp_comp.z_offsets_ext);
  1366. #endif
  1367. temp_comp.reset_index();
  1368. #else
  1369. // No placeholder data for this feature
  1370. #endif
  1371. //
  1372. // BLTOUCH
  1373. //
  1374. {
  1375. _FIELD_TEST(bltouch_last_written_mode);
  1376. #if ENABLED(BLTOUCH)
  1377. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1378. #else
  1379. bool bltouch_last_written_mode;
  1380. #endif
  1381. EEPROM_READ(bltouch_last_written_mode);
  1382. }
  1383. //
  1384. // DELTA Geometry or Dual Endstops offsets
  1385. //
  1386. {
  1387. #if ENABLED(DELTA)
  1388. _FIELD_TEST(delta_height);
  1389. EEPROM_READ(delta_height); // 1 float
  1390. EEPROM_READ(delta_endstop_adj); // 3 floats
  1391. EEPROM_READ(delta_radius); // 1 float
  1392. EEPROM_READ(delta_diagonal_rod); // 1 float
  1393. EEPROM_READ(delta_segments_per_second); // 1 float
  1394. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1395. #elif HAS_EXTRA_ENDSTOPS
  1396. _FIELD_TEST(x2_endstop_adj);
  1397. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1398. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1399. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1400. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1401. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1402. #else
  1403. EEPROM_READ(dummyf);
  1404. #endif
  1405. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1406. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1407. #else
  1408. EEPROM_READ(dummyf);
  1409. #endif
  1410. #endif
  1411. }
  1412. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1413. EEPROM_READ(z_stepper_align.xy);
  1414. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1415. EEPROM_READ(z_stepper_align.stepper_xy);
  1416. #endif
  1417. #endif
  1418. //
  1419. // LCD Preheat settings
  1420. //
  1421. {
  1422. _FIELD_TEST(ui_preheat_hotend_temp);
  1423. #if HAS_HOTEND && HAS_LCD_MENU
  1424. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1425. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1426. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1427. #else
  1428. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1429. uint8_t ui_preheat_fan_speed[2];
  1430. #endif
  1431. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1432. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1433. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1434. }
  1435. //
  1436. // Hotend PID
  1437. //
  1438. {
  1439. HOTEND_LOOP() {
  1440. PIDCF_t pidcf;
  1441. EEPROM_READ(pidcf);
  1442. #if ENABLED(PIDTEMP)
  1443. if (!validating && !isnan(pidcf.Kp)) {
  1444. // Scale PID values since EEPROM values are unscaled
  1445. PID_PARAM(Kp, e) = pidcf.Kp;
  1446. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1447. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1448. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1449. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1450. }
  1451. #endif
  1452. }
  1453. }
  1454. //
  1455. // PID Extrusion Scaling
  1456. //
  1457. {
  1458. _FIELD_TEST(lpq_len);
  1459. #if ENABLED(PID_EXTRUSION_SCALING)
  1460. const int16_t &lpq_len = thermalManager.lpq_len;
  1461. #else
  1462. int16_t lpq_len;
  1463. #endif
  1464. EEPROM_READ(lpq_len);
  1465. }
  1466. //
  1467. // Heated Bed PID
  1468. //
  1469. {
  1470. PID_t pid;
  1471. EEPROM_READ(pid);
  1472. #if ENABLED(PIDTEMPBED)
  1473. if (!validating && !isnan(pid.Kp)) {
  1474. // Scale PID values since EEPROM values are unscaled
  1475. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1476. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1477. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1478. }
  1479. #endif
  1480. }
  1481. //
  1482. // User-defined Thermistors
  1483. //
  1484. #if HAS_USER_THERMISTORS
  1485. {
  1486. _FIELD_TEST(user_thermistor);
  1487. EEPROM_READ(thermalManager.user_thermistor);
  1488. }
  1489. #endif
  1490. //
  1491. // LCD Contrast
  1492. //
  1493. {
  1494. _FIELD_TEST(lcd_contrast);
  1495. int16_t lcd_contrast;
  1496. EEPROM_READ(lcd_contrast);
  1497. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1498. }
  1499. //
  1500. // Controller Fan
  1501. //
  1502. {
  1503. _FIELD_TEST(controllerFan_settings);
  1504. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1505. const controllerFan_settings_t &cfs = controllerFan.settings;
  1506. #else
  1507. controllerFan_settings_t cfs = { 0 };
  1508. #endif
  1509. EEPROM_READ(cfs);
  1510. }
  1511. //
  1512. // Power-Loss Recovery
  1513. //
  1514. {
  1515. _FIELD_TEST(recovery_enabled);
  1516. #if ENABLED(POWER_LOSS_RECOVERY)
  1517. const bool &recovery_enabled = recovery.enabled;
  1518. #else
  1519. bool recovery_enabled;
  1520. #endif
  1521. EEPROM_READ(recovery_enabled);
  1522. }
  1523. //
  1524. // Firmware Retraction
  1525. //
  1526. {
  1527. _FIELD_TEST(fwretract_settings);
  1528. #if ENABLED(FWRETRACT)
  1529. EEPROM_READ(fwretract.settings);
  1530. #else
  1531. fwretract_settings_t fwretract_settings;
  1532. EEPROM_READ(fwretract_settings);
  1533. #endif
  1534. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1535. EEPROM_READ(fwretract.autoretract_enabled);
  1536. #else
  1537. bool autoretract_enabled;
  1538. EEPROM_READ(autoretract_enabled);
  1539. #endif
  1540. }
  1541. //
  1542. // Volumetric & Filament Size
  1543. //
  1544. {
  1545. struct {
  1546. bool volumetric_enabled;
  1547. float filament_size[EXTRUDERS];
  1548. } storage;
  1549. _FIELD_TEST(parser_volumetric_enabled);
  1550. EEPROM_READ(storage);
  1551. #if DISABLED(NO_VOLUMETRICS)
  1552. if (!validating) {
  1553. parser.volumetric_enabled = storage.volumetric_enabled;
  1554. COPY(planner.filament_size, storage.filament_size);
  1555. }
  1556. #endif
  1557. }
  1558. //
  1559. // TMC Stepper Settings
  1560. //
  1561. if (!validating) reset_stepper_drivers();
  1562. // TMC Stepper Current
  1563. {
  1564. _FIELD_TEST(tmc_stepper_current);
  1565. tmc_stepper_current_t currents;
  1566. EEPROM_READ(currents);
  1567. #if HAS_TRINAMIC_CONFIG
  1568. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1569. if (!validating) {
  1570. #if AXIS_IS_TMC(X)
  1571. SET_CURR(X);
  1572. #endif
  1573. #if AXIS_IS_TMC(Y)
  1574. SET_CURR(Y);
  1575. #endif
  1576. #if AXIS_IS_TMC(Z)
  1577. SET_CURR(Z);
  1578. #endif
  1579. #if AXIS_IS_TMC(X2)
  1580. SET_CURR(X2);
  1581. #endif
  1582. #if AXIS_IS_TMC(Y2)
  1583. SET_CURR(Y2);
  1584. #endif
  1585. #if AXIS_IS_TMC(Z2)
  1586. SET_CURR(Z2);
  1587. #endif
  1588. #if AXIS_IS_TMC(Z3)
  1589. SET_CURR(Z3);
  1590. #endif
  1591. #if AXIS_IS_TMC(Z4)
  1592. SET_CURR(Z4);
  1593. #endif
  1594. #if AXIS_IS_TMC(E0)
  1595. SET_CURR(E0);
  1596. #endif
  1597. #if AXIS_IS_TMC(E1)
  1598. SET_CURR(E1);
  1599. #endif
  1600. #if AXIS_IS_TMC(E2)
  1601. SET_CURR(E2);
  1602. #endif
  1603. #if AXIS_IS_TMC(E3)
  1604. SET_CURR(E3);
  1605. #endif
  1606. #if AXIS_IS_TMC(E4)
  1607. SET_CURR(E4);
  1608. #endif
  1609. #if AXIS_IS_TMC(E5)
  1610. SET_CURR(E5);
  1611. #endif
  1612. #if AXIS_IS_TMC(E6)
  1613. SET_CURR(E6);
  1614. #endif
  1615. #if AXIS_IS_TMC(E7)
  1616. SET_CURR(E7);
