My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 278KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  244. * ************* SCARA End ***************
  245. *
  246. * ************ Custom codes - This can change to suit future G-code regulations
  247. * M100 - Watch Free Memory (For Debugging Only)
  248. * M928 - Start SD logging (M928 filename.g) - ended by M29
  249. * M999 - Restart after being stopped by error
  250. *
  251. * "T" Codes
  252. *
  253. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  254. *
  255. */
  256. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  257. void gcode_M100();
  258. #endif
  259. #if ENABLED(SDSUPPORT)
  260. CardReader card;
  261. #endif
  262. #if ENABLED(EXPERIMENTAL_I2CBUS)
  263. TWIBus i2c;
  264. #endif
  265. bool Running = true;
  266. uint8_t marlin_debug_flags = DEBUG_NONE;
  267. float current_position[NUM_AXIS] = { 0.0 };
  268. static float destination[NUM_AXIS] = { 0.0 };
  269. bool axis_known_position[XYZ] = { false };
  270. bool axis_homed[XYZ] = { false };
  271. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  272. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  273. static char* current_command, *current_command_args;
  274. static uint8_t cmd_queue_index_r = 0,
  275. cmd_queue_index_w = 0,
  276. commands_in_queue = 0;
  277. #if ENABLED(INCH_MODE_SUPPORT)
  278. float linear_unit_factor = 1.0;
  279. float volumetric_unit_factor = 1.0;
  280. #endif
  281. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  282. TempUnit input_temp_units = TEMPUNIT_C;
  283. #endif
  284. /**
  285. * Feed rates are often configured with mm/m
  286. * but the planner and stepper like mm/s units.
  287. */
  288. const float homing_feedrate_mm_s[] = {
  289. #if ENABLED(DELTA)
  290. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  291. #else
  292. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  293. #endif
  294. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  295. };
  296. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  297. int feedrate_percentage = 100, saved_feedrate_percentage;
  298. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  299. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  300. bool volumetric_enabled = false;
  301. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  302. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  303. // The distance that XYZ has been offset by G92. Reset by G28.
  304. float position_shift[XYZ] = { 0 };
  305. // This offset is added to the configured home position.
  306. // Set by M206, M428, or menu item. Saved to EEPROM.
  307. float home_offset[XYZ] = { 0 };
  308. // Software Endstops are based on the configured limits.
  309. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  310. bool soft_endstops_enabled = true;
  311. #endif
  312. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  313. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  314. #if FAN_COUNT > 0
  315. int fanSpeeds[FAN_COUNT] = { 0 };
  316. #endif
  317. // The active extruder (tool). Set with T<extruder> command.
  318. uint8_t active_extruder = 0;
  319. // Relative Mode. Enable with G91, disable with G90.
  320. static bool relative_mode = false;
  321. volatile bool wait_for_heatup = true;
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. bool bed_leveling_in_progress = false;
  358. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  359. #elif defined(XY_PROBE_SPEED)
  360. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  361. #else
  362. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  363. #endif
  364. #if ENABLED(Z_DUAL_ENDSTOPS)
  365. float z_endstop_adj = 0;
  366. #endif
  367. // Extruder offsets
  368. #if HOTENDS > 1
  369. float hotend_offset[][HOTENDS] = {
  370. HOTEND_OFFSET_X,
  371. HOTEND_OFFSET_Y
  372. #ifdef HOTEND_OFFSET_Z
  373. , HOTEND_OFFSET_Z
  374. #endif
  375. };
  376. #endif
  377. #if HAS_Z_SERVO_ENDSTOP
  378. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  379. #endif
  380. #if ENABLED(BARICUDA)
  381. int baricuda_valve_pressure = 0;
  382. int baricuda_e_to_p_pressure = 0;
  383. #endif
  384. #if ENABLED(FWRETRACT)
  385. bool autoretract_enabled = false;
  386. bool retracted[EXTRUDERS] = { false };
  387. bool retracted_swap[EXTRUDERS] = { false };
  388. float retract_length = RETRACT_LENGTH;
  389. float retract_length_swap = RETRACT_LENGTH_SWAP;
  390. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  391. float retract_zlift = RETRACT_ZLIFT;
  392. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  393. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  394. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  395. #endif // FWRETRACT
  396. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  397. bool powersupply =
  398. #if ENABLED(PS_DEFAULT_OFF)
  399. false
  400. #else
  401. true
  402. #endif
  403. ;
  404. #endif
  405. #if ENABLED(DELTA)
  406. #define SIN_60 0.8660254037844386
  407. #define COS_60 0.5
  408. float delta[ABC],
  409. cartesian_position[XYZ] = { 0 },
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  429. int delta_grid_spacing[2] = { 0, 0 };
  430. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  431. #endif
  432. float delta_safe_distance_from_top();
  433. void set_cartesian_from_steppers();
  434. #else
  435. static bool home_all_axis = true;
  436. #endif
  437. #if IS_SCARA
  438. // Float constants for SCARA calculations
  439. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  440. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  441. L2_2 = sq(float(L2));
  442. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  443. delta[ABC],
  444. axis_scaling[ABC] = { 1, 1, 1 }, // Build size scaling, default to 1
  445. cartesian_position[XYZ] = { 0 };
  446. void set_cartesian_from_steppers() { } // to be written later
  447. #endif
  448. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  449. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  450. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  451. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  452. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  453. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  454. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  455. #endif
  456. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  457. static bool filament_ran_out = false;
  458. #endif
  459. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  460. FilamentChangeMenuResponse filament_change_menu_response;
  461. #endif
  462. #if ENABLED(MIXING_EXTRUDER)
  463. float mixing_factor[MIXING_STEPPERS];
  464. #if MIXING_VIRTUAL_TOOLS > 1
  465. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  466. #endif
  467. #endif
  468. static bool send_ok[BUFSIZE];
  469. #if HAS_SERVOS
  470. Servo servo[NUM_SERVOS];
  471. #define MOVE_SERVO(I, P) servo[I].move(P)
  472. #if HAS_Z_SERVO_ENDSTOP
  473. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  474. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  475. #endif
  476. #endif
  477. #ifdef CHDK
  478. millis_t chdkHigh = 0;
  479. boolean chdkActive = false;
  480. #endif
  481. #if ENABLED(PID_EXTRUSION_SCALING)
  482. int lpq_len = 20;
  483. #endif
  484. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  485. static MarlinBusyState busy_state = NOT_BUSY;
  486. static millis_t next_busy_signal_ms = 0;
  487. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  488. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  489. #else
  490. #define host_keepalive() ;
  491. #define KEEPALIVE_STATE(n) ;
  492. #endif // HOST_KEEPALIVE_FEATURE
  493. #define DEFINE_PGM_READ_ANY(type, reader) \
  494. static inline type pgm_read_any(const type *p) \
  495. { return pgm_read_##reader##_near(p); }
  496. DEFINE_PGM_READ_ANY(float, float);
  497. DEFINE_PGM_READ_ANY(signed char, byte);
  498. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  499. static const PROGMEM type array##_P[XYZ] = \
  500. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  501. static inline type array(int axis) \
  502. { return pgm_read_any(&array##_P[axis]); }
  503. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  504. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  505. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  506. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  507. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  508. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  509. /**
  510. * ***************************************************************************
  511. * ******************************** FUNCTIONS ********************************
  512. * ***************************************************************************
  513. */
  514. void stop();
  515. void get_available_commands();
  516. void process_next_command();
  517. void prepare_move_to_destination();
  518. void set_current_from_steppers_for_axis(AxisEnum axis);
  519. #if ENABLED(ARC_SUPPORT)
  520. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  521. #endif
  522. #if ENABLED(BEZIER_CURVE_SUPPORT)
  523. void plan_cubic_move(const float offset[4]);
  524. #endif
  525. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  527. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  531. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  532. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  533. static void report_current_position();
  534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  535. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  536. serialprintPGM(prefix);
  537. SERIAL_ECHOPAIR("(", x);
  538. SERIAL_ECHOPAIR(", ", y);
  539. SERIAL_ECHOPAIR(", ", z);
  540. SERIAL_ECHOPGM(")");
  541. if (suffix) serialprintPGM(suffix);
  542. else SERIAL_EOL;
  543. }
  544. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  545. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  546. }
  547. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  548. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  549. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  550. }
  551. #endif
  552. #define DEBUG_POS(SUFFIX,VAR) do { \
  553. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  554. #endif
  555. /**
  556. * sync_plan_position
  557. * Set planner / stepper positions to the cartesian current_position.
  558. * The stepper code translates these coordinates into step units.
  559. * Allows translation between steps and millimeters for cartesian & core robots
  560. */
  561. inline void sync_plan_position() {
  562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  563. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  564. #endif
  565. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  566. }
  567. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  568. #if IS_KINEMATIC
  569. inline void sync_plan_position_delta() {
  570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  571. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  572. #endif
  573. inverse_kinematics(current_position);
  574. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  575. }
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  577. #else
  578. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  579. #endif
  580. #if ENABLED(SDSUPPORT)
  581. #include "SdFatUtil.h"
  582. int freeMemory() { return SdFatUtil::FreeRam(); }
  583. #else
  584. extern "C" {
  585. extern unsigned int __bss_end;
  586. extern unsigned int __heap_start;
  587. extern void* __brkval;
  588. int freeMemory() {
  589. int free_memory;
  590. if ((int)__brkval == 0)
  591. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  592. else
  593. free_memory = ((int)&free_memory) - ((int)__brkval);
  594. return free_memory;
  595. }
  596. }
  597. #endif //!SDSUPPORT
  598. #if ENABLED(DIGIPOT_I2C)
  599. extern void digipot_i2c_set_current(int channel, float current);
  600. extern void digipot_i2c_init();
  601. #endif
  602. /**
  603. * Inject the next "immediate" command, when possible.
  604. * Return true if any immediate commands remain to inject.
  605. */
  606. static bool drain_queued_commands_P() {
  607. if (queued_commands_P != NULL) {
  608. size_t i = 0;
  609. char c, cmd[30];
  610. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  611. cmd[sizeof(cmd) - 1] = '\0';
  612. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  613. cmd[i] = '\0';
  614. if (enqueue_and_echo_command(cmd)) { // success?
  615. if (c) // newline char?
  616. queued_commands_P += i + 1; // advance to the next command
  617. else
  618. queued_commands_P = NULL; // nul char? no more commands
  619. }
  620. }
  621. return (queued_commands_P != NULL); // return whether any more remain
  622. }
  623. /**
  624. * Record one or many commands to run from program memory.
  625. * Aborts the current queue, if any.
  626. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  627. */
  628. void enqueue_and_echo_commands_P(const char* pgcode) {
  629. queued_commands_P = pgcode;
  630. drain_queued_commands_P(); // first command executed asap (when possible)
  631. }
  632. void clear_command_queue() {
  633. cmd_queue_index_r = cmd_queue_index_w;
  634. commands_in_queue = 0;
  635. }
  636. /**
  637. * Once a new command is in the ring buffer, call this to commit it
  638. */
  639. inline void _commit_command(bool say_ok) {
  640. send_ok[cmd_queue_index_w] = say_ok;
  641. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  642. commands_in_queue++;
  643. }
  644. /**
  645. * Copy a command directly into the main command buffer, from RAM.
  646. * Returns true if successfully adds the command
  647. */
  648. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  649. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  650. strcpy(command_queue[cmd_queue_index_w], cmd);
  651. _commit_command(say_ok);
  652. return true;
  653. }
  654. void enqueue_and_echo_command_now(const char* cmd) {
  655. while (!enqueue_and_echo_command(cmd)) idle();
  656. }
  657. /**
  658. * Enqueue with Serial Echo
  659. */
  660. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  661. if (_enqueuecommand(cmd, say_ok)) {
  662. SERIAL_ECHO_START;
  663. SERIAL_ECHOPGM(MSG_Enqueueing);
  664. SERIAL_ECHO(cmd);
  665. SERIAL_ECHOLNPGM("\"");
  666. return true;
  667. }
  668. return false;
  669. }
  670. void setup_killpin() {
  671. #if HAS_KILL
  672. SET_INPUT(KILL_PIN);
  673. WRITE(KILL_PIN, HIGH);
  674. #endif
  675. }
  676. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  677. void setup_filrunoutpin() {
  678. pinMode(FIL_RUNOUT_PIN, INPUT);
  679. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  680. WRITE(FIL_RUNOUT_PIN, HIGH);
  681. #endif
  682. }
  683. #endif
  684. // Set home pin
  685. void setup_homepin(void) {
  686. #if HAS_HOME
  687. SET_INPUT(HOME_PIN);
  688. WRITE(HOME_PIN, HIGH);
  689. #endif
  690. }
  691. void setup_photpin() {
  692. #if HAS_PHOTOGRAPH
  693. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  694. #endif
  695. }
  696. void setup_powerhold() {
  697. #if HAS_SUICIDE
  698. OUT_WRITE(SUICIDE_PIN, HIGH);
  699. #endif
  700. #if HAS_POWER_SWITCH
  701. #if ENABLED(PS_DEFAULT_OFF)
  702. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  703. #else
  704. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  705. #endif
  706. #endif
  707. }
  708. void suicide() {
  709. #if HAS_SUICIDE
  710. OUT_WRITE(SUICIDE_PIN, LOW);
  711. #endif
  712. }
  713. void servo_init() {
  714. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  715. servo[0].attach(SERVO0_PIN);
  716. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  717. #endif
  718. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  719. servo[1].attach(SERVO1_PIN);
  720. servo[1].detach();
  721. #endif
  722. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  723. servo[2].attach(SERVO2_PIN);
  724. servo[2].detach();
  725. #endif
  726. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  727. servo[3].attach(SERVO3_PIN);
  728. servo[3].detach();
  729. #endif
  730. #if HAS_Z_SERVO_ENDSTOP
  731. /**
  732. * Set position of Z Servo Endstop
  733. *
  734. * The servo might be deployed and positioned too low to stow
  735. * when starting up the machine or rebooting the board.
  736. * There's no way to know where the nozzle is positioned until
  737. * homing has been done - no homing with z-probe without init!
  738. *
  739. */
  740. STOW_Z_SERVO();
  741. #endif
  742. }
  743. /**
  744. * Stepper Reset (RigidBoard, et.al.)
  745. */
  746. #if HAS_STEPPER_RESET
  747. void disableStepperDrivers() {
  748. pinMode(STEPPER_RESET_PIN, OUTPUT);
  749. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  750. }
  751. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  752. #endif
  753. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  754. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  755. i2c.receive(bytes);
  756. }
  757. void i2c_on_request() { // just send dummy data for now
  758. i2c.reply("Hello World!\n");
  759. }
  760. #endif
  761. void gcode_line_error(const char* err, bool doFlush = true) {
  762. SERIAL_ERROR_START;
  763. serialprintPGM(err);
  764. SERIAL_ERRORLN(gcode_LastN);
  765. //Serial.println(gcode_N);
  766. if (doFlush) FlushSerialRequestResend();
  767. serial_count = 0;
  768. }
  769. inline void get_serial_commands() {
  770. static char serial_line_buffer[MAX_CMD_SIZE];
  771. static boolean serial_comment_mode = false;
  772. // If the command buffer is empty for too long,
  773. // send "wait" to indicate Marlin is still waiting.
  774. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  775. static millis_t last_command_time = 0;
  776. millis_t ms = millis();
  777. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  778. SERIAL_ECHOLNPGM(MSG_WAIT);
  779. last_command_time = ms;
  780. }
  781. #endif
  782. /**
  783. * Loop while serial characters are incoming and the queue is not full
  784. */
  785. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  786. char serial_char = MYSERIAL.read();
  787. /**
  788. * If the character ends the line
  789. */
  790. if (serial_char == '\n' || serial_char == '\r') {
  791. serial_comment_mode = false; // end of line == end of comment
  792. if (!serial_count) continue; // skip empty lines
  793. serial_line_buffer[serial_count] = 0; // terminate string
  794. serial_count = 0; //reset buffer
  795. char* command = serial_line_buffer;
  796. while (*command == ' ') command++; // skip any leading spaces
  797. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  798. char* apos = strchr(command, '*');
  799. if (npos) {
  800. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  801. if (M110) {
  802. char* n2pos = strchr(command + 4, 'N');
  803. if (n2pos) npos = n2pos;
  804. }
  805. gcode_N = strtol(npos + 1, NULL, 10);
  806. if (gcode_N != gcode_LastN + 1 && !M110) {
  807. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  808. return;
  809. }
  810. if (apos) {
  811. byte checksum = 0, count = 0;
  812. while (command[count] != '*') checksum ^= command[count++];
  813. if (strtol(apos + 1, NULL, 10) != checksum) {
  814. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  815. return;
  816. }
  817. // if no errors, continue parsing
  818. }
  819. else {
  820. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  821. return;
  822. }
  823. gcode_LastN = gcode_N;
  824. // if no errors, continue parsing
  825. }
  826. else if (apos) { // No '*' without 'N'
  827. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  828. return;
  829. }
  830. // Movement commands alert when stopped
  831. if (IsStopped()) {
  832. char* gpos = strchr(command, 'G');
  833. if (gpos) {
  834. int codenum = strtol(gpos + 1, NULL, 10);
  835. switch (codenum) {
  836. case 0:
  837. case 1:
  838. case 2:
  839. case 3:
  840. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  841. LCD_MESSAGEPGM(MSG_STOPPED);
  842. break;
  843. }
  844. }
  845. }
  846. #if DISABLED(EMERGENCY_PARSER)
  847. // If command was e-stop process now
  848. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  849. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  850. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  851. #endif
  852. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  853. last_command_time = ms;
  854. #endif
  855. // Add the command to the queue
  856. _enqueuecommand(serial_line_buffer, true);
  857. }
  858. else if (serial_count >= MAX_CMD_SIZE - 1) {
  859. // Keep fetching, but ignore normal characters beyond the max length
  860. // The command will be injected when EOL is reached
  861. }
  862. else if (serial_char == '\\') { // Handle escapes
  863. if (MYSERIAL.available() > 0) {
  864. // if we have one more character, copy it over
  865. serial_char = MYSERIAL.read();
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. // otherwise do nothing
  869. }
  870. else { // it's not a newline, carriage return or escape char
  871. if (serial_char == ';') serial_comment_mode = true;
  872. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  873. }
  874. } // queue has space, serial has data
  875. }
  876. #if ENABLED(SDSUPPORT)
  877. inline void get_sdcard_commands() {
  878. static bool stop_buffering = false,
  879. sd_comment_mode = false;
  880. if (!card.sdprinting) return;
  881. /**
  882. * '#' stops reading from SD to the buffer prematurely, so procedural
  883. * macro calls are possible. If it occurs, stop_buffering is triggered
  884. * and the buffer is run dry; this character _can_ occur in serial com
  885. * due to checksums, however, no checksums are used in SD printing.
  886. */
  887. if (commands_in_queue == 0) stop_buffering = false;
  888. uint16_t sd_count = 0;
  889. bool card_eof = card.eof();
  890. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  891. int16_t n = card.get();
  892. char sd_char = (char)n;
  893. card_eof = card.eof();
  894. if (card_eof || n == -1
  895. || sd_char == '\n' || sd_char == '\r'
  896. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  897. ) {
  898. if (card_eof) {
  899. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  900. card.printingHasFinished();
  901. card.checkautostart(true);
  902. }
  903. else if (n == -1) {
  904. SERIAL_ERROR_START;
  905. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  906. }
  907. if (sd_char == '#') stop_buffering = true;
  908. sd_comment_mode = false; //for new command
  909. if (!sd_count) continue; //skip empty lines
  910. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  911. sd_count = 0; //clear buffer
  912. _commit_command(false);
  913. }
  914. else if (sd_count >= MAX_CMD_SIZE - 1) {
  915. /**
  916. * Keep fetching, but ignore normal characters beyond the max length
  917. * The command will be injected when EOL is reached
  918. */
  919. }
  920. else {
  921. if (sd_char == ';') sd_comment_mode = true;
  922. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  923. }
  924. }
  925. }
  926. #endif // SDSUPPORT
  927. /**
  928. * Add to the circular command queue the next command from:
  929. * - The command-injection queue (queued_commands_P)
  930. * - The active serial input (usually USB)
  931. * - The SD card file being actively printed
  932. */
  933. void get_available_commands() {
  934. // if any immediate commands remain, don't get other commands yet
  935. if (drain_queued_commands_P()) return;
  936. get_serial_commands();
  937. #if ENABLED(SDSUPPORT)
  938. get_sdcard_commands();
  939. #endif
  940. }
  941. inline bool code_has_value() {
  942. int i = 1;
  943. char c = seen_pointer[i];
  944. while (c == ' ') c = seen_pointer[++i];
  945. if (c == '-' || c == '+') c = seen_pointer[++i];
  946. if (c == '.') c = seen_pointer[++i];
  947. return NUMERIC(c);
  948. }
  949. inline float code_value_float() {
  950. float ret;
  951. char* e = strchr(seen_pointer, 'E');
  952. if (e) {
  953. *e = 0;
  954. ret = strtod(seen_pointer + 1, NULL);
  955. *e = 'E';
  956. }
  957. else
  958. ret = strtod(seen_pointer + 1, NULL);
  959. return ret;
  960. }
  961. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  962. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  963. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  964. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  965. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  966. inline bool code_value_bool() { return code_value_byte() > 0; }
  967. #if ENABLED(INCH_MODE_SUPPORT)
  968. inline void set_input_linear_units(LinearUnit units) {
  969. switch (units) {
  970. case LINEARUNIT_INCH:
  971. linear_unit_factor = 25.4;
  972. break;
  973. case LINEARUNIT_MM:
  974. default:
  975. linear_unit_factor = 1.0;
  976. break;
  977. }
  978. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  979. }
  980. inline float axis_unit_factor(int axis) {
  981. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  982. }
  983. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  984. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  985. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  986. #else
  987. inline float code_value_linear_units() { return code_value_float(); }
  988. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  989. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  990. #endif
  991. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  992. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  993. float code_value_temp_abs() {
  994. switch (input_temp_units) {
  995. case TEMPUNIT_C:
  996. return code_value_float();
  997. case TEMPUNIT_F:
  998. return (code_value_float() - 32) * 0.5555555556;
  999. case TEMPUNIT_K:
  1000. return code_value_float() - 272.15;
  1001. default:
  1002. return code_value_float();
  1003. }
  1004. }
  1005. float code_value_temp_diff() {
  1006. switch (input_temp_units) {
  1007. case TEMPUNIT_C:
  1008. case TEMPUNIT_K:
  1009. return code_value_float();
  1010. case TEMPUNIT_F:
  1011. return code_value_float() * 0.5555555556;
  1012. default:
  1013. return code_value_float();
  1014. }
  1015. }
  1016. #else
  1017. float code_value_temp_abs() { return code_value_float(); }
  1018. float code_value_temp_diff() { return code_value_float(); }
  1019. #endif
  1020. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1021. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1022. bool code_seen(char code) {
  1023. seen_pointer = strchr(current_command_args, code);
  1024. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1025. }
  1026. /**
  1027. * Set target_extruder from the T parameter or the active_extruder
  1028. *
  1029. * Returns TRUE if the target is invalid
  1030. */
  1031. bool get_target_extruder_from_command(int code) {
  1032. if (code_seen('T')) {
  1033. if (code_value_byte() >= EXTRUDERS) {
  1034. SERIAL_ECHO_START;
  1035. SERIAL_CHAR('M');
  1036. SERIAL_ECHO(code);
  1037. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1038. return true;
  1039. }
  1040. target_extruder = code_value_byte();
  1041. }
  1042. else
  1043. target_extruder = active_extruder;
  1044. return false;
  1045. }
  1046. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1047. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1048. #endif
  1049. #if ENABLED(DUAL_X_CARRIAGE)
  1050. #define DXC_FULL_CONTROL_MODE 0
  1051. #define DXC_AUTO_PARK_MODE 1
  1052. #define DXC_DUPLICATION_MODE 2
  1053. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1054. static float x_home_pos(int extruder) {
  1055. if (extruder == 0)
  1056. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1057. else
  1058. /**
  1059. * In dual carriage mode the extruder offset provides an override of the
  1060. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1061. * This allow soft recalibration of the second extruder offset position
  1062. * without firmware reflash (through the M218 command).
  1063. */
  1064. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1065. }
  1066. static int x_home_dir(int extruder) {
  1067. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1068. }
  1069. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1070. static bool active_extruder_parked = false; // used in mode 1 & 2
  1071. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1072. static millis_t delayed_move_time = 0; // used in mode 1
  1073. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1074. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1075. #endif //DUAL_X_CARRIAGE
  1076. /**
  1077. * Software endstops can be used to monitor the open end of
  1078. * an axis that has a hardware endstop on the other end. Or
  1079. * they can prevent axes from moving past endstops and grinding.
  1080. *
  1081. * To keep doing their job as the coordinate system changes,
  1082. * the software endstop positions must be refreshed to remain
  1083. * at the same positions relative to the machine.
  1084. */
  1085. void update_software_endstops(AxisEnum axis) {
  1086. float offs = LOGICAL_POSITION(0, axis);
  1087. #if ENABLED(DUAL_X_CARRIAGE)
  1088. if (axis == X_AXIS) {
  1089. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1090. if (active_extruder != 0) {
  1091. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1092. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1093. return;
  1094. }
  1095. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1096. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1097. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1098. return;
  1099. }
  1100. }
  1101. else
  1102. #endif
  1103. {
  1104. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1105. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1106. }
  1107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1108. if (DEBUGGING(LEVELING)) {
  1109. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1110. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1111. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1112. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1113. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1114. }
  1115. #endif
  1116. #if ENABLED(DELTA)
  1117. if (axis == Z_AXIS)
  1118. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1119. #endif
  1120. }
  1121. /**
  1122. * Change the home offset for an axis, update the current
  1123. * position and the software endstops to retain the same
  1124. * relative distance to the new home.
  1125. *
  1126. * Since this changes the current_position, code should
  1127. * call sync_plan_position soon after this.
  1128. */
  1129. static void set_home_offset(AxisEnum axis, float v) {
  1130. current_position[axis] += v - home_offset[axis];
  1131. home_offset[axis] = v;
  1132. update_software_endstops(axis);
  1133. }
  1134. static void set_axis_is_at_home(AxisEnum axis) {
  1135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1136. if (DEBUGGING(LEVELING)) {
  1137. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1138. SERIAL_ECHOLNPGM(")");
  1139. }
  1140. #endif
  1141. position_shift[axis] = 0;
  1142. #if ENABLED(DUAL_X_CARRIAGE)
  1143. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1144. if (active_extruder != 0)
  1145. current_position[X_AXIS] = x_home_pos(active_extruder);
  1146. else
  1147. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1148. update_software_endstops(X_AXIS);
  1149. return;
  1150. }
  1151. #endif
  1152. #if ENABLED(SCARA)
  1153. if (axis == X_AXIS || axis == Y_AXIS) {
  1154. float homeposition[XYZ];
  1155. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1156. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1157. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1158. /**
  1159. * Works out real Homeposition angles using inverse kinematics,
  1160. * and calculates homing offset using forward kinematics
  1161. */
  1162. inverse_kinematics(homeposition);
  1163. forward_kinematics_SCARA(delta);
  1164. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1165. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1166. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1167. /**
  1168. * SCARA home positions are based on configuration since the actual
  1169. * limits are determined by the inverse kinematic transform.