  1617. #endif
  1618. }
  1619. #endif
  1620. }
  1621. // TMC Hybrid Threshold
  1622. {
  1623. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1624. _FIELD_TEST(tmc_hybrid_threshold);
  1625. EEPROM_READ(tmc_hybrid_threshold);
  1626. #if ENABLED(HYBRID_THRESHOLD)
  1627. if (!validating) {
  1628. #if AXIS_HAS_STEALTHCHOP(X)
  1629. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1630. #endif
  1631. #if AXIS_HAS_STEALTHCHOP(Y)
  1632. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1633. #endif
  1634. #if AXIS_HAS_STEALTHCHOP(Z)
  1635. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1636. #endif
  1637. #if AXIS_HAS_STEALTHCHOP(X2)
  1638. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1639. #endif
  1640. #if AXIS_HAS_STEALTHCHOP(Y2)
  1641. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1642. #endif
  1643. #if AXIS_HAS_STEALTHCHOP(Z2)
  1644. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1645. #endif
  1646. #if AXIS_HAS_STEALTHCHOP(Z3)
  1647. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1648. #endif
  1649. #if AXIS_HAS_STEALTHCHOP(Z4)
  1650. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1651. #endif
  1652. #if AXIS_HAS_STEALTHCHOP(E0)
  1653. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1654. #endif
  1655. #if AXIS_HAS_STEALTHCHOP(E1)
  1656. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1657. #endif
  1658. #if AXIS_HAS_STEALTHCHOP(E2)
  1659. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1660. #endif
  1661. #if AXIS_HAS_STEALTHCHOP(E3)
  1662. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1663. #endif
  1664. #if AXIS_HAS_STEALTHCHOP(E4)
  1665. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1666. #endif
  1667. #if AXIS_HAS_STEALTHCHOP(E5)
  1668. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1669. #endif
  1670. #if AXIS_HAS_STEALTHCHOP(E6)
  1671. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1672. #endif
  1673. #if AXIS_HAS_STEALTHCHOP(E7)
  1674. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1675. #endif
  1676. }
  1677. #endif
  1678. }
  1679. //
  1680. // TMC StallGuard threshold.
  1681. //
  1682. {
  1683. tmc_sgt_t tmc_sgt;
  1684. _FIELD_TEST(tmc_sgt);
  1685. EEPROM_READ(tmc_sgt);
  1686. #if USE_SENSORLESS
  1687. if (!validating) {
  1688. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1689. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1690. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1691. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1692. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1693. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1694. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1695. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1696. }
  1697. #endif
  1698. }
  1699. // TMC stepping mode
  1700. {
  1701. _FIELD_TEST(tmc_stealth_enabled);
  1702. tmc_stealth_enabled_t tmc_stealth_enabled;
  1703. EEPROM_READ(tmc_stealth_enabled);
  1704. #if HAS_TRINAMIC_CONFIG
  1705. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1706. if (!validating) {
  1707. #if AXIS_HAS_STEALTHCHOP(X)
  1708. SET_STEPPING_MODE(X);
  1709. #endif
  1710. #if AXIS_HAS_STEALTHCHOP(Y)
  1711. SET_STEPPING_MODE(Y);
  1712. #endif
  1713. #if AXIS_HAS_STEALTHCHOP(Z)
  1714. SET_STEPPING_MODE(Z);
  1715. #endif
  1716. #if AXIS_HAS_STEALTHCHOP(X2)
  1717. SET_STEPPING_MODE(X2);
  1718. #endif
  1719. #if AXIS_HAS_STEALTHCHOP(Y2)
  1720. SET_STEPPING_MODE(Y2);
  1721. #endif
  1722. #if AXIS_HAS_STEALTHCHOP(Z2)
  1723. SET_STEPPING_MODE(Z2);
  1724. #endif
  1725. #if AXIS_HAS_STEALTHCHOP(Z3)
  1726. SET_STEPPING_MODE(Z3);
  1727. #endif
  1728. #if AXIS_HAS_STEALTHCHOP(Z4)
  1729. SET_STEPPING_MODE(Z4);
  1730. #endif
  1731. #if AXIS_HAS_STEALTHCHOP(E0)
  1732. SET_STEPPING_MODE(E0);
  1733. #endif
  1734. #if AXIS_HAS_STEALTHCHOP(E1)
  1735. SET_STEPPING_MODE(E1);
  1736. #endif
  1737. #if AXIS_HAS_STEALTHCHOP(E2)
  1738. SET_STEPPING_MODE(E2);
  1739. #endif
  1740. #if AXIS_HAS_STEALTHCHOP(E3)
  1741. SET_STEPPING_MODE(E3);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(E4)
  1744. SET_STEPPING_MODE(E4);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(E5)
  1747. SET_STEPPING_MODE(E5);
  1748. #endif
  1749. #if AXIS_HAS_STEALTHCHOP(E6)
  1750. SET_STEPPING_MODE(E6);
  1751. #endif
  1752. #if AXIS_HAS_STEALTHCHOP(E7)
  1753. SET_STEPPING_MODE(E7);
  1754. #endif
  1755. }
  1756. #endif
  1757. }
  1758. //
  1759. // Linear Advance
  1760. //
  1761. {
  1762. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1763. _FIELD_TEST(planner_extruder_advance_K);
  1764. EEPROM_READ(extruder_advance_K);
  1765. #if ENABLED(LIN_ADVANCE)
  1766. if (!validating)
  1767. COPY(planner.extruder_advance_K, extruder_advance_K);
  1768. #endif
  1769. }
  1770. //
  1771. // Motor Current PWM
  1772. //
  1773. {
  1774. uint32_t motor_current_setting[3];
  1775. _FIELD_TEST(motor_current_setting);
  1776. EEPROM_READ(motor_current_setting);
  1777. #if HAS_MOTOR_CURRENT_PWM
  1778. if (!validating)
  1779. COPY(stepper.motor_current_setting, motor_current_setting);
  1780. #endif
  1781. }
  1782. //
  1783. // CNC Coordinate System
  1784. //
  1785. {
  1786. _FIELD_TEST(coordinate_system);
  1787. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1788. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1789. EEPROM_READ(gcode.coordinate_system);
  1790. #else
  1791. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1792. EEPROM_READ(coordinate_system);
  1793. #endif
  1794. }
  1795. //
  1796. // Skew correction factors
  1797. //
  1798. {
  1799. skew_factor_t skew_factor;
  1800. _FIELD_TEST(planner_skew_factor);
  1801. EEPROM_READ(skew_factor);
  1802. #if ENABLED(SKEW_CORRECTION_GCODE)
  1803. if (!validating) {
  1804. planner.skew_factor.xy = skew_factor.xy;
  1805. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1806. planner.skew_factor.xz = skew_factor.xz;
  1807. planner.skew_factor.yz = skew_factor.yz;
  1808. #endif
  1809. }
  1810. #endif
  1811. }
  1812. //
  1813. // Advanced Pause filament load & unload lengths
  1814. //
  1815. #if EXTRUDERS
  1816. {
  1817. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1818. fil_change_settings_t fc_settings[EXTRUDERS];
  1819. #endif
  1820. _FIELD_TEST(fc_settings);
  1821. EEPROM_READ(fc_settings);
  1822. }
  1823. #endif
  1824. //
  1825. // Tool-change settings
  1826. //
  1827. #if EXTRUDERS > 1
  1828. _FIELD_TEST(toolchange_settings);
  1829. EEPROM_READ(toolchange_settings);
  1830. #endif
  1831. //
  1832. // Backlash Compensation
  1833. //
  1834. {
  1835. #if ENABLED(BACKLASH_GCODE)
  1836. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1837. const uint8_t &backlash_correction = backlash.correction;
  1838. #else
  1839. float backlash_distance_mm[XYZ];
  1840. uint8_t backlash_correction;
  1841. #endif
  1842. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1843. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1844. #else
  1845. float backlash_smoothing_mm;
  1846. #endif
  1847. _FIELD_TEST(backlash_distance_mm);
  1848. EEPROM_READ(backlash_distance_mm);
  1849. EEPROM_READ(backlash_correction);