  1170. */
  1171. soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1172. soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1173. }
  1174. else
  1175. #endif
  1176. {
  1177. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1178. update_software_endstops(axis);
  1179. if (axis == Z_AXIS) {
  1180. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1181. #if HOMING_Z_WITH_PROBE
  1182. current_position[Z_AXIS] -= zprobe_zoffset;
  1183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1184. if (DEBUGGING(LEVELING)) {
  1185. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1186. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1187. }
  1188. #endif
  1189. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1190. if (DEBUGGING(LEVELING))
  1191. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1192. #endif
  1193. #endif
  1194. }
  1195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1196. if (DEBUGGING(LEVELING)) {
  1197. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1198. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1199. DEBUG_POS("", current_position);
  1200. }
  1201. #endif
  1202. }
  1203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1204. if (DEBUGGING(LEVELING)) {
  1205. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1206. SERIAL_ECHOLNPGM(")");
  1207. }
  1208. #endif
  1209. axis_known_position[axis] = axis_homed[axis] = true;
  1210. }
  1211. /**
  1212. * Some planner shorthand inline functions
  1213. */
  1214. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1215. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1216. int hbd = homing_bump_divisor[axis];
  1217. if (hbd < 1) {
  1218. hbd = 10;
  1219. SERIAL_ECHO_START;
  1220. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1221. }
  1222. return homing_feedrate_mm_s[axis] / hbd;
  1223. }
  1224. //
  1225. // line_to_current_position
  1226. // Move the planner to the current position from wherever it last moved
  1227. // (or from wherever it has been told it is located).
  1228. //
  1229. inline void line_to_current_position() {
  1230. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1231. }
  1232. inline void line_to_z(float zPosition) {
  1233. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1234. }
  1235. //
  1236. // line_to_destination
  1237. // Move the planner, not necessarily synced with current_position
  1238. //
  1239. inline void line_to_destination(float fr_mm_s) {
  1240. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1241. }
  1242. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1243. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1244. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1245. #if ENABLED(DELTA)
  1246. /**
  1247. * Calculate delta, start a line, and set current_position to destination
  1248. */
  1249. void prepare_move_to_destination_raw() {
  1250. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1251. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1252. #endif
  1253. refresh_cmd_timeout();
  1254. inverse_kinematics(destination);
  1255. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1256. set_current_to_destination();
  1257. }
  1258. #endif
  1259. /**
  1260. * Plan a move to (X, Y, Z) and set the current_position
  1261. * The final current_position may not be the one that was requested
  1262. */
  1263. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1264. float old_feedrate_mm_s = feedrate_mm_s;
  1265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1266. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1267. #endif
  1268. #if ENABLED(DELTA)
  1269. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1270. set_destination_to_current(); // sync destination at the start
  1271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1272. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1273. #endif
  1274. // when in the danger zone
  1275. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1276. if (z > delta_clip_start_height) { // staying in the danger zone
  1277. destination[X_AXIS] = x; // move directly (uninterpolated)
  1278. destination[Y_AXIS] = y;
  1279. destination[Z_AXIS] = z;
  1280. prepare_move_to_destination_raw(); // set_current_to_destination
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1283. #endif
  1284. return;
  1285. }
  1286. else {
  1287. destination[Z_AXIS] = delta_clip_start_height;
  1288. prepare_move_to_destination_raw(); // set_current_to_destination
  1289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1291. #endif
  1292. }
  1293. }
  1294. if (z > current_position[Z_AXIS]) { // raising?
  1295. destination[Z_AXIS] = z;
  1296. prepare_move_to_destination_raw(); // set_current_to_destination
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1299. #endif
  1300. }
  1301. destination[X_AXIS] = x;
  1302. destination[Y_AXIS] = y;
  1303. prepare_move_to_destination(); // set_current_to_destination
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1306. #endif
  1307. if (z < current_position[Z_AXIS]) { // lowering?
  1308. destination[Z_AXIS] = z;
  1309. prepare_move_to_destination_raw(); // set_current_to_destination
  1310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1311. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1312. #endif
  1313. }
  1314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1315. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1316. #endif
  1317. #else
  1318. // If Z needs to raise, do it before moving XY
  1319. if (current_position[Z_AXIS] < z) {
  1320. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1321. current_position[Z_AXIS] = z;
  1322. line_to_current_position();
  1323. }
  1324. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1325. current_position[X_AXIS] = x;
  1326. current_position[Y_AXIS] = y;
  1327. line_to_current_position();
  1328. // If Z needs to lower, do it after moving XY
  1329. if (current_position[Z_AXIS] > z) {
  1330. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1331. current_position[Z_AXIS] = z;
  1332. line_to_current_position();
  1333. }
  1334. #endif
  1335. stepper.synchronize();
  1336. feedrate_mm_s = old_feedrate_mm_s;
  1337. }
  1338. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1339. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1340. }
  1341. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1342. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1343. }
  1344. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1345. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1346. }
  1347. //
  1348. // Prepare to do endstop or probe moves
  1349. // with custom feedrates.
  1350. //
  1351. // - Save current feedrates
  1352. // - Reset the rate multiplier
  1353. // - Reset the command timeout
  1354. // - Enable the endstops (for endstop moves)
  1355. //
  1356. static void setup_for_endstop_or_probe_move() {
  1357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1359. #endif
  1360. saved_feedrate_mm_s = feedrate_mm_s;
  1361. saved_feedrate_percentage = feedrate_percentage;
  1362. feedrate_percentage = 100;
  1363. refresh_cmd_timeout();
  1364. }
  1365. static void clean_up_after_endstop_or_probe_move() {
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1368. #endif
  1369. feedrate_mm_s = saved_feedrate_mm_s;
  1370. feedrate_percentage = saved_feedrate_percentage;
  1371. refresh_cmd_timeout();
  1372. }
  1373. #if HAS_BED_PROBE
  1374. /**
  1375. * Raise Z to a minimum height to make room for a probe to move
  1376. */
  1377. inline void do_probe_raise(float z_raise) {
  1378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1379. if (DEBUGGING(LEVELING)) {
  1380. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1381. SERIAL_ECHOLNPGM(")");
  1382. }
  1383. #endif
  1384. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1385. if (z_dest > current_position[Z_AXIS])
  1386. do_blocking_move_to_z(z_dest);
  1387. }
  1388. #endif //HAS_BED_PROBE
  1389. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1390. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1391. const bool xx = x && !axis_homed[X_AXIS],
  1392. yy = y && !axis_homed[Y_AXIS],
  1393. zz = z && !axis_homed[Z_AXIS];
  1394. if (xx || yy || zz) {
  1395. SERIAL_ECHO_START;
  1396. SERIAL_ECHOPGM(MSG_HOME " ");
  1397. if (xx) SERIAL_ECHOPGM(MSG_X);
  1398. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1399. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1400. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1401. #if ENABLED(ULTRA_LCD)
  1402. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1403. strcat_P(message, PSTR(MSG_HOME " "));
  1404. if (xx) strcat_P(message, PSTR(MSG_X));
  1405. if (yy) strcat_P(message, PSTR(MSG_Y));
  1406. if (zz) strcat_P(message, PSTR(MSG_Z));
  1407. strcat_P(message, PSTR(" " MSG_FIRST));
  1408. lcd_setstatus(message);
  1409. #endif
  1410. return true;
  1411. }
  1412. return false;
  1413. }
  1414. #endif
  1415. #if ENABLED(Z_PROBE_SLED)
  1416. #ifndef SLED_DOCKING_OFFSET
  1417. #define SLED_DOCKING_OFFSET 0
  1418. #endif
  1419. /**
  1420. * Method to dock/undock a sled designed by Charles Bell.
  1421. *
  1422. * stow[in] If false, move to MAX_X and engage the solenoid
  1423. * If true, move to MAX_X and release the solenoid
  1424. */
  1425. static void dock_sled(bool stow) {
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (DEBUGGING(LEVELING)) {
  1428. SERIAL_ECHOPAIR("dock_sled(", stow);
  1429. SERIAL_ECHOLNPGM(")");
  1430. }
  1431. #endif
  1432. // Dock sled a bit closer to ensure proper capturing
  1433. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1434. #if PIN_EXISTS(SLED)
  1435. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1436. #endif
  1437. }
  1438. #endif // Z_PROBE_SLED
  1439. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1440. void run_deploy_moves_script() {
  1441. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1442. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1443. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1444. #endif
  1445. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1446. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1447. #endif
  1448. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1449. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1450. #endif
  1451. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1452. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1453. #endif
  1454. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1455. #endif
  1456. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1457. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1458. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1459. #endif
  1460. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1461. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1462. #endif
  1463. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1464. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1465. #endif
  1466. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1467. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1468. #endif
  1469. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1470. #endif
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1515. #endif
  1516. }
  1517. void run_stow_moves_script() {
  1518. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1519. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1520. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1521. #endif
  1522. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1523. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1526. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1527. #endif
  1528. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1529. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1530. #endif
  1531. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1532. #endif
  1533. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1534. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1535. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1538. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1541. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1544. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1545. #endif
  1546. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1547. #endif
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1592. #endif
  1593. }
  1594. #endif
  1595. #if HAS_BED_PROBE
  1596. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1597. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1598. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1599. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1600. #else
  1601. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1602. #endif
  1603. #endif
  1604. #define DEPLOY_PROBE() set_probe_deployed(true)
  1605. #define STOW_PROBE() set_probe_deployed(false)
  1606. // returns false for ok and true for failure
  1607. static bool set_probe_deployed(bool deploy) {
  1608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1609. if (DEBUGGING(LEVELING)) {
  1610. DEBUG_POS("set_probe_deployed", current_position);
  1611. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1612. }
  1613. #endif
  1614. if (endstops.z_probe_enabled == deploy) return false;
  1615. // Make room for probe
  1616. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1617. #if ENABLED(Z_PROBE_SLED)
  1618. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1619. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1620. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1621. #endif
  1622. float oldXpos = current_position[X_AXIS],
  1623. oldYpos = current_position[Y_AXIS];
  1624. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1625. // If endstop is already false, the Z probe is deployed
  1626. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1627. // Would a goto be less ugly?
  1628. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1629. // for a triggered when stowed manual probe.
  1630. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1631. // otherwise an Allen-Key probe can't be stowed.
  1632. #endif
  1633. #if ENABLED(Z_PROBE_SLED)
  1634. dock_sled(!deploy);
  1635. #elif HAS_Z_SERVO_ENDSTOP
  1636. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1637. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1638. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1639. #endif
  1640. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1641. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1642. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1643. if (IsRunning()) {
  1644. SERIAL_ERROR_START;
  1645. SERIAL_ERRORLNPGM("Z-Probe failed");
  1646. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1647. }
  1648. stop();
  1649. return true;
  1650. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1651. #endif
  1652. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1653. endstops.enable_z_probe(deploy);
  1654. return false;
  1655. }
  1656. static void do_probe_move(float z, float fr_mm_m) {
  1657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1658. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1659. #endif
  1660. // Move down until probe triggered
  1661. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1662. // Clear endstop flags
  1663. endstops.hit_on_purpose();
  1664. // Get Z where the steppers were interrupted
  1665. set_current_from_steppers_for_axis(Z_AXIS);
  1666. // Tell the planner where we actually are
  1667. SYNC_PLAN_POSITION_KINEMATIC();
  1668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1669. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1670. #endif
  1671. }
  1672. // Do a single Z probe and return with current_position[Z_AXIS]
  1673. // at the height where the probe triggered.
  1674. static float run_z_probe() {
  1675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1676. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1677. #endif
  1678. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1679. refresh_cmd_timeout();
  1680. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1681. planner.bed_level_matrix.set_to_identity();
  1682. #endif
  1683. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1684. // Do a first probe at the fast speed
  1685. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1686. // move up by the bump distance
  1687. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1688. #else
  1689. // If the nozzle is above the travel height then
  1690. // move down quickly before doing the slow probe
  1691. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1692. if (z < current_position[Z_AXIS])
  1693. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1694. #endif
  1695. // move down slowly to find bed
  1696. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1698. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1699. #endif
  1700. return current_position[Z_AXIS];
  1701. }
  1702. //
  1703. // - Move to the given XY
  1704. // - Deploy the probe, if not already deployed
  1705. // - Probe the bed, get the Z position
  1706. // - Depending on the 'stow' flag
  1707. // - Stow the probe, or
  1708. // - Raise to the BETWEEN height
  1709. // - Return the probed Z position
  1710. //
  1711. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1713. if (DEBUGGING(LEVELING)) {
  1714. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1715. SERIAL_ECHOPAIR(", ", y);
  1716. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1717. SERIAL_ECHOLNPGM(")");
  1718. DEBUG_POS("", current_position);
  1719. }
  1720. #endif
  1721. float old_feedrate_mm_s = feedrate_mm_s;
  1722. // Ensure a minimum height before moving the probe
  1723. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1724. // Move to the XY where we shall probe
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) {
  1727. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1728. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1729. SERIAL_ECHOLNPGM(")");
  1730. }
  1731. #endif
  1732. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1733. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1736. #endif
  1737. if (DEPLOY_PROBE()) return NAN;
  1738. float measured_z = run_z_probe();
  1739. if (stow) {
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1742. #endif
  1743. if (STOW_PROBE()) return NAN;
  1744. }
  1745. else {
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1748. #endif
  1749. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1750. }
  1751. if (verbose_level > 2) {
  1752. SERIAL_PROTOCOLPGM("Bed X: ");
  1753. SERIAL_PROTOCOL_F(x, 3);
  1754. SERIAL_PROTOCOLPGM(" Y: ");
  1755. SERIAL_PROTOCOL_F(y, 3);
  1756. SERIAL_PROTOCOLPGM(" Z: ");
  1757. SERIAL_PROTOCOL_F(measured_z, 3);
  1758. SERIAL_EOL;
  1759. }
  1760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1761. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1762. #endif
  1763. feedrate_mm_s = old_feedrate_mm_s;
  1764. return measured_z;
  1765. }
  1766. #endif // HAS_BED_PROBE
  1767. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1768. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1769. /**
  1770. * Get the stepper positions, apply the rotation matrix
  1771. * using the home XY and Z0 position as the fulcrum.
  1772. */
  1773. vector_3 untilted_stepper_position() {
  1774. vector_3 pos = vector_3(
  1775. RAW_X_POSITION(stepper.get_axis_position_mm(X_AXIS)) - X_TILT_FULCRUM,
  1776. RAW_Y_POSITION(stepper.get_axis_position_mm(Y_AXIS)) - Y_TILT_FULCRUM,
  1777. RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS))
  1778. );
  1779. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1780. //pos.debug("untilted_stepper_position offset");
  1781. //bed_level_matrix.debug("untilted_stepper_position");
  1782. //inverse.debug("in untilted_stepper_position");
  1783. pos.apply_rotation(inverse);
  1784. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1785. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1786. pos.z = LOGICAL_Z_POSITION(pos.z);
  1787. //pos.debug("after rotation and reorientation");
  1788. return pos;
  1789. }
  1790. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1791. /**
  1792. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1793. */
  1794. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1795. if (bed_level[x][y] != 0.0) {
  1796. return; // Don't overwrite good values.
  1797. }
  1798. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1799. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1800. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1801. float median = c; // Median is robust (ignores outliers).
  1802. if (a < b) {
  1803. if (b < c) median = b;
  1804. if (c < a) median = a;
  1805. }
  1806. else { // b <= a
  1807. if (c < b) median = b;
  1808. if (a < c) median = a;
  1809. }
  1810. bed_level[x][y] = median;
  1811. }
  1812. /**
  1813. * Fill in the unprobed points (corners of circular print surface)
  1814. * using linear extrapolation, away from the center.
  1815. */
  1816. static void extrapolate_unprobed_bed_level() {
  1817. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1818. for (int y = 0; y <= half; y++) {
  1819. for (int x = 0; x <= half; x++) {
  1820. if (x + y < 3) continue;
  1821. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1822. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1823. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1824. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1825. }
  1826. }
  1827. }
  1828. /**
  1829. * Print calibration results for plotting or manual frame adjustment.
  1830. */
  1831. static void print_bed_level() {
  1832. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1833. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1834. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1835. SERIAL_PROTOCOLCHAR(' ');
  1836. }
  1837. SERIAL_EOL;
  1838. }
  1839. }
  1840. /**
  1841. * Reset calibration results to zero.
  1842. */
  1843. void reset_bed_level() {
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1846. #endif
  1847. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1848. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1849. bed_level[x][y] = 0.0;
  1850. }
  1851. }
  1852. }
  1853. #endif // DELTA
  1854. #endif // AUTO_BED_LEVELING_FEATURE
  1855. /**
  1856. * Home an individual axis
  1857. */
  1858. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1859. current_position[axis] = 0;
  1860. sync_plan_position();
  1861. current_position[axis] = where;
  1862. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1863. stepper.synchronize();
  1864. endstops.hit_on_purpose();
  1865. }
  1866. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1867. static void homeaxis(AxisEnum axis) {
  1868. #define CAN_HOME(A) \
  1869. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1870. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) {
  1873. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1874. SERIAL_ECHOLNPGM(")");
  1875. }
  1876. #endif
  1877. int axis_home_dir =
  1878. #if ENABLED(DUAL_X_CARRIAGE)
  1879. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1880. #endif
  1881. home_dir(axis);
  1882. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1883. #if HOMING_Z_WITH_PROBE
  1884. if (axis == Z_AXIS) {
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1887. #endif
  1888. if (DEPLOY_PROBE()) return;
  1889. }
  1890. #endif
  1891. // Set a flag for Z motor locking
  1892. #if ENABLED(Z_DUAL_ENDSTOPS)
  1893. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1894. #endif
  1895. // Move towards the endstop until an endstop is triggered
  1896. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1897. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1898. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1899. #endif
  1900. // Move away from the endstop by the axis HOME_BUMP_MM
  1901. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1902. // Move slowly towards the endstop until triggered
  1903. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1905. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1906. #endif
  1907. #if ENABLED(Z_DUAL_ENDSTOPS)
  1908. if (axis == Z_AXIS) {
  1909. float adj = fabs(z_endstop_adj);
  1910. bool lockZ1;
  1911. if (axis_home_dir > 0) {
  1912. adj = -adj;
  1913. lockZ1 = (z_endstop_adj > 0);
  1914. }
  1915. else
  1916. lockZ1 = (z_endstop_adj < 0);
  1917. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1918. // Move to the adjusted endstop height
  1919. do_homing_move(axis, adj);
  1920. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1921. stepper.set_homing_flag(false);
  1922. } // Z_AXIS
  1923. #endif
  1924. // Delta has already moved all three towers up in G28
  1925. // so here it re-homes each tower in turn.
  1926. // Delta homing treats the axes as normal linear axes.
  1927. #if ENABLED(DELTA)
  1928. // retrace by the amount specified in endstop_adj
  1929. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) {
  1932. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1933. DEBUG_POS("", current_position);
  1934. }
  1935. #endif
  1936. do_homing_move(axis, endstop_adj[axis]);
  1937. }
  1938. #else
  1939. // Set the axis position to its home position (plus home offsets)
  1940. set_axis_is_at_home(axis);
  1941. sync_plan_position();
  1942. destination[axis] = current_position[axis];
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1945. #endif
  1946. #endif
  1947. // Put away the Z probe
  1948. #if HOMING_Z_WITH_PROBE
  1949. if (axis == Z_AXIS) {
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1952. #endif
  1953. if (STOW_PROBE()) return;
  1954. }
  1955. #endif
  1956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1957. if (DEBUGGING(LEVELING)) {
  1958. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1959. SERIAL_ECHOLNPGM(")");
  1960. }
  1961. #endif
  1962. } // homeaxis()
  1963. #if ENABLED(FWRETRACT)
  1964. void retract(bool retracting, bool swapping = false) {
  1965. if (retracting == retracted[active_extruder]) return;
  1966. float old_feedrate_mm_s = feedrate_mm_s;
  1967. set_destination_to_current();
  1968. if (retracting) {
  1969. feedrate_mm_s = retract_feedrate_mm_s;
  1970. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1971. sync_plan_position_e();
  1972. prepare_move_to_destination();
  1973. if (retract_zlift > 0.01) {
  1974. current_position[Z_AXIS] -= retract_zlift;
  1975. SYNC_PLAN_POSITION_KINEMATIC();
  1976. prepare_move_to_destination();
  1977. }
  1978. }
  1979. else {
  1980. if (retract_zlift > 0.01) {
  1981. current_position[Z_AXIS] += retract_zlift;
  1982. SYNC_PLAN_POSITION_KINEMATIC();
  1983. }
  1984. feedrate_mm_s = retract_recover_feedrate_mm_s;
  1985. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1986. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1987. sync_plan_position_e();
  1988. prepare_move_to_destination();
  1989. }
  1990. feedrate_mm_s = old_feedrate_mm_s;
  1991. retracted[active_extruder] = retracting;
  1992. } // retract()
  1993. #endif // FWRETRACT
  1994. #if ENABLED(MIXING_EXTRUDER)
  1995. void normalize_mix() {
  1996. float mix_total = 0.0;
  1997. for (int i = 0; i < MIXING_STEPPERS; i++) {
  1998. float v = mixing_factor[i];
  1999. if (v < 0) v = mixing_factor[i] = 0;
  2000. mix_total += v;
  2001. }
  2002. // Scale all values if they don't add up to ~1.0
  2003. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2004. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2005. float mix_scale = 1.0 / mix_total;
  2006. for (int i = 0; i < MIXING_STEPPERS; i++)
  2007. mixing_factor[i] *= mix_scale;
  2008. }
  2009. }
  2010. #if ENABLED(DIRECT_MIXING_IN_G1)
  2011. // Get mixing parameters from the GCode
  2012. // Factors that are left out are set to 0
  2013. // The total "must" be 1.0 (but it will be normalized)
  2014. void gcode_get_mix() {
  2015. const char* mixing_codes = "ABCDHI";
  2016. for (int i = 0; i < MIXING_STEPPERS; i++)
  2017. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2018. normalize_mix();
  2019. }
  2020. #endif
  2021. #endif
  2022. /**
  2023. * ***************************************************************************
  2024. * ***************************** G-CODE HANDLING *****************************
  2025. * ***************************************************************************
  2026. */
  2027. /**
  2028. * Set XYZE destination and feedrate from the current GCode command
  2029. *
  2030. * - Set destination from included axis codes
  2031. * - Set to current for missing axis codes
  2032. * - Set the feedrate, if included
  2033. */
  2034. void gcode_get_destination() {
  2035. LOOP_XYZE(i) {
  2036. if (code_seen(axis_codes[i]))
  2037. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2038. else
  2039. destination[i] = current_position[i];
  2040. }
  2041. if (code_seen('F') && code_value_linear_units() > 0.0)
  2042. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2043. #if ENABLED(PRINTCOUNTER)
  2044. if (!DEBUGGING(DRYRUN))
  2045. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2046. #endif
  2047. // Get ABCDHI mixing factors
  2048. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2049. gcode_get_mix();
  2050. #endif
  2051. }
  2052. void unknown_command_error() {
  2053. SERIAL_ECHO_START;
  2054. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2055. SERIAL_ECHO(current_command);
  2056. SERIAL_ECHOLNPGM("\"");
  2057. }
  2058. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2059. /**
  2060. * Output a "busy" message at regular intervals
  2061. * while the machine is not accepting commands.
  2062. */
  2063. void host_keepalive() {
  2064. millis_t ms = millis();
  2065. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2066. if (PENDING(ms, next_busy_signal_ms)) return;
  2067. switch (busy_state) {
  2068. case IN_HANDLER:
  2069. case IN_PROCESS:
  2070. SERIAL_ECHO_START;
  2071. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2072. break;
  2073. case PAUSED_FOR_USER:
  2074. SERIAL_ECHO_START;
  2075. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2076. break;
  2077. case PAUSED_FOR_INPUT:
  2078. SERIAL_ECHO_START;
  2079. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2080. break;
  2081. default:
  2082. break;
  2083. }
  2084. }
  2085. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2086. }
  2087. #endif //HOST_KEEPALIVE_FEATURE
  2088. bool position_is_reachable(float target[XYZ]) {
  2089. float dx = RAW_X_POSITION(target[X_AXIS]),
  2090. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2091. #if ENABLED(DELTA)
  2092. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2093. #else
  2094. float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2095. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2096. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2097. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2098. #endif
  2099. }
  2100. /**
  2101. * G0, G1: Coordinated movement of X Y Z E axes
  2102. */
  2103. inline void gcode_G0_G1() {
  2104. if (IsRunning()) {
  2105. gcode_get_destination(); // For X Y Z E F
  2106. #if ENABLED(FWRETRACT)
  2107. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2108. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2109. // Is this move an attempt to retract or recover?
  2110. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2111. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2112. sync_plan_position_e(); // AND from the planner
  2113. retract(!retracted[active_extruder]);
  2114. return;
  2115. }
  2116. }
  2117. #endif //FWRETRACT
  2118. prepare_move_to_destination();
  2119. }
  2120. }
  2121. /**
  2122. * G2: Clockwise Arc
  2123. * G3: Counterclockwise Arc
  2124. */
  2125. #if ENABLED(ARC_SUPPORT)
  2126. inline void gcode_G2_G3(bool clockwise) {
  2127. if (IsRunning()) {
  2128. #if ENABLED(SF_ARC_FIX)
  2129. bool relative_mode_backup = relative_mode;
  2130. relative_mode = true;
  2131. #endif
  2132. gcode_get_destination();
  2133. #if ENABLED(SF_ARC_FIX)
  2134. relative_mode = relative_mode_backup;
  2135. #endif
  2136. // Center of arc as offset from current_position
  2137. float arc_offset[2] = {
  2138. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2139. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2140. };
  2141. // Send an arc to the planner
  2142. plan_arc(destination, arc_offset, clockwise);
  2143. refresh_cmd_timeout();
  2144. }
  2145. }
  2146. #endif
  2147. /**
  2148. * G4: Dwell S<seconds> or P<milliseconds>
  2149. */
  2150. inline void gcode_G4() {
  2151. millis_t dwell_ms = 0;
  2152. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2153. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2154. stepper.synchronize();
  2155. refresh_cmd_timeout();
  2156. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2157. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2158. while (PENDING(millis(), dwell_ms)) idle();
  2159. }
  2160. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2161. /**
  2162. * Parameters interpreted according to:
  2163. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2164. * However I, J omission is not supported at this point; all
  2165. * parameters can be omitted and default to zero.
  2166. */
  2167. /**
  2168. * G5: Cubic B-spline
  2169. */
  2170. inline void gcode_G5() {
  2171. if (IsRunning()) {
  2172. gcode_get_destination();
  2173. float offset[] = {
  2174. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2175. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2176. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2177. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2178. };
  2179. plan_cubic_move(offset);
  2180. }
  2181. }
  2182. #endif // BEZIER_CURVE_SUPPORT
  2183. #if ENABLED(FWRETRACT)
  2184. /**
  2185. * G10 - Retract filament according to settings of M207
  2186. * G11 - Recover filament according to settings of M208
  2187. */
  2188. inline void gcode_G10_G11(bool doRetract=false) {
  2189. #if EXTRUDERS > 1
  2190. if (doRetract) {
  2191. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2192. }
  2193. #endif
  2194. retract(doRetract
  2195. #if EXTRUDERS > 1
  2196. , retracted_swap[active_extruder]
  2197. #endif
  2198. );
  2199. }
  2200. #endif //FWRETRACT
  2201. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2202. /**
  2203. * G12: Clean the nozzle
  2204. */
  2205. inline void gcode_G12() {
  2206. // Don't allow nozzle cleaning without homing first
  2207. if (axis_unhomed_error(true, true, true)) { return; }
  2208. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2209. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2210. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2211. Nozzle::clean(pattern, strokes, objects);
  2212. }
  2213. #endif
  2214. #if ENABLED(INCH_MODE_SUPPORT)
  2215. /**
  2216. * G20: Set input mode to inches
  2217. */
  2218. inline void gcode_G20() {
  2219. set_input_linear_units(LINEARUNIT_INCH);
  2220. }
  2221. /**
  2222. * G21: Set input mode to millimeters
  2223. */
  2224. inline void gcode_G21() {
  2225. set_input_linear_units(LINEARUNIT_MM);
  2226. }
  2227. #endif
  2228. #if ENABLED(NOZZLE_PARK_FEATURE)
  2229. /**
  2230. * G27: Park the nozzle
  2231. */
  2232. inline void gcode_G27() {
  2233. // Don't allow nozzle parking without homing first
  2234. if (axis_unhomed_error(true, true, true)) { return; }
  2235. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2236. Nozzle::park(z_action);
  2237. }
  2238. #endif // NOZZLE_PARK_FEATURE
  2239. #if ENABLED(QUICK_HOME)
  2240. static void quick_home_xy() {
  2241. // Pretend the current position is 0,0
  2242. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2243. sync_plan_position();
  2244. int x_axis_home_dir =
  2245. #if ENABLED(DUAL_X_CARRIAGE)
  2246. x_home_dir(active_extruder)
  2247. #else
  2248. home_dir(X_AXIS)
  2249. #endif
  2250. ;
  2251. float mlx = max_length(X_AXIS),
  2252. mly = max_length(Y_AXIS),
  2253. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2254. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2255. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2256. endstops.hit_on_purpose(); // clear endstop hit flags
  2257. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2258. }
  2259. #endif // QUICK_HOME
  2260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2261. void log_machine_info() {
  2262. SERIAL_ECHOPGM("Machine Type: ");
  2263. #if ENABLED(DELTA)
  2264. SERIAL_ECHOLNPGM("Delta");
  2265. #elif IS_SCARA
  2266. SERIAL_ECHOLNPGM("SCARA");
  2267. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2268. SERIAL_ECHOLNPGM("Core");
  2269. #else
  2270. SERIAL_ECHOLNPGM("Cartesian");
  2271. #endif
  2272. SERIAL_ECHOPGM("Probe: ");
  2273. #if ENABLED(FIX_MOUNTED_PROBE)
  2274. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2275. #elif HAS_Z_SERVO_ENDSTOP
  2276. SERIAL_ECHOLNPGM("SERVO PROBE");
  2277. #elif ENABLED(BLTOUCH)
  2278. SERIAL_ECHOLNPGM("BLTOUCH");
  2279. #elif ENABLED(Z_PROBE_SLED)
  2280. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2281. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2282. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2283. #else
  2284. SERIAL_ECHOLNPGM("NONE");
  2285. #endif
  2286. #if HAS_BED_PROBE
  2287. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2288. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2289. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2290. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2291. SERIAL_ECHOPGM(" (Right");
  2292. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2293. SERIAL_ECHOPGM(" (Left");
  2294. #endif
  2295. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2296. SERIAL_ECHOPGM("-Back");
  2297. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2298. SERIAL_ECHOPGM("-Front");
  2299. #endif
  2300. if (zprobe_zoffset < 0)
  2301. SERIAL_ECHOPGM(" & Below");
  2302. else if (zprobe_zoffset > 0)
  2303. SERIAL_ECHOPGM(" & Above");
  2304. else
  2305. SERIAL_ECHOPGM(" & Same Z as");
  2306. SERIAL_ECHOLNPGM(" Nozzle)");
  2307. #endif
  2308. }
  2309. #endif // DEBUG_LEVELING_FEATURE
  2310. #if ENABLED(DELTA)
  2311. /**
  2312. * A delta can only safely home all axes at the same time
  2313. * This is like quick_home_xy() but for 3 towers.
  2314. */
  2315. inline void home_delta() {
  2316. // Init the current position of all carriages to 0,0,0
  2317. memset(current_position, 0, sizeof(current_position));
  2318. sync_plan_position();
  2319. // Move all carriages together linearly until an endstop is hit.
  2320. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2321. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2322. line_to_current_position();
  2323. stepper.synchronize();
  2324. endstops.hit_on_purpose(); // clear endstop hit flags
  2325. // Probably not needed. Double-check this line:
  2326. memset(current_position, 0, sizeof(current_position));
  2327. // At least one carriage has reached the top.
  2328. // Now back off and re-home each carriage separately.
  2329. HOMEAXIS(A);
  2330. HOMEAXIS(B);
  2331. HOMEAXIS(C);
  2332. // Set all carriages to their home positions
  2333. // Do this here all at once for Delta, because
  2334. // XYZ isn't ABC. Applying this per-tower would
  2335. // give the impression that they are the same.
  2336. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2337. SYNC_PLAN_POSITION_KINEMATIC();
  2338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2339. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2340. #endif
  2341. }
  2342. #endif // DELTA
  2343. #if ENABLED(Z_SAFE_HOMING)
  2344. inline void home_z_safely() {
  2345. // Disallow Z homing if X or Y are unknown
  2346. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2347. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2348. SERIAL_ECHO_START;
  2349. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2350. return;
  2351. }
  2352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2353. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2354. #endif
  2355. SYNC_PLAN_POSITION_KINEMATIC();
  2356. /**
  2357. * Move the Z probe (or just the nozzle) to the safe homing point
  2358. */
  2359. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2360. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2361. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2362. #if HAS_BED_PROBE
  2363. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2364. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2365. #endif
  2366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2367. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2368. #endif
  2369. if (position_is_reachable(destination)) {
  2370. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2371. HOMEAXIS(Z);
  2372. }
  2373. else {
  2374. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2375. SERIAL_ECHO_START;
  2376. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2377. }
  2378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2379. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2380. #endif
  2381. }
  2382. #endif // Z_SAFE_HOMING
  2383. /**
  2384. * G28: Home all axes according to settings
  2385. *
  2386. * Parameters
  2387. *
  2388. * None Home to all axes with no parameters.
  2389. * With QUICK_HOME enabled XY will home together, then Z.
  2390. *
  2391. * Cartesian parameters
  2392. *
  2393. * X Home to the X endstop
  2394. * Y Home to the Y endstop
  2395. * Z Home to the Z endstop
  2396. *
  2397. */
  2398. inline void gcode_G28() {
  2399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2400. if (DEBUGGING(LEVELING)) {
  2401. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2402. log_machine_info();
  2403. }
  2404. #endif
  2405. // Wait for planner moves to finish!
  2406. stepper.synchronize();
  2407. // For auto bed leveling, clear the level matrix
  2408. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2409. planner.bed_level_matrix.set_to_identity();
  2410. #endif
  2411. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2412. reset_bed_level();
  2413. #endif
  2414. // Always home with tool 0 active
  2415. #if HOTENDS > 1
  2416. uint8_t old_tool_index = active_extruder;
  2417. tool_change(0, 0, true);
  2418. #endif
  2419. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2420. extruder_duplication_enabled = false;
  2421. #endif
  2422. /**
  2423. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2424. * on again when homing all axis
  2425. */
  2426. #if ENABLED(MESH_BED_LEVELING)
  2427. float pre_home_z = MESH_HOME_SEARCH_Z;
  2428. if (mbl.active()) {
  2429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2430. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2431. #endif
  2432. // Save known Z position if already homed
  2433. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2434. pre_home_z = current_position[Z_AXIS];
  2435. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2436. }
  2437. mbl.set_active(false);
  2438. current_position[Z_AXIS] = pre_home_z;
  2439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2440. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2441. #endif
  2442. }
  2443. #endif
  2444. setup_for_endstop_or_probe_move();
  2445. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2446. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2447. #endif
  2448. endstops.enable(true); // Enable endstops for next homing move
  2449. #if ENABLED(DELTA)
  2450. home_delta();
  2451. #else // NOT DELTA
  2452. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2453. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2454. set_destination_to_current();
  2455. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2456. if (home_all_axis || homeZ) {
  2457. HOMEAXIS(Z);
  2458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2459. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2460. #endif
  2461. }
  2462. #else
  2463. if (home_all_axis || homeX || homeY) {
  2464. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2465. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2466. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2468. if (DEBUGGING(LEVELING))
  2469. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2470. #endif
  2471. do_blocking_move_to_z(destination[Z_AXIS]);
  2472. }
  2473. }
  2474. #endif
  2475. #if ENABLED(QUICK_HOME)
  2476. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2477. #endif
  2478. #if ENABLED(HOME_Y_BEFORE_X)
  2479. // Home Y
  2480. if (home_all_axis || homeY) {
  2481. HOMEAXIS(Y);
  2482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2483. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2484. #endif
  2485. }
  2486. #endif
  2487. // Home X
  2488. if (home_all_axis || homeX) {
  2489. #if ENABLED(DUAL_X_CARRIAGE)
  2490. int tmp_extruder = active_extruder;
  2491. active_extruder = !active_extruder;
  2492. HOMEAXIS(X);
  2493. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2494. active_extruder = tmp_extruder;
  2495. HOMEAXIS(X);
  2496. // reset state used by the different modes
  2497. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2498. delayed_move_time = 0;
  2499. active_extruder_parked = true;
  2500. #else
  2501. HOMEAXIS(X);
  2502. #endif
  2503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2504. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2505. #endif
  2506. }
  2507. #if DISABLED(HOME_Y_BEFORE_X)
  2508. // Home Y
  2509. if (home_all_axis || homeY) {
  2510. HOMEAXIS(Y);
  2511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2512. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2513. #endif
  2514. }
  2515. #endif
  2516. // Home Z last if homing towards the bed
  2517. #if Z_HOME_DIR < 0
  2518. if (home_all_axis || homeZ) {
  2519. #if ENABLED(Z_SAFE_HOMING)
  2520. home_z_safely();
  2521. #else
  2522. HOMEAXIS(Z);
  2523. #endif
  2524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2525. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2526. #endif
  2527. } // home_all_axis || homeZ
  2528. #endif // Z_HOME_DIR < 0
  2529. SYNC_PLAN_POSITION_KINEMATIC();
  2530. #endif // !DELTA (gcode_G28)
  2531. endstops.not_homing();
  2532. // Enable mesh leveling again
  2533. #if ENABLED(MESH_BED_LEVELING)
  2534. if (mbl.has_mesh()) {
  2535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2536. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2537. #endif
  2538. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2540. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2541. #endif
  2542. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2543. #if Z_HOME_DIR > 0
  2544. + Z_MAX_POS
  2545. #endif
  2546. ;
  2547. SYNC_PLAN_POSITION_KINEMATIC();
  2548. mbl.set_active(true);
  2549. #if ENABLED(MESH_G28_REST_ORIGIN)
  2550. current_position[Z_AXIS] = 0.0;
  2551. set_destination_to_current();
  2552. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2553. line_to_destination();
  2554. stepper.synchronize();
  2555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2556. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2557. #endif
  2558. #else
  2559. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2560. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2561. #if Z_HOME_DIR > 0
  2562. + Z_MAX_POS
  2563. #endif
  2564. ;
  2565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2566. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2567. #endif
  2568. #endif
  2569. }
  2570. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2571. current_position[Z_AXIS] = pre_home_z;
  2572. SYNC_PLAN_POSITION_KINEMATIC();
  2573. mbl.set_active(true);
  2574. current_position[Z_AXIS] = pre_home_z -
  2575. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2577. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2578. #endif
  2579. }
  2580. }
  2581. #endif
  2582. #if ENABLED(DELTA)
  2583. // move to a height where we can use the full xy-area
  2584. do_blocking_move_to_z(delta_clip_start_height);
  2585. #endif
  2586. clean_up_after_endstop_or_probe_move();
  2587. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2588. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2589. #endif
  2590. // Restore the active tool after homing
  2591. #if HOTENDS > 1
  2592. tool_change(old_tool_index, 0, true);
  2593. #endif
  2594. report_current_position();
  2595. }
  2596. #if HAS_PROBING_PROCEDURE
  2597. void out_of_range_error(const char* p_edge) {
  2598. SERIAL_PROTOCOLPGM("?Probe ");
  2599. serialprintPGM(p_edge);
  2600. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2601. }
  2602. #endif
  2603. #if ENABLED(MESH_BED_LEVELING)
  2604. inline void _mbl_goto_xy(float x, float y) {
  2605. float old_feedrate_mm_s = feedrate_mm_s;
  2606. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2607. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2608. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2609. + Z_PROBE_TRAVEL_HEIGHT
  2610. #elif Z_HOMING_HEIGHT > 0
  2611. + Z_HOMING_HEIGHT
  2612. #endif
  2613. ;
  2614. line_to_current_position();
  2615. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2616. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2617. line_to_current_position();
  2618. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2619. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2620. line_to_current_position();
  2621. #endif
  2622. feedrate_mm_s = old_feedrate_mm_s;
  2623. stepper.synchronize();
  2624. }
  2625. /**
  2626. * G29: Mesh-based Z probe, probes a grid and produces a
  2627. * mesh to compensate for variable bed height
  2628. *
  2629. * Parameters With MESH_BED_LEVELING:
  2630. *
  2631. * S0 Produce a mesh report
  2632. * S1 Start probing mesh points
  2633. * S2 Probe the next mesh point
  2634. * S3 Xn Yn Zn.nn Manually modify a single point
  2635. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2636. * S5 Reset and disable mesh
  2637. *
  2638. * The S0 report the points as below
  2639. *
  2640. * +----> X-axis 1-n
  2641. * |
  2642. * |
  2643. * v Y-axis 1-n
  2644. *
  2645. */
  2646. inline void gcode_G29() {
  2647. static int probe_point = -1;
  2648. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2649. if (state < 0 || state > 5) {
  2650. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2651. return;
  2652. }
  2653. int8_t px, py;
  2654. switch (state) {
  2655. case MeshReport:
  2656. if (mbl.has_mesh()) {
  2657. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2658. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2659. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2660. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2661. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2662. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2663. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2664. SERIAL_PROTOCOLPGM(" ");
  2665. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2666. }
  2667. SERIAL_EOL;
  2668. }
  2669. }
  2670. else
  2671. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2672. break;
  2673. case MeshStart:
  2674. mbl.reset();
  2675. probe_point = 0;
  2676. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2677. break;
  2678. case MeshNext:
  2679. if (probe_point < 0) {
  2680. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2681. return;
  2682. }
  2683. // For each G29 S2...
  2684. if (probe_point == 0) {
  2685. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2686. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2687. #if Z_HOME_DIR > 0
  2688. + Z_MAX_POS
  2689. #endif
  2690. ;
  2691. SYNC_PLAN_POSITION_KINEMATIC();
  2692. }
  2693. else {
  2694. // For G29 S2 after adjusting Z.
  2695. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2696. }
  2697. // If there's another point to sample, move there with optional lift.
  2698. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2699. mbl.zigzag(probe_point, px, py);
  2700. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2701. probe_point++;
  2702. }
  2703. else {
  2704. // One last "return to the bed" (as originally coded) at completion
  2705. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2706. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2707. + Z_PROBE_TRAVEL_HEIGHT
  2708. #elif Z_HOMING_HEIGHT > 0
  2709. + Z_HOMING_HEIGHT
  2710. #endif
  2711. ;
  2712. line_to_current_position();
  2713. stepper.synchronize();
  2714. // After recording the last point, activate the mbl and home
  2715. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2716. probe_point = -1;
  2717. mbl.set_has_mesh(true);
  2718. enqueue_and_echo_commands_P(PSTR("G28"));
  2719. }
  2720. break;
  2721. case MeshSet:
  2722. if (code_seen('X')) {
  2723. px = code_value_int() - 1;
  2724. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2725. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2726. return;
  2727. }
  2728. }
  2729. else {
  2730. SERIAL_PROTOCOLLNPGM("X not entered.");
  2731. return;
  2732. }
  2733. if (code_seen('Y')) {
  2734. py = code_value_int() - 1;
  2735. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2736. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2737. return;
  2738. }
  2739. }
  2740. else {
  2741. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2742. return;
  2743. }
  2744. if (code_seen('Z')) {
  2745. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2746. }
  2747. else {
  2748. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2749. return;
  2750. }
  2751. break;
  2752. case MeshSetZOffset:
  2753. if (code_seen('Z')) {
  2754. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2755. }
  2756. else {
  2757. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2758. return;
  2759. }
  2760. break;
  2761. case MeshReset:
  2762. if (mbl.active()) {
  2763. current_position[Z_AXIS] +=
  2764. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2765. mbl.reset();
  2766. SYNC_PLAN_POSITION_KINEMATIC();
  2767. }
  2768. else
  2769. mbl.reset();
  2770. } // switch(state)
  2771. report_current_position();
  2772. }
  2773. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2774. /**
  2775. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2776. * Will fail if the printer has not been homed with G28.
  2777. *
  2778. * Enhanced G29 Auto Bed Leveling Probe Routine
  2779. *
  2780. * Parameters With AUTO_BED_LEVELING_GRID:
  2781. *
  2782. * P Set the size of the grid that will be probed (P x P points).
  2783. * Not supported by non-linear delta printer bed leveling.
  2784. * Example: "G29 P4"
  2785. *
  2786. * S Set the XY travel speed between probe points (in units/min)
  2787. *
  2788. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2789. * or clean the rotation Matrix. Useful to check the topology
  2790. * after a first run of G29.
  2791. *
  2792. * V Set the verbose level (0-4). Example: "G29 V3"
  2793. *
  2794. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2795. * This is useful for manual bed leveling and finding flaws in the bed (to
  2796. * assist with part placement).
  2797. * Not supported by non-linear delta printer bed leveling.
  2798. *
  2799. * F Set the Front limit of the probing grid
  2800. * B Set the Back limit of the probing grid
  2801. * L Set the Left limit of the probing grid
  2802. * R Set the Right limit of the probing grid
  2803. *
  2804. * Global Parameters:
  2805. *
  2806. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2807. * Include "E" to engage/disengage the Z probe for each sample.
  2808. * There's no extra effect if you have a fixed Z probe.
  2809. * Usage: "G29 E" or "G29 e"
  2810. *
  2811. */
  2812. inline void gcode_G29() {
  2813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2814. if (DEBUGGING(LEVELING)) {
  2815. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2816. DEBUG_POS("", current_position);
  2817. log_machine_info();
  2818. }
  2819. #endif
  2820. // Don't allow auto-leveling without homing first
  2821. if (axis_unhomed_error(true, true, true)) return;
  2822. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2823. if (verbose_level < 0 || verbose_level > 4) {
  2824. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2825. return;
  2826. }
  2827. bool dryrun = code_seen('D');
  2828. bool stow_probe_after_each = code_seen('E');
  2829. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2830. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2831. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2832. #endif
  2833. if (verbose_level > 0) {
  2834. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2835. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2836. }
  2837. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2838. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2839. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2840. if (auto_bed_leveling_grid_points < 2) {
  2841. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2842. return;
  2843. }
  2844. #endif
  2845. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2846. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2847. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2848. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2849. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2850. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2851. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2852. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2853. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2854. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2855. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2856. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2857. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2858. if (left_out || right_out || front_out || back_out) {
  2859. if (left_out) {
  2860. out_of_range_error(PSTR("(L)eft"));
  2861. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2862. }
  2863. if (right_out) {
  2864. out_of_range_error(PSTR("(R)ight"));
  2865. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2866. }
  2867. if (front_out) {
  2868. out_of_range_error(PSTR("(F)ront"));
  2869. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2870. }
  2871. if (back_out) {
  2872. out_of_range_error(PSTR("(B)ack"));
  2873. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2874. }
  2875. return;
  2876. }
  2877. #endif // AUTO_BED_LEVELING_GRID
  2878. stepper.synchronize();
  2879. if (!dryrun) {
  2880. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2881. // Reset the bed_level_matrix because leveling
  2882. // needs to be done without leveling enabled.
  2883. planner.bed_level_matrix.set_to_identity();
  2884. #endif
  2885. //
  2886. // Re-orient the current position without leveling
  2887. // based on where the steppers are positioned.
  2888. //
  2889. #if IS_KINEMATIC
  2890. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2891. reset_bed_level();
  2892. #endif
  2893. // For DELTA/SCARA we need to apply forward kinematics.
  2894. // This returns raw positions and we remap to the space.
  2895. set_cartesian_from_steppers();
  2896. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartesian_position[i], i);
  2897. #else
  2898. // For cartesian/core the steppers are already mapped to
  2899. // the coordinate space by design.
  2900. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2901. #endif // !DELTA
  2902. // Inform the planner about the new coordinates
  2903. // (This is probably not needed here)
  2904. SYNC_PLAN_POSITION_KINEMATIC();
  2905. }
  2906. setup_for_endstop_or_probe_move();
  2907. // Deploy the probe. Probe will raise if needed.
  2908. if (DEPLOY_PROBE()) return;
  2909. bed_leveling_in_progress = true;
  2910. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2911. // probe at the points of a lattice grid
  2912. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2913. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2914. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2915. delta_grid_spacing[X_AXIS] = xGridSpacing;
  2916. delta_grid_spacing[Y_AXIS] = yGridSpacing;
  2917. float zoffset = zprobe_zoffset;
  2918. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2919. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  2920. /**
  2921. * solve the plane equation ax + by + d = z
  2922. * A is the matrix with rows [x y 1] for all the probed points
  2923. * B is the vector of the Z positions
  2924. * the normal vector to the plane is formed by the coefficients of the
  2925. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2926. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2927. */
  2928. int abl2 = sq(auto_bed_leveling_grid_points);
  2929. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2930. eqnBVector[abl2], // "B" vector of Z points
  2931. mean = 0.0;
  2932. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2933. #endif // AUTO_BED_LEVELING_LINEAR
  2934. int probePointCounter = 0;
  2935. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2936. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2937. float yBase = front_probe_bed_position + yGridSpacing * yCount,
  2938. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2939. int xStart, xStop, xInc;
  2940. if (zig) {
  2941. xStart = 0;
  2942. xStop = auto_bed_leveling_grid_points;
  2943. xInc = 1;
  2944. }
  2945. else {
  2946. xStart = auto_bed_leveling_grid_points - 1;
  2947. xStop = -1;
  2948. xInc = -1;
  2949. }
  2950. zig = !zig;
  2951. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2952. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  2953. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2954. #if ENABLED(DELTA)
  2955. // Avoid probing outside the round or hexagonal area of a delta printer
  2956. if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2957. #endif
  2958. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2959. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2960. mean += measured_z;
  2961. eqnBVector[probePointCounter] = measured_z;
  2962. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2963. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2964. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2965. indexIntoAB[xCount][yCount] = probePointCounter;
  2966. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2967. bed_level[xCount][yCount] = measured_z + zoffset;
  2968. #endif
  2969. probePointCounter++;
  2970. idle();
  2971. } //xProbe
  2972. } //yProbe
  2973. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2975. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2976. #endif
  2977. // Probe at 3 arbitrary points
  2978. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  2979. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  2980. stow_probe_after_each, verbose_level),
  2981. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  2982. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  2983. stow_probe_after_each, verbose_level),
  2984. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  2985. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  2986. stow_probe_after_each, verbose_level);
  2987. if (!dryrun) {
  2988. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1),
  2989. pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2),
  2990. pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  2991. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  2992. if (planeNormal.z < 0) {
  2993. planeNormal.x *= -1;
  2994. planeNormal.y *= -1;
  2995. planeNormal.z *= -1;
  2996. }
  2997. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  2998. }
  2999. #endif // !AUTO_BED_LEVELING_GRID
  3000. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3001. if (STOW_PROBE()) return;
  3002. // Restore state after probing
  3003. clean_up_after_endstop_or_probe_move();
  3004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3005. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3006. #endif
  3007. // Calculate leveling, print reports, correct the position
  3008. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3009. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3010. if (!dryrun) extrapolate_unprobed_bed_level();
  3011. print_bed_level();
  3012. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3013. // solve lsq problem
  3014. double plane_equation_coefficients[3];
  3015. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3016. mean /= abl2;
  3017. if (verbose_level) {
  3018. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3019. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3020. SERIAL_PROTOCOLPGM(" b: ");
  3021. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3022. SERIAL_PROTOCOLPGM(" d: ");
  3023. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3024. SERIAL_EOL;
  3025. if (verbose_level > 2) {
  3026. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3027. SERIAL_PROTOCOL_F(mean, 8);
  3028. SERIAL_EOL;
  3029. }
  3030. }
  3031. // Create the matrix but don't correct the position yet
  3032. if (!dryrun) {
  3033. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3034. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3035. );
  3036. }
  3037. // Show the Topography map if enabled
  3038. if (do_topography_map) {
  3039. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3040. " +--- BACK --+\n"
  3041. " | |\n"
  3042. " L | (+) | R\n"
  3043. " E | | I\n"
  3044. " F | (-) N (+) | G\n"
  3045. " T | | H\n"
  3046. " | (-) | T\n"
  3047. " | |\n"
  3048. " O-- FRONT --+\n"
  3049. " (0,0)");
  3050. float min_diff = 999;
  3051. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3052. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3053. int ind = indexIntoAB[xx][yy];
  3054. float diff = eqnBVector[ind] - mean;
  3055. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3056. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3057. z_tmp = 0;
  3058. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3059. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3060. if (diff >= 0.0)
  3061. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3062. else
  3063. SERIAL_PROTOCOLCHAR(' ');
  3064. SERIAL_PROTOCOL_F(diff, 5);
  3065. } // xx
  3066. SERIAL_EOL;
  3067. } // yy
  3068. SERIAL_EOL;
  3069. if (verbose_level > 3) {
  3070. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3071. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3072. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3073. int ind = indexIntoAB[xx][yy];
  3074. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3075. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3076. z_tmp = 0;
  3077. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3078. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3079. if (diff >= 0.0)
  3080. SERIAL_PROTOCOLPGM(" +");
  3081. // Include + for column alignment
  3082. else
  3083. SERIAL_PROTOCOLCHAR(' ');
  3084. SERIAL_PROTOCOL_F(diff, 5);
  3085. } // xx
  3086. SERIAL_EOL;
  3087. } // yy
  3088. SERIAL_EOL;
  3089. }
  3090. } //do_topography_map
  3091. #endif // AUTO_BED_LEVELING_LINEAR
  3092. #endif // AUTO_BED_LEVELING_GRID
  3093. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3094. if (verbose_level > 0)
  3095. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3096. if (!dryrun) {
  3097. //
  3098. // Correct the current XYZ position based on the tilted plane.
  3099. //
  3100. // Get the distance from the reference point to the current position
  3101. // The current XY is in sync with the planner/steppers at this point
  3102. // but the current Z is only known to the steppers.
  3103. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3104. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3105. z_real = RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS));
  3106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3107. if (DEBUGGING(LEVELING)) {
  3108. SERIAL_ECHOPAIR("BEFORE ROTATION ... x_dist:", x_dist);
  3109. SERIAL_ECHOPAIR("y_dist:", y_dist);
  3110. SERIAL_ECHOPAIR("z_real:", z_real);
  3111. }
  3112. #endif
  3113. // Apply the matrix to the distance from the reference point to XY,
  3114. // and from the homed Z to the current Z.