  1850. EEPROM_READ(backlash_smoothing_mm);
  1851. }
  1852. //
  1853. // Extensible UI User Data
  1854. //
  1855. #if ENABLED(EXTENSIBLE_UI)
  1856. // This is a significant hardware change; don't reserve EEPROM space when not present
  1857. {
  1858. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1859. _FIELD_TEST(extui_data);
  1860. EEPROM_READ(extui_data);
  1861. if (!validating) ExtUI::onLoadSettings(extui_data);
  1862. }
  1863. #endif
  1864. //
  1865. // Case Light Brightness
  1866. //
  1867. #if HAS_CASE_LIGHT_BRIGHTNESS
  1868. _FIELD_TEST(case_light_brightness);
  1869. EEPROM_READ(case_light_brightness);
  1870. #endif
  1871. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1872. if (eeprom_error) {
  1873. DEBUG_ECHO_START();
  1874. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1875. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
  1876. }
  1877. else if (working_crc != stored_crc) {
  1878. eeprom_error = true;
  1879. DEBUG_ERROR_START();
  1880. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1881. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
  1882. }
  1883. else if (!validating) {
  1884. DEBUG_ECHO_START();
  1885. DEBUG_ECHO(version);
  1886. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1887. }
  1888. if (!validating && !eeprom_error) postprocess();
  1889. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1890. if (!validating) {
  1891. ubl.report_state();
  1892. if (!ubl.sanity_check()) {
  1893. SERIAL_EOL();
  1894. #if ENABLED(EEPROM_CHITCHAT)
  1895. ubl.echo_name();
  1896. DEBUG_ECHOLNPGM(" initialized.\n");
  1897. #endif
  1898. }
  1899. else {
  1900. eeprom_error = true;
  1901. #if ENABLED(EEPROM_CHITCHAT)
  1902. DEBUG_ECHOPGM("?Can't enable ");
  1903. ubl.echo_name();
  1904. DEBUG_ECHOLNPGM(".");
  1905. #endif
  1906. ubl.reset();
  1907. }
  1908. if (ubl.storage_slot >= 0) {
  1909. load_mesh(ubl.storage_slot);
  1910. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1911. }
  1912. else {
  1913. ubl.reset();
  1914. DEBUG_ECHOLNPGM("UBL reset");
  1915. }
  1916. }
  1917. #endif
  1918. }
  1919. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1920. // Report the EEPROM settings
  1921. if (!validating && (DISABLED(EEPROM_BOOT_SILENT) || IsRunning())) report();
  1922. #endif
  1923. EEPROM_FINISH();
  1924. return !eeprom_error;
  1925. }
  1926. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1927. extern bool restoreEEPROM();
  1928. #endif
  1929. bool MarlinSettings::validate() {
  1930. validating = true;
  1931. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1932. bool success = _load();
  1933. if (!success && restoreEEPROM()) {
  1934. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  1935. success = _load();
  1936. }
  1937. #else
  1938. const bool success = _load();
  1939. #endif
  1940. validating = false;
  1941. return success;
  1942. }
  1943. bool MarlinSettings::load() {
  1944. if (validate()) {
  1945. const bool success = _load();
  1946. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  1947. return success;
  1948. }
  1949. reset();
  1950. #if ENABLED(EEPROM_AUTO_INIT)
  1951. (void)save();
  1952. SERIAL_ECHO_MSG("EEPROM Initialized");
  1953. #endif
  1954. return false;
  1955. }
  1956. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1957. inline void ubl_invalid_slot(const int s) {
  1958. #if ENABLED(EEPROM_CHITCHAT)
  1959. DEBUG_ECHOLNPGM("?Invalid slot.");
  1960. DEBUG_ECHO(s);
  1961. DEBUG_ECHOLNPGM(" mesh slots available.");
  1962. #else
  1963. UNUSED(s);
  1964. #endif
  1965. }
  1966. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1967. // is a placeholder for the size of the MAT; the MAT will always
  1968. // live at the very end of the eeprom
  1969. uint16_t MarlinSettings::meshes_start_index() {
  1970. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1971. // or down a little bit without disrupting the mesh data
  1972. }
  1973. uint16_t MarlinSettings::calc_num_meshes() {
  1974. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1975. }
  1976. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1977. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1978. }
  1979. void MarlinSettings::store_mesh(const int8_t slot) {
  1980. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1981. const int16_t a = calc_num_meshes();
  1982. if (!WITHIN(slot, 0, a - 1)) {
  1983. ubl_invalid_slot(a);
  1984. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1985. DEBUG_EOL();
  1986. return;
  1987. }
  1988. int pos = mesh_slot_offset(slot);
  1989. uint16_t crc = 0;
  1990. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1991. persistentStore.access_start();
  1992. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1993. persistentStore.access_finish();
  1994. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1995. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1996. #else
  1997. // Other mesh types
  1998. #endif
  1999. }
  2000. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2001. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2002. const int16_t a = settings.calc_num_meshes();
  2003. if (!WITHIN(slot, 0, a - 1)) {
  2004. ubl_invalid_slot(a);
  2005. return;
  2006. }
  2007. int pos = mesh_slot_offset(slot);
  2008. uint16_t crc = 0;
  2009. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2010. persistentStore.access_start();
  2011. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2012. persistentStore.access_finish();
  2013. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2014. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2015. EEPROM_FINISH();
  2016. #else
  2017. // Other mesh types
  2018. #endif
  2019. }
  2020. //void MarlinSettings::delete_mesh() { return; }
  2021. //void MarlinSettings::defrag_meshes() { return; }
  2022. #endif // AUTO_BED_LEVELING_UBL
  2023. #else // !EEPROM_SETTINGS
  2024. bool MarlinSettings::save() {
  2025. DEBUG_ERROR_MSG("EEPROM disabled");
  2026. return false;
  2027. }
  2028. #endif // !EEPROM_SETTINGS
  2029. /**
  2030. * M502 - Reset Configuration
  2031. */
  2032. void MarlinSettings::reset() {
  2033. LOOP_XYZE_N(i) {
  2034. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2035. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2036. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2037. }
  2038. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2039. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2040. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2041. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2042. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2043. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2044. #if HAS_CLASSIC_JERK
  2045. #ifndef DEFAULT_XJERK
  2046. #define DEFAULT_XJERK 0
  2047. #endif
  2048. #ifndef DEFAULT_YJERK
  2049. #define DEFAULT_YJERK 0
  2050. #endif
  2051. #ifndef DEFAULT_ZJERK
  2052. #define DEFAULT_ZJERK 0
  2053. #endif
  2054. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2055. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2056. #endif
  2057. #if HAS_JUNCTION_DEVIATION
  2058. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2059. #endif