  3115. apply_rotation_xyz(planner.bed_level_matrix, x_dist, y_dist, z_real);
  3116. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3117. if (DEBUGGING(LEVELING)) {
  3118. SERIAL_ECHOPAIR("AFTER ROTATION ... x_dist:", x_dist);
  3119. SERIAL_ECHOPAIR("y_dist:", y_dist);
  3120. SERIAL_ECHOPAIR("z_real:", z_real);
  3121. }
  3122. #endif
  3123. // Apply the rotated distance and Z to the current position
  3124. current_position[X_AXIS] = LOGICAL_X_POSITION(X_TILT_FULCRUM + x_dist);
  3125. current_position[Y_AXIS] = LOGICAL_Y_POSITION(Y_TILT_FULCRUM + y_dist);
  3126. current_position[Z_AXIS] = LOGICAL_Z_POSITION(z_real);
  3127. SYNC_PLAN_POSITION_KINEMATIC();
  3128. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3129. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected XYZ in G29", current_position);
  3130. #endif
  3131. }
  3132. #endif // !DELTA
  3133. #ifdef Z_PROBE_END_SCRIPT
  3134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3135. if (DEBUGGING(LEVELING)) {
  3136. SERIAL_ECHOPGM("Z Probe End Script: ");
  3137. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3138. }
  3139. #endif
  3140. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3141. stepper.synchronize();
  3142. #endif
  3143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3144. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3145. #endif
  3146. bed_leveling_in_progress = false;
  3147. report_current_position();
  3148. KEEPALIVE_STATE(IN_HANDLER);
  3149. }
  3150. #endif //AUTO_BED_LEVELING_FEATURE
  3151. #if HAS_BED_PROBE
  3152. /**
  3153. * G30: Do a single Z probe at the current XY
  3154. */
  3155. inline void gcode_G30() {
  3156. setup_for_endstop_or_probe_move();
  3157. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3158. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3159. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3160. true, 1);
  3161. SERIAL_PROTOCOLPGM("Bed X: ");
  3162. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3163. SERIAL_PROTOCOLPGM(" Y: ");
  3164. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3165. SERIAL_PROTOCOLPGM(" Z: ");
  3166. SERIAL_PROTOCOL(measured_z + 0.0001);
  3167. SERIAL_EOL;
  3168. clean_up_after_endstop_or_probe_move();
  3169. report_current_position();
  3170. }
  3171. #if ENABLED(Z_PROBE_SLED)
  3172. /**
  3173. * G31: Deploy the Z probe
  3174. */
  3175. inline void gcode_G31() { DEPLOY_PROBE(); }
  3176. /**
  3177. * G32: Stow the Z probe
  3178. */
  3179. inline void gcode_G32() { STOW_PROBE(); }
  3180. #endif // Z_PROBE_SLED
  3181. #endif // HAS_BED_PROBE
  3182. /**
  3183. * G92: Set current position to given X Y Z E
  3184. */
  3185. inline void gcode_G92() {
  3186. bool didE = code_seen('E');
  3187. if (!didE) stepper.synchronize();
  3188. bool didXYZ = false;
  3189. LOOP_XYZE(i) {
  3190. if (code_seen(axis_codes[i])) {
  3191. float p = current_position[i],
  3192. v = code_value_axis_units(i);
  3193. current_position[i] = v;
  3194. if (i != E_AXIS) {
  3195. position_shift[i] += v - p; // Offset the coordinate space
  3196. update_software_endstops((AxisEnum)i);
  3197. didXYZ = true;
  3198. }
  3199. }
  3200. }
  3201. if (didXYZ)
  3202. SYNC_PLAN_POSITION_KINEMATIC();
  3203. else if (didE)
  3204. sync_plan_position_e();
  3205. }
  3206. #if ENABLED(ULTIPANEL)
  3207. /**
  3208. * M0: Unconditional stop - Wait for user button press on LCD
  3209. * M1: Conditional stop - Wait for user button press on LCD
  3210. */
  3211. inline void gcode_M0_M1() {
  3212. char* args = current_command_args;
  3213. millis_t codenum = 0;
  3214. bool hasP = false, hasS = false;
  3215. if (code_seen('P')) {
  3216. codenum = code_value_millis(); // milliseconds to wait
  3217. hasP = codenum > 0;
  3218. }
  3219. if (code_seen('S')) {
  3220. codenum = code_value_millis_from_seconds(); // seconds to wait
  3221. hasS = codenum > 0;
  3222. }
  3223. if (!hasP && !hasS && *args != '\0')
  3224. lcd_setstatus(args, true);
  3225. else {
  3226. LCD_MESSAGEPGM(MSG_USERWAIT);
  3227. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3228. dontExpireStatus();
  3229. #endif
  3230. }
  3231. lcd_ignore_click();
  3232. stepper.synchronize();
  3233. refresh_cmd_timeout();
  3234. if (codenum > 0) {
  3235. codenum += previous_cmd_ms; // wait until this time for a click
  3236. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3237. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3238. KEEPALIVE_STATE(IN_HANDLER);
  3239. lcd_ignore_click(false);
  3240. }
  3241. else {
  3242. if (!lcd_detected()) return;
  3243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3244. while (!lcd_clicked()) idle();
  3245. KEEPALIVE_STATE(IN_HANDLER);
  3246. }
  3247. if (IS_SD_PRINTING)
  3248. LCD_MESSAGEPGM(MSG_RESUMING);
  3249. else
  3250. LCD_MESSAGEPGM(WELCOME_MSG);
  3251. }
  3252. #endif // ULTIPANEL
  3253. /**
  3254. * M17: Enable power on all stepper motors
  3255. */
  3256. inline void gcode_M17() {
  3257. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3258. enable_all_steppers();
  3259. }
  3260. #if ENABLED(SDSUPPORT)
  3261. /**
  3262. * M20: List SD card to serial output
  3263. */
  3264. inline void gcode_M20() {
  3265. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3266. card.ls();
  3267. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3268. }
  3269. /**
  3270. * M21: Init SD Card
  3271. */
  3272. inline void gcode_M21() {
  3273. card.initsd();
  3274. }
  3275. /**
  3276. * M22: Release SD Card
  3277. */
  3278. inline void gcode_M22() {
  3279. card.release();
  3280. }
  3281. /**
  3282. * M23: Open a file
  3283. */
  3284. inline void gcode_M23() {
  3285. card.openFile(current_command_args, true);
  3286. }
  3287. /**
  3288. * M24: Start SD Print
  3289. */
  3290. inline void gcode_M24() {
  3291. card.startFileprint();
  3292. print_job_timer.start();
  3293. }
  3294. /**
  3295. * M25: Pause SD Print
  3296. */
  3297. inline void gcode_M25() {
  3298. card.pauseSDPrint();
  3299. }
  3300. /**
  3301. * M26: Set SD Card file index
  3302. */
  3303. inline void gcode_M26() {
  3304. if (card.cardOK && code_seen('S'))
  3305. card.setIndex(code_value_long());
  3306. }
  3307. /**
  3308. * M27: Get SD Card status
  3309. */
  3310. inline void gcode_M27() {
  3311. card.getStatus();
  3312. }
  3313. /**
  3314. * M28: Start SD Write
  3315. */
  3316. inline void gcode_M28() {
  3317. card.openFile(current_command_args, false);
  3318. }
  3319. /**
  3320. * M29: Stop SD Write
  3321. * Processed in write to file routine above
  3322. */
  3323. inline void gcode_M29() {
  3324. // card.saving = false;
  3325. }
  3326. /**
  3327. * M30 <filename>: Delete SD Card file
  3328. */
  3329. inline void gcode_M30() {
  3330. if (card.cardOK) {
  3331. card.closefile();
  3332. card.removeFile(current_command_args);
  3333. }
  3334. }
  3335. #endif //SDSUPPORT
  3336. /**
  3337. * M31: Get the time since the start of SD Print (or last M109)
  3338. */
  3339. inline void gcode_M31() {
  3340. char buffer[21];
  3341. duration_t elapsed = print_job_timer.duration();
  3342. elapsed.toString(buffer);
  3343. lcd_setstatus(buffer);
  3344. SERIAL_ECHO_START;
  3345. SERIAL_ECHOPGM("Print time: ");
  3346. SERIAL_ECHOLN(buffer);
  3347. thermalManager.autotempShutdown();
  3348. }
  3349. #if ENABLED(SDSUPPORT)
  3350. /**
  3351. * M32: Select file and start SD Print
  3352. */
  3353. inline void gcode_M32() {
  3354. if (card.sdprinting)
  3355. stepper.synchronize();
  3356. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3357. if (!namestartpos)
  3358. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3359. else
  3360. namestartpos++; //to skip the '!'
  3361. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3362. if (card.cardOK) {
  3363. card.openFile(namestartpos, true, call_procedure);
  3364. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3365. card.setIndex(code_value_long());
  3366. card.startFileprint();
  3367. // Procedure calls count as normal print time.
  3368. if (!call_procedure) print_job_timer.start();
  3369. }
  3370. }
  3371. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3372. /**
  3373. * M33: Get the long full path of a file or folder
  3374. *
  3375. * Parameters:
  3376. * <dospath> Case-insensitive DOS-style path to a file or folder
  3377. *
  3378. * Example:
  3379. * M33 miscel~1/armchair/armcha~1.gco
  3380. *
  3381. * Output:
  3382. * /Miscellaneous/Armchair/Armchair.gcode
  3383. */
  3384. inline void gcode_M33() {
  3385. card.printLongPath(current_command_args);
  3386. }
  3387. #endif
  3388. /**
  3389. * M928: Start SD Write
  3390. */
  3391. inline void gcode_M928() {
  3392. card.openLogFile(current_command_args);
  3393. }
  3394. #endif // SDSUPPORT
  3395. /**
  3396. * M42: Change pin status via GCode
  3397. *
  3398. * P<pin> Pin number (LED if omitted)
  3399. * S<byte> Pin status from 0 - 255
  3400. */
  3401. inline void gcode_M42() {
  3402. if (!code_seen('S')) return;
  3403. int pin_status = code_value_int();
  3404. if (pin_status < 0 || pin_status > 255) return;
  3405. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3406. if (pin_number < 0) return;
  3407. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3408. if (pin_number == sensitive_pins[i]) return;
  3409. pinMode(pin_number, OUTPUT);
  3410. digitalWrite(pin_number, pin_status);
  3411. analogWrite(pin_number, pin_status);
  3412. #if FAN_COUNT > 0
  3413. switch (pin_number) {
  3414. #if HAS_FAN0
  3415. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3416. #endif
  3417. #if HAS_FAN1
  3418. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3419. #endif
  3420. #if HAS_FAN2
  3421. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3422. #endif
  3423. }
  3424. #endif
  3425. }
  3426. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3427. /**
  3428. * M48: Z probe repeatability measurement function.
  3429. *
  3430. * Usage:
  3431. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3432. * P = Number of sampled points (4-50, default 10)
  3433. * X = Sample X position
  3434. * Y = Sample Y position
  3435. * V = Verbose level (0-4, default=1)
  3436. * E = Engage Z probe for each reading
  3437. * L = Number of legs of movement before probe
  3438. * S = Schizoid (Or Star if you prefer)
  3439. *
  3440. * This function assumes the bed has been homed. Specifically, that a G28 command
  3441. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3442. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3443. * regenerated.
  3444. */
  3445. inline void gcode_M48() {
  3446. if (axis_unhomed_error(true, true, true)) return;
  3447. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3448. if (verbose_level < 0 || verbose_level > 4) {
  3449. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3450. return;
  3451. }
  3452. if (verbose_level > 0)
  3453. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3454. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3455. if (n_samples < 4 || n_samples > 50) {
  3456. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3457. return;
  3458. }
  3459. float X_current = current_position[X_AXIS],
  3460. Y_current = current_position[Y_AXIS];
  3461. bool stow_probe_after_each = code_seen('E');
  3462. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3463. #if DISABLED(DELTA)
  3464. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3465. out_of_range_error(PSTR("X"));
  3466. return;
  3467. }
  3468. #endif
  3469. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3470. #if DISABLED(DELTA)
  3471. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3472. out_of_range_error(PSTR("Y"));
  3473. return;
  3474. }
  3475. #else
  3476. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3477. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3478. return;
  3479. }
  3480. #endif
  3481. bool seen_L = code_seen('L');
  3482. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3483. if (n_legs > 15) {
  3484. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3485. return;
  3486. }
  3487. if (n_legs == 1) n_legs = 2;
  3488. bool schizoid_flag = code_seen('S');
  3489. if (schizoid_flag && !seen_L) n_legs = 7;
  3490. /**
  3491. * Now get everything to the specified probe point So we can safely do a
  3492. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3493. * we don't want to use that as a starting point for each probe.
  3494. */
  3495. if (verbose_level > 2)
  3496. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3497. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3498. // we don't do bed level correction in M48 because we want the raw data when we probe
  3499. reset_bed_level();
  3500. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3501. // we don't do bed level correction in M48 because we want the raw data when we probe
  3502. planner.bed_level_matrix.set_to_identity();
  3503. #endif
  3504. setup_for_endstop_or_probe_move();
  3505. // Move to the first point, deploy, and probe
  3506. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3507. randomSeed(millis());
  3508. double mean = 0, sigma = 0, sample_set[n_samples];
  3509. for (uint8_t n = 0; n < n_samples; n++) {
  3510. if (n_legs) {
  3511. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3512. float angle = random(0.0, 360.0),
  3513. radius = random(
  3514. #if ENABLED(DELTA)
  3515. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3516. #else
  3517. 5, X_MAX_LENGTH / 8
  3518. #endif
  3519. );
  3520. if (verbose_level > 3) {
  3521. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3522. SERIAL_ECHOPAIR(" angle: ", angle);
  3523. SERIAL_ECHOPGM(" Direction: ");
  3524. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3525. SERIAL_ECHOLNPGM("Clockwise");
  3526. }
  3527. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3528. double delta_angle;
  3529. if (schizoid_flag)
  3530. // The points of a 5 point star are 72 degrees apart. We need to
  3531. // skip a point and go to the next one on the star.
  3532. delta_angle = dir * 2.0 * 72.0;
  3533. else
  3534. // If we do this line, we are just trying to move further
  3535. // around the circle.
  3536. delta_angle = dir * (float) random(25, 45);
  3537. angle += delta_angle;
  3538. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3539. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3540. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3541. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3542. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3543. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3544. #if DISABLED(DELTA)
  3545. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3546. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3547. #else
  3548. // If we have gone out too far, we can do a simple fix and scale the numbers
  3549. // back in closer to the origin.
  3550. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3551. X_current /= 1.25;
  3552. Y_current /= 1.25;
  3553. if (verbose_level > 3) {
  3554. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3555. SERIAL_ECHOLNPAIR(", ", Y_current);
  3556. }
  3557. }
  3558. #endif
  3559. if (verbose_level > 3) {
  3560. SERIAL_PROTOCOLPGM("Going to:");
  3561. SERIAL_ECHOPAIR(" X", X_current);
  3562. SERIAL_ECHOPAIR(" Y", Y_current);
  3563. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3564. }
  3565. do_blocking_move_to_xy(X_current, Y_current);
  3566. } // n_legs loop
  3567. } // n_legs
  3568. // Probe a single point
  3569. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3570. /**
  3571. * Get the current mean for the data points we have so far
  3572. */
  3573. double sum = 0.0;
  3574. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3575. mean = sum / (n + 1);
  3576. /**
  3577. * Now, use that mean to calculate the standard deviation for the
  3578. * data points we have so far
  3579. */
  3580. sum = 0.0;
  3581. for (uint8_t j = 0; j <= n; j++)
  3582. sum += sq(sample_set[j] - mean);
  3583. sigma = sqrt(sum / (n + 1));
  3584. if (verbose_level > 0) {
  3585. if (verbose_level > 1) {
  3586. SERIAL_PROTOCOL(n + 1);
  3587. SERIAL_PROTOCOLPGM(" of ");
  3588. SERIAL_PROTOCOL((int)n_samples);
  3589. SERIAL_PROTOCOLPGM(" z: ");
  3590. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3591. if (verbose_level > 2) {
  3592. SERIAL_PROTOCOLPGM(" mean: ");
  3593. SERIAL_PROTOCOL_F(mean, 6);
  3594. SERIAL_PROTOCOLPGM(" sigma: ");
  3595. SERIAL_PROTOCOL_F(sigma, 6);
  3596. }
  3597. }
  3598. SERIAL_EOL;
  3599. }
  3600. } // End of probe loop
  3601. if (STOW_PROBE()) return;
  3602. if (verbose_level > 0) {
  3603. SERIAL_PROTOCOLPGM("Mean: ");
  3604. SERIAL_PROTOCOL_F(mean, 6);
  3605. SERIAL_EOL;
  3606. }
  3607. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3608. SERIAL_PROTOCOL_F(sigma, 6);
  3609. SERIAL_EOL; SERIAL_EOL;
  3610. clean_up_after_endstop_or_probe_move();
  3611. report_current_position();
  3612. }
  3613. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3614. /**
  3615. * M75: Start print timer
  3616. */
  3617. inline void gcode_M75() { print_job_timer.start(); }
  3618. /**
  3619. * M76: Pause print timer
  3620. */
  3621. inline void gcode_M76() { print_job_timer.pause(); }
  3622. /**
  3623. * M77: Stop print timer
  3624. */
  3625. inline void gcode_M77() { print_job_timer.stop(); }
  3626. #if ENABLED(PRINTCOUNTER)
  3627. /**
  3628. * M78: Show print statistics
  3629. */
  3630. inline void gcode_M78() {
  3631. // "M78 S78" will reset the statistics
  3632. if (code_seen('S') && code_value_int() == 78)
  3633. print_job_timer.initStats();
  3634. else print_job_timer.showStats();
  3635. }
  3636. #endif
  3637. /**
  3638. * M104: Set hot end temperature
  3639. */
  3640. inline void gcode_M104() {
  3641. if (get_target_extruder_from_command(104)) return;
  3642. if (DEBUGGING(DRYRUN)) return;
  3643. #if ENABLED(SINGLENOZZLE)
  3644. if (target_extruder != active_extruder) return;
  3645. #endif
  3646. if (code_seen('S')) {
  3647. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3648. #if ENABLED(DUAL_X_CARRIAGE)
  3649. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3650. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3651. #endif
  3652. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3653. /**
  3654. * Stop the timer at the end of print, starting is managed by
  3655. * 'heat and wait' M109.
  3656. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3657. * stand by mode, for instance in a dual extruder setup, without affecting
  3658. * the running print timer.
  3659. */
  3660. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3661. print_job_timer.stop();
  3662. LCD_MESSAGEPGM(WELCOME_MSG);
  3663. }
  3664. #endif
  3665. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3666. }
  3667. }
  3668. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3669. void print_heaterstates() {
  3670. #if HAS_TEMP_HOTEND
  3671. SERIAL_PROTOCOLPGM(" T:");
  3672. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3673. SERIAL_PROTOCOLPGM(" /");
  3674. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3675. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3676. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3677. SERIAL_CHAR(')');
  3678. #endif
  3679. #endif
  3680. #if HAS_TEMP_BED
  3681. SERIAL_PROTOCOLPGM(" B:");
  3682. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3683. SERIAL_PROTOCOLPGM(" /");
  3684. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3685. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3686. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3687. SERIAL_CHAR(')');
  3688. #endif
  3689. #endif
  3690. #if HOTENDS > 1
  3691. HOTEND_LOOP() {
  3692. SERIAL_PROTOCOLPAIR(" T", e);
  3693. SERIAL_PROTOCOLCHAR(':');
  3694. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3695. SERIAL_PROTOCOLPGM(" /");
  3696. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3697. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3698. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3699. SERIAL_CHAR(')');
  3700. #endif
  3701. }
  3702. #endif
  3703. SERIAL_PROTOCOLPGM(" @:");
  3704. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3705. #if HAS_TEMP_BED
  3706. SERIAL_PROTOCOLPGM(" B@:");
  3707. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3708. #endif
  3709. #if HOTENDS > 1
  3710. HOTEND_LOOP() {
  3711. SERIAL_PROTOCOLPAIR(" @", e);
  3712. SERIAL_PROTOCOLCHAR(':');
  3713. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3714. }
  3715. #endif
  3716. }
  3717. #endif
  3718. /**
  3719. * M105: Read hot end and bed temperature
  3720. */
  3721. inline void gcode_M105() {
  3722. if (get_target_extruder_from_command(105)) return;
  3723. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3724. SERIAL_PROTOCOLPGM(MSG_OK);
  3725. print_heaterstates();
  3726. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3727. SERIAL_ERROR_START;
  3728. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3729. #endif
  3730. SERIAL_EOL;
  3731. }
  3732. #if FAN_COUNT > 0
  3733. /**
  3734. * M106: Set Fan Speed
  3735. *
  3736. * S<int> Speed between 0-255
  3737. * P<index> Fan index, if more than one fan
  3738. */
  3739. inline void gcode_M106() {
  3740. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3741. p = code_seen('P') ? code_value_ushort() : 0;
  3742. NOMORE(s, 255);
  3743. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3744. }
  3745. /**
  3746. * M107: Fan Off
  3747. */
  3748. inline void gcode_M107() {
  3749. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3750. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3751. }
  3752. #endif // FAN_COUNT > 0
  3753. #if DISABLED(EMERGENCY_PARSER)
  3754. /**
  3755. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3756. */
  3757. inline void gcode_M108() { wait_for_heatup = false; }
  3758. /**
  3759. * M112: Emergency Stop
  3760. */
  3761. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3762. /**
  3763. * M410: Quickstop - Abort all planned moves
  3764. *
  3765. * This will stop the carriages mid-move, so most likely they
  3766. * will be out of sync with the stepper position after this.
  3767. */
  3768. inline void gcode_M410() { quickstop_stepper(); }
  3769. #endif
  3770. #ifndef MIN_COOLING_SLOPE_DEG
  3771. #define MIN_COOLING_SLOPE_DEG 1.50
  3772. #endif
  3773. #ifndef MIN_COOLING_SLOPE_TIME
  3774. #define MIN_COOLING_SLOPE_TIME 60
  3775. #endif
  3776. /**
  3777. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3778. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3779. */
  3780. inline void gcode_M109() {
  3781. if (get_target_extruder_from_command(109)) return;
  3782. if (DEBUGGING(DRYRUN)) return;
  3783. #if ENABLED(SINGLENOZZLE)
  3784. if (target_extruder != active_extruder) return;
  3785. #endif
  3786. bool no_wait_for_cooling = code_seen('S');
  3787. if (no_wait_for_cooling || code_seen('R')) {
  3788. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3789. #if ENABLED(DUAL_X_CARRIAGE)
  3790. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3791. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3792. #endif
  3793. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3794. /**
  3795. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3796. * stand by mode, for instance in a dual extruder setup, without affecting
  3797. * the running print timer.
  3798. */
  3799. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3800. print_job_timer.stop();
  3801. LCD_MESSAGEPGM(WELCOME_MSG);
  3802. }
  3803. /**
  3804. * We do not check if the timer is already running because this check will
  3805. * be done for us inside the Stopwatch::start() method thus a running timer
  3806. * will not restart.
  3807. */
  3808. else print_job_timer.start();
  3809. #endif
  3810. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3811. }
  3812. #if ENABLED(AUTOTEMP)
  3813. planner.autotemp_M109();
  3814. #endif
  3815. #if TEMP_RESIDENCY_TIME > 0
  3816. millis_t residency_start_ms = 0;
  3817. // Loop until the temperature has stabilized
  3818. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3819. #else
  3820. // Loop until the temperature is very close target
  3821. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3822. #endif //TEMP_RESIDENCY_TIME > 0
  3823. float theTarget = -1.0, old_temp = 9999.0;
  3824. bool wants_to_cool = false;
  3825. wait_for_heatup = true;
  3826. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3827. KEEPALIVE_STATE(NOT_BUSY);
  3828. do {
  3829. // Target temperature might be changed during the loop
  3830. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3831. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3832. theTarget = thermalManager.degTargetHotend(target_extruder);
  3833. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3834. if (no_wait_for_cooling && wants_to_cool) break;
  3835. }
  3836. now = millis();
  3837. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3838. next_temp_ms = now + 1000UL;
  3839. print_heaterstates();
  3840. #if TEMP_RESIDENCY_TIME > 0
  3841. SERIAL_PROTOCOLPGM(" W:");
  3842. if (residency_start_ms) {
  3843. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3844. SERIAL_PROTOCOLLN(rem);
  3845. }
  3846. else {
  3847. SERIAL_PROTOCOLLNPGM("?");
  3848. }
  3849. #else
  3850. SERIAL_EOL;
  3851. #endif
  3852. }
  3853. idle();
  3854. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3855. float temp = thermalManager.degHotend(target_extruder);
  3856. #if TEMP_RESIDENCY_TIME > 0
  3857. float temp_diff = fabs(theTarget - temp);
  3858. if (!residency_start_ms) {
  3859. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3860. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3861. }
  3862. else if (temp_diff > TEMP_HYSTERESIS) {
  3863. // Restart the timer whenever the temperature falls outside the hysteresis.
  3864. residency_start_ms = now;
  3865. }
  3866. #endif //TEMP_RESIDENCY_TIME > 0
  3867. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3868. if (wants_to_cool) {
  3869. // break after MIN_COOLING_SLOPE_TIME seconds
  3870. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3871. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3872. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3873. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3874. old_temp = temp;
  3875. }
  3876. }
  3877. } while (wait_for_heatup && TEMP_CONDITIONS);
  3878. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3879. KEEPALIVE_STATE(IN_HANDLER);
  3880. }
  3881. #if HAS_TEMP_BED
  3882. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3883. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3884. #endif
  3885. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3886. #define MIN_COOLING_SLOPE_TIME_BED 60
  3887. #endif
  3888. /**
  3889. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3890. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3891. */
  3892. inline void gcode_M190() {
  3893. if (DEBUGGING(DRYRUN)) return;
  3894. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3895. bool no_wait_for_cooling = code_seen('S');
  3896. if (no_wait_for_cooling || code_seen('R')) {
  3897. thermalManager.setTargetBed(code_value_temp_abs());
  3898. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3899. if (code_value_temp_abs() > BED_MINTEMP) {
  3900. /**
  3901. * We start the timer when 'heating and waiting' command arrives, LCD
  3902. * functions never wait. Cooling down managed by extruders.
  3903. *
  3904. * We do not check if the timer is already running because this check will
  3905. * be done for us inside the Stopwatch::start() method thus a running timer
  3906. * will not restart.
  3907. */
  3908. print_job_timer.start();
  3909. }
  3910. #endif
  3911. }
  3912. #if TEMP_BED_RESIDENCY_TIME > 0
  3913. millis_t residency_start_ms = 0;
  3914. // Loop until the temperature has stabilized
  3915. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3916. #else
  3917. // Loop until the temperature is very close target
  3918. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3919. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3920. float theTarget = -1.0, old_temp = 9999.0;
  3921. bool wants_to_cool = false;
  3922. wait_for_heatup = true;
  3923. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3924. KEEPALIVE_STATE(NOT_BUSY);
  3925. target_extruder = active_extruder; // for print_heaterstates
  3926. do {
  3927. // Target temperature might be changed during the loop
  3928. if (theTarget != thermalManager.degTargetBed()) {
  3929. wants_to_cool = thermalManager.isCoolingBed();
  3930. theTarget = thermalManager.degTargetBed();
  3931. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3932. if (no_wait_for_cooling && wants_to_cool) break;
  3933. }
  3934. now = millis();
  3935. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3936. next_temp_ms = now + 1000UL;
  3937. print_heaterstates();
  3938. #if TEMP_BED_RESIDENCY_TIME > 0
  3939. SERIAL_PROTOCOLPGM(" W:");
  3940. if (residency_start_ms) {
  3941. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3942. SERIAL_PROTOCOLLN(rem);
  3943. }
  3944. else {
  3945. SERIAL_PROTOCOLLNPGM("?");
  3946. }
  3947. #else
  3948. SERIAL_EOL;
  3949. #endif
  3950. }
  3951. idle();
  3952. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3953. float temp = thermalManager.degBed();
  3954. #if TEMP_BED_RESIDENCY_TIME > 0
  3955. float temp_diff = fabs(theTarget - temp);
  3956. if (!residency_start_ms) {
  3957. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3958. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3959. }
  3960. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3961. // Restart the timer whenever the temperature falls outside the hysteresis.