  2060. #if HAS_SCARA_OFFSET
  2061. scara_home_offset.reset();
  2062. #elif HAS_HOME_OFFSET
  2063. home_offset.reset();
  2064. #endif
  2065. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2066. //
  2067. // Filament Runout Sensor
  2068. //
  2069. #if HAS_FILAMENT_SENSOR
  2070. runout.enabled = true;
  2071. runout.reset();
  2072. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  2073. runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM);
  2074. #endif
  2075. #endif
  2076. //
  2077. // Tool-change Settings
  2078. //
  2079. #if EXTRUDERS > 1
  2080. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2081. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2082. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2083. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2084. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2085. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2086. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2087. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2088. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2089. #endif
  2090. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2091. enable_first_prime = false;
  2092. #endif
  2093. #if ENABLED(TOOLCHANGE_PARK)
  2094. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2095. toolchange_settings.enable_park = true;
  2096. toolchange_settings.change_point = tpxy;
  2097. #endif
  2098. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2099. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2100. migration = migration_defaults;
  2101. #endif
  2102. #endif
  2103. #if ENABLED(BACKLASH_GCODE)
  2104. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2105. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2106. backlash.distance_mm = tmp;
  2107. #ifdef BACKLASH_SMOOTHING_MM
  2108. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2109. #endif
  2110. #endif
  2111. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2112. //
  2113. // Case Light Brightness
  2114. //
  2115. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2116. //
  2117. // Magnetic Parking Extruder
  2118. //
  2119. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2120. //
  2121. // Global Leveling
  2122. //
  2123. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2124. TERN_(HAS_LEVELING, reset_bed_level());
  2125. #if HAS_BED_PROBE
  2126. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2127. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2128. #if HAS_PROBE_XY_OFFSET
  2129. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2130. #else
  2131. probe.offset.x = probe.offset.y = 0;
  2132. probe.offset.z = dpo[Z_AXIS];
  2133. #endif
  2134. #endif
  2135. //
  2136. // Z Stepper Auto-alignment points
  2137. //
  2138. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2139. //
  2140. // Servo Angles
  2141. //
  2142. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2143. //
  2144. // BLTOUCH
  2145. //
  2146. //#if ENABLED(BLTOUCH)
  2147. // bltouch.last_written_mode;
  2148. //#endif
  2149. //
  2150. // Endstop Adjustments
  2151. //
  2152. #if ENABLED(DELTA)
  2153. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM;
  2154. delta_height = DELTA_HEIGHT;
  2155. delta_endstop_adj = adj;
  2156. delta_radius = DELTA_RADIUS;
  2157. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2158. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2159. delta_tower_angle_trim = dta;
  2160. #endif
  2161. #if ENABLED(X_DUAL_ENDSTOPS)
  2162. #ifndef X2_ENDSTOP_ADJUSTMENT
  2163. #define X2_ENDSTOP_ADJUSTMENT 0
  2164. #endif
  2165. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2166. #endif
  2167. #if ENABLED(Y_DUAL_ENDSTOPS)
  2168. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2169. #define Y2_ENDSTOP_ADJUSTMENT 0
  2170. #endif
  2171. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2172. #endif
  2173. #if ENABLED(Z_MULTI_ENDSTOPS)
  2174. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2175. #define Z2_ENDSTOP_ADJUSTMENT 0
  2176. #endif
  2177. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2178. #if NUM_Z_STEPPER_DRIVERS >= 3
  2179. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2180. #define Z3_ENDSTOP_ADJUSTMENT 0
  2181. #endif
  2182. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2183. #endif
  2184. #if NUM_Z_STEPPER_DRIVERS >= 4
  2185. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2186. #define Z4_ENDSTOP_ADJUSTMENT 0
  2187. #endif
  2188. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2189. #endif
  2190. #endif
  2191. //
  2192. // Preheat parameters
  2193. //
  2194. #if HAS_HOTEND && HAS_LCD_MENU
  2195. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  2196. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  2197. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  2198. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  2199. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  2200. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  2201. #endif
  2202. //
  2203. // Hotend PID
  2204. //
  2205. #if ENABLED(PIDTEMP)
  2206. HOTEND_LOOP() {
  2207. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  2208. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  2209. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  2210. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = DEFAULT_Kc);
  2211. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = DEFAULT_Kf);
  2212. }
  2213. #endif
  2214. //
  2215. // PID Extrusion Scaling
  2216. //
  2217. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2218. //
  2219. // Heated Bed PID
  2220. //
  2221. #if ENABLED(PIDTEMPBED)
  2222. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2223. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2224. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2225. #endif
  2226. //
  2227. // User-Defined Thermistors
  2228. //
  2229. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2230. //
  2231. // LCD Contrast
  2232. //
  2233. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2234. //
  2235. // Controller Fan
  2236. //
  2237. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2238. //
  2239. // Power-Loss Recovery
  2240. //
  2241. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2242. //
  2243. // Firmware Retraction
  2244. //
  2245. TERN_(FWRETRACT, fwretract.reset());
  2246. //
  2247. // Volumetric & Filament Size
  2248. //
  2249. #if DISABLED(NO_VOLUMETRICS)
  2250. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2251. LOOP_L_N(q, COUNT(planner.filament_size))
  2252. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2253. #endif
  2254. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2255. reset_stepper_drivers();
  2256. //
  2257. // Linear Advance
  2258. //
  2259. #if ENABLED(LIN_ADVANCE)
  2260. LOOP_L_N(i, EXTRUDERS) {
  2261. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2262. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2263. }
  2264. #endif
  2265. //
  2266. // Motor Current PWM
  2267. //
  2268. #if HAS_MOTOR_CURRENT_PWM
  2269. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2270. LOOP_L_N(q, 3)
  2271. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2272. #endif
  2273. //
  2274. // CNC Coordinate System
  2275. //
  2276. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2277. //
  2278. // Skew Correction
  2279. //
  2280. #if ENABLED(SKEW_CORRECTION_GCODE)
  2281. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2282. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2283. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2284. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2285. #endif
  2286. #endif
  2287. //
  2288. // Advanced Pause filament load & unload lengths
  2289. //
  2290. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2291. LOOP_L_N(e, EXTRUDERS) {
  2292. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2293. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2294. }
  2295. #endif
  2296. postprocess();
  2297. DEBUG_ECHO_START();
  2298. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2299. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2300. }
  2301. #if DISABLED(DISABLE_M503)
  2302. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2303. if (!repl) {
  2304. SERIAL_ECHO_START();
  2305. SERIAL_ECHOPGM("; ");
  2306. serialprintPGM(pstr);
  2307. if (eol) SERIAL_EOL();
  2308. }
  2309. }
  2310. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2311. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2312. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2313. #if HAS_TRINAMIC_CONFIG
  2314. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2315. #if HAS_STEALTHCHOP
  2316. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2317. CONFIG_ECHO_START();
  2318. SERIAL_ECHOPGM(" M569 S1");
  2319. if (etc) {
  2320. SERIAL_CHAR(' ');
  2321. serialprintPGM(etc);
  2322. }
  2323. if (newLine) SERIAL_EOL();
  2324. }
  2325. #endif
  2326. #if ENABLED(HYBRID_THRESHOLD)
  2327. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2328. #endif
  2329. #if USE_SENSORLESS
  2330. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2331. #endif
  2332. #endif
  2333. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2334. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2335. #endif
  2336. inline void say_units(const bool colon) {
  2337. serialprintPGM(
  2338. #if ENABLED(INCH_MODE_SUPPORT)
  2339. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2340. #endif
  2341. PSTR(" (mm)")
  2342. );
  2343. if (colon) SERIAL_ECHOLNPGM(":");
  2344. }
  2345. void report_M92(const bool echo=true, const int8_t e=-1);
  2346. /**
  2347. * M503 - Report current settings in RAM
  2348. *
  2349. * Unless specifically disabled, M503 is available even without EEPROM
  2350. */
  2351. void MarlinSettings::report(const bool forReplay) {
  2352. /**
  2353. * Announce current units, in case inches are being displayed
  2354. */
  2355. CONFIG_ECHO_START();
  2356. #if ENABLED(INCH_MODE_SUPPORT)
  2357. SERIAL_ECHOPGM(" G2");
  2358. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2359. SERIAL_ECHOPGM(" ;");
  2360. say_units(false);
  2361. #else
  2362. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2363. say_units(false);
  2364. #endif
  2365. SERIAL_EOL();
  2366. #if HAS_LCD_MENU
  2367. // Temperature units - for Ultipanel temperature options
  2368. CONFIG_ECHO_START();
  2369. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2370. SERIAL_ECHOPGM(" M149 ");
  2371. SERIAL_CHAR(parser.temp_units_code());
  2372. SERIAL_ECHOPGM(" ; Units in ");
  2373. serialprintPGM(parser.temp_units_name());
  2374. #else
  2375. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2376. #endif
  2377. #endif
  2378. SERIAL_EOL();
  2379. #if DISABLED(NO_VOLUMETRICS)
  2380. /**
  2381. * Volumetric extrusion M200
  2382. */
  2383. if (!forReplay) {
  2384. config_heading(forReplay, PSTR("Filament settings:"), false);
  2385. if (parser.volumetric_enabled)
  2386. SERIAL_EOL();
  2387. else
  2388. SERIAL_ECHOLNPGM(" Disabled");
  2389. }
  2390. #if EXTRUDERS == 1
  2391. CONFIG_ECHO_START();
  2392. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2393. #elif EXTRUDERS
  2394. LOOP_L_N(i, EXTRUDERS) {
  2395. CONFIG_ECHO_START();
  2396. SERIAL_ECHOPGM(" M200");
  2397. if (i) SERIAL_ECHOPAIR_P(SP_T_STR, int(i));
  2398. SERIAL_ECHOLNPAIR(" D", LINEAR_UNIT(planner.filament_size[i]));
  2399. }
  2400. #endif
  2401. if (!parser.volumetric_enabled)
  2402. CONFIG_ECHO_MSG(" M200 D0");
  2403. #endif // !NO_VOLUMETRICS
  2404. CONFIG_ECHO_HEADING("Steps per unit:");
  2405. report_M92(!forReplay);
  2406. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2407. CONFIG_ECHO_START();
  2408. SERIAL_ECHOLNPAIR_P(
  2409. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2410. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2411. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2412. #if DISABLED(DISTINCT_E_FACTORS)
  2413. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2414. #endif
  2415. );
  2416. #if ENABLED(DISTINCT_E_FACTORS)
  2417. LOOP_L_N(i, E_STEPPERS) {
  2418. CONFIG_ECHO_START();
  2419. SERIAL_ECHOLNPAIR_P(
  2420. PSTR(" M203 T"), (int)i
  2421. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2422. );
  2423. }
  2424. #endif
  2425. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2426. CONFIG_ECHO_START();
  2427. SERIAL_ECHOLNPAIR_P(
  2428. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2429. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2430. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2431. #if DISABLED(DISTINCT_E_FACTORS)
  2432. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2433. #endif
  2434. );
  2435. #if ENABLED(DISTINCT_E_FACTORS)
  2436. LOOP_L_N(i, E_STEPPERS) {
  2437. CONFIG_ECHO_START();
  2438. SERIAL_ECHOLNPAIR_P(
  2439. PSTR(" M201 T"), (int)i
  2440. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2441. );
  2442. }
  2443. #endif
  2444. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2445. CONFIG_ECHO_START();
  2446. SERIAL_ECHOLNPAIR_P(
  2447. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2448. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2449. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2450. );
  2451. CONFIG_ECHO_HEADING(
  2452. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2453. #if HAS_JUNCTION_DEVIATION
  2454. " J<junc_dev>"
  2455. #endif
  2456. #if HAS_CLASSIC_JERK
  2457. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2458. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2459. #endif
  2460. );
  2461. CONFIG_ECHO_START();
  2462. SERIAL_ECHOLNPAIR_P(
  2463. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2464. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2465. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2466. #if HAS_JUNCTION_DEVIATION
  2467. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2468. #endif
  2469. #if HAS_CLASSIC_JERK
  2470. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2471. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2472. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2473. #if HAS_CLASSIC_E_JERK
  2474. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2475. #endif