  3962. residency_start_ms = now;
  3963. }
  3964. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3965. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3966. if (wants_to_cool) {
  3967. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3968. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3969. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3970. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3971. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3972. old_temp = temp;
  3973. }
  3974. }
  3975. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3976. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  3977. KEEPALIVE_STATE(IN_HANDLER);
  3978. }
  3979. #endif // HAS_TEMP_BED
  3980. /**
  3981. * M110: Set Current Line Number
  3982. */
  3983. inline void gcode_M110() {
  3984. if (code_seen('N')) gcode_N = code_value_long();
  3985. }
  3986. /**
  3987. * M111: Set the debug level
  3988. */
  3989. inline void gcode_M111() {
  3990. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3991. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3992. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3993. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3994. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3995. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3997. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3998. #endif
  3999. const static char* const debug_strings[] PROGMEM = {
  4000. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4002. str_debug_32
  4003. #endif
  4004. };
  4005. SERIAL_ECHO_START;
  4006. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4007. if (marlin_debug_flags) {
  4008. uint8_t comma = 0;
  4009. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4010. if (TEST(marlin_debug_flags, i)) {
  4011. if (comma++) SERIAL_CHAR(',');
  4012. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4013. }
  4014. }
  4015. }
  4016. else {
  4017. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4018. }
  4019. SERIAL_EOL;
  4020. }
  4021. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4022. /**
  4023. * M113: Get or set Host Keepalive interval (0 to disable)
  4024. *
  4025. * S<seconds> Optional. Set the keepalive interval.
  4026. */
  4027. inline void gcode_M113() {
  4028. if (code_seen('S')) {
  4029. host_keepalive_interval = code_value_byte();
  4030. NOMORE(host_keepalive_interval, 60);
  4031. }
  4032. else {
  4033. SERIAL_ECHO_START;
  4034. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4035. }
  4036. }
  4037. #endif
  4038. #if ENABLED(BARICUDA)
  4039. #if HAS_HEATER_1
  4040. /**
  4041. * M126: Heater 1 valve open
  4042. */
  4043. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4044. /**
  4045. * M127: Heater 1 valve close
  4046. */
  4047. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4048. #endif
  4049. #if HAS_HEATER_2
  4050. /**
  4051. * M128: Heater 2 valve open
  4052. */
  4053. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4054. /**
  4055. * M129: Heater 2 valve close
  4056. */
  4057. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4058. #endif
  4059. #endif //BARICUDA
  4060. /**
  4061. * M140: Set bed temperature
  4062. */
  4063. inline void gcode_M140() {
  4064. if (DEBUGGING(DRYRUN)) return;
  4065. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4066. }
  4067. #if ENABLED(ULTIPANEL)
  4068. /**
  4069. * M145: Set the heatup state for a material in the LCD menu
  4070. * S<material> (0=PLA, 1=ABS)
  4071. * H<hotend temp>
  4072. * B<bed temp>
  4073. * F<fan speed>
  4074. */
  4075. inline void gcode_M145() {
  4076. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4077. if (material < 0 || material > 1) {
  4078. SERIAL_ERROR_START;
  4079. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4080. }
  4081. else {
  4082. int v;
  4083. switch (material) {
  4084. case 0:
  4085. if (code_seen('H')) {
  4086. v = code_value_int();
  4087. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4088. }
  4089. if (code_seen('F')) {
  4090. v = code_value_int();
  4091. preheatFanSpeed1 = constrain(v, 0, 255);
  4092. }
  4093. #if TEMP_SENSOR_BED != 0
  4094. if (code_seen('B')) {
  4095. v = code_value_int();
  4096. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4097. }
  4098. #endif
  4099. break;
  4100. case 1:
  4101. if (code_seen('H')) {
  4102. v = code_value_int();
  4103. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4104. }
  4105. if (code_seen('F')) {
  4106. v = code_value_int();
  4107. preheatFanSpeed2 = constrain(v, 0, 255);
  4108. }
  4109. #if TEMP_SENSOR_BED != 0
  4110. if (code_seen('B')) {
  4111. v = code_value_int();
  4112. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4113. }
  4114. #endif
  4115. break;
  4116. }
  4117. }
  4118. }
  4119. #endif
  4120. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4121. /**
  4122. * M149: Set temperature units
  4123. */
  4124. inline void gcode_M149() {
  4125. if (code_seen('C')) {
  4126. set_input_temp_units(TEMPUNIT_C);
  4127. } else if (code_seen('K')) {
  4128. set_input_temp_units(TEMPUNIT_K);
  4129. } else if (code_seen('F')) {
  4130. set_input_temp_units(TEMPUNIT_F);
  4131. }
  4132. }
  4133. #endif
  4134. #if HAS_POWER_SWITCH
  4135. /**
  4136. * M80: Turn on Power Supply
  4137. */
  4138. inline void gcode_M80() {
  4139. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4140. /**
  4141. * If you have a switch on suicide pin, this is useful
  4142. * if you want to start another print with suicide feature after
  4143. * a print without suicide...
  4144. */
  4145. #if HAS_SUICIDE
  4146. OUT_WRITE(SUICIDE_PIN, HIGH);
  4147. #endif
  4148. #if ENABLED(ULTIPANEL)
  4149. powersupply = true;
  4150. LCD_MESSAGEPGM(WELCOME_MSG);
  4151. lcd_update();
  4152. #endif
  4153. }
  4154. #endif // HAS_POWER_SWITCH
  4155. /**
  4156. * M81: Turn off Power, including Power Supply, if there is one.
  4157. *
  4158. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4159. */
  4160. inline void gcode_M81() {
  4161. thermalManager.disable_all_heaters();
  4162. stepper.finish_and_disable();
  4163. #if FAN_COUNT > 0
  4164. #if FAN_COUNT > 1
  4165. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4166. #else
  4167. fanSpeeds[0] = 0;
  4168. #endif
  4169. #endif
  4170. delay(1000); // Wait 1 second before switching off
  4171. #if HAS_SUICIDE
  4172. stepper.synchronize();
  4173. suicide();
  4174. #elif HAS_POWER_SWITCH
  4175. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4176. #endif
  4177. #if ENABLED(ULTIPANEL)
  4178. #if HAS_POWER_SWITCH
  4179. powersupply = false;
  4180. #endif
  4181. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4182. lcd_update();
  4183. #endif
  4184. }
  4185. /**
  4186. * M82: Set E codes absolute (default)
  4187. */
  4188. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4189. /**
  4190. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4191. */
  4192. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4193. /**
  4194. * M18, M84: Disable all stepper motors
  4195. */
  4196. inline void gcode_M18_M84() {
  4197. if (code_seen('S')) {
  4198. stepper_inactive_time = code_value_millis_from_seconds();
  4199. }
  4200. else {
  4201. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4202. if (all_axis) {
  4203. stepper.finish_and_disable();
  4204. }
  4205. else {
  4206. stepper.synchronize();
  4207. if (code_seen('X')) disable_x();
  4208. if (code_seen('Y')) disable_y();
  4209. if (code_seen('Z')) disable_z();
  4210. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4211. if (code_seen('E')) {
  4212. disable_e0();
  4213. disable_e1();
  4214. disable_e2();
  4215. disable_e3();
  4216. }
  4217. #endif
  4218. }
  4219. }
  4220. }
  4221. /**
  4222. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4223. */
  4224. inline void gcode_M85() {
  4225. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4226. }
  4227. /**
  4228. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4229. * (Follows the same syntax as G92)
  4230. */
  4231. inline void gcode_M92() {
  4232. LOOP_XYZE(i) {
  4233. if (code_seen(axis_codes[i])) {
  4234. if (i == E_AXIS) {
  4235. float value = code_value_per_axis_unit(i);
  4236. if (value < 20.0) {
  4237. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4238. planner.max_e_jerk *= factor;
  4239. planner.max_feedrate_mm_s[i] *= factor;
  4240. planner.max_acceleration_steps_per_s2[i] *= factor;
  4241. }
  4242. planner.axis_steps_per_mm[i] = value;
  4243. }
  4244. else {
  4245. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4246. }
  4247. }
  4248. }
  4249. planner.refresh_positioning();
  4250. }
  4251. /**
  4252. * Output the current position to serial
  4253. */
  4254. static void report_current_position() {
  4255. SERIAL_PROTOCOLPGM("X:");
  4256. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4257. SERIAL_PROTOCOLPGM(" Y:");
  4258. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4259. SERIAL_PROTOCOLPGM(" Z:");
  4260. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4261. SERIAL_PROTOCOLPGM(" E:");
  4262. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4263. stepper.report_positions();
  4264. #if ENABLED(SCARA)
  4265. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4266. SERIAL_PROTOCOL(delta[X_AXIS]);
  4267. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4268. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4269. SERIAL_EOL;
  4270. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4271. SERIAL_PROTOCOL(delta[X_AXIS]);
  4272. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4273. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4274. SERIAL_EOL;
  4275. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4276. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4277. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4278. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4279. SERIAL_EOL; SERIAL_EOL;
  4280. #endif
  4281. }
  4282. /**
  4283. * M114: Output current position to serial port
  4284. */
  4285. inline void gcode_M114() { report_current_position(); }
  4286. /**
  4287. * M115: Capabilities string
  4288. */
  4289. inline void gcode_M115() {
  4290. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4291. }
  4292. /**
  4293. * M117: Set LCD Status Message
  4294. */
  4295. inline void gcode_M117() {
  4296. lcd_setstatus(current_command_args);
  4297. }
  4298. /**
  4299. * M119: Output endstop states to serial output
  4300. */
  4301. inline void gcode_M119() { endstops.M119(); }
  4302. /**
  4303. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4304. */
  4305. inline void gcode_M120() { endstops.enable_globally(true); }
  4306. /**
  4307. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4308. */
  4309. inline void gcode_M121() { endstops.enable_globally(false); }
  4310. #if ENABLED(BLINKM)
  4311. /**
  4312. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4313. */
  4314. inline void gcode_M150() {
  4315. SendColors(
  4316. code_seen('R') ? code_value_byte() : 0,
  4317. code_seen('U') ? code_value_byte() : 0,
  4318. code_seen('B') ? code_value_byte() : 0
  4319. );
  4320. }
  4321. #endif // BLINKM
  4322. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4323. /**
  4324. * M155: Send data to a I2C slave device
  4325. *
  4326. * This is a PoC, the formating and arguments for the GCODE will
  4327. * change to be more compatible, the current proposal is:
  4328. *
  4329. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4330. *
  4331. * M155 B<byte-1 value in base 10>
  4332. * M155 B<byte-2 value in base 10>
  4333. * M155 B<byte-3 value in base 10>
  4334. *
  4335. * M155 S1 ; Send the buffered data and reset the buffer
  4336. * M155 R1 ; Reset the buffer without sending data
  4337. *
  4338. */
  4339. inline void gcode_M155() {
  4340. // Set the target address
  4341. if (code_seen('A')) i2c.address(code_value_byte());
  4342. // Add a new byte to the buffer
  4343. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4344. // Flush the buffer to the bus
  4345. if (code_seen('S')) i2c.send();
  4346. // Reset and rewind the buffer
  4347. else if (code_seen('R')) i2c.reset();
  4348. }
  4349. /**
  4350. * M156: Request X bytes from I2C slave device
  4351. *
  4352. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4353. */
  4354. inline void gcode_M156() {
  4355. if (code_seen('A')) i2c.address(code_value_byte());
  4356. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4357. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4358. i2c.relay(bytes);
  4359. }
  4360. else {
  4361. SERIAL_ERROR_START;
  4362. SERIAL_ERRORLN("Bad i2c request");
  4363. }
  4364. }
  4365. #endif // EXPERIMENTAL_I2CBUS
  4366. /**
  4367. * M200: Set filament diameter and set E axis units to cubic units
  4368. *
  4369. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4370. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4371. */
  4372. inline void gcode_M200() {
  4373. if (get_target_extruder_from_command(200)) return;
  4374. if (code_seen('D')) {
  4375. // setting any extruder filament size disables volumetric on the assumption that
  4376. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4377. // for all extruders
  4378. volumetric_enabled = (code_value_linear_units() != 0.0);
  4379. if (volumetric_enabled) {
  4380. filament_size[target_extruder] = code_value_linear_units();
  4381. // make sure all extruders have some sane value for the filament size
  4382. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4383. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4384. }
  4385. }
  4386. else {
  4387. //reserved for setting filament diameter via UFID or filament measuring device
  4388. return;
  4389. }
  4390. calculate_volumetric_multipliers();
  4391. }
  4392. /**
  4393. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4394. */
  4395. inline void gcode_M201() {
  4396. LOOP_XYZE(i) {
  4397. if (code_seen(axis_codes[i])) {
  4398. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4399. }
  4400. }
  4401. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4402. planner.reset_acceleration_rates();
  4403. }
  4404. #if 0 // Not used for Sprinter/grbl gen6
  4405. inline void gcode_M202() {
  4406. LOOP_XYZE(i) {
  4407. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4408. }
  4409. }
  4410. #endif
  4411. /**
  4412. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4413. */
  4414. inline void gcode_M203() {
  4415. LOOP_XYZE(i)
  4416. if (code_seen(axis_codes[i]))
  4417. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4418. }
  4419. /**
  4420. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4421. *
  4422. * P = Printing moves
  4423. * R = Retract only (no X, Y, Z) moves
  4424. * T = Travel (non printing) moves
  4425. *
  4426. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4427. */
  4428. inline void gcode_M204() {
  4429. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4430. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4431. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4432. }
  4433. if (code_seen('P')) {
  4434. planner.acceleration = code_value_linear_units();
  4435. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4436. }
  4437. if (code_seen('R')) {
  4438. planner.retract_acceleration = code_value_linear_units();
  4439. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4440. }
  4441. if (code_seen('T')) {
  4442. planner.travel_acceleration = code_value_linear_units();
  4443. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4444. }
  4445. }
  4446. /**
  4447. * M205: Set Advanced Settings
  4448. *
  4449. * S = Min Feed Rate (units/s)
  4450. * T = Min Travel Feed Rate (units/s)
  4451. * B = Min Segment Time (µs)
  4452. * X = Max XY Jerk (units/sec^2)
  4453. * Z = Max Z Jerk (units/sec^2)
  4454. * E = Max E Jerk (units/sec^2)
  4455. */
  4456. inline void gcode_M205() {
  4457. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4458. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4459. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4460. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4461. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4462. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4463. }
  4464. /**
  4465. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4466. */
  4467. inline void gcode_M206() {
  4468. LOOP_XYZ(i)
  4469. if (code_seen(axis_codes[i]))
  4470. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4471. #if ENABLED(SCARA)
  4472. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4473. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4474. #endif
  4475. SYNC_PLAN_POSITION_KINEMATIC();
  4476. report_current_position();
  4477. }
  4478. #if ENABLED(DELTA)
  4479. /**
  4480. * M665: Set delta configurations
  4481. *
  4482. * L = diagonal rod
  4483. * R = delta radius
  4484. * S = segments per second
  4485. * A = Alpha (Tower 1) diagonal rod trim
  4486. * B = Beta (Tower 2) diagonal rod trim
  4487. * C = Gamma (Tower 3) diagonal rod trim
  4488. */
  4489. inline void gcode_M665() {
  4490. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4491. if (code_seen('R')) delta_radius = code_value_linear_units();
  4492. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4493. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4494. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4495. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4496. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4497. }
  4498. /**
  4499. * M666: Set delta endstop adjustment
  4500. */
  4501. inline void gcode_M666() {
  4502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4503. if (DEBUGGING(LEVELING)) {
  4504. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4505. }
  4506. #endif
  4507. LOOP_XYZ(i) {
  4508. if (code_seen(axis_codes[i])) {
  4509. endstop_adj[i] = code_value_axis_units(i);
  4510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4511. if (DEBUGGING(LEVELING)) {
  4512. SERIAL_ECHOPGM("endstop_adj[");
  4513. SERIAL_ECHO(axis_codes[i]);
  4514. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4515. }
  4516. #endif
  4517. }
  4518. }
  4519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4520. if (DEBUGGING(LEVELING)) {
  4521. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4522. }
  4523. #endif
  4524. }
  4525. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4526. /**
  4527. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4528. */
  4529. inline void gcode_M666() {
  4530. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4531. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4532. }
  4533. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4534. #if ENABLED(FWRETRACT)
  4535. /**
  4536. * M207: Set firmware retraction values
  4537. *
  4538. * S[+units] retract_length
  4539. * W[+units] retract_length_swap (multi-extruder)
  4540. * F[units/min] retract_feedrate_mm_s
  4541. * Z[units] retract_zlift
  4542. */
  4543. inline void gcode_M207() {
  4544. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4545. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4546. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4547. #if EXTRUDERS > 1
  4548. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4549. #endif
  4550. }
  4551. /**
  4552. * M208: Set firmware un-retraction values
  4553. *
  4554. * S[+units] retract_recover_length (in addition to M207 S*)
  4555. * W[+units] retract_recover_length_swap (multi-extruder)
  4556. * F[units/min] retract_recover_feedrate_mm_s
  4557. */
  4558. inline void gcode_M208() {
  4559. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4560. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4561. #if EXTRUDERS > 1
  4562. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4563. #endif
  4564. }
  4565. /**
  4566. * M209: Enable automatic retract (M209 S1)
  4567. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4568. */
  4569. inline void gcode_M209() {
  4570. if (code_seen('S')) {
  4571. autoretract_enabled = code_value_bool();
  4572. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4573. }
  4574. }
  4575. #endif // FWRETRACT
  4576. /**
  4577. * M211: Enable, Disable, and/or Report software endstops
  4578. *
  4579. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4580. */
  4581. inline void gcode_M211() {
  4582. SERIAL_ECHO_START;
  4583. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4584. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4585. #endif
  4586. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4587. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
  4588. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4589. #else
  4590. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
  4591. #endif
  4592. SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
  4593. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4594. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4595. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4596. SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
  4597. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4598. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4599. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4600. }
  4601. #if HOTENDS > 1
  4602. /**
  4603. * M218 - set hotend offset (in linear units)
  4604. *
  4605. * T<tool>
  4606. * X<xoffset>
  4607. * Y<yoffset>
  4608. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4609. */
  4610. inline void gcode_M218() {
  4611. if (get_target_extruder_from_command(218)) return;
  4612. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4613. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4614. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4615. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4616. #endif
  4617. SERIAL_ECHO_START;
  4618. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4619. HOTEND_LOOP() {
  4620. SERIAL_CHAR(' ');
  4621. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4622. SERIAL_CHAR(',');
  4623. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4624. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4625. SERIAL_CHAR(',');
  4626. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4627. #endif
  4628. }
  4629. SERIAL_EOL;
  4630. }
  4631. #endif // HOTENDS > 1
  4632. /**
  4633. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4634. */
  4635. inline void gcode_M220() {
  4636. if (code_seen('S')) feedrate_percentage = code_value_int();
  4637. }
  4638. /**
  4639. * M221: Set extrusion percentage (M221 T0 S95)
  4640. */
  4641. inline void gcode_M221() {
  4642. if (get_target_extruder_from_command(221)) return;
  4643. if (code_seen('S'))
  4644. flow_percentage[target_extruder] = code_value_int();
  4645. }
  4646. /**
  4647. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4648. */
  4649. inline void gcode_M226() {
  4650. if (code_seen('P')) {
  4651. int pin_number = code_value_int();
  4652. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4653. if (pin_state >= -1 && pin_state <= 1) {
  4654. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4655. if (sensitive_pins[i] == pin_number) {
  4656. pin_number = -1;
  4657. break;
  4658. }
  4659. }
  4660. if (pin_number > -1) {
  4661. int target = LOW;
  4662. stepper.synchronize();
  4663. pinMode(pin_number, INPUT);
  4664. switch (pin_state) {
  4665. case 1:
  4666. target = HIGH;
  4667. break;
  4668. case 0:
  4669. target = LOW;
  4670. break;
  4671. case -1:
  4672. target = !digitalRead(pin_number);
  4673. break;
  4674. }
  4675. while (digitalRead(pin_number) != target) idle();
  4676. } // pin_number > -1
  4677. } // pin_state -1 0 1
  4678. } // code_seen('P')
  4679. }
  4680. #if HAS_SERVOS
  4681. /**
  4682. * M280: Get or set servo position. P<index> [S<angle>]
  4683. */
  4684. inline void gcode_M280() {
  4685. if (!code_seen('P')) return;
  4686. int servo_index = code_value_int();
  4687. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4688. if (code_seen('S'))
  4689. MOVE_SERVO(servo_index, code_value_int());
  4690. else {
  4691. SERIAL_ECHO_START;
  4692. SERIAL_ECHOPGM(" Servo ");
  4693. SERIAL_ECHO(servo_index);
  4694. SERIAL_ECHOPGM(": ");
  4695. SERIAL_ECHOLN(servo[servo_index].read());
  4696. }
  4697. }
  4698. else {
  4699. SERIAL_ERROR_START;
  4700. SERIAL_ERROR("Servo ");
  4701. SERIAL_ERROR(servo_index);
  4702. SERIAL_ERRORLN(" out of range");
  4703. }
  4704. }
  4705. #endif // HAS_SERVOS
  4706. #if HAS_BUZZER
  4707. /**
  4708. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4709. */
  4710. inline void gcode_M300() {
  4711. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4712. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4713. // Limits the tone duration to 0-5 seconds.
  4714. NOMORE(duration, 5000);
  4715. BUZZ(duration, frequency);
  4716. }
  4717. #endif // HAS_BUZZER
  4718. #if ENABLED(PIDTEMP)
  4719. /**
  4720. * M301: Set PID parameters P I D (and optionally C, L)
  4721. *
  4722. * P[float] Kp term
  4723. * I[float] Ki term (unscaled)
  4724. * D[float] Kd term (unscaled)
  4725. *
  4726. * With PID_EXTRUSION_SCALING:
  4727. *
  4728. * C[float] Kc term
  4729. * L[float] LPQ length
  4730. */
  4731. inline void gcode_M301() {
  4732. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4733. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4734. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4735. if (e < HOTENDS) { // catch bad input value
  4736. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4737. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4738. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4739. #if ENABLED(PID_EXTRUSION_SCALING)
  4740. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4741. if (code_seen('L')) lpq_len = code_value_float();
  4742. NOMORE(lpq_len, LPQ_MAX_LEN);
  4743. #endif
  4744. thermalManager.updatePID();
  4745. SERIAL_ECHO_START;
  4746. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4747. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4748. SERIAL_ECHO(e);
  4749. #endif // PID_PARAMS_PER_HOTEND
  4750. SERIAL_ECHOPGM(" p:");
  4751. SERIAL_ECHO(PID_PARAM(Kp, e));
  4752. SERIAL_ECHOPGM(" i:");
  4753. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4754. SERIAL_ECHOPGM(" d:");
  4755. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4756. #if ENABLED(PID_EXTRUSION_SCALING)
  4757. SERIAL_ECHOPGM(" c:");
  4758. //Kc does not have scaling applied above, or in resetting defaults
  4759. SERIAL_ECHO(PID_PARAM(Kc, e));
  4760. #endif
  4761. SERIAL_EOL;
  4762. }
  4763. else {
  4764. SERIAL_ERROR_START;
  4765. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4766. }
  4767. }
  4768. #endif // PIDTEMP
  4769. #if ENABLED(PIDTEMPBED)
  4770. inline void gcode_M304() {
  4771. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4772. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4773. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4774. thermalManager.updatePID();
  4775. SERIAL_ECHO_START;
  4776. SERIAL_ECHOPGM(" p:");
  4777. SERIAL_ECHO(thermalManager.bedKp);
  4778. SERIAL_ECHOPGM(" i:");
  4779. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4780. SERIAL_ECHOPGM(" d:");
  4781. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4782. }
  4783. #endif // PIDTEMPBED
  4784. #if defined(CHDK) || HAS_PHOTOGRAPH
  4785. /**
  4786. * M240: Trigger a camera by emulating a Canon RC-1
  4787. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4788. */
  4789. inline void gcode_M240() {
  4790. #ifdef CHDK
  4791. OUT_WRITE(CHDK, HIGH);
  4792. chdkHigh = millis();
  4793. chdkActive = true;
  4794. #elif HAS_PHOTOGRAPH
  4795. const uint8_t NUM_PULSES = 16;
  4796. const float PULSE_LENGTH = 0.01524;
  4797. for (int i = 0; i < NUM_PULSES; i++) {
  4798. WRITE(PHOTOGRAPH_PIN, HIGH);
  4799. _delay_ms(PULSE_LENGTH);
  4800. WRITE(PHOTOGRAPH_PIN, LOW);
  4801. _delay_ms(PULSE_LENGTH);
  4802. }
  4803. delay(7.33);
  4804. for (int i = 0; i < NUM_PULSES; i++) {
  4805. WRITE(PHOTOGRAPH_PIN, HIGH);
  4806. _delay_ms(PULSE_LENGTH);
  4807. WRITE(PHOTOGRAPH_PIN, LOW);
  4808. _delay_ms(PULSE_LENGTH);
  4809. }
  4810. #endif // !CHDK && HAS_PHOTOGRAPH
  4811. }
  4812. #endif // CHDK || PHOTOGRAPH_PIN
  4813. #if HAS_LCD_CONTRAST
  4814. /**
  4815. * M250: Read and optionally set the LCD contrast
  4816. */
  4817. inline void gcode_M250() {
  4818. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4819. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4820. SERIAL_PROTOCOL(lcd_contrast);
  4821. SERIAL_EOL;
  4822. }
  4823. #endif // HAS_LCD_CONTRAST
  4824. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4825. /**
  4826. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4827. *
  4828. * S<temperature> sets the minimum extrude temperature
  4829. * P<bool> enables (1) or disables (0) cold extrusion
  4830. *
  4831. * Examples:
  4832. *
  4833. * M302 ; report current cold extrusion state
  4834. * M302 P0 ; enable cold extrusion checking
  4835. * M302 P1 ; disables cold extrusion checking
  4836. * M302 S0 ; always allow extrusion (disables checking)
  4837. * M302 S170 ; only allow extrusion above 170
  4838. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4839. */
  4840. inline void gcode_M302() {
  4841. bool seen_S = code_seen('S');
  4842. if (seen_S) {
  4843. thermalManager.extrude_min_temp = code_value_temp_abs();
  4844. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4845. }
  4846. if (code_seen('P'))
  4847. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4848. else if (!seen_S) {
  4849. // Report current state
  4850. SERIAL_ECHO_START;
  4851. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4852. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4853. SERIAL_ECHOLNPGM("C)");
  4854. }
  4855. }
  4856. #endif // PREVENT_COLD_EXTRUSION
  4857. /**
  4858. * M303: PID relay autotune
  4859. *
  4860. * S<temperature> sets the target temperature. (default 150C)
  4861. * E<extruder> (-1 for the bed) (default 0)
  4862. * C<cycles>
  4863. * U<bool> with a non-zero value will apply the result to current settings
  4864. */
  4865. inline void gcode_M303() {
  4866. #if HAS_PID_HEATING
  4867. int e = code_seen('E') ? code_value_int() : 0;
  4868. int c = code_seen('C') ? code_value_int() : 5;
  4869. bool u = code_seen('U') && code_value_bool();
  4870. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4871. if (e >= 0 && e < HOTENDS)
  4872. target_extruder = e;
  4873. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4874. thermalManager.PID_autotune(temp, e, c, u);
  4875. KEEPALIVE_STATE(IN_HANDLER);
  4876. #else
  4877. SERIAL_ERROR_START;
  4878. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4879. #endif
  4880. }
  4881. #if ENABLED(SCARA)
  4882. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4883. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4884. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4885. if (IsRunning()) {
  4886. //gcode_get_destination(); // For X Y Z E F
  4887. delta[X_AXIS] = delta_x;
  4888. delta[Y_AXIS] = delta_y;
  4889. forward_kinematics_SCARA(delta);
  4890. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4891. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4892. prepare_move_to_destination();
  4893. //ok_to_send();
  4894. return true;
  4895. }
  4896. return false;
  4897. }
  4898. /**
  4899. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4900. */
  4901. inline bool gcode_M360() {
  4902. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4903. return SCARA_move_to_cal(0, 120);
  4904. }
  4905. /**
  4906. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4907. */
  4908. inline bool gcode_M361() {
  4909. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4910. return SCARA_move_to_cal(90, 130);
  4911. }
  4912. /**
  4913. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4914. */
  4915. inline bool gcode_M362() {
  4916. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4917. return SCARA_move_to_cal(60, 180);
  4918. }
  4919. /**
  4920. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4921. */
  4922. inline bool gcode_M363() {
  4923. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4924. return SCARA_move_to_cal(50, 90);
  4925. }
  4926. /**
  4927. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4928. */
  4929. inline bool gcode_M364() {
  4930. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4931. return SCARA_move_to_cal(45, 135);
  4932. }
  4933. /**
  4934. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4935. */
  4936. inline void gcode_M365() {
  4937. LOOP_XYZ(i)
  4938. if (code_seen(axis_codes[i]))
  4939. axis_scaling[i] = code_value_float();
  4940. }
  4941. #endif // SCARA
  4942. #if ENABLED(EXT_SOLENOID)
  4943. void enable_solenoid(uint8_t num) {
  4944. switch (num) {
  4945. case 0:
  4946. OUT_WRITE(SOL0_PIN, HIGH);
  4947. break;
  4948. #if HAS_SOLENOID_1
  4949. case 1:
  4950. OUT_WRITE(SOL1_PIN, HIGH);
  4951. break;
  4952. #endif
  4953. #if HAS_SOLENOID_2
  4954. case 2:
  4955. OUT_WRITE(SOL2_PIN, HIGH);
  4956. break;
  4957. #endif
  4958. #if HAS_SOLENOID_3
  4959. case 3:
  4960. OUT_WRITE(SOL3_PIN, HIGH);
  4961. break;
  4962. #endif
  4963. default:
  4964. SERIAL_ECHO_START;
  4965. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4966. break;
  4967. }
  4968. }
  4969. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4970. void disable_all_solenoids() {
  4971. OUT_WRITE(SOL0_PIN, LOW);
  4972. OUT_WRITE(SOL1_PIN, LOW);
  4973. OUT_WRITE(SOL2_PIN, LOW);
  4974. OUT_WRITE(SOL3_PIN, LOW);
  4975. }
  4976. /**
  4977. * M380: Enable solenoid on the active extruder
  4978. */
  4979. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4980. /**
  4981. * M381: Disable all solenoids
  4982. */
  4983. inline void gcode_M381() { disable_all_solenoids(); }
  4984. #endif // EXT_SOLENOID
  4985. /**
  4986. * M400: Finish all moves
  4987. */
  4988. inline void gcode_M400() { stepper.synchronize(); }
  4989. #if HAS_BED_PROBE
  4990. /**
  4991. * M401: Engage Z Servo endstop if available
  4992. */
  4993. inline void gcode_M401() { DEPLOY_PROBE(); }
  4994. /**
  4995. * M402: Retract Z Servo endstop if enabled
  4996. */
  4997. inline void gcode_M402() { STOW_PROBE(); }
  4998. #endif // HAS_BED_PROBE
  4999. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5000. /**
  5001. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5002. */
  5003. inline void gcode_M404() {
  5004. if (code_seen('W')) {
  5005. filament_width_nominal = code_value_linear_units();
  5006. }
  5007. else {
  5008. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5009. SERIAL_PROTOCOLLN(filament_width_nominal);
  5010. }
  5011. }
  5012. /**
  5013. * M405: Turn on filament sensor for control
  5014. */
  5015. inline void gcode_M405() {
  5016. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5017. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5018. if (code_seen('D')) meas_delay_cm = code_value_int();
  5019. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5020. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5021. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5022. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5023. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5024. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5025. }
  5026. filament_sensor = true;
  5027. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5028. //SERIAL_PROTOCOL(filament_width_meas);
  5029. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5030. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5031. }
  5032. /**
  5033. * M406: Turn off filament sensor for control
  5034. */
  5035. inline void gcode_M406() { filament_sensor = false; }
  5036. /**
  5037. * M407: Get measured filament diameter on serial output
  5038. */
  5039. inline void gcode_M407() {
  5040. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5041. SERIAL_PROTOCOLLN(filament_width_meas);
  5042. }
  5043. #endif // FILAMENT_WIDTH_SENSOR
  5044. void quickstop_stepper() {
  5045. stepper.quick_stop();
  5046. #if DISABLED(SCARA)
  5047. stepper.synchronize();
  5048. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5049. SYNC_PLAN_POSITION_KINEMATIC();
  5050. #endif
  5051. }
  5052. #if ENABLED(MESH_BED_LEVELING)
  5053. /**
  5054. * M420: Enable/Disable Mesh Bed Leveling
  5055. */
  5056. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5057. /**
  5058. * M421: Set a single Mesh Bed Leveling Z coordinate
  5059. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5060. */
  5061. inline void gcode_M421() {
  5062. int8_t px = 0, py = 0;
  5063. float z = 0;
  5064. bool hasX, hasY, hasZ, hasI, hasJ;
  5065. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5066. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5067. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5068. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5069. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5070. if (hasX && hasY && hasZ) {
  5071. if (px >= 0 && py >= 0)
  5072. mbl.set_z(px, py, z);
  5073. else {
  5074. SERIAL_ERROR_START;
  5075. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5076. }
  5077. }
  5078. else if (hasI && hasJ && hasZ) {
  5079. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5080. mbl.set_z(px, py, z);
  5081. else {
  5082. SERIAL_ERROR_START;
  5083. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5084. }
  5085. }
  5086. else {
  5087. SERIAL_ERROR_START;
  5088. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5089. }
  5090. }
  5091. #endif
  5092. /**
  5093. * M428: Set home_offset based on the distance between the
  5094. * current_position and the nearest "reference point."
  5095. * If an axis is past center its endstop position
  5096. * is the reference-point. Otherwise it uses 0. This allows
  5097. * the Z offset to be set near the bed when using a max endstop.
  5098. *
  5099. * M428 can't be used more than 2cm away from 0 or an endstop.
  5100. *
  5101. * Use M206 to set these values directly.
  5102. */
  5103. inline void gcode_M428() {
  5104. bool err = false;
  5105. LOOP_XYZ(i) {
  5106. if (axis_homed[i]) {
  5107. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5108. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5109. if (diff > -20 && diff < 20) {
  5110. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5111. }
  5112. else {
  5113. SERIAL_ERROR_START;
  5114. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5115. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5116. BUZZ(200, 40);
  5117. err = true;
  5118. break;
  5119. }
  5120. }
  5121. }
  5122. if (!err) {
  5123. SYNC_PLAN_POSITION_KINEMATIC();
  5124. report_current_position();
  5125. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5126. BUZZ(200, 659);
  5127. BUZZ(200, 698);
  5128. }
  5129. }
  5130. /**
  5131. * M500: Store settings in EEPROM
  5132. */
  5133. inline void gcode_M500() {
  5134. Config_StoreSettings();
  5135. }
  5136. /**
  5137. * M501: Read settings from EEPROM
  5138. */
  5139. inline void gcode_M501() {
  5140. Config_RetrieveSettings();
  5141. }
  5142. /**
  5143. * M502: Revert to default settings
  5144. */
  5145. inline void gcode_M502() {
  5146. Config_ResetDefault();
  5147. }
  5148. /**
  5149. * M503: print settings currently in memory
  5150. */
  5151. inline void gcode_M503() {
  5152. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5153. }
  5154. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5155. /**
  5156. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5157. */
  5158. inline void gcode_M540() {
  5159. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5160. }
  5161. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5162. #if HAS_BED_PROBE
  5163. inline void gcode_M851() {
  5164. SERIAL_ECHO_START;
  5165. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5166. SERIAL_CHAR(' ');
  5167. if (code_seen('Z')) {
  5168. float value = code_value_axis_units(Z_AXIS);
  5169. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5170. zprobe_zoffset = value;
  5171. SERIAL_ECHO(zprobe_zoffset);
  5172. }
  5173. else {
  5174. SERIAL_ECHOPGM(MSG_Z_MIN);
  5175. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5176. SERIAL_CHAR(' ');
  5177. SERIAL_ECHOPGM(MSG_Z_MAX);
  5178. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5179. }
  5180. }
  5181. else {
  5182. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5183. }
  5184. SERIAL_EOL;
  5185. }
  5186. #endif // HAS_BED_PROBE
  5187. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5188. /**
  5189. * M600: Pause for filament change
  5190. *
  5191. * E[distance] - Retract the filament this far (negative value)
  5192. * Z[distance] - Move the Z axis by this distance
  5193. * X[position] - Move to this X position, with Y
  5194. * Y[position] - Move to this Y position, with X
  5195. * L[distance] - Retract distance for removal (manual reload)
  5196. *
  5197. * Default values are used for omitted arguments.
  5198. *
  5199. */
  5200. inline void gcode_M600() {
  5201. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5202. SERIAL_ERROR_START;
  5203. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5204. return;
  5205. }
  5206. // Show initial message and wait for synchronize steppers
  5207. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5208. stepper.synchronize();
  5209. float lastpos[NUM_AXIS];
  5210. // Save current position of all axes
  5211. LOOP_XYZE(i)
  5212. lastpos[i] = destination[i] = current_position[i];
  5213. // Define runplan for move axes
  5214. #if IS_KINEMATIC
  5215. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5216. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5217. #else
  5218. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5219. #endif
  5220. KEEPALIVE_STATE(IN_HANDLER);
  5221. // Initial retract before move to filament change position
  5222. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5223. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5224. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5225. #endif
  5226. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5227. // Lift Z axis
  5228. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5229. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5230. FILAMENT_CHANGE_Z_ADD
  5231. #else
  5232. 0
  5233. #endif
  5234. ;
  5235. if (z_lift > 0) {
  5236. destination[Z_AXIS] += z_lift;
  5237. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5238. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5239. }
  5240. // Move XY axes to filament exchange position
  5241. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5242. #ifdef FILAMENT_CHANGE_X_POS
  5243. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5244. #endif
  5245. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5246. #ifdef FILAMENT_CHANGE_Y_POS
  5247. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5248. #endif
  5249. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5250. stepper.synchronize();
  5251. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5252. // Unload filament
  5253. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5254. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5255. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5256. #endif
  5257. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5258. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5259. stepper.synchronize();
  5260. disable_e0();
  5261. disable_e1();
  5262. disable_e2();
  5263. disable_e3();
  5264. delay(100);
  5265. #if HAS_BUZZER
  5266. millis_t next_tick = 0;
  5267. #endif
  5268. // Wait for filament insert by user and press button
  5269. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5270. while (!lcd_clicked()) {
  5271. #if HAS_BUZZER
  5272. millis_t ms = millis();
  5273. if (ms >= next_tick) {
  5274. BUZZ(300, 2000);
  5275. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5276. }
  5277. #endif
  5278. idle(true);
  5279. }
  5280. delay(100);
  5281. while (lcd_clicked()) idle(true);
  5282. delay(100);
  5283. // Show load message
  5284. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5285. // Load filament
  5286. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5287. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5288. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5289. #endif
  5290. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5291. stepper.synchronize();
  5292. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5293. do {
  5294. // Extrude filament to get into hotend
  5295. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5296. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5297. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5298. stepper.synchronize();
  5299. // Ask user if more filament should be extruded
  5300. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5301. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5302. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5303. KEEPALIVE_STATE(IN_HANDLER);
  5304. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5305. #endif
  5306. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5307. KEEPALIVE_STATE(IN_HANDLER);
  5308. // Set extruder to saved position
  5309. current_position[E_AXIS] = lastpos[E_AXIS];
  5310. destination[E_AXIS] = lastpos[E_AXIS];
  5311. planner.set_e_position_mm(current_position[E_AXIS]);
  5312. #if IS_KINEMATIC
  5313. // Move XYZ to starting position, then E
  5314. inverse_kinematics(lastpos);
  5315. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5316. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5317. #else
  5318. // Move XY to starting position, then Z, then E
  5319. destination[X_AXIS] = lastpos[X_AXIS];
  5320. destination[Y_AXIS] = lastpos[Y_AXIS];
  5321. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5322. destination[Z_AXIS] = lastpos[Z_AXIS];
  5323. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5324. #endif
  5325. stepper.synchronize();
  5326. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5327. filament_ran_out = false;
  5328. #endif
  5329. // Show status screen
  5330. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5331. }
  5332. #endif // FILAMENT_CHANGE_FEATURE
  5333. #if ENABLED(DUAL_X_CARRIAGE)
  5334. /**
  5335. * M605: Set dual x-carriage movement mode
  5336. *
  5337. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5338. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5339. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5340. * units x-offset and an optional differential hotend temperature of
  5341. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5342. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5343. *
  5344. * Note: the X axis should be homed after changing dual x-carriage mode.
  5345. */
  5346. inline void gcode_M605() {
  5347. stepper.synchronize();
  5348. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5349. switch (dual_x_carriage_mode) {
  5350. case DXC_DUPLICATION_MODE:
  5351. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5352. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5353. SERIAL_ECHO_START;
  5354. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5355. SERIAL_CHAR(' ');
  5356. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5357. SERIAL_CHAR(',');
  5358. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5359. SERIAL_CHAR(' ');
  5360. SERIAL_ECHO(duplicate_extruder_x_offset);
  5361. SERIAL_CHAR(',');
  5362. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5363. break;
  5364. case DXC_FULL_CONTROL_MODE:
  5365. case DXC_AUTO_PARK_MODE:
  5366. break;
  5367. default:
  5368. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5369. break;
  5370. }
  5371. active_extruder_parked = false;
  5372. extruder_duplication_enabled = false;
  5373. delayed_move_time = 0;
  5374. }
  5375. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5376. inline void gcode_M605() {
  5377. stepper.synchronize();
  5378. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5379. SERIAL_ECHO_START;
  5380. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5381. }
  5382. #endif // M605
  5383. #if ENABLED(LIN_ADVANCE)
  5384. /**
  5385. * M905: Set advance factor
  5386. */
  5387. inline void gcode_M905() {
  5388. stepper.synchronize();
  5389. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5390. }
  5391. #endif
  5392. /**
  5393. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5394. */
  5395. inline void gcode_M907() {
  5396. #if HAS_DIGIPOTSS
  5397. LOOP_XYZE(i)
  5398. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5399. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5400. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5401. #endif
  5402. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5403. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5404. #endif
  5405. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5406. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5407. #endif
  5408. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5409. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5410. #endif
  5411. #if ENABLED(DIGIPOT_I2C)
  5412. // this one uses actual amps in floating point
  5413. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5414. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5415. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5416. #endif
  5417. #if ENABLED(DAC_STEPPER_CURRENT)
  5418. if (code_seen('S')) {
  5419. float dac_percent = code_value_float();
  5420. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5421. }
  5422. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5423. #endif
  5424. }
  5425. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5426. /**
  5427. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5428. */
  5429. inline void gcode_M908() {
  5430. #if HAS_DIGIPOTSS
  5431. stepper.digitalPotWrite(
  5432. code_seen('P') ? code_value_int() : 0,
  5433. code_seen('S') ? code_value_int() : 0
  5434. );
  5435. #endif
  5436. #ifdef DAC_STEPPER_CURRENT
  5437. dac_current_raw(
  5438. code_seen('P') ? code_value_byte() : -1,
  5439. code_seen('S') ? code_value_ushort() : 0
  5440. );
  5441. #endif
  5442. }
  5443. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5444. inline void gcode_M909() { dac_print_values(); }
  5445. inline void gcode_M910() { dac_commit_eeprom(); }
  5446. #endif
  5447. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5448. #if HAS_MICROSTEPS
  5449. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5450. inline void gcode_M350() {
  5451. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5452. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5453. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5454. stepper.microstep_readings();
  5455. }
  5456. /**
  5457. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5458. * S# determines MS1 or MS2, X# sets the pin high/low.
  5459. */
  5460. inline void gcode_M351() {
  5461. if (code_seen('S')) switch (code_value_byte()) {
  5462. case 1:
  5463. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5464. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5465. break;
  5466. case 2:
  5467. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5468. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5469. break;
  5470. }
  5471. stepper.microstep_readings();
  5472. }
  5473. #endif // HAS_MICROSTEPS
  5474. #if ENABLED(MIXING_EXTRUDER)
  5475. /**
  5476. * M163: Set a single mix factor for a mixing extruder
  5477. * This is called "weight" by some systems.
  5478. *
  5479. * S[index] The channel index to set
  5480. * P[float] The mix value
  5481. *
  5482. */
  5483. inline void gcode_M163() {
  5484. int mix_index = code_seen('S') ? code_value_int() : 0;
  5485. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5486. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5487. }
  5488. #if MIXING_VIRTUAL_TOOLS > 1
  5489. /**
  5490. * M164: Store the current mix factors as a virtual tool.
  5491. *
  5492. * S[index] The virtual tool to store
  5493. *
  5494. */
  5495. inline void gcode_M164() {
  5496. int tool_index = code_seen('S') ? code_value_int() : 0;
  5497. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5498. normalize_mix();
  5499. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5500. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5501. }
  5502. }
  5503. #endif
  5504. #if ENABLED(DIRECT_MIXING_IN_G1)
  5505. /**
  5506. * M165: Set multiple mix factors for a mixing extruder.
  5507. * Factors that are left out will be set to 0.
  5508. * All factors together must add up to 1.0.
  5509. *
  5510. * A[factor] Mix factor for extruder stepper 1
  5511. * B[factor] Mix factor for extruder stepper 2
  5512. * C[factor] Mix factor for extruder stepper 3
  5513. * D[factor] Mix factor for extruder stepper 4
  5514. * H[factor] Mix factor for extruder stepper 5
  5515. * I[factor] Mix factor for extruder stepper 6
  5516. *
  5517. */
  5518. inline void gcode_M165() { gcode_get_mix(); }
  5519. #endif
  5520. #endif // MIXING_EXTRUDER
  5521. /**
  5522. * M999: Restart after being stopped
  5523. *
  5524. * Default behaviour is to flush the serial buffer and request
  5525. * a resend to the host starting on the last N line received.
  5526. *
  5527. * Sending "M999 S1" will resume printing without flushing the
  5528. * existing command buffer.
  5529. *
  5530. */
  5531. inline void gcode_M999() {
  5532. Running = true;
  5533. lcd_reset_alert_level();
  5534. if (code_seen('S') && code_value_bool()) return;
  5535. // gcode_LastN = Stopped_gcode_LastN;
  5536. FlushSerialRequestResend();
  5537. }
  5538. #if ENABLED(SWITCHING_EXTRUDER)
  5539. inline void move_extruder_servo(uint8_t e) {
  5540. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5541. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5542. }
  5543. #endif
  5544. inline void invalid_extruder_error(const uint8_t &e) {
  5545. SERIAL_ECHO_START;
  5546. SERIAL_CHAR('T');
  5547. SERIAL_PROTOCOL_F(e, DEC);
  5548. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5549. }
  5550. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5551. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5552. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5553. invalid_extruder_error(tmp_extruder);
  5554. return;
  5555. }
  5556. // T0-Tnnn: Switch virtual tool by changing the mix
  5557. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5558. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5559. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5560. #if HOTENDS > 1
  5561. if (tmp_extruder >= EXTRUDERS) {
  5562. invalid_extruder_error(tmp_extruder);
  5563. return;
  5564. }
  5565. float old_feedrate_mm_s = feedrate_mm_s;
  5566. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5567. if (tmp_extruder != active_extruder) {
  5568. if (!no_move && axis_unhomed_error(true, true, true)) {
  5569. SERIAL_ECHOLNPGM("No move on toolchange");
  5570. no_move = true;
  5571. }
  5572. // Save current position to destination, for use later
  5573. set_destination_to_current();
  5574. #if ENABLED(DUAL_X_CARRIAGE)
  5575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5576. if (DEBUGGING(LEVELING)) {
  5577. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5578. switch (dual_x_carriage_mode) {
  5579. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5580. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5581. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5582. }
  5583. }
  5584. #endif
  5585. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5586. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5587. ) {
  5588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5589. if (DEBUGGING(LEVELING)) {
  5590. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5591. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5592. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5593. }
  5594. #endif
  5595. // Park old head: 1) raise 2) move to park position 3) lower
  5596. for (uint8_t i = 0; i < 3; i++)
  5597. planner.buffer_line(
  5598. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5599. current_position[Y_AXIS],
  5600. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5601. current_position[E_AXIS],
  5602. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5603. active_extruder
  5604. );
  5605. stepper.synchronize();
  5606. }
  5607. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5608. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5609. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5610. active_extruder = tmp_extruder;
  5611. // This function resets the max/min values - the current position may be overwritten below.
  5612. set_axis_is_at_home(X_AXIS);
  5613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5614. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5615. #endif
  5616. switch (dual_x_carriage_mode) {
  5617. case DXC_FULL_CONTROL_MODE:
  5618. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5619. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5620. break;
  5621. case DXC_DUPLICATION_MODE:
  5622. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5623. if (active_extruder_parked)
  5624. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5625. else
  5626. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5627. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5628. extruder_duplication_enabled = false;
  5629. break;
  5630. default:
  5631. // record raised toolhead position for use by unpark
  5632. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5633. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5634. active_extruder_parked = true;
  5635. delayed_move_time = 0;
  5636. break;
  5637. }
  5638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5639. if (DEBUGGING(LEVELING)) {
  5640. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5641. DEBUG_POS("New extruder (parked)", current_position);
  5642. }
  5643. #endif
  5644. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5645. #else // !DUAL_X_CARRIAGE
  5646. #if ENABLED(SWITCHING_EXTRUDER)
  5647. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5648. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5649. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5650. // Always raise by some amount
  5651. planner.buffer_line(
  5652. current_position[X_AXIS],
  5653. current_position[Y_AXIS],
  5654. current_position[Z_AXIS] + z_raise,
  5655. current_position[E_AXIS],
  5656. planner.max_feedrate_mm_s[Z_AXIS],
  5657. active_extruder
  5658. );
  5659. stepper.synchronize();
  5660. move_extruder_servo(active_extruder);
  5661. delay(500);
  5662. // Move back down, if needed
  5663. if (z_raise != z_diff) {
  5664. planner.buffer_line(
  5665. current_position[X_AXIS],
  5666. current_position[Y_AXIS],
  5667. current_position[Z_AXIS] + z_diff,
  5668. current_position[E_AXIS],
  5669. planner.max_feedrate_mm_s[Z_AXIS],
  5670. active_extruder
  5671. );
  5672. stepper.synchronize();
  5673. }
  5674. #endif
  5675. /**
  5676. * Set current_position to the position of the new nozzle.
  5677. * Offsets are based on linear distance, so we need to get
  5678. * the resulting position in coordinate space.
  5679. *
  5680. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5681. * - With mesh leveling, update Z for the new position
  5682. * - Otherwise, just use the raw linear distance
  5683. *
  5684. * Software endstops are altered here too. Consider a case where:
  5685. * E0 at X=0 ... E1 at X=10
  5686. * When we switch to E1 now X=10, but E1 can't move left.
  5687. * To express this we apply the change in XY to the software endstops.
  5688. * E1 can move farther right than E0, so the right limit is extended.
  5689. *
  5690. * Note that we don't adjust the Z software endstops. Why not?
  5691. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5692. * because the bed is 1mm lower at the new position. As long as
  5693. * the first nozzle is out of the way, the carriage should be
  5694. * allowed to move 1mm lower. This technically "breaks" the
  5695. * Z software endstop. But this is technically correct (and
  5696. * there is no viable alternative).
  5697. */
  5698. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5699. // Offset extruder, make sure to apply the bed level rotation matrix
  5700. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5701. hotend_offset[Y_AXIS][tmp_extruder],
  5702. 0),
  5703. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5704. hotend_offset[Y_AXIS][active_extruder],
  5705. 0),
  5706. offset_vec = tmp_offset_vec - act_offset_vec;
  5707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5708. if (DEBUGGING(LEVELING)) {
  5709. tmp_offset_vec.debug("tmp_offset_vec");
  5710. act_offset_vec.debug("act_offset_vec");
  5711. offset_vec.debug("offset_vec (BEFORE)");
  5712. }
  5713. #endif
  5714. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5716. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5717. #endif
  5718. // Adjustments to the current position
  5719. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5720. current_position[Z_AXIS] += offset_vec.z;
  5721. #else // !AUTO_BED_LEVELING_FEATURE
  5722. float xydiff[2] = {
  5723. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5724. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5725. };
  5726. #if ENABLED(MESH_BED_LEVELING)
  5727. if (mbl.active()) {
  5728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5729. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5730. #endif
  5731. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5732. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5733. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5735. if (DEBUGGING(LEVELING))
  5736. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5737. #endif
  5738. }
  5739. #endif // MESH_BED_LEVELING
  5740. #endif // !AUTO_BED_LEVELING_FEATURE
  5741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5742. if (DEBUGGING(LEVELING)) {
  5743. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5744. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5745. SERIAL_ECHOLNPGM(" }");
  5746. }
  5747. #endif
  5748. // The newly-selected extruder XY is actually at...