  2476. #endif
  2477. );
  2478. #if HAS_M206_COMMAND
  2479. CONFIG_ECHO_HEADING("Home offset:");
  2480. CONFIG_ECHO_START();
  2481. SERIAL_ECHOLNPAIR_P(
  2482. #if IS_CARTESIAN
  2483. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2484. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2485. , SP_Z_STR
  2486. #else
  2487. PSTR(" M206 Z")
  2488. #endif
  2489. , LINEAR_UNIT(home_offset.z)
  2490. );
  2491. #endif
  2492. #if HAS_HOTEND_OFFSET
  2493. CONFIG_ECHO_HEADING("Hotend offsets:");
  2494. CONFIG_ECHO_START();
  2495. LOOP_S_L_N(e, 1, HOTENDS) {
  2496. SERIAL_ECHOPAIR_P(
  2497. PSTR(" M218 T"), (int)e,
  2498. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2499. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2500. );
  2501. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2502. }
  2503. #endif
  2504. /**
  2505. * Bed Leveling
  2506. */
  2507. #if HAS_LEVELING
  2508. #if ENABLED(MESH_BED_LEVELING)
  2509. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2510. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2511. config_heading(forReplay, PSTR(""), false);
  2512. if (!forReplay) {
  2513. ubl.echo_name();
  2514. SERIAL_CHAR(':');
  2515. SERIAL_EOL();
  2516. }
  2517. #elif HAS_ABL_OR_UBL
  2518. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2519. #endif
  2520. CONFIG_ECHO_START();
  2521. SERIAL_ECHOLNPAIR_P(
  2522. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2523. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2524. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2525. #endif
  2526. );
  2527. #if ENABLED(MESH_BED_LEVELING)
  2528. if (leveling_is_valid()) {
  2529. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2530. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2531. CONFIG_ECHO_START();
  2532. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2533. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2534. }
  2535. }
  2536. CONFIG_ECHO_START();
  2537. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2538. }
  2539. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2540. if (!forReplay) {
  2541. SERIAL_EOL();
  2542. ubl.report_state();
  2543. SERIAL_EOL();
  2544. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2545. SERIAL_ECHOLN(ubl.storage_slot);
  2546. config_heading(false, PSTR("EEPROM can hold "), false);
  2547. SERIAL_ECHO(calc_num_meshes());
  2548. SERIAL_ECHOLNPGM(" meshes.\n");
  2549. }
  2550. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2551. // solution needs to be found.
  2552. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2553. if (leveling_is_valid()) {
  2554. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2555. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2556. CONFIG_ECHO_START();
  2557. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2558. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2559. }
  2560. }
  2561. }
  2562. #endif
  2563. #endif // HAS_LEVELING
  2564. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2565. CONFIG_ECHO_HEADING("Servo Angles:");
  2566. LOOP_L_N(i, NUM_SERVOS) {
  2567. switch (i) {
  2568. #if ENABLED(SWITCHING_EXTRUDER)
  2569. case SWITCHING_EXTRUDER_SERVO_NR:
  2570. #if EXTRUDERS > 3
  2571. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2572. #endif
  2573. #elif ENABLED(SWITCHING_NOZZLE)
  2574. case SWITCHING_NOZZLE_SERVO_NR:
  2575. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2576. case Z_PROBE_SERVO_NR:
  2577. #endif
  2578. CONFIG_ECHO_START();
  2579. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2580. default: break;
  2581. }
  2582. }
  2583. #endif // EDITABLE_SERVO_ANGLES
  2584. #if HAS_SCARA_OFFSET
  2585. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2586. CONFIG_ECHO_START();
  2587. SERIAL_ECHOLNPAIR_P(
  2588. PSTR(" M665 S"), delta_segments_per_second
  2589. , SP_P_STR, scara_home_offset.a
  2590. , SP_T_STR, scara_home_offset.b
  2591. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2592. );
  2593. #elif ENABLED(DELTA)
  2594. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2595. CONFIG_ECHO_START();
  2596. SERIAL_ECHOLNPAIR_P(
  2597. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2598. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2599. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2600. );
  2601. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> XYZ<tower angle corrections>");
  2602. CONFIG_ECHO_START();
  2603. SERIAL_ECHOLNPAIR_P(
  2604. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2605. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2606. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2607. , PSTR(" S"), delta_segments_per_second
  2608. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2609. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2610. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2611. );
  2612. #elif HAS_EXTRA_ENDSTOPS
  2613. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2614. CONFIG_ECHO_START();
  2615. SERIAL_ECHOPGM(" M666");
  2616. #if ENABLED(X_DUAL_ENDSTOPS)
  2617. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2618. #endif
  2619. #if ENABLED(Y_DUAL_ENDSTOPS)
  2620. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2621. #endif
  2622. #if ENABLED(Z_MULTI_ENDSTOPS)
  2623. #if NUM_Z_STEPPER_DRIVERS >= 3
  2624. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2625. CONFIG_ECHO_START();
  2626. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2627. #if NUM_Z_STEPPER_DRIVERS >= 4
  2628. CONFIG_ECHO_START();
  2629. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2630. #endif
  2631. #else
  2632. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2633. #endif
  2634. #endif
  2635. #endif // [XYZ]_DUAL_ENDSTOPS
  2636. #if HAS_HOTEND && HAS_LCD_MENU
  2637. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2638. LOOP_L_N(i, COUNT(ui.preheat_hotend_temp)) {
  2639. CONFIG_ECHO_START();
  2640. SERIAL_ECHOLNPAIR(
  2641. " M145 S", (int)i
  2642. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2643. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2644. , " F", int(ui.preheat_fan_speed[i])
  2645. );
  2646. }
  2647. #endif
  2648. #if HAS_PID_HEATING
  2649. CONFIG_ECHO_HEADING("PID settings:");
  2650. #if ENABLED(PIDTEMP)
  2651. HOTEND_LOOP() {
  2652. CONFIG_ECHO_START();
  2653. SERIAL_ECHOPAIR_P(
  2654. #if BOTH(HAS_MULTI_HOTEND, PID_PARAMS_PER_HOTEND)
  2655. PSTR(" M301 E"), e,
  2656. SP_P_STR
  2657. #else
  2658. PSTR(" M301 P")
  2659. #endif
  2660. , PID_PARAM(Kp, e)
  2661. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2662. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2663. );
  2664. #if ENABLED(PID_EXTRUSION_SCALING)
  2665. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2666. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2667. #endif
  2668. #if ENABLED(PID_FAN_SCALING)
  2669. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2670. #endif
  2671. SERIAL_EOL();
  2672. }
  2673. #endif // PIDTEMP
  2674. #if ENABLED(PIDTEMPBED)
  2675. CONFIG_ECHO_START();
  2676. SERIAL_ECHOLNPAIR(
  2677. " M304 P", thermalManager.temp_bed.pid.Kp
  2678. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2679. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2680. );
  2681. #endif
  2682. #endif // PIDTEMP || PIDTEMPBED
  2683. #if HAS_USER_THERMISTORS
  2684. CONFIG_ECHO_HEADING("User thermistors:");
  2685. LOOP_L_N(i, USER_THERMISTORS)
  2686. thermalManager.log_user_thermistor(i, true);
  2687. #endif
  2688. #if HAS_LCD_CONTRAST
  2689. CONFIG_ECHO_HEADING("LCD Contrast:");
  2690. CONFIG_ECHO_START();
  2691. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2692. #endif
  2693. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2694. #if ENABLED(POWER_LOSS_RECOVERY)
  2695. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2696. CONFIG_ECHO_START();
  2697. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2698. #endif
  2699. #if ENABLED(FWRETRACT)
  2700. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2701. CONFIG_ECHO_START();
  2702. SERIAL_ECHOLNPAIR_P(
  2703. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2704. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2705. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2706. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2707. );
  2708. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2709. CONFIG_ECHO_START();
  2710. SERIAL_ECHOLNPAIR(
  2711. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2712. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2713. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2714. );
  2715. #if ENABLED(FWRETRACT_AUTORETRACT)
  2716. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2717. CONFIG_ECHO_START();
  2718. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2719. #endif // FWRETRACT_AUTORETRACT
  2720. #endif // FWRETRACT
  2721. /**
  2722. * Probe Offset
  2723. */
  2724. #if HAS_BED_PROBE
  2725. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2726. if (!forReplay) say_units(true);
  2727. CONFIG_ECHO_START();
  2728. SERIAL_ECHOLNPAIR_P(
  2729. #if HAS_PROBE_XY_OFFSET
  2730. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2731. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2732. SP_Z_STR
  2733. #else
  2734. PSTR(" M851 X0 Y0 Z")
  2735. #endif
  2736. , LINEAR_UNIT(probe.offset.z)
  2737. );
  2738. #endif
  2739. /**
  2740. * Bed Skew Correction
  2741. */
  2742. #if ENABLED(SKEW_CORRECTION_GCODE)
  2743. CONFIG_ECHO_HEADING("Skew Factor: ");
  2744. CONFIG_ECHO_START();
  2745. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2746. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2747. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2748. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2749. #else
  2750. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2751. #endif
  2752. #endif
  2753. #if HAS_TRINAMIC_CONFIG
  2754. /**
  2755. * TMC stepper driver current
  2756. */
  2757. CONFIG_ECHO_HEADING("Stepper driver current:");
  2758. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2759. say_M906(forReplay);
  2760. #if AXIS_IS_TMC(X)
  2761. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2762. #endif
  2763. #if AXIS_IS_TMC(Y)
  2764. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2765. #endif
  2766. #if AXIS_IS_TMC(Z)
  2767. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2768. #endif
  2769. SERIAL_EOL();
  2770. #endif
  2771. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2772. say_M906(forReplay);
  2773. SERIAL_ECHOPGM(" I1");
  2774. #if AXIS_IS_TMC(X2)
  2775. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2776. #endif
  2777. #if AXIS_IS_TMC(Y2)
  2778. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2779. #endif
  2780. #if AXIS_IS_TMC(Z2)
  2781. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2782. #endif
  2783. SERIAL_EOL();
  2784. #endif
  2785. #if AXIS_IS_TMC(Z3)
  2786. say_M906(forReplay);
  2787. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2788. #endif
  2789. #if AXIS_IS_TMC(Z4)
  2790. say_M906(forReplay);
  2791. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2792. #endif
  2793. #if AXIS_IS_TMC(E0)
  2794. say_M906(forReplay);
  2795. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2796. #endif
  2797. #if AXIS_IS_TMC(E1)
  2798. say_M906(forReplay);
  2799. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2800. #endif
  2801. #if AXIS_IS_TMC(E2)
  2802. say_M906(forReplay);
  2803. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2804. #endif
  2805. #if AXIS_IS_TMC(E3)
  2806. say_M906(forReplay);
  2807. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2808. #endif
  2809. #if AXIS_IS_TMC(E4)
  2810. say_M906(forReplay);
  2811. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2812. #endif
  2813. #if AXIS_IS_TMC(E5)
  2814. say_M906(forReplay);
  2815. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2816. #endif
  2817. #if AXIS_IS_TMC(E6)
  2818. say_M906(forReplay);
  2819. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  2820. #endif
  2821. #if AXIS_IS_TMC(E7)
  2822. say_M906(forReplay);
  2823. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  2824. #endif
  2825. SERIAL_EOL();
  2826. /**
  2827. * TMC Hybrid Threshold
  2828. */
  2829. #if ENABLED(HYBRID_THRESHOLD)
  2830. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2831. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2832. say_M913(forReplay);
  2833. #if AXIS_HAS_STEALTHCHOP(X)
  2834. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  2835. #endif
  2836. #if AXIS_HAS_STEALTHCHOP(Y)
  2837. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  2838. #endif
  2839. #if AXIS_HAS_STEALTHCHOP(Z)
  2840. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  2841. #endif
  2842. SERIAL_EOL();
  2843. #endif
  2844. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2845. say_M913(forReplay);
  2846. SERIAL_ECHOPGM(" I1");
  2847. #if AXIS_HAS_STEALTHCHOP(X2)
  2848. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  2849. #endif
  2850. #if AXIS_HAS_STEALTHCHOP(Y2)
  2851. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  2852. #endif
  2853. #if AXIS_HAS_STEALTHCHOP(Z2)
  2854. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  2855. #endif
  2856. SERIAL_EOL();
  2857. #endif
  2858. #if AXIS_HAS_STEALTHCHOP(Z3)
  2859. say_M913(forReplay);
  2860. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  2861. #endif
  2862. #if AXIS_HAS_STEALTHCHOP(Z4)
  2863. say_M913(forReplay);
  2864. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  2865. #endif
  2866. #if AXIS_HAS_STEALTHCHOP(E0)
  2867. say_M913(forReplay);
  2868. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  2869. #endif
  2870. #if AXIS_HAS_STEALTHCHOP(E1)
  2871. say_M913(forReplay);
  2872. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  2873. #endif
  2874. #if AXIS_HAS_STEALTHCHOP(E2)
  2875. say_M913(forReplay);
  2876. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  2877. #endif
  2878. #if AXIS_HAS_STEALTHCHOP(E3)
  2879. say_M913(forReplay);
  2880. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  2881. #endif
  2882. #if AXIS_HAS_STEALTHCHOP(E4)
  2883. say_M913(forReplay);
  2884. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  2885. #endif