  5749. current_position[X_AXIS] += xydiff[X_AXIS];
  5750. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5751. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5752. position_shift[i] += xydiff[i];
  5753. update_software_endstops((AxisEnum)i);
  5754. }
  5755. // Set the new active extruder
  5756. active_extruder = tmp_extruder;
  5757. #endif // !DUAL_X_CARRIAGE
  5758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5759. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5760. #endif
  5761. // Tell the planner the new "current position"
  5762. SYNC_PLAN_POSITION_KINEMATIC();
  5763. // Move to the "old position" (move the extruder into place)
  5764. if (!no_move && IsRunning()) {
  5765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5766. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5767. #endif
  5768. prepare_move_to_destination();
  5769. }
  5770. } // (tmp_extruder != active_extruder)
  5771. stepper.synchronize();
  5772. #if ENABLED(EXT_SOLENOID)
  5773. disable_all_solenoids();
  5774. enable_solenoid_on_active_extruder();
  5775. #endif // EXT_SOLENOID
  5776. feedrate_mm_s = old_feedrate_mm_s;
  5777. #else // HOTENDS <= 1
  5778. // Set the new active extruder
  5779. active_extruder = tmp_extruder;
  5780. UNUSED(fr_mm_s);
  5781. UNUSED(no_move);
  5782. #endif // HOTENDS <= 1
  5783. SERIAL_ECHO_START;
  5784. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5785. SERIAL_PROTOCOLLN((int)active_extruder);
  5786. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5787. }
  5788. /**
  5789. * T0-T3: Switch tool, usually switching extruders
  5790. *
  5791. * F[units/min] Set the movement feedrate
  5792. * S1 Don't move the tool in XY after change
  5793. */
  5794. inline void gcode_T(uint8_t tmp_extruder) {
  5795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5796. if (DEBUGGING(LEVELING)) {
  5797. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5798. SERIAL_ECHOLNPGM(")");
  5799. DEBUG_POS("BEFORE", current_position);
  5800. }
  5801. #endif
  5802. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5803. tool_change(tmp_extruder);
  5804. #elif HOTENDS > 1
  5805. tool_change(
  5806. tmp_extruder,
  5807. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5808. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5809. );
  5810. #endif
  5811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5812. if (DEBUGGING(LEVELING)) {
  5813. DEBUG_POS("AFTER", current_position);
  5814. SERIAL_ECHOLNPGM("<<< gcode_T");
  5815. }
  5816. #endif
  5817. }
  5818. /**
  5819. * Process a single command and dispatch it to its handler
  5820. * This is called from the main loop()
  5821. */
  5822. void process_next_command() {
  5823. current_command = command_queue[cmd_queue_index_r];
  5824. if (DEBUGGING(ECHO)) {
  5825. SERIAL_ECHO_START;
  5826. SERIAL_ECHOLN(current_command);
  5827. }
  5828. // Sanitize the current command:
  5829. // - Skip leading spaces
  5830. // - Bypass N[-0-9][0-9]*[ ]*
  5831. // - Overwrite * with nul to mark the end
  5832. while (*current_command == ' ') ++current_command;
  5833. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5834. current_command += 2; // skip N[-0-9]
  5835. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5836. while (*current_command == ' ') ++current_command; // skip [ ]*
  5837. }
  5838. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5839. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5840. char *cmd_ptr = current_command;
  5841. // Get the command code, which must be G, M, or T
  5842. char command_code = *cmd_ptr++;
  5843. // Skip spaces to get the numeric part
  5844. while (*cmd_ptr == ' ') cmd_ptr++;
  5845. uint16_t codenum = 0; // define ahead of goto
  5846. // Bail early if there's no code
  5847. bool code_is_good = NUMERIC(*cmd_ptr);
  5848. if (!code_is_good) goto ExitUnknownCommand;
  5849. // Get and skip the code number
  5850. do {
  5851. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5852. cmd_ptr++;
  5853. } while (NUMERIC(*cmd_ptr));
  5854. // Skip all spaces to get to the first argument, or nul
  5855. while (*cmd_ptr == ' ') cmd_ptr++;
  5856. // The command's arguments (if any) start here, for sure!
  5857. current_command_args = cmd_ptr;
  5858. KEEPALIVE_STATE(IN_HANDLER);
  5859. // Handle a known G, M, or T
  5860. switch (command_code) {
  5861. case 'G': switch (codenum) {
  5862. // G0, G1
  5863. case 0:
  5864. case 1:
  5865. gcode_G0_G1();
  5866. break;
  5867. // G2, G3
  5868. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5869. case 2: // G2 - CW ARC
  5870. case 3: // G3 - CCW ARC
  5871. gcode_G2_G3(codenum == 2);
  5872. break;
  5873. #endif
  5874. // G4 Dwell
  5875. case 4:
  5876. gcode_G4();
  5877. break;
  5878. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5879. // G5
  5880. case 5: // G5 - Cubic B_spline
  5881. gcode_G5();
  5882. break;
  5883. #endif // BEZIER_CURVE_SUPPORT
  5884. #if ENABLED(FWRETRACT)
  5885. case 10: // G10: retract
  5886. case 11: // G11: retract_recover
  5887. gcode_G10_G11(codenum == 10);
  5888. break;
  5889. #endif // FWRETRACT
  5890. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5891. case 12:
  5892. gcode_G12(); // G12: Nozzle Clean
  5893. break;
  5894. #endif // NOZZLE_CLEAN_FEATURE
  5895. #if ENABLED(INCH_MODE_SUPPORT)
  5896. case 20: //G20: Inch Mode
  5897. gcode_G20();
  5898. break;
  5899. case 21: //G21: MM Mode
  5900. gcode_G21();
  5901. break;
  5902. #endif // INCH_MODE_SUPPORT
  5903. #if ENABLED(NOZZLE_PARK_FEATURE)
  5904. case 27: // G27: Nozzle Park
  5905. gcode_G27();
  5906. break;
  5907. #endif // NOZZLE_PARK_FEATURE
  5908. case 28: // G28: Home all axes, one at a time
  5909. gcode_G28();
  5910. break;
  5911. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5912. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5913. gcode_G29();
  5914. break;
  5915. #endif // AUTO_BED_LEVELING_FEATURE
  5916. #if HAS_BED_PROBE
  5917. case 30: // G30 Single Z probe
  5918. gcode_G30();
  5919. break;
  5920. #if ENABLED(Z_PROBE_SLED)
  5921. case 31: // G31: dock the sled
  5922. gcode_G31();
  5923. break;
  5924. case 32: // G32: undock the sled
  5925. gcode_G32();
  5926. break;
  5927. #endif // Z_PROBE_SLED
  5928. #endif // HAS_BED_PROBE
  5929. case 90: // G90
  5930. relative_mode = false;
  5931. break;
  5932. case 91: // G91
  5933. relative_mode = true;
  5934. break;
  5935. case 92: // G92
  5936. gcode_G92();
  5937. break;
  5938. }
  5939. break;
  5940. case 'M': switch (codenum) {
  5941. #if ENABLED(ULTIPANEL)
  5942. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5943. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5944. gcode_M0_M1();
  5945. break;
  5946. #endif // ULTIPANEL
  5947. case 17:
  5948. gcode_M17();
  5949. break;
  5950. #if ENABLED(SDSUPPORT)
  5951. case 20: // M20 - list SD card
  5952. gcode_M20(); break;
  5953. case 21: // M21 - init SD card
  5954. gcode_M21(); break;
  5955. case 22: //M22 - release SD card
  5956. gcode_M22(); break;
  5957. case 23: //M23 - Select file
  5958. gcode_M23(); break;
  5959. case 24: //M24 - Start SD print
  5960. gcode_M24(); break;
  5961. case 25: //M25 - Pause SD print
  5962. gcode_M25(); break;
  5963. case 26: //M26 - Set SD index
  5964. gcode_M26(); break;
  5965. case 27: //M27 - Get SD status
  5966. gcode_M27(); break;
  5967. case 28: //M28 - Start SD write
  5968. gcode_M28(); break;
  5969. case 29: //M29 - Stop SD write
  5970. gcode_M29(); break;
  5971. case 30: //M30 <filename> Delete File
  5972. gcode_M30(); break;
  5973. case 32: //M32 - Select file and start SD print
  5974. gcode_M32(); break;
  5975. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5976. case 33: //M33 - Get the long full path to a file or folder
  5977. gcode_M33(); break;
  5978. #endif // LONG_FILENAME_HOST_SUPPORT
  5979. case 928: //M928 - Start SD write
  5980. gcode_M928(); break;
  5981. #endif //SDSUPPORT
  5982. case 31: //M31 take time since the start of the SD print or an M109 command
  5983. gcode_M31();
  5984. break;
  5985. case 42: //M42 -Change pin status via gcode
  5986. gcode_M42();
  5987. break;
  5988. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5989. case 48: // M48 Z probe repeatability
  5990. gcode_M48();
  5991. break;
  5992. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5993. case 75: // Start print timer
  5994. gcode_M75();
  5995. break;
  5996. case 76: // Pause print timer
  5997. gcode_M76();
  5998. break;
  5999. case 77: // Stop print timer
  6000. gcode_M77();
  6001. break;
  6002. #if ENABLED(PRINTCOUNTER)
  6003. case 78: // Show print statistics
  6004. gcode_M78();
  6005. break;
  6006. #endif
  6007. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6008. case 100:
  6009. gcode_M100();
  6010. break;
  6011. #endif
  6012. case 104: // M104
  6013. gcode_M104();
  6014. break;
  6015. case 110: // M110: Set Current Line Number
  6016. gcode_M110();
  6017. break;
  6018. case 111: // M111: Set debug level
  6019. gcode_M111();
  6020. break;
  6021. #if DISABLED(EMERGENCY_PARSER)
  6022. case 108: // M108: Cancel Waiting
  6023. gcode_M108();
  6024. break;
  6025. case 112: // M112: Emergency Stop
  6026. gcode_M112();
  6027. break;
  6028. case 410: // M410 quickstop - Abort all the planned moves.
  6029. gcode_M410();
  6030. break;
  6031. #endif
  6032. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6033. case 113: // M113: Set Host Keepalive interval
  6034. gcode_M113();
  6035. break;
  6036. #endif
  6037. case 140: // M140: Set bed temp
  6038. gcode_M140();
  6039. break;
  6040. case 105: // M105: Read current temperature
  6041. gcode_M105();
  6042. KEEPALIVE_STATE(NOT_BUSY);
  6043. return; // "ok" already printed
  6044. case 109: // M109: Wait for temperature
  6045. gcode_M109();
  6046. break;
  6047. #if HAS_TEMP_BED
  6048. case 190: // M190: Wait for bed heater to reach target
  6049. gcode_M190();
  6050. break;
  6051. #endif // HAS_TEMP_BED
  6052. #if FAN_COUNT > 0
  6053. case 106: // M106: Fan On
  6054. gcode_M106();
  6055. break;
  6056. case 107: // M107: Fan Off
  6057. gcode_M107();
  6058. break;
  6059. #endif // FAN_COUNT > 0
  6060. #if ENABLED(BARICUDA)
  6061. // PWM for HEATER_1_PIN
  6062. #if HAS_HEATER_1
  6063. case 126: // M126: valve open
  6064. gcode_M126();
  6065. break;
  6066. case 127: // M127: valve closed
  6067. gcode_M127();
  6068. break;
  6069. #endif // HAS_HEATER_1
  6070. // PWM for HEATER_2_PIN
  6071. #if HAS_HEATER_2
  6072. case 128: // M128: valve open
  6073. gcode_M128();
  6074. break;
  6075. case 129: // M129: valve closed
  6076. gcode_M129();
  6077. break;
  6078. #endif // HAS_HEATER_2
  6079. #endif // BARICUDA
  6080. #if HAS_POWER_SWITCH
  6081. case 80: // M80: Turn on Power Supply
  6082. gcode_M80();
  6083. break;
  6084. #endif // HAS_POWER_SWITCH
  6085. case 81: // M81: Turn off Power, including Power Supply, if possible
  6086. gcode_M81();
  6087. break;
  6088. case 82:
  6089. gcode_M82();
  6090. break;
  6091. case 83:
  6092. gcode_M83();
  6093. break;
  6094. case 18: // (for compatibility)
  6095. case 84: // M84
  6096. gcode_M18_M84();
  6097. break;
  6098. case 85: // M85
  6099. gcode_M85();
  6100. break;
  6101. case 92: // M92: Set the steps-per-unit for one or more axes
  6102. gcode_M92();
  6103. break;
  6104. case 115: // M115: Report capabilities
  6105. gcode_M115();
  6106. break;
  6107. case 117: // M117: Set LCD message text, if possible
  6108. gcode_M117();
  6109. break;
  6110. case 114: // M114: Report current position
  6111. gcode_M114();
  6112. break;
  6113. case 120: // M120: Enable endstops
  6114. gcode_M120();
  6115. break;
  6116. case 121: // M121: Disable endstops
  6117. gcode_M121();
  6118. break;
  6119. case 119: // M119: Report endstop states
  6120. gcode_M119();
  6121. break;
  6122. #if ENABLED(ULTIPANEL)
  6123. case 145: // M145: Set material heatup parameters
  6124. gcode_M145();
  6125. break;
  6126. #endif
  6127. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6128. case 149:
  6129. gcode_M149();
  6130. break;
  6131. #endif
  6132. #if ENABLED(BLINKM)
  6133. case 150: // M150
  6134. gcode_M150();
  6135. break;
  6136. #endif //BLINKM
  6137. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6138. case 155:
  6139. gcode_M155();
  6140. break;
  6141. case 156:
  6142. gcode_M156();
  6143. break;
  6144. #endif //EXPERIMENTAL_I2CBUS
  6145. #if ENABLED(MIXING_EXTRUDER)
  6146. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6147. gcode_M163();
  6148. break;
  6149. #if MIXING_VIRTUAL_TOOLS > 1
  6150. case 164: // M164 S<int> save current mix as a virtual extruder
  6151. gcode_M164();
  6152. break;
  6153. #endif
  6154. #if ENABLED(DIRECT_MIXING_IN_G1)
  6155. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6156. gcode_M165();
  6157. break;
  6158. #endif
  6159. #endif
  6160. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6161. gcode_M200();
  6162. break;
  6163. case 201: // M201
  6164. gcode_M201();
  6165. break;
  6166. #if 0 // Not used for Sprinter/grbl gen6
  6167. case 202: // M202
  6168. gcode_M202();
  6169. break;
  6170. #endif
  6171. case 203: // M203 max feedrate units/sec
  6172. gcode_M203();
  6173. break;
  6174. case 204: // M204 acclereration S normal moves T filmanent only moves
  6175. gcode_M204();
  6176. break;
  6177. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6178. gcode_M205();
  6179. break;
  6180. case 206: // M206 additional homing offset
  6181. gcode_M206();
  6182. break;
  6183. #if ENABLED(DELTA)
  6184. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6185. gcode_M665();
  6186. break;
  6187. #endif
  6188. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6189. case 666: // M666 set delta / dual endstop adjustment
  6190. gcode_M666();
  6191. break;
  6192. #endif
  6193. #if ENABLED(FWRETRACT)
  6194. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6195. gcode_M207();
  6196. break;
  6197. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6198. gcode_M208();
  6199. break;
  6200. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6201. gcode_M209();
  6202. break;
  6203. #endif // FWRETRACT
  6204. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6205. gcode_M211();
  6206. break;
  6207. #if HOTENDS > 1
  6208. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6209. gcode_M218();
  6210. break;
  6211. #endif
  6212. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6213. gcode_M220();
  6214. break;
  6215. case 221: // M221 - Set Flow Percentage: S<percent>
  6216. gcode_M221();
  6217. break;
  6218. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6219. gcode_M226();
  6220. break;
  6221. #if HAS_SERVOS
  6222. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6223. gcode_M280();
  6224. break;
  6225. #endif // HAS_SERVOS
  6226. #if HAS_BUZZER
  6227. case 300: // M300 - Play beep tone
  6228. gcode_M300();
  6229. break;
  6230. #endif // HAS_BUZZER
  6231. #if ENABLED(PIDTEMP)
  6232. case 301: // M301
  6233. gcode_M301();
  6234. break;
  6235. #endif // PIDTEMP
  6236. #if ENABLED(PIDTEMPBED)
  6237. case 304: // M304
  6238. gcode_M304();
  6239. break;
  6240. #endif // PIDTEMPBED
  6241. #if defined(CHDK) || HAS_PHOTOGRAPH
  6242. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6243. gcode_M240();
  6244. break;
  6245. #endif // CHDK || PHOTOGRAPH_PIN
  6246. #if HAS_LCD_CONTRAST
  6247. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6248. gcode_M250();
  6249. break;
  6250. #endif // HAS_LCD_CONTRAST
  6251. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6252. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6253. gcode_M302();
  6254. break;
  6255. #endif // PREVENT_COLD_EXTRUSION
  6256. case 303: // M303 PID autotune
  6257. gcode_M303();
  6258. break;
  6259. #if ENABLED(SCARA)
  6260. case 360: // M360 SCARA Theta pos1
  6261. if (gcode_M360()) return;
  6262. break;
  6263. case 361: // M361 SCARA Theta pos2
  6264. if (gcode_M361()) return;
  6265. break;
  6266. case 362: // M362 SCARA Psi pos1
  6267. if (gcode_M362()) return;
  6268. break;
  6269. case 363: // M363 SCARA Psi pos2
  6270. if (gcode_M363()) return;
  6271. break;
  6272. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6273. if (gcode_M364()) return;
  6274. break;
  6275. case 365: // M365 Set SCARA scaling for X Y Z
  6276. gcode_M365();
  6277. break;
  6278. #endif // SCARA
  6279. case 400: // M400 finish all moves
  6280. gcode_M400();
  6281. break;
  6282. #if HAS_BED_PROBE
  6283. case 401:
  6284. gcode_M401();
  6285. break;
  6286. case 402:
  6287. gcode_M402();
  6288. break;
  6289. #endif // HAS_BED_PROBE
  6290. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6291. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6292. gcode_M404();
  6293. break;
  6294. case 405: //M405 Turn on filament sensor for control
  6295. gcode_M405();
  6296. break;
  6297. case 406: //M406 Turn off filament sensor for control
  6298. gcode_M406();
  6299. break;
  6300. case 407: //M407 Display measured filament diameter
  6301. gcode_M407();
  6302. break;
  6303. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6304. #if ENABLED(MESH_BED_LEVELING)
  6305. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6306. gcode_M420();
  6307. break;
  6308. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6309. gcode_M421();
  6310. break;
  6311. #endif
  6312. case 428: // M428 Apply current_position to home_offset
  6313. gcode_M428();
  6314. break;
  6315. case 500: // M500 Store settings in EEPROM
  6316. gcode_M500();
  6317. break;
  6318. case 501: // M501 Read settings from EEPROM
  6319. gcode_M501();
  6320. break;
  6321. case 502: // M502 Revert to default settings
  6322. gcode_M502();
  6323. break;
  6324. case 503: // M503 print settings currently in memory
  6325. gcode_M503();
  6326. break;
  6327. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6328. case 540:
  6329. gcode_M540();
  6330. break;
  6331. #endif
  6332. #if HAS_BED_PROBE
  6333. case 851:
  6334. gcode_M851();
  6335. break;
  6336. #endif // HAS_BED_PROBE
  6337. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6338. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6339. gcode_M600();
  6340. break;
  6341. #endif // FILAMENT_CHANGE_FEATURE
  6342. #if ENABLED(DUAL_X_CARRIAGE)
  6343. case 605:
  6344. gcode_M605();
  6345. break;
  6346. #endif // DUAL_X_CARRIAGE
  6347. #if ENABLED(LIN_ADVANCE)
  6348. case 905: // M905 Set advance factor.
  6349. gcode_M905();
  6350. break;
  6351. #endif
  6352. case 907: // M907 Set digital trimpot motor current using axis codes.
  6353. gcode_M907();
  6354. break;
  6355. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6356. case 908: // M908 Control digital trimpot directly.
  6357. gcode_M908();
  6358. break;
  6359. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6360. case 909: // M909 Print digipot/DAC current value
  6361. gcode_M909();
  6362. break;
  6363. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6364. gcode_M910();
  6365. break;
  6366. #endif
  6367. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6368. #if HAS_MICROSTEPS
  6369. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6370. gcode_M350();
  6371. break;
  6372. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6373. gcode_M351();
  6374. break;
  6375. #endif // HAS_MICROSTEPS
  6376. case 999: // M999: Restart after being Stopped
  6377. gcode_M999();
  6378. break;
  6379. }
  6380. break;
  6381. case 'T':
  6382. gcode_T(codenum);
  6383. break;
  6384. default: code_is_good = false;
  6385. }
  6386. KEEPALIVE_STATE(NOT_BUSY);
  6387. ExitUnknownCommand:
  6388. // Still unknown command? Throw an error
  6389. if (!code_is_good) unknown_command_error();
  6390. ok_to_send();
  6391. }
  6392. void FlushSerialRequestResend() {
  6393. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6394. MYSERIAL.flush();
  6395. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6396. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6397. ok_to_send();
  6398. }
  6399. void ok_to_send() {
  6400. refresh_cmd_timeout();
  6401. if (!send_ok[cmd_queue_index_r]) return;
  6402. SERIAL_PROTOCOLPGM(MSG_OK);
  6403. #if ENABLED(ADVANCED_OK)
  6404. char* p = command_queue[cmd_queue_index_r];
  6405. if (*p == 'N') {
  6406. SERIAL_PROTOCOL(' ');
  6407. SERIAL_ECHO(*p++);
  6408. while (NUMERIC_SIGNED(*p))
  6409. SERIAL_ECHO(*p++);
  6410. }
  6411. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6412. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6413. #endif
  6414. SERIAL_EOL;
  6415. }
  6416. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6417. void clamp_to_software_endstops(float target[XYZ]) {
  6418. #if ENABLED(min_software_endstops)
  6419. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6420. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6421. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6422. #endif
  6423. #if ENABLED(max_software_endstops)
  6424. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6425. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6426. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6427. #endif
  6428. }
  6429. #endif
  6430. #if ENABLED(DELTA)
  6431. void recalc_delta_settings(float radius, float diagonal_rod) {
  6432. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6433. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6434. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6435. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6436. delta_tower3_x = 0.0; // back middle tower
  6437. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6438. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6439. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6440. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6441. }
  6442. void inverse_kinematics(const float in_cartesian[XYZ]) {
  6443. const float cartesian[XYZ] = {
  6444. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6445. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6446. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6447. };
  6448. delta[A_AXIS] = sqrt(delta_diagonal_rod_2_tower_1
  6449. - sq(delta_tower1_x - cartesian[X_AXIS])
  6450. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6451. ) + cartesian[Z_AXIS];
  6452. delta[B_AXIS] = sqrt(delta_diagonal_rod_2_tower_2
  6453. - sq(delta_tower2_x - cartesian[X_AXIS])
  6454. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6455. ) + cartesian[Z_AXIS];
  6456. delta[C_AXIS] = sqrt(delta_diagonal_rod_2_tower_3
  6457. - sq(delta_tower3_x - cartesian[X_AXIS])
  6458. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6459. ) + cartesian[Z_AXIS];
  6460. /**
  6461. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6462. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6463. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6464. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[A_AXIS]);
  6465. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[B_AXIS]);
  6466. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[C_AXIS]);
  6467. */
  6468. }
  6469. float delta_safe_distance_from_top() {
  6470. float cartesian[XYZ] = {
  6471. LOGICAL_X_POSITION(0),
  6472. LOGICAL_Y_POSITION(0),
  6473. LOGICAL_Z_POSITION(0)
  6474. };
  6475. inverse_kinematics(cartesian);
  6476. float distance = delta[A_AXIS];
  6477. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6478. inverse_kinematics(cartesian);
  6479. return abs(distance - delta[A_AXIS]);
  6480. }
  6481. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6482. //As discussed in Wikipedia "Trilateration"
  6483. //we are establishing a new coordinate
  6484. //system in the plane of the three carriage points.
  6485. //This system will have the origin at tower1 and
  6486. //tower2 is on the x axis. tower3 is in the X-Y
  6487. //plane with a Z component of zero. We will define unit
  6488. //vectors in this coordinate system in our original
  6489. //coordinate system. Then when we calculate the
  6490. //Xnew, Ynew and Znew values, we can translate back into
  6491. //the original system by moving along those unit vectors
  6492. //by the corresponding values.
  6493. // https://en.wikipedia.org/wiki/Trilateration
  6494. // Variable names matched to Marlin, c-version
  6495. // and avoiding a vector library
  6496. // by Andreas Hardtung 2016-06-7
  6497. // based on a Java function from
  6498. // "Delta Robot Kinematics by Steve Graves" V3
  6499. // Result is in cartesian_position[].
  6500. //Create a vector in old coordinates along x axis of new coordinate
  6501. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6502. //Get the Magnitude of vector.
  6503. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6504. //Create unit vector by dividing by magnitude.
  6505. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6506. //Now find vector from the origin of the new system to the third point.
  6507. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6508. //Now use dot product to find the component of this vector on the X axis.
  6509. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6510. //Now create a vector along the x axis that represents the x component of p13.
  6511. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6512. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6513. //variable that will be the unit vector after we scale it.
  6514. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6515. //The magnitude of Y component
  6516. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6517. //Now make vector a unit vector
  6518. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6519. //The cross product of the unit x and y is the unit z
  6520. //float[] ez = vectorCrossProd(ex, ey);
  6521. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6522. //Now we have the d, i and j values defined in Wikipedia.
  6523. //We can plug them into the equations defined in
  6524. //Wikipedia for Xnew, Ynew and Znew
  6525. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6526. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6527. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6528. //Now we can start from the origin in the old coords and
  6529. //add vectors in the old coords that represent the
  6530. //Xnew, Ynew and Znew to find the point in the old system
  6531. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6532. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6533. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6534. };
  6535. void forward_kinematics_DELTA(float point[ABC]) {
  6536. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6537. }
  6538. void set_cartesian_from_steppers() {
  6539. forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
  6540. stepper.get_axis_position_mm(B_AXIS),
  6541. stepper.get_axis_position_mm(C_AXIS));
  6542. }
  6543. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6544. // Adjust print surface height by linear interpolation over the bed_level array.
  6545. void adjust_delta(float cartesian[XYZ]) {
  6546. if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6547. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6548. float h1 = 0.001 - half, h2 = half - 0.001,
  6549. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
  6550. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
  6551. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6552. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6553. z1 = bed_level[floor_x + half][floor_y + half],
  6554. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6555. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6556. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6557. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6558. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6559. offset = (1 - ratio_x) * left + ratio_x * right;
  6560. delta[X_AXIS] += offset;
  6561. delta[Y_AXIS] += offset;
  6562. delta[Z_AXIS] += offset;
  6563. /**
  6564. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6565. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6566. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6567. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6568. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6569. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6570. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6571. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6572. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6573. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6574. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6575. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6576. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6577. */
  6578. }
  6579. #endif // AUTO_BED_LEVELING_NONLINEAR
  6580. #endif // DELTA
  6581. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6582. #if ENABLED(DELTA)
  6583. set_cartesian_from_steppers();
  6584. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6585. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6586. vector_3 pos = untilted_stepper_position();
  6587. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6588. #else
  6589. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6590. #endif
  6591. }
  6592. #if ENABLED(MESH_BED_LEVELING)
  6593. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6594. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6595. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6596. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6597. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6598. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6599. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6600. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6601. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6602. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6603. if (cx1 == cx2 && cy1 == cy2) {
  6604. // Start and end on same mesh square
  6605. line_to_destination(fr_mm_s);
  6606. set_current_to_destination();
  6607. return;
  6608. }
  6609. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6610. float normalized_dist, end[NUM_AXIS];
  6611. // Split at the left/front border of the right/top square
  6612. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6613. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6614. memcpy(end, destination, sizeof(end));
  6615. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6616. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6617. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6618. CBI(x_splits, gcx);
  6619. }
  6620. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6621. memcpy(end, destination, sizeof(end));
  6622. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6623. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6624. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6625. CBI(y_splits, gcy);
  6626. }
  6627. else {
  6628. // Already split on a border
  6629. line_to_destination(fr_mm_s);
  6630. set_current_to_destination();
  6631. return;
  6632. }
  6633. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6634. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6635. // Do the split and look for more borders
  6636. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6637. // Restore destination from stack
  6638. memcpy(destination, end, sizeof(end));
  6639. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6640. }
  6641. #endif // MESH_BED_LEVELING
  6642. #if IS_KINEMATIC
  6643. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6644. float difference[NUM_AXIS];
  6645. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6646. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6647. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6648. if (cartesian_mm < 0.000001) return false;
  6649. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6650. float seconds = cartesian_mm / _feedrate_mm_s;
  6651. int steps = max(1, int(delta_segments_per_second * seconds));
  6652. float inv_steps = 1.0/steps;
  6653. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6654. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6655. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6656. for (int s = 1; s <= steps; s++) {
  6657. float fraction = float(s) * inv_steps;
  6658. LOOP_XYZE(i)
  6659. target[i] = current_position[i] + difference[i] * fraction;
  6660. inverse_kinematics(target);
  6661. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6662. if (!bed_leveling_in_progress) adjust_delta(target);
  6663. #endif
  6664. //DEBUG_POS("prepare_kinematic_move_to", target);
  6665. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6666. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6667. }
  6668. return true;
  6669. }
  6670. #endif // IS_KINEMATIC
  6671. #if ENABLED(DUAL_X_CARRIAGE)
  6672. inline bool prepare_move_to_destination_dualx() {
  6673. if (active_extruder_parked) {
  6674. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6675. // move duplicate extruder into correct duplication position.
  6676. planner.set_position_mm(
  6677. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6678. current_position[Y_AXIS],
  6679. current_position[Z_AXIS],
  6680. current_position[E_AXIS]
  6681. );
  6682. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6683. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6684. SYNC_PLAN_POSITION_KINEMATIC();
  6685. stepper.synchronize();
  6686. extruder_duplication_enabled = true;
  6687. active_extruder_parked = false;
  6688. }
  6689. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6690. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6691. // This is a travel move (with no extrusion)
  6692. // Skip it, but keep track of the current position
  6693. // (so it can be used as the start of the next non-travel move)
  6694. if (delayed_move_time != 0xFFFFFFFFUL) {
  6695. set_current_to_destination();
  6696. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6697. delayed_move_time = millis();
  6698. return false;
  6699. }
  6700. }
  6701. delayed_move_time = 0;
  6702. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6703. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6704. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6705. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6706. active_extruder_parked = false;
  6707. }
  6708. }
  6709. return true;
  6710. }
  6711. #endif // DUAL_X_CARRIAGE
  6712. #if !IS_KINEMATIC
  6713. inline bool prepare_move_to_destination_cartesian() {
  6714. // Do not use feedrate_percentage for E or Z only moves
  6715. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6716. line_to_destination();
  6717. }
  6718. else {
  6719. #if ENABLED(MESH_BED_LEVELING)
  6720. if (mbl.active()) {
  6721. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6722. return false;
  6723. }
  6724. else
  6725. #endif
  6726. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6727. }
  6728. return true;
  6729. }
  6730. #endif // !IS_KINEMATIC
  6731. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6732. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6733. if (DEBUGGING(DRYRUN)) return;
  6734. float de = dest_e - curr_e;
  6735. if (de) {
  6736. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6737. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6738. SERIAL_ECHO_START;
  6739. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6740. }
  6741. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6742. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6743. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6744. SERIAL_ECHO_START;
  6745. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6746. }
  6747. #endif
  6748. }
  6749. }
  6750. #endif // PREVENT_COLD_EXTRUSION
  6751. /**
  6752. * Prepare a single move and get ready for the next one
  6753. *
  6754. * (This may call planner.buffer_line several times to put
  6755. * smaller moves into the planner for DELTA or SCARA.)
  6756. */
  6757. void prepare_move_to_destination() {
  6758. clamp_to_software_endstops(destination);
  6759. refresh_cmd_timeout();
  6760. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6761. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6762. #endif
  6763. #if IS_KINEMATIC
  6764. if (!prepare_kinematic_move_to(destination)) return;
  6765. #else
  6766. #if ENABLED(DUAL_X_CARRIAGE)
  6767. if (!prepare_move_to_destination_dualx()) return;
  6768. #endif
  6769. if (!prepare_move_to_destination_cartesian()) return;
  6770. #endif
  6771. set_current_to_destination();
  6772. }
  6773. #if ENABLED(ARC_SUPPORT)
  6774. /**
  6775. * Plan an arc in 2 dimensions
  6776. *
  6777. * The arc is approximated by generating many small linear segments.
  6778. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6779. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6780. * larger segments will tend to be more efficient. Your slicer should have
  6781. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6782. */
  6783. void plan_arc(
  6784. float target[NUM_AXIS], // Destination position
  6785. float* offset, // Center of rotation relative to current_position
  6786. uint8_t clockwise // Clockwise?
  6787. ) {
  6788. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6789. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6790. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6791. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6792. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6793. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6794. r_Y = -offset[Y_AXIS],
  6795. rt_X = target[X_AXIS] - center_X,
  6796. rt_Y = target[Y_AXIS] - center_Y;
  6797. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6798. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6799. if (angular_travel < 0) angular_travel += RADIANS(360);
  6800. if (clockwise) angular_travel -= RADIANS(360);
  6801. // Make a circle if the angular rotation is 0
  6802. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6803. angular_travel += RADIANS(360);
  6804. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6805. if (mm_of_travel < 0.001) return;
  6806. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6807. if (segments == 0) segments = 1;
  6808. float theta_per_segment = angular_travel / segments;
  6809. float linear_per_segment = linear_travel / segments;
  6810. float extruder_per_segment = extruder_travel / segments;
  6811. /**
  6812. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6813. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6814. * r_T = [cos(phi) -sin(phi);
  6815. * sin(phi) cos(phi] * r ;
  6816. *
  6817. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6818. * defined from the circle center to the initial position. Each line segment is formed by successive
  6819. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6820. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6821. * all double numbers are single precision on the Arduino. (True double precision will not have
  6822. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6823. * tool precision in some cases. Therefore, arc path correction is implemented.
  6824. *
  6825. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6826. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6827. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6828. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6829. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6830. * issue for CNC machines with the single precision Arduino calculations.
  6831. *
  6832. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6833. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6834. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6835. * This is important when there are successive arc motions.
  6836. */
  6837. // Vector rotation matrix values
  6838. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6839. float sin_T = theta_per_segment;
  6840. float arc_target[NUM_AXIS];
  6841. float sin_Ti, cos_Ti, r_new_Y;
  6842. uint16_t i;
  6843. int8_t count = 0;
  6844. // Initialize the linear axis
  6845. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6846. // Initialize the extruder axis
  6847. arc_target[E_AXIS] = current_position[E_AXIS];
  6848. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6849. millis_t next_idle_ms = millis() + 200UL;
  6850. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6851. thermalManager.manage_heater();
  6852. millis_t now = millis();
  6853. if (ELAPSED(now, next_idle_ms)) {
  6854. next_idle_ms = now + 200UL;
  6855. idle();
  6856. }
  6857. if (++count < N_ARC_CORRECTION) {
  6858. // Apply vector rotation matrix to previous r_X / 1
  6859. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6860. r_X = r_X * cos_T - r_Y * sin_T;
  6861. r_Y = r_new_Y;
  6862. }
  6863. else {
  6864. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6865. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6866. // To reduce stuttering, the sin and cos could be computed at different times.
  6867. // For now, compute both at the same time.
  6868. cos_Ti = cos(i * theta_per_segment);
  6869. sin_Ti = sin(i * theta_per_segment);
  6870. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6871. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6872. count = 0;
  6873. }
  6874. // Update arc_target location
  6875. arc_target[X_AXIS] = center_X + r_X;
  6876. arc_target[Y_AXIS] = center_Y + r_Y;
  6877. arc_target[Z_AXIS] += linear_per_segment;
  6878. arc_target[E_AXIS] += extruder_per_segment;
  6879. clamp_to_software_endstops(arc_target);
  6880. #if IS_KINEMATIC
  6881. inverse_kinematics(arc_target);
  6882. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6883. adjust_delta(arc_target);
  6884. #endif
  6885. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6886. #else
  6887. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6888. #endif
  6889. }
  6890. // Ensure last segment arrives at target location.
  6891. #if IS_KINEMATIC
  6892. inverse_kinematics(target);
  6893. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6894. adjust_delta(target);
  6895. #endif
  6896. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6897. #else
  6898. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6899. #endif
  6900. // As far as the parser is concerned, the position is now == target. In reality the
  6901. // motion control system might still be processing the action and the real tool position
  6902. // in any intermediate location.
  6903. set_current_to_destination();
  6904. }
  6905. #endif
  6906. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6907. void plan_cubic_move(const float offset[4]) {
  6908. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  6909. // As far as the parser is concerned, the position is now == target. In reality the
  6910. // motion control system might still be processing the action and the real tool position
  6911. // in any intermediate location.
  6912. set_current_to_destination();
  6913. }
  6914. #endif // BEZIER_CURVE_SUPPORT
  6915. #if HAS_CONTROLLERFAN
  6916. void controllerFan() {
  6917. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6918. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6919. millis_t ms = millis();
  6920. if (ELAPSED(ms, nextMotorCheck)) {
  6921. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6922. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6923. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6924. #if E_STEPPERS > 1
  6925. || E1_ENABLE_READ == E_ENABLE_ON
  6926. #if HAS_X2_ENABLE
  6927. || X2_ENABLE_READ == X_ENABLE_ON
  6928. #endif
  6929. #if E_STEPPERS > 2
  6930. || E2_ENABLE_READ == E_ENABLE_ON
  6931. #if E_STEPPERS > 3
  6932. || E3_ENABLE_READ == E_ENABLE_ON
  6933. #endif
  6934. #endif
  6935. #endif
  6936. ) {
  6937. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6938. }
  6939. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6940. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6941. // allows digital or PWM fan output to be used (see M42 handling)
  6942. digitalWrite(CONTROLLERFAN_PIN, speed);
  6943. analogWrite(CONTROLLERFAN_PIN, speed);
  6944. }
  6945. }
  6946. #endif // HAS_CONTROLLERFAN
  6947. #if ENABLED(SCARA)
  6948. void forward_kinematics_SCARA(float f_scara[ABC]) {
  6949. // Perform forward kinematics, and place results in delta[]
  6950. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6951. float x_sin, x_cos, y_sin, y_cos;
  6952. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6953. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6954. x_sin = sin(RADIANS(f_scara[X_AXIS])) * L1;
  6955. x_cos = cos(RADIANS(f_scara[X_AXIS])) * L1;
  6956. y_sin = sin(RADIANS(f_scara[Y_AXIS])) * L2;
  6957. y_cos = cos(RADIANS(f_scara[Y_AXIS])) * L2;
  6958. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6959. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6960. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6961. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6962. delta[X_AXIS] = x_cos + y_cos + SCARA_OFFSET_X; //theta
  6963. delta[Y_AXIS] = x_sin + y_sin + SCARA_OFFSET_Y; //theta+phi
  6964. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6965. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6966. }
  6967. void inverse_kinematics(const float cartesian[XYZ]) {
  6968. // Inverse kinematics.
  6969. // Perform SCARA IK and place results in delta[].
  6970. // The maths and first version were done by QHARLEY.
  6971. // Integrated, tweaked by Joachim Cerny in June 2014.
  6972. static float C2, S2, SK1, SK2, THETA, PSI;
  6973. float sx = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_OFFSET_X, //Translate SCARA to standard X Y
  6974. sy = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  6975. #if (L1 == L2)
  6976. C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
  6977. #else
  6978. C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000;
  6979. #endif
  6980. S2 = sqrt(1 - sq(C2));
  6981. SK1 = L1 + L2 * C2;
  6982. SK2 = L2 * S2;
  6983. THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1;
  6984. PSI = atan2(S2, C2);
  6985. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  6986. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  6987. delta[Z_AXIS] = cartesian[Z_AXIS];
  6988. /**
  6989. DEBUG_POS("SCARA IK", cartesian);
  6990. DEBUG_POS("SCARA IK", delta);
  6991. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  6992. SERIAL_ECHOPAIR(",", sy);
  6993. SERIAL_ECHOPAIR(" C2=", C2);
  6994. SERIAL_ECHOPAIR(" S2=", S2);
  6995. SERIAL_ECHOPAIR(" Theta=", THETA);
  6996. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  6997. //*/
  6998. }
  6999. #endif // MORGAN_SCARA
  7000. #if ENABLED(TEMP_STAT_LEDS)
  7001. static bool red_led = false;
  7002. static millis_t next_status_led_update_ms = 0;
  7003. void handle_status_leds(void) {
  7004. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7005. next_status_led_update_ms += 500; // Update every 0.5s
  7006. float max_temp = 0.0;
  7007. #if HAS_TEMP_BED
  7008. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7009. #endif
  7010. HOTEND_LOOP() {
  7011. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7012. }
  7013. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7014. if (new_led != red_led) {
  7015. red_led = new_led;
  7016. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7017. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7018. }
  7019. }
  7020. }
  7021. #endif
  7022. void enable_all_steppers() {
  7023. enable_x();
  7024. enable_y();
  7025. enable_z();
  7026. enable_e0();
  7027. enable_e1();
  7028. enable_e2();
  7029. enable_e3();
  7030. }
  7031. void disable_all_steppers() {
  7032. disable_x();
  7033. disable_y();
  7034. disable_z();
  7035. disable_e0();
  7036. disable_e1();
  7037. disable_e2();
  7038. disable_e3();
  7039. }
  7040. /**
  7041. * Standard idle routine keeps the machine alive
  7042. */
  7043. void idle(
  7044. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7045. bool no_stepper_sleep/*=false*/
  7046. #endif
  7047. ) {
  7048. lcd_update();
  7049. host_keepalive();
  7050. manage_inactivity(
  7051. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7052. no_stepper_sleep
  7053. #endif
  7054. );
  7055. thermalManager.manage_heater();
  7056. #if ENABLED(PRINTCOUNTER)
  7057. print_job_timer.tick();
  7058. #endif
  7059. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7060. buzzer.tick();
  7061. #endif
  7062. }
  7063. /**
  7064. * Manage several activities:
  7065. * - Check for Filament Runout
  7066. * - Keep the command buffer full
  7067. * - Check for maximum inactive time between commands
  7068. * - Check for maximum inactive time between stepper commands
  7069. * - Check if pin CHDK needs to go LOW
  7070. * - Check for KILL button held down
  7071. * - Check for HOME button held down
  7072. * - Check if cooling fan needs to be switched on
  7073. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7074. */
  7075. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7076. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7077. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7078. handle_filament_runout();
  7079. #endif
  7080. if (commands_in_queue < BUFSIZE) get_available_commands();
  7081. millis_t ms = millis();
  7082. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7083. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7084. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7085. #if ENABLED(DISABLE_INACTIVE_X)
  7086. disable_x();
  7087. #endif
  7088. #if ENABLED(DISABLE_INACTIVE_Y)
  7089. disable_y();
  7090. #endif
  7091. #if ENABLED(DISABLE_INACTIVE_Z)
  7092. disable_z();
  7093. #endif
  7094. #if ENABLED(DISABLE_INACTIVE_E)
  7095. disable_e0();
  7096. disable_e1();
  7097. disable_e2();
  7098. disable_e3();
  7099. #endif
  7100. }
  7101. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7102. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7103. chdkActive = false;
  7104. WRITE(CHDK, LOW);
  7105. }
  7106. #endif
  7107. #if HAS_KILL
  7108. // Check if the kill button was pressed and wait just in case it was an accidental
  7109. // key kill key press
  7110. // -------------------------------------------------------------------------------
  7111. static int killCount = 0; // make the inactivity button a bit less responsive
  7112. const int KILL_DELAY = 750;
  7113. if (!READ(KILL_PIN))
  7114. killCount++;
  7115. else if (killCount > 0)
  7116. killCount--;
  7117. // Exceeded threshold and we can confirm that it was not accidental
  7118. // KILL the machine
  7119. // ----------------------------------------------------------------
  7120. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7121. #endif
  7122. #if HAS_HOME
  7123. // Check to see if we have to home, use poor man's debouncer
  7124. // ---------------------------------------------------------
  7125. static int homeDebounceCount = 0; // poor man's debouncing count
  7126. const int HOME_DEBOUNCE_DELAY = 2500;
  7127. if (!READ(HOME_PIN)) {
  7128. if (!homeDebounceCount) {
  7129. enqueue_and_echo_commands_P(PSTR("G28"));
  7130. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7131. }
  7132. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7133. homeDebounceCount++;
  7134. else
  7135. homeDebounceCount = 0;
  7136. }
  7137. #endif
  7138. #if HAS_CONTROLLERFAN
  7139. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7140. #endif
  7141. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7142. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7143. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7144. #if ENABLED(SWITCHING_EXTRUDER)
  7145. bool oldstatus = E0_ENABLE_READ;
  7146. enable_e0();
  7147. #else // !SWITCHING_EXTRUDER
  7148. bool oldstatus;
  7149. switch (active_extruder) {
  7150. case 0:
  7151. oldstatus = E0_ENABLE_READ;
  7152. enable_e0();
  7153. break;
  7154. #if E_STEPPERS > 1
  7155. case 1:
  7156. oldstatus = E1_ENABLE_READ;
  7157. enable_e1();
  7158. break;
  7159. #if E_STEPPERS > 2
  7160. case 2:
  7161. oldstatus = E2_ENABLE_READ;
  7162. enable_e2();
  7163. break;
  7164. #if E_STEPPERS > 3
  7165. case 3:
  7166. oldstatus = E3_ENABLE_READ;
  7167. enable_e3();
  7168. break;
  7169. #endif
  7170. #endif
  7171. #endif
  7172. }
  7173. #endif // !SWITCHING_EXTRUDER
  7174. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7175. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7176. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7177. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7178. current_position[E_AXIS] = oldepos;
  7179. destination[E_AXIS] = oldedes;
  7180. planner.set_e_position_mm(oldepos);
  7181. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7182. stepper.synchronize();
  7183. #if ENABLED(SWITCHING_EXTRUDER)
  7184. E0_ENABLE_WRITE(oldstatus);
  7185. #else
  7186. switch (active_extruder) {
  7187. case 0:
  7188. E0_ENABLE_WRITE(oldstatus);
  7189. break;
  7190. #if E_STEPPERS > 1
  7191. case 1:
  7192. E1_ENABLE_WRITE(oldstatus);
  7193. break;
  7194. #if E_STEPPERS > 2
  7195. case 2:
  7196. E2_ENABLE_WRITE(oldstatus);
  7197. break;
  7198. #if E_STEPPERS > 3
  7199. case 3:
  7200. E3_ENABLE_WRITE(oldstatus);
  7201. break;
  7202. #endif
  7203. #endif
  7204. #endif
  7205. }
  7206. #endif // !SWITCHING_EXTRUDER
  7207. }
  7208. #endif // EXTRUDER_RUNOUT_PREVENT
  7209. #if ENABLED(DUAL_X_CARRIAGE)
  7210. // handle delayed move timeout
  7211. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7212. // travel moves have been received so enact them
  7213. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7214. set_destination_to_current();
  7215. prepare_move_to_destination();
  7216. }
  7217. #endif
  7218. #if ENABLED(TEMP_STAT_LEDS)
  7219. handle_status_leds();
  7220. #endif
  7221. planner.check_axes_activity();
  7222. }
  7223. void kill(const char* lcd_msg) {
  7224. SERIAL_ERROR_START;
  7225. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7226. #if ENABLED(ULTRA_LCD)
  7227. kill_screen(lcd_msg);
  7228. #else
  7229. UNUSED(lcd_msg);
  7230. #endif
  7231. delay(500); // Wait a short time
  7232. cli(); // Stop interrupts
  7233. thermalManager.disable_all_heaters();
  7234. disable_all_steppers();
  7235. #if HAS_POWER_SWITCH
  7236. pinMode(PS_ON_PIN, INPUT);
  7237. #endif
  7238. suicide();
  7239. while (1) {
  7240. #if ENABLED(USE_WATCHDOG)
  7241. watchdog_reset();
  7242. #endif
  7243. } // Wait for reset
  7244. }
  7245. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7246. void handle_filament_runout() {
  7247. if (!filament_ran_out) {
  7248. filament_ran_out = true;
  7249. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7250. stepper.synchronize();
  7251. }
  7252. }
  7253. #endif // FILAMENT_RUNOUT_SENSOR
  7254. #if ENABLED(FAST_PWM_FAN)
  7255. void setPwmFrequency(uint8_t pin, int val) {
  7256. val &= 0x07;
  7257. switch (digitalPinToTimer(pin)) {
  7258. #if defined(TCCR0A)
  7259. case TIMER0A:
  7260. case TIMER0B:
  7261. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7262. // TCCR0B |= val;
  7263. break;
  7264. #endif
  7265. #if defined(TCCR1A)
  7266. case TIMER1A:
  7267. case TIMER1B:
  7268. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7269. // TCCR1B |= val;
  7270. break;
  7271. #endif
  7272. #if defined(TCCR2)
  7273. case TIMER2:
  7274. case TIMER2:
  7275. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7276. TCCR2 |= val;
  7277. break;
  7278. #endif
  7279. #if defined(TCCR2A)
  7280. case TIMER2A:
  7281. case TIMER2B:
  7282. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7283. TCCR2B |= val;
  7284. break;
  7285. #endif
  7286. #if defined(TCCR3A)
  7287. case TIMER3A:
  7288. case TIMER3B:
  7289. case TIMER3C:
  7290. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7291. TCCR3B |= val;
  7292. break;
  7293. #endif
  7294. #if defined(TCCR4A)
  7295. case TIMER4A:
  7296. case TIMER4B:
  7297. case TIMER4C:
  7298. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7299. TCCR4B |= val;
  7300. break;
  7301. #endif
  7302. #if defined(TCCR5A)
  7303. case TIMER5A:
  7304. case TIMER5B:
  7305. case TIMER5C:
  7306. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7307. TCCR5B |= val;
  7308. break;
  7309. #endif
  7310. }
  7311. }
  7312. #endif // FAST_PWM_FAN
  7313. void stop() {
  7314. thermalManager.disable_all_heaters();
  7315. if (IsRunning()) {
  7316. Running = false;
  7317. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7318. SERIAL_ERROR_START;
  7319. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7320. LCD_MESSAGEPGM(MSG_STOPPED);
  7321. }
  7322. }
  7323. float calculate_volumetric_multiplier(float diameter) {
  7324. if (!volumetric_enabled || diameter == 0) return 1.0;
  7325. float d2 = diameter * 0.5;
  7326. return 1.0 / (M_PI * d2 * d2);
  7327. }
  7328. void calculate_volumetric_multipliers() {
  7329. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7330. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7331. }
  7332. /**
  7333. * Marlin entry-point: Set up before the program loop
  7334. * - Set up the kill pin, filament runout, power hold
  7335. * - Start the serial port
  7336. * - Print startup messages and diagnostics
  7337. * - Get EEPROM or default settings
  7338. * - Initialize managers for:
  7339. * • temperature
  7340. * • planner
  7341. * • watchdog
  7342. * • stepper
  7343. * • photo pin
  7344. * • servos
  7345. * • LCD controller
  7346. * • Digipot I2C
  7347. * • Z probe sled
  7348. * • status LEDs
  7349. */
  7350. void setup() {
  7351. #ifdef DISABLE_JTAG
  7352. // Disable JTAG on AT90USB chips to free up pins for IO
  7353. MCUCR = 0x80;
  7354. MCUCR = 0x80;
  7355. #endif
  7356. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7357. setup_filrunoutpin();
  7358. #endif
  7359. setup_killpin();
  7360. setup_powerhold();
  7361. #if HAS_STEPPER_RESET
  7362. disableStepperDrivers();
  7363. #endif
  7364. MYSERIAL.begin(BAUDRATE);
  7365. SERIAL_PROTOCOLLNPGM("start");
  7366. SERIAL_ECHO_START;
  7367. // Check startup - does nothing if bootloader sets MCUSR to 0
  7368. byte mcu = MCUSR;
  7369. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7370. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7371. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7372. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7373. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7374. MCUSR = 0;
  7375. SERIAL_ECHOPGM(MSG_MARLIN);
  7376. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  7377. #ifdef STRING_DISTRIBUTION_DATE
  7378. #ifdef STRING_CONFIG_H_AUTHOR
  7379. SERIAL_ECHO_START;
  7380. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7381. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7382. SERIAL_ECHOPGM(MSG_AUTHOR);
  7383. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  7384. SERIAL_ECHOPGM("Compiled: ");
  7385. SERIAL_ECHOLNPGM(__DATE__);
  7386. #endif // STRING_CONFIG_H_AUTHOR
  7387. #endif // STRING_DISTRIBUTION_DATE
  7388. SERIAL_ECHO_START;
  7389. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  7390. SERIAL_ECHO(freeMemory());
  7391. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  7392. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7393. // Send "ok" after commands by default
  7394. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7395. // Load data from EEPROM if available (or use defaults)
  7396. // This also updates variables in the planner, elsewhere
  7397. Config_RetrieveSettings();
  7398. // Initialize current position based on home_offset
  7399. memcpy(current_position, home_offset, sizeof(home_offset));
  7400. // Vital to init stepper/planner equivalent for current_position
  7401. SYNC_PLAN_POSITION_KINEMATIC();
  7402. thermalManager.init(); // Initialize temperature loop
  7403. #if ENABLED(USE_WATCHDOG)
  7404. watchdog_init();
  7405. #endif
  7406. stepper.init(); // Initialize stepper, this enables interrupts!
  7407. setup_photpin();
  7408. servo_init();
  7409. #if HAS_BED_PROBE
  7410. endstops.enable_z_probe(false);
  7411. #endif
  7412. #if HAS_CONTROLLERFAN
  7413. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7414. #endif
  7415. #if HAS_STEPPER_RESET
  7416. enableStepperDrivers();
  7417. #endif
  7418. #if ENABLED(DIGIPOT_I2C)
  7419. digipot_i2c_init();
  7420. #endif
  7421. #if ENABLED(DAC_STEPPER_CURRENT)
  7422. dac_init();
  7423. #endif
  7424. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7425. pinMode(SLED_PIN, OUTPUT);
  7426. digitalWrite(SLED_PIN, LOW); // turn it off
  7427. #endif // Z_PROBE_SLED
  7428. setup_homepin();
  7429. #ifdef STAT_LED_RED
  7430. pinMode(STAT_LED_RED, OUTPUT);
  7431. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7432. #endif
  7433. #ifdef STAT_LED_BLUE
  7434. pinMode(STAT_LED_BLUE, OUTPUT);
  7435. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7436. #endif
  7437. lcd_init();
  7438. #if ENABLED(SHOW_BOOTSCREEN)
  7439. #if ENABLED(DOGLCD)
  7440. safe_delay(BOOTSCREEN_TIMEOUT);
  7441. #elif ENABLED(ULTRA_LCD)
  7442. bootscreen();
  7443. lcd_init();
  7444. #endif
  7445. #endif
  7446. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7447. // Initialize mixing to 100% color 1
  7448. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7449. mixing_factor[i] = (i == 0) ? 1 : 0;
  7450. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7451. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7452. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7453. #endif
  7454. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7455. i2c.onReceive(i2c_on_receive);
  7456. i2c.onRequest(i2c_on_request);
  7457. #endif
  7458. }
  7459. /**
  7460. * The main Marlin program loop
  7461. *
  7462. * - Save or log commands to SD
  7463. * - Process available commands (if not saving)
  7464. * - Call heater manager
  7465. * - Call inactivity manager
  7466. * - Call endstop manager
  7467. * - Call LCD update
  7468. */
  7469. void loop() {
  7470. if (commands_in_queue < BUFSIZE) get_available_commands();
  7471. #if ENABLED(SDSUPPORT)
  7472. card.checkautostart(false);
  7473. #endif
  7474. if (commands_in_queue) {
  7475. #if ENABLED(SDSUPPORT)
  7476. if (card.saving) {
  7477. char* command = command_queue[cmd_queue_index_r];
  7478. if (strstr_P(command, PSTR("M29"))) {
  7479. // M29 closes the file
  7480. card.closefile();
  7481. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7482. ok_to_send();
  7483. }
  7484. else {
  7485. // Write the string from the read buffer to SD
  7486. card.write_command(command);
  7487. if (card.logging)
  7488. process_next_command(); // The card is saving because it's logging
  7489. else
  7490. ok_to_send();
  7491. }
  7492. }
  7493. else
  7494. process_next_command();
  7495. #else
  7496. process_next_command();
  7497. #endif // SDSUPPORT
  7498. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7499. if (commands_in_queue) {
  7500. --commands_in_queue;
  7501. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7502. }
  7503. }
  7504. endstops.report_state();
  7505. idle();
  7506. }