  2886. #if AXIS_HAS_STEALTHCHOP(E5)
  2887. say_M913(forReplay);
  2888. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  2889. #endif
  2890. #if AXIS_HAS_STEALTHCHOP(E6)
  2891. say_M913(forReplay);
  2892. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  2893. #endif
  2894. #if AXIS_HAS_STEALTHCHOP(E7)
  2895. say_M913(forReplay);
  2896. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  2897. #endif
  2898. SERIAL_EOL();
  2899. #endif // HYBRID_THRESHOLD
  2900. /**
  2901. * TMC Sensorless homing thresholds
  2902. */
  2903. #if USE_SENSORLESS
  2904. CONFIG_ECHO_HEADING("StallGuard threshold:");
  2905. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2906. CONFIG_ECHO_START();
  2907. say_M914();
  2908. #if X_SENSORLESS
  2909. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  2910. #endif
  2911. #if Y_SENSORLESS
  2912. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  2913. #endif
  2914. #if Z_SENSORLESS
  2915. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  2916. #endif
  2917. SERIAL_EOL();
  2918. #endif
  2919. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  2920. CONFIG_ECHO_START();
  2921. say_M914();
  2922. SERIAL_ECHOPGM(" I1");
  2923. #if X2_SENSORLESS
  2924. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  2925. #endif
  2926. #if Y2_SENSORLESS
  2927. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  2928. #endif
  2929. #if Z2_SENSORLESS
  2930. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  2931. #endif
  2932. SERIAL_EOL();
  2933. #endif
  2934. #if Z3_SENSORLESS
  2935. CONFIG_ECHO_START();
  2936. say_M914();
  2937. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  2938. #endif
  2939. #if Z4_SENSORLESS
  2940. CONFIG_ECHO_START();
  2941. say_M914();
  2942. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  2943. #endif
  2944. #endif // USE_SENSORLESS
  2945. /**
  2946. * TMC stepping mode
  2947. */
  2948. #if HAS_STEALTHCHOP
  2949. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2950. #if AXIS_HAS_STEALTHCHOP(X)
  2951. const bool chop_x = stepperX.get_stealthChop_status();
  2952. #else
  2953. constexpr bool chop_x = false;
  2954. #endif
  2955. #if AXIS_HAS_STEALTHCHOP(Y)
  2956. const bool chop_y = stepperY.get_stealthChop_status();
  2957. #else
  2958. constexpr bool chop_y = false;
  2959. #endif
  2960. #if AXIS_HAS_STEALTHCHOP(Z)
  2961. const bool chop_z = stepperZ.get_stealthChop_status();
  2962. #else
  2963. constexpr bool chop_z = false;
  2964. #endif
  2965. if (chop_x || chop_y || chop_z) {
  2966. say_M569(forReplay);
  2967. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  2968. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  2969. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  2970. SERIAL_EOL();
  2971. }
  2972. #if AXIS_HAS_STEALTHCHOP(X2)
  2973. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2974. #else
  2975. constexpr bool chop_x2 = false;
  2976. #endif
  2977. #if AXIS_HAS_STEALTHCHOP(Y2)
  2978. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2979. #else
  2980. constexpr bool chop_y2 = false;
  2981. #endif
  2982. #if AXIS_HAS_STEALTHCHOP(Z2)
  2983. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2984. #else
  2985. constexpr bool chop_z2 = false;
  2986. #endif
  2987. if (chop_x2 || chop_y2 || chop_z2) {
  2988. say_M569(forReplay, PSTR("I1"));
  2989. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  2990. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  2991. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  2992. SERIAL_EOL();
  2993. }
  2994. #if AXIS_HAS_STEALTHCHOP(Z3)
  2995. if (stepperZ3.get_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  2996. #endif
  2997. #if AXIS_HAS_STEALTHCHOP(Z4)
  2998. if (stepperZ4.get_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  2999. #endif
  3000. #if AXIS_HAS_STEALTHCHOP(E0)
  3001. if (stepperE0.get_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3002. #endif
  3003. #if AXIS_HAS_STEALTHCHOP(E1)
  3004. if (stepperE1.get_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3005. #endif
  3006. #if AXIS_HAS_STEALTHCHOP(E2)
  3007. if (stepperE2.get_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3008. #endif
  3009. #if AXIS_HAS_STEALTHCHOP(E3)
  3010. if (stepperE3.get_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3011. #endif
  3012. #if AXIS_HAS_STEALTHCHOP(E4)
  3013. if (stepperE4.get_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3014. #endif
  3015. #if AXIS_HAS_STEALTHCHOP(E5)
  3016. if (stepperE5.get_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3017. #endif
  3018. #if AXIS_HAS_STEALTHCHOP(E6)
  3019. if (stepperE6.get_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3020. #endif
  3021. #if AXIS_HAS_STEALTHCHOP(E7)
  3022. if (stepperE7.get_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3023. #endif
  3024. #endif // HAS_STEALTHCHOP
  3025. #endif // HAS_TRINAMIC_CONFIG
  3026. /**
  3027. * Linear Advance
  3028. */
  3029. #if ENABLED(LIN_ADVANCE)
  3030. CONFIG_ECHO_HEADING("Linear Advance:");
  3031. #if EXTRUDERS < 2
  3032. CONFIG_ECHO_START();
  3033. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3034. #else
  3035. LOOP_L_N(i, EXTRUDERS) {
  3036. CONFIG_ECHO_START();
  3037. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3038. }
  3039. #endif
  3040. #endif
  3041. #if HAS_MOTOR_CURRENT_PWM
  3042. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3043. CONFIG_ECHO_START();
  3044. SERIAL_ECHOLNPAIR_P(
  3045. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3046. , SP_Z_STR, stepper.motor_current_setting[1]
  3047. , SP_E_STR, stepper.motor_current_setting[2]
  3048. );
  3049. #endif
  3050. /**
  3051. * Advanced Pause filament load & unload lengths
  3052. */
  3053. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3054. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3055. #if EXTRUDERS == 1
  3056. say_M603(forReplay);
  3057. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3058. #else
  3059. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3060. REPEAT(EXTRUDERS, _ECHO_603)
  3061. #endif
  3062. #endif
  3063. #if EXTRUDERS > 1
  3064. CONFIG_ECHO_HEADING("Tool-changing:");
  3065. CONFIG_ECHO_START();
  3066. M217_report(true);
  3067. #endif
  3068. #if ENABLED(BACKLASH_GCODE)
  3069. CONFIG_ECHO_HEADING("Backlash compensation:");
  3070. CONFIG_ECHO_START();
  3071. SERIAL_ECHOLNPAIR_P(
  3072. PSTR(" M425 F"), backlash.get_correction()
  3073. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3074. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3075. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3076. #ifdef BACKLASH_SMOOTHING_MM
  3077. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3078. #endif
  3079. );
  3080. #endif
  3081. #if HAS_FILAMENT_SENSOR
  3082. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3083. CONFIG_ECHO_START();
  3084. SERIAL_ECHOLNPAIR(
  3085. " M412 S", int(runout.enabled)
  3086. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  3087. , " D", LINEAR_UNIT(runout.runout_distance())
  3088. #endif
  3089. );
  3090. #endif
  3091. }
  3092. #endif // !DISABLE_M503
  3093. #pragma pack(pop)